xref: /openbmc/linux/drivers/usb/host/ehci-sched.c (revision ee906470)
1 /*
2  * Copyright (c) 2001-2004 by David Brownell
3  * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation; either version 2 of the License, or (at your
8  * option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software Foundation,
17  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19 
20 /* this file is part of ehci-hcd.c */
21 
22 /*-------------------------------------------------------------------------*/
23 
24 /*
25  * EHCI scheduled transaction support:  interrupt, iso, split iso
26  * These are called "periodic" transactions in the EHCI spec.
27  *
28  * Note that for interrupt transfers, the QH/QTD manipulation is shared
29  * with the "asynchronous" transaction support (control/bulk transfers).
30  * The only real difference is in how interrupt transfers are scheduled.
31  *
32  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33  * It keeps track of every ITD (or SITD) that's linked, and holds enough
34  * pre-calculated schedule data to make appending to the queue be quick.
35  */
36 
37 static int ehci_get_frame(struct usb_hcd *hcd);
38 
39 /*
40  * periodic_next_shadow - return "next" pointer on shadow list
41  * @periodic: host pointer to qh/itd/sitd
42  * @tag: hardware tag for type of this record
43  */
44 static union ehci_shadow *
45 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
46 		__hc32 tag)
47 {
48 	switch (hc32_to_cpu(ehci, tag)) {
49 	case Q_TYPE_QH:
50 		return &periodic->qh->qh_next;
51 	case Q_TYPE_FSTN:
52 		return &periodic->fstn->fstn_next;
53 	case Q_TYPE_ITD:
54 		return &periodic->itd->itd_next;
55 	// case Q_TYPE_SITD:
56 	default:
57 		return &periodic->sitd->sitd_next;
58 	}
59 }
60 
61 static __hc32 *
62 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
63 		__hc32 tag)
64 {
65 	switch (hc32_to_cpu(ehci, tag)) {
66 	/* our ehci_shadow.qh is actually software part */
67 	case Q_TYPE_QH:
68 		return &periodic->qh->hw->hw_next;
69 	/* others are hw parts */
70 	default:
71 		return periodic->hw_next;
72 	}
73 }
74 
75 /* caller must hold ehci->lock */
76 static void periodic_unlink(struct ehci_hcd *ehci, unsigned frame, void *ptr)
77 {
78 	union ehci_shadow	*prev_p = &ehci->pshadow[frame];
79 	__hc32			*hw_p = &ehci->periodic[frame];
80 	union ehci_shadow	here = *prev_p;
81 
82 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
83 	while (here.ptr && here.ptr != ptr) {
84 		prev_p = periodic_next_shadow(ehci, prev_p,
85 				Q_NEXT_TYPE(ehci, *hw_p));
86 		hw_p = shadow_next_periodic(ehci, &here,
87 				Q_NEXT_TYPE(ehci, *hw_p));
88 		here = *prev_p;
89 	}
90 	/* an interrupt entry (at list end) could have been shared */
91 	if (!here.ptr)
92 		return;
93 
94 	/* update shadow and hardware lists ... the old "next" pointers
95 	 * from ptr may still be in use, the caller updates them.
96 	 */
97 	*prev_p = *periodic_next_shadow(ehci, &here,
98 			Q_NEXT_TYPE(ehci, *hw_p));
99 
100 	if (!ehci->use_dummy_qh ||
101 	    *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
102 			!= EHCI_LIST_END(ehci))
103 		*hw_p = *shadow_next_periodic(ehci, &here,
104 				Q_NEXT_TYPE(ehci, *hw_p));
105 	else
106 		*hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
107 }
108 
109 /*-------------------------------------------------------------------------*/
110 
111 /* Bandwidth and TT management */
112 
113 /* Find the TT data structure for this device; create it if necessary */
114 static struct ehci_tt *find_tt(struct usb_device *udev)
115 {
116 	struct usb_tt		*utt = udev->tt;
117 	struct ehci_tt		*tt, **tt_index, **ptt;
118 	unsigned		port;
119 	bool			allocated_index = false;
120 
121 	if (!utt)
122 		return NULL;		/* Not below a TT */
123 
124 	/*
125 	 * Find/create our data structure.
126 	 * For hubs with a single TT, we get it directly.
127 	 * For hubs with multiple TTs, there's an extra level of pointers.
128 	 */
129 	tt_index = NULL;
130 	if (utt->multi) {
131 		tt_index = utt->hcpriv;
132 		if (!tt_index) {		/* Create the index array */
133 			tt_index = kzalloc(utt->hub->maxchild *
134 					sizeof(*tt_index), GFP_ATOMIC);
135 			if (!tt_index)
136 				return ERR_PTR(-ENOMEM);
137 			utt->hcpriv = tt_index;
138 			allocated_index = true;
139 		}
140 		port = udev->ttport - 1;
141 		ptt = &tt_index[port];
142 	} else {
143 		port = 0;
144 		ptt = (struct ehci_tt **) &utt->hcpriv;
145 	}
146 
147 	tt = *ptt;
148 	if (!tt) {				/* Create the ehci_tt */
149 		struct ehci_hcd		*ehci =
150 				hcd_to_ehci(bus_to_hcd(udev->bus));
151 
152 		tt = kzalloc(sizeof(*tt), GFP_ATOMIC);
153 		if (!tt) {
154 			if (allocated_index) {
155 				utt->hcpriv = NULL;
156 				kfree(tt_index);
157 			}
158 			return ERR_PTR(-ENOMEM);
159 		}
160 		list_add_tail(&tt->tt_list, &ehci->tt_list);
161 		INIT_LIST_HEAD(&tt->ps_list);
162 		tt->usb_tt = utt;
163 		tt->tt_port = port;
164 		*ptt = tt;
165 	}
166 
167 	return tt;
168 }
169 
170 /* Release the TT above udev, if it's not in use */
171 static void drop_tt(struct usb_device *udev)
172 {
173 	struct usb_tt		*utt = udev->tt;
174 	struct ehci_tt		*tt, **tt_index, **ptt;
175 	int			cnt, i;
176 
177 	if (!utt || !utt->hcpriv)
178 		return;		/* Not below a TT, or never allocated */
179 
180 	cnt = 0;
181 	if (utt->multi) {
182 		tt_index = utt->hcpriv;
183 		ptt = &tt_index[udev->ttport - 1];
184 
185 		/* How many entries are left in tt_index? */
186 		for (i = 0; i < utt->hub->maxchild; ++i)
187 			cnt += !!tt_index[i];
188 	} else {
189 		tt_index = NULL;
190 		ptt = (struct ehci_tt **) &utt->hcpriv;
191 	}
192 
193 	tt = *ptt;
194 	if (!tt || !list_empty(&tt->ps_list))
195 		return;		/* never allocated, or still in use */
196 
197 	list_del(&tt->tt_list);
198 	*ptt = NULL;
199 	kfree(tt);
200 	if (cnt == 1) {
201 		utt->hcpriv = NULL;
202 		kfree(tt_index);
203 	}
204 }
205 
206 static void bandwidth_dbg(struct ehci_hcd *ehci, int sign, char *type,
207 		struct ehci_per_sched *ps)
208 {
209 	dev_dbg(&ps->udev->dev,
210 			"ep %02x: %s %s @ %u+%u (%u.%u+%u) [%u/%u us] mask %04x\n",
211 			ps->ep->desc.bEndpointAddress,
212 			(sign >= 0 ? "reserve" : "release"), type,
213 			(ps->bw_phase << 3) + ps->phase_uf, ps->bw_uperiod,
214 			ps->phase, ps->phase_uf, ps->period,
215 			ps->usecs, ps->c_usecs, ps->cs_mask);
216 }
217 
218 static void reserve_release_intr_bandwidth(struct ehci_hcd *ehci,
219 		struct ehci_qh *qh, int sign)
220 {
221 	unsigned		start_uf;
222 	unsigned		i, j, m;
223 	int			usecs = qh->ps.usecs;
224 	int			c_usecs = qh->ps.c_usecs;
225 	int			tt_usecs = qh->ps.tt_usecs;
226 	struct ehci_tt		*tt;
227 
228 	if (qh->ps.phase == NO_FRAME)	/* Bandwidth wasn't reserved */
229 		return;
230 	start_uf = qh->ps.bw_phase << 3;
231 
232 	bandwidth_dbg(ehci, sign, "intr", &qh->ps);
233 
234 	if (sign < 0) {		/* Release bandwidth */
235 		usecs = -usecs;
236 		c_usecs = -c_usecs;
237 		tt_usecs = -tt_usecs;
238 	}
239 
240 	/* Entire transaction (high speed) or start-split (full/low speed) */
241 	for (i = start_uf + qh->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
242 			i += qh->ps.bw_uperiod)
243 		ehci->bandwidth[i] += usecs;
244 
245 	/* Complete-split (full/low speed) */
246 	if (qh->ps.c_usecs) {
247 		/* NOTE: adjustments needed for FSTN */
248 		for (i = start_uf; i < EHCI_BANDWIDTH_SIZE;
249 				i += qh->ps.bw_uperiod) {
250 			for ((j = 2, m = 1 << (j+8)); j < 8; (++j, m <<= 1)) {
251 				if (qh->ps.cs_mask & m)
252 					ehci->bandwidth[i+j] += c_usecs;
253 			}
254 		}
255 	}
256 
257 	/* FS/LS bus bandwidth */
258 	if (tt_usecs) {
259 		tt = find_tt(qh->ps.udev);
260 		if (sign > 0)
261 			list_add_tail(&qh->ps.ps_list, &tt->ps_list);
262 		else
263 			list_del(&qh->ps.ps_list);
264 
265 		for (i = start_uf >> 3; i < EHCI_BANDWIDTH_FRAMES;
266 				i += qh->ps.bw_period)
267 			tt->bandwidth[i] += tt_usecs;
268 	}
269 }
270 
271 /*-------------------------------------------------------------------------*/
272 
273 static void compute_tt_budget(u8 budget_table[EHCI_BANDWIDTH_SIZE],
274 		struct ehci_tt *tt)
275 {
276 	struct ehci_per_sched	*ps;
277 	unsigned		uframe, uf, x;
278 	u8			*budget_line;
279 
280 	if (!tt)
281 		return;
282 	memset(budget_table, 0, EHCI_BANDWIDTH_SIZE);
283 
284 	/* Add up the contributions from all the endpoints using this TT */
285 	list_for_each_entry(ps, &tt->ps_list, ps_list) {
286 		for (uframe = ps->bw_phase << 3; uframe < EHCI_BANDWIDTH_SIZE;
287 				uframe += ps->bw_uperiod) {
288 			budget_line = &budget_table[uframe];
289 			x = ps->tt_usecs;
290 
291 			/* propagate the time forward */
292 			for (uf = ps->phase_uf; uf < 8; ++uf) {
293 				x += budget_line[uf];
294 
295 				/* Each microframe lasts 125 us */
296 				if (x <= 125) {
297 					budget_line[uf] = x;
298 					break;
299 				} else {
300 					budget_line[uf] = 125;
301 					x -= 125;
302 				}
303 			}
304 		}
305 	}
306 }
307 
308 static int __maybe_unused same_tt(struct usb_device *dev1,
309 		struct usb_device *dev2)
310 {
311 	if (!dev1->tt || !dev2->tt)
312 		return 0;
313 	if (dev1->tt != dev2->tt)
314 		return 0;
315 	if (dev1->tt->multi)
316 		return dev1->ttport == dev2->ttport;
317 	else
318 		return 1;
319 }
320 
321 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
322 
323 /* Which uframe does the low/fullspeed transfer start in?
