xref: /openbmc/linux/drivers/usb/host/ehci-sched.c (revision fca3aa16)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2001-2004 by David Brownell
4  * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
5  */
6 
7 /* this file is part of ehci-hcd.c */
8 
9 /*-------------------------------------------------------------------------*/
10 
11 /*
12  * EHCI scheduled transaction support:  interrupt, iso, split iso
13  * These are called "periodic" transactions in the EHCI spec.
14  *
15  * Note that for interrupt transfers, the QH/QTD manipulation is shared
16  * with the "asynchronous" transaction support (control/bulk transfers).
17  * The only real difference is in how interrupt transfers are scheduled.
18  *
19  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
20  * It keeps track of every ITD (or SITD) that's linked, and holds enough
21  * pre-calculated schedule data to make appending to the queue be quick.
22  */
23 
24 static int ehci_get_frame(struct usb_hcd *hcd);
25 
26 /*
27  * periodic_next_shadow - return "next" pointer on shadow list
28  * @periodic: host pointer to qh/itd/sitd
29  * @tag: hardware tag for type of this record
30  */
31 static union ehci_shadow *
32 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
33 		__hc32 tag)
34 {
35 	switch (hc32_to_cpu(ehci, tag)) {
36 	case Q_TYPE_QH:
37 		return &periodic->qh->qh_next;
38 	case Q_TYPE_FSTN:
39 		return &periodic->fstn->fstn_next;
40 	case Q_TYPE_ITD:
41 		return &periodic->itd->itd_next;
42 	/* case Q_TYPE_SITD: */
43 	default:
44 		return &periodic->sitd->sitd_next;
45 	}
46 }
47 
48 static __hc32 *
49 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
50 		__hc32 tag)
51 {
52 	switch (hc32_to_cpu(ehci, tag)) {
53 	/* our ehci_shadow.qh is actually software part */
54 	case Q_TYPE_QH:
55 		return &periodic->qh->hw->hw_next;
56 	/* others are hw parts */
57 	default:
58 		return periodic->hw_next;
59 	}
60 }
61 
62 /* caller must hold ehci->lock */
63 static void periodic_unlink(struct ehci_hcd *ehci, unsigned frame, void *ptr)
64 {
65 	union ehci_shadow	*prev_p = &ehci->pshadow[frame];
66 	__hc32			*hw_p = &ehci->periodic[frame];
67 	union ehci_shadow	here = *prev_p;
68 
69 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
70 	while (here.ptr && here.ptr != ptr) {
71 		prev_p = periodic_next_shadow(ehci, prev_p,
72 				Q_NEXT_TYPE(ehci, *hw_p));
73 		hw_p = shadow_next_periodic(ehci, &here,
74 				Q_NEXT_TYPE(ehci, *hw_p));
75 		here = *prev_p;
76 	}
77 	/* an interrupt entry (at list end) could have been shared */
78 	if (!here.ptr)
79 		return;
80 
81 	/* update shadow and hardware lists ... the old "next" pointers
82 	 * from ptr may still be in use, the caller updates them.
83 	 */
84 	*prev_p = *periodic_next_shadow(ehci, &here,
85 			Q_NEXT_TYPE(ehci, *hw_p));
86 
87 	if (!ehci->use_dummy_qh ||
88 	    *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
89 			!= EHCI_LIST_END(ehci))
90 		*hw_p = *shadow_next_periodic(ehci, &here,
91 				Q_NEXT_TYPE(ehci, *hw_p));
92 	else
93 		*hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
94 }
95 
96 /*-------------------------------------------------------------------------*/
97 
98 /* Bandwidth and TT management */
99 
100 /* Find the TT data structure for this device; create it if necessary */
101 static struct ehci_tt *find_tt(struct usb_device *udev)
102 {
103 	struct usb_tt		*utt = udev->tt;
104 	struct ehci_tt		*tt, **tt_index, **ptt;
105 	unsigned		port;
106 	bool			allocated_index = false;
107 
108 	if (!utt)
109 		return NULL;		/* Not below a TT */
110 
111 	/*
112 	 * Find/create our data structure.
113 	 * For hubs with a single TT, we get it directly.
114 	 * For hubs with multiple TTs, there's an extra level of pointers.
115 	 */
116 	tt_index = NULL;
117 	if (utt->multi) {
118 		tt_index = utt->hcpriv;
119 		if (!tt_index) {		/* Create the index array */
120 			tt_index = kzalloc(utt->hub->maxchild *
121 					sizeof(*tt_index), GFP_ATOMIC);
122 			if (!tt_index)
123 				return ERR_PTR(-ENOMEM);
124 			utt->hcpriv = tt_index;
125 			allocated_index = true;
126 		}
127 		port = udev->ttport - 1;
128 		ptt = &tt_index[port];
129 	} else {
130 		port = 0;
131 		ptt = (struct ehci_tt **) &utt->hcpriv;
132 	}
133 
134 	tt = *ptt;
135 	if (!tt) {				/* Create the ehci_tt */
136 		struct ehci_hcd		*ehci =
137 				hcd_to_ehci(bus_to_hcd(udev->bus));
138 
139 		tt = kzalloc(sizeof(*tt), GFP_ATOMIC);
140 		if (!tt) {
141 			if (allocated_index) {
142 				utt->hcpriv = NULL;
143 				kfree(tt_index);
144 			}
145 			return ERR_PTR(-ENOMEM);
146 		}
147 		list_add_tail(&tt->tt_list, &ehci->tt_list);
148 		INIT_LIST_HEAD(&tt->ps_list);
149 		tt->usb_tt = utt;
150 		tt->tt_port = port;
151 		*ptt = tt;
152 	}
153 
154 	return tt;
155 }
156 
157 /* Release the TT above udev, if it's not in use */
158 static void drop_tt(struct usb_device *udev)
159 {
160 	struct usb_tt		*utt = udev->tt;
161 	struct ehci_tt		*tt, **tt_index, **ptt;
162 	int			cnt, i;
163 
164 	if (!utt || !utt->hcpriv)
165 		return;		/* Not below a TT, or never allocated */
166 
167 	cnt = 0;
168 	if (utt->multi) {
169 		tt_index = utt->hcpriv;
170 		ptt = &tt_index[udev->ttport - 1];
171 
172 		/* How many entries are left in tt_index? */
173 		for (i = 0; i < utt->hub->maxchild; ++i)
174 			cnt += !!tt_index[i];
175 	} else {
176 		tt_index = NULL;
177 		ptt = (struct ehci_tt **) &utt->hcpriv;
178 	}
179 
180 	tt = *ptt;
181 	if (!tt || !list_empty(&tt->ps_list))
182 		return;		/* never allocated, or still in use */
183 
184 	list_del(&tt->tt_list);
185 	*ptt = NULL;
186 	kfree(tt);
187 	if (cnt == 1) {
188 		utt->hcpriv = NULL;
189 		kfree(tt_index);
190 	}
191 }
192 
193 static void bandwidth_dbg(struct ehci_hcd *ehci, int sign, char *type,
194 		struct ehci_per_sched *ps)
195 {
196 	dev_dbg(&ps->udev->dev,
197 			"ep %02x: %s %s @ %u+%u (%u.%u+%u) [%u/%u us] mask %04x\n",
198 			ps->ep->desc.bEndpointAddress,
199 			(sign >= 0 ? "reserve" : "release"), type,
200 			(ps->bw_phase << 3) + ps->phase_uf, ps->bw_uperiod,
201 			ps->phase, ps->phase_uf, ps->period,
202 			ps->usecs, ps->c_usecs, ps->cs_mask);
203 }
204 
205 static void reserve_release_intr_bandwidth(struct ehci_hcd *ehci,
206 		struct ehci_qh *qh, int sign)
207 {
208 	unsigned		start_uf;
209 	unsigned		i, j, m;
210 	int			usecs = qh->ps.usecs;
211 	int			c_usecs = qh->ps.c_usecs;
212 	int			tt_usecs = qh->ps.tt_usecs;
213 	struct ehci_tt		*tt;
214 
215 	if (qh->ps.phase == NO_FRAME)	/* Bandwidth wasn't reserved */
216 		return;
217 	start_uf = qh->ps.bw_phase << 3;
218 
219 	bandwidth_dbg(ehci, sign, "intr", &qh->ps);
220 
221 	if (sign < 0) {		/* Release bandwidth */
222 		usecs = -usecs;
223 		c_usecs = -c_usecs;
224 		tt_usecs = -tt_usecs;
225 	}
226 
227 	/* Entire transaction (high speed) or start-split (full/low speed) */
228 	for (i = start_uf + qh->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
229 			i += qh->ps.bw_uperiod)
230 		ehci->bandwidth[i] += usecs;
231 
232 	/* Complete-split (full/low speed) */
233 	if (qh->ps.c_usecs) {
234 		/* NOTE: adjustments needed for FSTN */
235 		for (i = start_uf; i < EHCI_BANDWIDTH_SIZE;
236 				i += qh->ps.bw_uperiod) {
237 			for ((j = 2, m = 1 << (j+8)); j < 8; (++j, m <<= 1)) {
238 				if (qh->ps.cs_mask & m)
239 					ehci->bandwidth[i+j] += c_usecs;
240 			}
241 		}
242 	}
243 
244 	/* FS/LS bus bandwidth */
245 	if (tt_usecs) {
246 		tt = find_tt(qh->ps.udev);
247 		if (sign > 0)
248 			list_add_tail(&qh->ps.ps_list, &tt->ps_list);
249 		else
250 			list_del(&qh->ps.ps_list);
251 
252 		for (i = start_uf >> 3; i < EHCI_BANDWIDTH_FRAMES;
253 				i += qh->ps.bw_period)
254 			tt->bandwidth[i] += tt_usecs;
255 	}
256 }
257 
258 /*-------------------------------------------------------------------------*/
259 
260 static void compute_tt_budget(u8 budget_table[EHCI_BANDWIDTH_SIZE],
261 		struct ehci_tt *tt)
262 {
263 	struct ehci_per_sched	*ps;
264 	unsigned		uframe, uf, x;
265 	u8			*budget_line;
266 
267 	if (!tt)
268 		return;
269 	memset(budget_table, 0, EHCI_BANDWIDTH_SIZE);
270 
271 	/* Add up the contributions from all the endpoints using this TT */
272 	list_for_each_entry(ps, &tt->ps_list, ps_list) {
273 		for (uframe = ps->bw_phase << 3; uframe < EHCI_BANDWIDTH_SIZE;
274 				uframe += ps->bw_uperiod) {
275 			budget_line = &budget_table[uframe];
276 			x = ps->tt_usecs;
277 
278 			/* propagate the time forward */
279 			for (uf = ps->phase_uf; uf < 8; ++uf) {
280 				x += budget_line[uf];
281 
282 				/* Each microframe lasts 125 us */
283 				if (x <= 125) {
284 					budget_line[uf] = x;
285 					break;
286 				}
287 				budget_line[uf] = 125;
288 				x -= 125;
289 			}
290 		}
291 	}
292 }
293 
294 static int __maybe_unused same_tt(struct usb_device *dev1,
295 		struct usb_device *dev2)
296 {
297 	if (!dev1->tt || !dev2->tt)
298 		return 0;
299 	if (dev1->tt != dev2->tt)
300 		return 0;
301 	if (dev1->tt->multi)
302 		return dev1->ttport == dev2->ttport;
303 	else
304 		return 1;
305 }
306 
307 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
308 
309 /* Which uframe does the low/fullspeed transfer start in?
