xref: /openbmc/linux/drivers/usb/host/ehci-sched.c (revision fd589a8f)
1 /*
2  * Copyright (c) 2001-2004 by David Brownell
3  * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation; either version 2 of the License, or (at your
8  * option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software Foundation,
17  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19 
20 /* this file is part of ehci-hcd.c */
21 
22 /*-------------------------------------------------------------------------*/
23 
24 /*
25  * EHCI scheduled transaction support:  interrupt, iso, split iso
26  * These are called "periodic" transactions in the EHCI spec.
27  *
28  * Note that for interrupt transfers, the QH/QTD manipulation is shared
29  * with the "asynchronous" transaction support (control/bulk transfers).
30  * The only real difference is in how interrupt transfers are scheduled.
31  *
32  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33  * It keeps track of every ITD (or SITD) that's linked, and holds enough
34  * pre-calculated schedule data to make appending to the queue be quick.
35  */
36 
37 static int ehci_get_frame (struct usb_hcd *hcd);
38 
39 /*-------------------------------------------------------------------------*/
40 
41 /*
42  * periodic_next_shadow - return "next" pointer on shadow list
43  * @periodic: host pointer to qh/itd/sitd
44  * @tag: hardware tag for type of this record
45  */
46 static union ehci_shadow *
47 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
48 		__hc32 tag)
49 {
50 	switch (hc32_to_cpu(ehci, tag)) {
51 	case Q_TYPE_QH:
52 		return &periodic->qh->qh_next;
53 	case Q_TYPE_FSTN:
54 		return &periodic->fstn->fstn_next;
55 	case Q_TYPE_ITD:
56 		return &periodic->itd->itd_next;
57 	// case Q_TYPE_SITD:
58 	default:
59 		return &periodic->sitd->sitd_next;
60 	}
61 }
62 
63 /* caller must hold ehci->lock */
64 static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr)
65 {
66 	union ehci_shadow	*prev_p = &ehci->pshadow[frame];
67 	__hc32			*hw_p = &ehci->periodic[frame];
68 	union ehci_shadow	here = *prev_p;
69 
70 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
71 	while (here.ptr && here.ptr != ptr) {
72 		prev_p = periodic_next_shadow(ehci, prev_p,
73 				Q_NEXT_TYPE(ehci, *hw_p));
74 		hw_p = here.hw_next;
75 		here = *prev_p;
76 	}
77 	/* an interrupt entry (at list end) could have been shared */
78 	if (!here.ptr)
79 		return;
80 
81 	/* update shadow and hardware lists ... the old "next" pointers
82 	 * from ptr may still be in use, the caller updates them.
83 	 */
84 	*prev_p = *periodic_next_shadow(ehci, &here,
85 			Q_NEXT_TYPE(ehci, *hw_p));
86 	*hw_p = *here.hw_next;
87 }
88 
89 /* how many of the uframe's 125 usecs are allocated? */
90 static unsigned short
91 periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe)
92 {
93 	__hc32			*hw_p = &ehci->periodic [frame];
94 	union ehci_shadow	*q = &ehci->pshadow [frame];
95 	unsigned		usecs = 0;
96 
97 	while (q->ptr) {
98 		switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
99 		case Q_TYPE_QH:
100 			/* is it in the S-mask? */
101 			if (q->qh->hw_info2 & cpu_to_hc32(ehci, 1 << uframe))
102 				usecs += q->qh->usecs;
103 			/* ... or C-mask? */
104 			if (q->qh->hw_info2 & cpu_to_hc32(ehci,
105 					1 << (8 + uframe)))
106 				usecs += q->qh->c_usecs;
107 			hw_p = &q->qh->hw_next;
108 			q = &q->qh->qh_next;
109 			break;
110 		// case Q_TYPE_FSTN:
111 		default:
112 			/* for "save place" FSTNs, count the relevant INTR
113 			 * bandwidth from the previous frame
114 			 */
115 			if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) {
116 				ehci_dbg (ehci, "ignoring FSTN cost ...\n");
117 			}
118 			hw_p = &q->fstn->hw_next;
119 			q = &q->fstn->fstn_next;
120 			break;
121 		case Q_TYPE_ITD:
122 			if (q->itd->hw_transaction[uframe])
123 				usecs += q->itd->stream->usecs;
124 			hw_p = &q->itd->hw_next;
125 			q = &q->itd->itd_next;
126 			break;
127 		case Q_TYPE_SITD:
128 			/* is it in the S-mask?  (count SPLIT, DATA) */
129 			if (q->sitd->hw_uframe & cpu_to_hc32(ehci,
130 					1 << uframe)) {
131 				if (q->sitd->hw_fullspeed_ep &
132 						cpu_to_hc32(ehci, 1<<31))
133 					usecs += q->sitd->stream->usecs;
134 				else	/* worst case for OUT start-split */
135 					usecs += HS_USECS_ISO (188);
136 			}
137 
138 			/* ... C-mask?  (count CSPLIT, DATA) */
139 			if (q->sitd->hw_uframe &
140 					cpu_to_hc32(ehci, 1 << (8 + uframe))) {
141 				/* worst case for IN complete-split */
142 				usecs += q->sitd->stream->c_usecs;
143 			}
144 
145 			hw_p = &q->sitd->hw_next;
146 			q = &q->sitd->sitd_next;
147 			break;
148 		}
149 	}
150 #ifdef	DEBUG
151 	if (usecs > 100)
152 		ehci_err (ehci, "uframe %d sched overrun: %d usecs\n",
153 			frame * 8 + uframe, usecs);
154 #endif
155 	return usecs;
156 }
157 
158 /*-------------------------------------------------------------------------*/
159 
160 static int same_tt (struct usb_device *dev1, struct usb_device *dev2)
161 {
162 	if (!dev1->tt || !dev2->tt)
163 		return 0;
164 	if (dev1->tt != dev2->tt)
165 		return 0;
166 	if (dev1->tt->multi)
167 		return dev1->ttport == dev2->ttport;
168 	else
169 		return 1;
170 }
171 
172 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
173 
174 /* Which uframe does the low/fullspeed transfer start in?
175  *
176  * The parameter is the mask of ssplits in "H-frame" terms
177  * and this returns the transfer start uframe in "B-frame" terms,
178  * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
179  * will cause a transfer in "B-frame" uframe 0.  "B-frames" lag
180  * "H-frames" by 1 uframe.  See the EHCI spec sec 4.5 and figure 4.7.
181  */
182 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
183 {
184 	unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask);
185 	if (!smask) {
186 		ehci_err(ehci, "invalid empty smask!\n");
187 		/* uframe 7 can't have bw so this will indicate failure */
188 		return 7;
189 	}
190 	return ffs(smask) - 1;
191 }
192 
193 static const unsigned char
194 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
195 
196 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
197 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
198 {
199 	int i;
200 	for (i=0; i<7; i++) {
201 		if (max_tt_usecs[i] < tt_usecs[i]) {
202 			tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
203 			tt_usecs[i] = max_tt_usecs[i];
204 		}
205 	}
206 }
207 
208 /* How many of the tt's periodic downstream 1000 usecs are allocated?
209  *
210  * While this measures the bandwidth in terms of usecs/uframe,
211  * the low/fullspeed bus has no notion of uframes, so any particular
212  * low/fullspeed transfer can "carry over" from one uframe to the next,
213  * since the TT just performs downstream transfers in sequence.
214  *
215  * For example two separate 100 usec transfers can start in the same uframe,
216  * and the second one would "carry over" 75 usecs into the next uframe.
217  */
218 static void
219 periodic_tt_usecs (
220 	struct ehci_hcd *ehci,
221 	struct usb_device *dev,
222 	unsigned frame,
223 	unsigned short tt_usecs[8]
224 )
225 {
226 	__hc32			*hw_p = &ehci->periodic [frame];
227 	union ehci_shadow	*q = &ehci->pshadow [frame];
228 	unsigned char		uf;
229 
230 	memset(tt_usecs, 0, 16);
231 
232 	while (q->ptr) {
233 		switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
234 		case Q_TYPE_ITD:
235 			hw_p = &q->itd->hw_next;
236 			q = &q->itd->itd_next;
237 			continue;
238 		case Q_TYPE_QH:
239 			if (same_tt(dev, q->qh->dev)) {
240 				uf = tt_start_uframe(ehci, q->qh->hw_info2);
241 				tt_usecs[uf] += q->qh->tt_usecs;
242 			}
243 			hw_p = &q->qh->hw_next;
244 			q = &q->qh->qh_next;
245 			continue;
246 		case Q_TYPE_SITD:
247 			if (same_tt(dev, q->sitd->urb->dev)) {
248 				uf = tt_start_uframe(ehci, q->sitd->hw_uframe);
249 				tt_usecs[uf] += q->sitd->stream->tt_usecs;
250 			}
251 			hw_p = &q->sitd->hw_next;
252 			q = &q->sitd->sitd_next;
253 			continue;
254 		// case Q_TYPE_FSTN:
255 		default:
256 			ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n",
257 					frame);
258 			hw_p = &q->fstn->hw_next;
259 			q = &q->fstn->fstn_next;
260 		}
261 	}
262 
263 	carryover_tt_bandwidth(tt_usecs);
264 
265 	if (max_tt_usecs[7] < tt_usecs[7])
266 		ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n",
267 			frame, tt_usecs[7] - max_tt_usecs[7]);
268 }
269 
270 /*
271  * Return true if the device's tt's downstream bus is available for a
272  * periodic transfer of the specified length (usecs), starting at the
273  * specified frame/uframe.  Note that (as summarized in section 11.19
274  * of the usb 2.0 spec) TTs can buffer multiple transactions for each
275  * uframe.
276  *
277  * The uframe parameter is when the fullspeed/lowspeed transfer
278  * should be executed in "B-frame" terms, which is the same as the
279  * highspeed ssplit's uframe (which is in "H-frame" terms).  For example
280  * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
281  * See the EHCI spec sec 4.5 and fig 4.7.
282  *
283  * This checks if the full/lowspeed bus, at the specified starting uframe,
284  * has the specified bandwidth available, according to rules listed
285  * in USB 2.0 spec section 11.18.1 fig 11-60.
286  *
287  * This does not check if the transfer would exceed the max ssplit
288  * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
289  * since proper scheduling limits ssplits to less than 16 per uframe.
