xref: /openbmc/linux/drivers/usb/host/oxu210hp-hcd.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
4  * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
5  *
6  * This code is *strongly* based on EHCI-HCD code by David Brownell since
7  * the chip is a quasi-EHCI compatible.
8  */
9 
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/dmapool.h>
13 #include <linux/kernel.h>
14 #include <linux/delay.h>
15 #include <linux/ioport.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/timer.h>
20 #include <linux/list.h>
21 #include <linux/interrupt.h>
22 #include <linux/usb.h>
23 #include <linux/usb/hcd.h>
24 #include <linux/moduleparam.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/io.h>
27 
28 #include <asm/irq.h>
29 #include <asm/unaligned.h>
30 
31 #include <linux/irq.h>
32 #include <linux/platform_device.h>
33 
34 #include "oxu210hp.h"
35 
36 #define DRIVER_VERSION "0.0.50"
37 
38 /*
39  * Main defines
40  */
41 
42 #define oxu_dbg(oxu, fmt, args...) \
43 		dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
44 #define oxu_err(oxu, fmt, args...) \
45 		dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
46 #define oxu_info(oxu, fmt, args...) \
47 		dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
48 
49 #ifdef CONFIG_DYNAMIC_DEBUG
50 #define DEBUG
51 #endif
52 
53 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
54 {
55 	return container_of((void *) oxu, struct usb_hcd, hcd_priv);
56 }
57 
58 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
59 {
60 	return (struct oxu_hcd *) (hcd->hcd_priv);
61 }
62 
63 /*
64  * Debug stuff
65  */
66 
67 #undef OXU_URB_TRACE
68 #undef OXU_VERBOSE_DEBUG
69 
70 #ifdef OXU_VERBOSE_DEBUG
71 #define oxu_vdbg			oxu_dbg
72 #else
73 #define oxu_vdbg(oxu, fmt, args...)	/* Nop */
74 #endif
75 
76 #ifdef DEBUG
77 
78 static int __attribute__((__unused__))
79 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
80 {
81 	return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
82 		label, label[0] ? " " : "", status,
83 		(status & STS_ASS) ? " Async" : "",
84 		(status & STS_PSS) ? " Periodic" : "",
85 		(status & STS_RECL) ? " Recl" : "",
86 		(status & STS_HALT) ? " Halt" : "",
87 		(status & STS_IAA) ? " IAA" : "",
88 		(status & STS_FATAL) ? " FATAL" : "",
89 		(status & STS_FLR) ? " FLR" : "",
90 		(status & STS_PCD) ? " PCD" : "",
91 		(status & STS_ERR) ? " ERR" : "",
92 		(status & STS_INT) ? " INT" : ""
93 		);
94 }
95 
96 static int __attribute__((__unused__))
97 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
98 {
99 	return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
100 		label, label[0] ? " " : "", enable,
101 		(enable & STS_IAA) ? " IAA" : "",
102 		(enable & STS_FATAL) ? " FATAL" : "",
103 		(enable & STS_FLR) ? " FLR" : "",
104 		(enable & STS_PCD) ? " PCD" : "",
105 		(enable & STS_ERR) ? " ERR" : "",
106 		(enable & STS_INT) ? " INT" : ""
107 		);
108 }
109 
110 static const char *const fls_strings[] =
111     { "1024", "512", "256", "??" };
112 
113 static int dbg_command_buf(char *buf, unsigned len,
114 				const char *label, u32 command)
115 {
116 	return scnprintf(buf, len,
117 		"%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
118 		label, label[0] ? " " : "", command,
119 		(command & CMD_PARK) ? "park" : "(park)",
120 		CMD_PARK_CNT(command),
121 		(command >> 16) & 0x3f,
122 		(command & CMD_LRESET) ? " LReset" : "",
123 		(command & CMD_IAAD) ? " IAAD" : "",
124 		(command & CMD_ASE) ? " Async" : "",
125 		(command & CMD_PSE) ? " Periodic" : "",
126 		fls_strings[(command >> 2) & 0x3],
127 		(command & CMD_RESET) ? " Reset" : "",
128 		(command & CMD_RUN) ? "RUN" : "HALT"
129 		);
130 }
131 
132 static int dbg_port_buf(char *buf, unsigned len, const char *label,
133 				int port, u32 status)
134 {
135 	char	*sig;
136 
137 	/* signaling state */
138 	switch (status & (3 << 10)) {
139 	case 0 << 10:
140 		sig = "se0";
141 		break;
142 	case 1 << 10:
143 		sig = "k";	/* low speed */
144 		break;
145 	case 2 << 10:
146 		sig = "j";
147 		break;
148 	default:
149 		sig = "?";
150 		break;
151 	}
152 
153 	return scnprintf(buf, len,
154 		"%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
155 		label, label[0] ? " " : "", port, status,
156 		(status & PORT_POWER) ? " POWER" : "",
157 		(status & PORT_OWNER) ? " OWNER" : "",
158 		sig,
159 		(status & PORT_RESET) ? " RESET" : "",
160 		(status & PORT_SUSPEND) ? " SUSPEND" : "",
161 		(status & PORT_RESUME) ? " RESUME" : "",
162 		(status & PORT_OCC) ? " OCC" : "",
163 		(status & PORT_OC) ? " OC" : "",
164 		(status & PORT_PEC) ? " PEC" : "",
165 		(status & PORT_PE) ? " PE" : "",
166 		(status & PORT_CSC) ? " CSC" : "",
167 		(status & PORT_CONNECT) ? " CONNECT" : ""
168 	    );
169 }
170 
171 #else
172 
173 static inline int __attribute__((__unused__))
174 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
175 { return 0; }
176 
177 static inline int __attribute__((__unused__))
178 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
179 { return 0; }
180 
181 static inline int __attribute__((__unused__))
182 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
183 { return 0; }
184 
185 static inline int __attribute__((__unused__))
186 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
187 { return 0; }
188 
189 #endif /* DEBUG */
190 
191 /* functions have the "wrong" filename when they're output... */
192 #define dbg_status(oxu, label, status) { \
193 	char _buf[80]; \
194 	dbg_status_buf(_buf, sizeof _buf, label, status); \
195 	oxu_dbg(oxu, "%s\n", _buf); \
196 }
197 
198 #define dbg_cmd(oxu, label, command) { \
199 	char _buf[80]; \
200 	dbg_command_buf(_buf, sizeof _buf, label, command); \
201 	oxu_dbg(oxu, "%s\n", _buf); \
202 }
203 
204 #define dbg_port(oxu, label, port, status) { \
205 	char _buf[80]; \
206 	dbg_port_buf(_buf, sizeof _buf, label, port, status); \
207 	oxu_dbg(oxu, "%s\n", _buf); \
208 }
209 
210 /*
211  * Module parameters
212  */
213 
214 /* Initial IRQ latency: faster than hw default */
215 static int log2_irq_thresh;			/* 0 to 6 */
216 module_param(log2_irq_thresh, int, S_IRUGO);
217 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
218 
219 /* Initial park setting: slower than hw default */
220 static unsigned park;
221 module_param(park, uint, S_IRUGO);
222 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
223 
224 /* For flakey hardware, ignore overcurrent indicators */
225 static bool ignore_oc;
226 module_param(ignore_oc, bool, S_IRUGO);
227 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
228 
229 
230 static void ehci_work(struct oxu_hcd *oxu);
231 static int oxu_hub_control(struct usb_hcd *hcd,
232 				u16 typeReq, u16 wValue, u16 wIndex,
233 				char *buf, u16 wLength);
234 
235 /*
236  * Local functions
237  */
238 
239 /* Low level read/write registers functions */
240 static inline u32 oxu_readl(void *base, u32 reg)
241 {
242 	return readl(base + reg);
243 }
244 
245 static inline void oxu_writel(void *base, u32 reg, u32 val)
246 {
247 	writel(val, base + reg);
248 }
249 
250 static inline void timer_action_done(struct oxu_hcd *oxu,
251 					enum ehci_timer_action action)
252 {
253 	clear_bit(action, &oxu->actions);
254 }
255 
256 static inline void timer_action(struct oxu_hcd *oxu,
257 					enum ehci_timer_action action)
258 {
259 	if (!test_and_set_bit(action, &oxu->actions)) {
260 		unsigned long t;
261 
262 		switch (action) {
263 		case TIMER_IAA_WATCHDOG:
264 			t = EHCI_IAA_JIFFIES;
265 			break;
266 		case TIMER_IO_WATCHDOG:
267 			t = EHCI_IO_JIFFIES;
268 			break;
269 		case TIMER_ASYNC_OFF:
270 			t = EHCI_ASYNC_JIFFIES;
271 			break;
272 		case TIMER_ASYNC_SHRINK:
273 		default:
274 			t = EHCI_SHRINK_JIFFIES;
275 			break;
276 		}
277 		t += jiffies;
278 		/* all timings except IAA watchdog can be overridden.
279 		 * async queue SHRINK often precedes IAA.  while it's ready
280 		 * to go OFF neither can matter, and afterwards the IO
281 		 * watchdog stops unless there's still periodic traffic.
282 		 */
283 		if (action != TIMER_IAA_WATCHDOG
284 				&& t > oxu->watchdog.expires
285 				&& timer_pending(&oxu->watchdog))
286 			return;
287 		mod_timer(&oxu->watchdog, t);
288 	}
289 }
290 
291 /*
292  * handshake - spin reading hc until handshake completes or fails
293  * @ptr: address of hc register to be read
294  * @mask: bits to look at in result of read
295  * @done: value of those bits when handshake succeeds
296  * @usec: timeout in microseconds
297  *
298  * Returns negative errno, or zero on success
299  *
300  * Success happens when the "mask" bits have the specified value (hardware
301  * handshake done).  There are two failure modes:  "usec" have passed (major
302  * hardware flakeout), or the register reads as all-ones (hardware removed).
303  *
304  * That last failure should_only happen in cases like physical cardbus eject
305  * before driver shutdown. But it also seems to be caused by bugs in cardbus
306  * bridge shutdown:  shutting down the bridge before the devices using it.
307  */
308 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
309 					u32 mask, u32 done, int usec)
310 {
311 	u32 result;
312 
313 	do {
314 		result = readl(ptr);
315 		if (result == ~(u32)0)		/* card removed */
316 			return -ENODEV;
317 		result &= mask;
318 		if (result == done)
319 			return 0;
320 		udelay(1);
321 		usec--;
322 	} while (usec > 0);
323 	return -ETIMEDOUT;
324 }
325 
326 /* Force HC to halt state from unknown (EHCI spec section 2.3) */
327 static int ehci_halt(struct oxu_hcd *oxu)
328 {
329 	u32	temp = readl(&oxu->regs->status);
330 
331 	/* disable any irqs left enabled by previous code */
332 	writel(0, &oxu->regs->intr_enable);
333 
334 	if ((temp & STS_HALT) != 0)
335 		return 0;
336 
337 	temp = readl(&oxu->regs->command);
338 	temp &= ~CMD_RUN;
339 	writel(temp, &oxu->regs->command);
340 	return handshake(oxu, &oxu->regs->status,
341 			  STS_HALT, STS_HALT, 16 * 125);
342 }
343 
344 /* Put TDI/ARC silicon into EHCI mode */
345 static void tdi_reset(struct oxu_hcd *oxu)
346 {
347 	u32 __iomem *reg_ptr;
348 	u32 tmp;
349 
350 	reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
351 	tmp = readl(reg_ptr);
352 	tmp |= 0x3;
353 	writel(tmp, reg_ptr);
354 }
355 
356 /* Reset a non-running (STS_HALT == 1) controller */
357 static int ehci_reset(struct oxu_hcd *oxu)
358 {
359 	int	retval;
360 	u32	command = readl(&oxu->regs->command);
361 
362 	command |= CMD_RESET;
363 	dbg_cmd(oxu, "reset", command);
364 	writel(command, &oxu->regs->command);
365 	oxu_to_hcd(oxu)->state = HC_STATE_HALT;
366 	oxu->next_statechange = jiffies;
367 	retval = handshake(oxu, &oxu->regs->command,
368 			    CMD_RESET, 0, 250 * 1000);
369 
370 	if (retval)
371 		return retval;
372 
373 	tdi_reset(oxu);
374 
375 	return retval;
376 }
377 
378 /* Idle the controller (from running) */
379 static void ehci_quiesce(struct oxu_hcd *oxu)
380 {
381 	u32	temp;
382 
383 #ifdef DEBUG
384 	BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state));
385 #endif
386 
387 	/* wait for any schedule enables/disables to take effect */
388 	temp = readl(&oxu->regs->command) << 10;
389 	temp &= STS_ASS | STS_PSS;
390 	if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
391 				temp, 16 * 125) != 0) {
392 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
393 		return;
394 	}
395 
396 	/* then disable anything that's still active */
397 	temp = readl(&oxu->regs->command);
398 	temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
399 	writel(temp, &oxu->regs->command);
400 
401 	/* hardware can take 16 microframes to turn off ... */
402 	if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
403 				0, 16 * 125) != 0) {
404 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
405 		return;
406 	}
407 }
408 
409 static int check_reset_complete(struct oxu_hcd *oxu, int index,
410 				u32 __iomem *status_reg, int port_status)
411 {
412 	if (!(port_status & PORT_CONNECT)) {
413 		oxu->reset_done[index] = 0;
414 		return port_status;
415 	}
416 
417 	/* if reset finished and it's still not enabled -- handoff */
418 	if (!(port_status & PORT_PE)) {
419 		oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
420 				index+1);
421 		return port_status;
422 	} else
423 		oxu_dbg(oxu, "port %d high speed\n", index + 1);
424 
425 	return port_status;
426 }
427 
428 static void ehci_hub_descriptor(struct oxu_hcd *oxu,
429 				struct usb_hub_descriptor *desc)
430 {
431 	int ports = HCS_N_PORTS(oxu->hcs_params);
432 	u16 temp;
433 
434 	desc->bDescriptorType = USB_DT_HUB;
435 	desc->bPwrOn2PwrGood = 10;	/* oxu 1.0, 2.3.9 says 20ms max */
436 	desc->bHubContrCurrent = 0;
437 
438 	desc->bNbrPorts = ports;
439 	temp = 1 + (ports / 8);
440 	desc->bDescLength = 7 + 2 * temp;
441 
442 	/* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
443 	memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
444 	memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
445 
446 	temp = HUB_CHAR_INDV_PORT_OCPM;	/* per-port overcurrent reporting */
447 	if (HCS_PPC(oxu->hcs_params))
448 		temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */
449 	else
450 		temp |= HUB_CHAR_NO_LPSM; /* no power switching */
451 	desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
452 }
453 
454 
455 /* Allocate an OXU210HP on-chip memory data buffer
456  *
457  * An on-chip memory data buffer is required for each OXU210HP USB transfer.
458  * Each transfer descriptor has one or more on-chip memory data buffers.
459  *
460  * Data buffers are allocated from a fix sized pool of data blocks.
461  * To minimise fragmentation and give reasonable memory utlisation,
462  * data buffers are allocated with sizes the power of 2 multiples of
463  * the block size, starting on an address a multiple of the allocated size.
464  *
465  * FIXME: callers of this function require a buffer to be allocated for
466  * len=0. This is a waste of on-chip memory and should be fix. Then this
467  * function should be changed to not allocate a buffer for len=0.