310  *
311  * The parameter is the mask of ssplits in "H-frame" terms
312  * and this returns the transfer start uframe in "B-frame" terms,
313  * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
314  * will cause a transfer in "B-frame" uframe 0.  "B-frames" lag
315  * "H-frames" by 1 uframe.  See the EHCI spec sec 4.5 and figure 4.7.
316  */
317 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
318 {
319 	unsigned char smask = hc32_to_cpu(ehci, mask) & QH_SMASK;
320 
321 	if (!smask) {
322 		ehci_err(ehci, "invalid empty smask!\n");
323 		/* uframe 7 can't have bw so this will indicate failure */
324 		return 7;
325 	}
326 	return ffs(smask) - 1;
327 }
328 
329 static const unsigned char
330 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
331 
332 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
333 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
334 {
335 	int i;
336 
337 	for (i = 0; i < 7; i++) {
338 		if (max_tt_usecs[i] < tt_usecs[i]) {
339 			tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
340 			tt_usecs[i] = max_tt_usecs[i];
341 		}
342 	}
343 }
344 
345 /*
346  * Return true if the device's tt's downstream bus is available for a
347  * periodic transfer of the specified length (usecs), starting at the
348  * specified frame/uframe.  Note that (as summarized in section 11.19
349  * of the usb 2.0 spec) TTs can buffer multiple transactions for each
350  * uframe.
351  *
352  * The uframe parameter is when the fullspeed/lowspeed transfer
353  * should be executed in "B-frame" terms, which is the same as the
354  * highspeed ssplit's uframe (which is in "H-frame" terms).  For example
355  * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
356  * See the EHCI spec sec 4.5 and fig 4.7.
357  *
358  * This checks if the full/lowspeed bus, at the specified starting uframe,
359  * has the specified bandwidth available, according to rules listed
360  * in USB 2.0 spec section 11.18.1 fig 11-60.
361  *
362  * This does not check if the transfer would exceed the max ssplit
363  * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
364  * since proper scheduling limits ssplits to less than 16 per uframe.
365  */
366 static int tt_available(
367 	struct ehci_hcd		*ehci,
368 	struct ehci_per_sched	*ps,
369 	struct ehci_tt		*tt,
370 	unsigned		frame,
371 	unsigned		uframe
372 )
373 {
374 	unsigned		period = ps->bw_period;
375 	unsigned		usecs = ps->tt_usecs;
376 
377 	if ((period == 0) || (uframe >= 7))	/* error */
378 		return 0;
379 
380 	for (frame &= period - 1; frame < EHCI_BANDWIDTH_FRAMES;
381 			frame += period) {
382 		unsigned	i, uf;
383 		unsigned short	tt_usecs[8];
384 
385 		if (tt->bandwidth[frame] + usecs > 900)
386 			return 0;
387 
388 		uf = frame << 3;
389 		for (i = 0; i < 8; (++i, ++uf))
390 			tt_usecs[i] = ehci->tt_budget[uf];
391 
392 		if (max_tt_usecs[uframe] <= tt_usecs[uframe])
393 			return 0;
394 
395 		/* special case for isoc transfers larger than 125us:
396 		 * the first and each subsequent fully used uframe
397 		 * must be empty, so as to not illegally delay
398 		 * already scheduled transactions
399 		 */
400 		if (usecs > 125) {
401 			int ufs = (usecs / 125);
402 
403 			for (i = uframe; i < (uframe + ufs) && i < 8; i++)
404 				if (tt_usecs[i] > 0)
405 					return 0;
406 		}
407 
408 		tt_usecs[uframe] += usecs;
409 
410 		carryover_tt_bandwidth(tt_usecs);
411 
412 		/* fail if the carryover pushed bw past the last uframe's limit */
413 		if (max_tt_usecs[7] < tt_usecs[7])
414 			return 0;
415 	}
416 
417 	return 1;
418 }
419 
420 #else
421 
422 /* return true iff the device's transaction translator is available
423  * for a periodic transfer starting at the specified frame, using
424  * all the uframes in the mask.
425  */
426 static int tt_no_collision(
427 	struct ehci_hcd		*ehci,
428 	unsigned		period,
429 	struct usb_device	*dev,
430 	unsigned		frame,
431 	u32			uf_mask
432 )
433 {
434 	if (period == 0)	/* error */
435 		return 0;
436 
437 	/* note bandwidth wastage:  split never follows csplit
438 	 * (different dev or endpoint) until the next uframe.
439 	 * calling convention doesn't make that distinction.
440 	 */
441 	for (; frame < ehci->periodic_size; frame += period) {
442 		union ehci_shadow	here;
443 		__hc32			type;
444 		struct ehci_qh_hw	*hw;
445 
446 		here = ehci->pshadow[frame];
447 		type = Q_NEXT_TYPE(ehci, ehci->periodic[frame]);
448 		while (here.ptr) {
449 			switch (hc32_to_cpu(ehci, type)) {
450 			case Q_TYPE_ITD:
451 				type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
452 				here = here.itd->itd_next;
453 				continue;
454 			case Q_TYPE_QH:
455 				hw = here.qh->hw;
456 				if (same_tt(dev, here.qh->ps.udev)) {
457 					u32		mask;
458 
459 					mask = hc32_to_cpu(ehci,
460 							hw->hw_info2);
461 					/* "knows" no gap is needed */
462 					mask |= mask >> 8;
463 					if (mask & uf_mask)
464 						break;
465 				}
466 				type = Q_NEXT_TYPE(ehci, hw->hw_next);
467 				here = here.qh->qh_next;
468 				continue;
469 			case Q_TYPE_SITD:
470 				if (same_tt(dev, here.sitd->urb->dev)) {
471 					u16		mask;
472 
473 					mask = hc32_to_cpu(ehci, here.sitd
474 								->hw_uframe);
475 					/* FIXME assumes no gap for IN! */
476 					mask |= mask >> 8;
477 					if (mask & uf_mask)
478 						break;
479 				}
480 				type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
481 				here = here.sitd->sitd_next;
482 				continue;
483 			/* case Q_TYPE_FSTN: */
484 			default:
485 				ehci_dbg(ehci,
486 					"periodic frame %d bogus type %d\n",
487 					frame, type);
488 			}
489 
490 			/* collision or error */
491 			return 0;
492 		}
493 	}
494 
495 	/* no collision */
496 	return 1;
497 }
498 
499 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
500 
501 /*-------------------------------------------------------------------------*/
502 
503 static void enable_periodic(struct ehci_hcd *ehci)
504 {
505 	if (ehci->periodic_count++)
506 		return;
507 
508 	/* Stop waiting to turn off the periodic schedule */
509 	ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC);
510 
511 	/* Don't start the schedule until PSS is 0 */
512 	ehci_poll_PSS(ehci);
513 	turn_on_io_watchdog(ehci);
514 }
515 
516 static void disable_periodic(struct ehci_hcd *ehci)
517 {
518 	if (--ehci->periodic_count)
519 		return;
520 
521 	/* Don't turn off the schedule until PSS is 1 */
522 	ehci_poll_PSS(ehci);
523 }
524 
525 /*-------------------------------------------------------------------------*/
526 
527 /* periodic schedule slots have iso tds (normal or split) first, then a
528  * sparse tree for active interrupt transfers.
529  *
530  * this just links in a qh; caller guarantees uframe masks are set right.
531  * no FSTN support (yet; ehci 0.96+)
532  */
533 static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
534 {
535 	unsigned	i;
536 	unsigned	period = qh->ps.period;
537 
538 	dev_dbg(&qh->ps.udev->dev,
539 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
540 		period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
541 			& (QH_CMASK | QH_SMASK),
542 		qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
543 
544 	/* high bandwidth, or otherwise every microframe */
545 	if (period == 0)
546 		period = 1;
547 
548 	for (i = qh->ps.phase; i < ehci->periodic_size; i += period) {
549 		union ehci_shadow	*prev = &ehci->pshadow[i];
550 		__hc32			*hw_p = &ehci->periodic[i];
551 		union ehci_shadow	here = *prev;
552 		__hc32			type = 0;
553 
554 		/* skip the iso nodes at list head */
555 		while (here.ptr) {
556 			type = Q_NEXT_TYPE(ehci, *hw_p);
557 			if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
558 				break;
559 			prev = periodic_next_shadow(ehci, prev, type);
560 			hw_p = shadow_next_periodic(ehci, &here, type);
561 			here = *prev;
562 		}
563 
564 		/* sorting each branch by period (slow-->fast)
565 		 * enables sharing interior tree nodes
566 		 */
567 		while (here.ptr && qh != here.qh) {
568 			if (qh->ps.period > here.qh->ps.period)
569 				break;
570 			prev = &here.qh->qh_next;
571 			hw_p = &here.qh->hw->hw_next;
572 			here = *prev;
573 		}
574 		/* link in this qh, unless some earlier pass did that */
575 		if (qh != here.qh) {
576 			qh->qh_next = here;
577 			if (here.qh)
578 				qh->hw->hw_next = *hw_p;
579 			wmb();
580 			prev->qh = qh;
581 			*hw_p = QH_NEXT(ehci, qh->qh_dma);
582 		}
583 	}
584 	qh->qh_state = QH_STATE_LINKED;
585 	qh->xacterrs = 0;
586 	qh->unlink_reason = 0;
587 
588 	/* update per-qh bandwidth for debugfs */
589 	ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->ps.bw_period
590 		? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
591 		: (qh->ps.usecs * 8);
592 
593 	list_add(&qh->intr_node, &ehci->intr_qh_list);
594 
595 	/* maybe enable periodic schedule processing */
596 	++ehci->intr_count;
597 	enable_periodic(ehci);
598 }
599 
600 static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
601 {
602 	unsigned	i;
603 	unsigned	period;
604 
605 	/*
606 	 * If qh is for a low/full-speed device, simply unlinking it
607 	 * could interfere with an ongoing split transaction.  To unlink
608 	 * it safely would require setting the QH_INACTIVATE bit and
609 	 * waiting at least one frame, as described in EHCI 4.12.2.5.
610 	 *
611 	 * We won't bother with any of this.  Instead, we assume that the
612 	 * only reason for unlinking an interrupt QH while the current URB
613 	 * is still active is to dequeue all the URBs (flush the whole
614 	 * endpoint queue).
615 	 *
616 	 * If rebalancing the periodic schedule is ever implemented, this
617 	 * approach will no longer be valid.
618 	 */
619 
620 	/* high bandwidth, or otherwise part of every microframe */
621 	period = qh->ps.period ? : 1;
622 
623 	for (i = qh->ps.phase; i < ehci->periodic_size; i += period)
624 		periodic_unlink(ehci, i, qh);
625 
626 	/* update per-qh bandwidth for debugfs */
627 	ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->ps.bw_period
628 		? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
629 		: (qh->ps.usecs * 8);
630 
631 	dev_dbg(&qh->ps.udev->dev,
632 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
633 		qh->ps.period,
634 		hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
635 		qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
636 
637 	/* qh->qh_next still "live" to HC */
638 	qh->qh_state = QH_STATE_UNLINK;
639 	qh->qh_next.ptr = NULL;
640 
641 	if (ehci->qh_scan_next == qh)
642 		ehci->qh_scan_next = list_entry(qh->intr_node.next,
643 				struct ehci_qh, intr_node);
644 	list_del(&qh->intr_node);
645 }
646 
647 static void cancel_unlink_wait_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
648 {
649 	if (qh->qh_state != QH_STATE_LINKED ||
650 			list_empty(&qh->unlink_node))
651 		return;
652 
653 	list_del_init(&qh->unlink_node);
654 
655 	/*
656 	 * TODO: disable the event of EHCI_HRTIMER_START_UNLINK_INTR for
657 	 * avoiding unnecessary CPU wakeup
658 	 */
659 }
660 
661 static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
662 {
663 	/* If the QH isn't linked then there's nothing we can do. */
664 	if (qh->qh_state != QH_STATE_LINKED)
665 		return;
666 
667 	/* if the qh is waiting for unlink, cancel it now */
668 	cancel_unlink_wait_intr(ehci, qh);
669 
670 	qh_unlink_periodic(ehci, qh);
671 
672 	/* Make sure the unlinks are visible before starting the timer */
673 	wmb();
674 
675 	/*
676 	 * The EHCI spec doesn't say how long it takes the controller to
677 	 * stop accessing an unlinked interrupt QH.  The timer delay is
678 	 * 9 uframes; presumably that will be long enough.