290  */
291 static int tt_available (
292 	struct ehci_hcd		*ehci,
293 	unsigned		period,
294 	struct usb_device	*dev,
295 	unsigned		frame,
296 	unsigned		uframe,
297 	u16			usecs
298 )
299 {
300 	if ((period == 0) || (uframe >= 7))	/* error */
301 		return 0;
302 
303 	for (; frame < ehci->periodic_size; frame += period) {
304 		unsigned short tt_usecs[8];
305 
306 		periodic_tt_usecs (ehci, dev, frame, tt_usecs);
307 
308 		ehci_vdbg(ehci, "tt frame %d check %d usecs start uframe %d in"
309 			" schedule %d/%d/%d/%d/%d/%d/%d/%d\n",
310 			frame, usecs, uframe,
311 			tt_usecs[0], tt_usecs[1], tt_usecs[2], tt_usecs[3],
312 			tt_usecs[4], tt_usecs[5], tt_usecs[6], tt_usecs[7]);
313 
314 		if (max_tt_usecs[uframe] <= tt_usecs[uframe]) {
315 			ehci_vdbg(ehci, "frame %d uframe %d fully scheduled\n",
316 				frame, uframe);
317 			return 0;
318 		}
319 
320 		/* special case for isoc transfers larger than 125us:
321 		 * the first and each subsequent fully used uframe
322 		 * must be empty, so as to not illegally delay
323 		 * already scheduled transactions
324 		 */
325 		if (125 < usecs) {
326 			int ufs = (usecs / 125);
327 			int i;
328 			for (i = uframe; i < (uframe + ufs) && i < 8; i++)
329 				if (0 < tt_usecs[i]) {
330 					ehci_vdbg(ehci,
331 						"multi-uframe xfer can't fit "
332 						"in frame %d uframe %d\n",
333 						frame, i);
334 					return 0;
335 				}
336 		}
337 
338 		tt_usecs[uframe] += usecs;
339 
340 		carryover_tt_bandwidth(tt_usecs);
341 
342 		/* fail if the carryover pushed bw past the last uframe's limit */
343 		if (max_tt_usecs[7] < tt_usecs[7]) {
344 			ehci_vdbg(ehci,
345 				"tt unavailable usecs %d frame %d uframe %d\n",
346 				usecs, frame, uframe);
347 			return 0;
348 		}
349 	}
350 
351 	return 1;
352 }
353 
354 #else
355 
356 /* return true iff the device's transaction translator is available
357  * for a periodic transfer starting at the specified frame, using
358  * all the uframes in the mask.
359  */
360 static int tt_no_collision (
361 	struct ehci_hcd		*ehci,
362 	unsigned		period,
363 	struct usb_device	*dev,
364 	unsigned		frame,
365 	u32			uf_mask
366 )
367 {
368 	if (period == 0)	/* error */
369 		return 0;
370 
371 	/* note bandwidth wastage:  split never follows csplit
372 	 * (different dev or endpoint) until the next uframe.
373 	 * calling convention doesn't make that distinction.
374 	 */
375 	for (; frame < ehci->periodic_size; frame += period) {
376 		union ehci_shadow	here;
377 		__hc32			type;
378 
379 		here = ehci->pshadow [frame];
380 		type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]);
381 		while (here.ptr) {
382 			switch (hc32_to_cpu(ehci, type)) {
383 			case Q_TYPE_ITD:
384 				type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
385 				here = here.itd->itd_next;
386 				continue;
387 			case Q_TYPE_QH:
388 				if (same_tt (dev, here.qh->dev)) {
389 					u32		mask;
390 
391 					mask = hc32_to_cpu(ehci,
392 							here.qh->hw_info2);
393 					/* "knows" no gap is needed */
394 					mask |= mask >> 8;
395 					if (mask & uf_mask)
396 						break;
397 				}
398 				type = Q_NEXT_TYPE(ehci, here.qh->hw_next);
399 				here = here.qh->qh_next;
400 				continue;
401 			case Q_TYPE_SITD:
402 				if (same_tt (dev, here.sitd->urb->dev)) {
403 					u16		mask;
404 
405 					mask = hc32_to_cpu(ehci, here.sitd
406 								->hw_uframe);
407 					/* FIXME assumes no gap for IN! */
408 					mask |= mask >> 8;
409 					if (mask & uf_mask)
410 						break;
411 				}
412 				type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
413 				here = here.sitd->sitd_next;
414 				continue;
415 			// case Q_TYPE_FSTN:
416 			default:
417 				ehci_dbg (ehci,
418 					"periodic frame %d bogus type %d\n",
419 					frame, type);
420 			}
421 
422 			/* collision or error */
423 			return 0;
424 		}
425 	}
426 
427 	/* no collision */
428 	return 1;
429 }
430 
431 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
432 
433 /*-------------------------------------------------------------------------*/
434 
435 static int enable_periodic (struct ehci_hcd *ehci)
436 {
437 	u32	cmd;
438 	int	status;
439 
440 	if (ehci->periodic_sched++)
441 		return 0;
442 
443 	/* did clearing PSE did take effect yet?
444 	 * takes effect only at frame boundaries...
445 	 */
446 	status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
447 					     STS_PSS, 0, 9 * 125);
448 	if (status)
449 		return status;
450 
451 	cmd = ehci_readl(ehci, &ehci->regs->command) | CMD_PSE;
452 	ehci_writel(ehci, cmd, &ehci->regs->command);
453 	/* posted write ... PSS happens later */
454 	ehci_to_hcd(ehci)->state = HC_STATE_RUNNING;
455 
456 	/* make sure ehci_work scans these */
457 	ehci->next_uframe = ehci_readl(ehci, &ehci->regs->frame_index)
458 		% (ehci->periodic_size << 3);
459 	return 0;
460 }
461 
462 static int disable_periodic (struct ehci_hcd *ehci)
463 {
464 	u32	cmd;
465 	int	status;
466 
467 	if (--ehci->periodic_sched)
468 		return 0;
469 
470 	/* did setting PSE not take effect yet?
471 	 * takes effect only at frame boundaries...
472 	 */
473 	status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
474 					     STS_PSS, STS_PSS, 9 * 125);
475 	if (status)
476 		return status;
477 
478 	cmd = ehci_readl(ehci, &ehci->regs->command) & ~CMD_PSE;
479 	ehci_writel(ehci, cmd, &ehci->regs->command);
480 	/* posted write ... */
481 
482 	ehci->next_uframe = -1;
483 	return 0;
484 }
485 
486 /*-------------------------------------------------------------------------*/
487 
488 /* periodic schedule slots have iso tds (normal or split) first, then a
489  * sparse tree for active interrupt transfers.
490  *
491  * this just links in a qh; caller guarantees uframe masks are set right.
492  * no FSTN support (yet; ehci 0.96+)
493  */
494 static int qh_link_periodic (struct ehci_hcd *ehci, struct ehci_qh *qh)
495 {
496 	unsigned	i;
497 	unsigned	period = qh->period;
498 
499 	dev_dbg (&qh->dev->dev,
500 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
501 		period, hc32_to_cpup(ehci, &qh->hw_info2) & (QH_CMASK | QH_SMASK),
502 		qh, qh->start, qh->usecs, qh->c_usecs);
503 
504 	/* high bandwidth, or otherwise every microframe */
505 	if (period == 0)
506 		period = 1;
507 
508 	for (i = qh->start; i < ehci->periodic_size; i += period) {
509 		union ehci_shadow	*prev = &ehci->pshadow[i];
510 		__hc32			*hw_p = &ehci->periodic[i];
511 		union ehci_shadow	here = *prev;
512 		__hc32			type = 0;
513 
514 		/* skip the iso nodes at list head */
515 		while (here.ptr) {
516 			type = Q_NEXT_TYPE(ehci, *hw_p);
517 			if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
518 				break;
519 			prev = periodic_next_shadow(ehci, prev, type);
520 			hw_p = &here.qh->hw_next;
521 			here = *prev;
522 		}
523 
524 		/* sorting each branch by period (slow-->fast)
525 		 * enables sharing interior tree nodes
526 		 */
527 		while (here.ptr && qh != here.qh) {
528 			if (qh->period > here.qh->period)
529 				break;
530 			prev = &here.qh->qh_next;
531 			hw_p = &here.qh->hw_next;
532 			here = *prev;
533 		}
534 		/* link in this qh, unless some earlier pass did that */
535 		if (qh != here.qh) {
536 			qh->qh_next = here;
537 			if (here.qh)
538 				qh->hw_next = *hw_p;
539 			wmb ();
540 			prev->qh = qh;
541 			*hw_p = QH_NEXT (ehci, qh->qh_dma);
542 		}
543 	}
544 	qh->qh_state = QH_STATE_LINKED;
545 	qh->xacterrs = 0;
546 	qh_get (qh);
547 
548 	/* update per-qh bandwidth for usbfs */
549 	ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period
550 		? ((qh->usecs + qh->c_usecs) / qh->period)
551 		: (qh->usecs * 8);
552 
553 	/* maybe enable periodic schedule processing */
554 	return enable_periodic(ehci);
555 }
556 
557 static int qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
558 {
559 	unsigned	i;
560 	unsigned	period;
561 
562 	// FIXME:
563 	// IF this isn't high speed
564 	//   and this qh is active in the current uframe
565 	//   (and overlay token SplitXstate is false?)
566 	// THEN
567 	//   qh->hw_info1 |= cpu_to_hc32(1 << 7 /* "ignore" */);
568 
569 	/* high bandwidth, or otherwise part of every microframe */
570 	if ((period = qh->period) == 0)
571 		period = 1;
572 
573 	for (i = qh->start; i < ehci->periodic_size; i += period)
574 		periodic_unlink (ehci, i, qh);
575 
576 	/* update per-qh bandwidth for usbfs */
577 	ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period
578 		? ((qh->usecs + qh->c_usecs) / qh->period)
579 		: (qh->usecs * 8);
580 
581 	dev_dbg (&qh->dev->dev,
582 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
583 		qh->period,
584 		hc32_to_cpup(ehci, &qh->hw_info2) & (QH_CMASK | QH_SMASK),
585 		qh, qh->start, qh->usecs, qh->c_usecs);
586 
587 	/* qh->qh_next still "live" to HC */
588 	qh->qh_state = QH_STATE_UNLINK;
589 	qh->qh_next.ptr = NULL;
590 	qh_put (qh);
591 
592 	/* maybe turn off periodic schedule */
593 	return disable_periodic(ehci);
594 }
595 
596 static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh)
597 {
598 	unsigned	wait;
599 
600 	qh_unlink_periodic (ehci, qh);
601 
602 	/* simple/paranoid:  always delay, expecting the HC needs to read
603 	 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
604 	 * expect khubd to clean up after any CSPLITs we won't issue.
