xref: /openbmc/linux/drivers/usb/host/octeon-hcd.c (revision 278d3ba6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is subject to the terms and conditions of the GNU General Public
4  * License.  See the file "COPYING" in the main directory of this archive
5  * for more details.
6  *
7  * Copyright (C) 2008 Cavium Networks
8  *
9  * Some parts of the code were originally released under BSD license:
10  *
11  * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
12  * reserved.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions are
16  * met:
17  *
18  *   * Redistributions of source code must retain the above copyright
19  *     notice, this list of conditions and the following disclaimer.
20  *
21  *   * Redistributions in binary form must reproduce the above
22  *     copyright notice, this list of conditions and the following
23  *     disclaimer in the documentation and/or other materials provided
24  *     with the distribution.
25  *
26  *   * Neither the name of Cavium Networks nor the names of
27  *     its contributors may be used to endorse or promote products
28  *     derived from this software without specific prior written
29  *     permission.
30  *
31  * This Software, including technical data, may be subject to U.S. export
32  * control laws, including the U.S. Export Administration Act and its associated
33  * regulations, and may be subject to export or import regulations in other
34  * countries.
35  *
36  * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
37  * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
38  * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
39  * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
40  * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
41  * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
42  * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
43  * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
44  * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
45  * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
46  */
47 
48 #include <linux/usb.h>
49 #include <linux/slab.h>
50 #include <linux/module.h>
51 #include <linux/usb/hcd.h>
52 #include <linux/prefetch.h>
53 #include <linux/irqdomain.h>
54 #include <linux/dma-mapping.h>
55 #include <linux/platform_device.h>
56 #include <linux/of.h>
57 
58 #include <asm/octeon/octeon.h>
59 
60 #include "octeon-hcd.h"
61 
62 /**
63  * enum cvmx_usb_speed - the possible USB device speeds
64  *
65  * @CVMX_USB_SPEED_HIGH: Device is operation at 480Mbps
66  * @CVMX_USB_SPEED_FULL: Device is operation at 12Mbps
67  * @CVMX_USB_SPEED_LOW:  Device is operation at 1.5Mbps
68  */
69 enum cvmx_usb_speed {
70 	CVMX_USB_SPEED_HIGH = 0,
71 	CVMX_USB_SPEED_FULL = 1,
72 	CVMX_USB_SPEED_LOW = 2,
73 };
74 
75 /**
76  * enum cvmx_usb_transfer - the possible USB transfer types
77  *
78  * @CVMX_USB_TRANSFER_CONTROL:	   USB transfer type control for hub and status
79  *				   transfers
80  * @CVMX_USB_TRANSFER_ISOCHRONOUS: USB transfer type isochronous for low
81  *				   priority periodic transfers
82  * @CVMX_USB_TRANSFER_BULK:	   USB transfer type bulk for large low priority
83  *				   transfers
84  * @CVMX_USB_TRANSFER_INTERRUPT:   USB transfer type interrupt for high priority
85  *				   periodic transfers
86  */
87 enum cvmx_usb_transfer {
88 	CVMX_USB_TRANSFER_CONTROL = 0,
89 	CVMX_USB_TRANSFER_ISOCHRONOUS = 1,
90 	CVMX_USB_TRANSFER_BULK = 2,
91 	CVMX_USB_TRANSFER_INTERRUPT = 3,
92 };
93 
94 /**
95  * enum cvmx_usb_direction - the transfer directions
96  *
97  * @CVMX_USB_DIRECTION_OUT: Data is transferring from Octeon to the device/host
98  * @CVMX_USB_DIRECTION_IN:  Data is transferring from the device/host to Octeon
99  */
100 enum cvmx_usb_direction {
101 	CVMX_USB_DIRECTION_OUT,
102 	CVMX_USB_DIRECTION_IN,
103 };
104 
105 /**
106  * enum cvmx_usb_status - possible callback function status codes
107  *
108  * @CVMX_USB_STATUS_OK:		  The transaction / operation finished without
109  *				  any errors
110  * @CVMX_USB_STATUS_SHORT:	  FIXME: This is currently not implemented
111  * @CVMX_USB_STATUS_CANCEL:	  The transaction was canceled while in flight
112  *				  by a user call to cvmx_usb_cancel
113  * @CVMX_USB_STATUS_ERROR:	  The transaction aborted with an unexpected
114  *				  error status
115  * @CVMX_USB_STATUS_STALL:	  The transaction received a USB STALL response
116  *				  from the device
117  * @CVMX_USB_STATUS_XACTERR:	  The transaction failed with an error from the
118  *				  device even after a number of retries
119  * @CVMX_USB_STATUS_DATATGLERR:	  The transaction failed with a data toggle
120  *				  error even after a number of retries
121  * @CVMX_USB_STATUS_BABBLEERR:	  The transaction failed with a babble error
122  * @CVMX_USB_STATUS_FRAMEERR:	  The transaction failed with a frame error
123  *				  even after a number of retries
124  */
125 enum cvmx_usb_status {
126 	CVMX_USB_STATUS_OK,
127 	CVMX_USB_STATUS_SHORT,
128 	CVMX_USB_STATUS_CANCEL,
129 	CVMX_USB_STATUS_ERROR,
130 	CVMX_USB_STATUS_STALL,
131 	CVMX_USB_STATUS_XACTERR,
132 	CVMX_USB_STATUS_DATATGLERR,
133 	CVMX_USB_STATUS_BABBLEERR,
134 	CVMX_USB_STATUS_FRAMEERR,
135 };
136 
137 /**
138  * struct cvmx_usb_port_status - the USB port status information
139  *
140  * @port_enabled:	1 = Usb port is enabled, 0 = disabled
141  * @port_over_current:	1 = Over current detected, 0 = Over current not
142  *			detected. Octeon doesn't support over current detection.
143  * @port_powered:	1 = Port power is being supplied to the device, 0 =
144  *			power is off. Octeon doesn't support turning port power
145  *			off.
146  * @port_speed:		Current port speed.
147  * @connected:		1 = A device is connected to the port, 0 = No device is
148  *			connected.
149  * @connect_change:	1 = Device connected state changed since the last set
150  *			status call.
151  */
152 struct cvmx_usb_port_status {
153 	u32 reserved			: 25;
154 	u32 port_enabled		: 1;
155 	u32 port_over_current		: 1;
156 	u32 port_powered		: 1;
157 	enum cvmx_usb_speed port_speed	: 2;
158 	u32 connected			: 1;
159 	u32 connect_change		: 1;
160 };
161 
162 /**
163  * struct cvmx_usb_iso_packet - descriptor for Isochronous packets
164  *
165  * @offset:	This is the offset in bytes into the main buffer where this data
166  *		is stored.
167  * @length:	This is the length in bytes of the data.
168  * @status:	This is the status of this individual packet transfer.
169  */
170 struct cvmx_usb_iso_packet {
171 	int offset;
172 	int length;
173 	enum cvmx_usb_status status;
174 };
175 
176 /**
177  * enum cvmx_usb_initialize_flags - flags used by the initialization function
178  *
179  * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI:    The USB port uses a 12MHz crystal
180  *					      as clock source at USB_XO and
181  *					      USB_XI.
182  * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND:   The USB port uses 12/24/48MHz 2.5V
183  *					      board clock source at USB_XO.
184  *					      USB_XI should be tied to GND.
185  * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK: Mask for clock speed field
186  * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ:    Speed of reference clock or
187  *					      crystal
188  * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ:    Speed of reference clock
189  * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ:    Speed of reference clock
190  * @CVMX_USB_INITIALIZE_FLAGS_NO_DMA:	      Disable DMA and used polled IO for
191  *					      data transfer use for the USB
192  */
193 enum cvmx_usb_initialize_flags {
194 	CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI		= 1 << 0,
195 	CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND		= 1 << 1,
196 	CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK	= 3 << 3,
197 	CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ		= 1 << 3,
198 	CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ		= 2 << 3,
199 	CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ		= 3 << 3,
200 	/* Bits 3-4 used to encode the clock frequency */
201 	CVMX_USB_INITIALIZE_FLAGS_NO_DMA		= 1 << 5,
202 };
203 
204 /**
205  * enum cvmx_usb_pipe_flags - internal flags for a pipe.
206  *
207  * @CVMX_USB_PIPE_FLAGS_SCHEDULED: Used internally to determine if a pipe is
208  *				   actively using hardware.
209  * @CVMX_USB_PIPE_FLAGS_NEED_PING: Used internally to determine if a high speed
210  *				   pipe is in the ping state.
211  */
212 enum cvmx_usb_pipe_flags {
213 	CVMX_USB_PIPE_FLAGS_SCHEDULED	= 1 << 17,
214 	CVMX_USB_PIPE_FLAGS_NEED_PING	= 1 << 18,
215 };
216 
217 /* Maximum number of times to retry failed transactions */
218 #define MAX_RETRIES		3
219 
220 /* Maximum number of hardware channels supported by the USB block */
221 #define MAX_CHANNELS		8
222 
223 /*
224  * The low level hardware can transfer a maximum of this number of bytes in each
225  * transfer. The field is 19 bits wide
226  */
227 #define MAX_TRANSFER_BYTES	((1 << 19) - 1)
228 
229 /*
230  * The low level hardware can transfer a maximum of this number of packets in
231  * each transfer. The field is 10 bits wide
232  */
233 #define MAX_TRANSFER_PACKETS	((1 << 10) - 1)
234 
235 /**
236  * Logical transactions may take numerous low level
237  * transactions, especially when splits are concerned. This
238  * enum represents all of the possible stages a transaction can
239  * be in. Note that split completes are always even. This is so
240  * the NAK handler can backup to the previous low level
241  * transaction with a simple clearing of bit 0.
242  */
243 enum cvmx_usb_stage {
244 	CVMX_USB_STAGE_NON_CONTROL,
245 	CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE,
246 	CVMX_USB_STAGE_SETUP,
247 	CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE,
248 	CVMX_USB_STAGE_DATA,
249 	CVMX_USB_STAGE_DATA_SPLIT_COMPLETE,
250 	CVMX_USB_STAGE_STATUS,
251 	CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE,
252 };
253 
254 /**
255  * struct cvmx_usb_transaction - describes each pending USB transaction
256  *				 regardless of type. These are linked together
257  *				 to form a list of pending requests for a pipe.
258  *
259  * @node:		List node for transactions in the pipe.
260  * @type:		Type of transaction, duplicated of the pipe.
261  * @flags:		State flags for this transaction.
262  * @buffer:		User's physical buffer address to read/write.
263  * @buffer_length:	Size of the user's buffer in bytes.
264  * @control_header:	For control transactions, physical address of the 8
265  *			byte standard header.
266  * @iso_start_frame:	For ISO transactions, the starting frame number.
267  * @iso_number_packets:	For ISO transactions, the number of packets in the
268  *			request.
269  * @iso_packets:	For ISO transactions, the sub packets in the request.
270  * @actual_bytes:	Actual bytes transfer for this transaction.
271  * @stage:		For control transactions, the current stage.
272  * @urb:		URB.
273  */
274 struct cvmx_usb_transaction {
275 	struct list_head node;
276 	enum cvmx_usb_transfer type;
277 	u64 buffer;
278 	int buffer_length;
279 	u64 control_header;
280 	int iso_start_frame;
281 	int iso_number_packets;
282 	struct cvmx_usb_iso_packet *iso_packets;
283 	int xfersize;
284 	int pktcnt;
285 	int retries;
286 	int actual_bytes;
287 	enum cvmx_usb_stage stage;
288 	struct urb *urb;
289 };
290 
291 /**
292  * struct cvmx_usb_pipe - a pipe represents a virtual connection between Octeon
293  *			  and some USB device. It contains a list of pending
294  *			  request to the device.
295  *
296  * @node:		List node for pipe list
297  * @next:		Pipe after this one in the list
298  * @transactions:	List of pending transactions
299  * @interval:		For periodic pipes, the interval between packets in
300  *			frames
301  * @next_tx_frame:	The next frame this pipe is allowed to transmit on
302  * @flags:		State flags for this pipe
303  * @device_speed:	Speed of device connected to this pipe
304  * @transfer_type:	Type of transaction supported by this pipe
305  * @transfer_dir:	IN or OUT. Ignored for Control
306  * @multi_count:	Max packet in a row for the device
307  * @max_packet:		The device's maximum packet size in bytes
308  * @device_addr:	USB device address at other end of pipe
309  * @endpoint_num:	USB endpoint number at other end of pipe
310  * @hub_device_addr:	Hub address this device is connected to
311  * @hub_port:		Hub port this device is connected to
312  * @pid_toggle:		This toggles between 0/1 on every packet send to track
313  *			the data pid needed
314  * @channel:		Hardware DMA channel for this pipe
315  * @split_sc_frame:	The low order bits of the frame number the split
316  *			complete should be sent on
317  */
318 struct cvmx_usb_pipe {
319 	struct list_head node;
320 	struct list_head transactions;
321 	u64 interval;
322 	u64 next_tx_frame;
323 	enum cvmx_usb_pipe_flags flags;
324 	enum cvmx_usb_speed device_speed;
325 	enum cvmx_usb_transfer transfer_type;
326 	enum cvmx_usb_direction transfer_dir;
327 	int multi_count;
328 	u16 max_packet;
329 	u8 device_addr;
330 	u8 endpoint_num;
331 	u8 hub_device_addr;
332 	u8 hub_port;
333 	u8 pid_toggle;
334 	u8 channel;
335 	s8 split_sc_frame;
336 };
337 
338 struct cvmx_usb_tx_fifo {
339 	struct {
340 		int channel;
341 		int size;
342 		u64 address;
343 	} entry[MAX_CHANNELS + 1];
344 	int head;
345 	int tail;
346 };
347 
348 /**
349  * struct octeon_hcd - the state of the USB block
350  *
351  * lock:		   Serialization lock.
352  * init_flags:		   Flags passed to initialize.
353  * index:		   Which USB block this is for.
354  * idle_hardware_channels: Bit set for every idle hardware channel.
355  * usbcx_hprt:		   Stored port status so we don't need to read a CSR to
356  *			   determine splits.
357  * pipe_for_channel:	   Map channels to pipes.
358  * pipe:		   Storage for pipes.
359  * indent:		   Used by debug output to indent functions.
360  * port_status:		   Last port status used for change notification.
361  * idle_pipes:		   List of open pipes that have no transactions.
362  * active_pipes:	   Active pipes indexed by transfer type.
363  * frame_number:	   Increments every SOF interrupt for time keeping.
364  * active_split:	   Points to the current active split, or NULL.
365  */
366 struct octeon_hcd {
367 	spinlock_t lock; /* serialization lock */
368 	int init_flags;
369 	int index;
370 	int idle_hardware_channels;
371 	union cvmx_usbcx_hprt usbcx_hprt;
372 	struct cvmx_usb_pipe *pipe_for_channel[MAX_CHANNELS];
373 	int indent;
374 	struct cvmx_usb_port_status port_status;
375 	struct list_head idle_pipes;
376 	struct list_head active_pipes[4];
377 	u64 frame_number;
378 	struct cvmx_usb_transaction *active_split;
379 	struct cvmx_usb_tx_fifo periodic;
380 	struct cvmx_usb_tx_fifo nonperiodic;
381 };
382 
383 /*
384  * This macro logically sets a single field in a CSR. It does the sequence
385  * read, modify, and write
386  */
387 #define USB_SET_FIELD32(address, _union, field, value)		\
388 	do {							\
389 		union _union c;					\
390 								\
391 		c.u32 = cvmx_usb_read_csr32(usb, address);	\
392 		c.s.field = value;				\
393 		cvmx_usb_write_csr32(usb, address, c.u32);	\
394 	} while (0)
395 
396 /* Returns the IO address to push/pop stuff data from the FIFOs */
397 #define USB_FIFO_ADDRESS(channel, usb_index) \
398 	(CVMX_USBCX_GOTGCTL(usb_index) + ((channel) + 1) * 0x1000)
399 
400 /**
401  * struct octeon_temp_buffer - a bounce buffer for USB transfers
402  * @orig_buffer: the original buffer passed by the USB stack
403  * @data:	 the newly allocated temporary buffer (excluding meta-data)
404  *
405  * Both the DMA engine and FIFO mode will always transfer full 32-bit words. If
406  * the buffer is too short, we need to allocate a temporary one, and this struct
407  * represents it.
408  */
409 struct octeon_temp_buffer {
410 	void *orig_buffer;
411 	u8 data[];
412 };
413 
414 static inline struct usb_hcd *octeon_to_hcd(struct octeon_hcd *p)
415 {
416 	return container_of((void *)p, struct usb_hcd, hcd_priv);
417 }
418 
419 /**
420  * octeon_alloc_temp_buffer - allocate a temporary buffer for USB transfer
421  *                            (if needed)
422  * @urb:	URB.
423  * @mem_flags:	Memory allocation flags.
424  *
425  * This function allocates a temporary bounce buffer whenever it's needed
426  * due to HW limitations.
427  */
428 static int octeon_alloc_temp_buffer(struct urb *urb, gfp_t mem_flags)
429 {
430 	struct octeon_temp_buffer *temp;
431 
432 	if (urb->num_sgs || urb->sg ||
433 	    (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) ||
434 	    !(urb->transfer_buffer_length % sizeof(u32)))
435 		return 0;
436 
437 	temp = kmalloc(ALIGN(urb->transfer_buffer_length, sizeof(u32)) +
438 		       sizeof(*temp), mem_flags);
439 	if (!temp)
440 		return -ENOMEM;
441 
442 	temp->orig_buffer = urb->transfer_buffer;
443 	if (usb_urb_dir_out(urb))
444 		memcpy(temp->data, urb->transfer_buffer,
445 		       urb->transfer_buffer_length);
446 	urb->transfer_buffer = temp->data;
447 	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
448 
449 	return 0;
450 }
451 
452 /**
453  * octeon_free_temp_buffer - free a temporary buffer used by USB transfers.
454  * @urb: URB.
455  *
456  * Frees a buffer allocated by octeon_alloc_temp_buffer().
457  */
458 static void octeon_free_temp_buffer(struct urb *urb)
459 {
460 	struct octeon_temp_buffer *temp;
461 	size_t length;
462 
463 	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
464 		return;
465 
466 	temp = container_of(urb->transfer_buffer, struct octeon_temp_buffer,
467 			    data);
468 	if (usb_urb_dir_in(urb)) {
469 		if (usb_pipeisoc(urb->pipe))
470 			length = urb->transfer_buffer_length;
471 		else
472 			length = urb->actual_length;
473 
474 		memcpy(temp->orig_buffer, urb->transfer_buffer, length);
475 	}
476 	urb->transfer_buffer = temp->orig_buffer;
477 	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
478 	kfree(temp);
479 }
480 
481 /**
482  * octeon_map_urb_for_dma - Octeon-specific map_urb_for_dma().
483  * @hcd:	USB HCD structure.
484  * @urb:	URB.
485  * @mem_flags:	Memory allocation flags.