468  */
469 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
470 {
471 	int n_blocks;	/* minium blocks needed to hold len */
472 	int a_blocks;	/* blocks allocated */
473 	int i, j;
474 
475 	/* Don't allocte bigger than supported */
476 	if (len > BUFFER_SIZE * BUFFER_NUM) {
477 		oxu_err(oxu, "buffer too big (%d)\n", len);
478 		return -ENOMEM;
479 	}
480 
481 	spin_lock(&oxu->mem_lock);
482 
483 	/* Number of blocks needed to hold len */
484 	n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
485 
486 	/* Round the number of blocks up to the power of 2 */
487 	for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
488 		;
489 
490 	/* Find a suitable available data buffer */
491 	for (i = 0; i < BUFFER_NUM;
492 			i += max(a_blocks, (int)oxu->db_used[i])) {
493 
494 		/* Check all the required blocks are available */
495 		for (j = 0; j < a_blocks; j++)
496 			if (oxu->db_used[i + j])
497 				break;
498 
499 		if (j != a_blocks)
500 			continue;
501 
502 		/* Allocate blocks found! */
503 		qtd->buffer = (void *) &oxu->mem->db_pool[i];
504 		qtd->buffer_dma = virt_to_phys(qtd->buffer);
505 
506 		qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
507 		oxu->db_used[i] = a_blocks;
508 
509 		spin_unlock(&oxu->mem_lock);
510 
511 		return 0;
512 	}
513 
514 	/* Failed */
515 
516 	spin_unlock(&oxu->mem_lock);
517 
518 	return -ENOMEM;
519 }
520 
521 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
522 {
523 	int index;
524 
525 	spin_lock(&oxu->mem_lock);
526 
527 	index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
528 							 / BUFFER_SIZE;
529 	oxu->db_used[index] = 0;
530 	qtd->qtd_buffer_len = 0;
531 	qtd->buffer_dma = 0;
532 	qtd->buffer = NULL;
533 
534 	spin_unlock(&oxu->mem_lock);
535 }
536 
537 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
538 {
539 	memset(qtd, 0, sizeof *qtd);
540 	qtd->qtd_dma = dma;
541 	qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
542 	qtd->hw_next = EHCI_LIST_END;
543 	qtd->hw_alt_next = EHCI_LIST_END;
544 	INIT_LIST_HEAD(&qtd->qtd_list);
545 }
546 
547 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
548 {
549 	int index;
550 
551 	if (qtd->buffer)
552 		oxu_buf_free(oxu, qtd);
553 
554 	spin_lock(&oxu->mem_lock);
555 
556 	index = qtd - &oxu->mem->qtd_pool[0];
557 	oxu->qtd_used[index] = 0;
558 
559 	spin_unlock(&oxu->mem_lock);
560 }
561 
562 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
563 {
564 	int i;
565 	struct ehci_qtd *qtd = NULL;
566 
567 	spin_lock(&oxu->mem_lock);
568 
569 	for (i = 0; i < QTD_NUM; i++)
570 		if (!oxu->qtd_used[i])
571 			break;
572 
573 	if (i < QTD_NUM) {
574 		qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
575 		memset(qtd, 0, sizeof *qtd);
576 
577 		qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
578 		qtd->hw_next = EHCI_LIST_END;
579 		qtd->hw_alt_next = EHCI_LIST_END;
580 		INIT_LIST_HEAD(&qtd->qtd_list);
581 
582 		qtd->qtd_dma = virt_to_phys(qtd);
583 
584 		oxu->qtd_used[i] = 1;
585 	}
586 
587 	spin_unlock(&oxu->mem_lock);
588 
589 	return qtd;
590 }
591 
592 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
593 {
594 	int index;
595 
596 	spin_lock(&oxu->mem_lock);
597 
598 	index = qh - &oxu->mem->qh_pool[0];
599 	oxu->qh_used[index] = 0;
600 
601 	spin_unlock(&oxu->mem_lock);
602 }
603 
604 static void qh_destroy(struct kref *kref)
605 {
606 	struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
607 	struct oxu_hcd *oxu = qh->oxu;
608 
609 	/* clean qtds first, and know this is not linked */
610 	if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
611 		oxu_dbg(oxu, "unused qh not empty!\n");
612 		BUG();
613 	}
614 	if (qh->dummy)
615 		oxu_qtd_free(oxu, qh->dummy);
616 	oxu_qh_free(oxu, qh);
617 }
618 
619 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
620 {
621 	int i;
622 	struct ehci_qh *qh = NULL;
623 
624 	spin_lock(&oxu->mem_lock);
625 
626 	for (i = 0; i < QHEAD_NUM; i++)
627 		if (!oxu->qh_used[i])
628 			break;
629 
630 	if (i < QHEAD_NUM) {
631 		qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
632 		memset(qh, 0, sizeof *qh);
633 
634 		kref_init(&qh->kref);
635 		qh->oxu = oxu;
636 		qh->qh_dma = virt_to_phys(qh);
637 		INIT_LIST_HEAD(&qh->qtd_list);
638 
639 		/* dummy td enables safe urb queuing */
640 		qh->dummy = ehci_qtd_alloc(oxu);
641 		if (qh->dummy == NULL) {
642 			oxu_dbg(oxu, "no dummy td\n");
643 			oxu->qh_used[i] = 0;
644 			qh = NULL;
645 			goto unlock;
646 		}
647 
648 		oxu->qh_used[i] = 1;
649 	}
650 unlock:
651 	spin_unlock(&oxu->mem_lock);
652 
653 	return qh;
654 }
655 
656 /* to share a qh (cpu threads, or hc) */
657 static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
658 {
659 	kref_get(&qh->kref);
660 	return qh;
661 }
662 
663 static inline void qh_put(struct ehci_qh *qh)
664 {
665 	kref_put(&qh->kref, qh_destroy);
666 }
667 
668 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
669 {
670 	int index;
671 
672 	spin_lock(&oxu->mem_lock);
673 
674 	index = murb - &oxu->murb_pool[0];
675 	oxu->murb_used[index] = 0;
676 
677 	spin_unlock(&oxu->mem_lock);
678 }
679 
680 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
681 
682 {
683 	int i;
684 	struct oxu_murb *murb = NULL;
685 
686 	spin_lock(&oxu->mem_lock);
687 
688 	for (i = 0; i < MURB_NUM; i++)
689 		if (!oxu->murb_used[i])
690 			break;
691 
692 	if (i < MURB_NUM) {
693 		murb = &(oxu->murb_pool)[i];
694 
695 		oxu->murb_used[i] = 1;
696 	}
697 
698 	spin_unlock(&oxu->mem_lock);
699 
700 	return murb;
701 }
702 
703 /* The queue heads and transfer descriptors are managed from pools tied
704  * to each of the "per device" structures.
705  * This is the initialisation and cleanup code.
706  */
707 static void ehci_mem_cleanup(struct oxu_hcd *oxu)
708 {
709 	kfree(oxu->murb_pool);
710 	oxu->murb_pool = NULL;
711 
712 	if (oxu->async)
713 		qh_put(oxu->async);
714 	oxu->async = NULL;
715 
716 	del_timer(&oxu->urb_timer);
717 
718 	oxu->periodic = NULL;
719 
720 	/* shadow periodic table */
721 	kfree(oxu->pshadow);
722 	oxu->pshadow = NULL;
723 }
724 
725 /* Remember to add cleanup code (above) if you add anything here.
726  */
727 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
728 {
729 	int i;
730 
731 	for (i = 0; i < oxu->periodic_size; i++)
732 		oxu->mem->frame_list[i] = EHCI_LIST_END;
733 	for (i = 0; i < QHEAD_NUM; i++)
734 		oxu->qh_used[i] = 0;
735 	for (i = 0; i < QTD_NUM; i++)
736 		oxu->qtd_used[i] = 0;
737 
738 	oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
739 	if (!oxu->murb_pool)
740 		goto fail;
741 
742 	for (i = 0; i < MURB_NUM; i++)
743 		oxu->murb_used[i] = 0;
744 
745 	oxu->async = oxu_qh_alloc(oxu);
746 	if (!oxu->async)
747 		goto fail;
748 
749 	oxu->periodic = (__le32 *) &oxu->mem->frame_list;
750 	oxu->periodic_dma = virt_to_phys(oxu->periodic);
751 
752 	for (i = 0; i < oxu->periodic_size; i++)
753 		oxu->periodic[i] = EHCI_LIST_END;
754 
755 	/* software shadow of hardware table */
756 	oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
757 	if (oxu->pshadow != NULL)
758 		return 0;
759 
760 fail:
761 	oxu_dbg(oxu, "couldn't init memory\n");
762 	ehci_mem_cleanup(oxu);
763 	return -ENOMEM;
764 }
765 
766 /* Fill a qtd, returning how much of the buffer we were able to queue up.
767  */
768 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
769 				int token, int maxpacket)
770 {
771 	int i, count;
772 	u64 addr = buf;
773 
774 	/* one buffer entry per 4K ... first might be short or unaligned */
775 	qtd->hw_buf[0] = cpu_to_le32((u32)addr);
776 	qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
777 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
778 	if (likely(len < count))		/* ... iff needed */
779 		count = len;
780 	else {
781 		buf +=  0x1000;
782 		buf &= ~0x0fff;
783 
784 		/* per-qtd limit: from 16K to 20K (best alignment) */
785 		for (i = 1; count < len && i < 5; i++) {
786 			addr = buf;
787 			qtd->hw_buf[i] = cpu_to_le32((u32)addr);
788 			qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
789 			buf += 0x1000;
790 			if ((count + 0x1000) < len)
791 				count += 0x1000;
792 			else
793 				count = len;
794 		}
795 
796 		/* short packets may only terminate transfers */
797 		if (count != len)
798 			count -= (count % maxpacket);
799 	}
800 	qtd->hw_token = cpu_to_le32((count << 16) | token);
801 	qtd->length = count;
802 
803 	return count;
804 }
805 
806 static inline void qh_update(struct oxu_hcd *oxu,
807 				struct ehci_qh *qh, struct ehci_qtd *qtd)
808 {
809 	/* writes to an active overlay are unsafe */
810 	BUG_ON(qh->qh_state != QH_STATE_IDLE);
811 
812 	qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
813 	qh->hw_alt_next = EHCI_LIST_END;
814 
815 	/* Except for control endpoints, we make hardware maintain data
816 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
817 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
818 	 * ever clear it.
819 	 */
820 	if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
821 		unsigned	is_out, epnum;
822 
823 		is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
824 		epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
825 		if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
826 			qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
827 			usb_settoggle(qh->dev, epnum, is_out, 1);
828 		}
829 	}
830 
831 	/* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
832 	wmb();
833 	qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
834 }
835 
836 /* If it weren't for a common silicon quirk (writing the dummy into the qh
837  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
838  * recovery (including urb dequeue) would need software changes to a QH...
839  */
840 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
841 {
842 	struct ehci_qtd *qtd;
843 
844 	if (list_empty(&qh->qtd_list))
845 		qtd = qh->dummy;
846 	else {
847 		qtd = list_entry(qh->qtd_list.next,
848 				struct ehci_qtd, qtd_list);
849 		/* first qtd may already be partially processed */
850 		if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
851 			qtd = NULL;
852 	}
853 
854 	if (qtd)
855 		qh_update(oxu, qh, qtd);
856 }
857 
858 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
859 				size_t length, u32 token)
860 {
861 	/* count IN/OUT bytes, not SETUP (even short packets) */
862 	if (likely(QTD_PID(token) != 2))
863 		urb->actual_length += length - QTD_LENGTH(token);
864 
865 	/* don't modify error codes */
866 	if (unlikely(urb->status != -EINPROGRESS))
867 		return;
868 
869 	/* force cleanup after short read; not always an error */
870 	if (unlikely(IS_SHORT_READ(token)))
871 		urb->status = -EREMOTEIO;
872 
873 	/* serious "can't proceed" faults reported by the hardware */
874 	if (token & QTD_STS_HALT) {
875 		if (token & QTD_STS_BABBLE) {
876 			/* FIXME "must" disable babbling device's port too */
877 			urb->status = -EOVERFLOW;
878 		} else if (token & QTD_STS_MMF) {
879 			/* fs/ls interrupt xfer missed the complete-split */
880 			urb->status = -EPROTO;
881 		} else if (token & QTD_STS_DBE) {
882 			urb->status = (QTD_PID(token) == 1) /* IN ? */
883 				? -ENOSR  /* hc couldn't read data */
884 				: -ECOMM; /* hc couldn't write data */
885 		} else if (token & QTD_STS_XACT) {
886 			/* timeout, bad crc, wrong PID, etc; retried */
887 			if (QTD_CERR(token))
888 				urb->status = -EPIPE;
889 			else {
890 				oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
891 					urb->dev->devpath,
892 					usb_pipeendpoint(urb->pipe),
893 					usb_pipein(urb->pipe) ? "in" : "out");
894 				urb->status = -EPROTO;
895 			}
896 		/* CERR nonzero + no errors + halt --> stall */
897 		} else if (QTD_CERR(token))
898 			urb->status = -EPIPE;
899 		else	/* unknown */
900 			urb->status = -EPROTO;
901 
902 		oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
903 			usb_pipedevice(urb->pipe),
904 			usb_pipeendpoint(urb->pipe),
905 			usb_pipein(urb->pipe) ? "in" : "out",
906 			token, urb->status);
907 	}
908 }
909 
910 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
911 __releases(oxu->lock)
912 __acquires(oxu->lock)
913 {
914 	if (likely(urb->hcpriv != NULL)) {
915 		struct ehci_qh	*qh = (struct ehci_qh *) urb->hcpriv;
916 
917 		/* S-mask in a QH means it's an interrupt urb */
918 		if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
919 
920 			/* ... update hc-wide periodic stats (for usbfs) */
921 			oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
922 		}
923 		qh_put(qh);
924 	}
925 
926 	urb->hcpriv = NULL;
927 	switch (urb->status) {
928 	case -EINPROGRESS:		/* success */
929 		urb->status = 0;
930 	default:			/* fault */
931 		break;
932 	case -EREMOTEIO:		/* fault or normal */
933 		if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
934 			urb->status = 0;
935 		break;
936 	case -ECONNRESET:		/* canceled */
937 	case -ENOENT:
938 		break;
939 	}
940 
941 #ifdef OXU_URB_TRACE
942 	oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
943 		__func__, urb->dev->devpath, urb,
944 		usb_pipeendpoint(urb->pipe),
945 		usb_pipein(urb->pipe) ? "in" : "out",
946 		urb->status,
947 		urb->actual_length, urb->transfer_buffer_length);
948 #endif
949 
950 	/* complete() can reenter this HCD */
951 	spin_unlock(&oxu->lock);
952 	usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
953 	spin_lock(&oxu->lock);
954 }
955 
956 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
957 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
958 
959 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
960 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
961 
962 #define HALT_BIT cpu_to_le32(QTD_STS_HALT)
963 
964 /* Process and free completed qtds for a qh, returning URBs to drivers.
965  * Chases up to qh->hw_current.  Returns number of completions called,
966  * indicating how much "real" work we did.
967  */
968 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
969 {
970 	struct ehci_qtd *last = NULL, *end = qh->dummy;
971 	struct ehci_qtd	*qtd, *tmp;
972 	int stopped;
973 	unsigned count = 0;
974 	int do_status = 0;
975 	u8 state;
976 	struct oxu_murb *murb = NULL;
977 
978 	if (unlikely(list_empty(&qh->qtd_list)))
979 		return count;
980 
981 	/* completions (or tasks on other cpus) must never clobber HALT
982 	 * till we've gone through and cleaned everything up, even when
983 	 * they add urbs to this qh's queue or mark them for unlinking.
984 	 *
985 	 * NOTE:  unlinking expects to be done in queue order.
986 	 */
987 	state = qh->qh_state;
988 	qh->qh_state = QH_STATE_COMPLETING;
989 	stopped = (state == QH_STATE_IDLE);
990 
991 	/* remove de-activated QTDs from front of queue.
992 	 * after faults (including short reads), cleanup this urb
993 	 * then let the queue advance.
994 	 * if queue is stopped, handles unlinks.
995 	 */
996 	list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
997 		struct urb *urb;
998 		u32 token = 0;
999 
1000 		urb = qtd->urb;
1001 
1002 		/* Clean up any state from previous QTD ...*/
1003 		if (last) {
1004 			if (likely(last->urb != urb)) {
1005 				if (last->urb->complete == NULL) {
1006 					murb = (struct oxu_murb *) last->urb;
1007 					last->urb = murb->main;
1008 					if (murb->last) {
1009 						ehci_urb_done(oxu, last->urb);
1010 						count++;
1011 					}
1012 					oxu_murb_free(oxu, murb);
1013 				} else {
1014 					ehci_urb_done(oxu, last->urb);
1015 					count++;
1016 				}
1017 			}
1018 			oxu_qtd_free(oxu, last);
1019 			last = NULL;
1020 		}
1021 
1022 		/* ignore urbs submitted during completions we reported */
1023 		if (qtd == end)
1024 			break;
1025 
1026 		/* hardware copies qtd out of qh overlay */
1027 		rmb();
1028 		token = le32_to_cpu(qtd->hw_token);
1029 
1030 		/* always clean up qtds the hc de-activated */
1031 		if ((token & QTD_STS_ACTIVE) == 0) {
1032 
1033 			if ((token & QTD_STS_HALT) != 0) {
1034 				stopped = 1;
1035 
1036 			/* magic dummy for some short reads; qh won't advance.
1037 			 * that silicon quirk can kick in with this dummy too.
1038 			 */
1039 			} else if (IS_SHORT_READ(token) &&
1040 					!(qtd->hw_alt_next & EHCI_LIST_END)) {
1041 				stopped = 1;
1042 				goto halt;
1043 			}
1044 
1045 		/* stop scanning when we reach qtds the hc is using */
1046 		} else if (likely(!stopped &&
1047 				HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1048 			break;
1049 
1050 		} else {
1051 			stopped = 1;
1052 
1053 			if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1054 				urb->status = -ESHUTDOWN;
1055 
1056 			/* ignore active urbs unless some previous qtd
1057 			 * for the urb faulted (including short read) or
1058 			 * its urb was canceled.  we may patch qh or qtds.
