1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
4 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
5 *
6 * This code is *strongly* based on EHCI-HCD code by David Brownell since
7 * the chip is a quasi-EHCI compatible.
8 */
9
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/dmapool.h>
13 #include <linux/kernel.h>
14 #include <linux/delay.h>
15 #include <linux/ioport.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/timer.h>
20 #include <linux/list.h>
21 #include <linux/interrupt.h>
22 #include <linux/usb.h>
23 #include <linux/usb/hcd.h>
24 #include <linux/moduleparam.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/io.h>
27 #include <linux/iopoll.h>
28
29 #include <asm/irq.h>
30 #include <asm/unaligned.h>
31
32 #include <linux/irq.h>
33 #include <linux/platform_device.h>
34
35 #define DRIVER_VERSION "0.0.50"
36
37 #define OXU_DEVICEID 0x00
38 #define OXU_REV_MASK 0xffff0000
39 #define OXU_REV_SHIFT 16
40 #define OXU_REV_2100 0x2100
41 #define OXU_BO_SHIFT 8
42 #define OXU_BO_MASK (0x3 << OXU_BO_SHIFT)
43 #define OXU_MAJ_REV_SHIFT 4
44 #define OXU_MAJ_REV_MASK (0xf << OXU_MAJ_REV_SHIFT)
45 #define OXU_MIN_REV_SHIFT 0
46 #define OXU_MIN_REV_MASK (0xf << OXU_MIN_REV_SHIFT)
47 #define OXU_HOSTIFCONFIG 0x04
48 #define OXU_SOFTRESET 0x08
49 #define OXU_SRESET (1 << 0)
50
51 #define OXU_PIOBURSTREADCTRL 0x0C
52
53 #define OXU_CHIPIRQSTATUS 0x10
54 #define OXU_CHIPIRQEN_SET 0x14
55 #define OXU_CHIPIRQEN_CLR 0x18
56 #define OXU_USBSPHLPWUI 0x00000080
57 #define OXU_USBOTGLPWUI 0x00000040
58 #define OXU_USBSPHI 0x00000002
59 #define OXU_USBOTGI 0x00000001
60
61 #define OXU_CLKCTRL_SET 0x1C
62 #define OXU_SYSCLKEN 0x00000008
63 #define OXU_USBSPHCLKEN 0x00000002
64 #define OXU_USBOTGCLKEN 0x00000001
65
66 #define OXU_ASO 0x68
67 #define OXU_SPHPOEN 0x00000100
68 #define OXU_OVRCCURPUPDEN 0x00000800
69 #define OXU_ASO_OP (1 << 10)
70 #define OXU_COMPARATOR 0x000004000
71
72 #define OXU_USBMODE 0x1A8
73 #define OXU_VBPS 0x00000020
74 #define OXU_ES_LITTLE 0x00000000
75 #define OXU_CM_HOST_ONLY 0x00000003
76
77 /*
78 * Proper EHCI structs & defines
79 */
80
81 /* Magic numbers that can affect system performance */
82 #define EHCI_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
83 #define EHCI_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
84 #define EHCI_TUNE_RL_TT 0
85 #define EHCI_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
86 #define EHCI_TUNE_MULT_TT 1
87 #define EHCI_TUNE_FLS 2 /* (small) 256 frame schedule */
88
89 struct oxu_hcd;
90
91 /* EHCI register interface, corresponds to EHCI Revision 0.95 specification */
92
93 /* Section 2.2 Host Controller Capability Registers */
94 struct ehci_caps {
95 /* these fields are specified as 8 and 16 bit registers,
96 * but some hosts can't perform 8 or 16 bit PCI accesses.
97 */
98 u32 hc_capbase;
99 #define HC_LENGTH(p) (((p)>>00)&0x00ff) /* bits 7:0 */
100 #define HC_VERSION(p) (((p)>>16)&0xffff) /* bits 31:16 */
101 u32 hcs_params; /* HCSPARAMS - offset 0x4 */
102 #define HCS_DEBUG_PORT(p) (((p)>>20)&0xf) /* bits 23:20, debug port? */
103 #define HCS_INDICATOR(p) ((p)&(1 << 16)) /* true: has port indicators */
104 #define HCS_N_CC(p) (((p)>>12)&0xf) /* bits 15:12, #companion HCs */
105 #define HCS_N_PCC(p) (((p)>>8)&0xf) /* bits 11:8, ports per CC */
106 #define HCS_PORTROUTED(p) ((p)&(1 << 7)) /* true: port routing */
107 #define HCS_PPC(p) ((p)&(1 << 4)) /* true: port power control */
108 #define HCS_N_PORTS(p) (((p)>>0)&0xf) /* bits 3:0, ports on HC */
109
110 u32 hcc_params; /* HCCPARAMS - offset 0x8 */
111 #define HCC_EXT_CAPS(p) (((p)>>8)&0xff) /* for pci extended caps */
112 #define HCC_ISOC_CACHE(p) ((p)&(1 << 7)) /* true: can cache isoc frame */
113 #define HCC_ISOC_THRES(p) (((p)>>4)&0x7) /* bits 6:4, uframes cached */
114 #define HCC_CANPARK(p) ((p)&(1 << 2)) /* true: can park on async qh */
115 #define HCC_PGM_FRAMELISTLEN(p) ((p)&(1 << 1)) /* true: periodic_size changes*/
116 #define HCC_64BIT_ADDR(p) ((p)&(1)) /* true: can use 64-bit addr */
117 u8 portroute[8]; /* nibbles for routing - offset 0xC */
118 } __packed;
119
120
121 /* Section 2.3 Host Controller Operational Registers */
122 struct ehci_regs {
123 /* USBCMD: offset 0x00 */
124 u32 command;
125 /* 23:16 is r/w intr rate, in microframes; default "8" == 1/msec */
126 #define CMD_PARK (1<<11) /* enable "park" on async qh */
127 #define CMD_PARK_CNT(c) (((c)>>8)&3) /* how many transfers to park for */
128 #define CMD_LRESET (1<<7) /* partial reset (no ports, etc) */
129 #define CMD_IAAD (1<<6) /* "doorbell" interrupt async advance */
130 #define CMD_ASE (1<<5) /* async schedule enable */
131 #define CMD_PSE (1<<4) /* periodic schedule enable */
132 /* 3:2 is periodic frame list size */
133 #define CMD_RESET (1<<1) /* reset HC not bus */
134 #define CMD_RUN (1<<0) /* start/stop HC */
135
136 /* USBSTS: offset 0x04 */
137 u32 status;
138 #define STS_ASS (1<<15) /* Async Schedule Status */
139 #define STS_PSS (1<<14) /* Periodic Schedule Status */
140 #define STS_RECL (1<<13) /* Reclamation */
141 #define STS_HALT (1<<12) /* Not running (any reason) */
142 /* some bits reserved */
143 /* these STS_* flags are also intr_enable bits (USBINTR) */
144 #define STS_IAA (1<<5) /* Interrupted on async advance */
145 #define STS_FATAL (1<<4) /* such as some PCI access errors */
146 #define STS_FLR (1<<3) /* frame list rolled over */
147 #define STS_PCD (1<<2) /* port change detect */
148 #define STS_ERR (1<<1) /* "error" completion (overflow, ...) */
149 #define STS_INT (1<<0) /* "normal" completion (short, ...) */
150
151 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
152
153 /* USBINTR: offset 0x08 */
154 u32 intr_enable;
155
156 /* FRINDEX: offset 0x0C */
157 u32 frame_index; /* current microframe number */
158 /* CTRLDSSEGMENT: offset 0x10 */
159 u32 segment; /* address bits 63:32 if needed */
160 /* PERIODICLISTBASE: offset 0x14 */
161 u32 frame_list; /* points to periodic list */
162 /* ASYNCLISTADDR: offset 0x18 */
163 u32 async_next; /* address of next async queue head */
164
165 u32 reserved[9];
166
167 /* CONFIGFLAG: offset 0x40 */
168 u32 configured_flag;
169 #define FLAG_CF (1<<0) /* true: we'll support "high speed" */
170
171 /* PORTSC: offset 0x44 */
172 u32 port_status[]; /* up to N_PORTS */
173 /* 31:23 reserved */
174 #define PORT_WKOC_E (1<<22) /* wake on overcurrent (enable) */
175 #define PORT_WKDISC_E (1<<21) /* wake on disconnect (enable) */
176 #define PORT_WKCONN_E (1<<20) /* wake on connect (enable) */
177 /* 19:16 for port testing */
178 #define PORT_LED_OFF (0<<14)
179 #define PORT_LED_AMBER (1<<14)
180 #define PORT_LED_GREEN (2<<14)
181 #define PORT_LED_MASK (3<<14)
182 #define PORT_OWNER (1<<13) /* true: companion hc owns this port */
183 #define PORT_POWER (1<<12) /* true: has power (see PPC) */
184 #define PORT_USB11(x) (((x)&(3<<10)) == (1<<10)) /* USB 1.1 device */
185 /* 11:10 for detecting lowspeed devices (reset vs release ownership) */
186 /* 9 reserved */
187 #define PORT_RESET (1<<8) /* reset port */
188 #define PORT_SUSPEND (1<<7) /* suspend port */
189 #define PORT_RESUME (1<<6) /* resume it */
190 #define PORT_OCC (1<<5) /* over current change */
191 #define PORT_OC (1<<4) /* over current active */
192 #define PORT_PEC (1<<3) /* port enable change */
193 #define PORT_PE (1<<2) /* port enable */
194 #define PORT_CSC (1<<1) /* connect status change */
195 #define PORT_CONNECT (1<<0) /* device connected */
196 #define PORT_RWC_BITS (PORT_CSC | PORT_PEC | PORT_OCC)
197 } __packed;
198
199 /* Appendix C, Debug port ... intended for use with special "debug devices"
200 * that can help if there's no serial console. (nonstandard enumeration.)
201 */
202 struct ehci_dbg_port {
203 u32 control;
204 #define DBGP_OWNER (1<<30)
205 #define DBGP_ENABLED (1<<28)
206 #define DBGP_DONE (1<<16)
207 #define DBGP_INUSE (1<<10)
208 #define DBGP_ERRCODE(x) (((x)>>7)&0x07)
209 # define DBGP_ERR_BAD 1
210 # define DBGP_ERR_SIGNAL 2
211 #define DBGP_ERROR (1<<6)
212 #define DBGP_GO (1<<5)
213 #define DBGP_OUT (1<<4)
214 #define DBGP_LEN(x) (((x)>>0)&0x0f)
215 u32 pids;
216 #define DBGP_PID_GET(x) (((x)>>16)&0xff)
217 #define DBGP_PID_SET(data, tok) (((data)<<8)|(tok))
218 u32 data03;
219 u32 data47;
220 u32 address;
221 #define DBGP_EPADDR(dev, ep) (((dev)<<8)|(ep))
222 } __packed;
223
224 #define QTD_NEXT(dma) cpu_to_le32((u32)dma)
225
226 /*
227 * EHCI Specification 0.95 Section 3.5
228 * QTD: describe data transfer components (buffer, direction, ...)
229 * See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram".
230 *
231 * These are associated only with "QH" (Queue Head) structures,
232 * used with control, bulk, and interrupt transfers.
233 */
234 struct ehci_qtd {
235 /* first part defined by EHCI spec */
236 __le32 hw_next; /* see EHCI 3.5.1 */
237 __le32 hw_alt_next; /* see EHCI 3.5.2 */
238 __le32 hw_token; /* see EHCI 3.5.3 */
239 #define QTD_TOGGLE (1 << 31) /* data toggle */
240 #define QTD_LENGTH(tok) (((tok)>>16) & 0x7fff)
241 #define QTD_IOC (1 << 15) /* interrupt on complete */
242 #define QTD_CERR(tok) (((tok)>>10) & 0x3)
243 #define QTD_PID(tok) (((tok)>>8) & 0x3)
244 #define QTD_STS_ACTIVE (1 << 7) /* HC may execute this */
245 #define QTD_STS_HALT (1 << 6) /* halted on error */
246 #define QTD_STS_DBE (1 << 5) /* data buffer error (in HC) */
247 #define QTD_STS_BABBLE (1 << 4) /* device was babbling (qtd halted) */
248 #define QTD_STS_XACT (1 << 3) /* device gave illegal response */
249 #define QTD_STS_MMF (1 << 2) /* incomplete split transaction */
250 #define QTD_STS_STS (1 << 1) /* split transaction state */
251 #define QTD_STS_PING (1 << 0) /* issue PING? */
252 __le32 hw_buf[5]; /* see EHCI 3.5.4 */
253 __le32 hw_buf_hi[5]; /* Appendix B */
254
255 /* the rest is HCD-private */
256 dma_addr_t qtd_dma; /* qtd address */
257 struct list_head qtd_list; /* sw qtd list */
258 struct urb *urb; /* qtd's urb */
259 size_t length; /* length of buffer */
260
261 u32 qtd_buffer_len;
262 void *buffer;
263 dma_addr_t buffer_dma;
264 void *transfer_buffer;
265 void *transfer_dma;
266 } __aligned(32);
267
268 /* mask NakCnt+T in qh->hw_alt_next */
269 #define QTD_MASK cpu_to_le32 (~0x1f)
270
271 #define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1)
272
273 /* Type tag from {qh, itd, sitd, fstn}->hw_next */
274 #define Q_NEXT_TYPE(dma) ((dma) & cpu_to_le32 (3 << 1))
275
276 /* values for that type tag */
277 #define Q_TYPE_QH cpu_to_le32 (1 << 1)
278
279 /* next async queue entry, or pointer to interrupt/periodic QH */
280 #define QH_NEXT(dma) (cpu_to_le32(((u32)dma)&~0x01f)|Q_TYPE_QH)
281
282 /* for periodic/async schedules and qtd lists, mark end of list */
283 #define EHCI_LIST_END cpu_to_le32(1) /* "null pointer" to hw */
284
285 /*
286 * Entries in periodic shadow table are pointers to one of four kinds
287 * of data structure. That's dictated by the hardware; a type tag is
288 * encoded in the low bits of the hardware's periodic schedule. Use
289 * Q_NEXT_TYPE to get the tag.
290 *
291 * For entries in the async schedule, the type tag always says "qh".
292 */
293 union ehci_shadow {
294 struct ehci_qh *qh; /* Q_TYPE_QH */
295 __le32 *hw_next; /* (all types) */
296 void *ptr;
297 };
298
299 /*
300 * EHCI Specification 0.95 Section 3.6
301 * QH: describes control/bulk/interrupt endpoints
302 * See Fig 3-7 "Queue Head Structure Layout".
303 *
304 * These appear in both the async and (for interrupt) periodic schedules.