486  */
487 static int octeon_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
488 				  gfp_t mem_flags)
489 {
490 	int ret;
491 
492 	ret = octeon_alloc_temp_buffer(urb, mem_flags);
493 	if (ret)
494 		return ret;
495 
496 	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
497 	if (ret)
498 		octeon_free_temp_buffer(urb);
499 
500 	return ret;
501 }
502 
503 /**
504  * octeon_unmap_urb_for_dma - Octeon-specific unmap_urb_for_dma()
505  * @hcd:	USB HCD structure.
506  * @urb:	URB.
507  */
508 static void octeon_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
509 {
510 	usb_hcd_unmap_urb_for_dma(hcd, urb);
511 	octeon_free_temp_buffer(urb);
512 }
513 
514 /**
515  * Read a USB 32bit CSR. It performs the necessary address swizzle
516  * for 32bit CSRs and logs the value in a readable format if
517  * debugging is on.
518  *
519  * @usb:     USB block this access is for
520  * @address: 64bit address to read
521  *
522  * Returns: Result of the read
523  */
524 static inline u32 cvmx_usb_read_csr32(struct octeon_hcd *usb, u64 address)
525 {
526 	return cvmx_read64_uint32(address ^ 4);
527 }
528 
529 /**
530  * Write a USB 32bit CSR. It performs the necessary address
531  * swizzle for 32bit CSRs and logs the value in a readable format
532  * if debugging is on.
533  *
534  * @usb:     USB block this access is for
535  * @address: 64bit address to write
536  * @value:   Value to write
537  */
538 static inline void cvmx_usb_write_csr32(struct octeon_hcd *usb,
539 					u64 address, u32 value)
540 {
541 	cvmx_write64_uint32(address ^ 4, value);
542 	cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
543 }
544 
545 /**
546  * Return non zero if this pipe connects to a non HIGH speed
547  * device through a high speed hub.
548  *
549  * @usb:    USB block this access is for
550  * @pipe:   Pipe to check
551  *
552  * Returns: Non zero if we need to do split transactions
553  */
554 static inline int cvmx_usb_pipe_needs_split(struct octeon_hcd *usb,
555 					    struct cvmx_usb_pipe *pipe)
556 {
557 	return pipe->device_speed != CVMX_USB_SPEED_HIGH &&
558 	       usb->usbcx_hprt.s.prtspd == CVMX_USB_SPEED_HIGH;
559 }
560 
561 /**
562  * Trivial utility function to return the correct PID for a pipe
563  *
564  * @pipe:   pipe to check
565  *
566  * Returns: PID for pipe
567  */
568 static inline int cvmx_usb_get_data_pid(struct cvmx_usb_pipe *pipe)
569 {
570 	if (pipe->pid_toggle)
571 		return 2; /* Data1 */
572 	return 0; /* Data0 */
573 }
574 
575 /* Loops through register until txfflsh or rxfflsh become zero.*/
576 static int cvmx_wait_tx_rx(struct octeon_hcd *usb, int fflsh_type)
577 {
578 	int result;
579 	u64 address = CVMX_USBCX_GRSTCTL(usb->index);
580 	u64 done = cvmx_get_cycle() + 100 *
581 		   (u64)octeon_get_clock_rate / 1000000;
582 	union cvmx_usbcx_grstctl c;
583 
584 	while (1) {
585 		c.u32 = cvmx_usb_read_csr32(usb, address);
586 		if (fflsh_type == 0 && c.s.txfflsh == 0) {
587 			result = 0;
588 			break;
589 		} else if (fflsh_type == 1 && c.s.rxfflsh == 0) {
590 			result = 0;
591 			break;
592 		} else if (cvmx_get_cycle() > done) {
593 			result = -1;
594 			break;
595 		}
596 
597 		__delay(100);
598 	}
599 	return result;
600 }
601 
602 static void cvmx_fifo_setup(struct octeon_hcd *usb)
603 {
604 	union cvmx_usbcx_ghwcfg3 usbcx_ghwcfg3;
605 	union cvmx_usbcx_gnptxfsiz npsiz;
606 	union cvmx_usbcx_hptxfsiz psiz;
607 
608 	usbcx_ghwcfg3.u32 = cvmx_usb_read_csr32(usb,
609 						CVMX_USBCX_GHWCFG3(usb->index));
610 
611 	/*
612 	 * Program the USBC_GRXFSIZ register to select the size of the receive
613 	 * FIFO (25%).
614 	 */
615 	USB_SET_FIELD32(CVMX_USBCX_GRXFSIZ(usb->index), cvmx_usbcx_grxfsiz,
616 			rxfdep, usbcx_ghwcfg3.s.dfifodepth / 4);
617 
618 	/*
619 	 * Program the USBC_GNPTXFSIZ register to select the size and the start
620 	 * address of the non-periodic transmit FIFO for nonperiodic
621 	 * transactions (50%).
622 	 */
623 	npsiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index));
624 	npsiz.s.nptxfdep = usbcx_ghwcfg3.s.dfifodepth / 2;
625 	npsiz.s.nptxfstaddr = usbcx_ghwcfg3.s.dfifodepth / 4;
626 	cvmx_usb_write_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index), npsiz.u32);
627 
628 	/*
629 	 * Program the USBC_HPTXFSIZ register to select the size and start
630 	 * address of the periodic transmit FIFO for periodic transactions
631 	 * (25%).
632 	 */
633 	psiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index));
634 	psiz.s.ptxfsize = usbcx_ghwcfg3.s.dfifodepth / 4;
635 	psiz.s.ptxfstaddr = 3 * usbcx_ghwcfg3.s.dfifodepth / 4;
636 	cvmx_usb_write_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index), psiz.u32);
637 
638 	/* Flush all FIFOs */
639 	USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
640 			cvmx_usbcx_grstctl, txfnum, 0x10);
641 	USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
642 			cvmx_usbcx_grstctl, txfflsh, 1);
643 	cvmx_wait_tx_rx(usb, 0);
644 	USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
645 			cvmx_usbcx_grstctl, rxfflsh, 1);
646 	cvmx_wait_tx_rx(usb, 1);
647 }
648 
649 /**
650  * Shutdown a USB port after a call to cvmx_usb_initialize().
651  * The port should be disabled with all pipes closed when this
652  * function is called.
653  *
654  * @usb: USB device state populated by cvmx_usb_initialize().
655  *
656  * Returns: 0 or a negative error code.
657  */
658 static int cvmx_usb_shutdown(struct octeon_hcd *usb)
659 {
660 	union cvmx_usbnx_clk_ctl usbn_clk_ctl;
661 
662 	/* Make sure all pipes are closed */
663 	if (!list_empty(&usb->idle_pipes) ||
664 	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_ISOCHRONOUS]) ||
665 	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_INTERRUPT]) ||
666 	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_CONTROL]) ||
667 	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_BULK]))
668 		return -EBUSY;
669 
670 	/* Disable the clocks and put them in power on reset */
671 	usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
672 	usbn_clk_ctl.s.enable = 1;
673 	usbn_clk_ctl.s.por = 1;
674 	usbn_clk_ctl.s.hclk_rst = 1;
675 	usbn_clk_ctl.s.prst = 0;
676 	usbn_clk_ctl.s.hrst = 0;
677 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
678 	return 0;
679 }
680 
681 /**
682  * Initialize a USB port for use. This must be called before any
683  * other access to the Octeon USB port is made. The port starts
684  * off in the disabled state.
685  *
686  * @dev:	 Pointer to struct device for logging purposes.
687  * @usb:	 Pointer to struct octeon_hcd.
688  *
689  * Returns: 0 or a negative error code.
690  */
691 static int cvmx_usb_initialize(struct device *dev,
692 			       struct octeon_hcd *usb)
693 {
694 	int channel;
695 	int divisor;
696 	int retries = 0;
697 	union cvmx_usbcx_hcfg usbcx_hcfg;
698 	union cvmx_usbnx_clk_ctl usbn_clk_ctl;
699 	union cvmx_usbcx_gintsts usbc_gintsts;
700 	union cvmx_usbcx_gahbcfg usbcx_gahbcfg;
701 	union cvmx_usbcx_gintmsk usbcx_gintmsk;
702 	union cvmx_usbcx_gusbcfg usbcx_gusbcfg;
703 	union cvmx_usbnx_usbp_ctl_status usbn_usbp_ctl_status;
704 
705 retry:
706 	/*
707 	 * Power On Reset and PHY Initialization
708 	 *
709 	 * 1. Wait for DCOK to assert (nothing to do)
710 	 *
711 	 * 2a. Write USBN0/1_CLK_CTL[POR] = 1 and
712 	 *     USBN0/1_CLK_CTL[HRST,PRST,HCLK_RST] = 0
713 	 */
714 	usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
715 	usbn_clk_ctl.s.por = 1;
716 	usbn_clk_ctl.s.hrst = 0;
717 	usbn_clk_ctl.s.prst = 0;
718 	usbn_clk_ctl.s.hclk_rst = 0;
719 	usbn_clk_ctl.s.enable = 0;
720 	/*
721 	 * 2b. Select the USB reference clock/crystal parameters by writing
722 	 *     appropriate values to USBN0/1_CLK_CTL[P_C_SEL, P_RTYPE, P_COM_ON]
723 	 */
724 	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND) {
725 		/*
726 		 * The USB port uses 12/24/48MHz 2.5V board clock
727 		 * source at USB_XO. USB_XI should be tied to GND.
728 		 * Most Octeon evaluation boards require this setting
729 		 */
730 		if (OCTEON_IS_MODEL(OCTEON_CN3XXX) ||
731 		    OCTEON_IS_MODEL(OCTEON_CN56XX) ||
732 		    OCTEON_IS_MODEL(OCTEON_CN50XX))
733 			/* From CN56XX,CN50XX,CN31XX,CN30XX manuals */
734 			usbn_clk_ctl.s.p_rtype = 2; /* p_rclk=1 & p_xenbn=0 */
735 		else
736 			/* From CN52XX manual */
737 			usbn_clk_ctl.s.p_rtype = 1;
738 
739 		switch (usb->init_flags &
740 			CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK) {
741 		case CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ:
742 			usbn_clk_ctl.s.p_c_sel = 0;
743 			break;
744 		case CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ:
745 			usbn_clk_ctl.s.p_c_sel = 1;
746 			break;
747 		case CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ:
748 			usbn_clk_ctl.s.p_c_sel = 2;
749 			break;
750 		}
751 	} else {
752 		/*
753 		 * The USB port uses a 12MHz crystal as clock source
754 		 * at USB_XO and USB_XI
755 		 */
756 		if (OCTEON_IS_MODEL(OCTEON_CN3XXX))
757 			/* From CN31XX,CN30XX manual */
758 			usbn_clk_ctl.s.p_rtype = 3; /* p_rclk=1 & p_xenbn=1 */
759 		else
760 			/* From CN56XX,CN52XX,CN50XX manuals. */
761 			usbn_clk_ctl.s.p_rtype = 0;
762 
763 		usbn_clk_ctl.s.p_c_sel = 0;
764 	}
765 	/*
766 	 * 2c. Select the HCLK via writing USBN0/1_CLK_CTL[DIVIDE, DIVIDE2] and
767 	 *     setting USBN0/1_CLK_CTL[ENABLE] = 1. Divide the core clock down
768 	 *     such that USB is as close as possible to 125Mhz
769 	 */
770 	divisor = DIV_ROUND_UP(octeon_get_clock_rate(), 125000000);
771 	/* Lower than 4 doesn't seem to work properly */
772 	if (divisor < 4)
773 		divisor = 4;
774 	usbn_clk_ctl.s.divide = divisor;
775 	usbn_clk_ctl.s.divide2 = 0;
776 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
777 
778 	/* 2d. Write USBN0/1_CLK_CTL[HCLK_RST] = 1 */
779 	usbn_clk_ctl.s.hclk_rst = 1;
780 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
781 	/* 2e.  Wait 64 core-clock cycles for HCLK to stabilize */
782 	__delay(64);
783 	/*
784 	 * 3. Program the power-on reset field in the USBN clock-control
785 	 *    register:
786 	 *    USBN_CLK_CTL[POR] = 0
787 	 */
788 	usbn_clk_ctl.s.por = 0;
789 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
790 	/* 4. Wait 1 ms for PHY clock to start */
791 	mdelay(1);
792 	/*
793 	 * 5. Program the Reset input from automatic test equipment field in the
794 	 *    USBP control and status register:
795 	 *    USBN_USBP_CTL_STATUS[ATE_RESET] = 1
796 	 */
797 	usbn_usbp_ctl_status.u64 =
798 		cvmx_read64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index));
799 	usbn_usbp_ctl_status.s.ate_reset = 1;
800 	cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
801 			    usbn_usbp_ctl_status.u64);
802 	/* 6. Wait 10 cycles */
803 	__delay(10);
804 	/*
805 	 * 7. Clear ATE_RESET field in the USBN clock-control register:
806 	 *    USBN_USBP_CTL_STATUS[ATE_RESET] = 0
807 	 */
808 	usbn_usbp_ctl_status.s.ate_reset = 0;
809 	cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
810 			    usbn_usbp_ctl_status.u64);
811 	/*
812 	 * 8. Program the PHY reset field in the USBN clock-control register:
813 	 *    USBN_CLK_CTL[PRST] = 1
814 	 */
815 	usbn_clk_ctl.s.prst = 1;
816 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
817 	/*
818 	 * 9. Program the USBP control and status register to select host or
819 	 *    device mode. USBN_USBP_CTL_STATUS[HST_MODE] = 0 for host, = 1 for
820 	 *    device
821 	 */
822 	usbn_usbp_ctl_status.s.hst_mode = 0;
823 	cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
824 			    usbn_usbp_ctl_status.u64);
825 	/* 10. Wait 1 us */
826 	udelay(1);
827 	/*
828 	 * 11. Program the hreset_n field in the USBN clock-control register:
829 	 *     USBN_CLK_CTL[HRST] = 1
830 	 */
831 	usbn_clk_ctl.s.hrst = 1;
832 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
833 	/* 12. Proceed to USB core initialization */
834 	usbn_clk_ctl.s.enable = 1;
835 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
836 	udelay(1);
837 
838 	/*
839 	 * USB Core Initialization
840 	 *
841 	 * 1. Read USBC_GHWCFG1, USBC_GHWCFG2, USBC_GHWCFG3, USBC_GHWCFG4 to
842 	 *    determine USB core configuration parameters.
843 	 *
844 	 *    Nothing needed
845 	 *
846 	 * 2. Program the following fields in the global AHB configuration
847 	 *    register (USBC_GAHBCFG)
848 	 *    DMA mode, USBC_GAHBCFG[DMAEn]: 1 = DMA mode, 0 = slave mode
849 	 *    Burst length, USBC_GAHBCFG[HBSTLEN] = 0
850 	 *    Nonperiodic TxFIFO empty level (slave mode only),
851 	 *    USBC_GAHBCFG[NPTXFEMPLVL]
852 	 *    Periodic TxFIFO empty level (slave mode only),
853 	 *    USBC_GAHBCFG[PTXFEMPLVL]
854 	 *    Global interrupt mask, USBC_GAHBCFG[GLBLINTRMSK] = 1
855 	 */
856 	usbcx_gahbcfg.u32 = 0;
857 	usbcx_gahbcfg.s.dmaen = !(usb->init_flags &
858 				  CVMX_USB_INITIALIZE_FLAGS_NO_DMA);
859 	usbcx_gahbcfg.s.hbstlen = 0;
860 	usbcx_gahbcfg.s.nptxfemplvl = 1;
861 	usbcx_gahbcfg.s.ptxfemplvl = 1;
862 	usbcx_gahbcfg.s.glblintrmsk = 1;
863 	cvmx_usb_write_csr32(usb, CVMX_USBCX_GAHBCFG(usb->index),
864 			     usbcx_gahbcfg.u32);
865 
866 	/*
867 	 * 3. Program the following fields in USBC_GUSBCFG register.
868 	 *    HS/FS timeout calibration, USBC_GUSBCFG[TOUTCAL] = 0
869 	 *    ULPI DDR select, USBC_GUSBCFG[DDRSEL] = 0
870 	 *    USB turnaround time, USBC_GUSBCFG[USBTRDTIM] = 0x5
871 	 *    PHY low-power clock select, USBC_GUSBCFG[PHYLPWRCLKSEL] = 0
872 	 */
873 	usbcx_gusbcfg.u32 = cvmx_usb_read_csr32(usb,
874 						CVMX_USBCX_GUSBCFG(usb->index));
875 	usbcx_gusbcfg.s.toutcal = 0;
876 	usbcx_gusbcfg.s.ddrsel = 0;
877 	usbcx_gusbcfg.s.usbtrdtim = 0x5;
878 	usbcx_gusbcfg.s.phylpwrclksel = 0;
879 	cvmx_usb_write_csr32(usb, CVMX_USBCX_GUSBCFG(usb->index),
880 			     usbcx_gusbcfg.u32);
881 
882 	/*
883 	 * 4. The software must unmask the following bits in the USBC_GINTMSK
884 	 *    register.
885 	 *    OTG interrupt mask, USBC_GINTMSK[OTGINTMSK] = 1
886 	 *    Mode mismatch interrupt mask, USBC_GINTMSK[MODEMISMSK] = 1
887 	 */
888 	usbcx_gintmsk.u32 = cvmx_usb_read_csr32(usb,
889 						CVMX_USBCX_GINTMSK(usb->index));
890 	usbcx_gintmsk.s.otgintmsk = 1;
891 	usbcx_gintmsk.s.modemismsk = 1;
892 	usbcx_gintmsk.s.hchintmsk = 1;
893 	usbcx_gintmsk.s.sofmsk = 0;
894 	/* We need RX FIFO interrupts if we don't have DMA */
895 	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
896 		usbcx_gintmsk.s.rxflvlmsk = 1;
897 	cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTMSK(usb->index),
898 			     usbcx_gintmsk.u32);
899 
900 	/*
901 	 * Disable all channel interrupts. We'll enable them per channel later.
902 	 */
903 	for (channel = 0; channel < 8; channel++)
904 		cvmx_usb_write_csr32(usb,
905 				     CVMX_USBCX_HCINTMSKX(channel, usb->index),
906 				     0);
907 
908 	/*
909 	 * Host Port Initialization
910 	 *
911 	 * 1. Program the host-port interrupt-mask field to unmask,
912 	 *    USBC_GINTMSK[PRTINT] = 1
913 	 */
914 	USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
915 			cvmx_usbcx_gintmsk, prtintmsk, 1);
916 	USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
917 			cvmx_usbcx_gintmsk, disconnintmsk, 1);
918 
919 	/*
920 	 * 2. Program the USBC_HCFG register to select full-speed host
921 	 *    or high-speed host.
922 	 */
923 	usbcx_hcfg.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCFG(usb->index));
924 	usbcx_hcfg.s.fslssupp = 0;
925 	usbcx_hcfg.s.fslspclksel = 0;
926 	cvmx_usb_write_csr32(usb, CVMX_USBCX_HCFG(usb->index), usbcx_hcfg.u32);
927 
928 	cvmx_fifo_setup(usb);
929 
930 	/*
931 	 * If the controller is getting port events right after the reset, it
932 	 * means the initialization failed. Try resetting the controller again
933 	 * in such case. This is seen to happen after cold boot on DSR-1000N.