1059 			 */
1060 			if (likely(urb->status == -EINPROGRESS))
1061 				continue;
1062 
1063 			/* issue status after short control reads */
1064 			if (unlikely(do_status != 0)
1065 					&& QTD_PID(token) == 0 /* OUT */) {
1066 				do_status = 0;
1067 				continue;
1068 			}
1069 
1070 			/* token in overlay may be most current */
1071 			if (state == QH_STATE_IDLE
1072 					&& cpu_to_le32(qtd->qtd_dma)
1073 						== qh->hw_current)
1074 				token = le32_to_cpu(qh->hw_token);
1075 
1076 			/* force halt for unlinked or blocked qh, so we'll
1077 			 * patch the qh later and so that completions can't
1078 			 * activate it while we "know" it's stopped.
1079 			 */
1080 			if ((HALT_BIT & qh->hw_token) == 0) {
1081 halt:
1082 				qh->hw_token |= HALT_BIT;
1083 				wmb();
1084 			}
1085 		}
1086 
1087 		/* Remove it from the queue */
1088 		qtd_copy_status(oxu, urb->complete ?
1089 					urb : ((struct oxu_murb *) urb)->main,
1090 				qtd->length, token);
1091 		if ((usb_pipein(qtd->urb->pipe)) &&
1092 				(NULL != qtd->transfer_buffer))
1093 			memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1094 		do_status = (urb->status == -EREMOTEIO)
1095 				&& usb_pipecontrol(urb->pipe);
1096 
1097 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1098 			last = list_entry(qtd->qtd_list.prev,
1099 					struct ehci_qtd, qtd_list);
1100 			last->hw_next = qtd->hw_next;
1101 		}
1102 		list_del(&qtd->qtd_list);
1103 		last = qtd;
1104 	}
1105 
1106 	/* last urb's completion might still need calling */
1107 	if (likely(last != NULL)) {
1108 		if (last->urb->complete == NULL) {
1109 			murb = (struct oxu_murb *) last->urb;
1110 			last->urb = murb->main;
1111 			if (murb->last) {
1112 				ehci_urb_done(oxu, last->urb);
1113 				count++;
1114 			}
1115 			oxu_murb_free(oxu, murb);
1116 		} else {
1117 			ehci_urb_done(oxu, last->urb);
1118 			count++;
1119 		}
1120 		oxu_qtd_free(oxu, last);
1121 	}
1122 
1123 	/* restore original state; caller must unlink or relink */
1124 	qh->qh_state = state;
1125 
1126 	/* be sure the hardware's done with the qh before refreshing
1127 	 * it after fault cleanup, or recovering from silicon wrongly
1128 	 * overlaying the dummy qtd (which reduces DMA chatter).
1129 	 */
1130 	if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1131 		switch (state) {
1132 		case QH_STATE_IDLE:
1133 			qh_refresh(oxu, qh);
1134 			break;
1135 		case QH_STATE_LINKED:
1136 			/* should be rare for periodic transfers,
1137 			 * except maybe high bandwidth ...
1138 			 */
1139 			if ((cpu_to_le32(QH_SMASK)
1140 					& qh->hw_info2) != 0) {
1141 				intr_deschedule(oxu, qh);
1142 				(void) qh_schedule(oxu, qh);
1143 			} else
1144 				unlink_async(oxu, qh);
1145 			break;
1146 		/* otherwise, unlink already started */
1147 		}
1148 	}
1149 
1150 	return count;
1151 }
1152 
1153 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1154 #define hb_mult(wMaxPacketSize)		(1 + (((wMaxPacketSize) >> 11) & 0x03))
1155 /* ... and packet size, for any kind of endpoint descriptor */
1156 #define max_packet(wMaxPacketSize)	((wMaxPacketSize) & 0x07ff)
1157 
1158 /* Reverse of qh_urb_transaction: free a list of TDs.
1159  * used for cleanup after errors, before HC sees an URB's TDs.
1160  */
1161 static void qtd_list_free(struct oxu_hcd *oxu,
1162 				struct urb *urb, struct list_head *head)
1163 {
1164 	struct ehci_qtd	*qtd, *temp;
1165 
1166 	list_for_each_entry_safe(qtd, temp, head, qtd_list) {
1167 		list_del(&qtd->qtd_list);
1168 		oxu_qtd_free(oxu, qtd);
1169 	}
1170 }
1171 
1172 /* Create a list of filled qtds for this URB; won't link into qh.
1173  */
1174 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1175 						struct urb *urb,
1176 						struct list_head *head,
1177 						gfp_t flags)
1178 {
1179 	struct ehci_qtd	*qtd, *qtd_prev;
1180 	dma_addr_t buf;
1181 	int len, maxpacket;
1182 	int is_input;
1183 	u32 token;
1184 	void *transfer_buf = NULL;
1185 	int ret;
1186 
1187 	/*
1188 	 * URBs map to sequences of QTDs: one logical transaction
1189 	 */
1190 	qtd = ehci_qtd_alloc(oxu);
1191 	if (unlikely(!qtd))
1192 		return NULL;
1193 	list_add_tail(&qtd->qtd_list, head);
1194 	qtd->urb = urb;
1195 
1196 	token = QTD_STS_ACTIVE;
1197 	token |= (EHCI_TUNE_CERR << 10);
1198 	/* for split transactions, SplitXState initialized to zero */
1199 
1200 	len = urb->transfer_buffer_length;
1201 	is_input = usb_pipein(urb->pipe);
1202 	if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1203 		urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1204 
1205 	if (usb_pipecontrol(urb->pipe)) {
1206 		/* SETUP pid */
1207 		ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1208 		if (ret)
1209 			goto cleanup;
1210 
1211 		qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1212 				token | (2 /* "setup" */ << 8), 8);
1213 		memcpy(qtd->buffer, qtd->urb->setup_packet,
1214 				sizeof(struct usb_ctrlrequest));
1215 
1216 		/* ... and always at least one more pid */
1217 		token ^= QTD_TOGGLE;
1218 		qtd_prev = qtd;
1219 		qtd = ehci_qtd_alloc(oxu);
1220 		if (unlikely(!qtd))
1221 			goto cleanup;
1222 		qtd->urb = urb;
1223 		qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1224 		list_add_tail(&qtd->qtd_list, head);
1225 
1226 		/* for zero length DATA stages, STATUS is always IN */
1227 		if (len == 0)
1228 			token |= (1 /* "in" */ << 8);
1229 	}
1230 
1231 	/*
1232 	 * Data transfer stage: buffer setup
1233 	 */
1234 
1235 	ret = oxu_buf_alloc(oxu, qtd, len);
1236 	if (ret)
1237 		goto cleanup;
1238 
1239 	buf = qtd->buffer_dma;
1240 	transfer_buf = urb->transfer_buffer;
1241 
1242 	if (!is_input)
1243 		memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1244 
1245 	if (is_input)
1246 		token |= (1 /* "in" */ << 8);
1247 	/* else it's already initted to "out" pid (0 << 8) */
1248 
1249 	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
1250 
1251 	/*
1252 	 * buffer gets wrapped in one or more qtds;
1253 	 * last one may be "short" (including zero len)
1254 	 * and may serve as a control status ack
1255 	 */
1256 	for (;;) {
1257 		int this_qtd_len;
1258 
1259 		this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1260 		qtd->transfer_buffer = transfer_buf;
1261 		len -= this_qtd_len;
1262 		buf += this_qtd_len;
1263 		transfer_buf += this_qtd_len;
1264 		if (is_input)
1265 			qtd->hw_alt_next = oxu->async->hw_alt_next;
1266 
1267 		/* qh makes control packets use qtd toggle; maybe switch it */
1268 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1269 			token ^= QTD_TOGGLE;
1270 
1271 		if (likely(len <= 0))
1272 			break;
1273 
1274 		qtd_prev = qtd;
1275 		qtd = ehci_qtd_alloc(oxu);
1276 		if (unlikely(!qtd))
1277 			goto cleanup;
1278 		if (likely(len > 0)) {
1279 			ret = oxu_buf_alloc(oxu, qtd, len);
1280 			if (ret)
1281 				goto cleanup;
1282 		}
1283 		qtd->urb = urb;
1284 		qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1285 		list_add_tail(&qtd->qtd_list, head);
1286 	}
1287 
1288 	/* unless the bulk/interrupt caller wants a chance to clean
1289 	 * up after short reads, hc should advance qh past this urb
1290 	 */
1291 	if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1292 				|| usb_pipecontrol(urb->pipe)))
1293 		qtd->hw_alt_next = EHCI_LIST_END;
1294 
1295 	/*
1296 	 * control requests may need a terminating data "status" ack;
1297 	 * bulk ones may need a terminating short packet (zero length).
1298 	 */
1299 	if (likely(urb->transfer_buffer_length != 0)) {
1300 		int	one_more = 0;
1301 
1302 		if (usb_pipecontrol(urb->pipe)) {
1303 			one_more = 1;
1304 			token ^= 0x0100;	/* "in" <--> "out"  */
1305 			token |= QTD_TOGGLE;	/* force DATA1 */
1306 		} else if (usb_pipebulk(urb->pipe)
1307 				&& (urb->transfer_flags & URB_ZERO_PACKET)
1308 				&& !(urb->transfer_buffer_length % maxpacket)) {
1309 			one_more = 1;
1310 		}
1311 		if (one_more) {
1312 			qtd_prev = qtd;
1313 			qtd = ehci_qtd_alloc(oxu);
1314 			if (unlikely(!qtd))
1315 				goto cleanup;
1316 			qtd->urb = urb;
1317 			qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1318 			list_add_tail(&qtd->qtd_list, head);
1319 
1320 			/* never any data in such packets */
1321 			qtd_fill(qtd, 0, 0, token, 0);
1322 		}
1323 	}
1324 
1325 	/* by default, enable interrupt on urb completion */
1326 	qtd->hw_token |= cpu_to_le32(QTD_IOC);
1327 	return head;
1328 
1329 cleanup:
1330 	qtd_list_free(oxu, urb, head);
1331 	return NULL;
1332 }
1333 
1334 /* Each QH holds a qtd list; a QH is used for everything except iso.
1335  *
1336  * For interrupt urbs, the scheduler must set the microframe scheduling
1337  * mask(s) each time the QH gets scheduled.  For highspeed, that's
1338  * just one microframe in the s-mask.  For split interrupt transactions
1339  * there are additional complications: c-mask, maybe FSTNs.
1340  */
1341 static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1342 				struct urb *urb, gfp_t flags)
1343 {
1344 	struct ehci_qh *qh = oxu_qh_alloc(oxu);
1345 	u32 info1 = 0, info2 = 0;
1346 	int is_input, type;
1347 	int maxp = 0;
1348 
1349 	if (!qh)
1350 		return qh;
1351 
1352 	/*
1353 	 * init endpoint/device data for this QH
1354 	 */
1355 	info1 |= usb_pipeendpoint(urb->pipe) << 8;
1356 	info1 |= usb_pipedevice(urb->pipe) << 0;
1357 
1358 	is_input = usb_pipein(urb->pipe);
1359 	type = usb_pipetype(urb->pipe);
1360 	maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
1361 
1362 	/* Compute interrupt scheduling parameters just once, and save.
1363 	 * - allowing for high bandwidth, how many nsec/uframe are used?
1364 	 * - split transactions need a second CSPLIT uframe; same question
1365 	 * - splits also need a schedule gap (for full/low speed I/O)
1366 	 * - qh has a polling interval
1367 	 *
1368 	 * For control/bulk requests, the HC or TT handles these.
1369 	 */
1370 	if (type == PIPE_INTERRUPT) {
1371 		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1372 								is_input, 0,
1373 				hb_mult(maxp) * max_packet(maxp)));
1374 		qh->start = NO_FRAME;
1375 
1376 		if (urb->dev->speed == USB_SPEED_HIGH) {
1377 			qh->c_usecs = 0;
1378 			qh->gap_uf = 0;
1379 
1380 			qh->period = urb->interval >> 3;
1381 			if (qh->period == 0 && urb->interval != 1) {
1382 				/* NOTE interval 2 or 4 uframes could work.
1383 				 * But interval 1 scheduling is simpler, and
1384 				 * includes high bandwidth.
1385 				 */
1386 				oxu_dbg(oxu, "intr period %d uframes, NYET!\n",
1387 					urb->interval);
1388 				goto done;
1389 			}
1390 		} else {
1391 			struct usb_tt	*tt = urb->dev->tt;
1392 			int		think_time;
1393 
1394 			/* gap is f(FS/LS transfer times) */
1395 			qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1396 					is_input, 0, maxp) / (125 * 1000);
1397 
1398 			/* FIXME this just approximates SPLIT/CSPLIT times */
1399 			if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */
1400 				qh->c_usecs = qh->usecs + HS_USECS(0);
1401 				qh->usecs = HS_USECS(1);
1402 			} else {		/* SPLIT+DATA, gap, CSPLIT */
1403 				qh->usecs += HS_USECS(1);
1404 				qh->c_usecs = HS_USECS(0);
1405 			}
1406 
1407 			think_time = tt ? tt->think_time : 0;
1408 			qh->tt_usecs = NS_TO_US(think_time +
1409 					usb_calc_bus_time(urb->dev->speed,
1410 					is_input, 0, max_packet(maxp)));
1411 			qh->period = urb->interval;
1412 		}
1413 	}
1414 
1415 	/* support for tt scheduling, and access to toggles */
1416 	qh->dev = urb->dev;
1417 
1418 	/* using TT? */
1419 	switch (urb->dev->speed) {
1420 	case USB_SPEED_LOW:
1421 		info1 |= (1 << 12);	/* EPS "low" */
1422 		/* FALL THROUGH */
1423 
1424 	case USB_SPEED_FULL:
1425 		/* EPS 0 means "full" */
1426 		if (type != PIPE_INTERRUPT)
1427 			info1 |= (EHCI_TUNE_RL_TT << 28);
1428 		if (type == PIPE_CONTROL) {
1429 			info1 |= (1 << 27);	/* for TT */
1430 			info1 |= 1 << 14;	/* toggle from qtd */
1431 		}
1432 		info1 |= maxp << 16;
1433 
1434 		info2 |= (EHCI_TUNE_MULT_TT << 30);
1435 		info2 |= urb->dev->ttport << 23;
1436 
1437 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1438 
1439 		break;
1440 
1441 	case USB_SPEED_HIGH:		/* no TT involved */
1442 		info1 |= (2 << 12);	/* EPS "high" */
1443 		if (type == PIPE_CONTROL) {
1444 			info1 |= (EHCI_TUNE_RL_HS << 28);
1445 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
1446 			info1 |= 1 << 14;	/* toggle from qtd */
1447 			info2 |= (EHCI_TUNE_MULT_HS << 30);
1448 		} else if (type == PIPE_BULK) {
1449 			info1 |= (EHCI_TUNE_RL_HS << 28);
1450 			info1 |= 512 << 16;	/* usb2 fixed maxpacket */
1451 			info2 |= (EHCI_TUNE_MULT_HS << 30);
1452 		} else {		/* PIPE_INTERRUPT */
1453 			info1 |= max_packet(maxp) << 16;
1454 			info2 |= hb_mult(maxp) << 30;
1455 		}
1456 		break;
1457 	default:
1458 		oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed);
1459 done:
1460 		qh_put(qh);
1461 		return NULL;
1462 	}
1463 
1464 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1465 
1466 	/* init as live, toggle clear, advance to dummy */
1467 	qh->qh_state = QH_STATE_IDLE;
1468 	qh->hw_info1 = cpu_to_le32(info1);
1469 	qh->hw_info2 = cpu_to_le32(info2);
1470 	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1471 	qh_refresh(oxu, qh);
1472 	return qh;
1473 }
1474 
1475 /* Move qh (and its qtds) onto async queue; maybe enable queue.
1476  */
1477 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1478 {
1479 	__le32 dma = QH_NEXT(qh->qh_dma);
1480 	struct ehci_qh *head;
1481 
1482 	/* (re)start the async schedule? */
1483 	head = oxu->async;
1484 	timer_action_done(oxu, TIMER_ASYNC_OFF);
1485 	if (!head->qh_next.qh) {
1486 		u32	cmd = readl(&oxu->regs->command);
1487 
1488 		if (!(cmd & CMD_ASE)) {
1489 			/* in case a clear of CMD_ASE didn't take yet */
1490 			(void)handshake(oxu, &oxu->regs->status,
1491 					STS_ASS, 0, 150);
1492 			cmd |= CMD_ASE | CMD_RUN;
1493 			writel(cmd, &oxu->regs->command);
1494 			oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1495 			/* posted write need not be known to HC yet ... */
1496 		}
1497 	}
1498 
1499 	/* clear halt and/or toggle; and maybe recover from silicon quirk */
1500 	if (qh->qh_state == QH_STATE_IDLE)
1501 		qh_refresh(oxu, qh);
1502 
1503 	/* splice right after start */
1504 	qh->qh_next = head->qh_next;
1505 	qh->hw_next = head->hw_next;
1506 	wmb();
1507 
1508 	head->qh_next.qh = qh;
1509 	head->hw_next = dma;
1510 
1511 	qh->qh_state = QH_STATE_LINKED;
1512 	/* qtd completions reported later by interrupt */
1513 }
1514 
1515 #define	QH_ADDR_MASK	cpu_to_le32(0x7f)
1516 
1517 /*
1518  * For control/bulk/interrupt, return QH with these TDs appended.