305 */
306
307 struct ehci_qh {
308 /* first part defined by EHCI spec */
309 __le32 hw_next; /* see EHCI 3.6.1 */
310 __le32 hw_info1; /* see EHCI 3.6.2 */
311 #define QH_HEAD 0x00008000
312 __le32 hw_info2; /* see EHCI 3.6.2 */
313 #define QH_SMASK 0x000000ff
314 #define QH_CMASK 0x0000ff00
315 #define QH_HUBADDR 0x007f0000
316 #define QH_HUBPORT 0x3f800000
317 #define QH_MULT 0xc0000000
318 __le32 hw_current; /* qtd list - see EHCI 3.6.4 */
319
320 /* qtd overlay (hardware parts of a struct ehci_qtd) */
321 __le32 hw_qtd_next;
322 __le32 hw_alt_next;
323 __le32 hw_token;
324 __le32 hw_buf[5];
325 __le32 hw_buf_hi[5];
326
327 /* the rest is HCD-private */
328 dma_addr_t qh_dma; /* address of qh */
329 union ehci_shadow qh_next; /* ptr to qh; or periodic */
330 struct list_head qtd_list; /* sw qtd list */
331 struct ehci_qtd *dummy;
332 struct ehci_qh *reclaim; /* next to reclaim */
333
334 struct oxu_hcd *oxu;
335 struct kref kref;
336 unsigned int stamp;
337
338 u8 qh_state;
339 #define QH_STATE_LINKED 1 /* HC sees this */
340 #define QH_STATE_UNLINK 2 /* HC may still see this */
341 #define QH_STATE_IDLE 3 /* HC doesn't see this */
342 #define QH_STATE_UNLINK_WAIT 4 /* LINKED and on reclaim q */
343 #define QH_STATE_COMPLETING 5 /* don't touch token.HALT */
344
345 /* periodic schedule info */
346 u8 usecs; /* intr bandwidth */
347 u8 gap_uf; /* uframes split/csplit gap */
348 u8 c_usecs; /* ... split completion bw */
349 u16 tt_usecs; /* tt downstream bandwidth */
350 unsigned short period; /* polling interval */
351 unsigned short start; /* where polling starts */
352 #define NO_FRAME ((unsigned short)~0) /* pick new start */
353 struct usb_device *dev; /* access to TT */
354 } __aligned(32);
355
356 /*
357 * Proper OXU210HP structs
358 */
359
360 #define OXU_OTG_CORE_OFFSET 0x00400
361 #define OXU_OTG_CAP_OFFSET (OXU_OTG_CORE_OFFSET + 0x100)
362 #define OXU_SPH_CORE_OFFSET 0x00800
363 #define OXU_SPH_CAP_OFFSET (OXU_SPH_CORE_OFFSET + 0x100)
364
365 #define OXU_OTG_MEM 0xE000
366 #define OXU_SPH_MEM 0x16000
367
368 /* Only how many elements & element structure are specifies here. */
369 /* 2 host controllers are enabled - total size <= 28 kbytes */
370 #define DEFAULT_I_TDPS 1024
371 #define QHEAD_NUM 16
372 #define QTD_NUM 32
373 #define SITD_NUM 8
374 #define MURB_NUM 8
375
376 #define BUFFER_NUM 8
377 #define BUFFER_SIZE 512
378
379 struct oxu_info {
380 struct usb_hcd *hcd[2];
381 };
382
383 struct oxu_buf {
384 u8 buffer[BUFFER_SIZE];
385 } __aligned(BUFFER_SIZE);
386
387 struct oxu_onchip_mem {
388 struct oxu_buf db_pool[BUFFER_NUM];
389
390 u32 frame_list[DEFAULT_I_TDPS];
391 struct ehci_qh qh_pool[QHEAD_NUM];
392 struct ehci_qtd qtd_pool[QTD_NUM];
393 } __aligned(4 << 10);
394
395 #define EHCI_MAX_ROOT_PORTS 15 /* see HCS_N_PORTS */
396
397 struct oxu_murb {
398 struct urb urb;
399 struct urb *main;
400 u8 last;
401 };
402
403 struct oxu_hcd { /* one per controller */
404 unsigned int is_otg:1;
405
406 u8 qh_used[QHEAD_NUM];
407 u8 qtd_used[QTD_NUM];
408 u8 db_used[BUFFER_NUM];
409 u8 murb_used[MURB_NUM];
410
411 struct oxu_onchip_mem __iomem *mem;
412 spinlock_t mem_lock;
413
414 struct timer_list urb_timer;
415
416 struct ehci_caps __iomem *caps;
417 struct ehci_regs __iomem *regs;
418
419 u32 hcs_params; /* cached register copy */
420 spinlock_t lock;
421
422 /* async schedule support */
423 struct ehci_qh *async;
424 struct ehci_qh *reclaim;
425 unsigned int reclaim_ready:1;
426 unsigned int scanning:1;
427
428 /* periodic schedule support */
429 unsigned int periodic_size;
430 __le32 *periodic; /* hw periodic table */
431 dma_addr_t periodic_dma;
432 unsigned int i_thresh; /* uframes HC might cache */
433
434 union ehci_shadow *pshadow; /* mirror hw periodic table */
435 int next_uframe; /* scan periodic, start here */
436 unsigned int periodic_sched; /* periodic activity count */
437
438 /* per root hub port */
439 unsigned long reset_done[EHCI_MAX_ROOT_PORTS];
440 /* bit vectors (one bit per port) */
441 unsigned long bus_suspended; /* which ports were
442 * already suspended at the
443 * start of a bus suspend
444 */
445 unsigned long companion_ports;/* which ports are dedicated
446 * to the companion controller
447 */
448
449 struct timer_list watchdog;
450 unsigned long actions;
451 unsigned int stamp;
452 unsigned long next_statechange;
453 u32 command;
454
455 /* SILICON QUIRKS */
456 struct list_head urb_list; /* this is the head to urb
457 * queue that didn't get enough
458 * resources
459 */
460 struct oxu_murb *murb_pool; /* murb per split big urb */
461 unsigned int urb_len;
462
463 u8 sbrn; /* packed release number */
464 };
465
466 #define EHCI_IAA_JIFFIES (HZ/100) /* arbitrary; ~10 msec */
467 #define EHCI_IO_JIFFIES (HZ/10) /* io watchdog > irq_thresh */
468 #define EHCI_ASYNC_JIFFIES (HZ/20) /* async idle timeout */
469 #define EHCI_SHRINK_JIFFIES (HZ/200) /* async qh unlink delay */
470
471 enum ehci_timer_action {
472 TIMER_IO_WATCHDOG,
473 TIMER_IAA_WATCHDOG,
474 TIMER_ASYNC_SHRINK,
475 TIMER_ASYNC_OFF,
476 };
477
478 /*
479 * Main defines
480 */
481
482 #define oxu_dbg(oxu, fmt, args...) \
483 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
484 #define oxu_err(oxu, fmt, args...) \
485 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
486 #define oxu_info(oxu, fmt, args...) \
487 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
488
489 #ifdef CONFIG_DYNAMIC_DEBUG
490 #define DEBUG
491 #endif
492
oxu_to_hcd(struct oxu_hcd * oxu)493 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
494 {
495 return container_of((void *) oxu, struct usb_hcd, hcd_priv);
496 }
497
hcd_to_oxu(struct usb_hcd * hcd)498 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
499 {
500 return (struct oxu_hcd *) (hcd->hcd_priv);
501 }
502
503 /*
504 * Debug stuff
505 */
506
507 #undef OXU_URB_TRACE
508 #undef OXU_VERBOSE_DEBUG
509
510 #ifdef OXU_VERBOSE_DEBUG
511 #define oxu_vdbg oxu_dbg
512 #else
513 #define oxu_vdbg(oxu, fmt, args...) /* Nop */
514 #endif
515
516 #ifdef DEBUG
517
518 static int __attribute__((__unused__))
dbg_status_buf(char * buf,unsigned len,const char * label,u32 status)519 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
520 {
521 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
522 label, label[0] ? " " : "", status,
523 (status & STS_ASS) ? " Async" : "",
524 (status & STS_PSS) ? " Periodic" : "",
525 (status & STS_RECL) ? " Recl" : "",
526 (status & STS_HALT) ? " Halt" : "",
527 (status & STS_IAA) ? " IAA" : "",
528 (status & STS_FATAL) ? " FATAL" : "",
529 (status & STS_FLR) ? " FLR" : "",
530 (status & STS_PCD) ? " PCD" : "",
531 (status & STS_ERR) ? " ERR" : "",
532 (status & STS_INT) ? " INT" : ""
533 );
534 }
535
536 static int __attribute__((__unused__))
dbg_intr_buf(char * buf,unsigned len,const char * label,u32 enable)537 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
538 {
539 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
540 label, label[0] ? " " : "", enable,
541 (enable & STS_IAA) ? " IAA" : "",
542 (enable & STS_FATAL) ? " FATAL" : "",
543 (enable & STS_FLR) ? " FLR" : "",
544 (enable & STS_PCD) ? " PCD" : "",
545 (enable & STS_ERR) ? " ERR" : "",
546 (enable & STS_INT) ? " INT" : ""
547 );
548 }
549
550 static const char *const fls_strings[] =
551 { "1024", "512", "256", "??" };
552
dbg_command_buf(char * buf,unsigned len,const char * label,u32 command)553 static int dbg_command_buf(char *buf, unsigned len,
554 const char *label, u32 command)
555 {
556 return scnprintf(buf, len,
557 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
558 label, label[0] ? " " : "", command,
559 (command & CMD_PARK) ? "park" : "(park)",
560 CMD_PARK_CNT(command),
561 (command >> 16) & 0x3f,
562 (command & CMD_LRESET) ? " LReset" : "",
563 (command & CMD_IAAD) ? " IAAD" : "",
564 (command & CMD_ASE) ? " Async" : "",
565 (command & CMD_PSE) ? " Periodic" : "",
566 fls_strings[(command >> 2) & 0x3],
567 (command & CMD_RESET) ? " Reset" : "",
568 (command & CMD_RUN) ? "RUN" : "HALT"
569 );
570 }
571
dbg_port_buf(char * buf,unsigned len,const char * label,int port,u32 status)572 static int dbg_port_buf(char *buf, unsigned len, const char *label,
573 int port, u32 status)
574 {
575 char *sig;
576
577 /* signaling state */
578 switch (status & (3 << 10)) {
579 case 0 << 10:
580 sig = "se0";
581 break;
582 case 1 << 10:
583 sig = "k"; /* low speed */
584 break;
585 case 2 << 10:
586 sig = "j";
587 break;
588 default:
589 sig = "?";
590 break;
591 }
592
593 return scnprintf(buf, len,
594 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
595 label, label[0] ? " " : "", port, status,
596 (status & PORT_POWER) ? " POWER" : "",
597 (status & PORT_OWNER) ? " OWNER" : "",
598 sig,
599 (status & PORT_RESET) ? " RESET" : "",
600 (status & PORT_SUSPEND) ? " SUSPEND" : "",
601 (status & PORT_RESUME) ? " RESUME" : "",
602 (status & PORT_OCC) ? " OCC" : "",
603 (status & PORT_OC) ? " OC" : "",
604 (status & PORT_PEC) ? " PEC" : "",
605 (status & PORT_PE) ? " PE" : "",
606 (status & PORT_CSC) ? " CSC" : "",
607 (status & PORT_CONNECT) ? " CONNECT" : ""
608 );
609 }
610
611 #else
612
613 static inline int __attribute__((__unused__))
dbg_status_buf(char * buf,unsigned len,const char * label,u32 status)614 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
615 { return 0; }
616
617 static inline int __attribute__((__unused__))
dbg_command_buf(char * buf,unsigned len,const char * label,u32 command)618 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
619 { return 0; }
620
621 static inline int __attribute__((__unused__))
dbg_intr_buf(char * buf,unsigned len,const char * label,u32 enable)622 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
623 { return 0; }
624
625 static inline int __attribute__((__unused__))
dbg_port_buf(char * buf,unsigned len,const char * label,int port,u32 status)626 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
627 { return 0; }
628
629 #endif /* DEBUG */
630
631 /* functions have the "wrong" filename when they're output... */
632 #define dbg_status(oxu, label, status) { \
633 char _buf[80]; \
634 dbg_status_buf(_buf, sizeof _buf, label, status); \
635 oxu_dbg(oxu, "%s\n", _buf); \
636 }
637
638 #define dbg_cmd(oxu, label, command) { \
639 char _buf[80]; \
640 dbg_command_buf(_buf, sizeof _buf, label, command); \
641 oxu_dbg(oxu, "%s\n", _buf); \
642 }
643
644 #define dbg_port(oxu, label, port, status) { \
645 char _buf[80]; \
646 dbg_port_buf(_buf, sizeof _buf, label, port, status); \
647 oxu_dbg(oxu, "%s\n", _buf); \
648 }
649
650 /*
651 * Module parameters
652 */
653
654 /* Initial IRQ latency: faster than hw default */
655 static int log2_irq_thresh; /* 0 to 6 */
656 module_param(log2_irq_thresh, int, S_IRUGO);
657 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
658
659 /* Initial park setting: slower than hw default */
660 static unsigned park;
661 module_param(park, uint, S_IRUGO);
662 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
663
664 /* For flakey hardware, ignore overcurrent indicators */
665 static bool ignore_oc;
666 module_param(ignore_oc, bool, S_IRUGO);
667 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
668
669
670 static void ehci_work(struct oxu_hcd *oxu);
671 static int oxu_hub_control(struct usb_hcd *hcd,
672 u16 typeReq, u16 wValue, u16 wIndex,
673 char *buf, u16 wLength);
674
675 /*
676 * Local functions
677 */
678
679 /* Low level read/write registers functions */
oxu_readl(void __iomem * base,u32 reg)680 static inline u32 oxu_readl(void __iomem *base, u32 reg)
681 {
682 return readl(base + reg);
683 }
684
oxu_writel(void __iomem * base,u32 reg,u32 val)685 static inline void oxu_writel(void __iomem *base, u32 reg, u32 val)
686 {
687 writel(val, base + reg);
688 }
689
timer_action_done(struct oxu_hcd * oxu,enum ehci_timer_action action)690 static inline void timer_action_done(struct oxu_hcd *oxu,
691 enum ehci_timer_action action)
692 {
693 clear_bit(action, &oxu->actions);
694 }
695
timer_action(struct oxu_hcd * oxu,enum ehci_timer_action action)696 static inline void timer_action(struct oxu_hcd *oxu,
697 enum ehci_timer_action action)
698 {
699 if (!test_and_set_bit(action, &oxu->actions)) {
700 unsigned long t;
701
702 switch (action) {
703 case TIMER_IAA_WATCHDOG:
704 t = EHCI_IAA_JIFFIES;
705 break;
706 case TIMER_IO_WATCHDOG:
707 t = EHCI_IO_JIFFIES;
708 break;
709 case TIMER_ASYNC_OFF:
710 t = EHCI_ASYNC_JIFFIES;
711 break;
712 case TIMER_ASYNC_SHRINK:
713 default:
714 t = EHCI_SHRINK_JIFFIES;
715 break;
716 }
717 t += jiffies;
718 /* all timings except IAA watchdog can be overridden.
719 * async queue SHRINK often precedes IAA. while it's ready
720 * to go OFF neither can matter, and afterwards the IO
721 * watchdog stops unless there's still periodic traffic.
722 */
723 if (action != TIMER_IAA_WATCHDOG
724 && t > oxu->watchdog.expires
725 && timer_pending(&oxu->watchdog))
726 return;
727 mod_timer(&oxu->watchdog, t);
728 }
729 }
730
731 /*
732 * handshake - spin reading hc until handshake completes or fails
733 * @ptr: address of hc register to be read
734 * @mask: bits to look at in result of read
735 * @done: value of those bits when handshake succeeds
736 * @usec: timeout in microseconds
737 *
738 * Returns negative errno, or zero on success
739 *
740 * Success happens when the "mask" bits have the specified value (hardware
741 * handshake done). There are two failure modes: "usec" have passed (major
742 * hardware flakeout), or the register reads as all-ones (hardware removed).
743 *
744 * That last failure should_only happen in cases like physical cardbus eject
745 * before driver shutdown. But it also seems to be caused by bugs in cardbus
746 * bridge shutdown: shutting down the bridge before the devices using it.
747 */
handshake(struct oxu_hcd * oxu,void __iomem * ptr,u32 mask,u32 done,int usec)748 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
749 u32 mask, u32 done, int usec)
750 {
751 u32 result;
752 int ret;
753
754 ret = readl_poll_timeout_atomic(ptr, result,
755 ((result & mask) == done ||
756 result == U32_MAX),
757 1, usec);
758 if (result == U32_MAX) /* card removed */
759 return -ENODEV;
760
761 return ret;
762 }
763
764 /* Force HC to halt state from unknown (EHCI spec section 2.3) */
ehci_halt(struct oxu_hcd * oxu)765 static int ehci_halt(struct oxu_hcd *oxu)
766 {
767 u32 temp = readl(&oxu->regs->status);
768
769 /* disable any irqs left enabled by previous code */
770 writel(0, &oxu->regs->intr_enable);
771
772 if ((temp & STS_HALT) != 0)
773 return 0;
774
775 temp = readl(&oxu->regs->command);
776 temp &= ~CMD_RUN;
777 writel(temp, &oxu->regs->command);
778 return handshake(oxu, &oxu->regs->status,
779 STS_HALT, STS_HALT, 16 * 125);
780 }
781
782 /* Put TDI/ARC silicon into EHCI mode */
tdi_reset(struct oxu_hcd * oxu)783 static void tdi_reset(struct oxu_hcd *oxu)
784 {
785 u32 __iomem *reg_ptr;
786 u32 tmp;
787
788 reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
789 tmp = readl(reg_ptr);
790 tmp |= 0x3;
791 writel(tmp, reg_ptr);
792 }
793
794 /* Reset a non-running (STS_HALT == 1) controller */
ehci_reset(struct oxu_hcd * oxu)795 static int ehci_reset(struct oxu_hcd *oxu)
796 {
797 int retval;
798 u32 command = readl(&oxu->regs->command);
799
800 command |= CMD_RESET;
801 dbg_cmd(oxu, "reset", command);
802 writel(command, &oxu->regs->command);
803 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
804 oxu->next_statechange = jiffies;
805 retval = handshake(oxu, &oxu->regs->command,
806 CMD_RESET, 0, 250 * 1000);
807
808 if (retval)
809 return retval;
810
811 tdi_reset(oxu);
812
813 return retval;
814 }
815
816 /* Idle the controller (from running) */
ehci_quiesce(struct oxu_hcd * oxu)817 static void ehci_quiesce(struct oxu_hcd *oxu)
818 {
819 u32 temp;
820
821 #ifdef DEBUG
822 BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state));
823 #endif
824
825 /* wait for any schedule enables/disables to take effect */
826 temp = readl(&oxu->regs->command) << 10;
827 temp &= STS_ASS | STS_PSS;
828 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
829 temp, 16 * 125) != 0) {
830 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
831 return;
832 }
833
834 /* then disable anything that's still active */
835 temp = readl(&oxu->regs->command);
836 temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
837 writel(temp, &oxu->regs->command);
838
839 /* hardware can take 16 microframes to turn off ... */
840 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
841 0, 16 * 125) != 0) {
842 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
843 return;
844 }
845 }
846
check_reset_complete(struct oxu_hcd * oxu,int index,u32 __iomem * status_reg,int port_status)847 static int check_reset_complete(struct oxu_hcd *oxu, int index,
848 u32 __iomem *status_reg, int port_status)
849 {
850 if (!(port_status & PORT_CONNECT)) {
851 oxu->reset_done[index] = 0;
852 return port_status;
853 }
854
855 /* if reset finished and it's still not enabled -- handoff */
856 if (!(port_status & PORT_PE)) {
857 oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
858 index+1);
859 return port_status;
860 } else
861 oxu_dbg(oxu, "port %d high speed\n", index + 1);
862
863 return port_status;
864 }
865
ehci_hub_descriptor(struct oxu_hcd * oxu,struct usb_hub_descriptor * desc)866 static void ehci_hub_descriptor(struct oxu_hcd *oxu,
867 struct usb_hub_descriptor *desc)
868 {
869 int ports = HCS_N_PORTS(oxu->hcs_params);
870 u16 temp;
871
872 desc->bDescriptorType = USB_DT_HUB;
873 desc->bPwrOn2PwrGood = 10; /* oxu 1.0, 2.3.9 says 20ms max */
874 desc->bHubContrCurrent = 0;
875
876 desc->bNbrPorts = ports;
877 temp = 1 + (ports / 8);
878 desc->bDescLength = 7 + 2 * temp;
879
880 /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
881 memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
882 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
883
884 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
885 if (HCS_PPC(oxu->hcs_params))
886 temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */
887 else
888 temp |= HUB_CHAR_NO_LPSM; /* no power switching */
889 desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
890 }
891
892
893 /* Allocate an OXU210HP on-chip memory data buffer
894 *
895 * An on-chip memory data buffer is required for each OXU210HP USB transfer.
896 * Each transfer descriptor has one or more on-chip memory data buffers.
897 *
898 * Data buffers are allocated from a fix sized pool of data blocks.
899 * To minimise fragmentation and give reasonable memory utlisation,
900 * data buffers are allocated with sizes the power of 2 multiples of
901 * the block size, starting on an address a multiple of the allocated size.
902 *
903 * FIXME: callers of this function require a buffer to be allocated for
904 * len=0. This is a waste of on-chip memory and should be fix. Then this
905 * function should be changed to not allocate a buffer for len=0.