934 	 */
935 	usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
936 					       CVMX_USBCX_GINTSTS(usb->index));
937 	cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
938 			     usbc_gintsts.u32);
939 	dev_dbg(dev, "gintsts after reset: 0x%x\n", (int)usbc_gintsts.u32);
940 	if (!usbc_gintsts.s.disconnint && !usbc_gintsts.s.prtint)
941 		return 0;
942 	if (retries++ >= 5)
943 		return -EAGAIN;
944 	dev_info(dev, "controller reset failed (gintsts=0x%x) - retrying\n",
945 		 (int)usbc_gintsts.u32);
946 	msleep(50);
947 	cvmx_usb_shutdown(usb);
948 	msleep(50);
949 	goto retry;
950 }
951 
952 /**
953  * Reset a USB port. After this call succeeds, the USB port is
954  * online and servicing requests.
955  *
956  * @usb: USB device state populated by cvmx_usb_initialize().
957  */
958 static void cvmx_usb_reset_port(struct octeon_hcd *usb)
959 {
960 	usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
961 						  CVMX_USBCX_HPRT(usb->index));
962 
963 	/* Program the port reset bit to start the reset process */
964 	USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
965 			prtrst, 1);
966 
967 	/*
968 	 * Wait at least 50ms (high speed), or 10ms (full speed) for the reset
969 	 * process to complete.
970 	 */
971 	mdelay(50);
972 
973 	/* Program the port reset bit to 0, USBC_HPRT[PRTRST] = 0 */
974 	USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
975 			prtrst, 0);
976 
977 	/*
978 	 * Read the port speed field to get the enumerated speed,
979 	 * USBC_HPRT[PRTSPD].
980 	 */
981 	usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
982 						  CVMX_USBCX_HPRT(usb->index));
983 }
984 
985 /**
986  * Disable a USB port. After this call the USB port will not
987  * generate data transfers and will not generate events.
988  * Transactions in process will fail and call their
989  * associated callbacks.
990  *
991  * @usb: USB device state populated by cvmx_usb_initialize().
992  *
993  * Returns: 0 or a negative error code.
994  */
995 static int cvmx_usb_disable(struct octeon_hcd *usb)
996 {
997 	/* Disable the port */
998 	USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
999 			prtena, 1);
1000 	return 0;
1001 }
1002 
1003 /**
1004  * Get the current state of the USB port. Use this call to
1005  * determine if the usb port has anything connected, is enabled,
1006  * or has some sort of error condition. The return value of this
1007  * call has "changed" bits to signal of the value of some fields
1008  * have changed between calls.
1009  *
1010  * @usb: USB device state populated by cvmx_usb_initialize().
1011  *
1012  * Returns: Port status information
1013  */
1014 static struct cvmx_usb_port_status cvmx_usb_get_status(struct octeon_hcd *usb)
1015 {
1016 	union cvmx_usbcx_hprt usbc_hprt;
1017 	struct cvmx_usb_port_status result;
1018 
1019 	memset(&result, 0, sizeof(result));
1020 
1021 	usbc_hprt.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
1022 	result.port_enabled = usbc_hprt.s.prtena;
1023 	result.port_over_current = usbc_hprt.s.prtovrcurract;
1024 	result.port_powered = usbc_hprt.s.prtpwr;
1025 	result.port_speed = usbc_hprt.s.prtspd;
1026 	result.connected = usbc_hprt.s.prtconnsts;
1027 	result.connect_change =
1028 		result.connected != usb->port_status.connected;
1029 
1030 	return result;
1031 }
1032 
1033 /**
1034  * Open a virtual pipe between the host and a USB device. A pipe
1035  * must be opened before data can be transferred between a device
1036  * and Octeon.
1037  *
1038  * @usb:	     USB device state populated by cvmx_usb_initialize().
1039  * @device_addr:
1040  *		     USB device address to open the pipe to
1041  *		     (0-127).
1042  * @endpoint_num:
1043  *		     USB endpoint number to open the pipe to
1044  *		     (0-15).
1045  * @device_speed:
1046  *		     The speed of the device the pipe is going
1047  *		     to. This must match the device's speed,
1048  *		     which may be different than the port speed.
1049  * @max_packet:	     The maximum packet length the device can
1050  *		     transmit/receive (low speed=0-8, full
1051  *		     speed=0-1023, high speed=0-1024). This value
1052  *		     comes from the standard endpoint descriptor
1053  *		     field wMaxPacketSize bits <10:0>.
1054  * @transfer_type:
1055  *		     The type of transfer this pipe is for.
1056  * @transfer_dir:
1057  *		     The direction the pipe is in. This is not
1058  *		     used for control pipes.
1059  * @interval:	     For ISOCHRONOUS and INTERRUPT transfers,
1060  *		     this is how often the transfer is scheduled
1061  *		     for. All other transfers should specify
1062  *		     zero. The units are in frames (8000/sec at
1063  *		     high speed, 1000/sec for full speed).
1064  * @multi_count:
1065  *		     For high speed devices, this is the maximum
1066  *		     allowed number of packet per microframe.
1067  *		     Specify zero for non high speed devices. This
1068  *		     value comes from the standard endpoint descriptor
1069  *		     field wMaxPacketSize bits <12:11>.
1070  * @hub_device_addr:
1071  *		     Hub device address this device is connected
1072  *		     to. Devices connected directly to Octeon
1073  *		     use zero. This is only used when the device
1074  *		     is full/low speed behind a high speed hub.
1075  *		     The address will be of the high speed hub,
1076  *		     not and full speed hubs after it.
1077  * @hub_port:	     Which port on the hub the device is
1078  *		     connected. Use zero for devices connected
1079  *		     directly to Octeon. Like hub_device_addr,
1080  *		     this is only used for full/low speed
1081  *		     devices behind a high speed hub.
1082  *
1083  * Returns: A non-NULL value is a pipe. NULL means an error.
1084  */
1085 static struct cvmx_usb_pipe *cvmx_usb_open_pipe(struct octeon_hcd *usb,
1086 						int device_addr,
1087 						int endpoint_num,
1088 						enum cvmx_usb_speed
1089 							device_speed,
1090 						int max_packet,
1091 						enum cvmx_usb_transfer
1092 							transfer_type,
1093 						enum cvmx_usb_direction
1094 							transfer_dir,
1095 						int interval, int multi_count,
1096 						int hub_device_addr,
1097 						int hub_port)
1098 {
1099 	struct cvmx_usb_pipe *pipe;
1100 
1101 	pipe = kzalloc(sizeof(*pipe), GFP_ATOMIC);
1102 	if (!pipe)
1103 		return NULL;
1104 	if ((device_speed == CVMX_USB_SPEED_HIGH) &&
1105 	    (transfer_dir == CVMX_USB_DIRECTION_OUT) &&
1106 	    (transfer_type == CVMX_USB_TRANSFER_BULK))
1107 		pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
1108 	pipe->device_addr = device_addr;
1109 	pipe->endpoint_num = endpoint_num;
1110 	pipe->device_speed = device_speed;
1111 	pipe->max_packet = max_packet;
1112 	pipe->transfer_type = transfer_type;
1113 	pipe->transfer_dir = transfer_dir;
1114 	INIT_LIST_HEAD(&pipe->transactions);
1115 
1116 	/*
1117 	 * All pipes use interval to rate limit NAK processing. Force an
1118 	 * interval if one wasn't supplied
1119 	 */
1120 	if (!interval)
1121 		interval = 1;
1122 	if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1123 		pipe->interval = interval * 8;
1124 		/* Force start splits to be schedule on uFrame 0 */
1125 		pipe->next_tx_frame = ((usb->frame_number + 7) & ~7) +
1126 					pipe->interval;
1127 	} else {
1128 		pipe->interval = interval;
1129 		pipe->next_tx_frame = usb->frame_number + pipe->interval;
1130 	}
1131 	pipe->multi_count = multi_count;
1132 	pipe->hub_device_addr = hub_device_addr;
1133 	pipe->hub_port = hub_port;
1134 	pipe->pid_toggle = 0;
1135 	pipe->split_sc_frame = -1;
1136 	list_add_tail(&pipe->node, &usb->idle_pipes);
1137 
1138 	/*
1139 	 * We don't need to tell the hardware about this pipe yet since
1140 	 * it doesn't have any submitted requests
1141 	 */
1142 
1143 	return pipe;
1144 }
1145 
1146 /**
1147  * Poll the RX FIFOs and remove data as needed. This function is only used
1148  * in non DMA mode. It is very important that this function be called quickly
1149  * enough to prevent FIFO overflow.
1150  *
1151  * @usb:	USB device state populated by cvmx_usb_initialize().
1152  */
1153 static void cvmx_usb_poll_rx_fifo(struct octeon_hcd *usb)
1154 {
1155 	union cvmx_usbcx_grxstsph rx_status;
1156 	int channel;
1157 	int bytes;
1158 	u64 address;
1159 	u32 *ptr;
1160 
1161 	rx_status.u32 = cvmx_usb_read_csr32(usb,
1162 					    CVMX_USBCX_GRXSTSPH(usb->index));
1163 	/* Only read data if IN data is there */
1164 	if (rx_status.s.pktsts != 2)
1165 		return;
1166 	/* Check if no data is available */
1167 	if (!rx_status.s.bcnt)
1168 		return;
1169 
1170 	channel = rx_status.s.chnum;
1171 	bytes = rx_status.s.bcnt;
1172 	if (!bytes)
1173 		return;
1174 
1175 	/* Get where the DMA engine would have written this data */
1176 	address = cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) +
1177 				     channel * 8);
1178 
1179 	ptr = cvmx_phys_to_ptr(address);
1180 	cvmx_write64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) + channel * 8,
1181 			    address + bytes);
1182 
1183 	/* Loop writing the FIFO data for this packet into memory */
1184 	while (bytes > 0) {
1185 		*ptr++ = cvmx_usb_read_csr32(usb,
1186 					USB_FIFO_ADDRESS(channel, usb->index));
1187 		bytes -= 4;
1188 	}
1189 	CVMX_SYNCW;
1190 }
1191 
1192 /**
1193  * Fill the TX hardware fifo with data out of the software
1194  * fifos
1195  *
1196  * @usb:	    USB device state populated by cvmx_usb_initialize().
1197  * @fifo:	    Software fifo to use
1198  * @available:	    Amount of space in the hardware fifo
1199  *
1200  * Returns: Non zero if the hardware fifo was too small and needs
1201  *	    to be serviced again.
1202  */
1203 static int cvmx_usb_fill_tx_hw(struct octeon_hcd *usb,
1204 			       struct cvmx_usb_tx_fifo *fifo, int available)
1205 {
1206 	/*
1207 	 * We're done either when there isn't anymore space or the software FIFO
1208 	 * is empty
1209 	 */
1210 	while (available && (fifo->head != fifo->tail)) {
1211 		int i = fifo->tail;
1212 		const u32 *ptr = cvmx_phys_to_ptr(fifo->entry[i].address);
1213 		u64 csr_address = USB_FIFO_ADDRESS(fifo->entry[i].channel,
1214 						   usb->index) ^ 4;
1215 		int words = available;
1216 
1217 		/* Limit the amount of data to what the SW fifo has */
1218 		if (fifo->entry[i].size <= available) {
1219 			words = fifo->entry[i].size;
1220 			fifo->tail++;
1221 			if (fifo->tail > MAX_CHANNELS)
1222 				fifo->tail = 0;
1223 		}
1224 
1225 		/* Update the next locations and counts */
1226 		available -= words;
1227 		fifo->entry[i].address += words * 4;
1228 		fifo->entry[i].size -= words;
1229 
1230 		/*
1231 		 * Write the HW fifo data. The read every three writes is due
1232 		 * to an errata on CN3XXX chips
1233 		 */
1234 		while (words > 3) {
1235 			cvmx_write64_uint32(csr_address, *ptr++);
1236 			cvmx_write64_uint32(csr_address, *ptr++);
1237 			cvmx_write64_uint32(csr_address, *ptr++);
1238 			cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
1239 			words -= 3;
1240 		}
1241 		cvmx_write64_uint32(csr_address, *ptr++);
1242 		if (--words) {
1243 			cvmx_write64_uint32(csr_address, *ptr++);
1244 			if (--words)
1245 				cvmx_write64_uint32(csr_address, *ptr++);
1246 		}
1247 		cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
1248 	}
1249 	return fifo->head != fifo->tail;
1250 }
1251 
1252 /**
1253  * Check the hardware FIFOs and fill them as needed
1254  *
1255  * @usb:	USB device state populated by cvmx_usb_initialize().
1256  */
1257 static void cvmx_usb_poll_tx_fifo(struct octeon_hcd *usb)
1258 {
1259 	if (usb->periodic.head != usb->periodic.tail) {
1260 		union cvmx_usbcx_hptxsts tx_status;
1261 
1262 		tx_status.u32 = cvmx_usb_read_csr32(usb,
1263 						    CVMX_USBCX_HPTXSTS(usb->index));
1264 		if (cvmx_usb_fill_tx_hw(usb, &usb->periodic,
1265 					tx_status.s.ptxfspcavail))
1266 			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1267 					cvmx_usbcx_gintmsk, ptxfempmsk, 1);
1268 		else
1269 			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1270 					cvmx_usbcx_gintmsk, ptxfempmsk, 0);
1271 	}
1272 
1273 	if (usb->nonperiodic.head != usb->nonperiodic.tail) {
1274 		union cvmx_usbcx_gnptxsts tx_status;
1275 
1276 		tx_status.u32 = cvmx_usb_read_csr32(usb,
1277 						    CVMX_USBCX_GNPTXSTS(usb->index));
1278 		if (cvmx_usb_fill_tx_hw(usb, &usb->nonperiodic,
1279 					tx_status.s.nptxfspcavail))
1280 			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1281 					cvmx_usbcx_gintmsk, nptxfempmsk, 1);
1282 		else
1283 			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1284 					cvmx_usbcx_gintmsk, nptxfempmsk, 0);
1285 	}
1286 }
1287 
1288 /**
1289  * Fill the TX FIFO with an outgoing packet
1290  *
1291  * @usb:	  USB device state populated by cvmx_usb_initialize().
1292  * @channel:	  Channel number to get packet from
1293  */
1294 static void cvmx_usb_fill_tx_fifo(struct octeon_hcd *usb, int channel)
1295 {
1296 	union cvmx_usbcx_hccharx hcchar;
1297 	union cvmx_usbcx_hcspltx usbc_hcsplt;
1298 	union cvmx_usbcx_hctsizx usbc_hctsiz;
1299 	struct cvmx_usb_tx_fifo *fifo;
1300 
1301 	/* We only need to fill data on outbound channels */
1302 	hcchar.u32 = cvmx_usb_read_csr32(usb,
1303 					 CVMX_USBCX_HCCHARX(channel, usb->index));
1304 	if (hcchar.s.epdir != CVMX_USB_DIRECTION_OUT)
1305 		return;
1306 
1307 	/* OUT Splits only have data on the start and not the complete */
1308 	usbc_hcsplt.u32 = cvmx_usb_read_csr32(usb,
1309 					      CVMX_USBCX_HCSPLTX(channel, usb->index));
1310 	if (usbc_hcsplt.s.spltena && usbc_hcsplt.s.compsplt)
1311 		return;
1312 
1313 	/*
1314 	 * Find out how many bytes we need to fill and convert it into 32bit
1315 	 * words.
1316 	 */
1317 	usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
1318 					      CVMX_USBCX_HCTSIZX(channel, usb->index));
1319 	if (!usbc_hctsiz.s.xfersize)
1320 		return;
1321 
1322 	if ((hcchar.s.eptype == CVMX_USB_TRANSFER_INTERRUPT) ||
1323 	    (hcchar.s.eptype == CVMX_USB_TRANSFER_ISOCHRONOUS))
1324 		fifo = &usb->periodic;
1325 	else
1326 		fifo = &usb->nonperiodic;
1327 
1328 	fifo->entry[fifo->head].channel = channel;
1329 	fifo->entry[fifo->head].address =
1330 		cvmx_read64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
1331 				   channel * 8);
1332 	fifo->entry[fifo->head].size = (usbc_hctsiz.s.xfersize + 3) >> 2;
1333 	fifo->head++;
1334 	if (fifo->head > MAX_CHANNELS)
1335 		fifo->head = 0;
1336 
1337 	cvmx_usb_poll_tx_fifo(usb);
1338 }
1339 
1340 /**
1341  * Perform channel specific setup for Control transactions. All
1342  * the generic stuff will already have been done in cvmx_usb_start_channel().
1343  *
1344  * @usb:	  USB device state populated by cvmx_usb_initialize().
1345  * @channel:	  Channel to setup
1346  * @pipe:	  Pipe for control transaction
1347  */
1348 static void cvmx_usb_start_channel_control(struct octeon_hcd *usb,
1349 					   int channel,
1350 					   struct cvmx_usb_pipe *pipe)
1351 {
1352 	struct usb_hcd *hcd = octeon_to_hcd(usb);
1353 	struct device *dev = hcd->self.controller;
1354 	struct cvmx_usb_transaction *transaction =
1355 		list_first_entry(&pipe->transactions, typeof(*transaction),
1356 				 node);
1357 	struct usb_ctrlrequest *header =
1358 		cvmx_phys_to_ptr(transaction->control_header);
1359 	int bytes_to_transfer = transaction->buffer_length -
1360 		transaction->actual_bytes;
1361 	int packets_to_transfer;
1362 	union cvmx_usbcx_hctsizx usbc_hctsiz;
1363 
1364 	usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
1365 					      CVMX_USBCX_HCTSIZX(channel, usb->index));
1366 
1367 	switch (transaction->stage) {
1368 	case CVMX_USB_STAGE_NON_CONTROL:
1369 	case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
1370 		dev_err(dev, "%s: ERROR - Non control stage\n", __func__);
1371 		break;
1372 	case CVMX_USB_STAGE_SETUP:
1373 		usbc_hctsiz.s.pid = 3; /* Setup */
1374 		bytes_to_transfer = sizeof(*header);
1375 		/* All Control operations start with a setup going OUT */
1376 		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1377 				cvmx_usbcx_hccharx, epdir,
1378 				CVMX_USB_DIRECTION_OUT);
1379 		/*
1380 		 * Setup send the control header instead of the buffer data. The
1381 		 * buffer data will be used in the next stage
1382 		 */
1383 		cvmx_write64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
1384 					channel * 8,
1385 				    transaction->control_header);
1386 		break;
1387 	case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
1388 		usbc_hctsiz.s.pid = 3; /* Setup */
1389 		bytes_to_transfer = 0;
1390 		/* All Control operations start with a setup going OUT */
1391 		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1392 				cvmx_usbcx_hccharx, epdir,
1393 				CVMX_USB_DIRECTION_OUT);
1394 
1395 		USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1396 				cvmx_usbcx_hcspltx, compsplt, 1);
1397 		break;
1398 	case CVMX_USB_STAGE_DATA:
1399 		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1400 		if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1401 			if (header->bRequestType & USB_DIR_IN)
1402 				bytes_to_transfer = 0;
1403 			else if (bytes_to_transfer > pipe->max_packet)
1404 				bytes_to_transfer = pipe->max_packet;
1405 		}
1406 		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1407 				cvmx_usbcx_hccharx, epdir,
1408 				((header->bRequestType & USB_DIR_IN) ?