1519  * Allocates and initializes the QH if necessary.
1520  * Returns null if it can't allocate a QH it needs to.
1521  * If the QH has TDs (urbs) already, that's great.
1522  */
1523 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1524 				struct urb *urb, struct list_head *qtd_list,
1525 				int epnum, void	**ptr)
1526 {
1527 	struct ehci_qh *qh = NULL;
1528 
1529 	qh = (struct ehci_qh *) *ptr;
1530 	if (unlikely(qh == NULL)) {
1531 		/* can't sleep here, we have oxu->lock... */
1532 		qh = qh_make(oxu, urb, GFP_ATOMIC);
1533 		*ptr = qh;
1534 	}
1535 	if (likely(qh != NULL)) {
1536 		struct ehci_qtd	*qtd;
1537 
1538 		if (unlikely(list_empty(qtd_list)))
1539 			qtd = NULL;
1540 		else
1541 			qtd = list_entry(qtd_list->next, struct ehci_qtd,
1542 					qtd_list);
1543 
1544 		/* control qh may need patching ... */
1545 		if (unlikely(epnum == 0)) {
1546 
1547 			/* usb_reset_device() briefly reverts to address 0 */
1548 			if (usb_pipedevice(urb->pipe) == 0)
1549 				qh->hw_info1 &= ~QH_ADDR_MASK;
1550 		}
1551 
1552 		/* just one way to queue requests: swap with the dummy qtd.
1553 		 * only hc or qh_refresh() ever modify the overlay.
1554 		 */
1555 		if (likely(qtd != NULL)) {
1556 			struct ehci_qtd	*dummy;
1557 			dma_addr_t dma;
1558 			__le32 token;
1559 
1560 			/* to avoid racing the HC, use the dummy td instead of
1561 			 * the first td of our list (becomes new dummy).  both
1562 			 * tds stay deactivated until we're done, when the
1563 			 * HC is allowed to fetch the old dummy (4.10.2).
1564 			 */
1565 			token = qtd->hw_token;
1566 			qtd->hw_token = HALT_BIT;
1567 			wmb();
1568 			dummy = qh->dummy;
1569 
1570 			dma = dummy->qtd_dma;
1571 			*dummy = *qtd;
1572 			dummy->qtd_dma = dma;
1573 
1574 			list_del(&qtd->qtd_list);
1575 			list_add(&dummy->qtd_list, qtd_list);
1576 			list_splice(qtd_list, qh->qtd_list.prev);
1577 
1578 			ehci_qtd_init(qtd, qtd->qtd_dma);
1579 			qh->dummy = qtd;
1580 
1581 			/* hc must see the new dummy at list end */
1582 			dma = qtd->qtd_dma;
1583 			qtd = list_entry(qh->qtd_list.prev,
1584 					struct ehci_qtd, qtd_list);
1585 			qtd->hw_next = QTD_NEXT(dma);
1586 
1587 			/* let the hc process these next qtds */
1588 			dummy->hw_token = (token & ~(0x80));
1589 			wmb();
1590 			dummy->hw_token = token;
1591 
1592 			urb->hcpriv = qh_get(qh);
1593 		}
1594 	}
1595 	return qh;
1596 }
1597 
1598 static int submit_async(struct oxu_hcd	*oxu, struct urb *urb,
1599 			struct list_head *qtd_list, gfp_t mem_flags)
1600 {
1601 	struct ehci_qtd	*qtd;
1602 	int epnum;
1603 	unsigned long flags;
1604 	struct ehci_qh *qh = NULL;
1605 	int rc = 0;
1606 
1607 	qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1608 	epnum = urb->ep->desc.bEndpointAddress;
1609 
1610 #ifdef OXU_URB_TRACE
1611 	oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1612 		__func__, urb->dev->devpath, urb,
1613 		epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1614 		urb->transfer_buffer_length,
1615 		qtd, urb->ep->hcpriv);
1616 #endif
1617 
1618 	spin_lock_irqsave(&oxu->lock, flags);
1619 	if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
1620 		rc = -ESHUTDOWN;
1621 		goto done;
1622 	}
1623 
1624 	qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
1625 	if (unlikely(qh == NULL)) {
1626 		rc = -ENOMEM;
1627 		goto done;
1628 	}
1629 
1630 	/* Control/bulk operations through TTs don't need scheduling,
1631 	 * the HC and TT handle it when the TT has a buffer ready.
1632 	 */
1633 	if (likely(qh->qh_state == QH_STATE_IDLE))
1634 		qh_link_async(oxu, qh_get(qh));
1635 done:
1636 	spin_unlock_irqrestore(&oxu->lock, flags);
1637 	if (unlikely(qh == NULL))
1638 		qtd_list_free(oxu, urb, qtd_list);
1639 	return rc;
1640 }
1641 
1642 /* The async qh for the qtds being reclaimed are now unlinked from the HC */
1643 
1644 static void end_unlink_async(struct oxu_hcd *oxu)
1645 {
1646 	struct ehci_qh *qh = oxu->reclaim;
1647 	struct ehci_qh *next;
1648 
1649 	timer_action_done(oxu, TIMER_IAA_WATCHDOG);
1650 
1651 	qh->qh_state = QH_STATE_IDLE;
1652 	qh->qh_next.qh = NULL;
1653 	qh_put(qh);			/* refcount from reclaim */
1654 
1655 	/* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
1656 	next = qh->reclaim;
1657 	oxu->reclaim = next;
1658 	oxu->reclaim_ready = 0;
1659 	qh->reclaim = NULL;
1660 
1661 	qh_completions(oxu, qh);
1662 
1663 	if (!list_empty(&qh->qtd_list)
1664 			&& HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
1665 		qh_link_async(oxu, qh);
1666 	else {
1667 		qh_put(qh);		/* refcount from async list */
1668 
1669 		/* it's not free to turn the async schedule on/off; leave it
1670 		 * active but idle for a while once it empties.
1671 		 */
1672 		if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
1673 				&& oxu->async->qh_next.qh == NULL)
1674 			timer_action(oxu, TIMER_ASYNC_OFF);
1675 	}
1676 
1677 	if (next) {
1678 		oxu->reclaim = NULL;
1679 		start_unlink_async(oxu, next);
1680 	}
1681 }
1682 
1683 /* makes sure the async qh will become idle */
1684 /* caller must own oxu->lock */
1685 
1686 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1687 {
1688 	int cmd = readl(&oxu->regs->command);
1689 	struct ehci_qh *prev;
1690 
1691 #ifdef DEBUG
1692 	assert_spin_locked(&oxu->lock);
1693 	BUG_ON(oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
1694 				&& qh->qh_state != QH_STATE_UNLINK_WAIT));
1695 #endif
1696 
1697 	/* stop async schedule right now? */
1698 	if (unlikely(qh == oxu->async)) {
1699 		/* can't get here without STS_ASS set */
1700 		if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
1701 				&& !oxu->reclaim) {
1702 			/* ... and CMD_IAAD clear */
1703 			writel(cmd & ~CMD_ASE, &oxu->regs->command);
1704 			wmb();
1705 			/* handshake later, if we need to */
1706 			timer_action_done(oxu, TIMER_ASYNC_OFF);
1707 		}
1708 		return;
1709 	}
1710 
1711 	qh->qh_state = QH_STATE_UNLINK;
1712 	oxu->reclaim = qh = qh_get(qh);
1713 
1714 	prev = oxu->async;
1715 	while (prev->qh_next.qh != qh)
1716 		prev = prev->qh_next.qh;
1717 
1718 	prev->hw_next = qh->hw_next;
1719 	prev->qh_next = qh->qh_next;
1720 	wmb();
1721 
1722 	if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
1723 		/* if (unlikely(qh->reclaim != 0))
1724 		 *	this will recurse, probably not much
1725 		 */
1726 		end_unlink_async(oxu);
1727 		return;
1728 	}
1729 
1730 	oxu->reclaim_ready = 0;
1731 	cmd |= CMD_IAAD;
1732 	writel(cmd, &oxu->regs->command);
1733 	(void) readl(&oxu->regs->command);
1734 	timer_action(oxu, TIMER_IAA_WATCHDOG);
1735 }
1736 
1737 static void scan_async(struct oxu_hcd *oxu)
1738 {
1739 	struct ehci_qh *qh;
1740 	enum ehci_timer_action action = TIMER_IO_WATCHDOG;
1741 
1742 	if (!++(oxu->stamp))
1743 		oxu->stamp++;
1744 	timer_action_done(oxu, TIMER_ASYNC_SHRINK);
1745 rescan:
1746 	qh = oxu->async->qh_next.qh;
1747 	if (likely(qh != NULL)) {
1748 		do {
1749 			/* clean any finished work for this qh */
1750 			if (!list_empty(&qh->qtd_list)
1751 					&& qh->stamp != oxu->stamp) {
1752 				int temp;
1753 
1754 				/* unlinks could happen here; completion
1755 				 * reporting drops the lock.  rescan using
1756 				 * the latest schedule, but don't rescan
1757 				 * qhs we already finished (no looping).
1758 				 */
1759 				qh = qh_get(qh);
1760 				qh->stamp = oxu->stamp;
1761 				temp = qh_completions(oxu, qh);
1762 				qh_put(qh);
1763 				if (temp != 0)
1764 					goto rescan;
1765 			}
1766 
1767 			/* unlink idle entries, reducing HC PCI usage as well
1768 			 * as HCD schedule-scanning costs.  delay for any qh
1769 			 * we just scanned, there's a not-unusual case that it
1770 			 * doesn't stay idle for long.
1771 			 * (plus, avoids some kind of re-activation race.)
1772 			 */
1773 			if (list_empty(&qh->qtd_list)) {
1774 				if (qh->stamp == oxu->stamp)
1775 					action = TIMER_ASYNC_SHRINK;
1776 				else if (!oxu->reclaim
1777 					    && qh->qh_state == QH_STATE_LINKED)
1778 					start_unlink_async(oxu, qh);
1779 			}
1780 
1781 			qh = qh->qh_next.qh;
1782 		} while (qh);
1783 	}
1784 	if (action == TIMER_ASYNC_SHRINK)
1785 		timer_action(oxu, TIMER_ASYNC_SHRINK);
1786 }
1787 
1788 /*
1789  * periodic_next_shadow - return "next" pointer on shadow list
1790  * @periodic: host pointer to qh/itd/sitd
1791  * @tag: hardware tag for type of this record
1792  */
1793 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
1794 						__le32 tag)
1795 {
1796 	switch (tag) {
1797 	default:
1798 	case Q_TYPE_QH:
1799 		return &periodic->qh->qh_next;
1800 	}
1801 }
1802 
1803 /* caller must hold oxu->lock */
1804 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
1805 {
1806 	union ehci_shadow *prev_p = &oxu->pshadow[frame];
1807 	__le32 *hw_p = &oxu->periodic[frame];
1808 	union ehci_shadow here = *prev_p;
1809 
1810 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
1811 	while (here.ptr && here.ptr != ptr) {
1812 		prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
1813 		hw_p = here.hw_next;
1814 		here = *prev_p;
1815 	}
1816 	/* an interrupt entry (at list end) could have been shared */
1817 	if (!here.ptr)
1818 		return;
1819 
1820 	/* update shadow and hardware lists ... the old "next" pointers
1821 	 * from ptr may still be in use, the caller updates them.
1822 	 */
1823 	*prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
1824 	*hw_p = *here.hw_next;
1825 }
1826 
1827 /* how many of the uframe's 125 usecs are allocated? */
1828 static unsigned short periodic_usecs(struct oxu_hcd *oxu,
1829 					unsigned frame, unsigned uframe)
1830 {
1831 	__le32 *hw_p = &oxu->periodic[frame];
1832 	union ehci_shadow *q = &oxu->pshadow[frame];
1833 	unsigned usecs = 0;
1834 
1835 	while (q->ptr) {
1836 		switch (Q_NEXT_TYPE(*hw_p)) {
1837 		case Q_TYPE_QH:
1838 		default:
1839 			/* is it in the S-mask? */
1840 			if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
1841 				usecs += q->qh->usecs;
1842 			/* ... or C-mask? */
1843 			if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
1844 				usecs += q->qh->c_usecs;
1845 			hw_p = &q->qh->hw_next;
1846 			q = &q->qh->qh_next;
1847 			break;
1848 		}
1849 	}
1850 #ifdef DEBUG
1851 	if (usecs > 100)
1852 		oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
1853 						frame * 8 + uframe, usecs);
1854 #endif
1855 	return usecs;
1856 }
1857 
1858 static int enable_periodic(struct oxu_hcd *oxu)
1859 {
1860 	u32 cmd;
1861 	int status;
1862 
1863 	/* did clearing PSE did take effect yet?
1864 	 * takes effect only at frame boundaries...
1865 	 */
1866 	status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
1867 	if (status != 0) {
1868 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
1869 		usb_hc_died(oxu_to_hcd(oxu));
1870 		return status;
1871 	}
1872 
1873 	cmd = readl(&oxu->regs->command) | CMD_PSE;
1874 	writel(cmd, &oxu->regs->command);
1875 	/* posted write ... PSS happens later */
1876 	oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1877 
1878 	/* make sure ehci_work scans these */
1879 	oxu->next_uframe = readl(&oxu->regs->frame_index)
1880 		% (oxu->periodic_size << 3);
1881 	return 0;
1882 }
1883 
1884 static int disable_periodic(struct oxu_hcd *oxu)
1885 {
1886 	u32 cmd;
1887 	int status;
1888 
1889 	/* did setting PSE not take effect yet?
1890 	 * takes effect only at frame boundaries...
1891 	 */
1892 	status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
1893 	if (status != 0) {
1894 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
1895 		usb_hc_died(oxu_to_hcd(oxu));
1896 		return status;
1897 	}
1898 
1899 	cmd = readl(&oxu->regs->command) & ~CMD_PSE;
1900 	writel(cmd, &oxu->regs->command);
1901 	/* posted write ... */
1902 
1903 	oxu->next_uframe = -1;
1904 	return 0;
1905 }
1906 
1907 /* periodic schedule slots have iso tds (normal or split) first, then a
1908  * sparse tree for active interrupt transfers.
1909  *
1910  * this just links in a qh; caller guarantees uframe masks are set right.
1911  * no FSTN support (yet; oxu 0.96+)
1912  */
1913 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
1914 {
1915 	unsigned i;
1916 	unsigned period = qh->period;
1917 
1918 	dev_dbg(&qh->dev->dev,
1919 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
1920 		period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
1921 		qh, qh->start, qh->usecs, qh->c_usecs);
1922 
1923 	/* high bandwidth, or otherwise every microframe */
1924 	if (period == 0)
1925 		period = 1;
1926 
1927 	for (i = qh->start; i < oxu->periodic_size; i += period) {
1928 		union ehci_shadow	*prev = &oxu->pshadow[i];
1929 		__le32			*hw_p = &oxu->periodic[i];
1930 		union ehci_shadow	here = *prev;
1931 		__le32			type = 0;
1932 
1933 		/* skip the iso nodes at list head */
1934 		while (here.ptr) {
1935 			type = Q_NEXT_TYPE(*hw_p);
1936 			if (type == Q_TYPE_QH)
1937 				break;
1938 			prev = periodic_next_shadow(prev, type);
1939 			hw_p = &here.qh->hw_next;
1940 			here = *prev;
1941 		}
1942 
1943 		/* sorting each branch by period (slow-->fast)
1944 		 * enables sharing interior tree nodes
1945 		 */
1946 		while (here.ptr && qh != here.qh) {
1947 			if (qh->period > here.qh->period)
1948 				break;
1949 			prev = &here.qh->qh_next;
1950 			hw_p = &here.qh->hw_next;
1951 			here = *prev;
1952 		}
1953 		/* link in this qh, unless some earlier pass did that */
1954 		if (qh != here.qh) {
1955 			qh->qh_next = here;
1956 			if (here.qh)
1957 				qh->hw_next = *hw_p;
1958 			wmb();
1959 			prev->qh = qh;
1960 			*hw_p = QH_NEXT(qh->qh_dma);
1961 		}
1962 	}
1963 	qh->qh_state = QH_STATE_LINKED;
1964 	qh_get(qh);
1965 
1966 	/* update per-qh bandwidth for usbfs */
1967 	oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
1968 		? ((qh->usecs + qh->c_usecs) / qh->period)
1969 		: (qh->usecs * 8);
1970 
1971 	/* maybe enable periodic schedule processing */
1972 	if (!oxu->periodic_sched++)
1973 		return enable_periodic(oxu);
1974 
1975 	return 0;
1976 }
1977 
1978 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
1979 {
1980 	unsigned i;
1981 	unsigned period;
1982 
1983 	/* FIXME:
1984 	 *   IF this isn't high speed
1985 	 *   and this qh is active in the current uframe
1986 	 *   (and overlay token SplitXstate is false?)