679 	 */
680 	qh->unlink_cycle = ehci->intr_unlink_cycle;
681 
682 	/* New entries go at the end of the intr_unlink list */
683 	list_add_tail(&qh->unlink_node, &ehci->intr_unlink);
684 
685 	if (ehci->intr_unlinking)
686 		;	/* Avoid recursive calls */
687 	else if (ehci->rh_state < EHCI_RH_RUNNING)
688 		ehci_handle_intr_unlinks(ehci);
689 	else if (ehci->intr_unlink.next == &qh->unlink_node) {
690 		ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true);
691 		++ehci->intr_unlink_cycle;
692 	}
693 }
694 
695 /*
696  * It is common only one intr URB is scheduled on one qh, and
697  * given complete() is run in tasklet context, introduce a bit
698  * delay to avoid unlink qh too early.
699  */
700 static void start_unlink_intr_wait(struct ehci_hcd *ehci,
701 				   struct ehci_qh *qh)
702 {
703 	qh->unlink_cycle = ehci->intr_unlink_wait_cycle;
704 
705 	/* New entries go at the end of the intr_unlink_wait list */
706 	list_add_tail(&qh->unlink_node, &ehci->intr_unlink_wait);
707 
708 	if (ehci->rh_state < EHCI_RH_RUNNING)
709 		ehci_handle_start_intr_unlinks(ehci);
710 	else if (ehci->intr_unlink_wait.next == &qh->unlink_node) {
711 		ehci_enable_event(ehci, EHCI_HRTIMER_START_UNLINK_INTR, true);
712 		++ehci->intr_unlink_wait_cycle;
713 	}
714 }
715 
716 static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
717 {
718 	struct ehci_qh_hw	*hw = qh->hw;
719 	int			rc;
720 
721 	qh->qh_state = QH_STATE_IDLE;
722 	hw->hw_next = EHCI_LIST_END(ehci);
723 
724 	if (!list_empty(&qh->qtd_list))
725 		qh_completions(ehci, qh);
726 
727 	/* reschedule QH iff another request is queued */
728 	if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) {
729 		rc = qh_schedule(ehci, qh);
730 		if (rc == 0) {
731 			qh_refresh(ehci, qh);
732 			qh_link_periodic(ehci, qh);
733 		}
734 
735 		/* An error here likely indicates handshake failure
736 		 * or no space left in the schedule.  Neither fault
737 		 * should happen often ...
738 		 *
739 		 * FIXME kill the now-dysfunctional queued urbs
740 		 */
741 		else {
742 			ehci_err(ehci, "can't reschedule qh %p, err %d\n",
743 					qh, rc);
744 		}
745 	}
746 
747 	/* maybe turn off periodic schedule */
748 	--ehci->intr_count;
749 	disable_periodic(ehci);
750 }
751 
752 /*-------------------------------------------------------------------------*/
753 
754 static int check_period(
755 	struct ehci_hcd *ehci,
756 	unsigned	frame,
757 	unsigned	uframe,
758 	unsigned	uperiod,
759 	unsigned	usecs
760 ) {
761 	/* complete split running into next frame?
762 	 * given FSTN support, we could sometimes check...
763 	 */
764 	if (uframe >= 8)
765 		return 0;
766 
767 	/* convert "usecs we need" to "max already claimed" */
768 	usecs = ehci->uframe_periodic_max - usecs;
769 
770 	for (uframe += frame << 3; uframe < EHCI_BANDWIDTH_SIZE;
771 			uframe += uperiod) {
772 		if (ehci->bandwidth[uframe] > usecs)
773 			return 0;
774 	}
775 
776 	/* success! */
777 	return 1;
778 }
779 
780 static int check_intr_schedule(
781 	struct ehci_hcd		*ehci,
782 	unsigned		frame,
783 	unsigned		uframe,
784 	struct ehci_qh		*qh,
785 	unsigned		*c_maskp,
786 	struct ehci_tt		*tt
787 )
788 {
789 	int		retval = -ENOSPC;
790 	u8		mask = 0;
791 
792 	if (qh->ps.c_usecs && uframe >= 6)	/* FSTN territory? */
793 		goto done;
794 
795 	if (!check_period(ehci, frame, uframe, qh->ps.bw_uperiod, qh->ps.usecs))
796 		goto done;
797 	if (!qh->ps.c_usecs) {
798 		retval = 0;
799 		*c_maskp = 0;
800 		goto done;
801 	}
802 
803 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
804 	if (tt_available(ehci, &qh->ps, tt, frame, uframe)) {
805 		unsigned i;
806 
807 		/* TODO : this may need FSTN for SSPLIT in uframe 5. */
808 		for (i = uframe+2; i < 8 && i <= uframe+4; i++)
809 			if (!check_period(ehci, frame, i,
810 					qh->ps.bw_uperiod, qh->ps.c_usecs))
811 				goto done;
812 			else
813 				mask |= 1 << i;
814 
815 		retval = 0;
816 
817 		*c_maskp = mask;
818 	}
819 #else
820 	/* Make sure this tt's buffer is also available for CSPLITs.
821 	 * We pessimize a bit; probably the typical full speed case
822 	 * doesn't need the second CSPLIT.
823 	 *
824 	 * NOTE:  both SPLIT and CSPLIT could be checked in just
825 	 * one smart pass...
826 	 */
827 	mask = 0x03 << (uframe + qh->gap_uf);
828 	*c_maskp = mask;
829 
830 	mask |= 1 << uframe;
831 	if (tt_no_collision(ehci, qh->ps.bw_period, qh->ps.udev, frame, mask)) {
832 		if (!check_period(ehci, frame, uframe + qh->gap_uf + 1,
833 				qh->ps.bw_uperiod, qh->ps.c_usecs))
834 			goto done;
835 		if (!check_period(ehci, frame, uframe + qh->gap_uf,
836 				qh->ps.bw_uperiod, qh->ps.c_usecs))
837 			goto done;
838 		retval = 0;
839 	}
840 #endif
841 done:
842 	return retval;
843 }
844 
845 /* "first fit" scheduling policy used the first time through,
846  * or when the previous schedule slot can't be re-used.
847  */
848 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
849 {
850 	int		status = 0;
851 	unsigned	uframe;
852 	unsigned	c_mask;
853 	struct ehci_qh_hw	*hw = qh->hw;
854 	struct ehci_tt		*tt;
855 
856 	hw->hw_next = EHCI_LIST_END(ehci);
857 
858 	/* reuse the previous schedule slots, if we can */
859 	if (qh->ps.phase != NO_FRAME) {
860 		ehci_dbg(ehci, "reused qh %p schedule\n", qh);
861 		return 0;
862 	}
863 
864 	uframe = 0;
865 	c_mask = 0;
866 	tt = find_tt(qh->ps.udev);
867 	if (IS_ERR(tt)) {
868 		status = PTR_ERR(tt);
869 		goto done;
870 	}
871 	compute_tt_budget(ehci->tt_budget, tt);
872 
873 	/* else scan the schedule to find a group of slots such that all
874 	 * uframes have enough periodic bandwidth available.
875 	 */
876 	/* "normal" case, uframing flexible except with splits */
877 	if (qh->ps.bw_period) {
878 		int		i;
879 		unsigned	frame;
880 
881 		for (i = qh->ps.bw_period; i > 0; --i) {
882 			frame = ++ehci->random_frame & (qh->ps.bw_period - 1);
883 			for (uframe = 0; uframe < 8; uframe++) {
884 				status = check_intr_schedule(ehci,
885 						frame, uframe, qh, &c_mask, tt);
886 				if (status == 0)
887 					goto got_it;
888 			}
889 		}
890 
891 	/* qh->ps.bw_period == 0 means every uframe */
892 	} else {
893 		status = check_intr_schedule(ehci, 0, 0, qh, &c_mask, tt);
894 	}
895 	if (status)
896 		goto done;
897 
898  got_it:
899 	qh->ps.phase = (qh->ps.period ? ehci->random_frame &
900 			(qh->ps.period - 1) : 0);
901 	qh->ps.bw_phase = qh->ps.phase & (qh->ps.bw_period - 1);
902 	qh->ps.phase_uf = uframe;
903 	qh->ps.cs_mask = qh->ps.period ?
904 			(c_mask << 8) | (1 << uframe) :
905 			QH_SMASK;
906 
907 	/* reset S-frame and (maybe) C-frame masks */
908 	hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
909 	hw->hw_info2 |= cpu_to_hc32(ehci, qh->ps.cs_mask);
910 	reserve_release_intr_bandwidth(ehci, qh, 1);
911 
912 done:
913 	return status;
914 }
915 
916 static int intr_submit(
917 	struct ehci_hcd		*ehci,
918 	struct urb		*urb,
919 	struct list_head	*qtd_list,
920 	gfp_t			mem_flags
921 ) {
922 	unsigned		epnum;
923 	unsigned long		flags;
924 	struct ehci_qh		*qh;
925 	int			status;
926 	struct list_head	empty;
927 
928 	/* get endpoint and transfer/schedule data */
929 	epnum = urb->ep->desc.bEndpointAddress;
930 
931 	spin_lock_irqsave(&ehci->lock, flags);
932 
933 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
934 		status = -ESHUTDOWN;
935 		goto done_not_linked;
936 	}
937 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
938 	if (unlikely(status))
939 		goto done_not_linked;
940 
941 	/* get qh and force any scheduling errors */
942 	INIT_LIST_HEAD(&empty);
943 	qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
944 	if (qh == NULL) {
945 		status = -ENOMEM;
946 		goto done;
947 	}
948 	if (qh->qh_state == QH_STATE_IDLE) {
949 		status = qh_schedule(ehci, qh);
950 		if (status)
951 			goto done;
952 	}
953 
954 	/* then queue the urb's tds to the qh */
955 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
956 	BUG_ON(qh == NULL);
957 
958 	/* stuff into the periodic schedule */
959 	if (qh->qh_state == QH_STATE_IDLE) {
960 		qh_refresh(ehci, qh);
961 		qh_link_periodic(ehci, qh);
962 	} else {
963 		/* cancel unlink wait for the qh */
964 		cancel_unlink_wait_intr(ehci, qh);
965 	}
966 
967 	/* ... update usbfs periodic stats */
968 	ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
969 
970 done:
971 	if (unlikely(status))
972 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
973 done_not_linked:
974 	spin_unlock_irqrestore(&ehci->lock, flags);
975 	if (status)
976 		qtd_list_free(ehci, urb, qtd_list);
977 
978 	return status;
979 }
980 
981 static void scan_intr(struct ehci_hcd *ehci)
982 {
983 	struct ehci_qh		*qh;
984 
985 	list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list,
986 			intr_node) {
987 
988 		/* clean any finished work for this qh */
989 		if (!list_empty(&qh->qtd_list)) {
990 			int temp;
991 
992 			/*
993 			 * Unlinks could happen here; completion reporting
994 			 * drops the lock.  That's why ehci->qh_scan_next
995 			 * always holds the next qh to scan; if the next qh
996 			 * gets unlinked then ehci->qh_scan_next is adjusted
997 			 * in qh_unlink_periodic().