1409 					CVMX_USB_DIRECTION_IN :
1410 					CVMX_USB_DIRECTION_OUT));
1411 		break;
1412 	case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
1413 		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1414 		if (!(header->bRequestType & USB_DIR_IN))
1415 			bytes_to_transfer = 0;
1416 		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1417 				cvmx_usbcx_hccharx, epdir,
1418 				((header->bRequestType & USB_DIR_IN) ?
1419 					CVMX_USB_DIRECTION_IN :
1420 					CVMX_USB_DIRECTION_OUT));
1421 		USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1422 				cvmx_usbcx_hcspltx, compsplt, 1);
1423 		break;
1424 	case CVMX_USB_STAGE_STATUS:
1425 		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1426 		bytes_to_transfer = 0;
1427 		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1428 				cvmx_usbcx_hccharx, epdir,
1429 				((header->bRequestType & USB_DIR_IN) ?
1430 					CVMX_USB_DIRECTION_OUT :
1431 					CVMX_USB_DIRECTION_IN));
1432 		break;
1433 	case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
1434 		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1435 		bytes_to_transfer = 0;
1436 		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1437 				cvmx_usbcx_hccharx, epdir,
1438 				((header->bRequestType & USB_DIR_IN) ?
1439 					CVMX_USB_DIRECTION_OUT :
1440 					CVMX_USB_DIRECTION_IN));
1441 		USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1442 				cvmx_usbcx_hcspltx, compsplt, 1);
1443 		break;
1444 	}
1445 
1446 	/*
1447 	 * Make sure the transfer never exceeds the byte limit of the hardware.
1448 	 * Further bytes will be sent as continued transactions
1449 	 */
1450 	if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
1451 		/* Round MAX_TRANSFER_BYTES to a multiple of out packet size */
1452 		bytes_to_transfer = MAX_TRANSFER_BYTES / pipe->max_packet;
1453 		bytes_to_transfer *= pipe->max_packet;
1454 	}
1455 
1456 	/*
1457 	 * Calculate the number of packets to transfer. If the length is zero
1458 	 * we still need to transfer one packet
1459 	 */
1460 	packets_to_transfer = DIV_ROUND_UP(bytes_to_transfer,
1461 					   pipe->max_packet);
1462 	if (packets_to_transfer == 0) {
1463 		packets_to_transfer = 1;
1464 	} else if ((packets_to_transfer > 1) &&
1465 			(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
1466 		/*
1467 		 * Limit to one packet when not using DMA. Channels must be
1468 		 * restarted between every packet for IN transactions, so there
1469 		 * is no reason to do multiple packets in a row
1470 		 */
1471 		packets_to_transfer = 1;
1472 		bytes_to_transfer = packets_to_transfer * pipe->max_packet;
1473 	} else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
1474 		/*
1475 		 * Limit the number of packet and data transferred to what the
1476 		 * hardware can handle
1477 		 */
1478 		packets_to_transfer = MAX_TRANSFER_PACKETS;
1479 		bytes_to_transfer = packets_to_transfer * pipe->max_packet;
1480 	}
1481 
1482 	usbc_hctsiz.s.xfersize = bytes_to_transfer;
1483 	usbc_hctsiz.s.pktcnt = packets_to_transfer;
1484 
1485 	cvmx_usb_write_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index),
1486 			     usbc_hctsiz.u32);
1487 }
1488 
1489 /**
1490  * Start a channel to perform the pipe's head transaction
1491  *
1492  * @usb:	  USB device state populated by cvmx_usb_initialize().
1493  * @channel:	  Channel to setup
1494  * @pipe:	  Pipe to start
1495  */
1496 static void cvmx_usb_start_channel(struct octeon_hcd *usb, int channel,
1497 				   struct cvmx_usb_pipe *pipe)
1498 {
1499 	struct cvmx_usb_transaction *transaction =
1500 		list_first_entry(&pipe->transactions, typeof(*transaction),
1501 				 node);
1502 
1503 	/* Make sure all writes to the DMA region get flushed */
1504 	CVMX_SYNCW;
1505 
1506 	/* Attach the channel to the pipe */
1507 	usb->pipe_for_channel[channel] = pipe;
1508 	pipe->channel = channel;
1509 	pipe->flags |= CVMX_USB_PIPE_FLAGS_SCHEDULED;
1510 
1511 	/* Mark this channel as in use */
1512 	usb->idle_hardware_channels &= ~(1 << channel);
1513 
1514 	/* Enable the channel interrupt bits */
1515 	{
1516 		union cvmx_usbcx_hcintx usbc_hcint;
1517 		union cvmx_usbcx_hcintmskx usbc_hcintmsk;
1518 		union cvmx_usbcx_haintmsk usbc_haintmsk;
1519 
1520 		/* Clear all channel status bits */
1521 		usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
1522 						     CVMX_USBCX_HCINTX(channel, usb->index));
1523 
1524 		cvmx_usb_write_csr32(usb,
1525 				     CVMX_USBCX_HCINTX(channel, usb->index),
1526 				     usbc_hcint.u32);
1527 
1528 		usbc_hcintmsk.u32 = 0;
1529 		usbc_hcintmsk.s.chhltdmsk = 1;
1530 		if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
1531 			/*
1532 			 * Channels need these extra interrupts when we aren't
1533 			 * in DMA mode.
1534 			 */
1535 			usbc_hcintmsk.s.datatglerrmsk = 1;
1536 			usbc_hcintmsk.s.frmovrunmsk = 1;
1537 			usbc_hcintmsk.s.bblerrmsk = 1;
1538 			usbc_hcintmsk.s.xacterrmsk = 1;
1539 			if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1540 				/*
1541 				 * Splits don't generate xfercompl, so we need
1542 				 * ACK and NYET.
1543 				 */
1544 				usbc_hcintmsk.s.nyetmsk = 1;
1545 				usbc_hcintmsk.s.ackmsk = 1;
1546 			}
1547 			usbc_hcintmsk.s.nakmsk = 1;
1548 			usbc_hcintmsk.s.stallmsk = 1;
1549 			usbc_hcintmsk.s.xfercomplmsk = 1;
1550 		}
1551 		cvmx_usb_write_csr32(usb,
1552 				     CVMX_USBCX_HCINTMSKX(channel, usb->index),
1553 				     usbc_hcintmsk.u32);
1554 
1555 		/* Enable the channel interrupt to propagate */
1556 		usbc_haintmsk.u32 = cvmx_usb_read_csr32(usb,
1557 							CVMX_USBCX_HAINTMSK(usb->index));
1558 		usbc_haintmsk.s.haintmsk |= 1 << channel;
1559 		cvmx_usb_write_csr32(usb, CVMX_USBCX_HAINTMSK(usb->index),
1560 				     usbc_haintmsk.u32);
1561 	}
1562 
1563 	/* Setup the location the DMA engine uses. */
1564 	{
1565 		u64 reg;
1566 		u64 dma_address = transaction->buffer +
1567 				  transaction->actual_bytes;
1568 
1569 		if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
1570 			dma_address = transaction->buffer +
1571 					transaction->iso_packets[0].offset +
1572 					transaction->actual_bytes;
1573 
1574 		if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT)
1575 			reg = CVMX_USBNX_DMA0_OUTB_CHN0(usb->index);
1576 		else
1577 			reg = CVMX_USBNX_DMA0_INB_CHN0(usb->index);
1578 		cvmx_write64_uint64(reg + channel * 8, dma_address);
1579 	}
1580 
1581 	/* Setup both the size of the transfer and the SPLIT characteristics */
1582 	{
1583 		union cvmx_usbcx_hcspltx usbc_hcsplt = {.u32 = 0};
1584 		union cvmx_usbcx_hctsizx usbc_hctsiz = {.u32 = 0};
1585 		int packets_to_transfer;
1586 		int bytes_to_transfer = transaction->buffer_length -
1587 			transaction->actual_bytes;
1588 
1589 		/*
1590 		 * ISOCHRONOUS transactions store each individual transfer size
1591 		 * in the packet structure, not the global buffer_length
1592 		 */
1593 		if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
1594 			bytes_to_transfer =
1595 				transaction->iso_packets[0].length -
1596 				transaction->actual_bytes;
1597 
1598 		/*
1599 		 * We need to do split transactions when we are talking to non
1600 		 * high speed devices that are behind a high speed hub
1601 		 */
1602 		if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1603 			/*
1604 			 * On the start split phase (stage is even) record the
1605 			 * frame number we will need to send the split complete.
1606 			 * We only store the lower two bits since the time ahead
1607 			 * can only be two frames
1608 			 */
1609 			if ((transaction->stage & 1) == 0) {
1610 				if (transaction->type == CVMX_USB_TRANSFER_BULK)
1611 					pipe->split_sc_frame =
1612 						(usb->frame_number + 1) & 0x7f;
1613 				else
1614 					pipe->split_sc_frame =
1615 						(usb->frame_number + 2) & 0x7f;
1616 			} else {
1617 				pipe->split_sc_frame = -1;
1618 			}
1619 
1620 			usbc_hcsplt.s.spltena = 1;
1621 			usbc_hcsplt.s.hubaddr = pipe->hub_device_addr;
1622 			usbc_hcsplt.s.prtaddr = pipe->hub_port;
1623 			usbc_hcsplt.s.compsplt = (transaction->stage ==
1624 				CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE);
1625 
1626 			/*
1627 			 * SPLIT transactions can only ever transmit one data
1628 			 * packet so limit the transfer size to the max packet
1629 			 * size
1630 			 */
1631 			if (bytes_to_transfer > pipe->max_packet)
1632 				bytes_to_transfer = pipe->max_packet;
1633 
1634 			/*
1635 			 * ISOCHRONOUS OUT splits are unique in that they limit
1636 			 * data transfers to 188 byte chunks representing the
1637 			 * begin/middle/end of the data or all
1638 			 */
1639 			if (!usbc_hcsplt.s.compsplt &&
1640 			    (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) &&
1641 			    (pipe->transfer_type ==
1642 			     CVMX_USB_TRANSFER_ISOCHRONOUS)) {
1643 				/*
1644 				 * Clear the split complete frame number as
1645 				 * there isn't going to be a split complete
1646 				 */
1647 				pipe->split_sc_frame = -1;
1648 				/*
1649 				 * See if we've started this transfer and sent
1650 				 * data
1651 				 */
1652 				if (transaction->actual_bytes == 0) {
1653 					/*
1654 					 * Nothing sent yet, this is either a
1655 					 * begin or the entire payload
1656 					 */
1657 					if (bytes_to_transfer <= 188)
1658 						/* Entire payload in one go */
1659 						usbc_hcsplt.s.xactpos = 3;
1660 					else
1661 						/* First part of payload */
1662 						usbc_hcsplt.s.xactpos = 2;
1663 				} else {
1664 					/*
1665 					 * Continuing the previous data, we must
1666 					 * either be in the middle or at the end
1667 					 */
1668 					if (bytes_to_transfer <= 188)
1669 						/* End of payload */
1670 						usbc_hcsplt.s.xactpos = 1;
1671 					else
1672 						/* Middle of payload */
1673 						usbc_hcsplt.s.xactpos = 0;
1674 				}
1675 				/*
1676 				 * Again, the transfer size is limited to 188
1677 				 * bytes
1678 				 */
1679 				if (bytes_to_transfer > 188)
1680 					bytes_to_transfer = 188;
1681 			}
1682 		}
1683 
1684 		/*
1685 		 * Make sure the transfer never exceeds the byte limit of the
1686 		 * hardware. Further bytes will be sent as continued
1687 		 * transactions
1688 		 */
1689 		if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
1690 			/*
1691 			 * Round MAX_TRANSFER_BYTES to a multiple of out packet
1692 			 * size
1693 			 */
1694 			bytes_to_transfer = MAX_TRANSFER_BYTES /
1695 				pipe->max_packet;
1696 			bytes_to_transfer *= pipe->max_packet;
1697 		}
1698 
1699 		/*
1700 		 * Calculate the number of packets to transfer. If the length is
1701 		 * zero we still need to transfer one packet
1702 		 */
1703 		packets_to_transfer =
1704 			DIV_ROUND_UP(bytes_to_transfer, pipe->max_packet);
1705 		if (packets_to_transfer == 0) {
1706 			packets_to_transfer = 1;
1707 		} else if ((packets_to_transfer > 1) &&
1708 			   (usb->init_flags &
1709 			    CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
1710 			/*
1711 			 * Limit to one packet when not using DMA. Channels must
1712 			 * be restarted between every packet for IN
1713 			 * transactions, so there is no reason to do multiple
1714 			 * packets in a row
1715 			 */
1716 			packets_to_transfer = 1;
1717 			bytes_to_transfer = packets_to_transfer *
1718 				pipe->max_packet;
1719 		} else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
1720 			/*
1721 			 * Limit the number of packet and data transferred to
1722 			 * what the hardware can handle
1723 			 */
1724 			packets_to_transfer = MAX_TRANSFER_PACKETS;
1725 			bytes_to_transfer = packets_to_transfer *
1726 				pipe->max_packet;
1727 		}
1728 
1729 		usbc_hctsiz.s.xfersize = bytes_to_transfer;
1730 		usbc_hctsiz.s.pktcnt = packets_to_transfer;
1731 
1732 		/* Update the DATA0/DATA1 toggle */
1733 		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1734 		/*
1735 		 * High speed pipes may need a hardware ping before they start
1736 		 */
1737 		if (pipe->flags & CVMX_USB_PIPE_FLAGS_NEED_PING)
1738 			usbc_hctsiz.s.dopng = 1;
1739 
1740 		cvmx_usb_write_csr32(usb,
1741 				     CVMX_USBCX_HCSPLTX(channel, usb->index),
1742 				     usbc_hcsplt.u32);
1743 		cvmx_usb_write_csr32(usb,
1744 				     CVMX_USBCX_HCTSIZX(channel, usb->index),
1745 				     usbc_hctsiz.u32);
1746 	}
1747 
1748 	/* Setup the Host Channel Characteristics Register */
1749 	{
1750 		union cvmx_usbcx_hccharx usbc_hcchar = {.u32 = 0};
1751 
1752 		/*
1753 		 * Set the startframe odd/even properly. This is only used for
1754 		 * periodic
1755 		 */
1756 		usbc_hcchar.s.oddfrm = usb->frame_number & 1;
1757 
1758 		/*
1759 		 * Set the number of back to back packets allowed by this
1760 		 * endpoint. Split transactions interpret "ec" as the number of
1761 		 * immediate retries of failure. These retries happen too
1762 		 * quickly, so we disable these entirely for splits
1763 		 */
1764 		if (cvmx_usb_pipe_needs_split(usb, pipe))
1765 			usbc_hcchar.s.ec = 1;
1766 		else if (pipe->multi_count < 1)
1767 			usbc_hcchar.s.ec = 1;
1768 		else if (pipe->multi_count > 3)
1769 			usbc_hcchar.s.ec = 3;
1770 		else
1771 			usbc_hcchar.s.ec = pipe->multi_count;
1772 
1773 		/* Set the rest of the endpoint specific settings */
1774 		usbc_hcchar.s.devaddr = pipe->device_addr;
1775 		usbc_hcchar.s.eptype = transaction->type;
1776 		usbc_hcchar.s.lspddev =
1777 			(pipe->device_speed == CVMX_USB_SPEED_LOW);
1778 		usbc_hcchar.s.epdir = pipe->transfer_dir;
1779 		usbc_hcchar.s.epnum = pipe->endpoint_num;
1780 		usbc_hcchar.s.mps = pipe->max_packet;
1781 		cvmx_usb_write_csr32(usb,
1782 				     CVMX_USBCX_HCCHARX(channel, usb->index),
1783 				     usbc_hcchar.u32);
1784 	}
1785 
1786 	/* Do transaction type specific fixups as needed */
1787 	switch (transaction->type) {
1788 	case CVMX_USB_TRANSFER_CONTROL:
1789 		cvmx_usb_start_channel_control(usb, channel, pipe);
1790 		break;
1791 	case CVMX_USB_TRANSFER_BULK:
1792 	case CVMX_USB_TRANSFER_INTERRUPT:
1793 		break;
1794 	case CVMX_USB_TRANSFER_ISOCHRONOUS:
1795 		if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
1796 			/*
1797 			 * ISO transactions require different PIDs depending on
1798 			 * direction and how many packets are needed
1799 			 */
1800 			if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) {
1801 				if (pipe->multi_count < 2) /* Need DATA0 */
1802 					USB_SET_FIELD32(
1803 						CVMX_USBCX_HCTSIZX(channel,
1804 								   usb->index),
1805 						cvmx_usbcx_hctsizx, pid, 0);
1806 				else /* Need MDATA */
1807 					USB_SET_FIELD32(
1808 						CVMX_USBCX_HCTSIZX(channel,
1809 								   usb->index),
1810 						cvmx_usbcx_hctsizx, pid, 3);
1811 			}
1812 		}
1813 		break;
1814 	}
1815 	{
1816 		union cvmx_usbcx_hctsizx usbc_hctsiz = { .u32 =
1817 			cvmx_usb_read_csr32(usb,
1818 					    CVMX_USBCX_HCTSIZX(channel,
1819 							       usb->index))
1820 		};
1821 		transaction->xfersize = usbc_hctsiz.s.xfersize;
1822 		transaction->pktcnt = usbc_hctsiz.s.pktcnt;
1823 	}
1824 	/* Remember when we start a split transaction */
1825 	if (cvmx_usb_pipe_needs_split(usb, pipe))
1826 		usb->active_split = transaction;
1827 	USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1828 			cvmx_usbcx_hccharx, chena, 1);
1829 	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
1830 		cvmx_usb_fill_tx_fifo(usb, channel);
1831 }
1832 
1833 /**
1834  * Find a pipe that is ready to be scheduled to hardware.
1835  * @usb:	 USB device state populated by cvmx_usb_initialize().