906 */
oxu_buf_alloc(struct oxu_hcd * oxu,struct ehci_qtd * qtd,int len)907 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
908 {
909 int n_blocks; /* minium blocks needed to hold len */
910 int a_blocks; /* blocks allocated */
911 int i, j;
912
913 /* Don't allocte bigger than supported */
914 if (len > BUFFER_SIZE * BUFFER_NUM) {
915 oxu_err(oxu, "buffer too big (%d)\n", len);
916 return -ENOMEM;
917 }
918
919 spin_lock(&oxu->mem_lock);
920
921 /* Number of blocks needed to hold len */
922 n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
923
924 /* Round the number of blocks up to the power of 2 */
925 for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
926 ;
927
928 /* Find a suitable available data buffer */
929 for (i = 0; i < BUFFER_NUM;
930 i += max(a_blocks, (int)oxu->db_used[i])) {
931
932 /* Check all the required blocks are available */
933 for (j = 0; j < a_blocks; j++)
934 if (oxu->db_used[i + j])
935 break;
936
937 if (j != a_blocks)
938 continue;
939
940 /* Allocate blocks found! */
941 qtd->buffer = (void *) &oxu->mem->db_pool[i];
942 qtd->buffer_dma = virt_to_phys(qtd->buffer);
943
944 qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
945 oxu->db_used[i] = a_blocks;
946
947 spin_unlock(&oxu->mem_lock);
948
949 return 0;
950 }
951
952 /* Failed */
953
954 spin_unlock(&oxu->mem_lock);
955
956 return -ENOMEM;
957 }
958
oxu_buf_free(struct oxu_hcd * oxu,struct ehci_qtd * qtd)959 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
960 {
961 int index;
962
963 spin_lock(&oxu->mem_lock);
964
965 index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
966 / BUFFER_SIZE;
967 oxu->db_used[index] = 0;
968 qtd->qtd_buffer_len = 0;
969 qtd->buffer_dma = 0;
970 qtd->buffer = NULL;
971
972 spin_unlock(&oxu->mem_lock);
973 }
974
ehci_qtd_init(struct ehci_qtd * qtd,dma_addr_t dma)975 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
976 {
977 memset(qtd, 0, sizeof *qtd);
978 qtd->qtd_dma = dma;
979 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
980 qtd->hw_next = EHCI_LIST_END;
981 qtd->hw_alt_next = EHCI_LIST_END;
982 INIT_LIST_HEAD(&qtd->qtd_list);
983 }
984
oxu_qtd_free(struct oxu_hcd * oxu,struct ehci_qtd * qtd)985 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
986 {
987 int index;
988
989 if (qtd->buffer)
990 oxu_buf_free(oxu, qtd);
991
992 spin_lock(&oxu->mem_lock);
993
994 index = qtd - &oxu->mem->qtd_pool[0];
995 oxu->qtd_used[index] = 0;
996
997 spin_unlock(&oxu->mem_lock);
998 }
999
ehci_qtd_alloc(struct oxu_hcd * oxu)1000 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
1001 {
1002 int i;
1003 struct ehci_qtd *qtd = NULL;
1004
1005 spin_lock(&oxu->mem_lock);
1006
1007 for (i = 0; i < QTD_NUM; i++)
1008 if (!oxu->qtd_used[i])
1009 break;
1010
1011 if (i < QTD_NUM) {
1012 qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
1013 memset(qtd, 0, sizeof *qtd);
1014
1015 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
1016 qtd->hw_next = EHCI_LIST_END;
1017 qtd->hw_alt_next = EHCI_LIST_END;
1018 INIT_LIST_HEAD(&qtd->qtd_list);
1019
1020 qtd->qtd_dma = virt_to_phys(qtd);
1021
1022 oxu->qtd_used[i] = 1;
1023 }
1024
1025 spin_unlock(&oxu->mem_lock);
1026
1027 return qtd;
1028 }
1029
oxu_qh_free(struct oxu_hcd * oxu,struct ehci_qh * qh)1030 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
1031 {
1032 int index;
1033
1034 spin_lock(&oxu->mem_lock);
1035
1036 index = qh - &oxu->mem->qh_pool[0];
1037 oxu->qh_used[index] = 0;
1038
1039 spin_unlock(&oxu->mem_lock);
1040 }
1041
qh_destroy(struct kref * kref)1042 static void qh_destroy(struct kref *kref)
1043 {
1044 struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
1045 struct oxu_hcd *oxu = qh->oxu;
1046
1047 /* clean qtds first, and know this is not linked */
1048 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1049 oxu_dbg(oxu, "unused qh not empty!\n");
1050 BUG();
1051 }
1052 if (qh->dummy)
1053 oxu_qtd_free(oxu, qh->dummy);
1054 oxu_qh_free(oxu, qh);
1055 }
1056
oxu_qh_alloc(struct oxu_hcd * oxu)1057 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
1058 {
1059 int i;
1060 struct ehci_qh *qh = NULL;
1061
1062 spin_lock(&oxu->mem_lock);
1063
1064 for (i = 0; i < QHEAD_NUM; i++)
1065 if (!oxu->qh_used[i])
1066 break;
1067
1068 if (i < QHEAD_NUM) {
1069 qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
1070 memset(qh, 0, sizeof *qh);
1071
1072 kref_init(&qh->kref);
1073 qh->oxu = oxu;
1074 qh->qh_dma = virt_to_phys(qh);
1075 INIT_LIST_HEAD(&qh->qtd_list);
1076
1077 /* dummy td enables safe urb queuing */
1078 qh->dummy = ehci_qtd_alloc(oxu);
1079 if (qh->dummy == NULL) {
1080 oxu_dbg(oxu, "no dummy td\n");
1081 oxu->qh_used[i] = 0;
1082 qh = NULL;
1083 goto unlock;
1084 }
1085
1086 oxu->qh_used[i] = 1;
1087 }
1088 unlock:
1089 spin_unlock(&oxu->mem_lock);
1090
1091 return qh;
1092 }
1093
1094 /* to share a qh (cpu threads, or hc) */
qh_get(struct ehci_qh * qh)1095 static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
1096 {
1097 kref_get(&qh->kref);
1098 return qh;
1099 }
1100
qh_put(struct ehci_qh * qh)1101 static inline void qh_put(struct ehci_qh *qh)
1102 {
1103 kref_put(&qh->kref, qh_destroy);
1104 }
1105
oxu_murb_free(struct oxu_hcd * oxu,struct oxu_murb * murb)1106 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
1107 {
1108 int index;
1109
1110 spin_lock(&oxu->mem_lock);
1111
1112 index = murb - &oxu->murb_pool[0];
1113 oxu->murb_used[index] = 0;
1114
1115 spin_unlock(&oxu->mem_lock);
1116 }
1117
oxu_murb_alloc(struct oxu_hcd * oxu)1118 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
1119
1120 {
1121 int i;
1122 struct oxu_murb *murb = NULL;
1123
1124 spin_lock(&oxu->mem_lock);
1125
1126 for (i = 0; i < MURB_NUM; i++)
1127 if (!oxu->murb_used[i])
1128 break;
1129
1130 if (i < MURB_NUM) {
1131 murb = &(oxu->murb_pool)[i];
1132
1133 oxu->murb_used[i] = 1;
1134 }
1135
1136 spin_unlock(&oxu->mem_lock);
1137
1138 return murb;
1139 }
1140
1141 /* The queue heads and transfer descriptors are managed from pools tied
1142 * to each of the "per device" structures.
1143 * This is the initialisation and cleanup code.
1144 */
ehci_mem_cleanup(struct oxu_hcd * oxu)1145 static void ehci_mem_cleanup(struct oxu_hcd *oxu)
1146 {
1147 kfree(oxu->murb_pool);
1148 oxu->murb_pool = NULL;
1149
1150 if (oxu->async)
1151 qh_put(oxu->async);
1152 oxu->async = NULL;
1153
1154 del_timer(&oxu->urb_timer);
1155
1156 oxu->periodic = NULL;
1157
1158 /* shadow periodic table */
1159 kfree(oxu->pshadow);
1160 oxu->pshadow = NULL;
1161 }
1162
1163 /* Remember to add cleanup code (above) if you add anything here.
1164 */
ehci_mem_init(struct oxu_hcd * oxu,gfp_t flags)1165 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
1166 {
1167 int i;
1168
1169 for (i = 0; i < oxu->periodic_size; i++)
1170 oxu->mem->frame_list[i] = EHCI_LIST_END;
1171 for (i = 0; i < QHEAD_NUM; i++)
1172 oxu->qh_used[i] = 0;
1173 for (i = 0; i < QTD_NUM; i++)
1174 oxu->qtd_used[i] = 0;
1175
1176 oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
1177 if (!oxu->murb_pool)
1178 goto fail;
1179
1180 for (i = 0; i < MURB_NUM; i++)
1181 oxu->murb_used[i] = 0;
1182
1183 oxu->async = oxu_qh_alloc(oxu);
1184 if (!oxu->async)
1185 goto fail;
1186
1187 oxu->periodic = (__le32 *) &oxu->mem->frame_list;
1188 oxu->periodic_dma = virt_to_phys(oxu->periodic);
1189
1190 for (i = 0; i < oxu->periodic_size; i++)
1191 oxu->periodic[i] = EHCI_LIST_END;
1192
1193 /* software shadow of hardware table */
1194 oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
1195 if (oxu->pshadow != NULL)
1196 return 0;
1197
1198 fail:
1199 oxu_dbg(oxu, "couldn't init memory\n");
1200 ehci_mem_cleanup(oxu);
1201 return -ENOMEM;
1202 }
1203
1204 /* Fill a qtd, returning how much of the buffer we were able to queue up.
1205 */
qtd_fill(struct ehci_qtd * qtd,dma_addr_t buf,size_t len,int token,int maxpacket)1206 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
1207 int token, int maxpacket)
1208 {
1209 int i, count;
1210 u64 addr = buf;
1211
1212 /* one buffer entry per 4K ... first might be short or unaligned */
1213 qtd->hw_buf[0] = cpu_to_le32((u32)addr);
1214 qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
1215 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
1216 if (likely(len < count)) /* ... iff needed */
1217 count = len;
1218 else {
1219 buf += 0x1000;
1220 buf &= ~0x0fff;
1221
1222 /* per-qtd limit: from 16K to 20K (best alignment) */
1223 for (i = 1; count < len && i < 5; i++) {
1224 addr = buf;
1225 qtd->hw_buf[i] = cpu_to_le32((u32)addr);
1226 qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
1227 buf += 0x1000;
1228 if ((count + 0x1000) < len)
1229 count += 0x1000;
1230 else
1231 count = len;
1232 }
1233
1234 /* short packets may only terminate transfers */
1235 if (count != len)
1236 count -= (count % maxpacket);
1237 }
1238 qtd->hw_token = cpu_to_le32((count << 16) | token);
1239 qtd->length = count;
1240
1241 return count;
1242 }
1243
qh_update(struct oxu_hcd * oxu,struct ehci_qh * qh,struct ehci_qtd * qtd)1244 static inline void qh_update(struct oxu_hcd *oxu,
1245 struct ehci_qh *qh, struct ehci_qtd *qtd)
1246 {
1247 /* writes to an active overlay are unsafe */
1248 BUG_ON(qh->qh_state != QH_STATE_IDLE);
1249
1250 qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
1251 qh->hw_alt_next = EHCI_LIST_END;
1252
1253 /* Except for control endpoints, we make hardware maintain data
1254 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
1255 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
1256 * ever clear it.
1257 */
1258 if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
1259 unsigned is_out, epnum;
1260
1261 is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
1262 epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
1263 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
1264 qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
1265 usb_settoggle(qh->dev, epnum, is_out, 1);
1266 }
1267 }
1268
1269 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
1270 wmb();
1271 qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
1272 }
1273
1274 /* If it weren't for a common silicon quirk (writing the dummy into the qh
1275 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
1276 * recovery (including urb dequeue) would need software changes to a QH...
1277 */
qh_refresh(struct oxu_hcd * oxu,struct ehci_qh * qh)1278 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
1279 {
1280 struct ehci_qtd *qtd;
1281
1282 if (list_empty(&qh->qtd_list))
1283 qtd = qh->dummy;
1284 else {
1285 qtd = list_entry(qh->qtd_list.next,
1286 struct ehci_qtd, qtd_list);
1287 /* first qtd may already be partially processed */
1288 if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
1289 qtd = NULL;
1290 }
1291
1292 if (qtd)
1293 qh_update(oxu, qh, qtd);
1294 }
1295
qtd_copy_status(struct oxu_hcd * oxu,struct urb * urb,size_t length,u32 token)1296 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
1297 size_t length, u32 token)
1298 {
1299 /* count IN/OUT bytes, not SETUP (even short packets) */
1300 if (likely(QTD_PID(token) != 2))
1301 urb->actual_length += length - QTD_LENGTH(token);
1302
1303 /* don't modify error codes */
1304 if (unlikely(urb->status != -EINPROGRESS))
1305 return;
1306
1307 /* force cleanup after short read; not always an error */
1308 if (unlikely(IS_SHORT_READ(token)))
1309 urb->status = -EREMOTEIO;
1310
1311 /* serious "can't proceed" faults reported by the hardware */
1312 if (token & QTD_STS_HALT) {
1313 if (token & QTD_STS_BABBLE) {
1314 /* FIXME "must" disable babbling device's port too */
1315 urb->status = -EOVERFLOW;
1316 } else if (token & QTD_STS_MMF) {
1317 /* fs/ls interrupt xfer missed the complete-split */
1318 urb->status = -EPROTO;
1319 } else if (token & QTD_STS_DBE) {
1320 urb->status = (QTD_PID(token) == 1) /* IN ? */
1321 ? -ENOSR /* hc couldn't read data */
1322 : -ECOMM; /* hc couldn't write data */
1323 } else if (token & QTD_STS_XACT) {
1324 /* timeout, bad crc, wrong PID, etc; retried */
1325 if (QTD_CERR(token))
1326 urb->status = -EPIPE;
1327 else {
1328 oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
1329 urb->dev->devpath,
1330 usb_pipeendpoint(urb->pipe),
1331 usb_pipein(urb->pipe) ? "in" : "out");
1332 urb->status = -EPROTO;
1333 }
1334 /* CERR nonzero + no errors + halt --> stall */
1335 } else if (QTD_CERR(token))
1336 urb->status = -EPIPE;
1337 else /* unknown */
1338 urb->status = -EPROTO;
1339
1340 oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
1341 usb_pipedevice(urb->pipe),
1342 usb_pipeendpoint(urb->pipe),
1343 usb_pipein(urb->pipe) ? "in" : "out",
1344 token, urb->status);
1345 }
1346 }
1347
ehci_urb_done(struct oxu_hcd * oxu,struct urb * urb)1348 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
1349 __releases(oxu->lock)
1350 __acquires(oxu->lock)
1351 {
1352 if (likely(urb->hcpriv != NULL)) {
1353 struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv;
1354
1355 /* S-mask in a QH means it's an interrupt urb */
1356 if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
1357
1358 /* ... update hc-wide periodic stats (for usbfs) */
1359 oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
1360 }
1361 qh_put(qh);
1362 }
1363
1364 urb->hcpriv = NULL;
1365 switch (urb->status) {
1366 case -EINPROGRESS: /* success */
1367 urb->status = 0;
1368 break;
1369 default: /* fault */
1370 break;
1371 case -EREMOTEIO: /* fault or normal */
1372 if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
1373 urb->status = 0;
1374 break;
1375 case -ECONNRESET: /* canceled */
1376 case -ENOENT:
1377 break;
1378 }
1379
1380 #ifdef OXU_URB_TRACE
1381 oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
1382 __func__, urb->dev->devpath, urb,
1383 usb_pipeendpoint(urb->pipe),
1384 usb_pipein(urb->pipe) ? "in" : "out",
1385 urb->status,
1386 urb->actual_length, urb->transfer_buffer_length);
1387 #endif
1388
1389 /* complete() can reenter this HCD */
1390 spin_unlock(&oxu->lock);
1391 usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
1392 spin_lock(&oxu->lock);
1393 }
1394
1395 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1396 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1397
1398 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1399 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1400
1401 #define HALT_BIT cpu_to_le32(QTD_STS_HALT)
1402
1403 /* Process and free completed qtds for a qh, returning URBs to drivers.
1404 * Chases up to qh->hw_current. Returns number of completions called,
1405 * indicating how much "real" work we did.
1406 */
qh_completions(struct oxu_hcd * oxu,struct ehci_qh * qh)1407 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
1408 {
1409 struct ehci_qtd *last = NULL, *end = qh->dummy;
1410 struct ehci_qtd *qtd, *tmp;
1411 int stopped;
1412 unsigned count = 0;
1413 int do_status = 0;
1414 u8 state;
1415 struct oxu_murb *murb = NULL;
1416
1417 if (unlikely(list_empty(&qh->qtd_list)))
1418 return count;
1419
1420 /* completions (or tasks on other cpus) must never clobber HALT
1421 * till we've gone through and cleaned everything up, even when
1422 * they add urbs to this qh's queue or mark them for unlinking.
1423 *
1424 * NOTE: unlinking expects to be done in queue order.
1425 */
1426 state = qh->qh_state;
1427 qh->qh_state = QH_STATE_COMPLETING;
1428 stopped = (state == QH_STATE_IDLE);
1429
1430 /* remove de-activated QTDs from front of queue.
1431 * after faults (including short reads), cleanup this urb
1432 * then let the queue advance.
1433 * if queue is stopped, handles unlinks.
1434 */
1435 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
1436 struct urb *urb;
1437 u32 token = 0;
1438
1439 urb = qtd->urb;
1440
1441 /* Clean up any state from previous QTD ...*/
1442 if (last) {
1443 if (likely(last->urb != urb)) {
1444 if (last->urb->complete == NULL) {
1445 murb = (struct oxu_murb *) last->urb;
1446 last->urb = murb->main;
1447 if (murb->last) {
1448 ehci_urb_done(oxu, last->urb);
1449 count++;
1450 }
1451 oxu_murb_free(oxu, murb);
1452 } else {
1453 ehci_urb_done(oxu, last->urb);
1454 count++;
1455 }
1456 }
1457 oxu_qtd_free(oxu, last);
1458 last = NULL;
1459 }
1460
1461 /* ignore urbs submitted during completions we reported */
1462 if (qtd == end)
1463 break;
1464
1465 /* hardware copies qtd out of qh overlay */
1466 rmb();
1467 token = le32_to_cpu(qtd->hw_token);
1468
1469 /* always clean up qtds the hc de-activated */
1470 if ((token & QTD_STS_ACTIVE) == 0) {
1471
1472 if ((token & QTD_STS_HALT) != 0) {
1473 stopped = 1;
1474
1475 /* magic dummy for some short reads; qh won't advance.
1476 * that silicon quirk can kick in with this dummy too.
1477 */
1478 } else if (IS_SHORT_READ(token) &&
1479 !(qtd->hw_alt_next & EHCI_LIST_END)) {
1480 stopped = 1;
1481 goto halt;
1482 }
1483
1484 /* stop scanning when we reach qtds the hc is using */
1485 } else if (likely(!stopped &&
1486 HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1487 break;
1488
1489 } else {
1490 stopped = 1;
1491
1492 if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1493 urb->status = -ESHUTDOWN;
1494
1495 /* ignore active urbs unless some previous qtd
1496 * for the urb faulted (including short read) or
1497 * its urb was canceled. we may patch qh or qtds.
1498 */
1499 if (likely(urb->status == -EINPROGRESS))
1500 continue;
1501
1502 /* issue status after short control reads */
1503 if (unlikely(do_status != 0)
1504 && QTD_PID(token) == 0 /* OUT */) {
1505 do_status = 0;
1506 continue;
1507 }
1508
1509 /* token in overlay may be most current */
1510 if (state == QH_STATE_IDLE
1511 && cpu_to_le32(qtd->qtd_dma)
1512 == qh->hw_current)
1513 token = le32_to_cpu(qh->hw_token);
1514
1515 /* force halt for unlinked or blocked qh, so we'll
1516 * patch the qh later and so that completions can't
1517 * activate it while we "know" it's stopped.
1518 */
1519 if ((HALT_BIT & qh->hw_token) == 0) {
1520 halt:
1521 qh->hw_token |= HALT_BIT;
1522 wmb();
1523 }
1524 }
1525
1526 /* Remove it from the queue */
1527 qtd_copy_status(oxu, urb->complete ?