998 			 */
999 			temp = qh_completions(ehci, qh);
1000 			if (unlikely(temp))
1001 				start_unlink_intr(ehci, qh);
1002 			else if (unlikely(list_empty(&qh->qtd_list) &&
1003 					qh->qh_state == QH_STATE_LINKED))
1004 				start_unlink_intr_wait(ehci, qh);
1005 		}
1006 	}
1007 }
1008 
1009 /*-------------------------------------------------------------------------*/
1010 
1011 /* ehci_iso_stream ops work with both ITD and SITD */
1012 
1013 static struct ehci_iso_stream *
1014 iso_stream_alloc(gfp_t mem_flags)
1015 {
1016 	struct ehci_iso_stream *stream;
1017 
1018 	stream = kzalloc(sizeof(*stream), mem_flags);
1019 	if (likely(stream != NULL)) {
1020 		INIT_LIST_HEAD(&stream->td_list);
1021 		INIT_LIST_HEAD(&stream->free_list);
1022 		stream->next_uframe = NO_FRAME;
1023 		stream->ps.phase = NO_FRAME;
1024 	}
1025 	return stream;
1026 }
1027 
1028 static void
1029 iso_stream_init(
1030 	struct ehci_hcd		*ehci,
1031 	struct ehci_iso_stream	*stream,
1032 	struct urb		*urb
1033 )
1034 {
1035 	static const u8 smask_out[] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
1036 
1037 	struct usb_device	*dev = urb->dev;
1038 	u32			buf1;
1039 	unsigned		epnum, maxp;
1040 	int			is_input;
1041 	unsigned		tmp;
1042 
1043 	/*
1044 	 * this might be a "high bandwidth" highspeed endpoint,
1045 	 * as encoded in the ep descriptor's wMaxPacket field
1046 	 */
1047 	epnum = usb_pipeendpoint(urb->pipe);
1048 	is_input = usb_pipein(urb->pipe) ? USB_DIR_IN : 0;
1049 	maxp = usb_endpoint_maxp(&urb->ep->desc);
1050 	buf1 = is_input ? 1 << 11 : 0;
1051 
1052 	/* knows about ITD vs SITD */
1053 	if (dev->speed == USB_SPEED_HIGH) {
1054 		unsigned multi = usb_endpoint_maxp_mult(&urb->ep->desc);
1055 
1056 		stream->highspeed = 1;
1057 
1058 		buf1 |= maxp;
1059 		maxp *= multi;
1060 
1061 		stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
1062 		stream->buf1 = cpu_to_hc32(ehci, buf1);
1063 		stream->buf2 = cpu_to_hc32(ehci, multi);
1064 
1065 		/* usbfs wants to report the average usecs per frame tied up
1066 		 * when transfers on this endpoint are scheduled ...
1067 		 */
1068 		stream->ps.usecs = HS_USECS_ISO(maxp);
1069 
1070 		/* period for bandwidth allocation */
1071 		tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
1072 				1 << (urb->ep->desc.bInterval - 1));
1073 
1074 		/* Allow urb->interval to override */
1075 		stream->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
1076 
1077 		stream->uperiod = urb->interval;
1078 		stream->ps.period = urb->interval >> 3;
1079 		stream->bandwidth = stream->ps.usecs * 8 /
1080 				stream->ps.bw_uperiod;
1081 
1082 	} else {
1083 		u32		addr;
1084 		int		think_time;
1085 		int		hs_transfers;
1086 
1087 		addr = dev->ttport << 24;
1088 		if (!ehci_is_TDI(ehci)
1089 				|| (dev->tt->hub !=
1090 					ehci_to_hcd(ehci)->self.root_hub))
1091 			addr |= dev->tt->hub->devnum << 16;
1092 		addr |= epnum << 8;
1093 		addr |= dev->devnum;
1094 		stream->ps.usecs = HS_USECS_ISO(maxp);
1095 		think_time = dev->tt->think_time;
1096 		stream->ps.tt_usecs = NS_TO_US(think_time + usb_calc_bus_time(
1097 				dev->speed, is_input, 1, maxp));
1098 		hs_transfers = max(1u, (maxp + 187) / 188);
1099 		if (is_input) {
1100 			u32	tmp;
1101 
1102 			addr |= 1 << 31;
1103 			stream->ps.c_usecs = stream->ps.usecs;
1104 			stream->ps.usecs = HS_USECS_ISO(1);
1105 			stream->ps.cs_mask = 1;
1106 
1107 			/* c-mask as specified in USB 2.0 11.18.4 3.c */
1108 			tmp = (1 << (hs_transfers + 2)) - 1;
1109 			stream->ps.cs_mask |= tmp << (8 + 2);
1110 		} else
1111 			stream->ps.cs_mask = smask_out[hs_transfers - 1];
1112 
1113 		/* period for bandwidth allocation */
1114 		tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
1115 				1 << (urb->ep->desc.bInterval - 1));
1116 
1117 		/* Allow urb->interval to override */
1118 		stream->ps.bw_period = min_t(unsigned, tmp, urb->interval);
1119 		stream->ps.bw_uperiod = stream->ps.bw_period << 3;
1120 
1121 		stream->ps.period = urb->interval;
1122 		stream->uperiod = urb->interval << 3;
1123 		stream->bandwidth = (stream->ps.usecs + stream->ps.c_usecs) /
1124 				stream->ps.bw_period;
1125 
1126 		/* stream->splits gets created from cs_mask later */
1127 		stream->address = cpu_to_hc32(ehci, addr);
1128 	}
1129 
1130 	stream->ps.udev = dev;
1131 	stream->ps.ep = urb->ep;
1132 
1133 	stream->bEndpointAddress = is_input | epnum;
1134 	stream->maxp = maxp;
1135 }
1136 
1137 static struct ehci_iso_stream *
1138 iso_stream_find(struct ehci_hcd *ehci, struct urb *urb)
1139 {
1140 	unsigned		epnum;
1141 	struct ehci_iso_stream	*stream;
1142 	struct usb_host_endpoint *ep;
1143 	unsigned long		flags;
1144 
1145 	epnum = usb_pipeendpoint (urb->pipe);
1146 	if (usb_pipein(urb->pipe))
1147 		ep = urb->dev->ep_in[epnum];
1148 	else
1149 		ep = urb->dev->ep_out[epnum];
1150 
1151 	spin_lock_irqsave(&ehci->lock, flags);
1152 	stream = ep->hcpriv;
1153 
1154 	if (unlikely(stream == NULL)) {
1155 		stream = iso_stream_alloc(GFP_ATOMIC);
1156 		if (likely(stream != NULL)) {
1157 			ep->hcpriv = stream;
1158 			iso_stream_init(ehci, stream, urb);
1159 		}
1160 
1161 	/* if dev->ep [epnum] is a QH, hw is set */
1162 	} else if (unlikely(stream->hw != NULL)) {
1163 		ehci_dbg(ehci, "dev %s ep%d%s, not iso??\n",
1164 			urb->dev->devpath, epnum,
1165 			usb_pipein(urb->pipe) ? "in" : "out");
1166 		stream = NULL;
1167 	}
1168 
1169 	spin_unlock_irqrestore(&ehci->lock, flags);
1170 	return stream;
1171 }
1172 
1173 /*-------------------------------------------------------------------------*/
1174 
1175 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1176 
1177 static struct ehci_iso_sched *
1178 iso_sched_alloc(unsigned packets, gfp_t mem_flags)
1179 {
1180 	struct ehci_iso_sched	*iso_sched;
1181 	int			size = sizeof(*iso_sched);
1182 
1183 	size += packets * sizeof(struct ehci_iso_packet);
1184 	iso_sched = kzalloc(size, mem_flags);
1185 	if (likely(iso_sched != NULL))
1186 		INIT_LIST_HEAD(&iso_sched->td_list);
1187 
1188 	return iso_sched;
1189 }
1190 
1191 static inline void
1192 itd_sched_init(
1193 	struct ehci_hcd		*ehci,
1194 	struct ehci_iso_sched	*iso_sched,
1195 	struct ehci_iso_stream	*stream,
1196 	struct urb		*urb
1197 )
1198 {
1199 	unsigned	i;
1200 	dma_addr_t	dma = urb->transfer_dma;
1201 
1202 	/* how many uframes are needed for these transfers */
1203 	iso_sched->span = urb->number_of_packets * stream->uperiod;
1204 
1205 	/* figure out per-uframe itd fields that we'll need later
1206 	 * when we fit new itds into the schedule.
1207 	 */
1208 	for (i = 0; i < urb->number_of_packets; i++) {
1209 		struct ehci_iso_packet	*uframe = &iso_sched->packet[i];
1210 		unsigned		length;
1211 		dma_addr_t		buf;
1212 		u32			trans;
1213 
1214 		length = urb->iso_frame_desc[i].length;
1215 		buf = dma + urb->iso_frame_desc[i].offset;
1216 
1217 		trans = EHCI_ISOC_ACTIVE;
1218 		trans |= buf & 0x0fff;
1219 		if (unlikely(((i + 1) == urb->number_of_packets))
1220 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1221 			trans |= EHCI_ITD_IOC;
1222 		trans |= length << 16;
1223 		uframe->transaction = cpu_to_hc32(ehci, trans);
1224 
1225 		/* might need to cross a buffer page within a uframe */
1226 		uframe->bufp = (buf & ~(u64)0x0fff);
1227 		buf += length;
1228 		if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
1229 			uframe->cross = 1;
1230 	}
1231 }
1232 
1233 static void
1234 iso_sched_free(
1235 	struct ehci_iso_stream	*stream,
1236 	struct ehci_iso_sched	*iso_sched
1237 )
1238 {
1239 	if (!iso_sched)
1240 		return;
1241 	/* caller must hold ehci->lock! */
1242 	list_splice(&iso_sched->td_list, &stream->free_list);
1243 	kfree(iso_sched);
1244 }
1245 
1246 static int
1247 itd_urb_transaction(
1248 	struct ehci_iso_stream	*stream,
1249 	struct ehci_hcd		*ehci,
1250 	struct urb		*urb,
1251 	gfp_t			mem_flags
1252 )
1253 {
1254 	struct ehci_itd		*itd;
1255 	dma_addr_t		itd_dma;
1256 	int			i;
1257 	unsigned		num_itds;
1258 	struct ehci_iso_sched	*sched;
1259 	unsigned long		flags;
1260 
1261 	sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
1262 	if (unlikely(sched == NULL))
1263 		return -ENOMEM;
1264 
1265 	itd_sched_init(ehci, sched, stream, urb);
1266 
1267 	if (urb->interval < 8)
1268 		num_itds = 1 + (sched->span + 7) / 8;
1269 	else
1270 		num_itds = urb->number_of_packets;
1271 
1272 	/* allocate/init ITDs */
1273 	spin_lock_irqsave(&ehci->lock, flags);
1274 	for (i = 0; i < num_itds; i++) {
1275 
1276 		/*
1277 		 * Use iTDs from the free list, but not iTDs that may
1278 		 * still be in use by the hardware.