324  *
325  * The parameter is the mask of ssplits in "H-frame" terms
326  * and this returns the transfer start uframe in "B-frame" terms,
327  * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
328  * will cause a transfer in "B-frame" uframe 0.  "B-frames" lag
329  * "H-frames" by 1 uframe.  See the EHCI spec sec 4.5 and figure 4.7.
330  */
331 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
332 {
333 	unsigned char smask = hc32_to_cpu(ehci, mask) & QH_SMASK;
334 	if (!smask) {
335 		ehci_err(ehci, "invalid empty smask!\n");
336 		/* uframe 7 can't have bw so this will indicate failure */
337 		return 7;
338 	}
339 	return ffs(smask) - 1;
340 }
341 
342 static const unsigned char
343 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
344 
345 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
346 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
347 {
348 	int i;
349 	for (i = 0; i < 7; i++) {
350 		if (max_tt_usecs[i] < tt_usecs[i]) {
351 			tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
352 			tt_usecs[i] = max_tt_usecs[i];
353 		}
354 	}
355 }
356 
357 /*
358  * Return true if the device's tt's downstream bus is available for a
359  * periodic transfer of the specified length (usecs), starting at the
360  * specified frame/uframe.  Note that (as summarized in section 11.19
361  * of the usb 2.0 spec) TTs can buffer multiple transactions for each
362  * uframe.
363  *
364  * The uframe parameter is when the fullspeed/lowspeed transfer
365  * should be executed in "B-frame" terms, which is the same as the
366  * highspeed ssplit's uframe (which is in "H-frame" terms).  For example
367  * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
368  * See the EHCI spec sec 4.5 and fig 4.7.
369  *
370  * This checks if the full/lowspeed bus, at the specified starting uframe,
371  * has the specified bandwidth available, according to rules listed
372  * in USB 2.0 spec section 11.18.1 fig 11-60.
373  *
374  * This does not check if the transfer would exceed the max ssplit
375  * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
376  * since proper scheduling limits ssplits to less than 16 per uframe.
377  */
378 static int tt_available(
379 	struct ehci_hcd		*ehci,
380 	struct ehci_per_sched	*ps,
381 	struct ehci_tt		*tt,
382 	unsigned		frame,
383 	unsigned		uframe
384 )
385 {
386 	unsigned		period = ps->bw_period;
387 	unsigned		usecs = ps->tt_usecs;
388 
389 	if ((period == 0) || (uframe >= 7))	/* error */
390 		return 0;
391 
392 	for (frame &= period - 1; frame < EHCI_BANDWIDTH_FRAMES;
393 			frame += period) {
394 		unsigned	i, uf;
395 		unsigned short	tt_usecs[8];
396 
397 		if (tt->bandwidth[frame] + usecs > 900)
398 			return 0;
399 
400 		uf = frame << 3;
401 		for (i = 0; i < 8; (++i, ++uf))
402 			tt_usecs[i] = ehci->tt_budget[uf];
403 
404 		if (max_tt_usecs[uframe] <= tt_usecs[uframe])
405 			return 0;
406 
407 		/* special case for isoc transfers larger than 125us:
408 		 * the first and each subsequent fully used uframe
409 		 * must be empty, so as to not illegally delay
410 		 * already scheduled transactions
411 		 */
412 		if (usecs > 125) {
413 			int ufs = (usecs / 125);
414 
415 			for (i = uframe; i < (uframe + ufs) && i < 8; i++)
416 				if (tt_usecs[i] > 0)
417 					return 0;
418 		}
419 
420 		tt_usecs[uframe] += usecs;
421 
422 		carryover_tt_bandwidth(tt_usecs);
423 
424 		/* fail if the carryover pushed bw past the last uframe's limit */
425 		if (max_tt_usecs[7] < tt_usecs[7])
426 			return 0;
427 	}
428 
429 	return 1;
430 }
431 
432 #else
433 
434 /* return true iff the device's transaction translator is available
435  * for a periodic transfer starting at the specified frame, using
436  * all the uframes in the mask.
437  */
438 static int tt_no_collision(
439 	struct ehci_hcd		*ehci,
440 	unsigned		period,
441 	struct usb_device	*dev,
442 	unsigned		frame,
443 	u32			uf_mask
444 )
445 {
446 	if (period == 0)	/* error */
447 		return 0;
448 
449 	/* note bandwidth wastage:  split never follows csplit
450 	 * (different dev or endpoint) until the next uframe.
451 	 * calling convention doesn't make that distinction.
452 	 */
453 	for (; frame < ehci->periodic_size; frame += period) {
454 		union ehci_shadow	here;
455 		__hc32			type;
456 		struct ehci_qh_hw	*hw;
457 
458 		here = ehci->pshadow[frame];
459 		type = Q_NEXT_TYPE(ehci, ehci->periodic[frame]);
460 		while (here.ptr) {
461 			switch (hc32_to_cpu(ehci, type)) {
462 			case Q_TYPE_ITD:
463 				type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
464 				here = here.itd->itd_next;
465 				continue;
466 			case Q_TYPE_QH:
467 				hw = here.qh->hw;
468 				if (same_tt(dev, here.qh->ps.udev)) {
469 					u32		mask;
470 
471 					mask = hc32_to_cpu(ehci,
472 							hw->hw_info2);
473 					/* "knows" no gap is needed */
474 					mask |= mask >> 8;
475 					if (mask & uf_mask)
476 						break;
477 				}
478 				type = Q_NEXT_TYPE(ehci, hw->hw_next);
479 				here = here.qh->qh_next;
480 				continue;
481 			case Q_TYPE_SITD:
482 				if (same_tt(dev, here.sitd->urb->dev)) {
483 					u16		mask;
484 
485 					mask = hc32_to_cpu(ehci, here.sitd
486 								->hw_uframe);
487 					/* FIXME assumes no gap for IN! */
488 					mask |= mask >> 8;
489 					if (mask & uf_mask)
490 						break;
491 				}
492 				type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
493 				here = here.sitd->sitd_next;
494 				continue;
495 			// case Q_TYPE_FSTN:
496 			default:
497 				ehci_dbg(ehci,
498 					"periodic frame %d bogus type %d\n",
499 					frame, type);
500 			}
501 
502 			/* collision or error */
503 			return 0;
504 		}
505 	}
506 
507 	/* no collision */
508 	return 1;
509 }
510 
511 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
512 
513 /*-------------------------------------------------------------------------*/
514 
515 static void enable_periodic(struct ehci_hcd *ehci)
516 {
517 	if (ehci->periodic_count++)
518 		return;
519 
520 	/* Stop waiting to turn off the periodic schedule */
521 	ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC);
522 
523 	/* Don't start the schedule until PSS is 0 */
524 	ehci_poll_PSS(ehci);
525 	turn_on_io_watchdog(ehci);
526 }
527 
528 static void disable_periodic(struct ehci_hcd *ehci)
529 {
530 	if (--ehci->periodic_count)
531 		return;
532 
533 	/* Don't turn off the schedule until PSS is 1 */
534 	ehci_poll_PSS(ehci);
535 }
536 
537 /*-------------------------------------------------------------------------*/
538 
539 /* periodic schedule slots have iso tds (normal or split) first, then a
540  * sparse tree for active interrupt transfers.
541  *
542  * this just links in a qh; caller guarantees uframe masks are set right.
543  * no FSTN support (yet; ehci 0.96+)
544  */
545 static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
546 {
547 	unsigned	i;
548 	unsigned	period = qh->ps.period;
549 
550 	dev_dbg(&qh->ps.udev->dev,
551 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
552 		period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
553 			& (QH_CMASK | QH_SMASK),
554 		qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
555 
556 	/* high bandwidth, or otherwise every microframe */
557 	if (period == 0)
558 		period = 1;
559 
560 	for (i = qh->ps.phase; i < ehci->periodic_size; i += period) {
561 		union ehci_shadow	*prev = &ehci->pshadow[i];
562 		__hc32			*hw_p = &ehci->periodic[i];
563 		union ehci_shadow	here = *prev;
564 		__hc32			type = 0;
565 
566 		/* skip the iso nodes at list head */
567 		while (here.ptr) {
568 			type = Q_NEXT_TYPE(ehci, *hw_p);
569 			if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
570 				break;
571 			prev = periodic_next_shadow(ehci, prev, type);
572 			hw_p = shadow_next_periodic(ehci, &here, type);
573 			here = *prev;
574 		}
575 
576 		/* sorting each branch by period (slow-->fast)
577 		 * enables sharing interior tree nodes
578 		 */
579 		while (here.ptr && qh != here.qh) {
580 			if (qh->ps.period > here.qh->ps.period)
581 				break;
582 			prev = &here.qh->qh_next;
583 			hw_p = &here.qh->hw->hw_next;
584 			here = *prev;
585 		}
586 		/* link in this qh, unless some earlier pass did that */
587 		if (qh != here.qh) {
588 			qh->qh_next = here;
589 			if (here.qh)
590 				qh->hw->hw_next = *hw_p;
591 			wmb();
592 			prev->qh = qh;
593 			*hw_p = QH_NEXT(ehci, qh->qh_dma);
594 		}
595 	}
596 	qh->qh_state = QH_STATE_LINKED;
597 	qh->xacterrs = 0;
598 	qh->unlink_reason = 0;
599 
600 	/* update per-qh bandwidth for debugfs */
601 	ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->ps.bw_period
602 		? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
603 		: (qh->ps.usecs * 8);
604 
605 	list_add(&qh->intr_node, &ehci->intr_qh_list);
606 
607 	/* maybe enable periodic schedule processing */
608 	++ehci->intr_count;
609 	enable_periodic(ehci);
610 }
611 
612 static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
613 {
614 	unsigned	i;
615 	unsigned	period;
616 
617 	/*
618 	 * If qh is for a low/full-speed device, simply unlinking it
619 	 * could interfere with an ongoing split transaction.  To unlink
620 	 * it safely would require setting the QH_INACTIVATE bit and
621 	 * waiting at least one frame, as described in EHCI 4.12.2.5.
622 	 *
623 	 * We won't bother with any of this.  Instead, we assume that the
624 	 * only reason for unlinking an interrupt QH while the current URB
625 	 * is still active is to dequeue all the URBs (flush the whole
626 	 * endpoint queue).
627 	 *
628 	 * If rebalancing the periodic schedule is ever implemented, this
629 	 * approach will no longer be valid.
630 	 */
631 
632 	/* high bandwidth, or otherwise part of every microframe */
633 	period = qh->ps.period ? : 1;
634 
635 	for (i = qh->ps.phase; i < ehci->periodic_size; i += period)
636 		periodic_unlink(ehci, i, qh);
637 
638 	/* update per-qh bandwidth for debugfs */
639 	ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->ps.bw_period
640 		? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
641 		: (qh->ps.usecs * 8);
642 
643 	dev_dbg(&qh->ps.udev->dev,
644 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
645 		qh->ps.period,
646 		hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
647 		qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
648 
649 	/* qh->qh_next still "live" to HC */
650 	qh->qh_state = QH_STATE_UNLINK;
651 	qh->qh_next.ptr = NULL;
652 
653 	if (ehci->qh_scan_next == qh)
654 		ehci->qh_scan_next = list_entry(qh->intr_node.next,
655 				struct ehci_qh, intr_node);
656 	list_del(&qh->intr_node);
657 }
658 
659 static void cancel_unlink_wait_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
660 {
661 	if (qh->qh_state != QH_STATE_LINKED ||
662 			list_empty(&qh->unlink_node))
663 		return;
664 
665 	list_del_init(&qh->unlink_node);
666 
667 	/*
668 	 * TODO: disable the event of EHCI_HRTIMER_START_UNLINK_INTR for
669 	 * avoiding unnecessary CPU wakeup
670 	 */
671 }
672 
673 static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
674 {
675 	/* If the QH isn't linked then there's nothing we can do. */
676 	if (qh->qh_state != QH_STATE_LINKED)
677 		return;
678 
679 	/* if the qh is waiting for unlink, cancel it now */
680 	cancel_unlink_wait_intr(ehci, qh);
681 
682 	qh_unlink_periodic(ehci, qh);
683 
684 	/* Make sure the unlinks are visible before starting the timer */
685 	wmb();
686 
687 	/*
688 	 * The EHCI spec doesn't say how long it takes the controller to
689 	 * stop accessing an unlinked interrupt QH.  The timer delay is
690 	 * 9 uframes; presumably that will be long enough.