1836  * @xfer_type:	 Transfer type
1837  *
1838  * Returns: Pipe or NULL if none are ready
1839  */
1840 static struct cvmx_usb_pipe *cvmx_usb_find_ready_pipe(struct octeon_hcd *usb,
1841 						      enum cvmx_usb_transfer xfer_type)
1842 {
1843 	struct list_head *list = usb->active_pipes + xfer_type;
1844 	u64 current_frame = usb->frame_number;
1845 	struct cvmx_usb_pipe *pipe;
1846 
1847 	list_for_each_entry(pipe, list, node) {
1848 		struct cvmx_usb_transaction *t =
1849 			list_first_entry(&pipe->transactions, typeof(*t),
1850 					 node);
1851 		if (!(pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED) && t &&
1852 		    (pipe->next_tx_frame <= current_frame) &&
1853 		    ((pipe->split_sc_frame == -1) ||
1854 		     ((((int)current_frame - pipe->split_sc_frame) & 0x7f) <
1855 		      0x40)) &&
1856 		    (!usb->active_split || (usb->active_split == t))) {
1857 			prefetch(t);
1858 			return pipe;
1859 		}
1860 	}
1861 	return NULL;
1862 }
1863 
1864 static struct cvmx_usb_pipe *cvmx_usb_next_pipe(struct octeon_hcd *usb,
1865 						int is_sof)
1866 {
1867 	struct cvmx_usb_pipe *pipe;
1868 
1869 	/* Find a pipe needing service. */
1870 	if (is_sof) {
1871 		/*
1872 		 * Only process periodic pipes on SOF interrupts. This way we
1873 		 * are sure that the periodic data is sent in the beginning of
1874 		 * the frame.
1875 		 */
1876 		pipe = cvmx_usb_find_ready_pipe(usb,
1877 						CVMX_USB_TRANSFER_ISOCHRONOUS);
1878 		if (pipe)
1879 			return pipe;
1880 		pipe = cvmx_usb_find_ready_pipe(usb,
1881 						CVMX_USB_TRANSFER_INTERRUPT);
1882 		if (pipe)
1883 			return pipe;
1884 	}
1885 	pipe = cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_CONTROL);
1886 	if (pipe)
1887 		return pipe;
1888 	return cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_BULK);
1889 }
1890 
1891 /**
1892  * Called whenever a pipe might need to be scheduled to the
1893  * hardware.
1894  *
1895  * @usb:	 USB device state populated by cvmx_usb_initialize().
1896  * @is_sof:	 True if this schedule was called on a SOF interrupt.
1897  */
1898 static void cvmx_usb_schedule(struct octeon_hcd *usb, int is_sof)
1899 {
1900 	int channel;
1901 	struct cvmx_usb_pipe *pipe;
1902 	int need_sof;
1903 	enum cvmx_usb_transfer ttype;
1904 
1905 	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
1906 		/*
1907 		 * Without DMA we need to be careful to not schedule something
1908 		 * at the end of a frame and cause an overrun.
1909 		 */
1910 		union cvmx_usbcx_hfnum hfnum = {
1911 			.u32 = cvmx_usb_read_csr32(usb,
1912 						CVMX_USBCX_HFNUM(usb->index))
1913 		};
1914 
1915 		union cvmx_usbcx_hfir hfir = {
1916 			.u32 = cvmx_usb_read_csr32(usb,
1917 						CVMX_USBCX_HFIR(usb->index))
1918 		};
1919 
1920 		if (hfnum.s.frrem < hfir.s.frint / 4)
1921 			goto done;
1922 	}
1923 
1924 	while (usb->idle_hardware_channels) {
1925 		/* Find an idle channel */
1926 		channel = __fls(usb->idle_hardware_channels);
1927 		if (unlikely(channel > 7))
1928 			break;
1929 
1930 		pipe = cvmx_usb_next_pipe(usb, is_sof);
1931 		if (!pipe)
1932 			break;
1933 
1934 		cvmx_usb_start_channel(usb, channel, pipe);
1935 	}
1936 
1937 done:
1938 	/*
1939 	 * Only enable SOF interrupts when we have transactions pending in the
1940 	 * future that might need to be scheduled
1941 	 */
1942 	need_sof = 0;
1943 	for (ttype = CVMX_USB_TRANSFER_CONTROL;
1944 	     ttype <= CVMX_USB_TRANSFER_INTERRUPT; ttype++) {
1945 		list_for_each_entry(pipe, &usb->active_pipes[ttype], node) {
1946 			if (pipe->next_tx_frame > usb->frame_number) {
1947 				need_sof = 1;
1948 				break;
1949 			}
1950 		}
1951 	}
1952 	USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1953 			cvmx_usbcx_gintmsk, sofmsk, need_sof);
1954 }
1955 
1956 static void octeon_usb_urb_complete_callback(struct octeon_hcd *usb,
1957 					     enum cvmx_usb_status status,
1958 					     struct cvmx_usb_pipe *pipe,
1959 					     struct cvmx_usb_transaction
1960 						*transaction,
1961 					     int bytes_transferred,
1962 					     struct urb *urb)
1963 {
1964 	struct usb_hcd *hcd = octeon_to_hcd(usb);
1965 	struct device *dev = hcd->self.controller;
1966 
1967 	if (likely(status == CVMX_USB_STATUS_OK))
1968 		urb->actual_length = bytes_transferred;
1969 	else
1970 		urb->actual_length = 0;
1971 
1972 	urb->hcpriv = NULL;
1973 
1974 	/* For Isochronous transactions we need to update the URB packet status
1975 	 * list from data in our private copy
1976 	 */
1977 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1978 		int i;
1979 		/*
1980 		 * The pointer to the private list is stored in the setup_packet
1981 		 * field.
1982 		 */
1983 		struct cvmx_usb_iso_packet *iso_packet =
1984 			(struct cvmx_usb_iso_packet *)urb->setup_packet;
1985 		/* Recalculate the transfer size by adding up each packet */
1986 		urb->actual_length = 0;
1987 		for (i = 0; i < urb->number_of_packets; i++) {
1988 			if (iso_packet[i].status == CVMX_USB_STATUS_OK) {
1989 				urb->iso_frame_desc[i].status = 0;
1990 				urb->iso_frame_desc[i].actual_length =
1991 					iso_packet[i].length;
1992 				urb->actual_length +=
1993 					urb->iso_frame_desc[i].actual_length;
1994 			} else {
1995 				dev_dbg(dev, "ISOCHRONOUS packet=%d of %d status=%d pipe=%p transaction=%p size=%d\n",
1996 					i, urb->number_of_packets,
1997 					iso_packet[i].status, pipe,
1998 					transaction, iso_packet[i].length);
1999 				urb->iso_frame_desc[i].status = -EREMOTEIO;
2000 			}
2001 		}
2002 		/* Free the private list now that we don't need it anymore */
2003 		kfree(iso_packet);
2004 		urb->setup_packet = NULL;
2005 	}
2006 
2007 	switch (status) {
2008 	case CVMX_USB_STATUS_OK:
2009 		urb->status = 0;
2010 		break;
2011 	case CVMX_USB_STATUS_CANCEL:
2012 		if (urb->status == 0)
2013 			urb->status = -ENOENT;
2014 		break;
2015 	case CVMX_USB_STATUS_STALL:
2016 		dev_dbg(dev, "status=stall pipe=%p transaction=%p size=%d\n",
2017 			pipe, transaction, bytes_transferred);
2018 		urb->status = -EPIPE;
2019 		break;
2020 	case CVMX_USB_STATUS_BABBLEERR:
2021 		dev_dbg(dev, "status=babble pipe=%p transaction=%p size=%d\n",
2022 			pipe, transaction, bytes_transferred);
2023 		urb->status = -EPIPE;
2024 		break;
2025 	case CVMX_USB_STATUS_SHORT:
2026 		dev_dbg(dev, "status=short pipe=%p transaction=%p size=%d\n",
2027 			pipe, transaction, bytes_transferred);
2028 		urb->status = -EREMOTEIO;
2029 		break;
2030 	case CVMX_USB_STATUS_ERROR:
2031 	case CVMX_USB_STATUS_XACTERR:
2032 	case CVMX_USB_STATUS_DATATGLERR:
2033 	case CVMX_USB_STATUS_FRAMEERR:
2034 		dev_dbg(dev, "status=%d pipe=%p transaction=%p size=%d\n",
2035 			status, pipe, transaction, bytes_transferred);
2036 		urb->status = -EPROTO;
2037 		break;
2038 	}
2039 	usb_hcd_unlink_urb_from_ep(octeon_to_hcd(usb), urb);
2040 	spin_unlock(&usb->lock);
2041 	usb_hcd_giveback_urb(octeon_to_hcd(usb), urb, urb->status);
2042 	spin_lock(&usb->lock);
2043 }
2044 
2045 /**
2046  * Signal the completion of a transaction and free it. The
2047  * transaction will be removed from the pipe transaction list.
2048  *
2049  * @usb:	 USB device state populated by cvmx_usb_initialize().
2050  * @pipe:	 Pipe the transaction is on
2051  * @transaction:
2052  *		 Transaction that completed
2053  * @complete_code:
2054  *		 Completion code
2055  */
2056 static void cvmx_usb_complete(struct octeon_hcd *usb,
2057 			      struct cvmx_usb_pipe *pipe,
2058 			      struct cvmx_usb_transaction *transaction,
2059 			      enum cvmx_usb_status complete_code)
2060 {
2061 	/* If this was a split then clear our split in progress marker */
2062 	if (usb->active_split == transaction)
2063 		usb->active_split = NULL;
2064 
2065 	/*
2066 	 * Isochronous transactions need extra processing as they might not be
2067 	 * done after a single data transfer
2068 	 */
2069 	if (unlikely(transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)) {
2070 		/* Update the number of bytes transferred in this ISO packet */
2071 		transaction->iso_packets[0].length = transaction->actual_bytes;
2072 		transaction->iso_packets[0].status = complete_code;
2073 
2074 		/*
2075 		 * If there are more ISOs pending and we succeeded, schedule the
2076 		 * next one
2077 		 */
2078 		if ((transaction->iso_number_packets > 1) &&
2079 		    (complete_code == CVMX_USB_STATUS_OK)) {
2080 			/* No bytes transferred for this packet as of yet */
2081 			transaction->actual_bytes = 0;
2082 			/* One less ISO waiting to transfer */
2083 			transaction->iso_number_packets--;
2084 			/* Increment to the next location in our packet array */
2085 			transaction->iso_packets++;
2086 			transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2087 			return;
2088 		}
2089 	}
2090 
2091 	/* Remove the transaction from the pipe list */
2092 	list_del(&transaction->node);
2093 	if (list_empty(&pipe->transactions))
2094 		list_move_tail(&pipe->node, &usb->idle_pipes);
2095 	octeon_usb_urb_complete_callback(usb, complete_code, pipe,
2096 					 transaction,
2097 					 transaction->actual_bytes,
2098 					 transaction->urb);
2099 	kfree(transaction);
2100 }
2101 
2102 /**
2103  * Submit a usb transaction to a pipe. Called for all types
2104  * of transactions.
2105  *
2106  * @usb:
2107  * @pipe:	    Which pipe to submit to.
2108  * @type:	    Transaction type
2109  * @buffer:	    User buffer for the transaction
2110  * @buffer_length:
2111  *		    User buffer's length in bytes
2112  * @control_header:
2113  *		    For control transactions, the 8 byte standard header
2114  * @iso_start_frame:
2115  *		    For ISO transactions, the start frame
2116  * @iso_number_packets:
2117  *		    For ISO, the number of packet in the transaction.
2118  * @iso_packets:
2119  *		    A description of each ISO packet
2120  * @urb:	    URB for the callback
2121  *
2122  * Returns: Transaction or NULL on failure.
2123  */
2124 static struct cvmx_usb_transaction *cvmx_usb_submit_transaction(
2125 				struct octeon_hcd *usb,
2126 				struct cvmx_usb_pipe *pipe,
2127 				enum cvmx_usb_transfer type,
2128 				u64 buffer,
2129 				int buffer_length,
2130 				u64 control_header,
2131 				int iso_start_frame,
2132 				int iso_number_packets,
2133 				struct cvmx_usb_iso_packet *iso_packets,
2134 				struct urb *urb)
2135 {
2136 	struct cvmx_usb_transaction *transaction;
2137 
2138 	if (unlikely(pipe->transfer_type != type))
2139 		return NULL;
2140 
2141 	transaction = kzalloc(sizeof(*transaction), GFP_ATOMIC);
2142 	if (unlikely(!transaction))
2143 		return NULL;
2144 
2145 	transaction->type = type;
2146 	transaction->buffer = buffer;
2147 	transaction->buffer_length = buffer_length;
2148 	transaction->control_header = control_header;
2149 	/* FIXME: This is not used, implement it. */
2150 	transaction->iso_start_frame = iso_start_frame;
2151 	transaction->iso_number_packets = iso_number_packets;
2152 	transaction->iso_packets = iso_packets;
2153 	transaction->urb = urb;
2154 	if (transaction->type == CVMX_USB_TRANSFER_CONTROL)
2155 		transaction->stage = CVMX_USB_STAGE_SETUP;
2156 	else
2157 		transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2158 
2159 	if (!list_empty(&pipe->transactions)) {
2160 		list_add_tail(&transaction->node, &pipe->transactions);
2161 	} else {
2162 		list_add_tail(&transaction->node, &pipe->transactions);
2163 		list_move_tail(&pipe->node,
2164 			       &usb->active_pipes[pipe->transfer_type]);
2165 
2166 		/*
2167 		 * We may need to schedule the pipe if this was the head of the
2168 		 * pipe.
2169 		 */
2170 		cvmx_usb_schedule(usb, 0);
2171 	}
2172 
2173 	return transaction;
2174 }
2175 
2176 /**
2177  * Call to submit a USB Bulk transfer to a pipe.
2178  *
2179  * @usb:	    USB device state populated by cvmx_usb_initialize().
2180  * @pipe:	    Handle to the pipe for the transfer.
2181  * @urb:	    URB.
2182  *
2183  * Returns: A submitted transaction or NULL on failure.
2184  */
2185 static struct cvmx_usb_transaction *cvmx_usb_submit_bulk(
2186 						struct octeon_hcd *usb,
2187 						struct cvmx_usb_pipe *pipe,
2188 						struct urb *urb)
2189 {
2190 	return cvmx_usb_submit_transaction(usb, pipe, CVMX_USB_TRANSFER_BULK,
2191 					   urb->transfer_dma,
2192 					   urb->transfer_buffer_length,
2193 					   0, /* control_header */
2194 					   0, /* iso_start_frame */
2195 					   0, /* iso_number_packets */
2196 					   NULL, /* iso_packets */
2197 					   urb);
2198 }
2199 
2200 /**
2201  * Call to submit a USB Interrupt transfer to a pipe.
2202  *
2203  * @usb:	    USB device state populated by cvmx_usb_initialize().
2204  * @pipe:	    Handle to the pipe for the transfer.
2205  * @urb:	    URB returned when the callback is called.
2206  *
2207  * Returns: A submitted transaction or NULL on failure.
2208  */
2209 static struct cvmx_usb_transaction *cvmx_usb_submit_interrupt(
2210 						struct octeon_hcd *usb,
2211 						struct cvmx_usb_pipe *pipe,
2212 						struct urb *urb)
2213 {
2214 	return cvmx_usb_submit_transaction(usb, pipe,
2215 					   CVMX_USB_TRANSFER_INTERRUPT,
2216 					   urb->transfer_dma,
2217 					   urb->transfer_buffer_length,
2218 					   0, /* control_header */
2219 					   0, /* iso_start_frame */
2220 					   0, /* iso_number_packets */
2221 					   NULL, /* iso_packets */
2222 					   urb);
2223 }
2224 
2225 /**
2226  * Call to submit a USB Control transfer to a pipe.
2227  *
2228  * @usb:	    USB device state populated by cvmx_usb_initialize().
2229  * @pipe:	    Handle to the pipe for the transfer.
2230  * @urb:	    URB.
2231  *
2232  * Returns: A submitted transaction or NULL on failure.
2233  */
2234 static struct cvmx_usb_transaction *cvmx_usb_submit_control(
2235 						struct octeon_hcd *usb,
2236 						struct cvmx_usb_pipe *pipe,
2237 						struct urb *urb)
2238 {
2239 	int buffer_length = urb->transfer_buffer_length;
2240 	u64 control_header = urb->setup_dma;
2241 	struct usb_ctrlrequest *header = cvmx_phys_to_ptr(control_header);
2242 
2243 	if ((header->bRequestType & USB_DIR_IN) == 0)
2244 		buffer_length = le16_to_cpu(header->wLength);
2245 
2246 	return cvmx_usb_submit_transaction(usb, pipe,
2247 					   CVMX_USB_TRANSFER_CONTROL,
2248 					   urb->transfer_dma, buffer_length,
2249 					   control_header,
2250 					   0, /* iso_start_frame */
2251 					   0, /* iso_number_packets */
2252 					   NULL, /* iso_packets */
2253 					   urb);
2254 }
2255 
2256 /**
2257  * Call to submit a USB Isochronous transfer to a pipe.
2258  *
2259  * @usb:	    USB device state populated by cvmx_usb_initialize().
2260  * @pipe:	    Handle to the pipe for the transfer.
2261  * @urb:	    URB returned when the callback is called.
2262  *
2263  * Returns: A submitted transaction or NULL on failure.
2264  */
2265 static struct cvmx_usb_transaction *cvmx_usb_submit_isochronous(
2266 						struct octeon_hcd *usb,
2267 						struct cvmx_usb_pipe *pipe,
2268 						struct urb *urb)
2269 {
2270 	struct cvmx_usb_iso_packet *packets;
2271 
2272 	packets = (struct cvmx_usb_iso_packet *)urb->setup_packet;
2273 	return cvmx_usb_submit_transaction(usb, pipe,
2274 					   CVMX_USB_TRANSFER_ISOCHRONOUS,
2275 					   urb->transfer_dma,
2276 					   urb->transfer_buffer_length,
2277 					   0, /* control_header */
2278 					   urb->start_frame,
2279 					   urb->number_of_packets,
2280 					   packets, urb);
2281 }
2282 
2283 /**
2284  * Cancel one outstanding request in a pipe. Canceling a request
2285  * can fail if the transaction has already completed before cancel
2286  * is called. Even after a successful cancel call, it may take
2287  * a frame or two for the cvmx_usb_poll() function to call the
2288  * associated callback.
2289  *
2290  * @usb:	 USB device state populated by cvmx_usb_initialize().
2291  * @pipe:	 Pipe to cancel requests in.
2292  * @transaction: Transaction to cancel, returned by the submit function.
2293  *
2294  * Returns: 0 or a negative error code.
2295  */
2296 static int cvmx_usb_cancel(struct octeon_hcd *usb,
2297 			   struct cvmx_usb_pipe *pipe,
2298 			   struct cvmx_usb_transaction *transaction)
2299 {
2300 	/*
2301 	 * If the transaction is the HEAD of the queue and scheduled. We need to
2302 	 * treat it special
2303 	 */
2304 	if (list_first_entry(&pipe->transactions, typeof(*transaction), node) ==
2305 	    transaction && (pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED)) {
2306 		union cvmx_usbcx_hccharx usbc_hcchar;
2307 
2308 		usb->pipe_for_channel[pipe->channel] = NULL;
2309 		pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
2310 
2311 		CVMX_SYNCW;
2312 
2313 		usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2314 						      CVMX_USBCX_HCCHARX(pipe->channel,
2315 									 usb->index));
2316 		/*
2317 		 * If the channel isn't enabled then the transaction already
2318 		 * completed.