605 	 * active high speed queues may need bigger delays...
606 	 */
607 	if (list_empty (&qh->qtd_list)
608 			|| (cpu_to_hc32(ehci, QH_CMASK)
609 					& qh->hw_info2) != 0)
610 		wait = 2;
611 	else
612 		wait = 55;	/* worst case: 3 * 1024 */
613 
614 	udelay (wait);
615 	qh->qh_state = QH_STATE_IDLE;
616 	qh->hw_next = EHCI_LIST_END(ehci);
617 	wmb ();
618 }
619 
620 /*-------------------------------------------------------------------------*/
621 
622 static int check_period (
623 	struct ehci_hcd *ehci,
624 	unsigned	frame,
625 	unsigned	uframe,
626 	unsigned	period,
627 	unsigned	usecs
628 ) {
629 	int		claimed;
630 
631 	/* complete split running into next frame?
632 	 * given FSTN support, we could sometimes check...
633 	 */
634 	if (uframe >= 8)
635 		return 0;
636 
637 	/*
638 	 * 80% periodic == 100 usec/uframe available
639 	 * convert "usecs we need" to "max already claimed"
640 	 */
641 	usecs = 100 - usecs;
642 
643 	/* we "know" 2 and 4 uframe intervals were rejected; so
644 	 * for period 0, check _every_ microframe in the schedule.
645 	 */
646 	if (unlikely (period == 0)) {
647 		do {
648 			for (uframe = 0; uframe < 7; uframe++) {
649 				claimed = periodic_usecs (ehci, frame, uframe);
650 				if (claimed > usecs)
651 					return 0;
652 			}
653 		} while ((frame += 1) < ehci->periodic_size);
654 
655 	/* just check the specified uframe, at that period */
656 	} else {
657 		do {
658 			claimed = periodic_usecs (ehci, frame, uframe);
659 			if (claimed > usecs)
660 				return 0;
661 		} while ((frame += period) < ehci->periodic_size);
662 	}
663 
664 	// success!
665 	return 1;
666 }
667 
668 static int check_intr_schedule (
669 	struct ehci_hcd		*ehci,
670 	unsigned		frame,
671 	unsigned		uframe,
672 	const struct ehci_qh	*qh,
673 	__hc32			*c_maskp
674 )
675 {
676 	int		retval = -ENOSPC;
677 	u8		mask = 0;
678 
679 	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
680 		goto done;
681 
682 	if (!check_period (ehci, frame, uframe, qh->period, qh->usecs))
683 		goto done;
684 	if (!qh->c_usecs) {
685 		retval = 0;
686 		*c_maskp = 0;
687 		goto done;
688 	}
689 
690 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
691 	if (tt_available (ehci, qh->period, qh->dev, frame, uframe,
692 				qh->tt_usecs)) {
693 		unsigned i;
694 
695 		/* TODO : this may need FSTN for SSPLIT in uframe 5. */
696 		for (i=uframe+1; i<8 && i<uframe+4; i++)
697 			if (!check_period (ehci, frame, i,
698 						qh->period, qh->c_usecs))
699 				goto done;
700 			else
701 				mask |= 1 << i;
702 
703 		retval = 0;
704 
705 		*c_maskp = cpu_to_hc32(ehci, mask << 8);
706 	}
707 #else
708 	/* Make sure this tt's buffer is also available for CSPLITs.
709 	 * We pessimize a bit; probably the typical full speed case
710 	 * doesn't need the second CSPLIT.
711 	 *
712 	 * NOTE:  both SPLIT and CSPLIT could be checked in just
713 	 * one smart pass...
714 	 */
715 	mask = 0x03 << (uframe + qh->gap_uf);
716 	*c_maskp = cpu_to_hc32(ehci, mask << 8);
717 
718 	mask |= 1 << uframe;
719 	if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) {
720 		if (!check_period (ehci, frame, uframe + qh->gap_uf + 1,
721 					qh->period, qh->c_usecs))
722 			goto done;
723 		if (!check_period (ehci, frame, uframe + qh->gap_uf,
724 					qh->period, qh->c_usecs))
725 			goto done;
726 		retval = 0;
727 	}
728 #endif
729 done:
730 	return retval;
731 }
732 
733 /* "first fit" scheduling policy used the first time through,
734  * or when the previous schedule slot can't be re-used.
735  */
736 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
737 {
738 	int		status;
739 	unsigned	uframe;
740 	__hc32		c_mask;
741 	unsigned	frame;		/* 0..(qh->period - 1), or NO_FRAME */
742 
743 	qh_refresh(ehci, qh);
744 	qh->hw_next = EHCI_LIST_END(ehci);
745 	frame = qh->start;
746 
747 	/* reuse the previous schedule slots, if we can */
748 	if (frame < qh->period) {
749 		uframe = ffs(hc32_to_cpup(ehci, &qh->hw_info2) & QH_SMASK);
750 		status = check_intr_schedule (ehci, frame, --uframe,
751 				qh, &c_mask);
752 	} else {
753 		uframe = 0;
754 		c_mask = 0;
755 		status = -ENOSPC;
756 	}
757 
758 	/* else scan the schedule to find a group of slots such that all
759 	 * uframes have enough periodic bandwidth available.
760 	 */
761 	if (status) {
762 		/* "normal" case, uframing flexible except with splits */
763 		if (qh->period) {
764 			int		i;
765 
766 			for (i = qh->period; status && i > 0; --i) {
767 				frame = ++ehci->random_frame % qh->period;
768 				for (uframe = 0; uframe < 8; uframe++) {
769 					status = check_intr_schedule (ehci,
770 							frame, uframe, qh,
771 							&c_mask);
772 					if (status == 0)
773 						break;
774 				}
775 			}
776 
777 		/* qh->period == 0 means every uframe */
778 		} else {
779 			frame = 0;
780 			status = check_intr_schedule (ehci, 0, 0, qh, &c_mask);
781 		}
782 		if (status)
783 			goto done;
784 		qh->start = frame;
785 
786 		/* reset S-frame and (maybe) C-frame masks */
787 		qh->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
788 		qh->hw_info2 |= qh->period
789 			? cpu_to_hc32(ehci, 1 << uframe)
790 			: cpu_to_hc32(ehci, QH_SMASK);
791 		qh->hw_info2 |= c_mask;
792 	} else
793 		ehci_dbg (ehci, "reused qh %p schedule\n", qh);
794 
795 	/* stuff into the periodic schedule */
796 	status = qh_link_periodic (ehci, qh);
797 done:
798 	return status;
799 }
800 
801 static int intr_submit (
802 	struct ehci_hcd		*ehci,
803 	struct urb		*urb,
804 	struct list_head	*qtd_list,
805 	gfp_t			mem_flags
806 ) {
807 	unsigned		epnum;
808 	unsigned long		flags;
809 	struct ehci_qh		*qh;
810 	int			status;
811 	struct list_head	empty;
812 
813 	/* get endpoint and transfer/schedule data */
814 	epnum = urb->ep->desc.bEndpointAddress;
815 
816 	spin_lock_irqsave (&ehci->lock, flags);
817 
818 	if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
819 			&ehci_to_hcd(ehci)->flags))) {
820 		status = -ESHUTDOWN;
821 		goto done_not_linked;
822 	}
823 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
824 	if (unlikely(status))
825 		goto done_not_linked;
826 
827 	/* get qh and force any scheduling errors */
828 	INIT_LIST_HEAD (&empty);
829 	qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
830 	if (qh == NULL) {
831 		status = -ENOMEM;
832 		goto done;
833 	}
834 	if (qh->qh_state == QH_STATE_IDLE) {
835 		if ((status = qh_schedule (ehci, qh)) != 0)
836 			goto done;
837 	}
838 
839 	/* then queue the urb's tds to the qh */
840 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
841 	BUG_ON (qh == NULL);
842 
843 	/* ... update usbfs periodic stats */
844 	ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
845 
846 done:
847 	if (unlikely(status))
848 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
849 done_not_linked:
850 	spin_unlock_irqrestore (&ehci->lock, flags);
851 	if (status)
852 		qtd_list_free (ehci, urb, qtd_list);
853 
854 	return status;
855 }
856 
857 /*-------------------------------------------------------------------------*/
858 
859 /* ehci_iso_stream ops work with both ITD and SITD */
860 
861 static struct ehci_iso_stream *
862 iso_stream_alloc (gfp_t mem_flags)
863 {
864 	struct ehci_iso_stream *stream;
865 
866 	stream = kzalloc(sizeof *stream, mem_flags);
867 	if (likely (stream != NULL)) {
868 		INIT_LIST_HEAD(&stream->td_list);
869 		INIT_LIST_HEAD(&stream->free_list);
870 		stream->next_uframe = -1;
871 		stream->refcount = 1;
872 	}
873 	return stream;
874 }
875 
876 static void
877 iso_stream_init (
878 	struct ehci_hcd		*ehci,
879 	struct ehci_iso_stream	*stream,
880 	struct usb_device	*dev,
881 	int			pipe,
882 	unsigned		interval
883 )
884 {
885 	static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
886 
887 	u32			buf1;
888 	unsigned		epnum, maxp;
889 	int			is_input;
890 	long			bandwidth;
891 
892 	/*
893 	 * this might be a "high bandwidth" highspeed endpoint,
894 	 * as encoded in the ep descriptor's wMaxPacket field
895 	 */
896 	epnum = usb_pipeendpoint (pipe);
897 	is_input = usb_pipein (pipe) ? USB_DIR_IN : 0;
898 	maxp = usb_maxpacket(dev, pipe, !is_input);
899 	if (is_input) {
900 		buf1 = (1 << 11);
901 	} else {
902 		buf1 = 0;
903 	}
904 
905 	/* knows about ITD vs SITD */
906 	if (dev->speed == USB_SPEED_HIGH) {
907 		unsigned multi = hb_mult(maxp);
908 
909 		stream->highspeed = 1;
910 
911 		maxp = max_packet(maxp);
912 		buf1 |= maxp;
913 		maxp *= multi;
914 
915 		stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
916 		stream->buf1 = cpu_to_hc32(ehci, buf1);
917 		stream->buf2 = cpu_to_hc32(ehci, multi);
918 
919 		/* usbfs wants to report the average usecs per frame tied up
920 		 * when transfers on this endpoint are scheduled ...