1987 	 * THEN
1988 	 *   qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
1989 	 */
1990 
1991 	/* high bandwidth, or otherwise part of every microframe */
1992 	period = qh->period;
1993 	if (period == 0)
1994 		period = 1;
1995 
1996 	for (i = qh->start; i < oxu->periodic_size; i += period)
1997 		periodic_unlink(oxu, i, qh);
1998 
1999 	/* update per-qh bandwidth for usbfs */
2000 	oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2001 		? ((qh->usecs + qh->c_usecs) / qh->period)
2002 		: (qh->usecs * 8);
2003 
2004 	dev_dbg(&qh->dev->dev,
2005 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2006 		qh->period,
2007 		le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2008 		qh, qh->start, qh->usecs, qh->c_usecs);
2009 
2010 	/* qh->qh_next still "live" to HC */
2011 	qh->qh_state = QH_STATE_UNLINK;
2012 	qh->qh_next.ptr = NULL;
2013 	qh_put(qh);
2014 
2015 	/* maybe turn off periodic schedule */
2016 	oxu->periodic_sched--;
2017 	if (!oxu->periodic_sched)
2018 		(void) disable_periodic(oxu);
2019 }
2020 
2021 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2022 {
2023 	unsigned wait;
2024 
2025 	qh_unlink_periodic(oxu, qh);
2026 
2027 	/* simple/paranoid:  always delay, expecting the HC needs to read
2028 	 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2029 	 * expect hub_wq to clean up after any CSPLITs we won't issue.
2030 	 * active high speed queues may need bigger delays...
2031 	 */
2032 	if (list_empty(&qh->qtd_list)
2033 		|| (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2034 		wait = 2;
2035 	else
2036 		wait = 55;	/* worst case: 3 * 1024 */
2037 
2038 	udelay(wait);
2039 	qh->qh_state = QH_STATE_IDLE;
2040 	qh->hw_next = EHCI_LIST_END;
2041 	wmb();
2042 }
2043 
2044 static int check_period(struct oxu_hcd *oxu,
2045 			unsigned frame, unsigned uframe,
2046 			unsigned period, unsigned usecs)
2047 {
2048 	int claimed;
2049 
2050 	/* complete split running into next frame?
2051 	 * given FSTN support, we could sometimes check...
2052 	 */
2053 	if (uframe >= 8)
2054 		return 0;
2055 
2056 	/*
2057 	 * 80% periodic == 100 usec/uframe available
2058 	 * convert "usecs we need" to "max already claimed"
2059 	 */
2060 	usecs = 100 - usecs;
2061 
2062 	/* we "know" 2 and 4 uframe intervals were rejected; so
2063 	 * for period 0, check _every_ microframe in the schedule.
2064 	 */
2065 	if (unlikely(period == 0)) {
2066 		do {
2067 			for (uframe = 0; uframe < 7; uframe++) {
2068 				claimed = periodic_usecs(oxu, frame, uframe);
2069 				if (claimed > usecs)
2070 					return 0;
2071 			}
2072 		} while ((frame += 1) < oxu->periodic_size);
2073 
2074 	/* just check the specified uframe, at that period */
2075 	} else {
2076 		do {
2077 			claimed = periodic_usecs(oxu, frame, uframe);
2078 			if (claimed > usecs)
2079 				return 0;
2080 		} while ((frame += period) < oxu->periodic_size);
2081 	}
2082 
2083 	return 1;
2084 }
2085 
2086 static int check_intr_schedule(struct oxu_hcd	*oxu,
2087 				unsigned frame, unsigned uframe,
2088 				const struct ehci_qh *qh, __le32 *c_maskp)
2089 {
2090 	int retval = -ENOSPC;
2091 
2092 	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
2093 		goto done;
2094 
2095 	if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2096 		goto done;
2097 	if (!qh->c_usecs) {
2098 		retval = 0;
2099 		*c_maskp = 0;
2100 		goto done;
2101 	}
2102 
2103 done:
2104 	return retval;
2105 }
2106 
2107 /* "first fit" scheduling policy used the first time through,
2108  * or when the previous schedule slot can't be re-used.
2109  */
2110 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2111 {
2112 	int		status;
2113 	unsigned	uframe;
2114 	__le32		c_mask;
2115 	unsigned	frame;		/* 0..(qh->period - 1), or NO_FRAME */
2116 
2117 	qh_refresh(oxu, qh);
2118 	qh->hw_next = EHCI_LIST_END;
2119 	frame = qh->start;
2120 
2121 	/* reuse the previous schedule slots, if we can */
2122 	if (frame < qh->period) {
2123 		uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2124 		status = check_intr_schedule(oxu, frame, --uframe,
2125 				qh, &c_mask);
2126 	} else {
2127 		uframe = 0;
2128 		c_mask = 0;
2129 		status = -ENOSPC;
2130 	}
2131 
2132 	/* else scan the schedule to find a group of slots such that all
2133 	 * uframes have enough periodic bandwidth available.
2134 	 */
2135 	if (status) {
2136 		/* "normal" case, uframing flexible except with splits */
2137 		if (qh->period) {
2138 			frame = qh->period - 1;
2139 			do {
2140 				for (uframe = 0; uframe < 8; uframe++) {
2141 					status = check_intr_schedule(oxu,
2142 							frame, uframe, qh,
2143 							&c_mask);
2144 					if (status == 0)
2145 						break;
2146 				}
2147 			} while (status && frame--);
2148 
2149 		/* qh->period == 0 means every uframe */
2150 		} else {
2151 			frame = 0;
2152 			status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2153 		}
2154 		if (status)
2155 			goto done;
2156 		qh->start = frame;
2157 
2158 		/* reset S-frame and (maybe) C-frame masks */
2159 		qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2160 		qh->hw_info2 |= qh->period
2161 			? cpu_to_le32(1 << uframe)
2162 			: cpu_to_le32(QH_SMASK);
2163 		qh->hw_info2 |= c_mask;
2164 	} else
2165 		oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2166 
2167 	/* stuff into the periodic schedule */
2168 	status = qh_link_periodic(oxu, qh);
2169 done:
2170 	return status;
2171 }
2172 
2173 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2174 			struct list_head *qtd_list, gfp_t mem_flags)
2175 {
2176 	unsigned epnum;
2177 	unsigned long flags;
2178 	struct ehci_qh *qh;
2179 	int status = 0;
2180 	struct list_head	empty;
2181 
2182 	/* get endpoint and transfer/schedule data */
2183 	epnum = urb->ep->desc.bEndpointAddress;
2184 
2185 	spin_lock_irqsave(&oxu->lock, flags);
2186 
2187 	if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2188 		status = -ESHUTDOWN;
2189 		goto done;
2190 	}
2191 
2192 	/* get qh and force any scheduling errors */
2193 	INIT_LIST_HEAD(&empty);
2194 	qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2195 	if (qh == NULL) {
2196 		status = -ENOMEM;
2197 		goto done;
2198 	}
2199 	if (qh->qh_state == QH_STATE_IDLE) {
2200 		status = qh_schedule(oxu, qh);
2201 		if (status != 0)
2202 			goto done;
2203 	}
2204 
2205 	/* then queue the urb's tds to the qh */
2206 	qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2207 	BUG_ON(qh == NULL);
2208 
2209 	/* ... update usbfs periodic stats */
2210 	oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2211 
2212 done:
2213 	spin_unlock_irqrestore(&oxu->lock, flags);
2214 	if (status)
2215 		qtd_list_free(oxu, urb, qtd_list);
2216 
2217 	return status;
2218 }
2219 
2220 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2221 						gfp_t mem_flags)
2222 {
2223 	oxu_dbg(oxu, "iso support is missing!\n");
2224 	return -ENOSYS;
2225 }
2226 
2227 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2228 						gfp_t mem_flags)
2229 {
2230 	oxu_dbg(oxu, "split iso support is missing!\n");
2231 	return -ENOSYS;
2232 }
2233 
2234 static void scan_periodic(struct oxu_hcd *oxu)
2235 {
2236 	unsigned frame, clock, now_uframe, mod;
2237 	unsigned modified;
2238 
2239 	mod = oxu->periodic_size << 3;
2240 
2241 	/*
2242 	 * When running, scan from last scan point up to "now"
2243 	 * else clean up by scanning everything that's left.
2244 	 * Touches as few pages as possible:  cache-friendly.
2245 	 */
2246 	now_uframe = oxu->next_uframe;
2247 	if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2248 		clock = readl(&oxu->regs->frame_index);
2249 	else
2250 		clock = now_uframe + mod - 1;
2251 	clock %= mod;
2252 
2253 	for (;;) {
2254 		union ehci_shadow	q, *q_p;
2255 		__le32			type, *hw_p;
2256 
2257 		/* don't scan past the live uframe */
2258 		frame = now_uframe >> 3;
2259 		if (frame != (clock >> 3)) {
2260 			/* safe to scan the whole frame at once */
2261 			now_uframe |= 0x07;
2262 		}
2263 
2264 restart:
2265 		/* scan each element in frame's queue for completions */
2266 		q_p = &oxu->pshadow[frame];
2267 		hw_p = &oxu->periodic[frame];
2268 		q.ptr = q_p->ptr;
2269 		type = Q_NEXT_TYPE(*hw_p);
2270 		modified = 0;
2271 
2272 		while (q.ptr != NULL) {
2273 			union ehci_shadow temp;
2274 
2275 			switch (type) {
2276 			case Q_TYPE_QH:
2277 				/* handle any completions */
2278 				temp.qh = qh_get(q.qh);
2279 				type = Q_NEXT_TYPE(q.qh->hw_next);
2280 				q = q.qh->qh_next;
2281 				modified = qh_completions(oxu, temp.qh);
2282 				if (unlikely(list_empty(&temp.qh->qtd_list)))
2283 					intr_deschedule(oxu, temp.qh);
2284 				qh_put(temp.qh);
2285 				break;
2286 			default:
2287 				oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n",
2288 					type, frame, q.ptr);
2289 				q.ptr = NULL;
2290 			}
2291 
2292 			/* assume completion callbacks modify the queue */
2293 			if (unlikely(modified))
2294 				goto restart;
2295 		}
2296 
2297 		/* Stop when we catch up to the HC */
2298 
2299 		/* FIXME:  this assumes we won't get lapped when
2300 		 * latencies climb; that should be rare, but...
2301 		 * detect it, and just go all the way around.
2302 		 * FLR might help detect this case, so long as latencies
2303 		 * don't exceed periodic_size msec (default 1.024 sec).
2304 		 */
2305 
2306 		/* FIXME: likewise assumes HC doesn't halt mid-scan */
2307 
2308 		if (now_uframe == clock) {
2309 			unsigned	now;
2310 
2311 			if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2312 				break;
2313 			oxu->next_uframe = now_uframe;
2314 			now = readl(&oxu->regs->frame_index) % mod;
2315 			if (now_uframe == now)
2316 				break;
2317 
2318 			/* rescan the rest of this frame, then ... */
2319 			clock = now;
2320 		} else {
2321 			now_uframe++;
2322 			now_uframe %= mod;
2323 		}
2324 	}
2325 }
2326 
2327 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
2328  * The firmware seems to think that powering off is a wakeup event!
2329  * This routine turns off remote wakeup and everything else, on all ports.
2330  */
2331 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2332 {
2333 	int port = HCS_N_PORTS(oxu->hcs_params);
2334 
2335 	while (port--)
2336 		writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2337 }
2338 
2339 static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2340 {
2341 	unsigned port;
2342 
2343 	if (!HCS_PPC(oxu->hcs_params))
2344 		return;
2345 
2346 	oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
2347 	for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; )
2348 		(void) oxu_hub_control(oxu_to_hcd(oxu),
2349 				is_on ? SetPortFeature : ClearPortFeature,
2350 				USB_PORT_FEAT_POWER,
2351 				port--, NULL, 0);
2352 	msleep(20);
2353 }
2354 
2355 /* Called from some interrupts, timers, and so on.
2356  * It calls driver completion functions, after dropping oxu->lock.
2357  */
2358 static void ehci_work(struct oxu_hcd *oxu)
2359 {
2360 	timer_action_done(oxu, TIMER_IO_WATCHDOG);
2361 	if (oxu->reclaim_ready)
2362 		end_unlink_async(oxu);
2363 
2364 	/* another CPU may drop oxu->lock during a schedule scan while
2365 	 * it reports urb completions.  this flag guards against bogus
2366 	 * attempts at re-entrant schedule scanning.
2367 	 */
2368 	if (oxu->scanning)
2369 		return;
2370 	oxu->scanning = 1;
2371 	scan_async(oxu);
2372 	if (oxu->next_uframe != -1)
2373 		scan_periodic(oxu);
2374 	oxu->scanning = 0;
2375 
2376 	/* the IO watchdog guards against hardware or driver bugs that
2377 	 * misplace IRQs, and should let us run completely without IRQs.
2378 	 * such lossage has been observed on both VT6202 and VT8235.
2379 	 */
2380 	if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2381 			(oxu->async->qh_next.ptr != NULL ||
2382 			 oxu->periodic_sched != 0))
2383 		timer_action(oxu, TIMER_IO_WATCHDOG);
2384 }
2385 
2386 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2387 {
2388 	/* if we need to use IAA and it's busy, defer */
2389 	if (qh->qh_state == QH_STATE_LINKED
2390 			&& oxu->reclaim
2391 			&& HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2392 		struct ehci_qh		*last;
2393 
2394 		for (last = oxu->reclaim;
2395 				last->reclaim;
2396 				last = last->reclaim)
2397 			continue;
2398 		qh->qh_state = QH_STATE_UNLINK_WAIT;
2399 		last->reclaim = qh;
2400 
2401 	/* bypass IAA if the hc can't care */
2402 	} else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2403 		end_unlink_async(oxu);
2404 
2405 	/* something else might have unlinked the qh by now */
2406 	if (qh->qh_state == QH_STATE_LINKED)
2407 		start_unlink_async(oxu, qh);
2408 }
2409 
2410 /*
2411  * USB host controller methods
2412  */
2413 
2414 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2415 {
2416 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2417 	u32 status, pcd_status = 0;
2418 	int bh;
2419 
2420 	spin_lock(&oxu->lock);
2421 
2422 	status = readl(&oxu->regs->status);
2423 
2424 	/* e.g. cardbus physical eject */
2425 	if (status == ~(u32) 0) {
2426 		oxu_dbg(oxu, "device removed\n");
2427 		goto dead;
2428 	}
2429 
2430 	/* Shared IRQ? */
2431 	status &= INTR_MASK;
2432 	if (!status || unlikely(hcd->state == HC_STATE_HALT)) {
2433 		spin_unlock(&oxu->lock);
2434 		return IRQ_NONE;
2435 	}
2436 
2437 	/* clear (just) interrupts */
2438 	writel(status, &oxu->regs->status);
2439 	readl(&oxu->regs->command);	/* unblock posted write */
2440 	bh = 0;
2441 
2442 #ifdef OXU_VERBOSE_DEBUG
2443 	/* unrequested/ignored: Frame List Rollover */
2444 	dbg_status(oxu, "irq", status);
2445 #endif
2446 
2447 	/* INT, ERR, and IAA interrupt rates can be throttled */
2448 
2449 	/* normal [4.15.1.2] or error [4.15.1.1] completion */
2450 	if (likely((status & (STS_INT|STS_ERR)) != 0))
2451 		bh = 1;
2452 
2453 	/* complete the unlinking of some qh [4.15.2.3] */
2454 	if (status & STS_IAA) {
2455 		oxu->reclaim_ready = 1;
2456 		bh = 1;
2457 	}
2458 
2459 	/* remote wakeup [4.3.1] */
2460 	if (status & STS_PCD) {
2461 		unsigned i = HCS_N_PORTS(oxu->hcs_params);
2462 		pcd_status = status;
2463 
2464 		/* resume root hub? */
2465 		if (!(readl(&oxu->regs->command) & CMD_RUN))
2466 			usb_hcd_resume_root_hub(hcd);
2467 
2468 		while (i--) {
2469 			int pstatus = readl(&oxu->regs->port_status[i]);
2470 
2471 			if (pstatus & PORT_OWNER)
2472 				continue;
2473 			if (!(pstatus & PORT_RESUME)
2474 					|| oxu->reset_done[i] != 0)
2475 				continue;
2476 
2477 			/* start USB_RESUME_TIMEOUT resume signaling from this
2478 			 * port, and make hub_wq collect PORT_STAT_C_SUSPEND to
2479 			 * stop that signaling.