2319 		 */
2320 		if (usbc_hcchar.s.chena) {
2321 			usbc_hcchar.s.chdis = 1;
2322 			cvmx_usb_write_csr32(usb,
2323 					     CVMX_USBCX_HCCHARX(pipe->channel,
2324 								usb->index),
2325 					     usbc_hcchar.u32);
2326 		}
2327 	}
2328 	cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_CANCEL);
2329 	return 0;
2330 }
2331 
2332 /**
2333  * Cancel all outstanding requests in a pipe. Logically all this
2334  * does is call cvmx_usb_cancel() in a loop.
2335  *
2336  * @usb:	 USB device state populated by cvmx_usb_initialize().
2337  * @pipe:	 Pipe to cancel requests in.
2338  *
2339  * Returns: 0 or a negative error code.
2340  */
2341 static int cvmx_usb_cancel_all(struct octeon_hcd *usb,
2342 			       struct cvmx_usb_pipe *pipe)
2343 {
2344 	struct cvmx_usb_transaction *transaction, *next;
2345 
2346 	/* Simply loop through and attempt to cancel each transaction */
2347 	list_for_each_entry_safe(transaction, next, &pipe->transactions, node) {
2348 		int result = cvmx_usb_cancel(usb, pipe, transaction);
2349 
2350 		if (unlikely(result != 0))
2351 			return result;
2352 	}
2353 	return 0;
2354 }
2355 
2356 /**
2357  * Close a pipe created with cvmx_usb_open_pipe().
2358  *
2359  * @usb:	 USB device state populated by cvmx_usb_initialize().
2360  * @pipe:	 Pipe to close.
2361  *
2362  * Returns: 0 or a negative error code. EBUSY is returned if the pipe has
2363  *	    outstanding transfers.
2364  */
2365 static int cvmx_usb_close_pipe(struct octeon_hcd *usb,
2366 			       struct cvmx_usb_pipe *pipe)
2367 {
2368 	/* Fail if the pipe has pending transactions */
2369 	if (!list_empty(&pipe->transactions))
2370 		return -EBUSY;
2371 
2372 	list_del(&pipe->node);
2373 	kfree(pipe);
2374 
2375 	return 0;
2376 }
2377 
2378 /**
2379  * Get the current USB protocol level frame number. The frame
2380  * number is always in the range of 0-0x7ff.
2381  *
2382  * @usb: USB device state populated by cvmx_usb_initialize().
2383  *
2384  * Returns: USB frame number
2385  */
2386 static int cvmx_usb_get_frame_number(struct octeon_hcd *usb)
2387 {
2388 	union cvmx_usbcx_hfnum usbc_hfnum;
2389 
2390 	usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
2391 
2392 	return usbc_hfnum.s.frnum;
2393 }
2394 
2395 static void cvmx_usb_transfer_control(struct octeon_hcd *usb,
2396 				      struct cvmx_usb_pipe *pipe,
2397 				      struct cvmx_usb_transaction *transaction,
2398 				      union cvmx_usbcx_hccharx usbc_hcchar,
2399 				      int buffer_space_left,
2400 				      int bytes_in_last_packet)
2401 {
2402 	switch (transaction->stage) {
2403 	case CVMX_USB_STAGE_NON_CONTROL:
2404 	case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
2405 		/* This should be impossible */
2406 		cvmx_usb_complete(usb, pipe, transaction,
2407 				  CVMX_USB_STATUS_ERROR);
2408 		break;
2409 	case CVMX_USB_STAGE_SETUP:
2410 		pipe->pid_toggle = 1;
2411 		if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2412 			transaction->stage =
2413 				CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE;
2414 		} else {
2415 			struct usb_ctrlrequest *header =
2416 				cvmx_phys_to_ptr(transaction->control_header);
2417 			if (header->wLength)
2418 				transaction->stage = CVMX_USB_STAGE_DATA;
2419 			else
2420 				transaction->stage = CVMX_USB_STAGE_STATUS;
2421 		}
2422 		break;
2423 	case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
2424 		{
2425 			struct usb_ctrlrequest *header =
2426 				cvmx_phys_to_ptr(transaction->control_header);
2427 			if (header->wLength)
2428 				transaction->stage = CVMX_USB_STAGE_DATA;
2429 			else
2430 				transaction->stage = CVMX_USB_STAGE_STATUS;
2431 		}
2432 		break;
2433 	case CVMX_USB_STAGE_DATA:
2434 		if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2435 			transaction->stage = CVMX_USB_STAGE_DATA_SPLIT_COMPLETE;
2436 			/*
2437 			 * For setup OUT data that are splits,
2438 			 * the hardware doesn't appear to count
2439 			 * transferred data. Here we manually
2440 			 * update the data transferred
2441 			 */
2442 			if (!usbc_hcchar.s.epdir) {
2443 				if (buffer_space_left < pipe->max_packet)
2444 					transaction->actual_bytes +=
2445 						buffer_space_left;
2446 				else
2447 					transaction->actual_bytes +=
2448 						pipe->max_packet;
2449 			}
2450 		} else if ((buffer_space_left == 0) ||
2451 			   (bytes_in_last_packet < pipe->max_packet)) {
2452 			pipe->pid_toggle = 1;
2453 			transaction->stage = CVMX_USB_STAGE_STATUS;
2454 		}
2455 		break;
2456 	case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
2457 		if ((buffer_space_left == 0) ||
2458 		    (bytes_in_last_packet < pipe->max_packet)) {
2459 			pipe->pid_toggle = 1;
2460 			transaction->stage = CVMX_USB_STAGE_STATUS;
2461 		} else {
2462 			transaction->stage = CVMX_USB_STAGE_DATA;
2463 		}
2464 		break;
2465 	case CVMX_USB_STAGE_STATUS:
2466 		if (cvmx_usb_pipe_needs_split(usb, pipe))
2467 			transaction->stage =
2468 				CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE;
2469 		else
2470 			cvmx_usb_complete(usb, pipe, transaction,
2471 					  CVMX_USB_STATUS_OK);
2472 		break;
2473 	case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
2474 		cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
2475 		break;
2476 	}
2477 }
2478 
2479 static void cvmx_usb_transfer_bulk(struct octeon_hcd *usb,
2480 				   struct cvmx_usb_pipe *pipe,
2481 				   struct cvmx_usb_transaction *transaction,
2482 				   union cvmx_usbcx_hcintx usbc_hcint,
2483 				   int buffer_space_left,
2484 				   int bytes_in_last_packet)
2485 {
2486 	/*
2487 	 * The only time a bulk transfer isn't complete when it finishes with
2488 	 * an ACK is during a split transaction. For splits we need to continue
2489 	 * the transfer if more data is needed.
2490 	 */
2491 	if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2492 		if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL)
2493 			transaction->stage =
2494 				CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2495 		else if (buffer_space_left &&
2496 			 (bytes_in_last_packet == pipe->max_packet))
2497 			transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2498 		else
2499 			cvmx_usb_complete(usb, pipe, transaction,
2500 					  CVMX_USB_STATUS_OK);
2501 	} else {
2502 		if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
2503 		    (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) &&
2504 		    (usbc_hcint.s.nak))
2505 			pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
2506 		if (!buffer_space_left ||
2507 		    (bytes_in_last_packet < pipe->max_packet))
2508 			cvmx_usb_complete(usb, pipe, transaction,
2509 					  CVMX_USB_STATUS_OK);
2510 	}
2511 }
2512 
2513 static void cvmx_usb_transfer_intr(struct octeon_hcd *usb,
2514 				   struct cvmx_usb_pipe *pipe,
2515 				   struct cvmx_usb_transaction *transaction,
2516 				   int buffer_space_left,
2517 				   int bytes_in_last_packet)
2518 {
2519 	if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2520 		if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL) {
2521 			transaction->stage =
2522 				CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2523 		} else if (buffer_space_left &&
2524 			   (bytes_in_last_packet == pipe->max_packet)) {
2525 			transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2526 		} else {
2527 			pipe->next_tx_frame += pipe->interval;
2528 			cvmx_usb_complete(usb, pipe, transaction,
2529 					  CVMX_USB_STATUS_OK);
2530 		}
2531 	} else if (!buffer_space_left ||
2532 		   (bytes_in_last_packet < pipe->max_packet)) {
2533 		pipe->next_tx_frame += pipe->interval;
2534 		cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
2535 	}
2536 }
2537 
2538 static void cvmx_usb_transfer_isoc(struct octeon_hcd *usb,
2539 				   struct cvmx_usb_pipe *pipe,
2540 				   struct cvmx_usb_transaction *transaction,
2541 				   int buffer_space_left,
2542 				   int bytes_in_last_packet,
2543 				   int bytes_this_transfer)
2544 {
2545 	if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2546 		/*
2547 		 * ISOCHRONOUS OUT splits don't require a complete split stage.
2548 		 * Instead they use a sequence of begin OUT splits to transfer
2549 		 * the data 188 bytes at a time. Once the transfer is complete,
2550 		 * the pipe sleeps until the next schedule interval.
2551 		 */
2552 		if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) {
2553 			/*
2554 			 * If no space left or this wasn't a max size packet
2555 			 * then this transfer is complete. Otherwise start it
2556 			 * again to send the next 188 bytes
2557 			 */
2558 			if (!buffer_space_left || (bytes_this_transfer < 188)) {
2559 				pipe->next_tx_frame += pipe->interval;
2560 				cvmx_usb_complete(usb, pipe, transaction,
2561 						  CVMX_USB_STATUS_OK);
2562 			}
2563 			return;
2564 		}
2565 		if (transaction->stage ==
2566 		    CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE) {
2567 			/*
2568 			 * We are in the incoming data phase. Keep getting data
2569 			 * until we run out of space or get a small packet
2570 			 */
2571 			if ((buffer_space_left == 0) ||
2572 			    (bytes_in_last_packet < pipe->max_packet)) {
2573 				pipe->next_tx_frame += pipe->interval;
2574 				cvmx_usb_complete(usb, pipe, transaction,
2575 						  CVMX_USB_STATUS_OK);
2576 			}
2577 		} else {
2578 			transaction->stage =
2579 				CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2580 		}
2581 	} else {
2582 		pipe->next_tx_frame += pipe->interval;
2583 		cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
2584 	}
2585 }
2586 
2587 /**
2588  * Poll a channel for status
2589  *
2590  * @usb:     USB device
2591  * @channel: Channel to poll
2592  *
2593  * Returns: Zero on success
2594  */
2595 static int cvmx_usb_poll_channel(struct octeon_hcd *usb, int channel)
2596 {
2597 	struct usb_hcd *hcd = octeon_to_hcd(usb);
2598 	struct device *dev = hcd->self.controller;
2599 	union cvmx_usbcx_hcintx usbc_hcint;
2600 	union cvmx_usbcx_hctsizx usbc_hctsiz;
2601 	union cvmx_usbcx_hccharx usbc_hcchar;
2602 	struct cvmx_usb_pipe *pipe;
2603 	struct cvmx_usb_transaction *transaction;
2604 	int bytes_this_transfer;
2605 	int bytes_in_last_packet;
2606 	int packets_processed;
2607 	int buffer_space_left;
2608 
2609 	/* Read the interrupt status bits for the channel */
2610 	usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
2611 					     CVMX_USBCX_HCINTX(channel, usb->index));
2612 
2613 	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
2614 		usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2615 						      CVMX_USBCX_HCCHARX(channel,
2616 									 usb->index));
2617 
2618 		if (usbc_hcchar.s.chena && usbc_hcchar.s.chdis) {
2619 			/*
2620 			 * There seems to be a bug in CN31XX which can cause
2621 			 * interrupt IN transfers to get stuck until we do a
2622 			 * write of HCCHARX without changing things
2623 			 */
2624 			cvmx_usb_write_csr32(usb,
2625 					     CVMX_USBCX_HCCHARX(channel,
2626 								usb->index),
2627 					     usbc_hcchar.u32);
2628 			return 0;
2629 		}
2630 
2631 		/*
2632 		 * In non DMA mode the channels don't halt themselves. We need
2633 		 * to manually disable channels that are left running
2634 		 */
2635 		if (!usbc_hcint.s.chhltd) {
2636 			if (usbc_hcchar.s.chena) {
2637 				union cvmx_usbcx_hcintmskx hcintmsk;
2638 				/* Disable all interrupts except CHHLTD */
2639 				hcintmsk.u32 = 0;
2640 				hcintmsk.s.chhltdmsk = 1;
2641 				cvmx_usb_write_csr32(usb,
2642 						     CVMX_USBCX_HCINTMSKX(channel, usb->index),
2643 						     hcintmsk.u32);
2644 				usbc_hcchar.s.chdis = 1;
2645 				cvmx_usb_write_csr32(usb,
2646 						     CVMX_USBCX_HCCHARX(channel, usb->index),
2647 						     usbc_hcchar.u32);
2648 				return 0;
2649 			} else if (usbc_hcint.s.xfercompl) {
2650 				/*
2651 				 * Successful IN/OUT with transfer complete.
2652 				 * Channel halt isn't needed.
2653 				 */
2654 			} else {
2655 				dev_err(dev, "USB%d: Channel %d interrupt without halt\n",
2656 					usb->index, channel);
2657 				return 0;
2658 			}
2659 		}
2660 	} else {
2661 		/*
2662 		 * There is are no interrupts that we need to process when the
2663 		 * channel is still running
2664 		 */
2665 		if (!usbc_hcint.s.chhltd)
2666 			return 0;
2667 	}
2668 
2669 	/* Disable the channel interrupts now that it is done */
2670 	cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTMSKX(channel, usb->index), 0);
2671 	usb->idle_hardware_channels |= (1 << channel);
2672 
2673 	/* Make sure this channel is tied to a valid pipe */
2674 	pipe = usb->pipe_for_channel[channel];
2675 	prefetch(pipe);
2676 	if (!pipe)
2677 		return 0;
2678 	transaction = list_first_entry(&pipe->transactions,
2679 				       typeof(*transaction),
2680 				       node);
2681 	prefetch(transaction);
2682 
2683 	/*
2684 	 * Disconnect this pipe from the HW channel. Later the schedule
2685 	 * function will figure out which pipe needs to go
2686 	 */
2687 	usb->pipe_for_channel[channel] = NULL;
2688 	pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
2689 
2690 	/*
2691 	 * Read the channel config info so we can figure out how much data
2692 	 * transferred
2693 	 */
2694 	usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2695 					      CVMX_USBCX_HCCHARX(channel, usb->index));
2696 	usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
2697 					      CVMX_USBCX_HCTSIZX(channel, usb->index));
2698 
2699 	/*
2700 	 * Calculating the number of bytes successfully transferred is dependent
2701 	 * on the transfer direction
2702 	 */
2703 	packets_processed = transaction->pktcnt - usbc_hctsiz.s.pktcnt;
2704 	if (usbc_hcchar.s.epdir) {
2705 		/*
2706 		 * IN transactions are easy. For every byte received the
2707 		 * hardware decrements xfersize. All we need to do is subtract
2708 		 * the current value of xfersize from its starting value and we
2709 		 * know how many bytes were written to the buffer
2710 		 */
2711 		bytes_this_transfer = transaction->xfersize -
2712 			usbc_hctsiz.s.xfersize;
2713 	} else {
2714 		/*
2715 		 * OUT transaction don't decrement xfersize. Instead pktcnt is
2716 		 * decremented on every successful packet send. The hardware
2717 		 * does this when it receives an ACK, or NYET. If it doesn't
2718 		 * receive one of these responses pktcnt doesn't change
2719 		 */
2720 		bytes_this_transfer = packets_processed * usbc_hcchar.s.mps;
2721 		/*
2722 		 * The last packet may not be a full transfer if we didn't have
2723 		 * enough data
2724 		 */
2725 		if (bytes_this_transfer > transaction->xfersize)
2726 			bytes_this_transfer = transaction->xfersize;
2727 	}
2728 	/* Figure out how many bytes were in the last packet of the transfer */
2729 	if (packets_processed)
2730 		bytes_in_last_packet = bytes_this_transfer -
2731 			(packets_processed - 1) * usbc_hcchar.s.mps;
2732 	else
2733 		bytes_in_last_packet = bytes_this_transfer;
2734 
2735 	/*
2736 	 * As a special case, setup transactions output the setup header, not
2737 	 * the user's data. For this reason we don't count setup data as bytes
2738 	 * transferred
2739 	 */
2740 	if ((transaction->stage == CVMX_USB_STAGE_SETUP) ||
2741 	    (transaction->stage == CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE))
2742 		bytes_this_transfer = 0;
2743 
2744 	/*
2745 	 * Add the bytes transferred to the running total. It is important that
2746 	 * bytes_this_transfer doesn't count any data that needs to be
2747 	 * retransmitted
2748 	 */
2749 	transaction->actual_bytes += bytes_this_transfer;
2750 	if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
2751 		buffer_space_left = transaction->iso_packets[0].length -
2752 			transaction->actual_bytes;
2753 	else
2754 		buffer_space_left = transaction->buffer_length -
2755 			transaction->actual_bytes;
2756 
2757 	/*
2758 	 * We need to remember the PID toggle state for the next transaction.
2759 	 * The hardware already updated it for the next transaction
2760 	 */
2761 	pipe->pid_toggle = !(usbc_hctsiz.s.pid == 0);
2762 
2763 	/*
2764 	 * For high speed bulk out, assume the next transaction will need to do
2765 	 * a ping before proceeding. If this isn't true the ACK processing below
2766 	 * will clear this flag
2767 	 */
2768 	if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
2769 	    (pipe->transfer_type == CVMX_USB_TRANSFER_BULK) &&
2770 	    (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT))
2771 		pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
2772 
2773 	if (WARN_ON_ONCE(bytes_this_transfer < 0)) {
2774 		/*
2775 		 * In some rare cases the DMA engine seems to get stuck and
2776 		 * keeps substracting same byte count over and over again. In
2777 		 * such case we just need to fail every transaction.
2778 		 */
2779 		cvmx_usb_complete(usb, pipe, transaction,
2780 				  CVMX_USB_STATUS_ERROR);
2781 		return 0;
2782 	}
2783 
2784 	if (usbc_hcint.s.stall) {
2785 		/*
2786 		 * STALL as a response means this transaction cannot be
2787 		 * completed because the device can't process transactions. Tell
2788 		 * the user. Any data that was transferred will be counted on
2789 		 * the actual bytes transferred
2790 		 */
2791 		pipe->pid_toggle = 0;
2792 		cvmx_usb_complete(usb, pipe, transaction,
2793 				  CVMX_USB_STATUS_STALL);
2794 	} else if (usbc_hcint.s.xacterr) {
2795 		/*
2796 		 * XactErr as a response means the device signaled
2797 		 * something wrong with the transfer. For example, PID
2798 		 * toggle errors cause these.