691 	 */
692 	qh->unlink_cycle = ehci->intr_unlink_cycle;
693 
694 	/* New entries go at the end of the intr_unlink list */
695 	list_add_tail(&qh->unlink_node, &ehci->intr_unlink);
696 
697 	if (ehci->intr_unlinking)
698 		;	/* Avoid recursive calls */
699 	else if (ehci->rh_state < EHCI_RH_RUNNING)
700 		ehci_handle_intr_unlinks(ehci);
701 	else if (ehci->intr_unlink.next == &qh->unlink_node) {
702 		ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true);
703 		++ehci->intr_unlink_cycle;
704 	}
705 }
706 
707 /*
708  * It is common only one intr URB is scheduled on one qh, and
709  * given complete() is run in tasklet context, introduce a bit
710  * delay to avoid unlink qh too early.
711  */
712 static void start_unlink_intr_wait(struct ehci_hcd *ehci,
713 				   struct ehci_qh *qh)
714 {
715 	qh->unlink_cycle = ehci->intr_unlink_wait_cycle;
716 
717 	/* New entries go at the end of the intr_unlink_wait list */
718 	list_add_tail(&qh->unlink_node, &ehci->intr_unlink_wait);
719 
720 	if (ehci->rh_state < EHCI_RH_RUNNING)
721 		ehci_handle_start_intr_unlinks(ehci);
722 	else if (ehci->intr_unlink_wait.next == &qh->unlink_node) {
723 		ehci_enable_event(ehci, EHCI_HRTIMER_START_UNLINK_INTR, true);
724 		++ehci->intr_unlink_wait_cycle;
725 	}
726 }
727 
728 static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
729 {
730 	struct ehci_qh_hw	*hw = qh->hw;
731 	int			rc;
732 
733 	qh->qh_state = QH_STATE_IDLE;
734 	hw->hw_next = EHCI_LIST_END(ehci);
735 
736 	if (!list_empty(&qh->qtd_list))
737 		qh_completions(ehci, qh);
738 
739 	/* reschedule QH iff another request is queued */
740 	if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) {
741 		rc = qh_schedule(ehci, qh);
742 		if (rc == 0) {
743 			qh_refresh(ehci, qh);
744 			qh_link_periodic(ehci, qh);
745 		}
746 
747 		/* An error here likely indicates handshake failure
748 		 * or no space left in the schedule.  Neither fault
749 		 * should happen often ...
750 		 *
751 		 * FIXME kill the now-dysfunctional queued urbs
752 		 */
753 		else {
754 			ehci_err(ehci, "can't reschedule qh %p, err %d\n",
755 					qh, rc);
756 		}
757 	}
758 
759 	/* maybe turn off periodic schedule */
760 	--ehci->intr_count;
761 	disable_periodic(ehci);
762 }
763 
764 /*-------------------------------------------------------------------------*/
765 
766 static int check_period(
767 	struct ehci_hcd *ehci,
768 	unsigned	frame,
769 	unsigned	uframe,
770 	unsigned	uperiod,
771 	unsigned	usecs
772 ) {
773 	/* complete split running into next frame?
774 	 * given FSTN support, we could sometimes check...
775 	 */
776 	if (uframe >= 8)
777 		return 0;
778 
779 	/* convert "usecs we need" to "max already claimed" */
780 	usecs = ehci->uframe_periodic_max - usecs;
781 
782 	for (uframe += frame << 3; uframe < EHCI_BANDWIDTH_SIZE;
783 			uframe += uperiod) {
784 		if (ehci->bandwidth[uframe] > usecs)
785 			return 0;
786 	}
787 
788 	// success!
789 	return 1;
790 }
791 
792 static int check_intr_schedule(
793 	struct ehci_hcd		*ehci,
794 	unsigned		frame,
795 	unsigned		uframe,
796 	struct ehci_qh		*qh,
797 	unsigned		*c_maskp,
798 	struct ehci_tt		*tt
799 )
800 {
801 	int		retval = -ENOSPC;
802 	u8		mask = 0;
803 
804 	if (qh->ps.c_usecs && uframe >= 6)	/* FSTN territory? */
805 		goto done;
806 
807 	if (!check_period(ehci, frame, uframe, qh->ps.bw_uperiod, qh->ps.usecs))
808 		goto done;
809 	if (!qh->ps.c_usecs) {
810 		retval = 0;
811 		*c_maskp = 0;
812 		goto done;
813 	}
814 
815 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
816 	if (tt_available(ehci, &qh->ps, tt, frame, uframe)) {
817 		unsigned i;
818 
819 		/* TODO : this may need FSTN for SSPLIT in uframe 5. */
820 		for (i = uframe+2; i < 8 && i <= uframe+4; i++)
821 			if (!check_period(ehci, frame, i,
822 					qh->ps.bw_uperiod, qh->ps.c_usecs))
823 				goto done;
824 			else
825 				mask |= 1 << i;
826 
827 		retval = 0;
828 
829 		*c_maskp = mask;
830 	}
831 #else
832 	/* Make sure this tt's buffer is also available for CSPLITs.
833 	 * We pessimize a bit; probably the typical full speed case
834 	 * doesn't need the second CSPLIT.
835 	 *
836 	 * NOTE:  both SPLIT and CSPLIT could be checked in just
837 	 * one smart pass...
838 	 */
839 	mask = 0x03 << (uframe + qh->gap_uf);
840 	*c_maskp = mask;
841 
842 	mask |= 1 << uframe;
843 	if (tt_no_collision(ehci, qh->ps.bw_period, qh->ps.udev, frame, mask)) {
844 		if (!check_period(ehci, frame, uframe + qh->gap_uf + 1,
845 				qh->ps.bw_uperiod, qh->ps.c_usecs))
846 			goto done;
847 		if (!check_period(ehci, frame, uframe + qh->gap_uf,
848 				qh->ps.bw_uperiod, qh->ps.c_usecs))
849 			goto done;
850 		retval = 0;
851 	}
852 #endif
853 done:
854 	return retval;
855 }
856 
857 /* "first fit" scheduling policy used the first time through,
858  * or when the previous schedule slot can't be re-used.
859  */
860 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
861 {
862 	int		status = 0;
863 	unsigned	uframe;
864 	unsigned	c_mask;
865 	struct ehci_qh_hw	*hw = qh->hw;
866 	struct ehci_tt		*tt;
867 
868 	hw->hw_next = EHCI_LIST_END(ehci);
869 
870 	/* reuse the previous schedule slots, if we can */
871 	if (qh->ps.phase != NO_FRAME) {
872 		ehci_dbg(ehci, "reused qh %p schedule\n", qh);
873 		return 0;
874 	}
875 
876 	uframe = 0;
877 	c_mask = 0;
878 	tt = find_tt(qh->ps.udev);
879 	if (IS_ERR(tt)) {
880 		status = PTR_ERR(tt);
881 		goto done;
882 	}
883 	compute_tt_budget(ehci->tt_budget, tt);
884 
885 	/* else scan the schedule to find a group of slots such that all
886 	 * uframes have enough periodic bandwidth available.
887 	 */
888 	/* "normal" case, uframing flexible except with splits */
889 	if (qh->ps.bw_period) {
890 		int		i;
891 		unsigned	frame;
892 
893 		for (i = qh->ps.bw_period; i > 0; --i) {
894 			frame = ++ehci->random_frame & (qh->ps.bw_period - 1);
895 			for (uframe = 0; uframe < 8; uframe++) {
896 				status = check_intr_schedule(ehci,
897 						frame, uframe, qh, &c_mask, tt);
898 				if (status == 0)
899 					goto got_it;
900 			}
901 		}
902 
903 	/* qh->ps.bw_period == 0 means every uframe */
904 	} else {
905 		status = check_intr_schedule(ehci, 0, 0, qh, &c_mask, tt);
906 	}
907 	if (status)
908 		goto done;
909 
910  got_it:
911 	qh->ps.phase = (qh->ps.period ? ehci->random_frame &
912 			(qh->ps.period - 1) : 0);
913 	qh->ps.bw_phase = qh->ps.phase & (qh->ps.bw_period - 1);
914 	qh->ps.phase_uf = uframe;
915 	qh->ps.cs_mask = qh->ps.period ?
916 			(c_mask << 8) | (1 << uframe) :
917 			QH_SMASK;
918 
919 	/* reset S-frame and (maybe) C-frame masks */
920 	hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
921 	hw->hw_info2 |= cpu_to_hc32(ehci, qh->ps.cs_mask);
922 	reserve_release_intr_bandwidth(ehci, qh, 1);
923 
924 done:
925 	return status;
926 }
927 
928 static int intr_submit(
929 	struct ehci_hcd		*ehci,
930 	struct urb		*urb,
931 	struct list_head	*qtd_list,
932 	gfp_t			mem_flags
933 ) {
934 	unsigned		epnum;
935 	unsigned long		flags;
936 	struct ehci_qh		*qh;
937 	int			status;
938 	struct list_head	empty;
939 
940 	/* get endpoint and transfer/schedule data */
941 	epnum = urb->ep->desc.bEndpointAddress;
942 
943 	spin_lock_irqsave(&ehci->lock, flags);
944 
945 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
946 		status = -ESHUTDOWN;
947 		goto done_not_linked;
948 	}
949 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
950 	if (unlikely(status))
951 		goto done_not_linked;
952 
953 	/* get qh and force any scheduling errors */
954 	INIT_LIST_HEAD(&empty);
955 	qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
956 	if (qh == NULL) {
957 		status = -ENOMEM;
958 		goto done;
959 	}
960 	if (qh->qh_state == QH_STATE_IDLE) {
961 		status = qh_schedule(ehci, qh);
962 		if (status)
963 			goto done;
964 	}
965 
966 	/* then queue the urb's tds to the qh */
967 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
968 	BUG_ON(qh == NULL);
969 
970 	/* stuff into the periodic schedule */
971 	if (qh->qh_state == QH_STATE_IDLE) {
972 		qh_refresh(ehci, qh);
973 		qh_link_periodic(ehci, qh);
974 	} else {
975 		/* cancel unlink wait for the qh */
976 		cancel_unlink_wait_intr(ehci, qh);
977 	}
978 
979 	/* ... update usbfs periodic stats */
980 	ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
981 
982 done:
983 	if (unlikely(status))
984 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
985 done_not_linked:
986 	spin_unlock_irqrestore(&ehci->lock, flags);
987 	if (status)
988 		qtd_list_free(ehci, urb, qtd_list);
989 
990 	return status;
991 }
992 
993 static void scan_intr(struct ehci_hcd *ehci)
994 {
995 	struct ehci_qh		*qh;
996 
997 	list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list,
998 			intr_node) {
999 
1000 		/* clean any finished work for this qh */
1001 		if (!list_empty(&qh->qtd_list)) {
1002 			int temp;
1003 
1004 			/*
1005 			 * Unlinks could happen here; completion reporting
1006 			 * drops the lock.  That's why ehci->qh_scan_next
1007 			 * always holds the next qh to scan; if the next qh
1008 			 * gets unlinked then ehci->qh_scan_next is adjusted
1009 			 * in qh_unlink_periodic().