2480 			 */
2481 			oxu->reset_done[i] = jiffies +
2482 				msecs_to_jiffies(USB_RESUME_TIMEOUT);
2483 			oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2484 			mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2485 		}
2486 	}
2487 
2488 	/* PCI errors [4.15.2.4] */
2489 	if (unlikely((status & STS_FATAL) != 0)) {
2490 		/* bogus "fatal" IRQs appear on some chips... why?  */
2491 		status = readl(&oxu->regs->status);
2492 		dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2493 		dbg_status(oxu, "fatal", status);
2494 		if (status & STS_HALT) {
2495 			oxu_err(oxu, "fatal error\n");
2496 dead:
2497 			ehci_reset(oxu);
2498 			writel(0, &oxu->regs->configured_flag);
2499 			usb_hc_died(hcd);
2500 			/* generic layer kills/unlinks all urbs, then
2501 			 * uses oxu_stop to clean up the rest
2502 			 */
2503 			bh = 1;
2504 		}
2505 	}
2506 
2507 	if (bh)
2508 		ehci_work(oxu);
2509 	spin_unlock(&oxu->lock);
2510 	if (pcd_status & STS_PCD)
2511 		usb_hcd_poll_rh_status(hcd);
2512 	return IRQ_HANDLED;
2513 }
2514 
2515 static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2516 {
2517 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2518 	int ret = IRQ_HANDLED;
2519 
2520 	u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2521 	u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2522 
2523 	/* Disable all interrupt */
2524 	oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2525 
2526 	if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2527 		(!oxu->is_otg && (status & OXU_USBSPHI)))
2528 		oxu210_hcd_irq(hcd);
2529 	else
2530 		ret = IRQ_NONE;
2531 
2532 	/* Enable all interrupt back */
2533 	oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2534 
2535 	return ret;
2536 }
2537 
2538 static void oxu_watchdog(struct timer_list *t)
2539 {
2540 	struct oxu_hcd	*oxu = from_timer(oxu, t, watchdog);
2541 	unsigned long flags;
2542 
2543 	spin_lock_irqsave(&oxu->lock, flags);
2544 
2545 	/* lost IAA irqs wedge things badly; seen with a vt8235 */
2546 	if (oxu->reclaim) {
2547 		u32 status = readl(&oxu->regs->status);
2548 		if (status & STS_IAA) {
2549 			oxu_vdbg(oxu, "lost IAA\n");
2550 			writel(STS_IAA, &oxu->regs->status);
2551 			oxu->reclaim_ready = 1;
2552 		}
2553 	}
2554 
2555 	/* stop async processing after it's idled a bit */
2556 	if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2557 		start_unlink_async(oxu, oxu->async);
2558 
2559 	/* oxu could run by timer, without IRQs ... */
2560 	ehci_work(oxu);
2561 
2562 	spin_unlock_irqrestore(&oxu->lock, flags);
2563 }
2564 
2565 /* One-time init, only for memory state.
2566  */
2567 static int oxu_hcd_init(struct usb_hcd *hcd)
2568 {
2569 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2570 	u32 temp;
2571 	int retval;
2572 	u32 hcc_params;
2573 
2574 	spin_lock_init(&oxu->lock);
2575 
2576 	timer_setup(&oxu->watchdog, oxu_watchdog, 0);
2577 
2578 	/*
2579 	 * hw default: 1K periodic list heads, one per frame.
2580 	 * periodic_size can shrink by USBCMD update if hcc_params allows.
2581 	 */
2582 	oxu->periodic_size = DEFAULT_I_TDPS;
2583 	retval = ehci_mem_init(oxu, GFP_KERNEL);
2584 	if (retval < 0)
2585 		return retval;
2586 
2587 	/* controllers may cache some of the periodic schedule ... */
2588 	hcc_params = readl(&oxu->caps->hcc_params);
2589 	if (HCC_ISOC_CACHE(hcc_params))		/* full frame cache */
2590 		oxu->i_thresh = 8;
2591 	else					/* N microframes cached */
2592 		oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
2593 
2594 	oxu->reclaim = NULL;
2595 	oxu->reclaim_ready = 0;
2596 	oxu->next_uframe = -1;
2597 
2598 	/*
2599 	 * dedicate a qh for the async ring head, since we couldn't unlink
2600 	 * a 'real' qh without stopping the async schedule [4.8].  use it
2601 	 * as the 'reclamation list head' too.
2602 	 * its dummy is used in hw_alt_next of many tds, to prevent the qh
2603 	 * from automatically advancing to the next td after short reads.
2604 	 */
2605 	oxu->async->qh_next.qh = NULL;
2606 	oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
2607 	oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
2608 	oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
2609 	oxu->async->hw_qtd_next = EHCI_LIST_END;
2610 	oxu->async->qh_state = QH_STATE_LINKED;
2611 	oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
2612 
2613 	/* clear interrupt enables, set irq latency */
2614 	if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
2615 		log2_irq_thresh = 0;
2616 	temp = 1 << (16 + log2_irq_thresh);
2617 	if (HCC_CANPARK(hcc_params)) {
2618 		/* HW default park == 3, on hardware that supports it (like
2619 		 * NVidia and ALI silicon), maximizes throughput on the async
2620 		 * schedule by avoiding QH fetches between transfers.
2621 		 *
2622 		 * With fast usb storage devices and NForce2, "park" seems to
2623 		 * make problems:  throughput reduction (!), data errors...
2624 		 */
2625 		if (park) {
2626 			park = min(park, (unsigned) 3);
2627 			temp |= CMD_PARK;
2628 			temp |= park << 8;
2629 		}
2630 		oxu_dbg(oxu, "park %d\n", park);
2631 	}
2632 	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
2633 		/* periodic schedule size can be smaller than default */
2634 		temp &= ~(3 << 2);
2635 		temp |= (EHCI_TUNE_FLS << 2);
2636 	}
2637 	oxu->command = temp;
2638 
2639 	return 0;
2640 }
2641 
2642 /* Called during probe() after chip reset completes.
2643  */
2644 static int oxu_reset(struct usb_hcd *hcd)
2645 {
2646 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2647 
2648 	spin_lock_init(&oxu->mem_lock);
2649 	INIT_LIST_HEAD(&oxu->urb_list);
2650 	oxu->urb_len = 0;
2651 
2652 	/* FIMXE */
2653 	hcd->self.controller->dma_mask = NULL;
2654 
2655 	if (oxu->is_otg) {
2656 		oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
2657 		oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
2658 			HC_LENGTH(readl(&oxu->caps->hc_capbase));
2659 
2660 		oxu->mem = hcd->regs + OXU_SPH_MEM;
2661 	} else {
2662 		oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
2663 		oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
2664 			HC_LENGTH(readl(&oxu->caps->hc_capbase));
2665 
2666 		oxu->mem = hcd->regs + OXU_OTG_MEM;
2667 	}
2668 
2669 	oxu->hcs_params = readl(&oxu->caps->hcs_params);
2670 	oxu->sbrn = 0x20;
2671 
2672 	return oxu_hcd_init(hcd);
2673 }
2674 
2675 static int oxu_run(struct usb_hcd *hcd)
2676 {
2677 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2678 	int retval;
2679 	u32 temp, hcc_params;
2680 
2681 	hcd->uses_new_polling = 1;
2682 
2683 	/* EHCI spec section 4.1 */
2684 	retval = ehci_reset(oxu);
2685 	if (retval != 0) {
2686 		ehci_mem_cleanup(oxu);
2687 		return retval;
2688 	}
2689 	writel(oxu->periodic_dma, &oxu->regs->frame_list);
2690 	writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
2691 
2692 	/* hcc_params controls whether oxu->regs->segment must (!!!)
2693 	 * be used; it constrains QH/ITD/SITD and QTD locations.
2694 	 * dma_pool consistent memory always uses segment zero.
2695 	 * streaming mappings for I/O buffers, like pci_map_single(),
2696 	 * can return segments above 4GB, if the device allows.
2697 	 *
2698 	 * NOTE:  the dma mask is visible through dev->dma_mask, so
2699 	 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
2700 	 * Scsi_Host.highmem_io, and so forth.  It's readonly to all
2701 	 * host side drivers though.
2702 	 */
2703 	hcc_params = readl(&oxu->caps->hcc_params);
2704 	if (HCC_64BIT_ADDR(hcc_params))
2705 		writel(0, &oxu->regs->segment);
2706 
2707 	oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
2708 				CMD_ASE | CMD_RESET);
2709 	oxu->command |= CMD_RUN;
2710 	writel(oxu->command, &oxu->regs->command);
2711 	dbg_cmd(oxu, "init", oxu->command);
2712 
2713 	/*
2714 	 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
2715 	 * are explicitly handed to companion controller(s), so no TT is
2716 	 * involved with the root hub.  (Except where one is integrated,
2717 	 * and there's no companion controller unless maybe for USB OTG.)
2718 	 */
2719 	hcd->state = HC_STATE_RUNNING;
2720 	writel(FLAG_CF, &oxu->regs->configured_flag);
2721 	readl(&oxu->regs->command);	/* unblock posted writes */
2722 
2723 	temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
2724 	oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
2725 		((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
2726 		temp >> 8, temp & 0xff, DRIVER_VERSION,
2727 		ignore_oc ? ", overcurrent ignored" : "");
2728 
2729 	writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
2730 
2731 	return 0;
2732 }
2733 
2734 static void oxu_stop(struct usb_hcd *hcd)
2735 {
2736 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2737 
2738 	/* Turn off port power on all root hub ports. */
2739 	ehci_port_power(oxu, 0);
2740 
2741 	/* no more interrupts ... */
2742 	del_timer_sync(&oxu->watchdog);
2743 
2744 	spin_lock_irq(&oxu->lock);
2745 	if (HC_IS_RUNNING(hcd->state))
2746 		ehci_quiesce(oxu);
2747 
2748 	ehci_reset(oxu);
2749 	writel(0, &oxu->regs->intr_enable);
2750 	spin_unlock_irq(&oxu->lock);
2751 
2752 	/* let companion controllers work when we aren't */
2753 	writel(0, &oxu->regs->configured_flag);
2754 
2755 	/* root hub is shut down separately (first, when possible) */
2756 	spin_lock_irq(&oxu->lock);
2757 	if (oxu->async)
2758 		ehci_work(oxu);
2759 	spin_unlock_irq(&oxu->lock);
2760 	ehci_mem_cleanup(oxu);
2761 
2762 	dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
2763 }
2764 
2765 /* Kick in for silicon on any bus (not just pci, etc).
2766  * This forcibly disables dma and IRQs, helping kexec and other cases
2767  * where the next system software may expect clean state.
2768  */
2769 static void oxu_shutdown(struct usb_hcd *hcd)
2770 {
2771 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2772 
2773 	(void) ehci_halt(oxu);
2774 	ehci_turn_off_all_ports(oxu);
2775 
2776 	/* make BIOS/etc use companion controller during reboot */
2777 	writel(0, &oxu->regs->configured_flag);
2778 
2779 	/* unblock posted writes */
2780 	readl(&oxu->regs->configured_flag);
2781 }
2782 
2783 /* Non-error returns are a promise to giveback() the urb later
2784  * we drop ownership so next owner (or urb unlink) can get it
2785  *
2786  * urb + dev is in hcd.self.controller.urb_list
2787  * we're queueing TDs onto software and hardware lists
2788  *
2789  * hcd-specific init for hcpriv hasn't been done yet
2790  *
2791  * NOTE:  control, bulk, and interrupt share the same code to append TDs
2792  * to a (possibly active) QH, and the same QH scanning code.
2793  */
2794 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2795 				gfp_t mem_flags)
2796 {
2797 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2798 	struct list_head qtd_list;
2799 
2800 	INIT_LIST_HEAD(&qtd_list);
2801 
2802 	switch (usb_pipetype(urb->pipe)) {
2803 	case PIPE_CONTROL:
2804 	case PIPE_BULK:
2805 	default:
2806 		if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
2807 			return -ENOMEM;
2808 		return submit_async(oxu, urb, &qtd_list, mem_flags);
2809 
2810 	case PIPE_INTERRUPT:
2811 		if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
2812 			return -ENOMEM;
2813 		return intr_submit(oxu, urb, &qtd_list, mem_flags);
2814 
2815 	case PIPE_ISOCHRONOUS:
2816 		if (urb->dev->speed == USB_SPEED_HIGH)
2817 			return itd_submit(oxu, urb, mem_flags);
2818 		else
2819 			return sitd_submit(oxu, urb, mem_flags);
2820 	}
2821 }
2822 
2823 /* This function is responsible for breaking URBs with big data size
2824  * into smaller size and processing small urbs in sequence.
2825  */
2826 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2827 				gfp_t mem_flags)
2828 {
2829 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2830 	int num, rem;
2831 	void *transfer_buffer;
2832 	struct urb *murb;
2833 	int i, ret;
2834 
2835 	/* If not bulk pipe just enqueue the URB */
2836 	if (!usb_pipebulk(urb->pipe))
2837 		return __oxu_urb_enqueue(hcd, urb, mem_flags);
2838 
2839 	/* Otherwise we should verify the USB transfer buffer size! */
2840 	transfer_buffer = urb->transfer_buffer;
2841 
2842 	num = urb->transfer_buffer_length / 4096;
2843 	rem = urb->transfer_buffer_length % 4096;
2844 	if (rem != 0)
2845 		num++;
2846 
2847 	/* If URB is smaller than 4096 bytes just enqueue it! */
2848 	if (num == 1)
2849 		return __oxu_urb_enqueue(hcd, urb, mem_flags);
2850 
2851 	/* Ok, we have more job to do! :) */
2852 
2853 	for (i = 0; i < num - 1; i++) {
2854 		/* Get free micro URB poll till a free urb is received */
2855 
2856 		do {
2857 			murb = (struct urb *) oxu_murb_alloc(oxu);
2858 			if (!murb)
2859 				schedule();
2860 		} while (!murb);
2861 
2862 		/* Coping the urb */
2863 		memcpy(murb, urb, sizeof(struct urb));
2864 
2865 		murb->transfer_buffer_length = 4096;
2866 		murb->transfer_buffer = transfer_buffer + i * 4096;
2867 
2868 		/* Null pointer for the encodes that this is a micro urb */
2869 		murb->complete = NULL;
2870 
2871 		((struct oxu_murb *) murb)->main = urb;
2872 		((struct oxu_murb *) murb)->last = 0;
2873 
2874 		/* This loop is to guarantee urb to be processed when there's
2875 		 * not enough resources at a particular time by retrying.
2876 		 */
2877 		do {
2878 			ret  = __oxu_urb_enqueue(hcd, murb, mem_flags);
2879 			if (ret)
2880 				schedule();
2881 		} while (ret);
2882 	}
2883 
2884 	/* Last urb requires special handling  */
2885 
2886 	/* Get free micro URB poll till a free urb is received */
2887 	do {
2888 		murb = (struct urb *) oxu_murb_alloc(oxu);
2889 		if (!murb)
2890 			schedule();
2891 	} while (!murb);
2892 
2893 	/* Coping the urb */
2894 	memcpy(murb, urb, sizeof(struct urb));
2895 
2896 	murb->transfer_buffer_length = rem > 0 ? rem : 4096;
2897 	murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
2898 
2899 	/* Null pointer for the encodes that this is a micro urb */
2900 	murb->complete = NULL;
2901 
2902 	((struct oxu_murb *) murb)->main = urb;
2903 	((struct oxu_murb *) murb)->last = 1;
2904 
2905 	do {
2906 		ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
2907 		if (ret)
2908 			schedule();
2909 	} while (ret);
2910 
2911 	return ret;
2912 }
2913 
2914 /* Remove from hardware lists.