2799 		 */
2800 		cvmx_usb_complete(usb, pipe, transaction,
2801 				  CVMX_USB_STATUS_XACTERR);
2802 	} else if (usbc_hcint.s.bblerr) {
2803 		/* Babble Error (BblErr) */
2804 		cvmx_usb_complete(usb, pipe, transaction,
2805 				  CVMX_USB_STATUS_BABBLEERR);
2806 	} else if (usbc_hcint.s.datatglerr) {
2807 		/* Data toggle error */
2808 		cvmx_usb_complete(usb, pipe, transaction,
2809 				  CVMX_USB_STATUS_DATATGLERR);
2810 	} else if (usbc_hcint.s.nyet) {
2811 		/*
2812 		 * NYET as a response is only allowed in three cases: as a
2813 		 * response to a ping, as a response to a split transaction, and
2814 		 * as a response to a bulk out. The ping case is handled by
2815 		 * hardware, so we only have splits and bulk out
2816 		 */
2817 		if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
2818 			transaction->retries = 0;
2819 			/*
2820 			 * If there is more data to go then we need to try
2821 			 * again. Otherwise this transaction is complete
2822 			 */
2823 			if ((buffer_space_left == 0) ||
2824 			    (bytes_in_last_packet < pipe->max_packet))
2825 				cvmx_usb_complete(usb, pipe,
2826 						  transaction,
2827 						  CVMX_USB_STATUS_OK);
2828 		} else {
2829 			/*
2830 			 * Split transactions retry the split complete 4 times
2831 			 * then rewind to the start split and do the entire
2832 			 * transactions again
2833 			 */
2834 			transaction->retries++;
2835 			if ((transaction->retries & 0x3) == 0) {
2836 				/*
2837 				 * Rewind to the beginning of the transaction by
2838 				 * anding off the split complete bit
2839 				 */
2840 				transaction->stage &= ~1;
2841 				pipe->split_sc_frame = -1;
2842 			}
2843 		}
2844 	} else if (usbc_hcint.s.ack) {
2845 		transaction->retries = 0;
2846 		/*
2847 		 * The ACK bit can only be checked after the other error bits.
2848 		 * This is because a multi packet transfer may succeed in a
2849 		 * number of packets and then get a different response on the
2850 		 * last packet. In this case both ACK and the last response bit
2851 		 * will be set. If none of the other response bits is set, then
2852 		 * the last packet must have been an ACK
2853 		 *
2854 		 * Since we got an ACK, we know we don't need to do a ping on
2855 		 * this pipe
2856 		 */
2857 		pipe->flags &= ~CVMX_USB_PIPE_FLAGS_NEED_PING;
2858 
2859 		switch (transaction->type) {
2860 		case CVMX_USB_TRANSFER_CONTROL:
2861 			cvmx_usb_transfer_control(usb, pipe, transaction,
2862 						  usbc_hcchar,
2863 						  buffer_space_left,
2864 						  bytes_in_last_packet);
2865 			break;
2866 		case CVMX_USB_TRANSFER_BULK:
2867 			cvmx_usb_transfer_bulk(usb, pipe, transaction,
2868 					       usbc_hcint, buffer_space_left,
2869 					       bytes_in_last_packet);
2870 			break;
2871 		case CVMX_USB_TRANSFER_INTERRUPT:
2872 			cvmx_usb_transfer_intr(usb, pipe, transaction,
2873 					       buffer_space_left,
2874 					       bytes_in_last_packet);
2875 			break;
2876 		case CVMX_USB_TRANSFER_ISOCHRONOUS:
2877 			cvmx_usb_transfer_isoc(usb, pipe, transaction,
2878 					       buffer_space_left,
2879 					       bytes_in_last_packet,
2880 					       bytes_this_transfer);
2881 			break;
2882 		}
2883 	} else if (usbc_hcint.s.nak) {
2884 		/*
2885 		 * If this was a split then clear our split in progress marker.
2886 		 */
2887 		if (usb->active_split == transaction)
2888 			usb->active_split = NULL;
2889 		/*
2890 		 * NAK as a response means the device couldn't accept the
2891 		 * transaction, but it should be retried in the future. Rewind
2892 		 * to the beginning of the transaction by anding off the split
2893 		 * complete bit. Retry in the next interval
2894 		 */
2895 		transaction->retries = 0;
2896 		transaction->stage &= ~1;
2897 		pipe->next_tx_frame += pipe->interval;
2898 		if (pipe->next_tx_frame < usb->frame_number)
2899 			pipe->next_tx_frame = usb->frame_number +
2900 				pipe->interval -
2901 				(usb->frame_number - pipe->next_tx_frame) %
2902 				pipe->interval;
2903 	} else {
2904 		struct cvmx_usb_port_status port;
2905 
2906 		port = cvmx_usb_get_status(usb);
2907 		if (port.port_enabled) {
2908 			/* We'll retry the exact same transaction again */
2909 			transaction->retries++;
2910 		} else {
2911 			/*
2912 			 * We get channel halted interrupts with no result bits
2913 			 * sets when the cable is unplugged
2914 			 */
2915 			cvmx_usb_complete(usb, pipe, transaction,
2916 					  CVMX_USB_STATUS_ERROR);
2917 		}
2918 	}
2919 	return 0;
2920 }
2921 
2922 static void octeon_usb_port_callback(struct octeon_hcd *usb)
2923 {
2924 	spin_unlock(&usb->lock);
2925 	usb_hcd_poll_rh_status(octeon_to_hcd(usb));
2926 	spin_lock(&usb->lock);
2927 }
2928 
2929 /**
2930  * Poll the USB block for status and call all needed callback
2931  * handlers. This function is meant to be called in the interrupt
2932  * handler for the USB controller. It can also be called
2933  * periodically in a loop for non-interrupt based operation.
2934  *
2935  * @usb: USB device state populated by cvmx_usb_initialize().
2936  *
2937  * Returns: 0 or a negative error code.
2938  */
2939 static int cvmx_usb_poll(struct octeon_hcd *usb)
2940 {
2941 	union cvmx_usbcx_hfnum usbc_hfnum;
2942 	union cvmx_usbcx_gintsts usbc_gintsts;
2943 
2944 	prefetch_range(usb, sizeof(*usb));
2945 
2946 	/* Update the frame counter */
2947 	usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
2948 	if ((usb->frame_number & 0x3fff) > usbc_hfnum.s.frnum)
2949 		usb->frame_number += 0x4000;
2950 	usb->frame_number &= ~0x3fffull;
2951 	usb->frame_number |= usbc_hfnum.s.frnum;
2952 
2953 	/* Read the pending interrupts */
2954 	usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
2955 					       CVMX_USBCX_GINTSTS(usb->index));
2956 
2957 	/* Clear the interrupts now that we know about them */
2958 	cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
2959 			     usbc_gintsts.u32);
2960 
2961 	if (usbc_gintsts.s.rxflvl) {
2962 		/*
2963 		 * RxFIFO Non-Empty (RxFLvl)
2964 		 * Indicates that there is at least one packet pending to be
2965 		 * read from the RxFIFO.
2966 		 *
2967 		 * In DMA mode this is handled by hardware
2968 		 */
2969 		if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
2970 			cvmx_usb_poll_rx_fifo(usb);
2971 	}
2972 	if (usbc_gintsts.s.ptxfemp || usbc_gintsts.s.nptxfemp) {
2973 		/* Fill the Tx FIFOs when not in DMA mode */
2974 		if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
2975 			cvmx_usb_poll_tx_fifo(usb);
2976 	}
2977 	if (usbc_gintsts.s.disconnint || usbc_gintsts.s.prtint) {
2978 		union cvmx_usbcx_hprt usbc_hprt;
2979 		/*
2980 		 * Disconnect Detected Interrupt (DisconnInt)
2981 		 * Asserted when a device disconnect is detected.
2982 		 *
2983 		 * Host Port Interrupt (PrtInt)
2984 		 * The core sets this bit to indicate a change in port status of
2985 		 * one of the O2P USB core ports in Host mode. The application
2986 		 * must read the Host Port Control and Status (HPRT) register to
2987 		 * determine the exact event that caused this interrupt. The
2988 		 * application must clear the appropriate status bit in the Host
2989 		 * Port Control and Status register to clear this bit.
2990 		 *
2991 		 * Call the user's port callback
2992 		 */
2993 		octeon_usb_port_callback(usb);
2994 		/* Clear the port change bits */
2995 		usbc_hprt.u32 =
2996 			cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
2997 		usbc_hprt.s.prtena = 0;
2998 		cvmx_usb_write_csr32(usb, CVMX_USBCX_HPRT(usb->index),
2999 				     usbc_hprt.u32);
3000 	}
3001 	if (usbc_gintsts.s.hchint) {
3002 		/*
3003 		 * Host Channels Interrupt (HChInt)
3004 		 * The core sets this bit to indicate that an interrupt is
3005 		 * pending on one of the channels of the core (in Host mode).
3006 		 * The application must read the Host All Channels Interrupt
3007 		 * (HAINT) register to determine the exact number of the channel
3008 		 * on which the interrupt occurred, and then read the
3009 		 * corresponding Host Channel-n Interrupt (HCINTn) register to
3010 		 * determine the exact cause of the interrupt. The application
3011 		 * must clear the appropriate status bit in the HCINTn register
3012 		 * to clear this bit.
3013 		 */
3014 		union cvmx_usbcx_haint usbc_haint;
3015 
3016 		usbc_haint.u32 = cvmx_usb_read_csr32(usb,
3017 						     CVMX_USBCX_HAINT(usb->index));
3018 		while (usbc_haint.u32) {
3019 			int channel;
3020 
3021 			channel = __fls(usbc_haint.u32);
3022 			cvmx_usb_poll_channel(usb, channel);
3023 			usbc_haint.u32 ^= 1 << channel;
3024 		}
3025 	}
3026 
3027 	cvmx_usb_schedule(usb, usbc_gintsts.s.sof);
3028 
3029 	return 0;
3030 }
3031 
3032 /* convert between an HCD pointer and the corresponding struct octeon_hcd */
3033 static inline struct octeon_hcd *hcd_to_octeon(struct usb_hcd *hcd)
3034 {
3035 	return (struct octeon_hcd *)(hcd->hcd_priv);
3036 }
3037 
3038 static irqreturn_t octeon_usb_irq(struct usb_hcd *hcd)
3039 {
3040 	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3041 	unsigned long flags;
3042 
3043 	spin_lock_irqsave(&usb->lock, flags);
3044 	cvmx_usb_poll(usb);
3045 	spin_unlock_irqrestore(&usb->lock, flags);
3046 	return IRQ_HANDLED;
3047 }
3048 
3049 static int octeon_usb_start(struct usb_hcd *hcd)
3050 {
3051 	hcd->state = HC_STATE_RUNNING;
3052 	return 0;
3053 }
3054 
3055 static void octeon_usb_stop(struct usb_hcd *hcd)
3056 {
3057 	hcd->state = HC_STATE_HALT;
3058 }
3059 
3060 static int octeon_usb_get_frame_number(struct usb_hcd *hcd)
3061 {
3062 	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3063 
3064 	return cvmx_usb_get_frame_number(usb);
3065 }
3066 
3067 static int octeon_usb_urb_enqueue(struct usb_hcd *hcd,
3068 				  struct urb *urb,
3069 				  gfp_t mem_flags)
3070 {
3071 	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3072 	struct device *dev = hcd->self.controller;
3073 	struct cvmx_usb_transaction *transaction = NULL;
3074 	struct cvmx_usb_pipe *pipe;
3075 	unsigned long flags;
3076 	struct cvmx_usb_iso_packet *iso_packet;
3077 	struct usb_host_endpoint *ep = urb->ep;
3078 	int rc;
3079 
3080 	urb->status = 0;
3081 	spin_lock_irqsave(&usb->lock, flags);
3082 
3083 	rc = usb_hcd_link_urb_to_ep(hcd, urb);
3084 	if (rc) {
3085 		spin_unlock_irqrestore(&usb->lock, flags);
3086 		return rc;
3087 	}
3088 
3089 	if (!ep->hcpriv) {
3090 		enum cvmx_usb_transfer transfer_type;
3091 		enum cvmx_usb_speed speed;
3092 		int split_device = 0;
3093 		int split_port = 0;
3094 
3095 		switch (usb_pipetype(urb->pipe)) {
3096 		case PIPE_ISOCHRONOUS:
3097 			transfer_type = CVMX_USB_TRANSFER_ISOCHRONOUS;
3098 			break;
3099 		case PIPE_INTERRUPT:
3100 			transfer_type = CVMX_USB_TRANSFER_INTERRUPT;
3101 			break;
3102 		case PIPE_CONTROL:
3103 			transfer_type = CVMX_USB_TRANSFER_CONTROL;
3104 			break;
3105 		default:
3106 			transfer_type = CVMX_USB_TRANSFER_BULK;
3107 			break;
3108 		}
3109 		switch (urb->dev->speed) {
3110 		case USB_SPEED_LOW:
3111 			speed = CVMX_USB_SPEED_LOW;
3112 			break;
3113 		case USB_SPEED_FULL:
3114 			speed = CVMX_USB_SPEED_FULL;
3115 			break;
3116 		default:
3117 			speed = CVMX_USB_SPEED_HIGH;
3118 			break;
3119 		}
3120 		/*
3121 		 * For slow devices on high speed ports we need to find the hub
3122 		 * that does the speed translation so we know where to send the
3123 		 * split transactions.
3124 		 */
3125 		if (speed != CVMX_USB_SPEED_HIGH) {
3126 			/*
3127 			 * Start at this device and work our way up the usb
3128 			 * tree.
3129 			 */
3130 			struct usb_device *dev = urb->dev;
3131 
3132 			while (dev->parent) {
3133 				/*
3134 				 * If our parent is high speed then he'll
3135 				 * receive the splits.
3136 				 */
3137 				if (dev->parent->speed == USB_SPEED_HIGH) {
3138 					split_device = dev->parent->devnum;
3139 					split_port = dev->portnum;
3140 					break;
3141 				}
3142 				/*
3143 				 * Move up the tree one level. If we make it all
3144 				 * the way up the tree, then the port must not
3145 				 * be in high speed mode and we don't need a
3146 				 * split.
3147 				 */
3148 				dev = dev->parent;
3149 			}
3150 		}
3151 		pipe = cvmx_usb_open_pipe(usb, usb_pipedevice(urb->pipe),
3152 					  usb_pipeendpoint(urb->pipe), speed,
3153 					  le16_to_cpu(ep->desc.wMaxPacketSize)
3154 					  & 0x7ff,
3155 					  transfer_type,
3156 					  usb_pipein(urb->pipe) ?
3157 						CVMX_USB_DIRECTION_IN :
3158 						CVMX_USB_DIRECTION_OUT,
3159 					  urb->interval,
3160 					  (le16_to_cpu(ep->desc.wMaxPacketSize)
3161 					   >> 11) & 0x3,
3162 					  split_device, split_port);
3163 		if (!pipe) {
3164 			usb_hcd_unlink_urb_from_ep(hcd, urb);
3165 			spin_unlock_irqrestore(&usb->lock, flags);
3166 			dev_dbg(dev, "Failed to create pipe\n");
3167 			return -ENOMEM;
3168 		}
3169 		ep->hcpriv = pipe;
3170 	} else {
3171 		pipe = ep->hcpriv;
3172 	}
3173 
3174 	switch (usb_pipetype(urb->pipe)) {
3175 	case PIPE_ISOCHRONOUS:
3176 		dev_dbg(dev, "Submit isochronous to %d.%d\n",
3177 			usb_pipedevice(urb->pipe),
3178 			usb_pipeendpoint(urb->pipe));
3179 		/*
3180 		 * Allocate a structure to use for our private list of
3181 		 * isochronous packets.
3182 		 */
3183 		iso_packet = kmalloc_array(urb->number_of_packets,
3184 					   sizeof(struct cvmx_usb_iso_packet),
3185 					   GFP_ATOMIC);
3186 		if (iso_packet) {
3187 			int i;
3188 			/* Fill the list with the data from the URB */
3189 			for (i = 0; i < urb->number_of_packets; i++) {
3190 				iso_packet[i].offset =
3191 					urb->iso_frame_desc[i].offset;
3192 				iso_packet[i].length =
3193 					urb->iso_frame_desc[i].length;
3194 				iso_packet[i].status = CVMX_USB_STATUS_ERROR;
3195 			}
3196 			/*
3197 			 * Store a pointer to the list in the URB setup_packet
3198 			 * field. We know this currently isn't being used and
3199 			 * this saves us a bunch of logic.
3200 			 */
3201 			urb->setup_packet = (char *)iso_packet;
3202 			transaction = cvmx_usb_submit_isochronous(usb,
3203 								  pipe, urb);
3204 			/*
3205 			 * If submit failed we need to free our private packet
3206 			 * list.