1010 			 */
1011 			temp = qh_completions(ehci, qh);
1012 			if (unlikely(temp))
1013 				start_unlink_intr(ehci, qh);
1014 			else if (unlikely(list_empty(&qh->qtd_list) &&
1015 					qh->qh_state == QH_STATE_LINKED))
1016 				start_unlink_intr_wait(ehci, qh);
1017 		}
1018 	}
1019 }
1020 
1021 /*-------------------------------------------------------------------------*/
1022 
1023 /* ehci_iso_stream ops work with both ITD and SITD */
1024 
1025 static struct ehci_iso_stream *
1026 iso_stream_alloc(gfp_t mem_flags)
1027 {
1028 	struct ehci_iso_stream *stream;
1029 
1030 	stream = kzalloc(sizeof *stream, mem_flags);
1031 	if (likely(stream != NULL)) {
1032 		INIT_LIST_HEAD(&stream->td_list);
1033 		INIT_LIST_HEAD(&stream->free_list);
1034 		stream->next_uframe = NO_FRAME;
1035 		stream->ps.phase = NO_FRAME;
1036 	}
1037 	return stream;
1038 }
1039 
1040 static void
1041 iso_stream_init(
1042 	struct ehci_hcd		*ehci,
1043 	struct ehci_iso_stream	*stream,
1044 	struct urb		*urb
1045 )
1046 {
1047 	static const u8 smask_out[] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
1048 
1049 	struct usb_device	*dev = urb->dev;
1050 	u32			buf1;
1051 	unsigned		epnum, maxp;
1052 	int			is_input;
1053 	unsigned		tmp;
1054 
1055 	/*
1056 	 * this might be a "high bandwidth" highspeed endpoint,
1057 	 * as encoded in the ep descriptor's wMaxPacket field
1058 	 */
1059 	epnum = usb_pipeendpoint(urb->pipe);
1060 	is_input = usb_pipein(urb->pipe) ? USB_DIR_IN : 0;
1061 	maxp = usb_endpoint_maxp(&urb->ep->desc);
1062 	if (is_input) {
1063 		buf1 = (1 << 11);
1064 	} else {
1065 		buf1 = 0;
1066 	}
1067 
1068 	/* knows about ITD vs SITD */
1069 	if (dev->speed == USB_SPEED_HIGH) {
1070 		unsigned multi = hb_mult(maxp);
1071 
1072 		stream->highspeed = 1;
1073 
1074 		maxp = max_packet(maxp);
1075 		buf1 |= maxp;
1076 		maxp *= multi;
1077 
1078 		stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
1079 		stream->buf1 = cpu_to_hc32(ehci, buf1);
1080 		stream->buf2 = cpu_to_hc32(ehci, multi);
1081 
1082 		/* usbfs wants to report the average usecs per frame tied up
1083 		 * when transfers on this endpoint are scheduled ...
1084 		 */
1085 		stream->ps.usecs = HS_USECS_ISO(maxp);
1086 
1087 		/* period for bandwidth allocation */
1088 		tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
1089 				1 << (urb->ep->desc.bInterval - 1));
1090 
1091 		/* Allow urb->interval to override */
1092 		stream->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
1093 
1094 		stream->uperiod = urb->interval;
1095 		stream->ps.period = urb->interval >> 3;
1096 		stream->bandwidth = stream->ps.usecs * 8 /
1097 				stream->ps.bw_uperiod;
1098 
1099 	} else {
1100 		u32		addr;
1101 		int		think_time;
1102 		int		hs_transfers;
1103 
1104 		addr = dev->ttport << 24;
1105 		if (!ehci_is_TDI(ehci)
1106 				|| (dev->tt->hub !=
1107 					ehci_to_hcd(ehci)->self.root_hub))
1108 			addr |= dev->tt->hub->devnum << 16;
1109 		addr |= epnum << 8;
1110 		addr |= dev->devnum;
1111 		stream->ps.usecs = HS_USECS_ISO(maxp);
1112 		think_time = dev->tt ? dev->tt->think_time : 0;
1113 		stream->ps.tt_usecs = NS_TO_US(think_time + usb_calc_bus_time(
1114 				dev->speed, is_input, 1, maxp));
1115 		hs_transfers = max(1u, (maxp + 187) / 188);
1116 		if (is_input) {
1117 			u32	tmp;
1118 
1119 			addr |= 1 << 31;
1120 			stream->ps.c_usecs = stream->ps.usecs;
1121 			stream->ps.usecs = HS_USECS_ISO(1);
1122 			stream->ps.cs_mask = 1;
1123 
1124 			/* c-mask as specified in USB 2.0 11.18.4 3.c */
1125 			tmp = (1 << (hs_transfers + 2)) - 1;
1126 			stream->ps.cs_mask |= tmp << (8 + 2);
1127 		} else
1128 			stream->ps.cs_mask = smask_out[hs_transfers - 1];
1129 
1130 		/* period for bandwidth allocation */
1131 		tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
1132 				1 << (urb->ep->desc.bInterval - 1));
1133 
1134 		/* Allow urb->interval to override */
1135 		stream->ps.bw_period = min_t(unsigned, tmp, urb->interval);
1136 		stream->ps.bw_uperiod = stream->ps.bw_period << 3;
1137 
1138 		stream->ps.period = urb->interval;
1139 		stream->uperiod = urb->interval << 3;
1140 		stream->bandwidth = (stream->ps.usecs + stream->ps.c_usecs) /
1141 				stream->ps.bw_period;
1142 
1143 		/* stream->splits gets created from cs_mask later */
1144 		stream->address = cpu_to_hc32(ehci, addr);
1145 	}
1146 
1147 	stream->ps.udev = dev;
1148 	stream->ps.ep = urb->ep;
1149 
1150 	stream->bEndpointAddress = is_input | epnum;
1151 	stream->maxp = maxp;
1152 }
1153 
1154 static struct ehci_iso_stream *
1155 iso_stream_find(struct ehci_hcd *ehci, struct urb *urb)
1156 {
1157 	unsigned		epnum;
1158 	struct ehci_iso_stream	*stream;
1159 	struct usb_host_endpoint *ep;
1160 	unsigned long		flags;
1161 
1162 	epnum = usb_pipeendpoint (urb->pipe);
1163 	if (usb_pipein(urb->pipe))
1164 		ep = urb->dev->ep_in[epnum];
1165 	else
1166 		ep = urb->dev->ep_out[epnum];
1167 
1168 	spin_lock_irqsave(&ehci->lock, flags);
1169 	stream = ep->hcpriv;
1170 
1171 	if (unlikely(stream == NULL)) {
1172 		stream = iso_stream_alloc(GFP_ATOMIC);
1173 		if (likely(stream != NULL)) {
1174 			ep->hcpriv = stream;
1175 			iso_stream_init(ehci, stream, urb);
1176 		}
1177 
1178 	/* if dev->ep [epnum] is a QH, hw is set */
1179 	} else if (unlikely(stream->hw != NULL)) {
1180 		ehci_dbg(ehci, "dev %s ep%d%s, not iso??\n",
1181 			urb->dev->devpath, epnum,
1182 			usb_pipein(urb->pipe) ? "in" : "out");
1183 		stream = NULL;
1184 	}
1185 
1186 	spin_unlock_irqrestore(&ehci->lock, flags);
1187 	return stream;
1188 }
1189 
1190 /*-------------------------------------------------------------------------*/
1191 
1192 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1193 
1194 static struct ehci_iso_sched *
1195 iso_sched_alloc(unsigned packets, gfp_t mem_flags)
1196 {
1197 	struct ehci_iso_sched	*iso_sched;
1198 	int			size = sizeof *iso_sched;
1199 
1200 	size += packets * sizeof(struct ehci_iso_packet);
1201 	iso_sched = kzalloc(size, mem_flags);
1202 	if (likely(iso_sched != NULL))
1203 		INIT_LIST_HEAD(&iso_sched->td_list);
1204 
1205 	return iso_sched;
1206 }
1207 
1208 static inline void
1209 itd_sched_init(
1210 	struct ehci_hcd		*ehci,
1211 	struct ehci_iso_sched	*iso_sched,
1212 	struct ehci_iso_stream	*stream,
1213 	struct urb		*urb
1214 )
1215 {
1216 	unsigned	i;
1217 	dma_addr_t	dma = urb->transfer_dma;
1218 
1219 	/* how many uframes are needed for these transfers */
1220 	iso_sched->span = urb->number_of_packets * stream->uperiod;
1221 
1222 	/* figure out per-uframe itd fields that we'll need later
1223 	 * when we fit new itds into the schedule.
1224 	 */
1225 	for (i = 0; i < urb->number_of_packets; i++) {
1226 		struct ehci_iso_packet	*uframe = &iso_sched->packet[i];
1227 		unsigned		length;
1228 		dma_addr_t		buf;
1229 		u32			trans;
1230 
1231 		length = urb->iso_frame_desc[i].length;
1232 		buf = dma + urb->iso_frame_desc[i].offset;
1233 
1234 		trans = EHCI_ISOC_ACTIVE;
1235 		trans |= buf & 0x0fff;
1236 		if (unlikely(((i + 1) == urb->number_of_packets))
1237 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1238 			trans |= EHCI_ITD_IOC;
1239 		trans |= length << 16;
1240 		uframe->transaction = cpu_to_hc32(ehci, trans);
1241 
1242 		/* might need to cross a buffer page within a uframe */
1243 		uframe->bufp = (buf & ~(u64)0x0fff);
1244 		buf += length;
1245 		if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
1246 			uframe->cross = 1;
1247 	}
1248 }
1249 
1250 static void
1251 iso_sched_free(
1252 	struct ehci_iso_stream	*stream,
1253 	struct ehci_iso_sched	*iso_sched
1254 )
1255 {
1256 	if (!iso_sched)
1257 		return;
1258 	// caller must hold ehci->lock!
1259 	list_splice(&iso_sched->td_list, &stream->free_list);
1260 	kfree(iso_sched);
1261 }
1262 
1263 static int
1264 itd_urb_transaction(
1265 	struct ehci_iso_stream	*stream,
1266 	struct ehci_hcd		*ehci,
1267 	struct urb		*urb,
1268 	gfp_t			mem_flags
1269 )
1270 {
1271 	struct ehci_itd		*itd;
1272 	dma_addr_t		itd_dma;
1273 	int			i;
1274 	unsigned		num_itds;
1275 	struct ehci_iso_sched	*sched;
1276 	unsigned long		flags;
1277 
1278 	sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
1279 	if (unlikely(sched == NULL))
1280 		return -ENOMEM;
1281 
1282 	itd_sched_init(ehci, sched, stream, urb);
1283 
1284 	if (urb->interval < 8)
1285 		num_itds = 1 + (sched->span + 7) / 8;
1286 	else
1287 		num_itds = urb->number_of_packets;
1288 
1289 	/* allocate/init ITDs */
1290 	spin_lock_irqsave(&ehci->lock, flags);
1291 	for (i = 0; i < num_itds; i++) {
1292 
1293 		/*
1294 		 * Use iTDs from the free list, but not iTDs that may
1295 		 * still be in use by the hardware.