2915  * Completions normally happen asynchronously
2916  */
2917 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
2918 {
2919 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2920 	struct ehci_qh *qh;
2921 	unsigned long flags;
2922 
2923 	spin_lock_irqsave(&oxu->lock, flags);
2924 	switch (usb_pipetype(urb->pipe)) {
2925 	case PIPE_CONTROL:
2926 	case PIPE_BULK:
2927 	default:
2928 		qh = (struct ehci_qh *) urb->hcpriv;
2929 		if (!qh)
2930 			break;
2931 		unlink_async(oxu, qh);
2932 		break;
2933 
2934 	case PIPE_INTERRUPT:
2935 		qh = (struct ehci_qh *) urb->hcpriv;
2936 		if (!qh)
2937 			break;
2938 		switch (qh->qh_state) {
2939 		case QH_STATE_LINKED:
2940 			intr_deschedule(oxu, qh);
2941 			/* FALL THROUGH */
2942 		case QH_STATE_IDLE:
2943 			qh_completions(oxu, qh);
2944 			break;
2945 		default:
2946 			oxu_dbg(oxu, "bogus qh %p state %d\n",
2947 					qh, qh->qh_state);
2948 			goto done;
2949 		}
2950 
2951 		/* reschedule QH iff another request is queued */
2952 		if (!list_empty(&qh->qtd_list)
2953 				&& HC_IS_RUNNING(hcd->state)) {
2954 			int status;
2955 
2956 			status = qh_schedule(oxu, qh);
2957 			spin_unlock_irqrestore(&oxu->lock, flags);
2958 
2959 			if (status != 0) {
2960 				/* shouldn't happen often, but ...
2961 				 * FIXME kill those tds' urbs
2962 				 */
2963 				dev_err(hcd->self.controller,
2964 					"can't reschedule qh %p, err %d\n", qh,
2965 					status);
2966 			}
2967 			return status;
2968 		}
2969 		break;
2970 	}
2971 done:
2972 	spin_unlock_irqrestore(&oxu->lock, flags);
2973 	return 0;
2974 }
2975 
2976 /* Bulk qh holds the data toggle */
2977 static void oxu_endpoint_disable(struct usb_hcd *hcd,
2978 					struct usb_host_endpoint *ep)
2979 {
2980 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2981 	unsigned long		flags;
2982 	struct ehci_qh		*qh, *tmp;
2983 
2984 	/* ASSERT:  any requests/urbs are being unlinked */
2985 	/* ASSERT:  nobody can be submitting urbs for this any more */
2986 
2987 rescan:
2988 	spin_lock_irqsave(&oxu->lock, flags);
2989 	qh = ep->hcpriv;
2990 	if (!qh)
2991 		goto done;
2992 
2993 	/* endpoints can be iso streams.  for now, we don't
2994 	 * accelerate iso completions ... so spin a while.
2995 	 */
2996 	if (qh->hw_info1 == 0) {
2997 		oxu_vdbg(oxu, "iso delay\n");
2998 		goto idle_timeout;
2999 	}
3000 
3001 	if (!HC_IS_RUNNING(hcd->state))
3002 		qh->qh_state = QH_STATE_IDLE;
3003 	switch (qh->qh_state) {
3004 	case QH_STATE_LINKED:
3005 		for (tmp = oxu->async->qh_next.qh;
3006 				tmp && tmp != qh;
3007 				tmp = tmp->qh_next.qh)
3008 			continue;
3009 		/* periodic qh self-unlinks on empty */
3010 		if (!tmp)
3011 			goto nogood;
3012 		unlink_async(oxu, qh);
3013 		/* FALL THROUGH */
3014 	case QH_STATE_UNLINK:		/* wait for hw to finish? */
3015 idle_timeout:
3016 		spin_unlock_irqrestore(&oxu->lock, flags);
3017 		schedule_timeout_uninterruptible(1);
3018 		goto rescan;
3019 	case QH_STATE_IDLE:		/* fully unlinked */
3020 		if (list_empty(&qh->qtd_list)) {
3021 			qh_put(qh);
3022 			break;
3023 		}
3024 		/* fall through */
3025 	default:
3026 nogood:
3027 		/* caller was supposed to have unlinked any requests;
3028 		 * that's not our job.  just leak this memory.
3029 		 */
3030 		oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3031 			qh, ep->desc.bEndpointAddress, qh->qh_state,
3032 			list_empty(&qh->qtd_list) ? "" : "(has tds)");
3033 		break;
3034 	}
3035 	ep->hcpriv = NULL;
3036 done:
3037 	spin_unlock_irqrestore(&oxu->lock, flags);
3038 }
3039 
3040 static int oxu_get_frame(struct usb_hcd *hcd)
3041 {
3042 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3043 
3044 	return (readl(&oxu->regs->frame_index) >> 3) %
3045 		oxu->periodic_size;
3046 }
3047 
3048 /* Build "status change" packet (one or two bytes) from HC registers */
3049 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3050 {
3051 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3052 	u32 temp, mask, status = 0;
3053 	int ports, i, retval = 1;
3054 	unsigned long flags;
3055 
3056 	/* if !PM, root hub timers won't get shut down ... */
3057 	if (!HC_IS_RUNNING(hcd->state))
3058 		return 0;
3059 
3060 	/* init status to no-changes */
3061 	buf[0] = 0;
3062 	ports = HCS_N_PORTS(oxu->hcs_params);
3063 	if (ports > 7) {
3064 		buf[1] = 0;
3065 		retval++;
3066 	}
3067 
3068 	/* Some boards (mostly VIA?) report bogus overcurrent indications,
3069 	 * causing massive log spam unless we completely ignore them.  It
3070 	 * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3071 	 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3072 	 * PORT_POWER; that's surprising, but maybe within-spec.
3073 	 */
3074 	if (!ignore_oc)
3075 		mask = PORT_CSC | PORT_PEC | PORT_OCC;
3076 	else
3077 		mask = PORT_CSC | PORT_PEC;
3078 
3079 	/* no hub change reports (bit 0) for now (power, ...) */
3080 
3081 	/* port N changes (bit N)? */
3082 	spin_lock_irqsave(&oxu->lock, flags);
3083 	for (i = 0; i < ports; i++) {
3084 		temp = readl(&oxu->regs->port_status[i]);
3085 
3086 		/*
3087 		 * Return status information even for ports with OWNER set.
3088 		 * Otherwise hub_wq wouldn't see the disconnect event when a
3089 		 * high-speed device is switched over to the companion
3090 		 * controller by the user.
3091 		 */
3092 
3093 		if (!(temp & PORT_CONNECT))
3094 			oxu->reset_done[i] = 0;
3095 		if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3096 				time_after_eq(jiffies, oxu->reset_done[i]))) {
3097 			if (i < 7)
3098 				buf[0] |= 1 << (i + 1);
3099 			else
3100 				buf[1] |= 1 << (i - 7);
3101 			status = STS_PCD;
3102 		}
3103 	}
3104 	/* FIXME autosuspend idle root hubs */
3105 	spin_unlock_irqrestore(&oxu->lock, flags);
3106 	return status ? retval : 0;
3107 }
3108 
3109 /* Returns the speed of a device attached to a port on the root hub. */
3110 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3111 						unsigned int portsc)
3112 {
3113 	switch ((portsc >> 26) & 3) {
3114 	case 0:
3115 		return 0;
3116 	case 1:
3117 		return USB_PORT_STAT_LOW_SPEED;
3118 	case 2:
3119 	default:
3120 		return USB_PORT_STAT_HIGH_SPEED;
3121 	}
3122 }
3123 
3124 #define	PORT_WAKE_BITS	(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3125 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3126 				u16 wValue, u16 wIndex, char *buf, u16 wLength)
3127 {
3128 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3129 	int ports = HCS_N_PORTS(oxu->hcs_params);
3130 	u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3131 	u32 temp, status;
3132 	unsigned long	flags;
3133 	int retval = 0;
3134 	unsigned selector;
3135 
3136 	/*
3137 	 * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3138 	 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3139 	 * (track current state ourselves) ... blink for diagnostics,
3140 	 * power, "this is the one", etc.  EHCI spec supports this.
3141 	 */
3142 
3143 	spin_lock_irqsave(&oxu->lock, flags);
3144 	switch (typeReq) {
3145 	case ClearHubFeature:
3146 		switch (wValue) {
3147 		case C_HUB_LOCAL_POWER:
3148 		case C_HUB_OVER_CURRENT:
3149 			/* no hub-wide feature/status flags */
3150 			break;
3151 		default:
3152 			goto error;
3153 		}
3154 		break;
3155 	case ClearPortFeature:
3156 		if (!wIndex || wIndex > ports)
3157 			goto error;
3158 		wIndex--;
3159 		temp = readl(status_reg);
3160 
3161 		/*
3162 		 * Even if OWNER is set, so the port is owned by the
3163 		 * companion controller, hub_wq needs to be able to clear
3164 		 * the port-change status bits (especially
3165 		 * USB_PORT_STAT_C_CONNECTION).
3166 		 */
3167 
3168 		switch (wValue) {
3169 		case USB_PORT_FEAT_ENABLE:
3170 			writel(temp & ~PORT_PE, status_reg);
3171 			break;
3172 		case USB_PORT_FEAT_C_ENABLE:
3173 			writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3174 			break;
3175 		case USB_PORT_FEAT_SUSPEND:
3176 			if (temp & PORT_RESET)
3177 				goto error;
3178 			if (temp & PORT_SUSPEND) {
3179 				if ((temp & PORT_PE) == 0)
3180 					goto error;
3181 				/* resume signaling for 20 msec */
3182 				temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3183 				writel(temp | PORT_RESUME, status_reg);
3184 				oxu->reset_done[wIndex] = jiffies
3185 						+ msecs_to_jiffies(20);
3186 			}
3187 			break;
3188 		case USB_PORT_FEAT_C_SUSPEND:
3189 			/* we auto-clear this feature */
3190 			break;
3191 		case USB_PORT_FEAT_POWER:
3192 			if (HCS_PPC(oxu->hcs_params))
3193 				writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3194 					  status_reg);
3195 			break;
3196 		case USB_PORT_FEAT_C_CONNECTION:
3197 			writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3198 			break;
3199 		case USB_PORT_FEAT_C_OVER_CURRENT:
3200 			writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3201 			break;
3202 		case USB_PORT_FEAT_C_RESET:
3203 			/* GetPortStatus clears reset */
3204 			break;
3205 		default:
3206 			goto error;
3207 		}
3208 		readl(&oxu->regs->command);	/* unblock posted write */
3209 		break;
3210 	case GetHubDescriptor:
3211 		ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3212 			buf);
3213 		break;
3214 	case GetHubStatus:
3215 		/* no hub-wide feature/status flags */
3216 		memset(buf, 0, 4);
3217 		break;
3218 	case GetPortStatus:
3219 		if (!wIndex || wIndex > ports)
3220 			goto error;
3221 		wIndex--;
3222 		status = 0;
3223 		temp = readl(status_reg);
3224 
3225 		/* wPortChange bits */
3226 		if (temp & PORT_CSC)
3227 			status |= USB_PORT_STAT_C_CONNECTION << 16;
3228 		if (temp & PORT_PEC)
3229 			status |= USB_PORT_STAT_C_ENABLE << 16;
3230 		if ((temp & PORT_OCC) && !ignore_oc)
3231 			status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3232 
3233 		/* whoever resumes must GetPortStatus to complete it!! */
3234 		if (temp & PORT_RESUME) {
3235 
3236 			/* Remote Wakeup received? */
3237 			if (!oxu->reset_done[wIndex]) {
3238 				/* resume signaling for 20 msec */
3239 				oxu->reset_done[wIndex] = jiffies
3240 						+ msecs_to_jiffies(20);
3241 				/* check the port again */
3242 				mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3243 						oxu->reset_done[wIndex]);
3244 			}
3245 
3246 			/* resume completed? */
3247 			else if (time_after_eq(jiffies,
3248 					oxu->reset_done[wIndex])) {
3249 				status |= USB_PORT_STAT_C_SUSPEND << 16;
3250 				oxu->reset_done[wIndex] = 0;
3251 
3252 				/* stop resume signaling */
3253 				temp = readl(status_reg);
3254 				writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3255 					status_reg);
3256 				retval = handshake(oxu, status_reg,
3257 					   PORT_RESUME, 0, 2000 /* 2msec */);
3258 				if (retval != 0) {
3259 					oxu_err(oxu,
3260 						"port %d resume error %d\n",
3261 						wIndex + 1, retval);
3262 					goto error;
3263 				}
3264 				temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3265 			}
3266 		}
3267 
3268 		/* whoever resets must GetPortStatus to complete it!! */
3269 		if ((temp & PORT_RESET)
3270 				&& time_after_eq(jiffies,
3271 					oxu->reset_done[wIndex])) {
3272 			status |= USB_PORT_STAT_C_RESET << 16;
3273 			oxu->reset_done[wIndex] = 0;
3274 
3275 			/* force reset to complete */
3276 			writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3277 					status_reg);
3278 			/* REVISIT:  some hardware needs 550+ usec to clear
3279 			 * this bit; seems too long to spin routinely...
3280 			 */
3281 			retval = handshake(oxu, status_reg,
3282 					PORT_RESET, 0, 750);
3283 			if (retval != 0) {
3284 				oxu_err(oxu, "port %d reset error %d\n",
3285 					wIndex + 1, retval);
3286 				goto error;
3287 			}
3288 
3289 			/* see what we found out */
3290 			temp = check_reset_complete(oxu, wIndex, status_reg,
3291 					readl(status_reg));
3292 		}
3293 
3294 		/* transfer dedicated ports to the companion hc */
3295 		if ((temp & PORT_CONNECT) &&
3296 				test_bit(wIndex, &oxu->companion_ports)) {
3297 			temp &= ~PORT_RWC_BITS;
3298 			temp |= PORT_OWNER;
3299 			writel(temp, status_reg);
3300 			oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3301 			temp = readl(status_reg);
3302 		}
3303 
3304 		/*
3305 		 * Even if OWNER is set, there's no harm letting hub_wq
3306 		 * see the wPortStatus values (they should all be 0 except
3307 		 * for PORT_POWER anyway).
3308 		 */
3309 
3310 		if (temp & PORT_CONNECT) {
3311 			status |= USB_PORT_STAT_CONNECTION;
3312 			/* status may be from integrated TT */
3313 			status |= oxu_port_speed(oxu, temp);
3314 		}
3315 		if (temp & PORT_PE)
3316 			status |= USB_PORT_STAT_ENABLE;
3317 		if (temp & (PORT_SUSPEND|PORT_RESUME))
3318 			status |= USB_PORT_STAT_SUSPEND;
3319 		if (temp & PORT_OC)
3320 			status |= USB_PORT_STAT_OVERCURRENT;
3321 		if (temp & PORT_RESET)
3322 			status |= USB_PORT_STAT_RESET;
3323 		if (temp & PORT_POWER)
3324 			status |= USB_PORT_STAT_POWER;
3325 
3326 #ifndef	OXU_VERBOSE_DEBUG
3327 	if (status & ~0xffff)	/* only if wPortChange is interesting */
3328 #endif
3329 		dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3330 		put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3331 		break;
3332 	case SetHubFeature:
3333 		switch (wValue) {
3334 		case C_HUB_LOCAL_POWER:
3335 		case C_HUB_OVER_CURRENT:
3336 			/* no hub-wide feature/status flags */
3337 			break;
3338 		default:
3339 			goto error;
3340 		}
3341 		break;
3342 	case SetPortFeature:
3343 		selector = wIndex >> 8;
3344 		wIndex &= 0xff;
3345 		if (!wIndex || wIndex > ports)
3346 			goto error;
3347 		wIndex--;
3348 		temp = readl(status_reg);
3349 		if (temp & PORT_OWNER)
3350 			break;
3351 
3352 		temp &= ~PORT_RWC_BITS;
3353 		switch (wValue) {
3354 		case USB_PORT_FEAT_SUSPEND:
3355 			if ((temp & PORT_PE) == 0
3356 					|| (temp & PORT_RESET) != 0)
3357 				goto error;
3358 			if (device_may_wakeup(&hcd->self.root_hub->dev))
3359 				temp |= PORT_WAKE_BITS;
3360 			writel(temp | PORT_SUSPEND, status_reg);
3361 			break;
3362 		case USB_PORT_FEAT_POWER:
3363 			if (HCS_PPC(oxu->hcs_params))
3364 				writel(temp | PORT_POWER, status_reg);
3365 			break;
3366 		case USB_PORT_FEAT_RESET:
3367 			if (temp & PORT_RESUME)
3368 				goto error;
3369 			/* line status bits may report this as low speed,
3370 			 * which can be fine if this root hub has a
3371 			 * transaction translator built in.
3372 			 */
3373 			oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3374 			temp |= PORT_RESET;
3375 			temp &= ~PORT_PE;
3376 
3377 			/*
3378 			 * caller must wait, then call GetPortStatus
3379 			 * usb 2.0 spec says 50 ms resets on root
3380 			 */
3381 			oxu->reset_done[wIndex] = jiffies
3382 					+ msecs_to_jiffies(50);
3383 			writel(temp, status_reg);
3384 			break;
3385 
3386 		/* For downstream facing ports (these):  one hub port is put
3387 		 * into test mode according to USB2 11.24.2.13, then the hub
3388 		 * must be reset (which for root hub now means rmmod+modprobe,
3389 		 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
3390 		 * about the EHCI-specific stuff.