1279 		 */
1280 		if (likely(!list_empty(&stream->free_list))) {
1281 			itd = list_first_entry(&stream->free_list,
1282 					struct ehci_itd, itd_list);
1283 			if (itd->frame == ehci->now_frame)
1284 				goto alloc_itd;
1285 			list_del(&itd->itd_list);
1286 			itd_dma = itd->itd_dma;
1287 		} else {
1288  alloc_itd:
1289 			spin_unlock_irqrestore(&ehci->lock, flags);
1290 			itd = dma_pool_zalloc(ehci->itd_pool, mem_flags,
1291 					&itd_dma);
1292 			spin_lock_irqsave(&ehci->lock, flags);
1293 			if (!itd) {
1294 				iso_sched_free(stream, sched);
1295 				spin_unlock_irqrestore(&ehci->lock, flags);
1296 				return -ENOMEM;
1297 			}
1298 		}
1299 
1300 		itd->itd_dma = itd_dma;
1301 		itd->frame = NO_FRAME;
1302 		list_add(&itd->itd_list, &sched->td_list);
1303 	}
1304 	spin_unlock_irqrestore(&ehci->lock, flags);
1305 
1306 	/* temporarily store schedule info in hcpriv */
1307 	urb->hcpriv = sched;
1308 	urb->error_count = 0;
1309 	return 0;
1310 }
1311 
1312 /*-------------------------------------------------------------------------*/
1313 
1314 static void reserve_release_iso_bandwidth(struct ehci_hcd *ehci,
1315 		struct ehci_iso_stream *stream, int sign)
1316 {
1317 	unsigned		uframe;
1318 	unsigned		i, j;
1319 	unsigned		s_mask, c_mask, m;
1320 	int			usecs = stream->ps.usecs;
1321 	int			c_usecs = stream->ps.c_usecs;
1322 	int			tt_usecs = stream->ps.tt_usecs;
1323 	struct ehci_tt		*tt;
1324 
1325 	if (stream->ps.phase == NO_FRAME)	/* Bandwidth wasn't reserved */
1326 		return;
1327 	uframe = stream->ps.bw_phase << 3;
1328 
1329 	bandwidth_dbg(ehci, sign, "iso", &stream->ps);
1330 
1331 	if (sign < 0) {		/* Release bandwidth */
1332 		usecs = -usecs;
1333 		c_usecs = -c_usecs;
1334 		tt_usecs = -tt_usecs;
1335 	}
1336 
1337 	if (!stream->splits) {		/* High speed */
1338 		for (i = uframe + stream->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
1339 				i += stream->ps.bw_uperiod)
1340 			ehci->bandwidth[i] += usecs;
1341 
1342 	} else {			/* Full speed */
1343 		s_mask = stream->ps.cs_mask;
1344 		c_mask = s_mask >> 8;
1345 
1346 		/* NOTE: adjustment needed for frame overflow */
1347 		for (i = uframe; i < EHCI_BANDWIDTH_SIZE;
1348 				i += stream->ps.bw_uperiod) {
1349 			for ((j = stream->ps.phase_uf, m = 1 << j); j < 8;
1350 					(++j, m <<= 1)) {
1351 				if (s_mask & m)
1352 					ehci->bandwidth[i+j] += usecs;
1353 				else if (c_mask & m)
1354 					ehci->bandwidth[i+j] += c_usecs;
1355 			}
1356 		}
1357 
1358 		tt = find_tt(stream->ps.udev);
1359 		if (sign > 0)
1360 			list_add_tail(&stream->ps.ps_list, &tt->ps_list);
1361 		else
1362 			list_del(&stream->ps.ps_list);
1363 
1364 		for (i = uframe >> 3; i < EHCI_BANDWIDTH_FRAMES;
1365 				i += stream->ps.bw_period)
1366 			tt->bandwidth[i] += tt_usecs;
1367 	}
1368 }
1369 
1370 static inline int
1371 itd_slot_ok(
1372 	struct ehci_hcd		*ehci,
1373 	struct ehci_iso_stream	*stream,
1374 	unsigned		uframe
1375 )
1376 {
1377 	unsigned		usecs;
1378 
1379 	/* convert "usecs we need" to "max already claimed" */
1380 	usecs = ehci->uframe_periodic_max - stream->ps.usecs;
1381 
1382 	for (uframe &= stream->ps.bw_uperiod - 1; uframe < EHCI_BANDWIDTH_SIZE;
1383 			uframe += stream->ps.bw_uperiod) {
1384 		if (ehci->bandwidth[uframe] > usecs)
1385 			return 0;
1386 	}
1387 	return 1;
1388 }
1389 
1390 static inline int
1391 sitd_slot_ok(
1392 	struct ehci_hcd		*ehci,
1393 	struct ehci_iso_stream	*stream,
1394 	unsigned		uframe,
1395 	struct ehci_iso_sched	*sched,
1396 	struct ehci_tt		*tt
1397 )
1398 {
1399 	unsigned		mask, tmp;
1400 	unsigned		frame, uf;
1401 
1402 	mask = stream->ps.cs_mask << (uframe & 7);
1403 
1404 	/* for OUT, don't wrap SSPLIT into H-microframe 7 */
1405 	if (((stream->ps.cs_mask & 0xff) << (uframe & 7)) >= (1 << 7))
1406 		return 0;
1407 
1408 	/* for IN, don't wrap CSPLIT into the next frame */
1409 	if (mask & ~0xffff)
1410 		return 0;
1411 
1412 	/* check bandwidth */
1413 	uframe &= stream->ps.bw_uperiod - 1;
1414 	frame = uframe >> 3;
1415 
1416 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1417 	/* The tt's fullspeed bus bandwidth must be available.
1418 	 * tt_available scheduling guarantees 10+% for control/bulk.
1419 	 */
1420 	uf = uframe & 7;
1421 	if (!tt_available(ehci, &stream->ps, tt, frame, uf))
1422 		return 0;
1423 #else
1424 	/* tt must be idle for start(s), any gap, and csplit.
1425 	 * assume scheduling slop leaves 10+% for control/bulk.
1426 	 */
1427 	if (!tt_no_collision(ehci, stream->ps.bw_period,
1428 			stream->ps.udev, frame, mask))
1429 		return 0;
1430 #endif
1431 
1432 	do {
1433 		unsigned	max_used;
1434 		unsigned	i;
1435 
1436 		/* check starts (OUT uses more than one) */
1437 		uf = uframe;
1438 		max_used = ehci->uframe_periodic_max - stream->ps.usecs;
1439 		for (tmp = stream->ps.cs_mask & 0xff; tmp; tmp >>= 1, uf++) {
1440 			if (ehci->bandwidth[uf] > max_used)
1441 				return 0;
1442 		}
1443 
1444 		/* for IN, check CSPLIT */
1445 		if (stream->ps.c_usecs) {
1446 			max_used = ehci->uframe_periodic_max -
1447 					stream->ps.c_usecs;
1448 			uf = uframe & ~7;
1449 			tmp = 1 << (2+8);
1450 			for (i = (uframe & 7) + 2; i < 8; (++i, tmp <<= 1)) {
1451 				if ((stream->ps.cs_mask & tmp) == 0)
1452 					continue;
1453 				if (ehci->bandwidth[uf+i] > max_used)
1454 					return 0;
1455 			}
1456 		}
1457 
1458 		uframe += stream->ps.bw_uperiod;
1459 	} while (uframe < EHCI_BANDWIDTH_SIZE);
1460 
1461 	stream->ps.cs_mask <<= uframe & 7;
1462 	stream->splits = cpu_to_hc32(ehci, stream->ps.cs_mask);
1463 	return 1;
1464 }
1465 
1466 /*
1467  * This scheduler plans almost as far into the future as it has actual
1468  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
1469  * "as small as possible" to be cache-friendlier.)  That limits the size
1470  * transfers you can stream reliably; avoid more than 64 msec per urb.
1471  * Also avoid queue depths of less than ehci's worst irq latency (affected
1472  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1473  * and other factors); or more than about 230 msec total (for portability,
1474  * given EHCI_TUNE_FLS and the slop).  Or, write a smarter scheduler!
1475  */
1476 
1477 static int
1478 iso_stream_schedule(
1479 	struct ehci_hcd		*ehci,
1480 	struct urb		*urb,
1481 	struct ehci_iso_stream	*stream
1482 )
1483 {
1484 	u32			now, base, next, start, period, span, now2;
1485 	u32			wrap = 0, skip = 0;
1486 	int			status = 0;
1487 	unsigned		mod = ehci->periodic_size << 3;
1488 	struct ehci_iso_sched	*sched = urb->hcpriv;
1489 	bool			empty = list_empty(&stream->td_list);
1490 	bool			new_stream = false;
1491 
1492 	period = stream->uperiod;
1493 	span = sched->span;
1494 	if (!stream->highspeed)
1495 		span <<= 3;
1496 
1497 	/* Start a new isochronous stream? */
1498 	if (unlikely(empty && !hcd_periodic_completion_in_progress(
1499 			ehci_to_hcd(ehci), urb->ep))) {
1500 
1501 		/* Schedule the endpoint */
1502 		if (stream->ps.phase == NO_FRAME) {
1503 			int		done = 0;
1504 			struct ehci_tt	*tt = find_tt(stream->ps.udev);
1505 
1506 			if (IS_ERR(tt)) {
1507 				status = PTR_ERR(tt);
1508 				goto fail;
1509 			}
1510 			compute_tt_budget(ehci->tt_budget, tt);
1511 
1512 			start = ((-(++ehci->random_frame)) << 3) & (period - 1);
1513 
1514 			/* find a uframe slot with enough bandwidth.
1515 			 * Early uframes are more precious because full-speed
1516 			 * iso IN transfers can't use late uframes,
1517 			 * and therefore they should be allocated last.
1518 			 */
1519 			next = start;
1520 			start += period;
1521 			do {
1522 				start--;
1523 				/* check schedule: enough space? */
1524 				if (stream->highspeed) {
1525 					if (itd_slot_ok(ehci, stream, start))
1526 						done = 1;
1527 				} else {
1528 					if ((start % 8) >= 6)
1529 						continue;
1530 					if (sitd_slot_ok(ehci, stream, start,
1531 							sched, tt))
1532 						done = 1;
1533 				}
1534 			} while (start > next && !done);
1535 
1536 			/* no room in the schedule */
1537 			if (!done) {
1538 				ehci_dbg(ehci, "iso sched full %p", urb);
1539 				status = -ENOSPC;
1540 				goto fail;
1541 			}
1542 			stream->ps.phase = (start >> 3) &
1543 					(stream->ps.period - 1);
1544 			stream->ps.bw_phase = stream->ps.phase &
1545 					(stream->ps.bw_period - 1);
1546 			stream->ps.phase_uf = start & 7;
1547 			reserve_release_iso_bandwidth(ehci, stream, 1);
1548 		}
1549 
1550 		/* New stream is already scheduled; use the upcoming slot */
1551 		else {
1552 			start = (stream->ps.phase << 3) + stream->ps.phase_uf;
1553 		}
1554 
1555 		stream->next_uframe = start;
1556 		new_stream = true;
1557 	}
1558 
1559 	now = ehci_read_frame_index(ehci) & (mod - 1);
1560 
1561 	/* Take the isochronous scheduling threshold into account */
1562 	if (ehci->i_thresh)
1563 		next = now + ehci->i_thresh;	/* uframe cache */
1564 	else
1565 		next = (now + 2 + 7) & ~0x07;	/* full frame cache */
1566 
1567 	/* If needed, initialize last_iso_frame so that this URB will be seen */
1568 	if (ehci->isoc_count == 0)
1569 		ehci->last_iso_frame = now >> 3;
1570 
1571 	/*
1572 	 * Use ehci->last_iso_frame as the base.  There can't be any
1573 	 * TDs scheduled for earlier than that.