1296 		 */
1297 		if (likely(!list_empty(&stream->free_list))) {
1298 			itd = list_first_entry(&stream->free_list,
1299 					struct ehci_itd, itd_list);
1300 			if (itd->frame == ehci->now_frame)
1301 				goto alloc_itd;
1302 			list_del(&itd->itd_list);
1303 			itd_dma = itd->itd_dma;
1304 		} else {
1305  alloc_itd:
1306 			spin_unlock_irqrestore(&ehci->lock, flags);
1307 			itd = dma_pool_alloc(ehci->itd_pool, mem_flags,
1308 					&itd_dma);
1309 			spin_lock_irqsave(&ehci->lock, flags);
1310 			if (!itd) {
1311 				iso_sched_free(stream, sched);
1312 				spin_unlock_irqrestore(&ehci->lock, flags);
1313 				return -ENOMEM;
1314 			}
1315 		}
1316 
1317 		memset(itd, 0, sizeof *itd);
1318 		itd->itd_dma = itd_dma;
1319 		itd->frame = NO_FRAME;
1320 		list_add(&itd->itd_list, &sched->td_list);
1321 	}
1322 	spin_unlock_irqrestore(&ehci->lock, flags);
1323 
1324 	/* temporarily store schedule info in hcpriv */
1325 	urb->hcpriv = sched;
1326 	urb->error_count = 0;
1327 	return 0;
1328 }
1329 
1330 /*-------------------------------------------------------------------------*/
1331 
1332 static void reserve_release_iso_bandwidth(struct ehci_hcd *ehci,
1333 		struct ehci_iso_stream *stream, int sign)
1334 {
1335 	unsigned		uframe;
1336 	unsigned		i, j;
1337 	unsigned		s_mask, c_mask, m;
1338 	int			usecs = stream->ps.usecs;
1339 	int			c_usecs = stream->ps.c_usecs;
1340 	int			tt_usecs = stream->ps.tt_usecs;
1341 	struct ehci_tt		*tt;
1342 
1343 	if (stream->ps.phase == NO_FRAME)	/* Bandwidth wasn't reserved */
1344 		return;
1345 	uframe = stream->ps.bw_phase << 3;
1346 
1347 	bandwidth_dbg(ehci, sign, "iso", &stream->ps);
1348 
1349 	if (sign < 0) {		/* Release bandwidth */
1350 		usecs = -usecs;
1351 		c_usecs = -c_usecs;
1352 		tt_usecs = -tt_usecs;
1353 	}
1354 
1355 	if (!stream->splits) {		/* High speed */
1356 		for (i = uframe + stream->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
1357 				i += stream->ps.bw_uperiod)
1358 			ehci->bandwidth[i] += usecs;
1359 
1360 	} else {			/* Full speed */
1361 		s_mask = stream->ps.cs_mask;
1362 		c_mask = s_mask >> 8;
1363 
1364 		/* NOTE: adjustment needed for frame overflow */
1365 		for (i = uframe; i < EHCI_BANDWIDTH_SIZE;
1366 				i += stream->ps.bw_uperiod) {
1367 			for ((j = stream->ps.phase_uf, m = 1 << j); j < 8;
1368 					(++j, m <<= 1)) {
1369 				if (s_mask & m)
1370 					ehci->bandwidth[i+j] += usecs;
1371 				else if (c_mask & m)
1372 					ehci->bandwidth[i+j] += c_usecs;
1373 			}
1374 		}
1375 
1376 		tt = find_tt(stream->ps.udev);
1377 		if (sign > 0)
1378 			list_add_tail(&stream->ps.ps_list, &tt->ps_list);
1379 		else
1380 			list_del(&stream->ps.ps_list);
1381 
1382 		for (i = uframe >> 3; i < EHCI_BANDWIDTH_FRAMES;
1383 				i += stream->ps.bw_period)
1384 			tt->bandwidth[i] += tt_usecs;
1385 	}
1386 }
1387 
1388 static inline int
1389 itd_slot_ok(
1390 	struct ehci_hcd		*ehci,
1391 	struct ehci_iso_stream	*stream,
1392 	unsigned		uframe
1393 )
1394 {
1395 	unsigned		usecs;
1396 
1397 	/* convert "usecs we need" to "max already claimed" */
1398 	usecs = ehci->uframe_periodic_max - stream->ps.usecs;
1399 
1400 	for (uframe &= stream->ps.bw_uperiod - 1; uframe < EHCI_BANDWIDTH_SIZE;
1401 			uframe += stream->ps.bw_uperiod) {
1402 		if (ehci->bandwidth[uframe] > usecs)
1403 			return 0;
1404 	}
1405 	return 1;
1406 }
1407 
1408 static inline int
1409 sitd_slot_ok(
1410 	struct ehci_hcd		*ehci,
1411 	struct ehci_iso_stream	*stream,
1412 	unsigned		uframe,
1413 	struct ehci_iso_sched	*sched,
1414 	struct ehci_tt		*tt
1415 )
1416 {
1417 	unsigned		mask, tmp;
1418 	unsigned		frame, uf;
1419 
1420 	mask = stream->ps.cs_mask << (uframe & 7);
1421 
1422 	/* for OUT, don't wrap SSPLIT into H-microframe 7 */
1423 	if (((stream->ps.cs_mask & 0xff) << (uframe & 7)) >= (1 << 7))
1424 		return 0;
1425 
1426 	/* for IN, don't wrap CSPLIT into the next frame */
1427 	if (mask & ~0xffff)
1428 		return 0;
1429 
1430 	/* check bandwidth */
1431 	uframe &= stream->ps.bw_uperiod - 1;
1432 	frame = uframe >> 3;
1433 
1434 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1435 	/* The tt's fullspeed bus bandwidth must be available.
1436 	 * tt_available scheduling guarantees 10+% for control/bulk.
1437 	 */
1438 	uf = uframe & 7;
1439 	if (!tt_available(ehci, &stream->ps, tt, frame, uf))
1440 		return 0;
1441 #else
1442 	/* tt must be idle for start(s), any gap, and csplit.
1443 	 * assume scheduling slop leaves 10+% for control/bulk.
1444 	 */
1445 	if (!tt_no_collision(ehci, stream->ps.bw_period,
1446 			stream->ps.udev, frame, mask))
1447 		return 0;
1448 #endif
1449 
1450 	do {
1451 		unsigned	max_used;
1452 		unsigned	i;
1453 
1454 		/* check starts (OUT uses more than one) */
1455 		uf = uframe;
1456 		max_used = ehci->uframe_periodic_max - stream->ps.usecs;
1457 		for (tmp = stream->ps.cs_mask & 0xff; tmp; tmp >>= 1, uf++) {
1458 			if (ehci->bandwidth[uf] > max_used)
1459 				return 0;
1460 		}
1461 
1462 		/* for IN, check CSPLIT */
1463 		if (stream->ps.c_usecs) {
1464 			max_used = ehci->uframe_periodic_max -
1465 					stream->ps.c_usecs;
1466 			uf = uframe & ~7;
1467 			tmp = 1 << (2+8);
1468 			for (i = (uframe & 7) + 2; i < 8; (++i, tmp <<= 1)) {
1469 				if ((stream->ps.cs_mask & tmp) == 0)
1470 					continue;
1471 				if (ehci->bandwidth[uf+i] > max_used)
1472 					return 0;
1473 			}
1474 		}
1475 
1476 		uframe += stream->ps.bw_uperiod;
1477 	} while (uframe < EHCI_BANDWIDTH_SIZE);
1478 
1479 	stream->ps.cs_mask <<= uframe & 7;
1480 	stream->splits = cpu_to_hc32(ehci, stream->ps.cs_mask);
1481 	return 1;
1482 }
1483 
1484 /*
1485  * This scheduler plans almost as far into the future as it has actual
1486  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
1487  * "as small as possible" to be cache-friendlier.)  That limits the size
1488  * transfers you can stream reliably; avoid more than 64 msec per urb.
1489  * Also avoid queue depths of less than ehci's worst irq latency (affected
1490  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1491  * and other factors); or more than about 230 msec total (for portability,
1492  * given EHCI_TUNE_FLS and the slop).  Or, write a smarter scheduler!
1493  */
1494 
1495 static int
1496 iso_stream_schedule(
1497 	struct ehci_hcd		*ehci,
1498 	struct urb		*urb,
1499 	struct ehci_iso_stream	*stream
1500 )
1501 {
1502 	u32			now, base, next, start, period, span, now2;
1503 	u32			wrap = 0, skip = 0;
1504 	int			status = 0;
1505 	unsigned		mod = ehci->periodic_size << 3;
1506 	struct ehci_iso_sched	*sched = urb->hcpriv;
1507 	bool			empty = list_empty(&stream->td_list);
1508 	bool			new_stream = false;
1509 
1510 	period = stream->uperiod;
1511 	span = sched->span;
1512 	if (!stream->highspeed)
1513 		span <<= 3;
1514 
1515 	/* Start a new isochronous stream? */
1516 	if (unlikely(empty && !hcd_periodic_completion_in_progress(
1517 			ehci_to_hcd(ehci), urb->ep))) {
1518 
1519 		/* Schedule the endpoint */
1520 		if (stream->ps.phase == NO_FRAME) {
1521 			int		done = 0;
1522 			struct ehci_tt	*tt = find_tt(stream->ps.udev);
1523 
1524 			if (IS_ERR(tt)) {
1525 				status = PTR_ERR(tt);
1526 				goto fail;
1527 			}
1528 			compute_tt_budget(ehci->tt_budget, tt);
1529 
1530 			start = ((-(++ehci->random_frame)) << 3) & (period - 1);
1531 
1532 			/* find a uframe slot with enough bandwidth.
1533 			 * Early uframes are more precious because full-speed
1534 			 * iso IN transfers can't use late uframes,
1535 			 * and therefore they should be allocated last.
1536 			 */
1537 			next = start;
1538 			start += period;
1539 			do {
1540 				start--;
1541 				/* check schedule: enough space? */
1542 				if (stream->highspeed) {
1543 					if (itd_slot_ok(ehci, stream, start))
1544 						done = 1;
1545 				} else {
1546 					if ((start % 8) >= 6)
1547 						continue;
1548 					if (sitd_slot_ok(ehci, stream, start,
1549 							sched, tt))
1550 						done = 1;
1551 				}
1552 			} while (start > next && !done);
1553 
1554 			/* no room in the schedule */
1555 			if (!done) {
1556 				ehci_dbg(ehci, "iso sched full %p", urb);
1557 				status = -ENOSPC;
1558 				goto fail;
1559 			}
1560 			stream->ps.phase = (start >> 3) &
1561 					(stream->ps.period - 1);
1562 			stream->ps.bw_phase = stream->ps.phase &
1563 					(stream->ps.bw_period - 1);
1564 			stream->ps.phase_uf = start & 7;
1565 			reserve_release_iso_bandwidth(ehci, stream, 1);
1566 		}
1567 
1568 		/* New stream is already scheduled; use the upcoming slot */
1569 		else {
1570 			start = (stream->ps.phase << 3) + stream->ps.phase_uf;
1571 		}
1572 
1573 		stream->next_uframe = start;
1574 		new_stream = true;
1575 	}
1576 
1577 	now = ehci_read_frame_index(ehci) & (mod - 1);
1578 
1579 	/* Take the isochronous scheduling threshold into account */
1580 	if (ehci->i_thresh)
1581 		next = now + ehci->i_thresh;	/* uframe cache */
1582 	else
1583 		next = (now + 2 + 7) & ~0x07;	/* full frame cache */
1584 
1585 	/* If needed, initialize last_iso_frame so that this URB will be seen */
1586 	if (ehci->isoc_count == 0)
1587 		ehci->last_iso_frame = now >> 3;
1588 
1589 	/*
1590 	 * Use ehci->last_iso_frame as the base.  There can't be any
1591 	 * TDs scheduled for earlier than that.