1528 urb : ((struct oxu_murb *) urb)->main,
1529 qtd->length, token);
1530 if ((usb_pipein(qtd->urb->pipe)) &&
1531 (NULL != qtd->transfer_buffer))
1532 memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1533 do_status = (urb->status == -EREMOTEIO)
1534 && usb_pipecontrol(urb->pipe);
1535
1536 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1537 last = list_entry(qtd->qtd_list.prev,
1538 struct ehci_qtd, qtd_list);
1539 last->hw_next = qtd->hw_next;
1540 }
1541 list_del(&qtd->qtd_list);
1542 last = qtd;
1543 }
1544
1545 /* last urb's completion might still need calling */
1546 if (likely(last != NULL)) {
1547 if (last->urb->complete == NULL) {
1548 murb = (struct oxu_murb *) last->urb;
1549 last->urb = murb->main;
1550 if (murb->last) {
1551 ehci_urb_done(oxu, last->urb);
1552 count++;
1553 }
1554 oxu_murb_free(oxu, murb);
1555 } else {
1556 ehci_urb_done(oxu, last->urb);
1557 count++;
1558 }
1559 oxu_qtd_free(oxu, last);
1560 }
1561
1562 /* restore original state; caller must unlink or relink */
1563 qh->qh_state = state;
1564
1565 /* be sure the hardware's done with the qh before refreshing
1566 * it after fault cleanup, or recovering from silicon wrongly
1567 * overlaying the dummy qtd (which reduces DMA chatter).
1568 */
1569 if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1570 switch (state) {
1571 case QH_STATE_IDLE:
1572 qh_refresh(oxu, qh);
1573 break;
1574 case QH_STATE_LINKED:
1575 /* should be rare for periodic transfers,
1576 * except maybe high bandwidth ...
1577 */
1578 if ((cpu_to_le32(QH_SMASK)
1579 & qh->hw_info2) != 0) {
1580 intr_deschedule(oxu, qh);
1581 (void) qh_schedule(oxu, qh);
1582 } else
1583 unlink_async(oxu, qh);
1584 break;
1585 /* otherwise, unlink already started */
1586 }
1587 }
1588
1589 return count;
1590 }
1591
1592 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1593 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
1594 /* ... and packet size, for any kind of endpoint descriptor */
1595 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
1596
1597 /* Reverse of qh_urb_transaction: free a list of TDs.
1598 * used for cleanup after errors, before HC sees an URB's TDs.
1599 */
qtd_list_free(struct oxu_hcd * oxu,struct urb * urb,struct list_head * head)1600 static void qtd_list_free(struct oxu_hcd *oxu,
1601 struct urb *urb, struct list_head *head)
1602 {
1603 struct ehci_qtd *qtd, *temp;
1604
1605 list_for_each_entry_safe(qtd, temp, head, qtd_list) {
1606 list_del(&qtd->qtd_list);
1607 oxu_qtd_free(oxu, qtd);
1608 }
1609 }
1610
1611 /* Create a list of filled qtds for this URB; won't link into qh.
1612 */
qh_urb_transaction(struct oxu_hcd * oxu,struct urb * urb,struct list_head * head,gfp_t flags)1613 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1614 struct urb *urb,
1615 struct list_head *head,
1616 gfp_t flags)
1617 {
1618 struct ehci_qtd *qtd, *qtd_prev;
1619 dma_addr_t buf;
1620 int len, maxpacket;
1621 int is_input;
1622 u32 token;
1623 void *transfer_buf = NULL;
1624 int ret;
1625
1626 /*
1627 * URBs map to sequences of QTDs: one logical transaction
1628 */
1629 qtd = ehci_qtd_alloc(oxu);
1630 if (unlikely(!qtd))
1631 return NULL;
1632 list_add_tail(&qtd->qtd_list, head);
1633 qtd->urb = urb;
1634
1635 token = QTD_STS_ACTIVE;
1636 token |= (EHCI_TUNE_CERR << 10);
1637 /* for split transactions, SplitXState initialized to zero */
1638
1639 len = urb->transfer_buffer_length;
1640 is_input = usb_pipein(urb->pipe);
1641 if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1642 urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1643
1644 if (usb_pipecontrol(urb->pipe)) {
1645 /* SETUP pid */
1646 ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1647 if (ret)
1648 goto cleanup;
1649
1650 qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1651 token | (2 /* "setup" */ << 8), 8);
1652 memcpy(qtd->buffer, qtd->urb->setup_packet,
1653 sizeof(struct usb_ctrlrequest));
1654
1655 /* ... and always at least one more pid */
1656 token ^= QTD_TOGGLE;
1657 qtd_prev = qtd;
1658 qtd = ehci_qtd_alloc(oxu);
1659 if (unlikely(!qtd))
1660 goto cleanup;
1661 qtd->urb = urb;
1662 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1663 list_add_tail(&qtd->qtd_list, head);
1664
1665 /* for zero length DATA stages, STATUS is always IN */
1666 if (len == 0)
1667 token |= (1 /* "in" */ << 8);
1668 }
1669
1670 /*
1671 * Data transfer stage: buffer setup
1672 */
1673
1674 ret = oxu_buf_alloc(oxu, qtd, len);
1675 if (ret)
1676 goto cleanup;
1677
1678 buf = qtd->buffer_dma;
1679 transfer_buf = urb->transfer_buffer;
1680
1681 if (!is_input)
1682 memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1683
1684 if (is_input)
1685 token |= (1 /* "in" */ << 8);
1686 /* else it's already initted to "out" pid (0 << 8) */
1687
1688 maxpacket = usb_maxpacket(urb->dev, urb->pipe);
1689
1690 /*
1691 * buffer gets wrapped in one or more qtds;
1692 * last one may be "short" (including zero len)
1693 * and may serve as a control status ack
1694 */
1695 for (;;) {
1696 int this_qtd_len;
1697
1698 this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1699 qtd->transfer_buffer = transfer_buf;
1700 len -= this_qtd_len;
1701 buf += this_qtd_len;
1702 transfer_buf += this_qtd_len;
1703 if (is_input)
1704 qtd->hw_alt_next = oxu->async->hw_alt_next;
1705
1706 /* qh makes control packets use qtd toggle; maybe switch it */
1707 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1708 token ^= QTD_TOGGLE;
1709
1710 if (likely(len <= 0))
1711 break;
1712
1713 qtd_prev = qtd;
1714 qtd = ehci_qtd_alloc(oxu);
1715 if (unlikely(!qtd))
1716 goto cleanup;
1717 if (likely(len > 0)) {
1718 ret = oxu_buf_alloc(oxu, qtd, len);
1719 if (ret)
1720 goto cleanup;
1721 }
1722 qtd->urb = urb;
1723 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1724 list_add_tail(&qtd->qtd_list, head);
1725 }
1726
1727 /* unless the bulk/interrupt caller wants a chance to clean
1728 * up after short reads, hc should advance qh past this urb
1729 */
1730 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1731 || usb_pipecontrol(urb->pipe)))
1732 qtd->hw_alt_next = EHCI_LIST_END;
1733
1734 /*
1735 * control requests may need a terminating data "status" ack;
1736 * bulk ones may need a terminating short packet (zero length).
1737 */
1738 if (likely(urb->transfer_buffer_length != 0)) {
1739 int one_more = 0;
1740
1741 if (usb_pipecontrol(urb->pipe)) {
1742 one_more = 1;
1743 token ^= 0x0100; /* "in" <--> "out" */
1744 token |= QTD_TOGGLE; /* force DATA1 */
1745 } else if (usb_pipebulk(urb->pipe)
1746 && (urb->transfer_flags & URB_ZERO_PACKET)
1747 && !(urb->transfer_buffer_length % maxpacket)) {
1748 one_more = 1;
1749 }
1750 if (one_more) {
1751 qtd_prev = qtd;
1752 qtd = ehci_qtd_alloc(oxu);
1753 if (unlikely(!qtd))
1754 goto cleanup;
1755 qtd->urb = urb;
1756 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1757 list_add_tail(&qtd->qtd_list, head);
1758
1759 /* never any data in such packets */
1760 qtd_fill(qtd, 0, 0, token, 0);
1761 }
1762 }
1763
1764 /* by default, enable interrupt on urb completion */
1765 qtd->hw_token |= cpu_to_le32(QTD_IOC);
1766 return head;
1767
1768 cleanup:
1769 qtd_list_free(oxu, urb, head);
1770 return NULL;
1771 }
1772
1773 /* Each QH holds a qtd list; a QH is used for everything except iso.
1774 *
1775 * For interrupt urbs, the scheduler must set the microframe scheduling
1776 * mask(s) each time the QH gets scheduled. For highspeed, that's
1777 * just one microframe in the s-mask. For split interrupt transactions
1778 * there are additional complications: c-mask, maybe FSTNs.
1779 */
qh_make(struct oxu_hcd * oxu,struct urb * urb,gfp_t flags)1780 static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1781 struct urb *urb, gfp_t flags)
1782 {
1783 struct ehci_qh *qh = oxu_qh_alloc(oxu);
1784 u32 info1 = 0, info2 = 0;
1785 int is_input, type;
1786 int maxp = 0;
1787
1788 if (!qh)
1789 return qh;
1790
1791 /*
1792 * init endpoint/device data for this QH
1793 */
1794 info1 |= usb_pipeendpoint(urb->pipe) << 8;
1795 info1 |= usb_pipedevice(urb->pipe) << 0;
1796
1797 is_input = usb_pipein(urb->pipe);
1798 type = usb_pipetype(urb->pipe);
1799 maxp = usb_maxpacket(urb->dev, urb->pipe);
1800
1801 /* Compute interrupt scheduling parameters just once, and save.
1802 * - allowing for high bandwidth, how many nsec/uframe are used?
1803 * - split transactions need a second CSPLIT uframe; same question
1804 * - splits also need a schedule gap (for full/low speed I/O)
1805 * - qh has a polling interval
1806 *
1807 * For control/bulk requests, the HC or TT handles these.
1808 */
1809 if (type == PIPE_INTERRUPT) {
1810 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1811 is_input, 0,
1812 hb_mult(maxp) * max_packet(maxp)));
1813 qh->start = NO_FRAME;
1814
1815 if (urb->dev->speed == USB_SPEED_HIGH) {
1816 qh->c_usecs = 0;
1817 qh->gap_uf = 0;
1818
1819 qh->period = urb->interval >> 3;
1820 if (qh->period == 0 && urb->interval != 1) {
1821 /* NOTE interval 2 or 4 uframes could work.
1822 * But interval 1 scheduling is simpler, and
1823 * includes high bandwidth.
1824 */
1825 oxu_dbg(oxu, "intr period %d uframes, NYET!\n",
1826 urb->interval);
1827 goto done;
1828 }
1829 } else {
1830 struct usb_tt *tt = urb->dev->tt;
1831 int think_time;
1832
1833 /* gap is f(FS/LS transfer times) */
1834 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1835 is_input, 0, maxp) / (125 * 1000);
1836
1837 /* FIXME this just approximates SPLIT/CSPLIT times */
1838 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
1839 qh->c_usecs = qh->usecs + HS_USECS(0);
1840 qh->usecs = HS_USECS(1);
1841 } else { /* SPLIT+DATA, gap, CSPLIT */
1842 qh->usecs += HS_USECS(1);
1843 qh->c_usecs = HS_USECS(0);
1844 }
1845
1846 think_time = tt ? tt->think_time : 0;
1847 qh->tt_usecs = NS_TO_US(think_time +
1848 usb_calc_bus_time(urb->dev->speed,
1849 is_input, 0, max_packet(maxp)));
1850 qh->period = urb->interval;
1851 }
1852 }
1853
1854 /* support for tt scheduling, and access to toggles */
1855 qh->dev = urb->dev;
1856
1857 /* using TT? */
1858 switch (urb->dev->speed) {
1859 case USB_SPEED_LOW:
1860 info1 |= (1 << 12); /* EPS "low" */
1861 fallthrough;
1862
1863 case USB_SPEED_FULL:
1864 /* EPS 0 means "full" */
1865 if (type != PIPE_INTERRUPT)
1866 info1 |= (EHCI_TUNE_RL_TT << 28);
1867 if (type == PIPE_CONTROL) {
1868 info1 |= (1 << 27); /* for TT */
1869 info1 |= 1 << 14; /* toggle from qtd */
1870 }
1871 info1 |= maxp << 16;
1872
1873 info2 |= (EHCI_TUNE_MULT_TT << 30);
1874 info2 |= urb->dev->ttport << 23;
1875
1876 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1877
1878 break;
1879
1880 case USB_SPEED_HIGH: /* no TT involved */
1881 info1 |= (2 << 12); /* EPS "high" */
1882 if (type == PIPE_CONTROL) {
1883 info1 |= (EHCI_TUNE_RL_HS << 28);
1884 info1 |= 64 << 16; /* usb2 fixed maxpacket */
1885 info1 |= 1 << 14; /* toggle from qtd */
1886 info2 |= (EHCI_TUNE_MULT_HS << 30);
1887 } else if (type == PIPE_BULK) {
1888 info1 |= (EHCI_TUNE_RL_HS << 28);
1889 info1 |= 512 << 16; /* usb2 fixed maxpacket */
1890 info2 |= (EHCI_TUNE_MULT_HS << 30);
1891 } else { /* PIPE_INTERRUPT */
1892 info1 |= max_packet(maxp) << 16;
1893 info2 |= hb_mult(maxp) << 30;
1894 }
1895 break;
1896 default:
1897 oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed);
1898 done:
1899 qh_put(qh);
1900 return NULL;
1901 }
1902
1903 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1904
1905 /* init as live, toggle clear, advance to dummy */
1906 qh->qh_state = QH_STATE_IDLE;
1907 qh->hw_info1 = cpu_to_le32(info1);
1908 qh->hw_info2 = cpu_to_le32(info2);
1909 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1910 qh_refresh(oxu, qh);
1911 return qh;
1912 }
1913
1914 /* Move qh (and its qtds) onto async queue; maybe enable queue.
1915 */
qh_link_async(struct oxu_hcd * oxu,struct ehci_qh * qh)1916 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1917 {
1918 __le32 dma = QH_NEXT(qh->qh_dma);
1919 struct ehci_qh *head;
1920
1921 /* (re)start the async schedule? */
1922 head = oxu->async;
1923 timer_action_done(oxu, TIMER_ASYNC_OFF);
1924 if (!head->qh_next.qh) {
1925 u32 cmd = readl(&oxu->regs->command);
1926
1927 if (!(cmd & CMD_ASE)) {
1928 /* in case a clear of CMD_ASE didn't take yet */
1929 (void)handshake(oxu, &oxu->regs->status,
1930 STS_ASS, 0, 150);
1931 cmd |= CMD_ASE | CMD_RUN;
1932 writel(cmd, &oxu->regs->command);
1933 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1934 /* posted write need not be known to HC yet ... */
1935 }
1936 }
1937
1938 /* clear halt and/or toggle; and maybe recover from silicon quirk */
1939 if (qh->qh_state == QH_STATE_IDLE)
1940 qh_refresh(oxu, qh);
1941
1942 /* splice right after start */
1943 qh->qh_next = head->qh_next;
1944 qh->hw_next = head->hw_next;
1945 wmb();
1946
1947 head->qh_next.qh = qh;
1948 head->hw_next = dma;
1949
1950 qh->qh_state = QH_STATE_LINKED;
1951 /* qtd completions reported later by interrupt */
1952 }
1953
1954 #define QH_ADDR_MASK cpu_to_le32(0x7f)
1955
1956 /*
1957 * For control/bulk/interrupt, return QH with these TDs appended.
1958 * Allocates and initializes the QH if necessary.
1959 * Returns null if it can't allocate a QH it needs to.
1960 * If the QH has TDs (urbs) already, that's great.
1961 */
qh_append_tds(struct oxu_hcd * oxu,struct urb * urb,struct list_head * qtd_list,int epnum,void ** ptr)1962 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1963 struct urb *urb, struct list_head *qtd_list,
1964 int epnum, void **ptr)
1965 {
1966 struct ehci_qh *qh = NULL;
1967
1968 qh = (struct ehci_qh *) *ptr;
1969 if (unlikely(qh == NULL)) {
1970 /* can't sleep here, we have oxu->lock... */
1971 qh = qh_make(oxu, urb, GFP_ATOMIC);
1972 *ptr = qh;
1973 }
1974 if (likely(qh != NULL)) {
1975 struct ehci_qtd *qtd;
1976
1977 if (unlikely(list_empty(qtd_list)))
1978 qtd = NULL;
1979 else
1980 qtd = list_entry(qtd_list->next, struct ehci_qtd,
1981 qtd_list);
1982
1983 /* control qh may need patching ... */
1984 if (unlikely(epnum == 0)) {
1985
1986 /* usb_reset_device() briefly reverts to address 0 */
1987 if (usb_pipedevice(urb->pipe) == 0)
1988 qh->hw_info1 &= ~QH_ADDR_MASK;
1989 }
1990
1991 /* just one way to queue requests: swap with the dummy qtd.
1992 * only hc or qh_refresh() ever modify the overlay.
1993 */
1994 if (likely(qtd != NULL)) {
1995 struct ehci_qtd *dummy;
1996 dma_addr_t dma;
1997 __le32 token;
1998
1999 /* to avoid racing the HC, use the dummy td instead of
2000 * the first td of our list (becomes new dummy). both
2001 * tds stay deactivated until we're done, when the
2002 * HC is allowed to fetch the old dummy (4.10.2).
2003 */
2004 token = qtd->hw_token;
2005 qtd->hw_token = HALT_BIT;
2006 wmb();
2007 dummy = qh->dummy;
2008
2009 dma = dummy->qtd_dma;
2010 *dummy = *qtd;
2011 dummy->qtd_dma = dma;
2012
2013 list_del(&qtd->qtd_list);
2014 list_add(&dummy->qtd_list, qtd_list);
2015 list_splice(qtd_list, qh->qtd_list.prev);
2016
2017 ehci_qtd_init(qtd, qtd->qtd_dma);
2018 qh->dummy = qtd;
2019
2020 /* hc must see the new dummy at list end */
2021 dma = qtd->qtd_dma;
2022 qtd = list_entry(qh->qtd_list.prev,
2023 struct ehci_qtd, qtd_list);
2024 qtd->hw_next = QTD_NEXT(dma);
2025
2026 /* let the hc process these next qtds */
2027 dummy->hw_token = (token & ~(0x80));
2028 wmb();
2029 dummy->hw_token = token;
2030
2031 urb->hcpriv = qh_get(qh);
2032 }
2033 }
2034 return qh;
2035 }
2036
submit_async(struct oxu_hcd * oxu,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)2037 static int submit_async(struct oxu_hcd *oxu, struct urb *urb,
2038 struct list_head *qtd_list, gfp_t mem_flags)
2039 {
2040 int epnum = urb->ep->desc.bEndpointAddress;
2041 unsigned long flags;
2042 struct ehci_qh *qh = NULL;
2043 int rc = 0;
2044 #ifdef OXU_URB_TRACE
2045 struct ehci_qtd *qtd;
2046
2047 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
2048
2049 oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2050 __func__, urb->dev->devpath, urb,
2051 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
2052 urb->transfer_buffer_length,
2053 qtd, urb->ep->hcpriv);
2054 #endif
2055
2056 spin_lock_irqsave(&oxu->lock, flags);
2057 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2058 rc = -ESHUTDOWN;
2059 goto done;
2060 }
2061
2062 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2063 if (unlikely(qh == NULL)) {
2064 rc = -ENOMEM;
2065 goto done;
2066 }
2067
2068 /* Control/bulk operations through TTs don't need scheduling,
2069 * the HC and TT handle it when the TT has a buffer ready.