3391 		 */
3392 		case USB_PORT_FEAT_TEST:
3393 			if (!selector || selector > 5)
3394 				goto error;
3395 			ehci_quiesce(oxu);
3396 			ehci_halt(oxu);
3397 			temp |= selector << 16;
3398 			writel(temp, status_reg);
3399 			break;
3400 
3401 		default:
3402 			goto error;
3403 		}
3404 		readl(&oxu->regs->command);	/* unblock posted writes */
3405 		break;
3406 
3407 	default:
3408 error:
3409 		/* "stall" on error */
3410 		retval = -EPIPE;
3411 	}
3412 	spin_unlock_irqrestore(&oxu->lock, flags);
3413 	return retval;
3414 }
3415 
3416 #ifdef CONFIG_PM
3417 
3418 static int oxu_bus_suspend(struct usb_hcd *hcd)
3419 {
3420 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3421 	int port;
3422 	int mask;
3423 
3424 	oxu_dbg(oxu, "suspend root hub\n");
3425 
3426 	if (time_before(jiffies, oxu->next_statechange))
3427 		msleep(5);
3428 
3429 	port = HCS_N_PORTS(oxu->hcs_params);
3430 	spin_lock_irq(&oxu->lock);
3431 
3432 	/* stop schedules, clean any completed work */
3433 	if (HC_IS_RUNNING(hcd->state)) {
3434 		ehci_quiesce(oxu);
3435 		hcd->state = HC_STATE_QUIESCING;
3436 	}
3437 	oxu->command = readl(&oxu->regs->command);
3438 	if (oxu->reclaim)
3439 		oxu->reclaim_ready = 1;
3440 	ehci_work(oxu);
3441 
3442 	/* Unlike other USB host controller types, EHCI doesn't have
3443 	 * any notion of "global" or bus-wide suspend.  The driver has
3444 	 * to manually suspend all the active unsuspended ports, and
3445 	 * then manually resume them in the bus_resume() routine.
3446 	 */
3447 	oxu->bus_suspended = 0;
3448 	while (port--) {
3449 		u32 __iomem *reg = &oxu->regs->port_status[port];
3450 		u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3451 		u32 t2 = t1;
3452 
3453 		/* keep track of which ports we suspend */
3454 		if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3455 				!(t1 & PORT_SUSPEND)) {
3456 			t2 |= PORT_SUSPEND;
3457 			set_bit(port, &oxu->bus_suspended);
3458 		}
3459 
3460 		/* enable remote wakeup on all ports */
3461 		if (device_may_wakeup(&hcd->self.root_hub->dev))
3462 			t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3463 		else
3464 			t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3465 
3466 		if (t1 != t2) {
3467 			oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3468 				port + 1, t1, t2);
3469 			writel(t2, reg);
3470 		}
3471 	}
3472 
3473 	/* turn off now-idle HC */
3474 	del_timer_sync(&oxu->watchdog);
3475 	ehci_halt(oxu);
3476 	hcd->state = HC_STATE_SUSPENDED;
3477 
3478 	/* allow remote wakeup */
3479 	mask = INTR_MASK;
3480 	if (!device_may_wakeup(&hcd->self.root_hub->dev))
3481 		mask &= ~STS_PCD;
3482 	writel(mask, &oxu->regs->intr_enable);
3483 	readl(&oxu->regs->intr_enable);
3484 
3485 	oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3486 	spin_unlock_irq(&oxu->lock);
3487 	return 0;
3488 }
3489 
3490 /* Caller has locked the root hub, and should reset/reinit on error */
3491 static int oxu_bus_resume(struct usb_hcd *hcd)
3492 {
3493 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3494 	u32 temp;
3495 	int i;
3496 
3497 	if (time_before(jiffies, oxu->next_statechange))
3498 		msleep(5);
3499 	spin_lock_irq(&oxu->lock);
3500 
3501 	/* Ideally and we've got a real resume here, and no port's power
3502 	 * was lost.  (For PCI, that means Vaux was maintained.)  But we
3503 	 * could instead be restoring a swsusp snapshot -- so that BIOS was
3504 	 * the last user of the controller, not reset/pm hardware keeping
3505 	 * state we gave to it.
3506 	 */
3507 	temp = readl(&oxu->regs->intr_enable);
3508 	oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3509 
3510 	/* at least some APM implementations will try to deliver
3511 	 * IRQs right away, so delay them until we're ready.
3512 	 */
3513 	writel(0, &oxu->regs->intr_enable);
3514 
3515 	/* re-init operational registers */
3516 	writel(0, &oxu->regs->segment);
3517 	writel(oxu->periodic_dma, &oxu->regs->frame_list);
3518 	writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3519 
3520 	/* restore CMD_RUN, framelist size, and irq threshold */
3521 	writel(oxu->command, &oxu->regs->command);
3522 
3523 	/* Some controller/firmware combinations need a delay during which
3524 	 * they set up the port statuses.  See Bugzilla #8190. */
3525 	mdelay(8);
3526 
3527 	/* manually resume the ports we suspended during bus_suspend() */
3528 	i = HCS_N_PORTS(oxu->hcs_params);
3529 	while (i--) {
3530 		temp = readl(&oxu->regs->port_status[i]);
3531 		temp &= ~(PORT_RWC_BITS
3532 			| PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3533 		if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3534 			oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3535 			temp |= PORT_RESUME;
3536 		}
3537 		writel(temp, &oxu->regs->port_status[i]);
3538 	}
3539 	i = HCS_N_PORTS(oxu->hcs_params);
3540 	mdelay(20);
3541 	while (i--) {
3542 		temp = readl(&oxu->regs->port_status[i]);
3543 		if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3544 			temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3545 			writel(temp, &oxu->regs->port_status[i]);
3546 			oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3547 		}
3548 	}
3549 	(void) readl(&oxu->regs->command);
3550 
3551 	/* maybe re-activate the schedule(s) */
3552 	temp = 0;
3553 	if (oxu->async->qh_next.qh)
3554 		temp |= CMD_ASE;
3555 	if (oxu->periodic_sched)
3556 		temp |= CMD_PSE;
3557 	if (temp) {
3558 		oxu->command |= temp;
3559 		writel(oxu->command, &oxu->regs->command);
3560 	}
3561 
3562 	oxu->next_statechange = jiffies + msecs_to_jiffies(5);
3563 	hcd->state = HC_STATE_RUNNING;
3564 
3565 	/* Now we can safely re-enable irqs */
3566 	writel(INTR_MASK, &oxu->regs->intr_enable);
3567 
3568 	spin_unlock_irq(&oxu->lock);
3569 	return 0;
3570 }
3571 
3572 #else
3573 
3574 static int oxu_bus_suspend(struct usb_hcd *hcd)
3575 {
3576 	return 0;
3577 }
3578 
3579 static int oxu_bus_resume(struct usb_hcd *hcd)
3580 {
3581 	return 0;
3582 }
3583 
3584 #endif	/* CONFIG_PM */
3585 
3586 static const struct hc_driver oxu_hc_driver = {
3587 	.description =		"oxu210hp_hcd",
3588 	.product_desc =		"oxu210hp HCD",
3589 	.hcd_priv_size =	sizeof(struct oxu_hcd),
3590 
3591 	/*
3592 	 * Generic hardware linkage
3593 	 */
3594 	.irq =			oxu_irq,
3595 	.flags =		HCD_MEMORY | HCD_USB2,
3596 
3597 	/*
3598 	 * Basic lifecycle operations
3599 	 */
3600 	.reset =		oxu_reset,
3601 	.start =		oxu_run,
3602 	.stop =			oxu_stop,
3603 	.shutdown =		oxu_shutdown,
3604 
3605 	/*
3606 	 * Managing i/o requests and associated device resources
3607 	 */
3608 	.urb_enqueue =		oxu_urb_enqueue,
3609 	.urb_dequeue =		oxu_urb_dequeue,
3610 	.endpoint_disable =	oxu_endpoint_disable,
3611 
3612 	/*
3613 	 * Scheduling support
3614 	 */
3615 	.get_frame_number =	oxu_get_frame,
3616 
3617 	/*
3618 	 * Root hub support
3619 	 */
3620 	.hub_status_data =	oxu_hub_status_data,
3621 	.hub_control =		oxu_hub_control,
3622 	.bus_suspend =		oxu_bus_suspend,
3623 	.bus_resume =		oxu_bus_resume,
3624 };
3625 
3626 /*
3627  * Module stuff
3628  */
3629 
3630 static void oxu_configuration(struct platform_device *pdev, void *base)
3631 {
3632 	u32 tmp;
3633 
3634 	/* Initialize top level registers.
3635 	 * First write ever
3636 	 */
3637 	oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
3638 	oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
3639 	oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
3640 
3641 	tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
3642 	oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
3643 
3644 	oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
3645 					OXU_COMPARATOR | OXU_ASO_OP);
3646 
3647 	tmp = oxu_readl(base, OXU_CLKCTRL_SET);
3648 	oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
3649 
3650 	/* Clear all top interrupt enable */
3651 	oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
3652 
3653 	/* Clear all top interrupt status */
3654 	oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
3655 
3656 	/* Enable all needed top interrupt except OTG SPH core */
3657 	oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
3658 }
3659 
3660 static int oxu_verify_id(struct platform_device *pdev, void *base)
3661 {
3662 	u32 id;
3663 	static const char * const bo[] = {
3664 		"reserved",
3665 		"128-pin LQFP",
3666 		"84-pin TFBGA",
3667 		"reserved",
3668 	};
3669 
3670 	/* Read controller signature register to find a match */
3671 	id = oxu_readl(base, OXU_DEVICEID);
3672 	dev_info(&pdev->dev, "device ID %x\n", id);
3673 	if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
3674 		return -1;
3675 
3676 	dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
3677 		id >> OXU_REV_SHIFT,
3678 		bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
3679 		(id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
3680 		(id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
3681 
3682 	return 0;
3683 }
3684 
3685 static const struct hc_driver oxu_hc_driver;
3686 static struct usb_hcd *oxu_create(struct platform_device *pdev,
3687 				unsigned long memstart, unsigned long memlen,
3688 				void *base, int irq, int otg)
3689 {
3690 	struct device *dev = &pdev->dev;
3691 
3692 	struct usb_hcd *hcd;
3693 	struct oxu_hcd *oxu;
3694 	int ret;
3695 
3696 	/* Set endian mode and host mode */
3697 	oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
3698 				OXU_USBMODE,
3699 				OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
3700 
3701 	hcd = usb_create_hcd(&oxu_hc_driver, dev,
3702 				otg ? "oxu210hp_otg" : "oxu210hp_sph");
3703 	if (!hcd)
3704 		return ERR_PTR(-ENOMEM);
3705 
3706 	hcd->rsrc_start = memstart;
3707 	hcd->rsrc_len = memlen;
3708 	hcd->regs = base;
3709 	hcd->irq = irq;
3710 	hcd->state = HC_STATE_HALT;
3711 
3712 	oxu = hcd_to_oxu(hcd);
3713 	oxu->is_otg = otg;
3714 
3715 	ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
3716 	if (ret < 0)
3717 		return ERR_PTR(ret);
3718 
3719 	device_wakeup_enable(hcd->self.controller);
3720 	return hcd;
3721 }
3722 
3723 static int oxu_init(struct platform_device *pdev,
3724 				unsigned long memstart, unsigned long memlen,
3725 				void *base, int irq)
3726 {
3727 	struct oxu_info *info = platform_get_drvdata(pdev);
3728 	struct usb_hcd *hcd;
3729 	int ret;
3730 
3731 	/* First time configuration at start up */
3732 	oxu_configuration(pdev, base);
3733 
3734 	ret = oxu_verify_id(pdev, base);
3735 	if (ret) {
3736 		dev_err(&pdev->dev, "no devices found!\n");
3737 		return -ENODEV;
3738 	}
3739 
3740 	/* Create the OTG controller */
3741 	hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
3742 	if (IS_ERR(hcd)) {
3743 		dev_err(&pdev->dev, "cannot create OTG controller!\n");
3744 		ret = PTR_ERR(hcd);
3745 		goto error_create_otg;
3746 	}
3747 	info->hcd[0] = hcd;
3748 
3749 	/* Create the SPH host controller */
3750 	hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
3751 	if (IS_ERR(hcd)) {
3752 		dev_err(&pdev->dev, "cannot create SPH controller!\n");
3753 		ret = PTR_ERR(hcd);
3754 		goto error_create_sph;
3755 	}
3756 	info->hcd[1] = hcd;
3757 
3758 	oxu_writel(base, OXU_CHIPIRQEN_SET,
3759 		oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
3760 
3761 	return 0;
3762 
3763 error_create_sph:
3764 	usb_remove_hcd(info->hcd[0]);
3765 	usb_put_hcd(info->hcd[0]);
3766 
3767 error_create_otg:
3768 	return ret;
3769 }
3770 
3771 static int oxu_drv_probe(struct platform_device *pdev)
3772 {
3773 	struct resource *res;
3774 	void *base;
3775 	unsigned long memstart, memlen;
3776 	int irq, ret;
3777 	struct oxu_info *info;
3778 
3779 	if (usb_disabled())
3780 		return -ENODEV;
3781 
3782 	/*
3783 	 * Get the platform resources
3784 	 */
3785 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
3786 	if (!res) {
3787 		dev_err(&pdev->dev,
3788 			"no IRQ! Check %s setup!\n", dev_name(&pdev->dev));
3789 		return -ENODEV;
3790 	}
3791 	irq = res->start;
3792 	dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
3793 
3794 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3795 	base = devm_ioremap_resource(&pdev->dev, res);
3796 	if (IS_ERR(base)) {
3797 		ret = PTR_ERR(base);
3798 		goto error;
3799 	}
3800 	memstart = res->start;
3801 	memlen = resource_size(res);
3802 
3803 	ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING);
3804 	if (ret) {
3805 		dev_err(&pdev->dev, "error setting irq type\n");
3806 		ret = -EFAULT;
3807 		goto error;
3808 	}
3809 
3810 	/* Allocate a driver data struct to hold useful info for both
3811 	 * SPH & OTG devices
3812 	 */
3813 	info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL);
3814 	if (!info) {
3815 		ret = -EFAULT;
3816 		goto error;
3817 	}
3818 	platform_set_drvdata(pdev, info);
3819 
3820 	ret = oxu_init(pdev, memstart, memlen, base, irq);
3821 	if (ret < 0) {
3822 		dev_dbg(&pdev->dev, "cannot init USB devices\n");
3823 		goto error;
3824 	}
3825 
3826 	dev_info(&pdev->dev, "devices enabled and running\n");
3827 	platform_set_drvdata(pdev, info);
3828 
3829 	return 0;
3830 
3831 error:
3832 	dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
3833 	return ret;
3834 }
3835 
3836 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
3837 {
3838 	usb_remove_hcd(hcd);
3839 	usb_put_hcd(hcd);
3840 }
3841 
3842 static int oxu_drv_remove(struct platform_device *pdev)
3843 {
3844 	struct oxu_info *info = platform_get_drvdata(pdev);
3845 
3846 	oxu_remove(pdev, info->hcd[0]);
3847 	oxu_remove(pdev, info->hcd[1]);
3848 
3849 	return 0;
3850 }
3851 
3852 static void oxu_drv_shutdown(struct platform_device *pdev)
3853 {
3854 	oxu_drv_remove(pdev);
3855 }
3856 
3857 #if 0
3858 /* FIXME: TODO */
3859 static int oxu_drv_suspend(struct device *dev)
3860 {
3861 	struct platform_device *pdev = to_platform_device(dev);
3862 	struct usb_hcd *hcd = dev_get_drvdata(dev);
3863 
3864 	return 0;
3865 }
3866 
3867 static int oxu_drv_resume(struct device *dev)
3868 {
3869 	struct platform_device *pdev = to_platform_device(dev);
3870 	struct usb_hcd *hcd = dev_get_drvdata(dev);
3871 
3872 	return 0;
3873 }
3874 #else
3875 #define oxu_drv_suspend	NULL
3876 #define oxu_drv_resume	NULL
3877 #endif
3878 
3879 static struct platform_driver oxu_driver = {
3880 	.probe		= oxu_drv_probe,
3881 	.remove		= oxu_drv_remove,
3882 	.shutdown	= oxu_drv_shutdown,
3883 	.suspend	= oxu_drv_suspend,
3884 	.resume		= oxu_drv_resume,
3885 	.driver = {
3886 		.name = "oxu210hp-hcd",
3887 		.bus = &platform_bus_type
3888 	}
3889 };
3890 
3891 module_platform_driver(oxu_driver);
3892 
3893 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
3894 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
3895 MODULE_LICENSE("GPL");
3896