1592 	 */
1593 	base = ehci->last_iso_frame << 3;
1594 	next = (next - base) & (mod - 1);
1595 	start = (stream->next_uframe - base) & (mod - 1);
1596 
1597 	if (unlikely(new_stream))
1598 		goto do_ASAP;
1599 
1600 	/*
1601 	 * Typical case: reuse current schedule, stream may still be active.
1602 	 * Hopefully there are no gaps from the host falling behind
1603 	 * (irq delays etc).  If there are, the behavior depends on
1604 	 * whether URB_ISO_ASAP is set.
1605 	 */
1606 	now2 = (now - base) & (mod - 1);
1607 
1608 	/* Is the schedule about to wrap around? */
1609 	if (unlikely(!empty && start < period)) {
1610 		ehci_dbg(ehci, "request %p would overflow (%u-%u < %u mod %u)\n",
1611 				urb, stream->next_uframe, base, period, mod);
1612 		status = -EFBIG;
1613 		goto fail;
1614 	}
1615 
1616 	/* Is the next packet scheduled after the base time? */
1617 	if (likely(!empty || start <= now2 + period)) {
1618 
1619 		/* URB_ISO_ASAP: make sure that start >= next */
1620 		if (unlikely(start < next &&
1621 				(urb->transfer_flags & URB_ISO_ASAP)))
1622 			goto do_ASAP;
1623 
1624 		/* Otherwise use start, if it's not in the past */
1625 		if (likely(start >= now2))
1626 			goto use_start;
1627 
1628 	/* Otherwise we got an underrun while the queue was empty */
1629 	} else {
1630 		if (urb->transfer_flags & URB_ISO_ASAP)
1631 			goto do_ASAP;
1632 		wrap = mod;
1633 		now2 += mod;
1634 	}
1635 
1636 	/* How many uframes and packets do we need to skip? */
1637 	skip = (now2 - start + period - 1) & -period;
1638 	if (skip >= span) {		/* Entirely in the past? */
1639 		ehci_dbg(ehci, "iso underrun %p (%u+%u < %u) [%u]\n",
1640 				urb, start + base, span - period, now2 + base,
1641 				base);
1642 
1643 		/* Try to keep the last TD intact for scanning later */
1644 		skip = span - period;
1645 
1646 		/* Will it come before the current scan position? */
1647 		if (empty) {
1648 			skip = span;	/* Skip the entire URB */
1649 			status = 1;	/* and give it back immediately */
1650 			iso_sched_free(stream, sched);
1651 			sched = NULL;
1652 		}
1653 	}
1654 	urb->error_count = skip / period;
1655 	if (sched)
1656 		sched->first_packet = urb->error_count;
1657 	goto use_start;
1658 
1659  do_ASAP:
1660 	/* Use the first slot after "next" */
1661 	start = next + ((start - next) & (period - 1));
1662 
1663  use_start:
1664 	/* Tried to schedule too far into the future? */
1665 	if (unlikely(start + span - period >= mod + wrap)) {
1666 		ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n",
1667 				urb, start, span - period, mod + wrap);
1668 		status = -EFBIG;
1669 		goto fail;
1670 	}
1671 
1672 	start += base;
1673 	stream->next_uframe = (start + skip) & (mod - 1);
1674 
1675 	/* report high speed start in uframes; full speed, in frames */
1676 	urb->start_frame = start & (mod - 1);
1677 	if (!stream->highspeed)
1678 		urb->start_frame >>= 3;
1679 	return status;
1680 
1681  fail:
1682 	iso_sched_free(stream, sched);
1683 	urb->hcpriv = NULL;
1684 	return status;
1685 }
1686 
1687 /*-------------------------------------------------------------------------*/
1688 
1689 static inline void
1690 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1691 		struct ehci_itd *itd)
1692 {
1693 	int i;
1694 
1695 	/* it's been recently zeroed */
1696 	itd->hw_next = EHCI_LIST_END(ehci);
1697 	itd->hw_bufp[0] = stream->buf0;
1698 	itd->hw_bufp[1] = stream->buf1;
1699 	itd->hw_bufp[2] = stream->buf2;
1700 
1701 	for (i = 0; i < 8; i++)
1702 		itd->index[i] = -1;
1703 
1704 	/* All other fields are filled when scheduling */
1705 }
1706 
1707 static inline void
1708 itd_patch(
1709 	struct ehci_hcd		*ehci,
1710 	struct ehci_itd		*itd,
1711 	struct ehci_iso_sched	*iso_sched,
1712 	unsigned		index,
1713 	u16			uframe
1714 )
1715 {
1716 	struct ehci_iso_packet	*uf = &iso_sched->packet[index];
1717 	unsigned		pg = itd->pg;
1718 
1719 	// BUG_ON (pg == 6 && uf->cross);
1720 
1721 	uframe &= 0x07;
1722 	itd->index[uframe] = index;
1723 
1724 	itd->hw_transaction[uframe] = uf->transaction;
1725 	itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1726 	itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1727 	itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1728 
1729 	/* iso_frame_desc[].offset must be strictly increasing */
1730 	if (unlikely(uf->cross)) {
1731 		u64	bufp = uf->bufp + 4096;
1732 
1733 		itd->pg = ++pg;
1734 		itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1735 		itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1736 	}
1737 }
1738 
1739 static inline void
1740 itd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1741 {
1742 	union ehci_shadow	*prev = &ehci->pshadow[frame];
1743 	__hc32			*hw_p = &ehci->periodic[frame];
1744 	union ehci_shadow	here = *prev;
1745 	__hc32			type = 0;
1746 
1747 	/* skip any iso nodes which might belong to previous microframes */
1748 	while (here.ptr) {
1749 		type = Q_NEXT_TYPE(ehci, *hw_p);
1750 		if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1751 			break;
1752 		prev = periodic_next_shadow(ehci, prev, type);
1753 		hw_p = shadow_next_periodic(ehci, &here, type);
1754 		here = *prev;
1755 	}
1756 
1757 	itd->itd_next = here;
1758 	itd->hw_next = *hw_p;
1759 	prev->itd = itd;
1760 	itd->frame = frame;
1761 	wmb();
1762 	*hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1763 }
1764 
1765 /* fit urb's itds into the selected schedule slot; activate as needed */
1766 static void itd_link_urb(
1767 	struct ehci_hcd		*ehci,
1768 	struct urb		*urb,
1769 	unsigned		mod,
1770 	struct ehci_iso_stream	*stream
1771 )
1772 {
1773 	int			packet;
1774 	unsigned		next_uframe, uframe, frame;
1775 	struct ehci_iso_sched	*iso_sched = urb->hcpriv;
1776 	struct ehci_itd		*itd;
1777 
1778 	next_uframe = stream->next_uframe & (mod - 1);
1779 
1780 	if (unlikely(list_empty(&stream->td_list)))
1781 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1782 				+= stream->bandwidth;
1783 
1784 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1785 		if (ehci->amd_pll_fix == 1)
1786 			usb_amd_quirk_pll_disable();
1787 	}
1788 
1789 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1790 
1791 	/* fill iTDs uframe by uframe */
1792 	for (packet = iso_sched->first_packet, itd = NULL;
1793 			packet < urb->number_of_packets;) {
1794 		if (itd == NULL) {
1795 			/* ASSERT:  we have all necessary itds */
1796 			// BUG_ON (list_empty (&iso_sched->td_list));
1797 
1798 			/* ASSERT:  no itds for this endpoint in this uframe */
1799 
1800 			itd = list_entry(iso_sched->td_list.next,
1801 					struct ehci_itd, itd_list);
1802 			list_move_tail(&itd->itd_list, &stream->td_list);
1803 			itd->stream = stream;
1804 			itd->urb = urb;
1805 			itd_init(ehci, stream, itd);
1806 		}
1807 
1808 		uframe = next_uframe & 0x07;
1809 		frame = next_uframe >> 3;
1810 
1811 		itd_patch(ehci, itd, iso_sched, packet, uframe);
1812 
1813 		next_uframe += stream->uperiod;
1814 		next_uframe &= mod - 1;
1815 		packet++;
1816 
1817 		/* link completed itds into the schedule */
1818 		if (((next_uframe >> 3) != frame)
1819 				|| packet == urb->number_of_packets) {
1820 			itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1821 			itd = NULL;
1822 		}
1823 	}
1824 	stream->next_uframe = next_uframe;
1825 
1826 	/* don't need that schedule data any more */
1827 	iso_sched_free(stream, iso_sched);
1828 	urb->hcpriv = stream;
1829 
1830 	++ehci->isoc_count;
1831 	enable_periodic(ehci);
1832 }
1833 
1834 #define	ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1835 
1836 /* Process and recycle a completed ITD.  Return true iff its urb completed,
1837  * and hence its completion callback probably added things to the hardware
1838  * schedule.
1839  *
1840  * Note that we carefully avoid recycling this descriptor until after any
1841  * completion callback runs, so that it won't be reused quickly.  That is,
1842  * assuming (a) no more than two urbs per frame on this endpoint, and also
1843  * (b) only this endpoint's completions submit URBs.  It seems some silicon
1844  * corrupts things if you reuse completed descriptors very quickly...