2070 */
2071 if (likely(qh->qh_state == QH_STATE_IDLE))
2072 qh_link_async(oxu, qh_get(qh));
2073 done:
2074 spin_unlock_irqrestore(&oxu->lock, flags);
2075 if (unlikely(qh == NULL))
2076 qtd_list_free(oxu, urb, qtd_list);
2077 return rc;
2078 }
2079
2080 /* The async qh for the qtds being reclaimed are now unlinked from the HC */
2081
end_unlink_async(struct oxu_hcd * oxu)2082 static void end_unlink_async(struct oxu_hcd *oxu)
2083 {
2084 struct ehci_qh *qh = oxu->reclaim;
2085 struct ehci_qh *next;
2086
2087 timer_action_done(oxu, TIMER_IAA_WATCHDOG);
2088
2089 qh->qh_state = QH_STATE_IDLE;
2090 qh->qh_next.qh = NULL;
2091 qh_put(qh); /* refcount from reclaim */
2092
2093 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
2094 next = qh->reclaim;
2095 oxu->reclaim = next;
2096 oxu->reclaim_ready = 0;
2097 qh->reclaim = NULL;
2098
2099 qh_completions(oxu, qh);
2100
2101 if (!list_empty(&qh->qtd_list)
2102 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2103 qh_link_async(oxu, qh);
2104 else {
2105 qh_put(qh); /* refcount from async list */
2106
2107 /* it's not free to turn the async schedule on/off; leave it
2108 * active but idle for a while once it empties.
2109 */
2110 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
2111 && oxu->async->qh_next.qh == NULL)
2112 timer_action(oxu, TIMER_ASYNC_OFF);
2113 }
2114
2115 if (next) {
2116 oxu->reclaim = NULL;
2117 start_unlink_async(oxu, next);
2118 }
2119 }
2120
2121 /* makes sure the async qh will become idle */
2122 /* caller must own oxu->lock */
2123
start_unlink_async(struct oxu_hcd * oxu,struct ehci_qh * qh)2124 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2125 {
2126 int cmd = readl(&oxu->regs->command);
2127 struct ehci_qh *prev;
2128
2129 #ifdef DEBUG
2130 assert_spin_locked(&oxu->lock);
2131 BUG_ON(oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
2132 && qh->qh_state != QH_STATE_UNLINK_WAIT));
2133 #endif
2134
2135 /* stop async schedule right now? */
2136 if (unlikely(qh == oxu->async)) {
2137 /* can't get here without STS_ASS set */
2138 if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
2139 && !oxu->reclaim) {
2140 /* ... and CMD_IAAD clear */
2141 writel(cmd & ~CMD_ASE, &oxu->regs->command);
2142 wmb();
2143 /* handshake later, if we need to */
2144 timer_action_done(oxu, TIMER_ASYNC_OFF);
2145 }
2146 return;
2147 }
2148
2149 qh->qh_state = QH_STATE_UNLINK;
2150 oxu->reclaim = qh = qh_get(qh);
2151
2152 prev = oxu->async;
2153 while (prev->qh_next.qh != qh)
2154 prev = prev->qh_next.qh;
2155
2156 prev->hw_next = qh->hw_next;
2157 prev->qh_next = qh->qh_next;
2158 wmb();
2159
2160 if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
2161 /* if (unlikely(qh->reclaim != 0))
2162 * this will recurse, probably not much
2163 */
2164 end_unlink_async(oxu);
2165 return;
2166 }
2167
2168 oxu->reclaim_ready = 0;
2169 cmd |= CMD_IAAD;
2170 writel(cmd, &oxu->regs->command);
2171 (void) readl(&oxu->regs->command);
2172 timer_action(oxu, TIMER_IAA_WATCHDOG);
2173 }
2174
scan_async(struct oxu_hcd * oxu)2175 static void scan_async(struct oxu_hcd *oxu)
2176 {
2177 struct ehci_qh *qh;
2178 enum ehci_timer_action action = TIMER_IO_WATCHDOG;
2179
2180 if (!++(oxu->stamp))
2181 oxu->stamp++;
2182 timer_action_done(oxu, TIMER_ASYNC_SHRINK);
2183 rescan:
2184 qh = oxu->async->qh_next.qh;
2185 if (likely(qh != NULL)) {
2186 do {
2187 /* clean any finished work for this qh */
2188 if (!list_empty(&qh->qtd_list)
2189 && qh->stamp != oxu->stamp) {
2190 int temp;
2191
2192 /* unlinks could happen here; completion
2193 * reporting drops the lock. rescan using
2194 * the latest schedule, but don't rescan
2195 * qhs we already finished (no looping).
2196 */
2197 qh = qh_get(qh);
2198 qh->stamp = oxu->stamp;
2199 temp = qh_completions(oxu, qh);
2200 qh_put(qh);
2201 if (temp != 0)
2202 goto rescan;
2203 }
2204
2205 /* unlink idle entries, reducing HC PCI usage as well
2206 * as HCD schedule-scanning costs. delay for any qh
2207 * we just scanned, there's a not-unusual case that it
2208 * doesn't stay idle for long.
2209 * (plus, avoids some kind of re-activation race.)
2210 */
2211 if (list_empty(&qh->qtd_list)) {
2212 if (qh->stamp == oxu->stamp)
2213 action = TIMER_ASYNC_SHRINK;
2214 else if (!oxu->reclaim
2215 && qh->qh_state == QH_STATE_LINKED)
2216 start_unlink_async(oxu, qh);
2217 }
2218
2219 qh = qh->qh_next.qh;
2220 } while (qh);
2221 }
2222 if (action == TIMER_ASYNC_SHRINK)
2223 timer_action(oxu, TIMER_ASYNC_SHRINK);
2224 }
2225
2226 /*
2227 * periodic_next_shadow - return "next" pointer on shadow list
2228 * @periodic: host pointer to qh/itd/sitd
2229 * @tag: hardware tag for type of this record
2230 */
periodic_next_shadow(union ehci_shadow * periodic,__le32 tag)2231 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
2232 __le32 tag)
2233 {
2234 switch (tag) {
2235 default:
2236 case Q_TYPE_QH:
2237 return &periodic->qh->qh_next;
2238 }
2239 }
2240
2241 /* caller must hold oxu->lock */
periodic_unlink(struct oxu_hcd * oxu,unsigned frame,void * ptr)2242 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
2243 {
2244 union ehci_shadow *prev_p = &oxu->pshadow[frame];
2245 __le32 *hw_p = &oxu->periodic[frame];
2246 union ehci_shadow here = *prev_p;
2247
2248 /* find predecessor of "ptr"; hw and shadow lists are in sync */
2249 while (here.ptr && here.ptr != ptr) {
2250 prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
2251 hw_p = here.hw_next;
2252 here = *prev_p;
2253 }
2254 /* an interrupt entry (at list end) could have been shared */
2255 if (!here.ptr)
2256 return;
2257
2258 /* update shadow and hardware lists ... the old "next" pointers
2259 * from ptr may still be in use, the caller updates them.
2260 */
2261 *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
2262 *hw_p = *here.hw_next;
2263 }
2264
2265 /* how many of the uframe's 125 usecs are allocated? */
periodic_usecs(struct oxu_hcd * oxu,unsigned frame,unsigned uframe)2266 static unsigned short periodic_usecs(struct oxu_hcd *oxu,
2267 unsigned frame, unsigned uframe)
2268 {
2269 __le32 *hw_p = &oxu->periodic[frame];
2270 union ehci_shadow *q = &oxu->pshadow[frame];
2271 unsigned usecs = 0;
2272
2273 while (q->ptr) {
2274 switch (Q_NEXT_TYPE(*hw_p)) {
2275 case Q_TYPE_QH:
2276 default:
2277 /* is it in the S-mask? */
2278 if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
2279 usecs += q->qh->usecs;
2280 /* ... or C-mask? */
2281 if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
2282 usecs += q->qh->c_usecs;
2283 hw_p = &q->qh->hw_next;
2284 q = &q->qh->qh_next;
2285 break;
2286 }
2287 }
2288 #ifdef DEBUG
2289 if (usecs > 100)
2290 oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
2291 frame * 8 + uframe, usecs);
2292 #endif
2293 return usecs;
2294 }
2295
enable_periodic(struct oxu_hcd * oxu)2296 static int enable_periodic(struct oxu_hcd *oxu)
2297 {
2298 u32 cmd;
2299 int status;
2300
2301 /* did clearing PSE did take effect yet?
2302 * takes effect only at frame boundaries...
2303 */
2304 status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
2305 if (status != 0) {
2306 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2307 usb_hc_died(oxu_to_hcd(oxu));
2308 return status;
2309 }
2310
2311 cmd = readl(&oxu->regs->command) | CMD_PSE;
2312 writel(cmd, &oxu->regs->command);
2313 /* posted write ... PSS happens later */
2314 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
2315
2316 /* make sure ehci_work scans these */
2317 oxu->next_uframe = readl(&oxu->regs->frame_index)
2318 % (oxu->periodic_size << 3);
2319 return 0;
2320 }
2321
disable_periodic(struct oxu_hcd * oxu)2322 static int disable_periodic(struct oxu_hcd *oxu)
2323 {
2324 u32 cmd;
2325 int status;
2326
2327 /* did setting PSE not take effect yet?
2328 * takes effect only at frame boundaries...
2329 */
2330 status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
2331 if (status != 0) {
2332 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2333 usb_hc_died(oxu_to_hcd(oxu));
2334 return status;
2335 }
2336
2337 cmd = readl(&oxu->regs->command) & ~CMD_PSE;
2338 writel(cmd, &oxu->regs->command);
2339 /* posted write ... */
2340
2341 oxu->next_uframe = -1;
2342 return 0;
2343 }
2344
2345 /* periodic schedule slots have iso tds (normal or split) first, then a
2346 * sparse tree for active interrupt transfers.
2347 *
2348 * this just links in a qh; caller guarantees uframe masks are set right.
2349 * no FSTN support (yet; oxu 0.96+)
2350 */
qh_link_periodic(struct oxu_hcd * oxu,struct ehci_qh * qh)2351 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2352 {
2353 unsigned i;
2354 unsigned period = qh->period;
2355
2356 dev_dbg(&qh->dev->dev,
2357 "link qh%d-%04x/%p start %d [%d/%d us]\n",
2358 period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2359 qh, qh->start, qh->usecs, qh->c_usecs);
2360
2361 /* high bandwidth, or otherwise every microframe */
2362 if (period == 0)
2363 period = 1;
2364
2365 for (i = qh->start; i < oxu->periodic_size; i += period) {
2366 union ehci_shadow *prev = &oxu->pshadow[i];
2367 __le32 *hw_p = &oxu->periodic[i];
2368 union ehci_shadow here = *prev;
2369 __le32 type = 0;
2370
2371 /* skip the iso nodes at list head */
2372 while (here.ptr) {
2373 type = Q_NEXT_TYPE(*hw_p);
2374 if (type == Q_TYPE_QH)
2375 break;
2376 prev = periodic_next_shadow(prev, type);
2377 hw_p = &here.qh->hw_next;
2378 here = *prev;
2379 }
2380
2381 /* sorting each branch by period (slow-->fast)
2382 * enables sharing interior tree nodes
2383 */
2384 while (here.ptr && qh != here.qh) {
2385 if (qh->period > here.qh->period)
2386 break;
2387 prev = &here.qh->qh_next;
2388 hw_p = &here.qh->hw_next;
2389 here = *prev;
2390 }
2391 /* link in this qh, unless some earlier pass did that */
2392 if (qh != here.qh) {
2393 qh->qh_next = here;
2394 if (here.qh)
2395 qh->hw_next = *hw_p;
2396 wmb();
2397 prev->qh = qh;
2398 *hw_p = QH_NEXT(qh->qh_dma);
2399 }
2400 }
2401 qh->qh_state = QH_STATE_LINKED;
2402 qh_get(qh);
2403
2404 /* update per-qh bandwidth for usbfs */
2405 oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
2406 ? ((qh->usecs + qh->c_usecs) / qh->period)
2407 : (qh->usecs * 8);
2408
2409 /* maybe enable periodic schedule processing */
2410 if (!oxu->periodic_sched++)
2411 return enable_periodic(oxu);
2412
2413 return 0;
2414 }
2415
qh_unlink_periodic(struct oxu_hcd * oxu,struct ehci_qh * qh)2416 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2417 {
2418 unsigned i;
2419 unsigned period;
2420
2421 /* FIXME:
2422 * IF this isn't high speed
2423 * and this qh is active in the current uframe
2424 * (and overlay token SplitXstate is false?)
2425 * THEN
2426 * qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2427 */
2428
2429 /* high bandwidth, or otherwise part of every microframe */
2430 period = qh->period;
2431 if (period == 0)
2432 period = 1;
2433
2434 for (i = qh->start; i < oxu->periodic_size; i += period)
2435 periodic_unlink(oxu, i, qh);
2436
2437 /* update per-qh bandwidth for usbfs */
2438 oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2439 ? ((qh->usecs + qh->c_usecs) / qh->period)
2440 : (qh->usecs * 8);
2441
2442 dev_dbg(&qh->dev->dev,
2443 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2444 qh->period,
2445 le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2446 qh, qh->start, qh->usecs, qh->c_usecs);
2447
2448 /* qh->qh_next still "live" to HC */
2449 qh->qh_state = QH_STATE_UNLINK;
2450 qh->qh_next.ptr = NULL;
2451 qh_put(qh);
2452
2453 /* maybe turn off periodic schedule */
2454 oxu->periodic_sched--;
2455 if (!oxu->periodic_sched)
2456 (void) disable_periodic(oxu);
2457 }
2458
intr_deschedule(struct oxu_hcd * oxu,struct ehci_qh * qh)2459 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2460 {
2461 unsigned wait;
2462
2463 qh_unlink_periodic(oxu, qh);
2464
2465 /* simple/paranoid: always delay, expecting the HC needs to read
2466 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2467 * expect hub_wq to clean up after any CSPLITs we won't issue.
2468 * active high speed queues may need bigger delays...
2469 */
2470 if (list_empty(&qh->qtd_list)
2471 || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2472 wait = 2;
2473 else
2474 wait = 55; /* worst case: 3 * 1024 */
2475
2476 udelay(wait);
2477 qh->qh_state = QH_STATE_IDLE;
2478 qh->hw_next = EHCI_LIST_END;
2479 wmb();
2480 }
2481
check_period(struct oxu_hcd * oxu,unsigned frame,unsigned uframe,unsigned period,unsigned usecs)2482 static int check_period(struct oxu_hcd *oxu,
2483 unsigned frame, unsigned uframe,
2484 unsigned period, unsigned usecs)
2485 {
2486 int claimed;
2487
2488 /* complete split running into next frame?
2489 * given FSTN support, we could sometimes check...
2490 */
2491 if (uframe >= 8)
2492 return 0;
2493
2494 /*
2495 * 80% periodic == 100 usec/uframe available
2496 * convert "usecs we need" to "max already claimed"
2497 */
2498 usecs = 100 - usecs;
2499
2500 /* we "know" 2 and 4 uframe intervals were rejected; so
2501 * for period 0, check _every_ microframe in the schedule.
2502 */
2503 if (unlikely(period == 0)) {
2504 do {
2505 for (uframe = 0; uframe < 7; uframe++) {
2506 claimed = periodic_usecs(oxu, frame, uframe);
2507 if (claimed > usecs)
2508 return 0;
2509 }
2510 } while ((frame += 1) < oxu->periodic_size);
2511
2512 /* just check the specified uframe, at that period */
2513 } else {
2514 do {
2515 claimed = periodic_usecs(oxu, frame, uframe);
2516 if (claimed > usecs)
2517 return 0;
2518 } while ((frame += period) < oxu->periodic_size);
2519 }
2520
2521 return 1;
2522 }
2523
check_intr_schedule(struct oxu_hcd * oxu,unsigned frame,unsigned uframe,const struct ehci_qh * qh,__le32 * c_maskp)2524 static int check_intr_schedule(struct oxu_hcd *oxu,
2525 unsigned frame, unsigned uframe,
2526 const struct ehci_qh *qh, __le32 *c_maskp)
2527 {
2528 int retval = -ENOSPC;
2529
2530 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
2531 goto done;
2532
2533 if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2534 goto done;
2535 if (!qh->c_usecs) {
2536 retval = 0;
2537 *c_maskp = 0;
2538 goto done;
2539 }
2540
2541 done:
2542 return retval;
2543 }
2544
2545 /* "first fit" scheduling policy used the first time through,
2546 * or when the previous schedule slot can't be re-used.
2547 */
qh_schedule(struct oxu_hcd * oxu,struct ehci_qh * qh)2548 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2549 {
2550 int status;
2551 unsigned uframe;
2552 __le32 c_mask;
2553 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
2554
2555 qh_refresh(oxu, qh);
2556 qh->hw_next = EHCI_LIST_END;
2557 frame = qh->start;
2558
2559 /* reuse the previous schedule slots, if we can */
2560 if (frame < qh->period) {
2561 uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2562 status = check_intr_schedule(oxu, frame, --uframe,
2563 qh, &c_mask);
2564 } else {
2565 uframe = 0;
2566 c_mask = 0;
2567 status = -ENOSPC;
2568 }
2569
2570 /* else scan the schedule to find a group of slots such that all
2571 * uframes have enough periodic bandwidth available.
2572 */
2573 if (status) {
2574 /* "normal" case, uframing flexible except with splits */
2575 if (qh->period) {
2576 frame = qh->period - 1;
2577 do {
2578 for (uframe = 0; uframe < 8; uframe++) {
2579 status = check_intr_schedule(oxu,
2580 frame, uframe, qh,
2581 &c_mask);
2582 if (status == 0)
2583 break;
2584 }
2585 } while (status && frame--);
2586
2587 /* qh->period == 0 means every uframe */
2588 } else {
2589 frame = 0;
2590 status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2591 }
2592 if (status)
2593 goto done;
2594 qh->start = frame;
2595
2596 /* reset S-frame and (maybe) C-frame masks */
2597 qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2598 qh->hw_info2 |= qh->period
2599 ? cpu_to_le32(1 << uframe)
2600 : cpu_to_le32(QH_SMASK);
2601 qh->hw_info2 |= c_mask;
2602 } else
2603 oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2604
2605 /* stuff into the periodic schedule */
2606 status = qh_link_periodic(oxu, qh);
2607 done:
2608 return status;
2609 }
2610
intr_submit(struct oxu_hcd * oxu,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)2611 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2612 struct list_head *qtd_list, gfp_t mem_flags)
2613 {
2614 unsigned epnum;
2615 unsigned long flags;
2616 struct ehci_qh *qh;
2617 int status = 0;
2618 struct list_head empty;
2619
2620 /* get endpoint and transfer/schedule data */
2621 epnum = urb->ep->desc.bEndpointAddress;
2622
2623 spin_lock_irqsave(&oxu->lock, flags);
2624
2625 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2626 status = -ESHUTDOWN;
2627 goto done;
2628 }
2629
2630 /* get qh and force any scheduling errors */
2631 INIT_LIST_HEAD(&empty);
2632 qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2633 if (qh == NULL) {
2634 status = -ENOMEM;
2635 goto done;
2636 }
2637 if (qh->qh_state == QH_STATE_IDLE) {
2638 status = qh_schedule(oxu, qh);
2639 if (status != 0)
2640 goto done;
2641 }
2642
2643 /* then queue the urb's tds to the qh */
2644 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2645 BUG_ON(qh == NULL);
2646
2647 /* ... update usbfs periodic stats */
2648 oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2649
2650 done:
2651 spin_unlock_irqrestore(&oxu->lock, flags);
2652 if (status)
2653 qtd_list_free(oxu, urb, qtd_list);
2654
2655 return status;
2656 }
2657
itd_submit(struct oxu_hcd * oxu,struct urb * urb,gfp_t mem_flags)2658 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2659 gfp_t mem_flags)
2660 {
2661 oxu_dbg(oxu, "iso support is missing!\n");
2662 return -ENOSYS;
2663 }
2664
sitd_submit(struct oxu_hcd * oxu,struct urb * urb,gfp_t mem_flags)2665 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2666 gfp_t mem_flags)
2667 {
2668 oxu_dbg(oxu, "split iso support is missing!\n");
2669 return -ENOSYS;
2670 }
2671
scan_periodic(struct oxu_hcd * oxu)2672 static void scan_periodic(struct oxu_hcd *oxu)
2673 {
2674 unsigned frame, clock, now_uframe, mod;
2675 unsigned modified;
2676
2677 mod = oxu->periodic_size << 3;
2678
2679 /*
2680 * When running, scan from last scan point up to "now"
2681 * else clean up by scanning everything that's left.