921 		 */
922 		stream->usecs = HS_USECS_ISO (maxp);
923 		bandwidth = stream->usecs * 8;
924 		bandwidth /= interval;
925 
926 	} else {
927 		u32		addr;
928 		int		think_time;
929 		int		hs_transfers;
930 
931 		addr = dev->ttport << 24;
932 		if (!ehci_is_TDI(ehci)
933 				|| (dev->tt->hub !=
934 					ehci_to_hcd(ehci)->self.root_hub))
935 			addr |= dev->tt->hub->devnum << 16;
936 		addr |= epnum << 8;
937 		addr |= dev->devnum;
938 		stream->usecs = HS_USECS_ISO (maxp);
939 		think_time = dev->tt ? dev->tt->think_time : 0;
940 		stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time (
941 				dev->speed, is_input, 1, maxp));
942 		hs_transfers = max (1u, (maxp + 187) / 188);
943 		if (is_input) {
944 			u32	tmp;
945 
946 			addr |= 1 << 31;
947 			stream->c_usecs = stream->usecs;
948 			stream->usecs = HS_USECS_ISO (1);
949 			stream->raw_mask = 1;
950 
951 			/* c-mask as specified in USB 2.0 11.18.4 3.c */
952 			tmp = (1 << (hs_transfers + 2)) - 1;
953 			stream->raw_mask |= tmp << (8 + 2);
954 		} else
955 			stream->raw_mask = smask_out [hs_transfers - 1];
956 		bandwidth = stream->usecs + stream->c_usecs;
957 		bandwidth /= interval << 3;
958 
959 		/* stream->splits gets created from raw_mask later */
960 		stream->address = cpu_to_hc32(ehci, addr);
961 	}
962 	stream->bandwidth = bandwidth;
963 
964 	stream->udev = dev;
965 
966 	stream->bEndpointAddress = is_input | epnum;
967 	stream->interval = interval;
968 	stream->maxp = maxp;
969 }
970 
971 static void
972 iso_stream_put(struct ehci_hcd *ehci, struct ehci_iso_stream *stream)
973 {
974 	stream->refcount--;
975 
976 	/* free whenever just a dev->ep reference remains.
977 	 * not like a QH -- no persistent state (toggle, halt)
978 	 */
979 	if (stream->refcount == 1) {
980 		int		is_in;
981 
982 		// BUG_ON (!list_empty(&stream->td_list));
983 
984 		while (!list_empty (&stream->free_list)) {
985 			struct list_head	*entry;
986 
987 			entry = stream->free_list.next;
988 			list_del (entry);
989 
990 			/* knows about ITD vs SITD */
991 			if (stream->highspeed) {
992 				struct ehci_itd		*itd;
993 
994 				itd = list_entry (entry, struct ehci_itd,
995 						itd_list);
996 				dma_pool_free (ehci->itd_pool, itd,
997 						itd->itd_dma);
998 			} else {
999 				struct ehci_sitd	*sitd;
1000 
1001 				sitd = list_entry (entry, struct ehci_sitd,
1002 						sitd_list);
1003 				dma_pool_free (ehci->sitd_pool, sitd,
1004 						sitd->sitd_dma);
1005 			}
1006 		}
1007 
1008 		is_in = (stream->bEndpointAddress & USB_DIR_IN) ? 0x10 : 0;
1009 		stream->bEndpointAddress &= 0x0f;
1010 		if (stream->ep)
1011 			stream->ep->hcpriv = NULL;
1012 
1013 		if (stream->rescheduled) {
1014 			ehci_info (ehci, "ep%d%s-iso rescheduled "
1015 				"%lu times in %lu seconds\n",
1016 				stream->bEndpointAddress, is_in ? "in" : "out",
1017 				stream->rescheduled,
1018 				((jiffies - stream->start)/HZ)
1019 				);
1020 		}
1021 
1022 		kfree(stream);
1023 	}
1024 }
1025 
1026 static inline struct ehci_iso_stream *
1027 iso_stream_get (struct ehci_iso_stream *stream)
1028 {
1029 	if (likely (stream != NULL))
1030 		stream->refcount++;
1031 	return stream;
1032 }
1033 
1034 static struct ehci_iso_stream *
1035 iso_stream_find (struct ehci_hcd *ehci, struct urb *urb)
1036 {
1037 	unsigned		epnum;
1038 	struct ehci_iso_stream	*stream;
1039 	struct usb_host_endpoint *ep;
1040 	unsigned long		flags;
1041 
1042 	epnum = usb_pipeendpoint (urb->pipe);
1043 	if (usb_pipein(urb->pipe))
1044 		ep = urb->dev->ep_in[epnum];
1045 	else
1046 		ep = urb->dev->ep_out[epnum];
1047 
1048 	spin_lock_irqsave (&ehci->lock, flags);
1049 	stream = ep->hcpriv;
1050 
1051 	if (unlikely (stream == NULL)) {
1052 		stream = iso_stream_alloc(GFP_ATOMIC);
1053 		if (likely (stream != NULL)) {
1054 			/* dev->ep owns the initial refcount */
1055 			ep->hcpriv = stream;
1056 			stream->ep = ep;
1057 			iso_stream_init(ehci, stream, urb->dev, urb->pipe,
1058 					urb->interval);
1059 		}
1060 
1061 	/* if dev->ep [epnum] is a QH, info1.maxpacket is nonzero */
1062 	} else if (unlikely (stream->hw_info1 != 0)) {
1063 		ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n",
1064 			urb->dev->devpath, epnum,
1065 			usb_pipein(urb->pipe) ? "in" : "out");
1066 		stream = NULL;
1067 	}
1068 
1069 	/* caller guarantees an eventual matching iso_stream_put */
1070 	stream = iso_stream_get (stream);
1071 
1072 	spin_unlock_irqrestore (&ehci->lock, flags);
1073 	return stream;
1074 }
1075 
1076 /*-------------------------------------------------------------------------*/
1077 
1078 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1079 
1080 static struct ehci_iso_sched *
1081 iso_sched_alloc (unsigned packets, gfp_t mem_flags)
1082 {
1083 	struct ehci_iso_sched	*iso_sched;
1084 	int			size = sizeof *iso_sched;
1085 
1086 	size += packets * sizeof (struct ehci_iso_packet);
1087 	iso_sched = kzalloc(size, mem_flags);
1088 	if (likely (iso_sched != NULL)) {
1089 		INIT_LIST_HEAD (&iso_sched->td_list);
1090 	}
1091 	return iso_sched;
1092 }
1093 
1094 static inline void
1095 itd_sched_init(
1096 	struct ehci_hcd		*ehci,
1097 	struct ehci_iso_sched	*iso_sched,
1098 	struct ehci_iso_stream	*stream,
1099 	struct urb		*urb
1100 )
1101 {
1102 	unsigned	i;
1103 	dma_addr_t	dma = urb->transfer_dma;
1104 
1105 	/* how many uframes are needed for these transfers */
1106 	iso_sched->span = urb->number_of_packets * stream->interval;
1107 
1108 	/* figure out per-uframe itd fields that we'll need later
1109 	 * when we fit new itds into the schedule.
1110 	 */
1111 	for (i = 0; i < urb->number_of_packets; i++) {
1112 		struct ehci_iso_packet	*uframe = &iso_sched->packet [i];
1113 		unsigned		length;
1114 		dma_addr_t		buf;
1115 		u32			trans;
1116 
1117 		length = urb->iso_frame_desc [i].length;
1118 		buf = dma + urb->iso_frame_desc [i].offset;
1119 
1120 		trans = EHCI_ISOC_ACTIVE;
1121 		trans |= buf & 0x0fff;
1122 		if (unlikely (((i + 1) == urb->number_of_packets))
1123 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1124 			trans |= EHCI_ITD_IOC;
1125 		trans |= length << 16;
1126 		uframe->transaction = cpu_to_hc32(ehci, trans);
1127 
1128 		/* might need to cross a buffer page within a uframe */
1129 		uframe->bufp = (buf & ~(u64)0x0fff);
1130 		buf += length;
1131 		if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff))))
1132 			uframe->cross = 1;
1133 	}
1134 }
1135 
1136 static void
1137 iso_sched_free (
1138 	struct ehci_iso_stream	*stream,
1139 	struct ehci_iso_sched	*iso_sched
1140 )
1141 {
1142 	if (!iso_sched)
1143 		return;
1144 	// caller must hold ehci->lock!
1145 	list_splice (&iso_sched->td_list, &stream->free_list);
1146 	kfree (iso_sched);
1147 }
1148 
1149 static int
1150 itd_urb_transaction (
1151 	struct ehci_iso_stream	*stream,
1152 	struct ehci_hcd		*ehci,
1153 	struct urb		*urb,
1154 	gfp_t			mem_flags
1155 )
1156 {
1157 	struct ehci_itd		*itd;
1158 	dma_addr_t		itd_dma;
1159 	int			i;
1160 	unsigned		num_itds;
1161 	struct ehci_iso_sched	*sched;
1162 	unsigned long		flags;
1163 
1164 	sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1165 	if (unlikely (sched == NULL))
1166 		return -ENOMEM;
1167 
1168 	itd_sched_init(ehci, sched, stream, urb);
1169 
1170 	if (urb->interval < 8)
1171 		num_itds = 1 + (sched->span + 7) / 8;
1172 	else
1173 		num_itds = urb->number_of_packets;
1174 
1175 	/* allocate/init ITDs */
1176 	spin_lock_irqsave (&ehci->lock, flags);
1177 	for (i = 0; i < num_itds; i++) {
1178 
1179 		/* free_list.next might be cache-hot ... but maybe
1180 		 * the HC caches it too. avoid that issue for now.