1845  */
1846 static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd)
1847 {
1848 	struct urb				*urb = itd->urb;
1849 	struct usb_iso_packet_descriptor	*desc;
1850 	u32					t;
1851 	unsigned				uframe;
1852 	int					urb_index = -1;
1853 	struct ehci_iso_stream			*stream = itd->stream;
1854 	struct usb_device			*dev;
1855 	bool					retval = false;
1856 
1857 	/* for each uframe with a packet */
1858 	for (uframe = 0; uframe < 8; uframe++) {
1859 		if (likely(itd->index[uframe] == -1))
1860 			continue;
1861 		urb_index = itd->index[uframe];
1862 		desc = &urb->iso_frame_desc[urb_index];
1863 
1864 		t = hc32_to_cpup(ehci, &itd->hw_transaction[uframe]);
1865 		itd->hw_transaction[uframe] = 0;
1866 
1867 		/* report transfer status */
1868 		if (unlikely(t & ISO_ERRS)) {
1869 			urb->error_count++;
1870 			if (t & EHCI_ISOC_BUF_ERR)
1871 				desc->status = usb_pipein(urb->pipe)
1872 					? -ENOSR  /* hc couldn't read */
1873 					: -ECOMM; /* hc couldn't write */
1874 			else if (t & EHCI_ISOC_BABBLE)
1875 				desc->status = -EOVERFLOW;
1876 			else /* (t & EHCI_ISOC_XACTERR) */
1877 				desc->status = -EPROTO;
1878 
1879 			/* HC need not update length with this error */
1880 			if (!(t & EHCI_ISOC_BABBLE)) {
1881 				desc->actual_length = EHCI_ITD_LENGTH(t);
1882 				urb->actual_length += desc->actual_length;
1883 			}
1884 		} else if (likely((t & EHCI_ISOC_ACTIVE) == 0)) {
1885 			desc->status = 0;
1886 			desc->actual_length = EHCI_ITD_LENGTH(t);
1887 			urb->actual_length += desc->actual_length;
1888 		} else {
1889 			/* URB was too late */
1890 			urb->error_count++;
1891 		}
1892 	}
1893 
1894 	/* handle completion now? */
1895 	if (likely((urb_index + 1) != urb->number_of_packets))
1896 		goto done;
1897 
1898 	/* ASSERT: it's really the last itd for this urb
1899 	list_for_each_entry (itd, &stream->td_list, itd_list)
1900 		BUG_ON (itd->urb == urb);
1901 	 */
1902 
1903 	/* give urb back to the driver; completion often (re)submits */
1904 	dev = urb->dev;
1905 	ehci_urb_done(ehci, urb, 0);
1906 	retval = true;
1907 	urb = NULL;
1908 
1909 	--ehci->isoc_count;
1910 	disable_periodic(ehci);
1911 
1912 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1913 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1914 		if (ehci->amd_pll_fix == 1)
1915 			usb_amd_quirk_pll_enable();
1916 	}
1917 
1918 	if (unlikely(list_is_singular(&stream->td_list)))
1919 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1920 				-= stream->bandwidth;
1921 
1922 done:
1923 	itd->urb = NULL;
1924 
1925 	/* Add to the end of the free list for later reuse */
1926 	list_move_tail(&itd->itd_list, &stream->free_list);
1927 
1928 	/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
1929 	if (list_empty(&stream->td_list)) {
1930 		list_splice_tail_init(&stream->free_list,
1931 				&ehci->cached_itd_list);
1932 		start_free_itds(ehci);
1933 	}
1934 
1935 	return retval;
1936 }
1937 
1938 /*-------------------------------------------------------------------------*/
1939 
1940 static int itd_submit(struct ehci_hcd *ehci, struct urb *urb,
1941 	gfp_t mem_flags)
1942 {
1943 	int			status = -EINVAL;
1944 	unsigned long		flags;
1945 	struct ehci_iso_stream	*stream;
1946 
1947 	/* Get iso_stream head */
1948 	stream = iso_stream_find(ehci, urb);
1949 	if (unlikely(stream == NULL)) {
1950 		ehci_dbg(ehci, "can't get iso stream\n");
1951 		return -ENOMEM;
1952 	}
1953 	if (unlikely(urb->interval != stream->uperiod)) {
1954 		ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
1955 			stream->uperiod, urb->interval);
1956 		goto done;
1957 	}
1958 
1959 #ifdef EHCI_URB_TRACE
1960 	ehci_dbg(ehci,
1961 		"%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1962 		__func__, urb->dev->devpath, urb,
1963 		usb_pipeendpoint(urb->pipe),
1964 		usb_pipein(urb->pipe) ? "in" : "out",
1965 		urb->transfer_buffer_length,
1966 		urb->number_of_packets, urb->interval,
1967 		stream);
1968 #endif
1969 
1970 	/* allocate ITDs w/o locking anything */
1971 	status = itd_urb_transaction(stream, ehci, urb, mem_flags);
1972 	if (unlikely(status < 0)) {
1973 		ehci_dbg(ehci, "can't init itds\n");
1974 		goto done;
1975 	}
1976 
1977 	/* schedule ... need to lock */
1978 	spin_lock_irqsave(&ehci->lock, flags);
1979 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1980 		status = -ESHUTDOWN;
1981 		goto done_not_linked;
1982 	}
1983 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1984 	if (unlikely(status))
1985 		goto done_not_linked;
1986 	status = iso_stream_schedule(ehci, urb, stream);
1987 	if (likely(status == 0)) {
1988 		itd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
1989 	} else if (status > 0) {
1990 		status = 0;
1991 		ehci_urb_done(ehci, urb, 0);
1992 	} else {
1993 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1994 	}
1995  done_not_linked:
1996 	spin_unlock_irqrestore(&ehci->lock, flags);
1997  done:
1998 	return status;
1999 }
2000 
2001 /*-------------------------------------------------------------------------*/
2002 
2003 /*
2004  * "Split ISO TDs" ... used for USB 1.1 devices going through the
2005  * TTs in USB 2.0 hubs.  These need microframe scheduling.
2006  */
2007 
2008 static inline void
2009 sitd_sched_init(
2010 	struct ehci_hcd		*ehci,
2011 	struct ehci_iso_sched	*iso_sched,
2012 	struct ehci_iso_stream	*stream,
2013 	struct urb		*urb
2014 )
2015 {
2016 	unsigned	i;
2017 	dma_addr_t	dma = urb->transfer_dma;
2018 
2019 	/* how many frames are needed for these transfers */
2020 	iso_sched->span = urb->number_of_packets * stream->ps.period;
2021 
2022 	/* figure out per-frame sitd fields that we'll need later
2023 	 * when we fit new sitds into the schedule.
2024 	 */
2025 	for (i = 0; i < urb->number_of_packets; i++) {
2026 		struct ehci_iso_packet	*packet = &iso_sched->packet[i];
2027 		unsigned		length;
2028 		dma_addr_t		buf;
2029 		u32			trans;
2030 
2031 		length = urb->iso_frame_desc[i].length & 0x03ff;
2032 		buf = dma + urb->iso_frame_desc[i].offset;
2033 
2034 		trans = SITD_STS_ACTIVE;
2035 		if (((i + 1) == urb->number_of_packets)
2036 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
2037 			trans |= SITD_IOC;
2038 		trans |= length << 16;
2039 		packet->transaction = cpu_to_hc32(ehci, trans);
2040 
2041 		/* might need to cross a buffer page within a td */
2042 		packet->bufp = buf;
2043 		packet->buf1 = (buf + length) & ~0x0fff;
2044 		if (packet->buf1 != (buf & ~(u64)0x0fff))
2045 			packet->cross = 1;
2046 
2047 		/* OUT uses multiple start-splits */
2048 		if (stream->bEndpointAddress & USB_DIR_IN)
2049 			continue;
2050 		length = (length + 187) / 188;
2051 		if (length > 1) /* BEGIN vs ALL */
2052 			length |= 1 << 3;
2053 		packet->buf1 |= length;
2054 	}
2055 }
2056 
2057 static int
2058 sitd_urb_transaction(
2059 	struct ehci_iso_stream	*stream,
2060 	struct ehci_hcd		*ehci,
2061 	struct urb		*urb,
2062 	gfp_t			mem_flags
2063 )
2064 {
2065 	struct ehci_sitd	*sitd;
2066 	dma_addr_t		sitd_dma;
2067 	int			i;
2068 	struct ehci_iso_sched	*iso_sched;
2069 	unsigned long		flags;
2070 
2071 	iso_sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
2072 	if (iso_sched == NULL)
2073 		return -ENOMEM;
2074 
2075 	sitd_sched_init(ehci, iso_sched, stream, urb);
2076 
2077 	/* allocate/init sITDs */
2078 	spin_lock_irqsave(&ehci->lock, flags);
2079 	for (i = 0; i < urb->number_of_packets; i++) {
2080 
2081 		/* NOTE:  for now, we don't try to handle wraparound cases
2082 		 * for IN (using sitd->hw_backpointer, like a FSTN), which
2083 		 * means we never need two sitds for full speed packets.
2084 		 */
2085 
2086 		/*
2087 		 * Use siTDs from the free list, but not siTDs that may
2088 		 * still be in use by the hardware.
2089 		 */
2090 		if (likely(!list_empty(&stream->free_list))) {
2091 			sitd = list_first_entry(&stream->free_list,
2092 					 struct ehci_sitd, sitd_list);
2093 			if (sitd->frame == ehci->now_frame)
2094 				goto alloc_sitd;
2095 			list_del(&sitd->sitd_list);
2096 			sitd_dma = sitd->sitd_dma;
2097 		} else {
2098  alloc_sitd:
2099 			spin_unlock_irqrestore(&ehci->lock, flags);
2100 			sitd = dma_pool_alloc(ehci->sitd_pool, mem_flags,
2101 					&sitd_dma);
2102 			spin_lock_irqsave(&ehci->lock, flags);
2103 			if (!sitd) {
2104 				iso_sched_free(stream, iso_sched);
2105 				spin_unlock_irqrestore(&ehci->lock, flags);
2106 				return -ENOMEM;
2107 			}
2108 		}
2109 
2110 		memset(sitd, 0, sizeof *sitd);
2111 		sitd->sitd_dma = sitd_dma;
2112 		sitd->frame = NO_FRAME;
2113 		list_add(&sitd->sitd_list, &iso_sched->td_list);
2114 	}
2115 
2116 	/* temporarily store schedule info in hcpriv */
2117 	urb->hcpriv = iso_sched;
2118 	urb->error_count = 0;
2119 
2120 	spin_unlock_irqrestore(&ehci->lock, flags);
2121 	return 0;
2122 }
2123 
2124 /*-------------------------------------------------------------------------*/
2125 
2126 static inline void
2127 sitd_patch(
2128 	struct ehci_hcd		*ehci,
2129 	struct ehci_iso_stream	*stream,
2130 	struct ehci_sitd	*sitd,
2131 	struct ehci_iso_sched	*iso_sched,
2132 	unsigned		index
2133 )
2134 {
2135 	struct ehci_iso_packet	*uf = &iso_sched->packet[index];
2136 	u64			bufp;
2137 
2138 	sitd->hw_next = EHCI_LIST_END(ehci);
2139 	sitd->hw_fullspeed_ep = stream->address;
2140 	sitd->hw_uframe = stream->splits;
2141 	sitd->hw_results = uf->transaction;
2142 	sitd->hw_backpointer = EHCI_LIST_END(ehci);
2143 
2144 	bufp = uf->bufp;
2145 	sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
2146 	sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
2147 
2148 	sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
2149 	if (uf->cross)
2150 		bufp += 4096;
2151 	sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
2152 	sitd->index = index;
2153 }
2154 
2155 static inline void
2156 sitd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
2157 {
2158 	/* note: sitd ordering could matter (CSPLIT then SSPLIT) */
2159 	sitd->sitd_next = ehci->pshadow[frame];
2160 	sitd->hw_next = ehci->periodic[frame];
2161 	ehci->pshadow[frame].sitd = sitd;
2162 	sitd->frame = frame;
2163 	wmb();
2164 	ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
2165 }
2166 
2167 /* fit urb's sitds into the selected schedule slot; activate as needed */
2168 static void sitd_link_urb(
2169 	struct ehci_hcd		*ehci,
2170 	struct urb		*urb,
2171 	unsigned		mod,
2172 	struct ehci_iso_stream	*stream
2173 )
2174 {
2175 	int			packet;
2176 	unsigned		next_uframe;
2177 	struct ehci_iso_sched	*sched = urb->hcpriv;
2178 	struct ehci_sitd	*sitd;
2179 
2180 	next_uframe = stream->next_uframe;
2181 
2182 	if (list_empty(&stream->td_list))
2183 		/* usbfs ignores TT bandwidth */
2184 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2185 				+= stream->bandwidth;
2186 
2187 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2188 		if (ehci->amd_pll_fix == 1)
2189 			usb_amd_quirk_pll_disable();
2190 	}
2191 
2192 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2193 
2194 	/* fill sITDs frame by frame */
2195 	for (packet = sched->first_packet, sitd = NULL;
2196 			packet < urb->number_of_packets;
2197 			packet++) {
2198 
2199 		/* ASSERT:  we have all necessary sitds */
2200 		BUG_ON(list_empty(&sched->td_list));
2201 
2202 		/* ASSERT:  no itds for this endpoint in this frame */
2203 
2204 		sitd = list_entry(sched->td_list.next,
2205 				struct ehci_sitd, sitd_list);
2206 		list_move_tail(&sitd->sitd_list, &stream->td_list);
2207 		sitd->stream = stream;
2208 		sitd->urb = urb;
2209 
2210 		sitd_patch(ehci, stream, sitd, sched, packet);
2211 		sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2212 				sitd);
2213 
2214 		next_uframe += stream->uperiod;
2215 	}
2216 	stream->next_uframe = next_uframe & (mod - 1);
2217 
2218 	/* don't need that schedule data any more */
2219 	iso_sched_free(stream, sched);
2220 	urb->hcpriv = stream;
2221 
2222 	++ehci->isoc_count;
2223 	enable_periodic(ehci);
2224 }
2225 
2226 /*-------------------------------------------------------------------------*/
2227 
2228 #define	SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2229 				| SITD_STS_XACT | SITD_STS_MMF)
2230 
2231 /* Process and recycle a completed SITD.  Return true iff its urb completed,
2232  * and hence its completion callback probably added things to the hardware
2233  * schedule.