3207 			 */
3208 			if (!transaction) {
3209 				urb->setup_packet = NULL;
3210 				kfree(iso_packet);
3211 			}
3212 		}
3213 		break;
3214 	case PIPE_INTERRUPT:
3215 		dev_dbg(dev, "Submit interrupt to %d.%d\n",
3216 			usb_pipedevice(urb->pipe),
3217 			usb_pipeendpoint(urb->pipe));
3218 		transaction = cvmx_usb_submit_interrupt(usb, pipe, urb);
3219 		break;
3220 	case PIPE_CONTROL:
3221 		dev_dbg(dev, "Submit control to %d.%d\n",
3222 			usb_pipedevice(urb->pipe),
3223 			usb_pipeendpoint(urb->pipe));
3224 		transaction = cvmx_usb_submit_control(usb, pipe, urb);
3225 		break;
3226 	case PIPE_BULK:
3227 		dev_dbg(dev, "Submit bulk to %d.%d\n",
3228 			usb_pipedevice(urb->pipe),
3229 			usb_pipeendpoint(urb->pipe));
3230 		transaction = cvmx_usb_submit_bulk(usb, pipe, urb);
3231 		break;
3232 	}
3233 	if (!transaction) {
3234 		usb_hcd_unlink_urb_from_ep(hcd, urb);
3235 		spin_unlock_irqrestore(&usb->lock, flags);
3236 		dev_dbg(dev, "Failed to submit\n");
3237 		return -ENOMEM;
3238 	}
3239 	urb->hcpriv = transaction;
3240 	spin_unlock_irqrestore(&usb->lock, flags);
3241 	return 0;
3242 }
3243 
3244 static int octeon_usb_urb_dequeue(struct usb_hcd *hcd,
3245 				  struct urb *urb,
3246 				  int status)
3247 {
3248 	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3249 	unsigned long flags;
3250 	int rc;
3251 
3252 	if (!urb->dev)
3253 		return -EINVAL;
3254 
3255 	spin_lock_irqsave(&usb->lock, flags);
3256 
3257 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
3258 	if (rc)
3259 		goto out;
3260 
3261 	urb->status = status;
3262 	cvmx_usb_cancel(usb, urb->ep->hcpriv, urb->hcpriv);
3263 
3264 out:
3265 	spin_unlock_irqrestore(&usb->lock, flags);
3266 
3267 	return rc;
3268 }
3269 
3270 static void octeon_usb_endpoint_disable(struct usb_hcd *hcd,
3271 					struct usb_host_endpoint *ep)
3272 {
3273 	struct device *dev = hcd->self.controller;
3274 
3275 	if (ep->hcpriv) {
3276 		struct octeon_hcd *usb = hcd_to_octeon(hcd);
3277 		struct cvmx_usb_pipe *pipe = ep->hcpriv;
3278 		unsigned long flags;
3279 
3280 		spin_lock_irqsave(&usb->lock, flags);
3281 		cvmx_usb_cancel_all(usb, pipe);
3282 		if (cvmx_usb_close_pipe(usb, pipe))
3283 			dev_dbg(dev, "Closing pipe %p failed\n", pipe);
3284 		spin_unlock_irqrestore(&usb->lock, flags);
3285 		ep->hcpriv = NULL;
3286 	}
3287 }
3288 
3289 static int octeon_usb_hub_status_data(struct usb_hcd *hcd, char *buf)
3290 {
3291 	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3292 	struct cvmx_usb_port_status port_status;
3293 	unsigned long flags;
3294 
3295 	spin_lock_irqsave(&usb->lock, flags);
3296 	port_status = cvmx_usb_get_status(usb);
3297 	spin_unlock_irqrestore(&usb->lock, flags);
3298 	buf[0] = port_status.connect_change << 1;
3299 
3300 	return buf[0] != 0;
3301 }
3302 
3303 static int octeon_usb_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
3304 				  u16 wIndex, char *buf, u16 wLength)
3305 {
3306 	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3307 	struct device *dev = hcd->self.controller;
3308 	struct cvmx_usb_port_status usb_port_status;
3309 	int port_status;
3310 	struct usb_hub_descriptor *desc;
3311 	unsigned long flags;
3312 
3313 	switch (typeReq) {
3314 	case ClearHubFeature:
3315 		dev_dbg(dev, "ClearHubFeature\n");
3316 		switch (wValue) {
3317 		case C_HUB_LOCAL_POWER:
3318 		case C_HUB_OVER_CURRENT:
3319 			/* Nothing required here */
3320 			break;
3321 		default:
3322 			return -EINVAL;
3323 		}
3324 		break;
3325 	case ClearPortFeature:
3326 		dev_dbg(dev, "ClearPortFeature\n");
3327 		if (wIndex != 1) {
3328 			dev_dbg(dev, " INVALID\n");
3329 			return -EINVAL;
3330 		}
3331 
3332 		switch (wValue) {
3333 		case USB_PORT_FEAT_ENABLE:
3334 			dev_dbg(dev, " ENABLE\n");
3335 			spin_lock_irqsave(&usb->lock, flags);
3336 			cvmx_usb_disable(usb);
3337 			spin_unlock_irqrestore(&usb->lock, flags);
3338 			break;
3339 		case USB_PORT_FEAT_SUSPEND:
3340 			dev_dbg(dev, " SUSPEND\n");
3341 			/* Not supported on Octeon */
3342 			break;
3343 		case USB_PORT_FEAT_POWER:
3344 			dev_dbg(dev, " POWER\n");
3345 			/* Not supported on Octeon */
3346 			break;
3347 		case USB_PORT_FEAT_INDICATOR:
3348 			dev_dbg(dev, " INDICATOR\n");
3349 			/* Port inidicator not supported */
3350 			break;
3351 		case USB_PORT_FEAT_C_CONNECTION:
3352 			dev_dbg(dev, " C_CONNECTION\n");
3353 			/* Clears drivers internal connect status change flag */
3354 			spin_lock_irqsave(&usb->lock, flags);
3355 			usb->port_status = cvmx_usb_get_status(usb);
3356 			spin_unlock_irqrestore(&usb->lock, flags);
3357 			break;
3358 		case USB_PORT_FEAT_C_RESET:
3359 			dev_dbg(dev, " C_RESET\n");
3360 			/*
3361 			 * Clears the driver's internal Port Reset Change flag.
3362 			 */
3363 			spin_lock_irqsave(&usb->lock, flags);
3364 			usb->port_status = cvmx_usb_get_status(usb);
3365 			spin_unlock_irqrestore(&usb->lock, flags);
3366 			break;
3367 		case USB_PORT_FEAT_C_ENABLE:
3368 			dev_dbg(dev, " C_ENABLE\n");
3369 			/*
3370 			 * Clears the driver's internal Port Enable/Disable
3371 			 * Change flag.
3372 			 */
3373 			spin_lock_irqsave(&usb->lock, flags);
3374 			usb->port_status = cvmx_usb_get_status(usb);
3375 			spin_unlock_irqrestore(&usb->lock, flags);
3376 			break;
3377 		case USB_PORT_FEAT_C_SUSPEND:
3378 			dev_dbg(dev, " C_SUSPEND\n");
3379 			/*
3380 			 * Clears the driver's internal Port Suspend Change
3381 			 * flag, which is set when resume signaling on the host
3382 			 * port is complete.
3383 			 */
3384 			break;
3385 		case USB_PORT_FEAT_C_OVER_CURRENT:
3386 			dev_dbg(dev, " C_OVER_CURRENT\n");
3387 			/* Clears the driver's overcurrent Change flag */
3388 			spin_lock_irqsave(&usb->lock, flags);
3389 			usb->port_status = cvmx_usb_get_status(usb);
3390 			spin_unlock_irqrestore(&usb->lock, flags);
3391 			break;
3392 		default:
3393 			dev_dbg(dev, " UNKNOWN\n");
3394 			return -EINVAL;
3395 		}
3396 		break;
3397 	case GetHubDescriptor:
3398 		dev_dbg(dev, "GetHubDescriptor\n");
3399 		desc = (struct usb_hub_descriptor *)buf;
3400 		desc->bDescLength = 9;
3401 		desc->bDescriptorType = 0x29;
3402 		desc->bNbrPorts = 1;
3403 		desc->wHubCharacteristics = cpu_to_le16(0x08);
3404 		desc->bPwrOn2PwrGood = 1;
3405 		desc->bHubContrCurrent = 0;
3406 		desc->u.hs.DeviceRemovable[0] = 0;
3407 		desc->u.hs.DeviceRemovable[1] = 0xff;
3408 		break;
3409 	case GetHubStatus:
3410 		dev_dbg(dev, "GetHubStatus\n");
3411 		*(__le32 *)buf = 0;
3412 		break;
3413 	case GetPortStatus:
3414 		dev_dbg(dev, "GetPortStatus\n");
3415 		if (wIndex != 1) {
3416 			dev_dbg(dev, " INVALID\n");
3417 			return -EINVAL;
3418 		}
3419 
3420 		spin_lock_irqsave(&usb->lock, flags);
3421 		usb_port_status = cvmx_usb_get_status(usb);
3422 		spin_unlock_irqrestore(&usb->lock, flags);
3423 		port_status = 0;
3424 
3425 		if (usb_port_status.connect_change) {
3426 			port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
3427 			dev_dbg(dev, " C_CONNECTION\n");
3428 		}
3429 
3430 		if (usb_port_status.port_enabled) {
3431 			port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
3432 			dev_dbg(dev, " C_ENABLE\n");
3433 		}
3434 
3435 		if (usb_port_status.connected) {
3436 			port_status |= (1 << USB_PORT_FEAT_CONNECTION);
3437 			dev_dbg(dev, " CONNECTION\n");
3438 		}
3439 
3440 		if (usb_port_status.port_enabled) {
3441 			port_status |= (1 << USB_PORT_FEAT_ENABLE);
3442 			dev_dbg(dev, " ENABLE\n");
3443 		}
3444 
3445 		if (usb_port_status.port_over_current) {
3446 			port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
3447 			dev_dbg(dev, " OVER_CURRENT\n");
3448 		}
3449 
3450 		if (usb_port_status.port_powered) {
3451 			port_status |= (1 << USB_PORT_FEAT_POWER);
3452 			dev_dbg(dev, " POWER\n");
3453 		}
3454 
3455 		if (usb_port_status.port_speed == CVMX_USB_SPEED_HIGH) {
3456 			port_status |= USB_PORT_STAT_HIGH_SPEED;
3457 			dev_dbg(dev, " HIGHSPEED\n");
3458 		} else if (usb_port_status.port_speed == CVMX_USB_SPEED_LOW) {
3459 			port_status |= (1 << USB_PORT_FEAT_LOWSPEED);
3460 			dev_dbg(dev, " LOWSPEED\n");
3461 		}
3462 
3463 		*((__le32 *)buf) = cpu_to_le32(port_status);
3464 		break;
3465 	case SetHubFeature:
3466 		dev_dbg(dev, "SetHubFeature\n");
3467 		/* No HUB features supported */
3468 		break;
3469 	case SetPortFeature:
3470 		dev_dbg(dev, "SetPortFeature\n");
3471 		if (wIndex != 1) {
3472 			dev_dbg(dev, " INVALID\n");
3473 			return -EINVAL;
3474 		}
3475 
3476 		switch (wValue) {
3477 		case USB_PORT_FEAT_SUSPEND:
3478 			dev_dbg(dev, " SUSPEND\n");
3479 			return -EINVAL;
3480 		case USB_PORT_FEAT_POWER:
3481 			dev_dbg(dev, " POWER\n");
3482 			/*
3483 			 * Program the port power bit to drive VBUS on the USB.
3484 			 */
3485 			spin_lock_irqsave(&usb->lock, flags);
3486 			USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index),
3487 					cvmx_usbcx_hprt, prtpwr, 1);
3488 			spin_unlock_irqrestore(&usb->lock, flags);
3489 			return 0;
3490 		case USB_PORT_FEAT_RESET:
3491 			dev_dbg(dev, " RESET\n");
3492 			spin_lock_irqsave(&usb->lock, flags);
3493 			cvmx_usb_reset_port(usb);
3494 			spin_unlock_irqrestore(&usb->lock, flags);
3495 			return 0;
3496 		case USB_PORT_FEAT_INDICATOR:
3497 			dev_dbg(dev, " INDICATOR\n");
3498 			/* Not supported */
3499 			break;
3500 		default:
3501 			dev_dbg(dev, " UNKNOWN\n");
3502 			return -EINVAL;
3503 		}
3504 		break;
3505 	default:
3506 		dev_dbg(dev, "Unknown root hub request\n");
3507 		return -EINVAL;
3508 	}
3509 	return 0;
3510 }
3511 
3512 static const struct hc_driver octeon_hc_driver = {
3513 	.description		= "Octeon USB",
3514 	.product_desc		= "Octeon Host Controller",
3515 	.hcd_priv_size		= sizeof(struct octeon_hcd),
3516 	.irq			= octeon_usb_irq,
3517 	.flags			= HCD_MEMORY | HCD_DMA | HCD_USB2,
3518 	.start			= octeon_usb_start,
3519 	.stop			= octeon_usb_stop,
3520 	.urb_enqueue		= octeon_usb_urb_enqueue,
3521 	.urb_dequeue		= octeon_usb_urb_dequeue,
3522 	.endpoint_disable	= octeon_usb_endpoint_disable,
3523 	.get_frame_number	= octeon_usb_get_frame_number,
3524 	.hub_status_data	= octeon_usb_hub_status_data,
3525 	.hub_control		= octeon_usb_hub_control,
3526 	.map_urb_for_dma	= octeon_map_urb_for_dma,
3527 	.unmap_urb_for_dma	= octeon_unmap_urb_for_dma,
3528 };
3529 
3530 static int octeon_usb_probe(struct platform_device *pdev)
3531 {
3532 	int status;
3533 	int initialize_flags;
3534 	int usb_num;
3535 	struct resource *res_mem;
3536 	struct device_node *usbn_node;
3537 	int irq = platform_get_irq(pdev, 0);
3538 	struct device *dev = &pdev->dev;
3539 	struct octeon_hcd *usb;
3540 	struct usb_hcd *hcd;
3541 	u32 clock_rate = 48000000;
3542 	bool is_crystal_clock = false;
3543 	const char *clock_type;
3544 	int i;
3545 
3546 	if (!dev->of_node) {
3547 		dev_err(dev, "Error: empty of_node\n");
3548 		return -ENXIO;
3549 	}
3550 	usbn_node = dev->of_node->parent;
3551 
3552 	i = of_property_read_u32(usbn_node,
3553 				 "clock-frequency", &clock_rate);
3554 	if (i)
3555 		i = of_property_read_u32(usbn_node,
3556 					 "refclk-frequency", &clock_rate);
3557 	if (i) {
3558 		dev_err(dev, "No USBN \"clock-frequency\"\n");
3559 		return -ENXIO;
3560 	}
3561 	switch (clock_rate) {
3562 	case 12000000:
3563 		initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ;
3564 		break;
3565 	case 24000000:
3566 		initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ;
3567 		break;
3568 	case 48000000:
3569 		initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ;
3570 		break;
3571 	default:
3572 		dev_err(dev, "Illegal USBN \"clock-frequency\" %u\n",
3573 			clock_rate);
3574 		return -ENXIO;
3575 	}
3576 
3577 	i = of_property_read_string(usbn_node,
3578 				    "cavium,refclk-type", &clock_type);
3579 	if (i)
3580 		i = of_property_read_string(usbn_node,
3581 					    "refclk-type", &clock_type);
3582 
3583 	if (!i && strcmp("crystal", clock_type) == 0)
3584 		is_crystal_clock = true;
3585 
3586 	if (is_crystal_clock)
3587 		initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI;
3588 	else
3589 		initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND;
3590 
3591 	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3592 	if (!res_mem) {
3593 		dev_err(dev, "found no memory resource\n");
3594 		return -ENXIO;
3595 	}
3596 	usb_num = (res_mem->start >> 44) & 1;
3597 
3598 	if (irq < 0) {
3599 		/* Defective device tree, but we know how to fix it. */
3600 		irq_hw_number_t hwirq = usb_num ? (1 << 6) + 17 : 56;
3601 
3602 		irq = irq_create_mapping(NULL, hwirq);
3603 	}
3604 
3605 	/*
3606 	 * Set the DMA mask to 64bits so we get buffers already translated for
3607 	 * DMA.
3608 	 */
3609 	i = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(64));
3610 	if (i)
3611 		return i;
3612 
3613 	/*
3614 	 * Only cn52XX and cn56XX have DWC_OTG USB hardware and the
3615 	 * IOB priority registers.  Under heavy network load USB
3616 	 * hardware can be starved by the IOB causing a crash.  Give
3617 	 * it a priority boost if it has been waiting more than 400
3618 	 * cycles to avoid this situation.
3619 	 *
3620 	 * Testing indicates that a cnt_val of 8192 is not sufficient,
3621 	 * but no failures are seen with 4096.  We choose a value of
3622 	 * 400 to give a safety factor of 10.
3623 	 */
3624 	if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX)) {
3625 		union cvmx_iob_n2c_l2c_pri_cnt pri_cnt;
3626 
3627 		pri_cnt.u64 = 0;
3628 		pri_cnt.s.cnt_enb = 1;
3629 		pri_cnt.s.cnt_val = 400;
3630 		cvmx_write_csr(CVMX_IOB_N2C_L2C_PRI_CNT, pri_cnt.u64);
3631 	}
3632 
3633 	hcd = usb_create_hcd(&octeon_hc_driver, dev, dev_name(dev));
3634 	if (!hcd) {
3635 		dev_dbg(dev, "Failed to allocate memory for HCD\n");
3636 		return -1;
3637 	}
3638 	hcd->uses_new_polling = 1;
3639 	usb = (struct octeon_hcd *)hcd->hcd_priv;
3640 
3641 	spin_lock_init(&usb->lock);
3642 
3643 	usb->init_flags = initialize_flags;
3644 
3645 	/* Initialize the USB state structure */
3646 	usb->index = usb_num;
3647 	INIT_LIST_HEAD(&usb->idle_pipes);
3648 	for (i = 0; i < ARRAY_SIZE(usb->active_pipes); i++)
3649 		INIT_LIST_HEAD(&usb->active_pipes[i]);
3650 
3651 	/* Due to an errata, CN31XX doesn't support DMA */
3652 	if (OCTEON_IS_MODEL(OCTEON_CN31XX)) {
3653 		usb->init_flags |= CVMX_USB_INITIALIZE_FLAGS_NO_DMA;
3654 		/* Only use one channel with non DMA */
3655 		usb->idle_hardware_channels = 0x1;
3656 	} else if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) {
3657 		/* CN5XXX have an errata with channel 3 */
3658 		usb->idle_hardware_channels = 0xf7;
3659 	} else {
3660 		usb->idle_hardware_channels = 0xff;
3661 	}
3662 
3663 	status = cvmx_usb_initialize(dev, usb);
3664 	if (status) {
3665 		dev_dbg(dev, "USB initialization failed with %d\n", status);
3666 		usb_put_hcd(hcd);
3667 		return -1;
3668 	}
3669 
3670 	status = usb_add_hcd(hcd, irq, 0);
3671 	if (status) {
3672 		dev_dbg(dev, "USB add HCD failed with %d\n", status);
3673 		usb_put_hcd(hcd);
3674 		return -1;
3675 	}
3676 	device_wakeup_enable(hcd->self.controller);
3677 
3678 	dev_info(dev, "Registered HCD for port %d on irq %d\n", usb_num, irq);
3679 
3680 	return 0;
3681 }
3682 
3683 static int octeon_usb_remove(struct platform_device *pdev)
3684 {
3685 	int status;
3686 	struct device *dev = &pdev->dev;
3687 	struct usb_hcd *hcd = dev_get_drvdata(dev);
3688 	struct octeon_hcd *usb = hcd_to_octeon(hcd);
3689 	unsigned long flags;
3690 
3691 	usb_remove_hcd(hcd);
3692 	spin_lock_irqsave(&usb->lock, flags);
3693 	status = cvmx_usb_shutdown(usb);
3694 	spin_unlock_irqrestore(&usb->lock, flags);
3695 	if (status)
3696 		dev_dbg(dev, "USB shutdown failed with %d\n", status);
3697 
3698 	usb_put_hcd(hcd);
3699 
3700 	return 0;
3701 }
3702 
3703 static const struct of_device_id octeon_usb_match[] = {
3704 	{
3705 		.compatible = "cavium,octeon-5750-usbc",
3706 	},
3707 	{},
3708 };
3709 MODULE_DEVICE_TABLE(of, octeon_usb_match);
3710 
3711 static struct platform_driver octeon_usb_driver = {
3712 	.driver = {
3713 		.name		= "octeon-hcd",
3714 		.of_match_table = octeon_usb_match,
3715 	},
3716 	.probe      = octeon_usb_probe,
3717 	.remove     = octeon_usb_remove,
3718 };
3719 
3720 static int __init octeon_usb_driver_init(void)
3721 {
3722 	if (usb_disabled())
3723 		return 0;
3724 
3725 	return platform_driver_register(&octeon_usb_driver);
3726 }
3727 module_init(octeon_usb_driver_init);
3728 
3729 static void __exit octeon_usb_driver_exit(void)
3730 {
3731 	if (usb_disabled())
3732 		return;
3733 
3734 	platform_driver_unregister(&octeon_usb_driver);
3735 }
3736 module_exit(octeon_usb_driver_exit);
3737 
3738 MODULE_LICENSE("GPL");
3739 MODULE_AUTHOR("Cavium, Inc. <support@cavium.com>");
3740 MODULE_DESCRIPTION("Cavium Inc. OCTEON USB Host driver.");
3741