1181 		 */
1182 
1183 		/* prefer previously-allocated itds */
1184 		if (likely (!list_empty(&stream->free_list))) {
1185 			itd = list_entry (stream->free_list.prev,
1186 					struct ehci_itd, itd_list);
1187 			list_del (&itd->itd_list);
1188 			itd_dma = itd->itd_dma;
1189 		} else {
1190 			spin_unlock_irqrestore (&ehci->lock, flags);
1191 			itd = dma_pool_alloc (ehci->itd_pool, mem_flags,
1192 					&itd_dma);
1193 			spin_lock_irqsave (&ehci->lock, flags);
1194 			if (!itd) {
1195 				iso_sched_free(stream, sched);
1196 				spin_unlock_irqrestore(&ehci->lock, flags);
1197 				return -ENOMEM;
1198 			}
1199 		}
1200 
1201 		memset (itd, 0, sizeof *itd);
1202 		itd->itd_dma = itd_dma;
1203 		list_add (&itd->itd_list, &sched->td_list);
1204 	}
1205 	spin_unlock_irqrestore (&ehci->lock, flags);
1206 
1207 	/* temporarily store schedule info in hcpriv */
1208 	urb->hcpriv = sched;
1209 	urb->error_count = 0;
1210 	return 0;
1211 }
1212 
1213 /*-------------------------------------------------------------------------*/
1214 
1215 static inline int
1216 itd_slot_ok (
1217 	struct ehci_hcd		*ehci,
1218 	u32			mod,
1219 	u32			uframe,
1220 	u8			usecs,
1221 	u32			period
1222 )
1223 {
1224 	uframe %= period;
1225 	do {
1226 		/* can't commit more than 80% periodic == 100 usec */
1227 		if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7)
1228 				> (100 - usecs))
1229 			return 0;
1230 
1231 		/* we know urb->interval is 2^N uframes */
1232 		uframe += period;
1233 	} while (uframe < mod);
1234 	return 1;
1235 }
1236 
1237 static inline int
1238 sitd_slot_ok (
1239 	struct ehci_hcd		*ehci,
1240 	u32			mod,
1241 	struct ehci_iso_stream	*stream,
1242 	u32			uframe,
1243 	struct ehci_iso_sched	*sched,
1244 	u32			period_uframes
1245 )
1246 {
1247 	u32			mask, tmp;
1248 	u32			frame, uf;
1249 
1250 	mask = stream->raw_mask << (uframe & 7);
1251 
1252 	/* for IN, don't wrap CSPLIT into the next frame */
1253 	if (mask & ~0xffff)
1254 		return 0;
1255 
1256 	/* this multi-pass logic is simple, but performance may
1257 	 * suffer when the schedule data isn't cached.
1258 	 */
1259 
1260 	/* check bandwidth */
1261 	uframe %= period_uframes;
1262 	do {
1263 		u32		max_used;
1264 
1265 		frame = uframe >> 3;
1266 		uf = uframe & 7;
1267 
1268 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1269 		/* The tt's fullspeed bus bandwidth must be available.
1270 		 * tt_available scheduling guarantees 10+% for control/bulk.
1271 		 */
1272 		if (!tt_available (ehci, period_uframes << 3,
1273 				stream->udev, frame, uf, stream->tt_usecs))
1274 			return 0;
1275 #else
1276 		/* tt must be idle for start(s), any gap, and csplit.
1277 		 * assume scheduling slop leaves 10+% for control/bulk.
1278 		 */
1279 		if (!tt_no_collision (ehci, period_uframes << 3,
1280 				stream->udev, frame, mask))
1281 			return 0;
1282 #endif
1283 
1284 		/* check starts (OUT uses more than one) */
1285 		max_used = 100 - stream->usecs;
1286 		for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) {
1287 			if (periodic_usecs (ehci, frame, uf) > max_used)
1288 				return 0;
1289 		}
1290 
1291 		/* for IN, check CSPLIT */
1292 		if (stream->c_usecs) {
1293 			uf = uframe & 7;
1294 			max_used = 100 - stream->c_usecs;
1295 			do {
1296 				tmp = 1 << uf;
1297 				tmp <<= 8;
1298 				if ((stream->raw_mask & tmp) == 0)
1299 					continue;
1300 				if (periodic_usecs (ehci, frame, uf)
1301 						> max_used)
1302 					return 0;
1303 			} while (++uf < 8);
1304 		}
1305 
1306 		/* we know urb->interval is 2^N uframes */
1307 		uframe += period_uframes;
1308 	} while (uframe < mod);
1309 
1310 	stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7));
1311 	return 1;
1312 }
1313 
1314 /*
1315  * This scheduler plans almost as far into the future as it has actual
1316  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
1317  * "as small as possible" to be cache-friendlier.)  That limits the size
1318  * transfers you can stream reliably; avoid more than 64 msec per urb.
1319  * Also avoid queue depths of less than ehci's worst irq latency (affected
1320  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1321  * and other factors); or more than about 230 msec total (for portability,
1322  * given EHCI_TUNE_FLS and the slop).  Or, write a smarter scheduler!
1323  */
1324 
1325 #define SCHEDULE_SLOP	10	/* frames */
1326 
1327 static int
1328 iso_stream_schedule (
1329 	struct ehci_hcd		*ehci,
1330 	struct urb		*urb,
1331 	struct ehci_iso_stream	*stream
1332 )
1333 {
1334 	u32			now, start, max, period;
1335 	int			status;
1336 	unsigned		mod = ehci->periodic_size << 3;
1337 	struct ehci_iso_sched	*sched = urb->hcpriv;
1338 
1339 	if (sched->span > (mod - 8 * SCHEDULE_SLOP)) {
1340 		ehci_dbg (ehci, "iso request %p too long\n", urb);
1341 		status = -EFBIG;
1342 		goto fail;
1343 	}
1344 
1345 	if ((stream->depth + sched->span) > mod) {
1346 		ehci_dbg (ehci, "request %p would overflow (%d+%d>%d)\n",
1347 			urb, stream->depth, sched->span, mod);
1348 		status = -EFBIG;
1349 		goto fail;
1350 	}
1351 
1352 	now = ehci_readl(ehci, &ehci->regs->frame_index) % mod;
1353 
1354 	/* when's the last uframe this urb could start? */
1355 	max = now + mod;
1356 
1357 	/* Typical case: reuse current schedule, stream is still active.
1358 	 * Hopefully there are no gaps from the host falling behind
1359 	 * (irq delays etc), but if there are we'll take the next
1360 	 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
1361 	 */
1362 	if (likely (!list_empty (&stream->td_list))) {
1363 		start = stream->next_uframe;
1364 		if (start < now)
1365 			start += mod;
1366 
1367 		/* Fell behind (by up to twice the slop amount)? */
1368 		if (start >= max - 2 * 8 * SCHEDULE_SLOP)
1369 			start += stream->interval * DIV_ROUND_UP(
1370 					max - start, stream->interval) - mod;
1371 
1372 		/* Tried to schedule too far into the future? */
1373 		if (unlikely((start + sched->span) >= max)) {
1374 			status = -EFBIG;
1375 			goto fail;
1376 		}
1377 		goto ready;
1378 	}
1379 
1380 	/* need to schedule; when's the next (u)frame we could start?
1381 	 * this is bigger than ehci->i_thresh allows; scheduling itself
1382 	 * isn't free, the slop should handle reasonably slow cpus.  it
1383 	 * can also help high bandwidth if the dma and irq loads don't
1384 	 * jump until after the queue is primed.
1385 	 */
1386 	start = SCHEDULE_SLOP * 8 + (now & ~0x07);
1387 	start %= mod;
1388 	stream->next_uframe = start;
1389 
1390 	/* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
1391 
1392 	period = urb->interval;
1393 	if (!stream->highspeed)
1394 		period <<= 3;
1395 
1396 	/* find a uframe slot with enough bandwidth */
1397 	for (; start < (stream->next_uframe + period); start++) {
1398 		int		enough_space;
1399 
1400 		/* check schedule: enough space? */
1401 		if (stream->highspeed)
1402 			enough_space = itd_slot_ok (ehci, mod, start,
1403 					stream->usecs, period);
1404 		else {
1405 			if ((start % 8) >= 6)
1406 				continue;
1407 			enough_space = sitd_slot_ok (ehci, mod, stream,
1408 					start, sched, period);
1409 		}
1410 
1411 		/* schedule it here if there's enough bandwidth */
1412 		if (enough_space) {
1413 			stream->next_uframe = start % mod;
1414 			goto ready;
1415 		}
1416 	}
1417 
1418 	/* no room in the schedule */
1419 	ehci_dbg (ehci, "iso %ssched full %p (now %d max %d)\n",
1420 		list_empty (&stream->td_list) ? "" : "re",
1421 		urb, now, max);
1422 	status = -ENOSPC;
1423 
1424 fail:
1425 	iso_sched_free (stream, sched);
1426 	urb->hcpriv = NULL;
1427 	return status;
1428 
1429 ready:
1430 	/* report high speed start in uframes; full speed, in frames */
1431 	urb->start_frame = stream->next_uframe;
1432 	if (!stream->highspeed)
1433 		urb->start_frame >>= 3;
1434 	return 0;
1435 }
1436 
1437 /*-------------------------------------------------------------------------*/
1438 
1439 static inline void
1440 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1441 		struct ehci_itd *itd)
1442 {
1443 	int i;
1444 
1445 	/* it's been recently zeroed */
1446 	itd->hw_next = EHCI_LIST_END(ehci);
1447 	itd->hw_bufp [0] = stream->buf0;
1448 	itd->hw_bufp [1] = stream->buf1;
1449 	itd->hw_bufp [2] = stream->buf2;
1450 
1451 	for (i = 0; i < 8; i++)
1452 		itd->index[i] = -1;
1453 
1454 	/* All other fields are filled when scheduling */
1455 }
1456 
1457 static inline void
1458 itd_patch(
1459 	struct ehci_hcd		*ehci,
1460 	struct ehci_itd		*itd,
1461 	struct ehci_iso_sched	*iso_sched,
1462 	unsigned		index,
1463 	u16			uframe
1464 )
1465 {
1466 	struct ehci_iso_packet	*uf = &iso_sched->packet [index];
1467 	unsigned		pg = itd->pg;
1468 
1469 	// BUG_ON (pg == 6 && uf->cross);
1470 
1471 	uframe &= 0x07;
1472 	itd->index [uframe] = index;
1473 
1474 	itd->hw_transaction[uframe] = uf->transaction;
1475 	itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1476 	itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1477 	itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1478 
1479 	/* iso_frame_desc[].offset must be strictly increasing */
1480 	if (unlikely (uf->cross)) {
1481 		u64	bufp = uf->bufp + 4096;
1482 
1483 		itd->pg = ++pg;
1484 		itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1485 		itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1486 	}
1487 }
1488 
1489 static inline void
1490 itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1491 {
1492 	/* always prepend ITD/SITD ... only QH tree is order-sensitive */
1493 	itd->itd_next = ehci->pshadow [frame];
1494 	itd->hw_next = ehci->periodic [frame];
1495 	ehci->pshadow [frame].itd = itd;
1496 	itd->frame = frame;
1497 	wmb ();
1498 	ehci->periodic[frame] = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1499 }
1500 
1501 /* fit urb's itds into the selected schedule slot; activate as needed */
1502 static int
1503 itd_link_urb (
1504 	struct ehci_hcd		*ehci,
1505 	struct urb		*urb,
1506 	unsigned		mod,
1507 	struct ehci_iso_stream	*stream
1508 )
1509 {
1510 	int			packet;
1511 	unsigned		next_uframe, uframe, frame;
1512 	struct ehci_iso_sched	*iso_sched = urb->hcpriv;
1513 	struct ehci_itd		*itd;
1514 
1515 	next_uframe = stream->next_uframe % mod;
1516 
1517 	if (unlikely (list_empty(&stream->td_list))) {
1518 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1519 				+= stream->bandwidth;
1520 		ehci_vdbg (ehci,
1521 			"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
1522 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1523 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1524 			urb->interval,
1525 			next_uframe >> 3, next_uframe & 0x7);
1526 		stream->start = jiffies;
1527 	}
1528 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1529 
1530 	/* fill iTDs uframe by uframe */
1531 	for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) {
1532 		if (itd == NULL) {
1533 			/* ASSERT:  we have all necessary itds */
1534 			// BUG_ON (list_empty (&iso_sched->td_list));
1535 
1536 			/* ASSERT:  no itds for this endpoint in this uframe */
1537 
1538 			itd = list_entry (iso_sched->td_list.next,
1539 					struct ehci_itd, itd_list);
1540 			list_move_tail (&itd->itd_list, &stream->td_list);
1541 			itd->stream = iso_stream_get (stream);
1542 			itd->urb = urb;
1543 			itd_init (ehci, stream, itd);
1544 		}
1545 
1546 		uframe = next_uframe & 0x07;
1547 		frame = next_uframe >> 3;
1548 
1549 		itd_patch(ehci, itd, iso_sched, packet, uframe);
1550 
1551 		next_uframe += stream->interval;
1552 		stream->depth += stream->interval;
1553 		next_uframe %= mod;
1554 		packet++;
1555 
1556 		/* link completed itds into the schedule */
1557 		if (((next_uframe >> 3) != frame)
1558 				|| packet == urb->number_of_packets) {
1559 			itd_link (ehci, frame % ehci->periodic_size, itd);
1560 			itd = NULL;
1561 		}
1562 	}
1563 	stream->next_uframe = next_uframe;
1564 
1565 	/* don't need that schedule data any more */
1566 	iso_sched_free (stream, iso_sched);
1567 	urb->hcpriv = NULL;
1568 
1569 	timer_action (ehci, TIMER_IO_WATCHDOG);
1570 	return enable_periodic(ehci);
1571 }
1572 
1573 #define	ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1574 
1575 /* Process and recycle a completed ITD.  Return true iff its urb completed,
1576  * and hence its completion callback probably added things to the hardware
1577  * schedule.