2682 * Touches as few pages as possible: cache-friendly.
2683 */
2684 now_uframe = oxu->next_uframe;
2685 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2686 clock = readl(&oxu->regs->frame_index);
2687 else
2688 clock = now_uframe + mod - 1;
2689 clock %= mod;
2690
2691 for (;;) {
2692 union ehci_shadow q, *q_p;
2693 __le32 type, *hw_p;
2694
2695 /* don't scan past the live uframe */
2696 frame = now_uframe >> 3;
2697 if (frame != (clock >> 3)) {
2698 /* safe to scan the whole frame at once */
2699 now_uframe |= 0x07;
2700 }
2701
2702 restart:
2703 /* scan each element in frame's queue for completions */
2704 q_p = &oxu->pshadow[frame];
2705 hw_p = &oxu->periodic[frame];
2706 q.ptr = q_p->ptr;
2707 type = Q_NEXT_TYPE(*hw_p);
2708 modified = 0;
2709
2710 while (q.ptr != NULL) {
2711 union ehci_shadow temp;
2712
2713 switch (type) {
2714 case Q_TYPE_QH:
2715 /* handle any completions */
2716 temp.qh = qh_get(q.qh);
2717 type = Q_NEXT_TYPE(q.qh->hw_next);
2718 q = q.qh->qh_next;
2719 modified = qh_completions(oxu, temp.qh);
2720 if (unlikely(list_empty(&temp.qh->qtd_list)))
2721 intr_deschedule(oxu, temp.qh);
2722 qh_put(temp.qh);
2723 break;
2724 default:
2725 oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n",
2726 type, frame, q.ptr);
2727 q.ptr = NULL;
2728 }
2729
2730 /* assume completion callbacks modify the queue */
2731 if (unlikely(modified))
2732 goto restart;
2733 }
2734
2735 /* Stop when we catch up to the HC */
2736
2737 /* FIXME: this assumes we won't get lapped when
2738 * latencies climb; that should be rare, but...
2739 * detect it, and just go all the way around.
2740 * FLR might help detect this case, so long as latencies
2741 * don't exceed periodic_size msec (default 1.024 sec).
2742 */
2743
2744 /* FIXME: likewise assumes HC doesn't halt mid-scan */
2745
2746 if (now_uframe == clock) {
2747 unsigned now;
2748
2749 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2750 break;
2751 oxu->next_uframe = now_uframe;
2752 now = readl(&oxu->regs->frame_index) % mod;
2753 if (now_uframe == now)
2754 break;
2755
2756 /* rescan the rest of this frame, then ... */
2757 clock = now;
2758 } else {
2759 now_uframe++;
2760 now_uframe %= mod;
2761 }
2762 }
2763 }
2764
2765 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
2766 * The firmware seems to think that powering off is a wakeup event!
2767 * This routine turns off remote wakeup and everything else, on all ports.
2768 */
ehci_turn_off_all_ports(struct oxu_hcd * oxu)2769 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2770 {
2771 int port = HCS_N_PORTS(oxu->hcs_params);
2772
2773 while (port--)
2774 writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2775 }
2776
ehci_port_power(struct oxu_hcd * oxu,int is_on)2777 static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2778 {
2779 unsigned port;
2780
2781 if (!HCS_PPC(oxu->hcs_params))
2782 return;
2783
2784 oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
2785 for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; ) {
2786 if (is_on)
2787 oxu_hub_control(oxu_to_hcd(oxu), SetPortFeature,
2788 USB_PORT_FEAT_POWER, port--, NULL, 0);
2789 else
2790 oxu_hub_control(oxu_to_hcd(oxu), ClearPortFeature,
2791 USB_PORT_FEAT_POWER, port--, NULL, 0);
2792 }
2793
2794 msleep(20);
2795 }
2796
2797 /* Called from some interrupts, timers, and so on.
2798 * It calls driver completion functions, after dropping oxu->lock.
2799 */
ehci_work(struct oxu_hcd * oxu)2800 static void ehci_work(struct oxu_hcd *oxu)
2801 {
2802 timer_action_done(oxu, TIMER_IO_WATCHDOG);
2803 if (oxu->reclaim_ready)
2804 end_unlink_async(oxu);
2805
2806 /* another CPU may drop oxu->lock during a schedule scan while
2807 * it reports urb completions. this flag guards against bogus
2808 * attempts at re-entrant schedule scanning.
2809 */
2810 if (oxu->scanning)
2811 return;
2812 oxu->scanning = 1;
2813 scan_async(oxu);
2814 if (oxu->next_uframe != -1)
2815 scan_periodic(oxu);
2816 oxu->scanning = 0;
2817
2818 /* the IO watchdog guards against hardware or driver bugs that
2819 * misplace IRQs, and should let us run completely without IRQs.
2820 * such lossage has been observed on both VT6202 and VT8235.
2821 */
2822 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2823 (oxu->async->qh_next.ptr != NULL ||
2824 oxu->periodic_sched != 0))
2825 timer_action(oxu, TIMER_IO_WATCHDOG);
2826 }
2827
unlink_async(struct oxu_hcd * oxu,struct ehci_qh * qh)2828 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2829 {
2830 /* if we need to use IAA and it's busy, defer */
2831 if (qh->qh_state == QH_STATE_LINKED
2832 && oxu->reclaim
2833 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2834 struct ehci_qh *last;
2835
2836 for (last = oxu->reclaim;
2837 last->reclaim;
2838 last = last->reclaim)
2839 continue;
2840 qh->qh_state = QH_STATE_UNLINK_WAIT;
2841 last->reclaim = qh;
2842
2843 /* bypass IAA if the hc can't care */
2844 } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2845 end_unlink_async(oxu);
2846
2847 /* something else might have unlinked the qh by now */
2848 if (qh->qh_state == QH_STATE_LINKED)
2849 start_unlink_async(oxu, qh);
2850 }
2851
2852 /*
2853 * USB host controller methods
2854 */
2855
oxu210_hcd_irq(struct usb_hcd * hcd)2856 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2857 {
2858 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2859 u32 status, pcd_status = 0;
2860 int bh;
2861
2862 spin_lock(&oxu->lock);
2863
2864 status = readl(&oxu->regs->status);
2865
2866 /* e.g. cardbus physical eject */
2867 if (status == ~(u32) 0) {
2868 oxu_dbg(oxu, "device removed\n");
2869 goto dead;
2870 }
2871
2872 /* Shared IRQ? */
2873 status &= INTR_MASK;
2874 if (!status || unlikely(hcd->state == HC_STATE_HALT)) {
2875 spin_unlock(&oxu->lock);
2876 return IRQ_NONE;
2877 }
2878
2879 /* clear (just) interrupts */
2880 writel(status, &oxu->regs->status);
2881 readl(&oxu->regs->command); /* unblock posted write */
2882 bh = 0;
2883
2884 #ifdef OXU_VERBOSE_DEBUG
2885 /* unrequested/ignored: Frame List Rollover */
2886 dbg_status(oxu, "irq", status);
2887 #endif
2888
2889 /* INT, ERR, and IAA interrupt rates can be throttled */
2890
2891 /* normal [4.15.1.2] or error [4.15.1.1] completion */
2892 if (likely((status & (STS_INT|STS_ERR)) != 0))
2893 bh = 1;
2894
2895 /* complete the unlinking of some qh [4.15.2.3] */
2896 if (status & STS_IAA) {
2897 oxu->reclaim_ready = 1;
2898 bh = 1;
2899 }
2900
2901 /* remote wakeup [4.3.1] */
2902 if (status & STS_PCD) {
2903 unsigned i = HCS_N_PORTS(oxu->hcs_params);
2904 pcd_status = status;
2905
2906 /* resume root hub? */
2907 if (!(readl(&oxu->regs->command) & CMD_RUN))
2908 usb_hcd_resume_root_hub(hcd);
2909
2910 while (i--) {
2911 int pstatus = readl(&oxu->regs->port_status[i]);
2912
2913 if (pstatus & PORT_OWNER)
2914 continue;
2915 if (!(pstatus & PORT_RESUME)
2916 || oxu->reset_done[i] != 0)
2917 continue;
2918
2919 /* start USB_RESUME_TIMEOUT resume signaling from this
2920 * port, and make hub_wq collect PORT_STAT_C_SUSPEND to
2921 * stop that signaling.
2922 */
2923 oxu->reset_done[i] = jiffies +
2924 msecs_to_jiffies(USB_RESUME_TIMEOUT);
2925 oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2926 mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2927 }
2928 }
2929
2930 /* PCI errors [4.15.2.4] */
2931 if (unlikely((status & STS_FATAL) != 0)) {
2932 /* bogus "fatal" IRQs appear on some chips... why? */
2933 status = readl(&oxu->regs->status);
2934 dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2935 dbg_status(oxu, "fatal", status);
2936 if (status & STS_HALT) {
2937 oxu_err(oxu, "fatal error\n");
2938 dead:
2939 ehci_reset(oxu);
2940 writel(0, &oxu->regs->configured_flag);
2941 usb_hc_died(hcd);
2942 /* generic layer kills/unlinks all urbs, then
2943 * uses oxu_stop to clean up the rest
2944 */
2945 bh = 1;
2946 }
2947 }
2948
2949 if (bh)
2950 ehci_work(oxu);
2951 spin_unlock(&oxu->lock);
2952 if (pcd_status & STS_PCD)
2953 usb_hcd_poll_rh_status(hcd);
2954 return IRQ_HANDLED;
2955 }
2956
oxu_irq(struct usb_hcd * hcd)2957 static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2958 {
2959 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2960 int ret = IRQ_HANDLED;
2961
2962 u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2963 u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2964
2965 /* Disable all interrupt */
2966 oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2967
2968 if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2969 (!oxu->is_otg && (status & OXU_USBSPHI)))
2970 oxu210_hcd_irq(hcd);
2971 else
2972 ret = IRQ_NONE;
2973
2974 /* Enable all interrupt back */
2975 oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2976
2977 return ret;
2978 }
2979
oxu_watchdog(struct timer_list * t)2980 static void oxu_watchdog(struct timer_list *t)
2981 {
2982 struct oxu_hcd *oxu = from_timer(oxu, t, watchdog);
2983 unsigned long flags;
2984
2985 spin_lock_irqsave(&oxu->lock, flags);
2986
2987 /* lost IAA irqs wedge things badly; seen with a vt8235 */
2988 if (oxu->reclaim) {
2989 u32 status = readl(&oxu->regs->status);
2990 if (status & STS_IAA) {
2991 oxu_vdbg(oxu, "lost IAA\n");
2992 writel(STS_IAA, &oxu->regs->status);
2993 oxu->reclaim_ready = 1;
2994 }
2995 }
2996
2997 /* stop async processing after it's idled a bit */
2998 if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2999 start_unlink_async(oxu, oxu->async);
3000
3001 /* oxu could run by timer, without IRQs ... */
3002 ehci_work(oxu);
3003
3004 spin_unlock_irqrestore(&oxu->lock, flags);
3005 }
3006
3007 /* One-time init, only for memory state.
3008 */
oxu_hcd_init(struct usb_hcd * hcd)3009 static int oxu_hcd_init(struct usb_hcd *hcd)
3010 {
3011 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3012 u32 temp;
3013 int retval;
3014 u32 hcc_params;
3015
3016 spin_lock_init(&oxu->lock);
3017
3018 timer_setup(&oxu->watchdog, oxu_watchdog, 0);
3019
3020 /*
3021 * hw default: 1K periodic list heads, one per frame.
3022 * periodic_size can shrink by USBCMD update if hcc_params allows.
3023 */
3024 oxu->periodic_size = DEFAULT_I_TDPS;
3025 retval = ehci_mem_init(oxu, GFP_KERNEL);
3026 if (retval < 0)
3027 return retval;
3028
3029 /* controllers may cache some of the periodic schedule ... */
3030 hcc_params = readl(&oxu->caps->hcc_params);
3031 if (HCC_ISOC_CACHE(hcc_params)) /* full frame cache */
3032 oxu->i_thresh = 8;
3033 else /* N microframes cached */
3034 oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
3035
3036 oxu->reclaim = NULL;
3037 oxu->reclaim_ready = 0;
3038 oxu->next_uframe = -1;
3039
3040 /*
3041 * dedicate a qh for the async ring head, since we couldn't unlink
3042 * a 'real' qh without stopping the async schedule [4.8]. use it
3043 * as the 'reclamation list head' too.
3044 * its dummy is used in hw_alt_next of many tds, to prevent the qh
3045 * from automatically advancing to the next td after short reads.
3046 */
3047 oxu->async->qh_next.qh = NULL;
3048 oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
3049 oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
3050 oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
3051 oxu->async->hw_qtd_next = EHCI_LIST_END;
3052 oxu->async->qh_state = QH_STATE_LINKED;
3053 oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
3054
3055 /* clear interrupt enables, set irq latency */
3056 if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
3057 log2_irq_thresh = 0;
3058 temp = 1 << (16 + log2_irq_thresh);
3059 if (HCC_CANPARK(hcc_params)) {
3060 /* HW default park == 3, on hardware that supports it (like
3061 * NVidia and ALI silicon), maximizes throughput on the async
3062 * schedule by avoiding QH fetches between transfers.
3063 *
3064 * With fast usb storage devices and NForce2, "park" seems to
3065 * make problems: throughput reduction (!), data errors...
3066 */
3067 if (park) {
3068 park = min(park, (unsigned) 3);
3069 temp |= CMD_PARK;
3070 temp |= park << 8;
3071 }
3072 oxu_dbg(oxu, "park %d\n", park);
3073 }
3074 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
3075 /* periodic schedule size can be smaller than default */
3076 temp &= ~(3 << 2);
3077 temp |= (EHCI_TUNE_FLS << 2);
3078 }
3079 oxu->command = temp;
3080
3081 return 0;
3082 }
3083
3084 /* Called during probe() after chip reset completes.
3085 */
oxu_reset(struct usb_hcd * hcd)3086 static int oxu_reset(struct usb_hcd *hcd)
3087 {
3088 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3089
3090 spin_lock_init(&oxu->mem_lock);
3091 INIT_LIST_HEAD(&oxu->urb_list);
3092 oxu->urb_len = 0;
3093
3094 if (oxu->is_otg) {
3095 oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
3096 oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
3097 HC_LENGTH(readl(&oxu->caps->hc_capbase));
3098
3099 oxu->mem = hcd->regs + OXU_SPH_MEM;
3100 } else {
3101 oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
3102 oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
3103 HC_LENGTH(readl(&oxu->caps->hc_capbase));
3104
3105 oxu->mem = hcd->regs + OXU_OTG_MEM;
3106 }
3107
3108 oxu->hcs_params = readl(&oxu->caps->hcs_params);
3109 oxu->sbrn = 0x20;
3110
3111 return oxu_hcd_init(hcd);
3112 }
3113
oxu_run(struct usb_hcd * hcd)3114 static int oxu_run(struct usb_hcd *hcd)
3115 {
3116 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3117 int retval;
3118 u32 temp, hcc_params;
3119
3120 hcd->uses_new_polling = 1;
3121
3122 /* EHCI spec section 4.1 */
3123 retval = ehci_reset(oxu);
3124 if (retval != 0) {
3125 ehci_mem_cleanup(oxu);
3126 return retval;
3127 }
3128 writel(oxu->periodic_dma, &oxu->regs->frame_list);
3129 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3130
3131 /* hcc_params controls whether oxu->regs->segment must (!!!)
3132 * be used; it constrains QH/ITD/SITD and QTD locations.
3133 * dma_pool consistent memory always uses segment zero.
3134 * streaming mappings for I/O buffers, like dma_map_single(),
3135 * can return segments above 4GB, if the device allows.
3136 *
3137 * NOTE: the dma mask is visible through dev->dma_mask, so
3138 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
3139 * Scsi_Host.highmem_io, and so forth. It's readonly to all
3140 * host side drivers though.
3141 */
3142 hcc_params = readl(&oxu->caps->hcc_params);
3143 if (HCC_64BIT_ADDR(hcc_params))
3144 writel(0, &oxu->regs->segment);
3145
3146 oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
3147 CMD_ASE | CMD_RESET);
3148 oxu->command |= CMD_RUN;
3149 writel(oxu->command, &oxu->regs->command);
3150 dbg_cmd(oxu, "init", oxu->command);
3151
3152 /*
3153 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
3154 * are explicitly handed to companion controller(s), so no TT is
3155 * involved with the root hub. (Except where one is integrated,
3156 * and there's no companion controller unless maybe for USB OTG.)
3157 */
3158 hcd->state = HC_STATE_RUNNING;
3159 writel(FLAG_CF, &oxu->regs->configured_flag);
3160 readl(&oxu->regs->command); /* unblock posted writes */
3161
3162 temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
3163 oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
3164 ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
3165 temp >> 8, temp & 0xff, DRIVER_VERSION,
3166 ignore_oc ? ", overcurrent ignored" : "");
3167
3168 writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
3169
3170 return 0;
3171 }
3172
oxu_stop(struct usb_hcd * hcd)3173 static void oxu_stop(struct usb_hcd *hcd)
3174 {
3175 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3176
3177 /* Turn off port power on all root hub ports. */
3178 ehci_port_power(oxu, 0);
3179
3180 /* no more interrupts ... */
3181 del_timer_sync(&oxu->watchdog);
3182
3183 spin_lock_irq(&oxu->lock);
3184 if (HC_IS_RUNNING(hcd->state))
3185 ehci_quiesce(oxu);
3186
3187 ehci_reset(oxu);
3188 writel(0, &oxu->regs->intr_enable);
3189 spin_unlock_irq(&oxu->lock);
3190
3191 /* let companion controllers work when we aren't */
3192 writel(0, &oxu->regs->configured_flag);
3193
3194 /* root hub is shut down separately (first, when possible) */
3195 spin_lock_irq(&oxu->lock);
3196 if (oxu->async)
3197 ehci_work(oxu);
3198 spin_unlock_irq(&oxu->lock);
3199 ehci_mem_cleanup(oxu);
3200
3201 dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
3202 }
3203
3204 /* Kick in for silicon on any bus (not just pci, etc).