2234  *
2235  * Note that we carefully avoid recycling this descriptor until after any
2236  * completion callback runs, so that it won't be reused quickly.  That is,
2237  * assuming (a) no more than two urbs per frame on this endpoint, and also
2238  * (b) only this endpoint's completions submit URBs.  It seems some silicon
2239  * corrupts things if you reuse completed descriptors very quickly...
2240  */
2241 static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd)
2242 {
2243 	struct urb				*urb = sitd->urb;
2244 	struct usb_iso_packet_descriptor	*desc;
2245 	u32					t;
2246 	int					urb_index;
2247 	struct ehci_iso_stream			*stream = sitd->stream;
2248 	struct usb_device			*dev;
2249 	bool					retval = false;
2250 
2251 	urb_index = sitd->index;
2252 	desc = &urb->iso_frame_desc[urb_index];
2253 	t = hc32_to_cpup(ehci, &sitd->hw_results);
2254 
2255 	/* report transfer status */
2256 	if (unlikely(t & SITD_ERRS)) {
2257 		urb->error_count++;
2258 		if (t & SITD_STS_DBE)
2259 			desc->status = usb_pipein(urb->pipe)
2260 				? -ENOSR  /* hc couldn't read */
2261 				: -ECOMM; /* hc couldn't write */
2262 		else if (t & SITD_STS_BABBLE)
2263 			desc->status = -EOVERFLOW;
2264 		else /* XACT, MMF, etc */
2265 			desc->status = -EPROTO;
2266 	} else if (unlikely(t & SITD_STS_ACTIVE)) {
2267 		/* URB was too late */
2268 		urb->error_count++;
2269 	} else {
2270 		desc->status = 0;
2271 		desc->actual_length = desc->length - SITD_LENGTH(t);
2272 		urb->actual_length += desc->actual_length;
2273 	}
2274 
2275 	/* handle completion now? */
2276 	if ((urb_index + 1) != urb->number_of_packets)
2277 		goto done;
2278 
2279 	/* ASSERT: it's really the last sitd for this urb
2280 	list_for_each_entry (sitd, &stream->td_list, sitd_list)
2281 		BUG_ON (sitd->urb == urb);
2282 	 */
2283 
2284 	/* give urb back to the driver; completion often (re)submits */
2285 	dev = urb->dev;
2286 	ehci_urb_done(ehci, urb, 0);
2287 	retval = true;
2288 	urb = NULL;
2289 
2290 	--ehci->isoc_count;
2291 	disable_periodic(ehci);
2292 
2293 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2294 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2295 		if (ehci->amd_pll_fix == 1)
2296 			usb_amd_quirk_pll_enable();
2297 	}
2298 
2299 	if (list_is_singular(&stream->td_list))
2300 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2301 				-= stream->bandwidth;
2302 
2303 done:
2304 	sitd->urb = NULL;
2305 
2306 	/* Add to the end of the free list for later reuse */
2307 	list_move_tail(&sitd->sitd_list, &stream->free_list);
2308 
2309 	/* Recycle the siTDs when the pipeline is empty (ep no longer in use) */
2310 	if (list_empty(&stream->td_list)) {
2311 		list_splice_tail_init(&stream->free_list,
2312 				&ehci->cached_sitd_list);
2313 		start_free_itds(ehci);
2314 	}
2315 
2316 	return retval;
2317 }
2318 
2319 
2320 static int sitd_submit(struct ehci_hcd *ehci, struct urb *urb,
2321 	gfp_t mem_flags)
2322 {
2323 	int			status = -EINVAL;
2324 	unsigned long		flags;
2325 	struct ehci_iso_stream	*stream;
2326 
2327 	/* Get iso_stream head */
2328 	stream = iso_stream_find(ehci, urb);
2329 	if (stream == NULL) {
2330 		ehci_dbg(ehci, "can't get iso stream\n");
2331 		return -ENOMEM;
2332 	}
2333 	if (urb->interval != stream->ps.period) {
2334 		ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
2335 			stream->ps.period, urb->interval);
2336 		goto done;
2337 	}
2338 
2339 #ifdef EHCI_URB_TRACE
2340 	ehci_dbg(ehci,
2341 		"submit %p dev%s ep%d%s-iso len %d\n",
2342 		urb, urb->dev->devpath,
2343 		usb_pipeendpoint(urb->pipe),
2344 		usb_pipein(urb->pipe) ? "in" : "out",
2345 		urb->transfer_buffer_length);
2346 #endif
2347 
2348 	/* allocate SITDs */
2349 	status = sitd_urb_transaction(stream, ehci, urb, mem_flags);
2350 	if (status < 0) {
2351 		ehci_dbg(ehci, "can't init sitds\n");
2352 		goto done;
2353 	}
2354 
2355 	/* schedule ... need to lock */
2356 	spin_lock_irqsave(&ehci->lock, flags);
2357 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2358 		status = -ESHUTDOWN;
2359 		goto done_not_linked;
2360 	}
2361 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2362 	if (unlikely(status))
2363 		goto done_not_linked;
2364 	status = iso_stream_schedule(ehci, urb, stream);
2365 	if (likely(status == 0)) {
2366 		sitd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
2367 	} else if (status > 0) {
2368 		status = 0;
2369 		ehci_urb_done(ehci, urb, 0);
2370 	} else {
2371 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2372 	}
2373  done_not_linked:
2374 	spin_unlock_irqrestore(&ehci->lock, flags);
2375  done:
2376 	return status;
2377 }
2378 
2379 /*-------------------------------------------------------------------------*/
2380 
2381 static void scan_isoc(struct ehci_hcd *ehci)
2382 {
2383 	unsigned		uf, now_frame, frame;
2384 	unsigned		fmask = ehci->periodic_size - 1;
2385 	bool			modified, live;
2386 	union ehci_shadow	q, *q_p;
2387 	__hc32			type, *hw_p;
2388 
2389 	/*
2390 	 * When running, scan from last scan point up to "now"
2391 	 * else clean up by scanning everything that's left.
2392 	 * Touches as few pages as possible:  cache-friendly.
2393 	 */
2394 	if (ehci->rh_state >= EHCI_RH_RUNNING) {
2395 		uf = ehci_read_frame_index(ehci);
2396 		now_frame = (uf >> 3) & fmask;
2397 		live = true;
2398 	} else  {
2399 		now_frame = (ehci->last_iso_frame - 1) & fmask;
2400 		live = false;
2401 	}
2402 	ehci->now_frame = now_frame;
2403 
2404 	frame = ehci->last_iso_frame;
2405 
2406 restart:
2407 	/* Scan each element in frame's queue for completions */
2408 	q_p = &ehci->pshadow[frame];
2409 	hw_p = &ehci->periodic[frame];
2410 	q.ptr = q_p->ptr;
2411 	type = Q_NEXT_TYPE(ehci, *hw_p);
2412 	modified = false;
2413 
2414 	while (q.ptr != NULL) {
2415 		switch (hc32_to_cpu(ehci, type)) {
2416 		case Q_TYPE_ITD:
2417 			/*
2418 			 * If this ITD is still active, leave it for
2419 			 * later processing ... check the next entry.
2420 			 * No need to check for activity unless the
2421 			 * frame is current.
2422 			 */
2423 			if (frame == now_frame && live) {
2424 				rmb();
2425 				for (uf = 0; uf < 8; uf++) {
2426 					if (q.itd->hw_transaction[uf] &
2427 							ITD_ACTIVE(ehci))
2428 						break;
2429 				}
2430 				if (uf < 8) {
2431 					q_p = &q.itd->itd_next;
2432 					hw_p = &q.itd->hw_next;
2433 					type = Q_NEXT_TYPE(ehci,
2434 							q.itd->hw_next);
2435 					q = *q_p;
2436 					break;
2437 				}
2438 			}
2439 
2440 			/*
2441 			 * Take finished ITDs out of the schedule
2442 			 * and process them:  recycle, maybe report
2443 			 * URB completion.  HC won't cache the
2444 			 * pointer for much longer, if at all.
2445 			 */
2446 			*q_p = q.itd->itd_next;
2447 			if (!ehci->use_dummy_qh ||
2448 					q.itd->hw_next != EHCI_LIST_END(ehci))
2449 				*hw_p = q.itd->hw_next;
2450 			else
2451 				*hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
2452 			type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2453 			wmb();
2454 			modified = itd_complete(ehci, q.itd);
2455 			q = *q_p;
2456 			break;
2457 		case Q_TYPE_SITD:
2458 			/*
2459 			 * If this SITD is still active, leave it for
2460 			 * later processing ... check the next entry.
2461 			 * No need to check for activity unless the
2462 			 * frame is current.
2463 			 */
2464 			if (((frame == now_frame) ||
2465 					(((frame + 1) & fmask) == now_frame))
2466 				&& live
2467 				&& (q.sitd->hw_results & SITD_ACTIVE(ehci))) {
2468 
2469 				q_p = &q.sitd->sitd_next;
2470 				hw_p = &q.sitd->hw_next;
2471 				type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2472 				q = *q_p;
2473 				break;
2474 			}
2475 
2476 			/*
2477 			 * Take finished SITDs out of the schedule
2478 			 * and process them:  recycle, maybe report
2479 			 * URB completion.
2480 			 */
2481 			*q_p = q.sitd->sitd_next;
2482 			if (!ehci->use_dummy_qh ||
2483 					q.sitd->hw_next != EHCI_LIST_END(ehci))
2484 				*hw_p = q.sitd->hw_next;
2485 			else
2486 				*hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
2487 			type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2488 			wmb();
2489 			modified = sitd_complete(ehci, q.sitd);
2490 			q = *q_p;
2491 			break;
2492 		default:
2493 			ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n",
2494 					type, frame, q.ptr);
2495 			/* BUG(); */
2496 			/* FALL THROUGH */
2497 		case Q_TYPE_QH:
2498 		case Q_TYPE_FSTN:
2499 			/* End of the iTDs and siTDs */
2500 			q.ptr = NULL;
2501 			break;
2502 		}
2503 
2504 		/* Assume completion callbacks modify the queue */
2505 		if (unlikely(modified && ehci->isoc_count > 0))
2506 			goto restart;
2507 	}
2508 
2509 	/* Stop when we have reached the current frame */
2510 	if (frame == now_frame)
2511 		return;
2512 
2513 	/* The last frame may still have active siTDs */
2514 	ehci->last_iso_frame = frame;
2515 	frame = (frame + 1) & fmask;
2516 
2517 	goto restart;
2518 }
2519