1578  *
1579  * Note that we carefully avoid recycling this descriptor until after any
1580  * completion callback runs, so that it won't be reused quickly.  That is,
1581  * assuming (a) no more than two urbs per frame on this endpoint, and also
1582  * (b) only this endpoint's completions submit URBs.  It seems some silicon
1583  * corrupts things if you reuse completed descriptors very quickly...
1584  */
1585 static unsigned
1586 itd_complete (
1587 	struct ehci_hcd	*ehci,
1588 	struct ehci_itd	*itd
1589 ) {
1590 	struct urb				*urb = itd->urb;
1591 	struct usb_iso_packet_descriptor	*desc;
1592 	u32					t;
1593 	unsigned				uframe;
1594 	int					urb_index = -1;
1595 	struct ehci_iso_stream			*stream = itd->stream;
1596 	struct usb_device			*dev;
1597 	unsigned				retval = false;
1598 
1599 	/* for each uframe with a packet */
1600 	for (uframe = 0; uframe < 8; uframe++) {
1601 		if (likely (itd->index[uframe] == -1))
1602 			continue;
1603 		urb_index = itd->index[uframe];
1604 		desc = &urb->iso_frame_desc [urb_index];
1605 
1606 		t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]);
1607 		itd->hw_transaction [uframe] = 0;
1608 		stream->depth -= stream->interval;
1609 
1610 		/* report transfer status */
1611 		if (unlikely (t & ISO_ERRS)) {
1612 			urb->error_count++;
1613 			if (t & EHCI_ISOC_BUF_ERR)
1614 				desc->status = usb_pipein (urb->pipe)
1615 					? -ENOSR  /* hc couldn't read */
1616 					: -ECOMM; /* hc couldn't write */
1617 			else if (t & EHCI_ISOC_BABBLE)
1618 				desc->status = -EOVERFLOW;
1619 			else /* (t & EHCI_ISOC_XACTERR) */
1620 				desc->status = -EPROTO;
1621 
1622 			/* HC need not update length with this error */
1623 			if (!(t & EHCI_ISOC_BABBLE)) {
1624 				desc->actual_length = EHCI_ITD_LENGTH(t);
1625 				urb->actual_length += desc->actual_length;
1626 			}
1627 		} else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) {
1628 			desc->status = 0;
1629 			desc->actual_length = EHCI_ITD_LENGTH(t);
1630 			urb->actual_length += desc->actual_length;
1631 		} else {
1632 			/* URB was too late */
1633 			desc->status = -EXDEV;
1634 		}
1635 	}
1636 
1637 	/* handle completion now? */
1638 	if (likely ((urb_index + 1) != urb->number_of_packets))
1639 		goto done;
1640 
1641 	/* ASSERT: it's really the last itd for this urb
1642 	list_for_each_entry (itd, &stream->td_list, itd_list)
1643 		BUG_ON (itd->urb == urb);
1644 	 */
1645 
1646 	/* give urb back to the driver; completion often (re)submits */
1647 	dev = urb->dev;
1648 	ehci_urb_done(ehci, urb, 0);
1649 	retval = true;
1650 	urb = NULL;
1651 	(void) disable_periodic(ehci);
1652 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1653 
1654 	if (unlikely(list_is_singular(&stream->td_list))) {
1655 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1656 				-= stream->bandwidth;
1657 		ehci_vdbg (ehci,
1658 			"deschedule devp %s ep%d%s-iso\n",
1659 			dev->devpath, stream->bEndpointAddress & 0x0f,
1660 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
1661 	}
1662 	iso_stream_put (ehci, stream);
1663 
1664 done:
1665 	itd->urb = NULL;
1666 	if (ehci->clock_frame != itd->frame || itd->index[7] != -1) {
1667 		/* OK to recycle this ITD now. */
1668 		itd->stream = NULL;
1669 		list_move(&itd->itd_list, &stream->free_list);
1670 		iso_stream_put(ehci, stream);
1671 	} else {
1672 		/* HW might remember this ITD, so we can't recycle it yet.
1673 		 * Move it to a safe place until a new frame starts.
1674 		 */
1675 		list_move(&itd->itd_list, &ehci->cached_itd_list);
1676 		if (stream->refcount == 2) {
1677 			/* If iso_stream_put() were called here, stream
1678 			 * would be freed.  Instead, just prevent reuse.
1679 			 */
1680 			stream->ep->hcpriv = NULL;
1681 			stream->ep = NULL;
1682 		}
1683 	}
1684 	return retval;
1685 }
1686 
1687 /*-------------------------------------------------------------------------*/
1688 
1689 static int itd_submit (struct ehci_hcd *ehci, struct urb *urb,
1690 	gfp_t mem_flags)
1691 {
1692 	int			status = -EINVAL;
1693 	unsigned long		flags;
1694 	struct ehci_iso_stream	*stream;
1695 
1696 	/* Get iso_stream head */
1697 	stream = iso_stream_find (ehci, urb);
1698 	if (unlikely (stream == NULL)) {
1699 		ehci_dbg (ehci, "can't get iso stream\n");
1700 		return -ENOMEM;
1701 	}
1702 	if (unlikely (urb->interval != stream->interval)) {
1703 		ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
1704 			stream->interval, urb->interval);
1705 		goto done;
1706 	}
1707 
1708 #ifdef EHCI_URB_TRACE
1709 	ehci_dbg (ehci,
1710 		"%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1711 		__func__, urb->dev->devpath, urb,
1712 		usb_pipeendpoint (urb->pipe),
1713 		usb_pipein (urb->pipe) ? "in" : "out",
1714 		urb->transfer_buffer_length,
1715 		urb->number_of_packets, urb->interval,
1716 		stream);
1717 #endif
1718 
1719 	/* allocate ITDs w/o locking anything */
1720 	status = itd_urb_transaction (stream, ehci, urb, mem_flags);
1721 	if (unlikely (status < 0)) {
1722 		ehci_dbg (ehci, "can't init itds\n");
1723 		goto done;
1724 	}
1725 
1726 	/* schedule ... need to lock */
1727 	spin_lock_irqsave (&ehci->lock, flags);
1728 	if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
1729 			       &ehci_to_hcd(ehci)->flags))) {
1730 		status = -ESHUTDOWN;
1731 		goto done_not_linked;
1732 	}
1733 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1734 	if (unlikely(status))
1735 		goto done_not_linked;
1736 	status = iso_stream_schedule(ehci, urb, stream);
1737 	if (likely (status == 0))
1738 		itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
1739 	else
1740 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1741 done_not_linked:
1742 	spin_unlock_irqrestore (&ehci->lock, flags);
1743 
1744 done:
1745 	if (unlikely (status < 0))
1746 		iso_stream_put (ehci, stream);
1747 	return status;
1748 }
1749 
1750 /*-------------------------------------------------------------------------*/
1751 
1752 /*
1753  * "Split ISO TDs" ... used for USB 1.1 devices going through the
1754  * TTs in USB 2.0 hubs.  These need microframe scheduling.
1755  */
1756 
1757 static inline void
1758 sitd_sched_init(
1759 	struct ehci_hcd		*ehci,
1760 	struct ehci_iso_sched	*iso_sched,
1761 	struct ehci_iso_stream	*stream,
1762 	struct urb		*urb
1763 )
1764 {
1765 	unsigned	i;
1766 	dma_addr_t	dma = urb->transfer_dma;
1767 
1768 	/* how many frames are needed for these transfers */
1769 	iso_sched->span = urb->number_of_packets * stream->interval;
1770 
1771 	/* figure out per-frame sitd fields that we'll need later
1772 	 * when we fit new sitds into the schedule.