3205 * This forcibly disables dma and IRQs, helping kexec and other cases
3206 * where the next system software may expect clean state.
3207 */
oxu_shutdown(struct usb_hcd * hcd)3208 static void oxu_shutdown(struct usb_hcd *hcd)
3209 {
3210 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3211
3212 (void) ehci_halt(oxu);
3213 ehci_turn_off_all_ports(oxu);
3214
3215 /* make BIOS/etc use companion controller during reboot */
3216 writel(0, &oxu->regs->configured_flag);
3217
3218 /* unblock posted writes */
3219 readl(&oxu->regs->configured_flag);
3220 }
3221
3222 /* Non-error returns are a promise to giveback() the urb later
3223 * we drop ownership so next owner (or urb unlink) can get it
3224 *
3225 * urb + dev is in hcd.self.controller.urb_list
3226 * we're queueing TDs onto software and hardware lists
3227 *
3228 * hcd-specific init for hcpriv hasn't been done yet
3229 *
3230 * NOTE: control, bulk, and interrupt share the same code to append TDs
3231 * to a (possibly active) QH, and the same QH scanning code.
3232 */
__oxu_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)3233 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3234 gfp_t mem_flags)
3235 {
3236 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3237 struct list_head qtd_list;
3238
3239 INIT_LIST_HEAD(&qtd_list);
3240
3241 switch (usb_pipetype(urb->pipe)) {
3242 case PIPE_CONTROL:
3243 case PIPE_BULK:
3244 default:
3245 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3246 return -ENOMEM;
3247 return submit_async(oxu, urb, &qtd_list, mem_flags);
3248
3249 case PIPE_INTERRUPT:
3250 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3251 return -ENOMEM;
3252 return intr_submit(oxu, urb, &qtd_list, mem_flags);
3253
3254 case PIPE_ISOCHRONOUS:
3255 if (urb->dev->speed == USB_SPEED_HIGH)
3256 return itd_submit(oxu, urb, mem_flags);
3257 else
3258 return sitd_submit(oxu, urb, mem_flags);
3259 }
3260 }
3261
3262 /* This function is responsible for breaking URBs with big data size
3263 * into smaller size and processing small urbs in sequence.
3264 */
oxu_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)3265 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3266 gfp_t mem_flags)
3267 {
3268 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3269 int num, rem;
3270 void *transfer_buffer;
3271 struct urb *murb;
3272 int i, ret;
3273
3274 /* If not bulk pipe just enqueue the URB */
3275 if (!usb_pipebulk(urb->pipe))
3276 return __oxu_urb_enqueue(hcd, urb, mem_flags);
3277
3278 /* Otherwise we should verify the USB transfer buffer size! */
3279 transfer_buffer = urb->transfer_buffer;
3280
3281 num = urb->transfer_buffer_length / 4096;
3282 rem = urb->transfer_buffer_length % 4096;
3283 if (rem != 0)
3284 num++;
3285
3286 /* If URB is smaller than 4096 bytes just enqueue it! */
3287 if (num == 1)
3288 return __oxu_urb_enqueue(hcd, urb, mem_flags);
3289
3290 /* Ok, we have more job to do! :) */
3291
3292 for (i = 0; i < num - 1; i++) {
3293 /* Get free micro URB poll till a free urb is received */
3294
3295 do {
3296 murb = (struct urb *) oxu_murb_alloc(oxu);
3297 if (!murb)
3298 schedule();
3299 } while (!murb);
3300
3301 /* Coping the urb */
3302 memcpy(murb, urb, sizeof(struct urb));
3303
3304 murb->transfer_buffer_length = 4096;
3305 murb->transfer_buffer = transfer_buffer + i * 4096;
3306
3307 /* Null pointer for the encodes that this is a micro urb */
3308 murb->complete = NULL;
3309
3310 ((struct oxu_murb *) murb)->main = urb;
3311 ((struct oxu_murb *) murb)->last = 0;
3312
3313 /* This loop is to guarantee urb to be processed when there's
3314 * not enough resources at a particular time by retrying.
3315 */
3316 do {
3317 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
3318 if (ret)
3319 schedule();
3320 } while (ret);
3321 }
3322
3323 /* Last urb requires special handling */
3324
3325 /* Get free micro URB poll till a free urb is received */
3326 do {
3327 murb = (struct urb *) oxu_murb_alloc(oxu);
3328 if (!murb)
3329 schedule();
3330 } while (!murb);
3331
3332 /* Coping the urb */
3333 memcpy(murb, urb, sizeof(struct urb));
3334
3335 murb->transfer_buffer_length = rem > 0 ? rem : 4096;
3336 murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
3337
3338 /* Null pointer for the encodes that this is a micro urb */
3339 murb->complete = NULL;
3340
3341 ((struct oxu_murb *) murb)->main = urb;
3342 ((struct oxu_murb *) murb)->last = 1;
3343
3344 do {
3345 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
3346 if (ret)
3347 schedule();
3348 } while (ret);
3349
3350 return ret;
3351 }
3352
3353 /* Remove from hardware lists.
3354 * Completions normally happen asynchronously
3355 */
oxu_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)3356 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
3357 {
3358 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3359 struct ehci_qh *qh;
3360 unsigned long flags;
3361
3362 spin_lock_irqsave(&oxu->lock, flags);
3363 switch (usb_pipetype(urb->pipe)) {
3364 case PIPE_CONTROL:
3365 case PIPE_BULK:
3366 default:
3367 qh = (struct ehci_qh *) urb->hcpriv;
3368 if (!qh)
3369 break;
3370 unlink_async(oxu, qh);
3371 break;
3372
3373 case PIPE_INTERRUPT:
3374 qh = (struct ehci_qh *) urb->hcpriv;
3375 if (!qh)
3376 break;
3377 switch (qh->qh_state) {
3378 case QH_STATE_LINKED:
3379 intr_deschedule(oxu, qh);
3380 fallthrough;
3381 case QH_STATE_IDLE:
3382 qh_completions(oxu, qh);
3383 break;
3384 default:
3385 oxu_dbg(oxu, "bogus qh %p state %d\n",
3386 qh, qh->qh_state);
3387 goto done;
3388 }
3389
3390 /* reschedule QH iff another request is queued */
3391 if (!list_empty(&qh->qtd_list)
3392 && HC_IS_RUNNING(hcd->state)) {
3393 int status;
3394
3395 status = qh_schedule(oxu, qh);
3396 spin_unlock_irqrestore(&oxu->lock, flags);
3397
3398 if (status != 0) {
3399 /* shouldn't happen often, but ...
3400 * FIXME kill those tds' urbs
3401 */
3402 dev_err(hcd->self.controller,
3403 "can't reschedule qh %p, err %d\n", qh,
3404 status);
3405 }
3406 return status;
3407 }
3408 break;
3409 }
3410 done:
3411 spin_unlock_irqrestore(&oxu->lock, flags);
3412 return 0;
3413 }
3414
3415 /* Bulk qh holds the data toggle */
oxu_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * ep)3416 static void oxu_endpoint_disable(struct usb_hcd *hcd,
3417 struct usb_host_endpoint *ep)
3418 {
3419 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3420 unsigned long flags;
3421 struct ehci_qh *qh, *tmp;
3422
3423 /* ASSERT: any requests/urbs are being unlinked */
3424 /* ASSERT: nobody can be submitting urbs for this any more */
3425
3426 rescan:
3427 spin_lock_irqsave(&oxu->lock, flags);
3428 qh = ep->hcpriv;
3429 if (!qh)
3430 goto done;
3431
3432 /* endpoints can be iso streams. for now, we don't
3433 * accelerate iso completions ... so spin a while.
3434 */
3435 if (qh->hw_info1 == 0) {
3436 oxu_vdbg(oxu, "iso delay\n");
3437 goto idle_timeout;
3438 }
3439
3440 if (!HC_IS_RUNNING(hcd->state))
3441 qh->qh_state = QH_STATE_IDLE;
3442 switch (qh->qh_state) {
3443 case QH_STATE_LINKED:
3444 for (tmp = oxu->async->qh_next.qh;
3445 tmp && tmp != qh;
3446 tmp = tmp->qh_next.qh)
3447 continue;
3448 /* periodic qh self-unlinks on empty */
3449 if (!tmp)
3450 goto nogood;
3451 unlink_async(oxu, qh);
3452 fallthrough;
3453 case QH_STATE_UNLINK: /* wait for hw to finish? */
3454 idle_timeout:
3455 spin_unlock_irqrestore(&oxu->lock, flags);
3456 schedule_timeout_uninterruptible(1);
3457 goto rescan;
3458 case QH_STATE_IDLE: /* fully unlinked */
3459 if (list_empty(&qh->qtd_list)) {
3460 qh_put(qh);
3461 break;
3462 }
3463 fallthrough;
3464 default:
3465 nogood:
3466 /* caller was supposed to have unlinked any requests;
3467 * that's not our job. just leak this memory.
3468 */
3469 oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3470 qh, ep->desc.bEndpointAddress, qh->qh_state,
3471 list_empty(&qh->qtd_list) ? "" : "(has tds)");
3472 break;
3473 }
3474 ep->hcpriv = NULL;
3475 done:
3476 spin_unlock_irqrestore(&oxu->lock, flags);
3477 }
3478
oxu_get_frame(struct usb_hcd * hcd)3479 static int oxu_get_frame(struct usb_hcd *hcd)
3480 {
3481 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3482
3483 return (readl(&oxu->regs->frame_index) >> 3) %
3484 oxu->periodic_size;
3485 }
3486
3487 /* Build "status change" packet (one or two bytes) from HC registers */
oxu_hub_status_data(struct usb_hcd * hcd,char * buf)3488 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3489 {
3490 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3491 u32 temp, mask, status = 0;
3492 int ports, i, retval = 1;
3493 unsigned long flags;
3494
3495 /* if !PM, root hub timers won't get shut down ... */
3496 if (!HC_IS_RUNNING(hcd->state))
3497 return 0;
3498
3499 /* init status to no-changes */
3500 buf[0] = 0;
3501 ports = HCS_N_PORTS(oxu->hcs_params);
3502 if (ports > 7) {
3503 buf[1] = 0;
3504 retval++;
3505 }
3506
3507 /* Some boards (mostly VIA?) report bogus overcurrent indications,
3508 * causing massive log spam unless we completely ignore them. It
3509 * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3510 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3511 * PORT_POWER; that's surprising, but maybe within-spec.
3512 */
3513 if (!ignore_oc)
3514 mask = PORT_CSC | PORT_PEC | PORT_OCC;
3515 else
3516 mask = PORT_CSC | PORT_PEC;
3517
3518 /* no hub change reports (bit 0) for now (power, ...) */
3519
3520 /* port N changes (bit N)? */
3521 spin_lock_irqsave(&oxu->lock, flags);
3522 for (i = 0; i < ports; i++) {
3523 temp = readl(&oxu->regs->port_status[i]);
3524
3525 /*
3526 * Return status information even for ports with OWNER set.
3527 * Otherwise hub_wq wouldn't see the disconnect event when a
3528 * high-speed device is switched over to the companion
3529 * controller by the user.
3530 */
3531
3532 if (!(temp & PORT_CONNECT))
3533 oxu->reset_done[i] = 0;
3534 if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3535 time_after_eq(jiffies, oxu->reset_done[i]))) {
3536 if (i < 7)
3537 buf[0] |= 1 << (i + 1);
3538 else
3539 buf[1] |= 1 << (i - 7);
3540 status = STS_PCD;
3541 }
3542 }
3543 /* FIXME autosuspend idle root hubs */
3544 spin_unlock_irqrestore(&oxu->lock, flags);
3545 return status ? retval : 0;
3546 }
3547
3548 /* Returns the speed of a device attached to a port on the root hub. */
oxu_port_speed(struct oxu_hcd * oxu,unsigned int portsc)3549 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3550 unsigned int portsc)
3551 {
3552 switch ((portsc >> 26) & 3) {
3553 case 0:
3554 return 0;
3555 case 1:
3556 return USB_PORT_STAT_LOW_SPEED;
3557 case 2:
3558 default:
3559 return USB_PORT_STAT_HIGH_SPEED;
3560 }
3561 }
3562
3563 #define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
oxu_hub_control(struct usb_hcd * hcd,u16 typeReq,u16 wValue,u16 wIndex,char * buf,u16 wLength)3564 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3565 u16 wValue, u16 wIndex, char *buf, u16 wLength)
3566 {
3567 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3568 int ports = HCS_N_PORTS(oxu->hcs_params);
3569 u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3570 u32 temp, status;
3571 unsigned long flags;
3572 int retval = 0;
3573 unsigned selector;
3574
3575 /*
3576 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3577 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3578 * (track current state ourselves) ... blink for diagnostics,
3579 * power, "this is the one", etc. EHCI spec supports this.
3580 */
3581
3582 spin_lock_irqsave(&oxu->lock, flags);
3583 switch (typeReq) {
3584 case ClearHubFeature:
3585 switch (wValue) {
3586 case C_HUB_LOCAL_POWER:
3587 case C_HUB_OVER_CURRENT:
3588 /* no hub-wide feature/status flags */
3589 break;
3590 default:
3591 goto error;
3592 }
3593 break;
3594 case ClearPortFeature:
3595 if (!wIndex || wIndex > ports)
3596 goto error;
3597 wIndex--;
3598 temp = readl(status_reg);
3599
3600 /*
3601 * Even if OWNER is set, so the port is owned by the
3602 * companion controller, hub_wq needs to be able to clear
3603 * the port-change status bits (especially
3604 * USB_PORT_STAT_C_CONNECTION).
3605 */
3606
3607 switch (wValue) {
3608 case USB_PORT_FEAT_ENABLE:
3609 writel(temp & ~PORT_PE, status_reg);
3610 break;
3611 case USB_PORT_FEAT_C_ENABLE:
3612 writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3613 break;
3614 case USB_PORT_FEAT_SUSPEND:
3615 if (temp & PORT_RESET)
3616 goto error;
3617 if (temp & PORT_SUSPEND) {
3618 if ((temp & PORT_PE) == 0)
3619 goto error;
3620 /* resume signaling for 20 msec */
3621 temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3622 writel(temp | PORT_RESUME, status_reg);
3623 oxu->reset_done[wIndex] = jiffies
3624 + msecs_to_jiffies(20);
3625 }
3626 break;
3627 case USB_PORT_FEAT_C_SUSPEND:
3628 /* we auto-clear this feature */
3629 break;
3630 case USB_PORT_FEAT_POWER:
3631 if (HCS_PPC(oxu->hcs_params))
3632 writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3633 status_reg);
3634 break;
3635 case USB_PORT_FEAT_C_CONNECTION:
3636 writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3637 break;
3638 case USB_PORT_FEAT_C_OVER_CURRENT:
3639 writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3640 break;
3641 case USB_PORT_FEAT_C_RESET:
3642 /* GetPortStatus clears reset */
3643 break;
3644 default:
3645 goto error;
3646 }
3647 readl(&oxu->regs->command); /* unblock posted write */
3648 break;
3649 case GetHubDescriptor:
3650 ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3651 buf);
3652 break;
3653 case GetHubStatus:
3654 /* no hub-wide feature/status flags */
3655 memset(buf, 0, 4);
3656 break;
3657 case GetPortStatus:
3658 if (!wIndex || wIndex > ports)
3659 goto error;
3660 wIndex--;
3661 status = 0;
3662 temp = readl(status_reg);
3663
3664 /* wPortChange bits */
3665 if (temp & PORT_CSC)
3666 status |= USB_PORT_STAT_C_CONNECTION << 16;
3667 if (temp & PORT_PEC)
3668 status |= USB_PORT_STAT_C_ENABLE << 16;
3669 if ((temp & PORT_OCC) && !ignore_oc)
3670 status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3671
3672 /* whoever resumes must GetPortStatus to complete it!! */
3673 if (temp & PORT_RESUME) {
3674
3675 /* Remote Wakeup received? */
3676 if (!oxu->reset_done[wIndex]) {
3677 /* resume signaling for 20 msec */
3678 oxu->reset_done[wIndex] = jiffies
3679 + msecs_to_jiffies(20);
3680 /* check the port again */
3681 mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3682 oxu->reset_done[wIndex]);
3683 }
3684
3685 /* resume completed? */
3686 else if (time_after_eq(jiffies,
3687 oxu->reset_done[wIndex])) {
3688 status |= USB_PORT_STAT_C_SUSPEND << 16;
3689 oxu->reset_done[wIndex] = 0;
3690
3691 /* stop resume signaling */
3692 temp = readl(status_reg);
3693 writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3694 status_reg);
3695 retval = handshake(oxu, status_reg,
3696 PORT_RESUME, 0, 2000 /* 2msec */);
3697 if (retval != 0) {
3698 oxu_err(oxu,
3699 "port %d resume error %d\n",
3700 wIndex + 1, retval);
3701 goto error;
3702 }
3703 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3704 }
3705 }
3706
3707 /* whoever resets must GetPortStatus to complete it!! */
3708 if ((temp & PORT_RESET)
3709 && time_after_eq(jiffies,
3710 oxu->reset_done[wIndex])) {
3711 status |= USB_PORT_STAT_C_RESET << 16;
3712 oxu->reset_done[wIndex] = 0;
3713
3714 /* force reset to complete */
3715 writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3716 status_reg);
3717 /* REVISIT: some hardware needs 550+ usec to clear
3718 * this bit; seems too long to spin routinely...
3719 */
3720 retval = handshake(oxu, status_reg,
3721 PORT_RESET, 0, 750);
3722 if (retval != 0) {
3723 oxu_err(oxu, "port %d reset error %d\n",
3724 wIndex + 1, retval);
3725 goto error;
3726 }
3727
3728 /* see what we found out */
3729 temp = check_reset_complete(oxu, wIndex, status_reg,
3730 readl(status_reg));
3731 }
3732
3733 /* transfer dedicated ports to the companion hc */
3734 if ((temp & PORT_CONNECT) &&
3735 test_bit(wIndex, &oxu->companion_ports)) {
3736 temp &= ~PORT_RWC_BITS;
3737 temp |= PORT_OWNER;
3738 writel(temp, status_reg);
3739 oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3740 temp = readl(status_reg);
3741 }
3742
3743 /*
3744 * Even if OWNER is set, there's no harm letting hub_wq
3745 * see the wPortStatus values (they should all be 0 except
3746 * for PORT_POWER anyway).