1574 	 */
1575 	base = ehci->last_iso_frame << 3;
1576 	next = (next - base) & (mod - 1);
1577 	start = (stream->next_uframe - base) & (mod - 1);
1578 
1579 	if (unlikely(new_stream))
1580 		goto do_ASAP;
1581 
1582 	/*
1583 	 * Typical case: reuse current schedule, stream may still be active.
1584 	 * Hopefully there are no gaps from the host falling behind
1585 	 * (irq delays etc).  If there are, the behavior depends on
1586 	 * whether URB_ISO_ASAP is set.
1587 	 */
1588 	now2 = (now - base) & (mod - 1);
1589 
1590 	/* Is the schedule about to wrap around? */
1591 	if (unlikely(!empty && start < period)) {
1592 		ehci_dbg(ehci, "request %p would overflow (%u-%u < %u mod %u)\n",
1593 				urb, stream->next_uframe, base, period, mod);
1594 		status = -EFBIG;
1595 		goto fail;
1596 	}
1597 
1598 	/* Is the next packet scheduled after the base time? */
1599 	if (likely(!empty || start <= now2 + period)) {
1600 
1601 		/* URB_ISO_ASAP: make sure that start >= next */
1602 		if (unlikely(start < next &&
1603 				(urb->transfer_flags & URB_ISO_ASAP)))
1604 			goto do_ASAP;
1605 
1606 		/* Otherwise use start, if it's not in the past */
1607 		if (likely(start >= now2))
1608 			goto use_start;
1609 
1610 	/* Otherwise we got an underrun while the queue was empty */
1611 	} else {
1612 		if (urb->transfer_flags & URB_ISO_ASAP)
1613 			goto do_ASAP;
1614 		wrap = mod;
1615 		now2 += mod;
1616 	}
1617 
1618 	/* How many uframes and packets do we need to skip? */
1619 	skip = (now2 - start + period - 1) & -period;
1620 	if (skip >= span) {		/* Entirely in the past? */
1621 		ehci_dbg(ehci, "iso underrun %p (%u+%u < %u) [%u]\n",
1622 				urb, start + base, span - period, now2 + base,
1623 				base);
1624 
1625 		/* Try to keep the last TD intact for scanning later */
1626 		skip = span - period;
1627 
1628 		/* Will it come before the current scan position? */
1629 		if (empty) {
1630 			skip = span;	/* Skip the entire URB */
1631 			status = 1;	/* and give it back immediately */
1632 			iso_sched_free(stream, sched);
1633 			sched = NULL;
1634 		}
1635 	}
1636 	urb->error_count = skip / period;
1637 	if (sched)
1638 		sched->first_packet = urb->error_count;
1639 	goto use_start;
1640 
1641  do_ASAP:
1642 	/* Use the first slot after "next" */
1643 	start = next + ((start - next) & (period - 1));
1644 
1645  use_start:
1646 	/* Tried to schedule too far into the future? */
1647 	if (unlikely(start + span - period >= mod + wrap)) {
1648 		ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n",
1649 				urb, start, span - period, mod + wrap);
1650 		status = -EFBIG;
1651 		goto fail;
1652 	}
1653 
1654 	start += base;
1655 	stream->next_uframe = (start + skip) & (mod - 1);
1656 
1657 	/* report high speed start in uframes; full speed, in frames */
1658 	urb->start_frame = start & (mod - 1);
1659 	if (!stream->highspeed)
1660 		urb->start_frame >>= 3;
1661 	return status;
1662 
1663  fail:
1664 	iso_sched_free(stream, sched);
1665 	urb->hcpriv = NULL;
1666 	return status;
1667 }
1668 
1669 /*-------------------------------------------------------------------------*/
1670 
1671 static inline void
1672 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1673 		struct ehci_itd *itd)
1674 {
1675 	int i;
1676 
1677 	/* it's been recently zeroed */
1678 	itd->hw_next = EHCI_LIST_END(ehci);
1679 	itd->hw_bufp[0] = stream->buf0;
1680 	itd->hw_bufp[1] = stream->buf1;
1681 	itd->hw_bufp[2] = stream->buf2;
1682 
1683 	for (i = 0; i < 8; i++)
1684 		itd->index[i] = -1;
1685 
1686 	/* All other fields are filled when scheduling */
1687 }
1688 
1689 static inline void
1690 itd_patch(
1691 	struct ehci_hcd		*ehci,
1692 	struct ehci_itd		*itd,
1693 	struct ehci_iso_sched	*iso_sched,
1694 	unsigned		index,
1695 	u16			uframe
1696 )
1697 {
1698 	struct ehci_iso_packet	*uf = &iso_sched->packet[index];
1699 	unsigned		pg = itd->pg;
1700 
1701 	/* BUG_ON(pg == 6 && uf->cross); */
1702 
1703 	uframe &= 0x07;
1704 	itd->index[uframe] = index;
1705 
1706 	itd->hw_transaction[uframe] = uf->transaction;
1707 	itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1708 	itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1709 	itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1710 
1711 	/* iso_frame_desc[].offset must be strictly increasing */
1712 	if (unlikely(uf->cross)) {
1713 		u64	bufp = uf->bufp + 4096;
1714 
1715 		itd->pg = ++pg;
1716 		itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1717 		itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1718 	}
1719 }
1720 
1721 static inline void
1722 itd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1723 {
1724 	union ehci_shadow	*prev = &ehci->pshadow[frame];
1725 	__hc32			*hw_p = &ehci->periodic[frame];
1726 	union ehci_shadow	here = *prev;
1727 	__hc32			type = 0;
1728 
1729 	/* skip any iso nodes which might belong to previous microframes */
1730 	while (here.ptr) {
1731 		type = Q_NEXT_TYPE(ehci, *hw_p);
1732 		if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1733 			break;
1734 		prev = periodic_next_shadow(ehci, prev, type);
1735 		hw_p = shadow_next_periodic(ehci, &here, type);
1736 		here = *prev;
1737 	}
1738 
1739 	itd->itd_next = here;
1740 	itd->hw_next = *hw_p;
1741 	prev->itd = itd;
1742 	itd->frame = frame;
1743 	wmb();
1744 	*hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1745 }
1746 
1747 /* fit urb's itds into the selected schedule slot; activate as needed */
1748 static void itd_link_urb(
1749 	struct ehci_hcd		*ehci,
1750 	struct urb		*urb,
1751 	unsigned		mod,
1752 	struct ehci_iso_stream	*stream
1753 )
1754 {
1755 	int			packet;
1756 	unsigned		next_uframe, uframe, frame;
1757 	struct ehci_iso_sched	*iso_sched = urb->hcpriv;
1758 	struct ehci_itd		*itd;
1759 
1760 	next_uframe = stream->next_uframe & (mod - 1);
1761 
1762 	if (unlikely(list_empty(&stream->td_list)))
1763 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1764 				+= stream->bandwidth;
1765 
1766 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1767 		if (ehci->amd_pll_fix == 1)
1768 			usb_amd_quirk_pll_disable();
1769 	}
1770 
1771 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1772 
1773 	/* fill iTDs uframe by uframe */
1774 	for (packet = iso_sched->first_packet, itd = NULL;
1775 			packet < urb->number_of_packets;) {
1776 		if (itd == NULL) {
1777 			/* ASSERT:  we have all necessary itds */
1778 			/* BUG_ON(list_empty(&iso_sched->td_list)); */
1779 
1780 			/* ASSERT:  no itds for this endpoint in this uframe */
1781 
1782 			itd = list_entry(iso_sched->td_list.next,
1783 					struct ehci_itd, itd_list);
1784 			list_move_tail(&itd->itd_list, &stream->td_list);
1785 			itd->stream = stream;
1786 			itd->urb = urb;
1787 			itd_init(ehci, stream, itd);
1788 		}
1789 
1790 		uframe = next_uframe & 0x07;
1791 		frame = next_uframe >> 3;
1792 
1793 		itd_patch(ehci, itd, iso_sched, packet, uframe);
1794 
1795 		next_uframe += stream->uperiod;
1796 		next_uframe &= mod - 1;
1797 		packet++;
1798 
1799 		/* link completed itds into the schedule */
1800 		if (((next_uframe >> 3) != frame)
1801 				|| packet == urb->number_of_packets) {
1802 			itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1803 			itd = NULL;
1804 		}
1805 	}
1806 	stream->next_uframe = next_uframe;
1807 
1808 	/* don't need that schedule data any more */
1809 	iso_sched_free(stream, iso_sched);
1810 	urb->hcpriv = stream;
1811 
1812 	++ehci->isoc_count;
1813 	enable_periodic(ehci);
1814 }
1815 
1816 #define	ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1817 
1818 /* Process and recycle a completed ITD.  Return true iff its urb completed,
1819  * and hence its completion callback probably added things to the hardware
1820  * schedule.
1821  *
1822  * Note that we carefully avoid recycling this descriptor until after any
1823  * completion callback runs, so that it won't be reused quickly.  That is,
1824  * assuming (a) no more than two urbs per frame on this endpoint, and also
1825  * (b) only this endpoint's completions submit URBs.  It seems some silicon
1826  * corrupts things if you reuse completed descriptors very quickly...