1773 	 */
1774 	for (i = 0; i < urb->number_of_packets; i++) {
1775 		struct ehci_iso_packet	*packet = &iso_sched->packet [i];
1776 		unsigned		length;
1777 		dma_addr_t		buf;
1778 		u32			trans;
1779 
1780 		length = urb->iso_frame_desc [i].length & 0x03ff;
1781 		buf = dma + urb->iso_frame_desc [i].offset;
1782 
1783 		trans = SITD_STS_ACTIVE;
1784 		if (((i + 1) == urb->number_of_packets)
1785 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1786 			trans |= SITD_IOC;
1787 		trans |= length << 16;
1788 		packet->transaction = cpu_to_hc32(ehci, trans);
1789 
1790 		/* might need to cross a buffer page within a td */
1791 		packet->bufp = buf;
1792 		packet->buf1 = (buf + length) & ~0x0fff;
1793 		if (packet->buf1 != (buf & ~(u64)0x0fff))
1794 			packet->cross = 1;
1795 
1796 		/* OUT uses multiple start-splits */
1797 		if (stream->bEndpointAddress & USB_DIR_IN)
1798 			continue;
1799 		length = (length + 187) / 188;
1800 		if (length > 1) /* BEGIN vs ALL */
1801 			length |= 1 << 3;
1802 		packet->buf1 |= length;
1803 	}
1804 }
1805 
1806 static int
1807 sitd_urb_transaction (
1808 	struct ehci_iso_stream	*stream,
1809 	struct ehci_hcd		*ehci,
1810 	struct urb		*urb,
1811 	gfp_t			mem_flags
1812 )
1813 {
1814 	struct ehci_sitd	*sitd;
1815 	dma_addr_t		sitd_dma;
1816 	int			i;
1817 	struct ehci_iso_sched	*iso_sched;
1818 	unsigned long		flags;
1819 
1820 	iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1821 	if (iso_sched == NULL)
1822 		return -ENOMEM;
1823 
1824 	sitd_sched_init(ehci, iso_sched, stream, urb);
1825 
1826 	/* allocate/init sITDs */
1827 	spin_lock_irqsave (&ehci->lock, flags);
1828 	for (i = 0; i < urb->number_of_packets; i++) {
1829 
1830 		/* NOTE:  for now, we don't try to handle wraparound cases
1831 		 * for IN (using sitd->hw_backpointer, like a FSTN), which
1832 		 * means we never need two sitds for full speed packets.
1833 		 */
1834 
1835 		/* free_list.next might be cache-hot ... but maybe
1836 		 * the HC caches it too. avoid that issue for now.
1837 		 */
1838 
1839 		/* prefer previously-allocated sitds */
1840 		if (!list_empty(&stream->free_list)) {
1841 			sitd = list_entry (stream->free_list.prev,
1842 					 struct ehci_sitd, sitd_list);
1843 			list_del (&sitd->sitd_list);
1844 			sitd_dma = sitd->sitd_dma;
1845 		} else {
1846 			spin_unlock_irqrestore (&ehci->lock, flags);
1847 			sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags,
1848 					&sitd_dma);
1849 			spin_lock_irqsave (&ehci->lock, flags);
1850 			if (!sitd) {
1851 				iso_sched_free(stream, iso_sched);
1852 				spin_unlock_irqrestore(&ehci->lock, flags);
1853 				return -ENOMEM;
1854 			}
1855 		}
1856 
1857 		memset (sitd, 0, sizeof *sitd);
1858 		sitd->sitd_dma = sitd_dma;
1859 		list_add (&sitd->sitd_list, &iso_sched->td_list);
1860 	}
1861 
1862 	/* temporarily store schedule info in hcpriv */
1863 	urb->hcpriv = iso_sched;
1864 	urb->error_count = 0;
1865 
1866 	spin_unlock_irqrestore (&ehci->lock, flags);
1867 	return 0;
1868 }
1869 
1870 /*-------------------------------------------------------------------------*/
1871 
1872 static inline void
1873 sitd_patch(
1874 	struct ehci_hcd		*ehci,
1875 	struct ehci_iso_stream	*stream,
1876 	struct ehci_sitd	*sitd,
1877 	struct ehci_iso_sched	*iso_sched,
1878 	unsigned		index
1879 )
1880 {
1881 	struct ehci_iso_packet	*uf = &iso_sched->packet [index];
1882 	u64			bufp = uf->bufp;
1883 
1884 	sitd->hw_next = EHCI_LIST_END(ehci);
1885 	sitd->hw_fullspeed_ep = stream->address;
1886 	sitd->hw_uframe = stream->splits;
1887 	sitd->hw_results = uf->transaction;
1888 	sitd->hw_backpointer = EHCI_LIST_END(ehci);
1889 
1890 	bufp = uf->bufp;
1891 	sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
1892 	sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
1893 
1894 	sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
1895 	if (uf->cross)
1896 		bufp += 4096;
1897 	sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
1898 	sitd->index = index;
1899 }
1900 
1901 static inline void
1902 sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
1903 {
1904 	/* note: sitd ordering could matter (CSPLIT then SSPLIT) */
1905 	sitd->sitd_next = ehci->pshadow [frame];
1906 	sitd->hw_next = ehci->periodic [frame];
1907 	ehci->pshadow [frame].sitd = sitd;
1908 	sitd->frame = frame;
1909 	wmb ();
1910 	ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
1911 }
1912 
1913 /* fit urb's sitds into the selected schedule slot; activate as needed */
1914 static int
1915 sitd_link_urb (
1916 	struct ehci_hcd		*ehci,
1917 	struct urb		*urb,
1918 	unsigned		mod,
1919 	struct ehci_iso_stream	*stream
1920 )
1921 {
1922 	int			packet;
1923 	unsigned		next_uframe;
1924 	struct ehci_iso_sched	*sched = urb->hcpriv;
1925 	struct ehci_sitd	*sitd;
1926 
1927 	next_uframe = stream->next_uframe;
1928 
1929 	if (list_empty(&stream->td_list)) {
1930 		/* usbfs ignores TT bandwidth */
1931 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1932 				+= stream->bandwidth;
1933 		ehci_vdbg (ehci,
1934 			"sched devp %s ep%d%s-iso [%d] %dms/%04x\n",
1935 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1936 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1937 			(next_uframe >> 3) % ehci->periodic_size,
1938 			stream->interval, hc32_to_cpu(ehci, stream->splits));
1939 		stream->start = jiffies;
1940 	}
1941 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1942 
1943 	/* fill sITDs frame by frame */
1944 	for (packet = 0, sitd = NULL;
1945 			packet < urb->number_of_packets;
1946 			packet++) {
1947 
1948 		/* ASSERT:  we have all necessary sitds */
1949 		BUG_ON (list_empty (&sched->td_list));
1950 
1951 		/* ASSERT:  no itds for this endpoint in this frame */
1952 
1953 		sitd = list_entry (sched->td_list.next,
1954 				struct ehci_sitd, sitd_list);
1955 		list_move_tail (&sitd->sitd_list, &stream->td_list);
1956 		sitd->stream = iso_stream_get (stream);
1957 		sitd->urb = urb;
1958 
1959 		sitd_patch(ehci, stream, sitd, sched, packet);
1960 		sitd_link (ehci, (next_uframe >> 3) % ehci->periodic_size,
1961 				sitd);
1962 
1963 		next_uframe += stream->interval << 3;
1964 		stream->depth += stream->interval << 3;
1965 	}
1966 	stream->next_uframe = next_uframe % mod;
1967 
1968 	/* don't need that schedule data any more */
1969 	iso_sched_free (stream, sched);
1970 	urb->hcpriv = NULL;
1971 
1972 	timer_action (ehci, TIMER_IO_WATCHDOG);
1973 	return enable_periodic(ehci);
1974 }
1975 
1976 /*-------------------------------------------------------------------------*/
1977 
1978 #define	SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
1979 				| SITD_STS_XACT | SITD_STS_MMF)
1980 
1981 /* Process and recycle a completed SITD.  Return true iff its urb completed,
1982  * and hence its completion callback probably added things to the hardware
1983  * schedule.
1984  *
1985  * Note that we carefully avoid recycling this descriptor until after any
1986  * completion callback runs, so that it won't be reused quickly.  That is,
1987  * assuming (a) no more than two urbs per frame on this endpoint, and also
1988  * (b) only this endpoint's completions submit URBs.  It seems some silicon
1989  * corrupts things if you reuse completed descriptors very quickly...