3747 */
3748
3749 if (temp & PORT_CONNECT) {
3750 status |= USB_PORT_STAT_CONNECTION;
3751 /* status may be from integrated TT */
3752 status |= oxu_port_speed(oxu, temp);
3753 }
3754 if (temp & PORT_PE)
3755 status |= USB_PORT_STAT_ENABLE;
3756 if (temp & (PORT_SUSPEND|PORT_RESUME))
3757 status |= USB_PORT_STAT_SUSPEND;
3758 if (temp & PORT_OC)
3759 status |= USB_PORT_STAT_OVERCURRENT;
3760 if (temp & PORT_RESET)
3761 status |= USB_PORT_STAT_RESET;
3762 if (temp & PORT_POWER)
3763 status |= USB_PORT_STAT_POWER;
3764
3765 #ifndef OXU_VERBOSE_DEBUG
3766 if (status & ~0xffff) /* only if wPortChange is interesting */
3767 #endif
3768 dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3769 put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3770 break;
3771 case SetHubFeature:
3772 switch (wValue) {
3773 case C_HUB_LOCAL_POWER:
3774 case C_HUB_OVER_CURRENT:
3775 /* no hub-wide feature/status flags */
3776 break;
3777 default:
3778 goto error;
3779 }
3780 break;
3781 case SetPortFeature:
3782 selector = wIndex >> 8;
3783 wIndex &= 0xff;
3784 if (!wIndex || wIndex > ports)
3785 goto error;
3786 wIndex--;
3787 temp = readl(status_reg);
3788 if (temp & PORT_OWNER)
3789 break;
3790
3791 temp &= ~PORT_RWC_BITS;
3792 switch (wValue) {
3793 case USB_PORT_FEAT_SUSPEND:
3794 if ((temp & PORT_PE) == 0
3795 || (temp & PORT_RESET) != 0)
3796 goto error;
3797 if (device_may_wakeup(&hcd->self.root_hub->dev))
3798 temp |= PORT_WAKE_BITS;
3799 writel(temp | PORT_SUSPEND, status_reg);
3800 break;
3801 case USB_PORT_FEAT_POWER:
3802 if (HCS_PPC(oxu->hcs_params))
3803 writel(temp | PORT_POWER, status_reg);
3804 break;
3805 case USB_PORT_FEAT_RESET:
3806 if (temp & PORT_RESUME)
3807 goto error;
3808 /* line status bits may report this as low speed,
3809 * which can be fine if this root hub has a
3810 * transaction translator built in.
3811 */
3812 oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3813 temp |= PORT_RESET;
3814 temp &= ~PORT_PE;
3815
3816 /*
3817 * caller must wait, then call GetPortStatus
3818 * usb 2.0 spec says 50 ms resets on root
3819 */
3820 oxu->reset_done[wIndex] = jiffies
3821 + msecs_to_jiffies(50);
3822 writel(temp, status_reg);
3823 break;
3824
3825 /* For downstream facing ports (these): one hub port is put
3826 * into test mode according to USB2 11.24.2.13, then the hub
3827 * must be reset (which for root hub now means rmmod+modprobe,
3828 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
3829 * about the EHCI-specific stuff.
3830 */
3831 case USB_PORT_FEAT_TEST:
3832 if (!selector || selector > 5)
3833 goto error;
3834 ehci_quiesce(oxu);
3835 ehci_halt(oxu);
3836 temp |= selector << 16;
3837 writel(temp, status_reg);
3838 break;
3839
3840 default:
3841 goto error;
3842 }
3843 readl(&oxu->regs->command); /* unblock posted writes */
3844 break;
3845
3846 default:
3847 error:
3848 /* "stall" on error */
3849 retval = -EPIPE;
3850 }
3851 spin_unlock_irqrestore(&oxu->lock, flags);
3852 return retval;
3853 }
3854
3855 #ifdef CONFIG_PM
3856
oxu_bus_suspend(struct usb_hcd * hcd)3857 static int oxu_bus_suspend(struct usb_hcd *hcd)
3858 {
3859 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3860 int port;
3861 int mask;
3862
3863 oxu_dbg(oxu, "suspend root hub\n");
3864
3865 if (time_before(jiffies, oxu->next_statechange))
3866 msleep(5);
3867
3868 port = HCS_N_PORTS(oxu->hcs_params);
3869 spin_lock_irq(&oxu->lock);
3870
3871 /* stop schedules, clean any completed work */
3872 if (HC_IS_RUNNING(hcd->state)) {
3873 ehci_quiesce(oxu);
3874 hcd->state = HC_STATE_QUIESCING;
3875 }
3876 oxu->command = readl(&oxu->regs->command);
3877 if (oxu->reclaim)
3878 oxu->reclaim_ready = 1;
3879 ehci_work(oxu);
3880
3881 /* Unlike other USB host controller types, EHCI doesn't have
3882 * any notion of "global" or bus-wide suspend. The driver has
3883 * to manually suspend all the active unsuspended ports, and
3884 * then manually resume them in the bus_resume() routine.
3885 */
3886 oxu->bus_suspended = 0;
3887 while (port--) {
3888 u32 __iomem *reg = &oxu->regs->port_status[port];
3889 u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3890 u32 t2 = t1;
3891
3892 /* keep track of which ports we suspend */
3893 if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3894 !(t1 & PORT_SUSPEND)) {
3895 t2 |= PORT_SUSPEND;
3896 set_bit(port, &oxu->bus_suspended);
3897 }
3898
3899 /* enable remote wakeup on all ports */
3900 if (device_may_wakeup(&hcd->self.root_hub->dev))
3901 t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3902 else
3903 t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3904
3905 if (t1 != t2) {
3906 oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3907 port + 1, t1, t2);
3908 writel(t2, reg);
3909 }
3910 }
3911
3912 spin_unlock_irq(&oxu->lock);
3913 /* turn off now-idle HC */
3914 del_timer_sync(&oxu->watchdog);
3915 spin_lock_irq(&oxu->lock);
3916 ehci_halt(oxu);
3917 hcd->state = HC_STATE_SUSPENDED;
3918
3919 /* allow remote wakeup */
3920 mask = INTR_MASK;
3921 if (!device_may_wakeup(&hcd->self.root_hub->dev))
3922 mask &= ~STS_PCD;
3923 writel(mask, &oxu->regs->intr_enable);
3924 readl(&oxu->regs->intr_enable);
3925
3926 oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3927 spin_unlock_irq(&oxu->lock);
3928 return 0;
3929 }
3930
3931 /* Caller has locked the root hub, and should reset/reinit on error */
oxu_bus_resume(struct usb_hcd * hcd)3932 static int oxu_bus_resume(struct usb_hcd *hcd)
3933 {
3934 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3935 u32 temp;
3936 int i;
3937
3938 if (time_before(jiffies, oxu->next_statechange))
3939 msleep(5);
3940 spin_lock_irq(&oxu->lock);
3941
3942 /* Ideally and we've got a real resume here, and no port's power
3943 * was lost. (For PCI, that means Vaux was maintained.) But we
3944 * could instead be restoring a swsusp snapshot -- so that BIOS was
3945 * the last user of the controller, not reset/pm hardware keeping
3946 * state we gave to it.
3947 */
3948 temp = readl(&oxu->regs->intr_enable);
3949 oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3950
3951 /* at least some APM implementations will try to deliver
3952 * IRQs right away, so delay them until we're ready.
3953 */
3954 writel(0, &oxu->regs->intr_enable);
3955
3956 /* re-init operational registers */
3957 writel(0, &oxu->regs->segment);
3958 writel(oxu->periodic_dma, &oxu->regs->frame_list);
3959 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3960
3961 /* restore CMD_RUN, framelist size, and irq threshold */
3962 writel(oxu->command, &oxu->regs->command);
3963
3964 /* Some controller/firmware combinations need a delay during which
3965 * they set up the port statuses. See Bugzilla #8190. */
3966 mdelay(8);
3967
3968 /* manually resume the ports we suspended during bus_suspend() */
3969 i = HCS_N_PORTS(oxu->hcs_params);
3970 while (i--) {
3971 temp = readl(&oxu->regs->port_status[i]);
3972 temp &= ~(PORT_RWC_BITS
3973 | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3974 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3975 oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3976 temp |= PORT_RESUME;
3977 }
3978 writel(temp, &oxu->regs->port_status[i]);
3979 }
3980 i = HCS_N_PORTS(oxu->hcs_params);
3981 mdelay(20);
3982 while (i--) {
3983 temp = readl(&oxu->regs->port_status[i]);
3984 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3985 temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3986 writel(temp, &oxu->regs->port_status[i]);
3987 oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3988 }
3989 }
3990 (void) readl(&oxu->regs->command);
3991
3992 /* maybe re-activate the schedule(s) */
3993 temp = 0;
3994 if (oxu->async->qh_next.qh)
3995 temp |= CMD_ASE;
3996 if (oxu->periodic_sched)
3997 temp |= CMD_PSE;
3998 if (temp) {
3999 oxu->command |= temp;
4000 writel(oxu->command, &oxu->regs->command);
4001 }
4002
4003 oxu->next_statechange = jiffies + msecs_to_jiffies(5);
4004 hcd->state = HC_STATE_RUNNING;
4005
4006 /* Now we can safely re-enable irqs */
4007 writel(INTR_MASK, &oxu->regs->intr_enable);
4008
4009 spin_unlock_irq(&oxu->lock);
4010 return 0;
4011 }
4012
4013 #else
4014
oxu_bus_suspend(struct usb_hcd * hcd)4015 static int oxu_bus_suspend(struct usb_hcd *hcd)
4016 {
4017 return 0;
4018 }
4019
oxu_bus_resume(struct usb_hcd * hcd)4020 static int oxu_bus_resume(struct usb_hcd *hcd)
4021 {
4022 return 0;
4023 }
4024
4025 #endif /* CONFIG_PM */
4026
4027 static const struct hc_driver oxu_hc_driver = {
4028 .description = "oxu210hp_hcd",
4029 .product_desc = "oxu210hp HCD",
4030 .hcd_priv_size = sizeof(struct oxu_hcd),
4031
4032 /*
4033 * Generic hardware linkage
4034 */
4035 .irq = oxu_irq,
4036 .flags = HCD_MEMORY | HCD_USB2,
4037
4038 /*
4039 * Basic lifecycle operations
4040 */
4041 .reset = oxu_reset,
4042 .start = oxu_run,
4043 .stop = oxu_stop,
4044 .shutdown = oxu_shutdown,
4045
4046 /*
4047 * Managing i/o requests and associated device resources
4048 */
4049 .urb_enqueue = oxu_urb_enqueue,
4050 .urb_dequeue = oxu_urb_dequeue,
4051 .endpoint_disable = oxu_endpoint_disable,
4052
4053 /*
4054 * Scheduling support
4055 */
4056 .get_frame_number = oxu_get_frame,
4057
4058 /*
4059 * Root hub support
4060 */
4061 .hub_status_data = oxu_hub_status_data,
4062 .hub_control = oxu_hub_control,
4063 .bus_suspend = oxu_bus_suspend,
4064 .bus_resume = oxu_bus_resume,
4065 };
4066
4067 /*
4068 * Module stuff
4069 */
4070
oxu_configuration(struct platform_device * pdev,void __iomem * base)4071 static void oxu_configuration(struct platform_device *pdev, void __iomem *base)
4072 {
4073 u32 tmp;
4074
4075 /* Initialize top level registers.
4076 * First write ever
4077 */
4078 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4079 oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
4080 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4081
4082 tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
4083 oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
4084
4085 oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
4086 OXU_COMPARATOR | OXU_ASO_OP);
4087
4088 tmp = oxu_readl(base, OXU_CLKCTRL_SET);
4089 oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
4090
4091 /* Clear all top interrupt enable */
4092 oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
4093
4094 /* Clear all top interrupt status */
4095 oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
4096
4097 /* Enable all needed top interrupt except OTG SPH core */
4098 oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
4099 }
4100
oxu_verify_id(struct platform_device * pdev,void __iomem * base)4101 static int oxu_verify_id(struct platform_device *pdev, void __iomem *base)
4102 {
4103 u32 id;
4104 static const char * const bo[] = {
4105 "reserved",
4106 "128-pin LQFP",
4107 "84-pin TFBGA",
4108 "reserved",
4109 };
4110
4111 /* Read controller signature register to find a match */
4112 id = oxu_readl(base, OXU_DEVICEID);
4113 dev_info(&pdev->dev, "device ID %x\n", id);
4114 if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
4115 return -1;
4116
4117 dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
4118 id >> OXU_REV_SHIFT,
4119 bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
4120 (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
4121 (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
4122
4123 return 0;
4124 }
4125
4126 static const struct hc_driver oxu_hc_driver;
oxu_create(struct platform_device * pdev,unsigned long memstart,unsigned long memlen,void __iomem * base,int irq,int otg)4127 static struct usb_hcd *oxu_create(struct platform_device *pdev,
4128 unsigned long memstart, unsigned long memlen,
4129 void __iomem *base, int irq, int otg)
4130 {
4131 struct device *dev = &pdev->dev;
4132
4133 struct usb_hcd *hcd;
4134 struct oxu_hcd *oxu;
4135 int ret;
4136
4137 /* Set endian mode and host mode */
4138 oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
4139 OXU_USBMODE,
4140 OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
4141
4142 hcd = usb_create_hcd(&oxu_hc_driver, dev,
4143 otg ? "oxu210hp_otg" : "oxu210hp_sph");
4144 if (!hcd)
4145 return ERR_PTR(-ENOMEM);
4146
4147 hcd->rsrc_start = memstart;
4148 hcd->rsrc_len = memlen;
4149 hcd->regs = base;
4150 hcd->irq = irq;
4151 hcd->state = HC_STATE_HALT;
4152
4153 oxu = hcd_to_oxu(hcd);
4154 oxu->is_otg = otg;
4155
4156 ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
4157 if (ret < 0) {
4158 usb_put_hcd(hcd);
4159 return ERR_PTR(ret);
4160 }
4161
4162 device_wakeup_enable(hcd->self.controller);
4163 return hcd;
4164 }
4165
oxu_init(struct platform_device * pdev,unsigned long memstart,unsigned long memlen,void __iomem * base,int irq)4166 static int oxu_init(struct platform_device *pdev,
4167 unsigned long memstart, unsigned long memlen,
4168 void __iomem *base, int irq)
4169 {
4170 struct oxu_info *info = platform_get_drvdata(pdev);
4171 struct usb_hcd *hcd;
4172 int ret;
4173
4174 /* First time configuration at start up */
4175 oxu_configuration(pdev, base);
4176
4177 ret = oxu_verify_id(pdev, base);
4178 if (ret) {
4179 dev_err(&pdev->dev, "no devices found!\n");
4180 return -ENODEV;
4181 }
4182
4183 /* Create the OTG controller */
4184 hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
4185 if (IS_ERR(hcd)) {
4186 dev_err(&pdev->dev, "cannot create OTG controller!\n");
4187 ret = PTR_ERR(hcd);
4188 goto error_create_otg;
4189 }
4190 info->hcd[0] = hcd;
4191
4192 /* Create the SPH host controller */
4193 hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
4194 if (IS_ERR(hcd)) {
4195 dev_err(&pdev->dev, "cannot create SPH controller!\n");
4196 ret = PTR_ERR(hcd);
4197 goto error_create_sph;
4198 }
4199 info->hcd[1] = hcd;
4200
4201 oxu_writel(base, OXU_CHIPIRQEN_SET,
4202 oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
4203
4204 return 0;
4205
4206 error_create_sph:
4207 usb_remove_hcd(info->hcd[0]);
4208 usb_put_hcd(info->hcd[0]);
4209
4210 error_create_otg:
4211 return ret;
4212 }
4213
oxu_drv_probe(struct platform_device * pdev)4214 static int oxu_drv_probe(struct platform_device *pdev)
4215 {
4216 struct resource *res;
4217 void __iomem *base;
4218 unsigned long memstart, memlen;
4219 int irq, ret;
4220 struct oxu_info *info;
4221
4222 if (usb_disabled())
4223 return -ENODEV;
4224
4225 /*
4226 * Get the platform resources
4227 */
4228 irq = platform_get_irq(pdev, 0);
4229 if (irq < 0)
4230 return irq;
4231 dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
4232
4233 base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
4234 if (IS_ERR(base)) {
4235 ret = PTR_ERR(base);
4236 goto error;
4237 }
4238 memstart = res->start;
4239 memlen = resource_size(res);
4240
4241 ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING);
4242 if (ret) {
4243 dev_err(&pdev->dev, "error setting irq type\n");
4244 ret = -EFAULT;
4245 goto error;
4246 }
4247
4248 /* Allocate a driver data struct to hold useful info for both
4249 * SPH & OTG devices
4250 */
4251 info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL);
4252 if (!info) {
4253 ret = -EFAULT;
4254 goto error;
4255 }
4256 platform_set_drvdata(pdev, info);
4257
4258 ret = oxu_init(pdev, memstart, memlen, base, irq);
4259 if (ret < 0) {
4260 dev_dbg(&pdev->dev, "cannot init USB devices\n");
4261 goto error;
4262 }
4263
4264 dev_info(&pdev->dev, "devices enabled and running\n");
4265 platform_set_drvdata(pdev, info);
4266
4267 return 0;
4268
4269 error:
4270 dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
4271 return ret;
4272 }
4273
oxu_remove(struct platform_device * pdev,struct usb_hcd * hcd)4274 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
4275 {
4276 usb_remove_hcd(hcd);
4277 usb_put_hcd(hcd);
4278 }
4279
oxu_drv_remove(struct platform_device * pdev)4280 static void oxu_drv_remove(struct platform_device *pdev)
4281 {
4282 struct oxu_info *info = platform_get_drvdata(pdev);
4283
4284 oxu_remove(pdev, info->hcd[0]);
4285 oxu_remove(pdev, info->hcd[1]);
4286 }
4287
oxu_drv_shutdown(struct platform_device * pdev)4288 static void oxu_drv_shutdown(struct platform_device *pdev)
4289 {
4290 oxu_drv_remove(pdev);
4291 }
4292
4293 #if 0
4294 /* FIXME: TODO */
4295 static int oxu_drv_suspend(struct device *dev)
4296 {
4297 struct platform_device *pdev = to_platform_device(dev);
4298 struct usb_hcd *hcd = dev_get_drvdata(dev);
4299
4300 return 0;
4301 }
4302
4303 static int oxu_drv_resume(struct device *dev)
4304 {
4305 struct platform_device *pdev = to_platform_device(dev);
4306 struct usb_hcd *hcd = dev_get_drvdata(dev);
4307
4308 return 0;
4309 }
4310 #else
4311 #define oxu_drv_suspend NULL
4312 #define oxu_drv_resume NULL
4313 #endif
4314
4315 static struct platform_driver oxu_driver = {
4316 .probe = oxu_drv_probe,
4317 .remove_new = oxu_drv_remove,
4318 .shutdown = oxu_drv_shutdown,
4319 .suspend = oxu_drv_suspend,
4320 .resume = oxu_drv_resume,
4321 .driver = {
4322 .name = "oxu210hp-hcd",
4323 .bus = &platform_bus_type
4324 }
4325 };
4326
4327 module_platform_driver(oxu_driver);
4328
4329 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
4330 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
4331 MODULE_LICENSE("GPL");
4332