1827  */
1828 static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd)
1829 {
1830 	struct urb				*urb = itd->urb;
1831 	struct usb_iso_packet_descriptor	*desc;
1832 	u32					t;
1833 	unsigned				uframe;
1834 	int					urb_index = -1;
1835 	struct ehci_iso_stream			*stream = itd->stream;
1836 	struct usb_device			*dev;
1837 	bool					retval = false;
1838 
1839 	/* for each uframe with a packet */
1840 	for (uframe = 0; uframe < 8; uframe++) {
1841 		if (likely(itd->index[uframe] == -1))
1842 			continue;
1843 		urb_index = itd->index[uframe];
1844 		desc = &urb->iso_frame_desc[urb_index];
1845 
1846 		t = hc32_to_cpup(ehci, &itd->hw_transaction[uframe]);
1847 		itd->hw_transaction[uframe] = 0;
1848 
1849 		/* report transfer status */
1850 		if (unlikely(t & ISO_ERRS)) {
1851 			urb->error_count++;
1852 			if (t & EHCI_ISOC_BUF_ERR)
1853 				desc->status = usb_pipein(urb->pipe)
1854 					? -ENOSR  /* hc couldn't read */
1855 					: -ECOMM; /* hc couldn't write */
1856 			else if (t & EHCI_ISOC_BABBLE)
1857 				desc->status = -EOVERFLOW;
1858 			else /* (t & EHCI_ISOC_XACTERR) */
1859 				desc->status = -EPROTO;
1860 
1861 			/* HC need not update length with this error */
1862 			if (!(t & EHCI_ISOC_BABBLE)) {
1863 				desc->actual_length = EHCI_ITD_LENGTH(t);
1864 				urb->actual_length += desc->actual_length;
1865 			}
1866 		} else if (likely((t & EHCI_ISOC_ACTIVE) == 0)) {
1867 			desc->status = 0;
1868 			desc->actual_length = EHCI_ITD_LENGTH(t);
1869 			urb->actual_length += desc->actual_length;
1870 		} else {
1871 			/* URB was too late */
1872 			urb->error_count++;
1873 		}
1874 	}
1875 
1876 	/* handle completion now? */
1877 	if (likely((urb_index + 1) != urb->number_of_packets))
1878 		goto done;
1879 
1880 	/*
1881 	 * ASSERT: it's really the last itd for this urb
1882 	 * list_for_each_entry (itd, &stream->td_list, itd_list)
1883 	 *	 BUG_ON(itd->urb == urb);
1884 	 */
1885 
1886 	/* give urb back to the driver; completion often (re)submits */
1887 	dev = urb->dev;
1888 	ehci_urb_done(ehci, urb, 0);
1889 	retval = true;
1890 	urb = NULL;
1891 
1892 	--ehci->isoc_count;
1893 	disable_periodic(ehci);
1894 
1895 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1896 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1897 		if (ehci->amd_pll_fix == 1)
1898 			usb_amd_quirk_pll_enable();
1899 	}
1900 
1901 	if (unlikely(list_is_singular(&stream->td_list)))
1902 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1903 				-= stream->bandwidth;
1904 
1905 done:
1906 	itd->urb = NULL;
1907 
1908 	/* Add to the end of the free list for later reuse */
1909 	list_move_tail(&itd->itd_list, &stream->free_list);
1910 
1911 	/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
1912 	if (list_empty(&stream->td_list)) {
1913 		list_splice_tail_init(&stream->free_list,
1914 				&ehci->cached_itd_list);
1915 		start_free_itds(ehci);
1916 	}
1917 
1918 	return retval;
1919 }
1920 
1921 /*-------------------------------------------------------------------------*/
1922 
1923 static int itd_submit(struct ehci_hcd *ehci, struct urb *urb,
1924 	gfp_t mem_flags)
1925 {
1926 	int			status = -EINVAL;
1927 	unsigned long		flags;
1928 	struct ehci_iso_stream	*stream;
1929 
1930 	/* Get iso_stream head */
1931 	stream = iso_stream_find(ehci, urb);
1932 	if (unlikely(stream == NULL)) {
1933 		ehci_dbg(ehci, "can't get iso stream\n");
1934 		return -ENOMEM;
1935 	}
1936 	if (unlikely(urb->interval != stream->uperiod)) {
1937 		ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
1938 			stream->uperiod, urb->interval);
1939 		goto done;
1940 	}
1941 
1942 #ifdef EHCI_URB_TRACE
1943 	ehci_dbg(ehci,
1944 		"%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1945 		__func__, urb->dev->devpath, urb,
1946 		usb_pipeendpoint(urb->pipe),
1947 		usb_pipein(urb->pipe) ? "in" : "out",
1948 		urb->transfer_buffer_length,
1949 		urb->number_of_packets, urb->interval,
1950 		stream);
1951 #endif
1952 
1953 	/* allocate ITDs w/o locking anything */
1954 	status = itd_urb_transaction(stream, ehci, urb, mem_flags);
1955 	if (unlikely(status < 0)) {
1956 		ehci_dbg(ehci, "can't init itds\n");
1957 		goto done;
1958 	}
1959 
1960 	/* schedule ... need to lock */
1961 	spin_lock_irqsave(&ehci->lock, flags);
1962 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1963 		status = -ESHUTDOWN;
1964 		goto done_not_linked;
1965 	}
1966 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1967 	if (unlikely(status))
1968 		goto done_not_linked;
1969 	status = iso_stream_schedule(ehci, urb, stream);
1970 	if (likely(status == 0)) {
1971 		itd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
1972 	} else if (status > 0) {
1973 		status = 0;
1974 		ehci_urb_done(ehci, urb, 0);
1975 	} else {
1976 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1977 	}
1978  done_not_linked:
1979 	spin_unlock_irqrestore(&ehci->lock, flags);
1980  done:
1981 	return status;
1982 }
1983 
1984 /*-------------------------------------------------------------------------*/
1985 
1986 /*
1987  * "Split ISO TDs" ... used for USB 1.1 devices going through the
1988  * TTs in USB 2.0 hubs.  These need microframe scheduling.
1989  */
1990 
1991 static inline void
1992 sitd_sched_init(
1993 	struct ehci_hcd		*ehci,
1994 	struct ehci_iso_sched	*iso_sched,
1995 	struct ehci_iso_stream	*stream,
1996 	struct urb		*urb
1997 )
1998 {
1999 	unsigned	i;
2000 	dma_addr_t	dma = urb->transfer_dma;
2001 
2002 	/* how many frames are needed for these transfers */
2003 	iso_sched->span = urb->number_of_packets * stream->ps.period;
2004 
2005 	/* figure out per-frame sitd fields that we'll need later
2006 	 * when we fit new sitds into the schedule.
2007 	 */
2008 	for (i = 0; i < urb->number_of_packets; i++) {
2009 		struct ehci_iso_packet	*packet = &iso_sched->packet[i];
2010 		unsigned		length;
2011 		dma_addr_t		buf;
2012 		u32			trans;
2013 
2014 		length = urb->iso_frame_desc[i].length & 0x03ff;
2015 		buf = dma + urb->iso_frame_desc[i].offset;
2016 
2017 		trans = SITD_STS_ACTIVE;
2018 		if (((i + 1) == urb->number_of_packets)
2019 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
2020 			trans |= SITD_IOC;
2021 		trans |= length << 16;
2022 		packet->transaction = cpu_to_hc32(ehci, trans);
2023 
2024 		/* might need to cross a buffer page within a td */
2025 		packet->bufp = buf;
2026 		packet->buf1 = (buf + length) & ~0x0fff;
2027 		if (packet->buf1 != (buf & ~(u64)0x0fff))
2028 			packet->cross = 1;
2029 
2030 		/* OUT uses multiple start-splits */
2031 		if (stream->bEndpointAddress & USB_DIR_IN)
2032 			continue;
2033 		length = (length + 187) / 188;
2034 		if (length > 1) /* BEGIN vs ALL */
2035 			length |= 1 << 3;
2036 		packet->buf1 |= length;
2037 	}
2038 }
2039 
2040 static int
2041 sitd_urb_transaction(
2042 	struct ehci_iso_stream	*stream,
2043 	struct ehci_hcd		*ehci,
2044 	struct urb		*urb,
2045 	gfp_t			mem_flags
2046 )
2047 {
2048 	struct ehci_sitd	*sitd;
2049 	dma_addr_t		sitd_dma;
2050 	int			i;
2051 	struct ehci_iso_sched	*iso_sched;
2052 	unsigned long		flags;
2053 
2054 	iso_sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
2055 	if (iso_sched == NULL)
2056 		return -ENOMEM;
2057 
2058 	sitd_sched_init(ehci, iso_sched, stream, urb);
2059 
2060 	/* allocate/init sITDs */
2061 	spin_lock_irqsave(&ehci->lock, flags);
2062 	for (i = 0; i < urb->number_of_packets; i++) {
2063 
2064 		/* NOTE:  for now, we don't try to handle wraparound cases
2065 		 * for IN (using sitd->hw_backpointer, like a FSTN), which
2066 		 * means we never need two sitds for full speed packets.
2067 		 */
2068 
2069 		/*
2070 		 * Use siTDs from the free list, but not siTDs that may
2071 		 * still be in use by the hardware.
2072 		 */
2073 		if (likely(!list_empty(&stream->free_list))) {
2074 			sitd = list_first_entry(&stream->free_list,
2075 					 struct ehci_sitd, sitd_list);
2076 			if (sitd->frame == ehci->now_frame)
2077 				goto alloc_sitd;
2078 			list_del(&sitd->sitd_list);
2079 			sitd_dma = sitd->sitd_dma;
2080 		} else {
2081  alloc_sitd:
2082 			spin_unlock_irqrestore(&ehci->lock, flags);
2083 			sitd = dma_pool_zalloc(ehci->sitd_pool, mem_flags,
2084 					&sitd_dma);
2085 			spin_lock_irqsave(&ehci->lock, flags);
2086 			if (!sitd) {
2087 				iso_sched_free(stream, iso_sched);
2088 				spin_unlock_irqrestore(&ehci->lock, flags);
2089 				return -ENOMEM;
2090 			}
2091 		}
2092 
2093 		sitd->sitd_dma = sitd_dma;
2094 		sitd->frame = NO_FRAME;
2095 		list_add(&sitd->sitd_list, &iso_sched->td_list);
2096 	}
2097 
2098 	/* temporarily store schedule info in hcpriv */
2099 	urb->hcpriv = iso_sched;
2100 	urb->error_count = 0;
2101 
2102 	spin_unlock_irqrestore(&ehci->lock, flags);
2103 	return 0;
2104 }
2105 
2106 /*-------------------------------------------------------------------------*/
2107 
2108 static inline void
2109 sitd_patch(
2110 	struct ehci_hcd		*ehci,
2111 	struct ehci_iso_stream	*stream,
2112 	struct ehci_sitd	*sitd,
2113 	struct ehci_iso_sched	*iso_sched,
2114 	unsigned		index
2115 )
2116 {
2117 	struct ehci_iso_packet	*uf = &iso_sched->packet[index];
2118 	u64			bufp;
2119 
2120 	sitd->hw_next = EHCI_LIST_END(ehci);
2121 	sitd->hw_fullspeed_ep = stream->address;
2122 	sitd->hw_uframe = stream->splits;
2123 	sitd->hw_results = uf->transaction;
2124 	sitd->hw_backpointer = EHCI_LIST_END(ehci);
2125 
2126 	bufp = uf->bufp;
2127 	sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
2128 	sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
2129 
2130 	sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
2131 	if (uf->cross)
2132 		bufp += 4096;
2133 	sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
2134 	sitd->index = index;
2135 }
2136 
2137 static inline void
2138 sitd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
2139 {
2140 	/* note: sitd ordering could matter (CSPLIT then SSPLIT) */
2141 	sitd->sitd_next = ehci->pshadow[frame];
2142 	sitd->hw_next = ehci->periodic[frame];
2143 	ehci->pshadow[frame].sitd = sitd;
2144 	sitd->frame = frame;
2145 	wmb();
2146 	ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
2147 }
2148 
2149 /* fit urb's sitds into the selected schedule slot; activate as needed */
2150 static void sitd_link_urb(
2151 	struct ehci_hcd		*ehci,
2152 	struct urb		*urb,
2153 	unsigned		mod,
2154 	struct ehci_iso_stream	*stream
2155 )
2156 {
2157 	int			packet;
2158 	unsigned		next_uframe;
2159 	struct ehci_iso_sched	*sched = urb->hcpriv;
2160 	struct ehci_sitd	*sitd;
2161 
2162 	next_uframe = stream->next_uframe;
2163 
2164 	if (list_empty(&stream->td_list))
2165 		/* usbfs ignores TT bandwidth */
2166 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2167 				+= stream->bandwidth;
2168 
2169 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2170 		if (ehci->amd_pll_fix == 1)
2171 			usb_amd_quirk_pll_disable();
2172 	}
2173 
2174 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2175 
2176 	/* fill sITDs frame by frame */
2177 	for (packet = sched->first_packet, sitd = NULL;
2178 			packet < urb->number_of_packets;
2179 			packet++) {
2180 
2181 		/* ASSERT:  we have all necessary sitds */
2182 		BUG_ON(list_empty(&sched->td_list));
2183 
2184 		/* ASSERT:  no itds for this endpoint in this frame */
2185 
2186 		sitd = list_entry(sched->td_list.next,
2187 				struct ehci_sitd, sitd_list);
2188 		list_move_tail(&sitd->sitd_list, &stream->td_list);
2189 		sitd->stream = stream;
2190 		sitd->urb = urb;
2191 
2192 		sitd_patch(ehci, stream, sitd, sched, packet);
2193 		sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2194 				sitd);
2195 
2196 		next_uframe += stream->uperiod;
2197 	}
2198 	stream->next_uframe = next_uframe & (mod - 1);
2199 
2200 	/* don't need that schedule data any more */
2201 	iso_sched_free(stream, sched);
2202 	urb->hcpriv = stream;
2203 
2204 	++ehci->isoc_count;
2205 	enable_periodic(ehci);
2206 }
2207 
2208 /*-------------------------------------------------------------------------*/
2209 
2210 #define	SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2211 				| SITD_STS_XACT | SITD_STS_MMF)
2212 
2213 /* Process and recycle a completed SITD.  Return true iff its urb completed,
2214  * and hence its completion callback probably added things to the hardware
2215  * schedule.