1990  */
1991 static unsigned
1992 sitd_complete (
1993 	struct ehci_hcd		*ehci,
1994 	struct ehci_sitd	*sitd
1995 ) {
1996 	struct urb				*urb = sitd->urb;
1997 	struct usb_iso_packet_descriptor	*desc;
1998 	u32					t;
1999 	int					urb_index = -1;
2000 	struct ehci_iso_stream			*stream = sitd->stream;
2001 	struct usb_device			*dev;
2002 	unsigned				retval = false;
2003 
2004 	urb_index = sitd->index;
2005 	desc = &urb->iso_frame_desc [urb_index];
2006 	t = hc32_to_cpup(ehci, &sitd->hw_results);
2007 
2008 	/* report transfer status */
2009 	if (t & SITD_ERRS) {
2010 		urb->error_count++;
2011 		if (t & SITD_STS_DBE)
2012 			desc->status = usb_pipein (urb->pipe)
2013 				? -ENOSR  /* hc couldn't read */
2014 				: -ECOMM; /* hc couldn't write */
2015 		else if (t & SITD_STS_BABBLE)
2016 			desc->status = -EOVERFLOW;
2017 		else /* XACT, MMF, etc */
2018 			desc->status = -EPROTO;
2019 	} else {
2020 		desc->status = 0;
2021 		desc->actual_length = desc->length - SITD_LENGTH(t);
2022 		urb->actual_length += desc->actual_length;
2023 	}
2024 	stream->depth -= stream->interval << 3;
2025 
2026 	/* handle completion now? */
2027 	if ((urb_index + 1) != urb->number_of_packets)
2028 		goto done;
2029 
2030 	/* ASSERT: it's really the last sitd for this urb
2031 	list_for_each_entry (sitd, &stream->td_list, sitd_list)
2032 		BUG_ON (sitd->urb == urb);
2033 	 */
2034 
2035 	/* give urb back to the driver; completion often (re)submits */
2036 	dev = urb->dev;
2037 	ehci_urb_done(ehci, urb, 0);
2038 	retval = true;
2039 	urb = NULL;
2040 	(void) disable_periodic(ehci);
2041 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2042 
2043 	if (list_is_singular(&stream->td_list)) {
2044 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2045 				-= stream->bandwidth;
2046 		ehci_vdbg (ehci,
2047 			"deschedule devp %s ep%d%s-iso\n",
2048 			dev->devpath, stream->bEndpointAddress & 0x0f,
2049 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
2050 	}
2051 	iso_stream_put (ehci, stream);
2052 	/* OK to recycle this SITD now that its completion callback ran. */
2053 done:
2054 	sitd->urb = NULL;
2055 	sitd->stream = NULL;
2056 	list_move(&sitd->sitd_list, &stream->free_list);
2057 	iso_stream_put(ehci, stream);
2058 
2059 	return retval;
2060 }
2061 
2062 
2063 static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb,
2064 	gfp_t mem_flags)
2065 {
2066 	int			status = -EINVAL;
2067 	unsigned long		flags;
2068 	struct ehci_iso_stream	*stream;
2069 
2070 	/* Get iso_stream head */
2071 	stream = iso_stream_find (ehci, urb);
2072 	if (stream == NULL) {
2073 		ehci_dbg (ehci, "can't get iso stream\n");
2074 		return -ENOMEM;
2075 	}
2076 	if (urb->interval != stream->interval) {
2077 		ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
2078 			stream->interval, urb->interval);
2079 		goto done;
2080 	}
2081 
2082 #ifdef EHCI_URB_TRACE
2083 	ehci_dbg (ehci,
2084 		"submit %p dev%s ep%d%s-iso len %d\n",
2085 		urb, urb->dev->devpath,
2086 		usb_pipeendpoint (urb->pipe),
2087 		usb_pipein (urb->pipe) ? "in" : "out",
2088 		urb->transfer_buffer_length);
2089 #endif
2090 
2091 	/* allocate SITDs */
2092 	status = sitd_urb_transaction (stream, ehci, urb, mem_flags);
2093 	if (status < 0) {
2094 		ehci_dbg (ehci, "can't init sitds\n");
2095 		goto done;
2096 	}
2097 
2098 	/* schedule ... need to lock */
2099 	spin_lock_irqsave (&ehci->lock, flags);
2100 	if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
2101 			       &ehci_to_hcd(ehci)->flags))) {
2102 		status = -ESHUTDOWN;
2103 		goto done_not_linked;
2104 	}
2105 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2106 	if (unlikely(status))
2107 		goto done_not_linked;
2108 	status = iso_stream_schedule(ehci, urb, stream);
2109 	if (status == 0)
2110 		sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
2111 	else
2112 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2113 done_not_linked:
2114 	spin_unlock_irqrestore (&ehci->lock, flags);
2115 
2116 done:
2117 	if (status < 0)
2118 		iso_stream_put (ehci, stream);
2119 	return status;
2120 }
2121 
2122 /*-------------------------------------------------------------------------*/
2123 
2124 static void free_cached_itd_list(struct ehci_hcd *ehci)
2125 {
2126 	struct ehci_itd *itd, *n;
2127 
2128 	list_for_each_entry_safe(itd, n, &ehci->cached_itd_list, itd_list) {
2129 		struct ehci_iso_stream	*stream = itd->stream;
2130 		itd->stream = NULL;
2131 		list_move(&itd->itd_list, &stream->free_list);
2132 		iso_stream_put(ehci, stream);
2133 	}
2134 }
2135 
2136 /*-------------------------------------------------------------------------*/
2137 
2138 static void
2139 scan_periodic (struct ehci_hcd *ehci)
2140 {
2141 	unsigned	now_uframe, frame, clock, clock_frame, mod;
2142 	unsigned	modified;
2143 
2144 	mod = ehci->periodic_size << 3;
2145 
2146 	/*
2147 	 * When running, scan from last scan point up to "now"
2148 	 * else clean up by scanning everything that's left.
2149 	 * Touches as few pages as possible:  cache-friendly.
2150 	 */
2151 	now_uframe = ehci->next_uframe;
2152 	if (HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
2153 		clock = ehci_readl(ehci, &ehci->regs->frame_index);
2154 		clock_frame = (clock >> 3) % ehci->periodic_size;
2155 	} else  {
2156 		clock = now_uframe + mod - 1;
2157 		clock_frame = -1;
2158 	}
2159 	if (ehci->clock_frame != clock_frame) {
2160 		free_cached_itd_list(ehci);
2161 		ehci->clock_frame = clock_frame;
2162 	}
2163 	clock %= mod;
2164 	clock_frame = clock >> 3;
2165 
2166 	for (;;) {
2167 		union ehci_shadow	q, *q_p;
2168 		__hc32			type, *hw_p;
2169 		unsigned		incomplete = false;
2170 
2171 		frame = now_uframe >> 3;
2172 
2173 restart:
2174 		/* scan each element in frame's queue for completions */
2175 		q_p = &ehci->pshadow [frame];
2176 		hw_p = &ehci->periodic [frame];
2177 		q.ptr = q_p->ptr;
2178 		type = Q_NEXT_TYPE(ehci, *hw_p);
2179 		modified = 0;
2180 
2181 		while (q.ptr != NULL) {
2182 			unsigned		uf;
2183 			union ehci_shadow	temp;
2184 			int			live;
2185 
2186 			live = HC_IS_RUNNING (ehci_to_hcd(ehci)->state);
2187 			switch (hc32_to_cpu(ehci, type)) {
2188 			case Q_TYPE_QH:
2189 				/* handle any completions */
2190 				temp.qh = qh_get (q.qh);
2191 				type = Q_NEXT_TYPE(ehci, q.qh->hw_next);
2192 				q = q.qh->qh_next;
2193 				modified = qh_completions (ehci, temp.qh);
2194 				if (unlikely (list_empty (&temp.qh->qtd_list)))
2195 					intr_deschedule (ehci, temp.qh);
2196 				qh_put (temp.qh);
2197 				break;
2198 			case Q_TYPE_FSTN:
2199 				/* for "save place" FSTNs, look at QH entries
2200 				 * in the previous frame for completions.
2201 				 */
2202 				if (q.fstn->hw_prev != EHCI_LIST_END(ehci)) {
2203 					dbg ("ignoring completions from FSTNs");
2204 				}
2205 				type = Q_NEXT_TYPE(ehci, q.fstn->hw_next);
2206 				q = q.fstn->fstn_next;
2207 				break;
2208 			case Q_TYPE_ITD:
2209 				/* If this ITD is still active, leave it for
2210 				 * later processing ... check the next entry.
2211 				 * No need to check for activity unless the
2212 				 * frame is current.
2213 				 */
2214 				if (frame == clock_frame && live) {
2215 					rmb();
2216 					for (uf = 0; uf < 8; uf++) {
2217 						if (q.itd->hw_transaction[uf] &
2218 							    ITD_ACTIVE(ehci))
2219 							break;
2220 					}
2221 					if (uf < 8) {
2222 						incomplete = true;
2223 						q_p = &q.itd->itd_next;
2224 						hw_p = &q.itd->hw_next;
2225 						type = Q_NEXT_TYPE(ehci,
2226 							q.itd->hw_next);
2227 						q = *q_p;
2228 						break;
2229 					}
2230 				}
2231 
2232 				/* Take finished ITDs out of the schedule
2233 				 * and process them:  recycle, maybe report
2234 				 * URB completion.  HC won't cache the
2235 				 * pointer for much longer, if at all.
2236 				 */
2237 				*q_p = q.itd->itd_next;
2238 				*hw_p = q.itd->hw_next;
2239 				type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2240 				wmb();
2241 				modified = itd_complete (ehci, q.itd);
2242 				q = *q_p;
2243 				break;
2244 			case Q_TYPE_SITD:
2245 				/* If this SITD is still active, leave it for
2246 				 * later processing ... check the next entry.
2247 				 * No need to check for activity unless the
2248 				 * frame is current.
2249 				 */
2250 				if (frame == clock_frame && live &&
2251 						(q.sitd->hw_results &
2252 							SITD_ACTIVE(ehci))) {
2253 					incomplete = true;
2254 					q_p = &q.sitd->sitd_next;
2255 					hw_p = &q.sitd->hw_next;
2256 					type = Q_NEXT_TYPE(ehci,
2257 							q.sitd->hw_next);
2258 					q = *q_p;
2259 					break;
2260 				}
2261 
2262 				/* Take finished SITDs out of the schedule
2263 				 * and process them:  recycle, maybe report
2264 				 * URB completion.
2265 				 */
2266 				*q_p = q.sitd->sitd_next;
2267 				*hw_p = q.sitd->hw_next;
2268 				type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2269 				wmb();
2270 				modified = sitd_complete (ehci, q.sitd);
2271 				q = *q_p;
2272 				break;
2273 			default:
2274 				dbg ("corrupt type %d frame %d shadow %p",
2275 					type, frame, q.ptr);
2276 				// BUG ();
2277 				q.ptr = NULL;
2278 			}
2279 
2280 			/* assume completion callbacks modify the queue */
2281 			if (unlikely (modified)) {
2282 				if (likely(ehci->periodic_sched > 0))
2283 					goto restart;
2284 				/* short-circuit this scan */
2285 				now_uframe = clock;
2286 				break;
2287 			}
2288 		}
2289 
2290 		/* If we can tell we caught up to the hardware, stop now.
2291 		 * We can't advance our scan without collecting the ISO
2292 		 * transfers that are still pending in this frame.
2293 		 */
2294 		if (incomplete && HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
2295 			ehci->next_uframe = now_uframe;
2296 			break;
2297 		}
2298 
2299 		// FIXME:  this assumes we won't get lapped when
2300 		// latencies climb; that should be rare, but...
2301 		// detect it, and just go all the way around.
2302 		// FLR might help detect this case, so long as latencies
2303 		// don't exceed periodic_size msec (default 1.024 sec).
2304 
2305 		// FIXME:  likewise assumes HC doesn't halt mid-scan
2306 
2307 		if (now_uframe == clock) {
2308 			unsigned	now;
2309 
2310 			if (!HC_IS_RUNNING (ehci_to_hcd(ehci)->state)
2311 					|| ehci->periodic_sched == 0)
2312 				break;
2313 			ehci->next_uframe = now_uframe;
2314 			now = ehci_readl(ehci, &ehci->regs->frame_index) % mod;
2315 			if (now_uframe == now)
2316 				break;
2317 
2318 			/* rescan the rest of this frame, then ... */
2319 			clock = now;
2320 			clock_frame = clock >> 3;
2321 			if (ehci->clock_frame != clock_frame) {
2322 				free_cached_itd_list(ehci);
2323 				ehci->clock_frame = clock_frame;
2324 			}
2325 		} else {
2326 			now_uframe++;
2327 			now_uframe %= mod;
2328 		}
2329 	}
2330 }
2331