2216  *
2217  * Note that we carefully avoid recycling this descriptor until after any
2218  * completion callback runs, so that it won't be reused quickly.  That is,
2219  * assuming (a) no more than two urbs per frame on this endpoint, and also
2220  * (b) only this endpoint's completions submit URBs.  It seems some silicon
2221  * corrupts things if you reuse completed descriptors very quickly...
2222  */
2223 static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd)
2224 {
2225 	struct urb				*urb = sitd->urb;
2226 	struct usb_iso_packet_descriptor	*desc;
2227 	u32					t;
2228 	int					urb_index;
2229 	struct ehci_iso_stream			*stream = sitd->stream;
2230 	struct usb_device			*dev;
2231 	bool					retval = false;
2232 
2233 	urb_index = sitd->index;
2234 	desc = &urb->iso_frame_desc[urb_index];
2235 	t = hc32_to_cpup(ehci, &sitd->hw_results);
2236 
2237 	/* report transfer status */
2238 	if (unlikely(t & SITD_ERRS)) {
2239 		urb->error_count++;
2240 		if (t & SITD_STS_DBE)
2241 			desc->status = usb_pipein(urb->pipe)
2242 				? -ENOSR  /* hc couldn't read */
2243 				: -ECOMM; /* hc couldn't write */
2244 		else if (t & SITD_STS_BABBLE)
2245 			desc->status = -EOVERFLOW;
2246 		else /* XACT, MMF, etc */
2247 			desc->status = -EPROTO;
2248 	} else if (unlikely(t & SITD_STS_ACTIVE)) {
2249 		/* URB was too late */
2250 		urb->error_count++;
2251 	} else {
2252 		desc->status = 0;
2253 		desc->actual_length = desc->length - SITD_LENGTH(t);
2254 		urb->actual_length += desc->actual_length;
2255 	}
2256 
2257 	/* handle completion now? */
2258 	if ((urb_index + 1) != urb->number_of_packets)
2259 		goto done;
2260 
2261 	/*
2262 	 * ASSERT: it's really the last sitd for this urb
2263 	 * list_for_each_entry (sitd, &stream->td_list, sitd_list)
2264 	 *	 BUG_ON(sitd->urb == urb);
2265 	 */
2266 
2267 	/* give urb back to the driver; completion often (re)submits */
2268 	dev = urb->dev;
2269 	ehci_urb_done(ehci, urb, 0);
2270 	retval = true;
2271 	urb = NULL;
2272 
2273 	--ehci->isoc_count;
2274 	disable_periodic(ehci);
2275 
2276 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2277 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2278 		if (ehci->amd_pll_fix == 1)
2279 			usb_amd_quirk_pll_enable();
2280 	}
2281 
2282 	if (list_is_singular(&stream->td_list))
2283 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2284 				-= stream->bandwidth;
2285 
2286 done:
2287 	sitd->urb = NULL;
2288 
2289 	/* Add to the end of the free list for later reuse */
2290 	list_move_tail(&sitd->sitd_list, &stream->free_list);
2291 
2292 	/* Recycle the siTDs when the pipeline is empty (ep no longer in use) */
2293 	if (list_empty(&stream->td_list)) {
2294 		list_splice_tail_init(&stream->free_list,
2295 				&ehci->cached_sitd_list);
2296 		start_free_itds(ehci);
2297 	}
2298 
2299 	return retval;
2300 }
2301 
2302 
2303 static int sitd_submit(struct ehci_hcd *ehci, struct urb *urb,
2304 	gfp_t mem_flags)
2305 {
2306 	int			status = -EINVAL;
2307 	unsigned long		flags;
2308 	struct ehci_iso_stream	*stream;
2309 
2310 	/* Get iso_stream head */
2311 	stream = iso_stream_find(ehci, urb);
2312 	if (stream == NULL) {
2313 		ehci_dbg(ehci, "can't get iso stream\n");
2314 		return -ENOMEM;
2315 	}
2316 	if (urb->interval != stream->ps.period) {
2317 		ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
2318 			stream->ps.period, urb->interval);
2319 		goto done;
2320 	}
2321 
2322 #ifdef EHCI_URB_TRACE
2323 	ehci_dbg(ehci,
2324 		"submit %p dev%s ep%d%s-iso len %d\n",
2325 		urb, urb->dev->devpath,
2326 		usb_pipeendpoint(urb->pipe),
2327 		usb_pipein(urb->pipe) ? "in" : "out",
2328 		urb->transfer_buffer_length);
2329 #endif
2330 
2331 	/* allocate SITDs */
2332 	status = sitd_urb_transaction(stream, ehci, urb, mem_flags);
2333 	if (status < 0) {
2334 		ehci_dbg(ehci, "can't init sitds\n");
2335 		goto done;
2336 	}
2337 
2338 	/* schedule ... need to lock */
2339 	spin_lock_irqsave(&ehci->lock, flags);
2340 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2341 		status = -ESHUTDOWN;
2342 		goto done_not_linked;
2343 	}
2344 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2345 	if (unlikely(status))
2346 		goto done_not_linked;
2347 	status = iso_stream_schedule(ehci, urb, stream);
2348 	if (likely(status == 0)) {
2349 		sitd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
2350 	} else if (status > 0) {
2351 		status = 0;
2352 		ehci_urb_done(ehci, urb, 0);
2353 	} else {
2354 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2355 	}
2356  done_not_linked:
2357 	spin_unlock_irqrestore(&ehci->lock, flags);
2358  done:
2359 	return status;
2360 }
2361 
2362 /*-------------------------------------------------------------------------*/
2363 
2364 static void scan_isoc(struct ehci_hcd *ehci)
2365 {
2366 	unsigned		uf, now_frame, frame;
2367 	unsigned		fmask = ehci->periodic_size - 1;
2368 	bool			modified, live;
2369 	union ehci_shadow	q, *q_p;
2370 	__hc32			type, *hw_p;
2371 
2372 	/*
2373 	 * When running, scan from last scan point up to "now"
2374 	 * else clean up by scanning everything that's left.
2375 	 * Touches as few pages as possible:  cache-friendly.
2376 	 */
2377 	if (ehci->rh_state >= EHCI_RH_RUNNING) {
2378 		uf = ehci_read_frame_index(ehci);
2379 		now_frame = (uf >> 3) & fmask;
2380 		live = true;
2381 	} else  {
2382 		now_frame = (ehci->last_iso_frame - 1) & fmask;
2383 		live = false;
2384 	}
2385 	ehci->now_frame = now_frame;
2386 
2387 	frame = ehci->last_iso_frame;
2388 
2389 restart:
2390 	/* Scan each element in frame's queue for completions */
2391 	q_p = &ehci->pshadow[frame];
2392 	hw_p = &ehci->periodic[frame];
2393 	q.ptr = q_p->ptr;
2394 	type = Q_NEXT_TYPE(ehci, *hw_p);
2395 	modified = false;
2396 
2397 	while (q.ptr != NULL) {
2398 		switch (hc32_to_cpu(ehci, type)) {
2399 		case Q_TYPE_ITD:
2400 			/*
2401 			 * If this ITD is still active, leave it for
2402 			 * later processing ... check the next entry.
2403 			 * No need to check for activity unless the
2404 			 * frame is current.
2405 			 */
2406 			if (frame == now_frame && live) {
2407 				rmb();
2408 				for (uf = 0; uf < 8; uf++) {
2409 					if (q.itd->hw_transaction[uf] &
2410 							ITD_ACTIVE(ehci))
2411 						break;
2412 				}
2413 				if (uf < 8) {
2414 					q_p = &q.itd->itd_next;
2415 					hw_p = &q.itd->hw_next;
2416 					type = Q_NEXT_TYPE(ehci,
2417 							q.itd->hw_next);
2418 					q = *q_p;
2419 					break;
2420 				}
2421 			}
2422 
2423 			/*
2424 			 * Take finished ITDs out of the schedule
2425 			 * and process them:  recycle, maybe report
2426 			 * URB completion.  HC won't cache the
2427 			 * pointer for much longer, if at all.
2428 			 */
2429 			*q_p = q.itd->itd_next;
2430 			if (!ehci->use_dummy_qh ||
2431 					q.itd->hw_next != EHCI_LIST_END(ehci))
2432 				*hw_p = q.itd->hw_next;
2433 			else
2434 				*hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
2435 			type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2436 			wmb();
2437 			modified = itd_complete(ehci, q.itd);
2438 			q = *q_p;
2439 			break;
2440 		case Q_TYPE_SITD:
2441 			/*
2442 			 * If this SITD is still active, leave it for
2443 			 * later processing ... check the next entry.
2444 			 * No need to check for activity unless the
2445 			 * frame is current.
2446 			 */
2447 			if (((frame == now_frame) ||
2448 					(((frame + 1) & fmask) == now_frame))
2449 				&& live
2450 				&& (q.sitd->hw_results & SITD_ACTIVE(ehci))) {
2451 
2452 				q_p = &q.sitd->sitd_next;
2453 				hw_p = &q.sitd->hw_next;
2454 				type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2455 				q = *q_p;
2456 				break;
2457 			}
2458 
2459 			/*
2460 			 * Take finished SITDs out of the schedule
2461 			 * and process them:  recycle, maybe report
2462 			 * URB completion.
2463 			 */
2464 			*q_p = q.sitd->sitd_next;
2465 			if (!ehci->use_dummy_qh ||
2466 					q.sitd->hw_next != EHCI_LIST_END(ehci))
2467 				*hw_p = q.sitd->hw_next;
2468 			else
2469 				*hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
2470 			type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2471 			wmb();
2472 			modified = sitd_complete(ehci, q.sitd);
2473 			q = *q_p;
2474 			break;
2475 		default:
2476 			ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n",
2477 					type, frame, q.ptr);
2478 			/* BUG(); */
2479 			/* FALL THROUGH */
2480 		case Q_TYPE_QH:
2481 		case Q_TYPE_FSTN:
2482 			/* End of the iTDs and siTDs */
2483 			q.ptr = NULL;
2484 			break;
2485 		}
2486 
2487 		/* Assume completion callbacks modify the queue */
2488 		if (unlikely(modified && ehci->isoc_count > 0))
2489 			goto restart;
2490 	}
2491 
2492 	/* Stop when we have reached the current frame */
2493 	if (frame == now_frame)
2494 		return;
2495 
2496 	/* The last frame may still have active siTDs */
2497 	ehci->last_iso_frame = frame;
2498 	frame = (frame + 1) & fmask;
2499 
2500 	goto restart;
2501 }
2502