1 /* 2 * Copyright (c) 2001-2004 by David Brownell 3 * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License as published by the 7 * Free Software Foundation; either version 2 of the License, or (at your 8 * option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, but 11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software Foundation, 17 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 18 */ 19 20 /* this file is part of ehci-hcd.c */ 21 22 /*-------------------------------------------------------------------------*/ 23 24 /* 25 * EHCI scheduled transaction support: interrupt, iso, split iso 26 * These are called "periodic" transactions in the EHCI spec. 27 * 28 * Note that for interrupt transfers, the QH/QTD manipulation is shared 29 * with the "asynchronous" transaction support (control/bulk transfers). 30 * The only real difference is in how interrupt transfers are scheduled. 31 * 32 * For ISO, we make an "iso_stream" head to serve the same role as a QH. 33 * It keeps track of every ITD (or SITD) that's linked, and holds enough 34 * pre-calculated schedule data to make appending to the queue be quick. 35 */ 36 37 static int ehci_get_frame (struct usb_hcd *hcd); 38 39 /*-------------------------------------------------------------------------*/ 40 41 /* 42 * periodic_next_shadow - return "next" pointer on shadow list 43 * @periodic: host pointer to qh/itd/sitd 44 * @tag: hardware tag for type of this record 45 */ 46 static union ehci_shadow * 47 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic, 48 __hc32 tag) 49 { 50 switch (hc32_to_cpu(ehci, tag)) { 51 case Q_TYPE_QH: 52 return &periodic->qh->qh_next; 53 case Q_TYPE_FSTN: 54 return &periodic->fstn->fstn_next; 55 case Q_TYPE_ITD: 56 return &periodic->itd->itd_next; 57 // case Q_TYPE_SITD: 58 default: 59 return &periodic->sitd->sitd_next; 60 } 61 } 62 63 static __hc32 * 64 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic, 65 __hc32 tag) 66 { 67 switch (hc32_to_cpu(ehci, tag)) { 68 /* our ehci_shadow.qh is actually software part */ 69 case Q_TYPE_QH: 70 return &periodic->qh->hw->hw_next; 71 /* others are hw parts */ 72 default: 73 return periodic->hw_next; 74 } 75 } 76 77 /* caller must hold ehci->lock */ 78 static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr) 79 { 80 union ehci_shadow *prev_p = &ehci->pshadow[frame]; 81 __hc32 *hw_p = &ehci->periodic[frame]; 82 union ehci_shadow here = *prev_p; 83 84 /* find predecessor of "ptr"; hw and shadow lists are in sync */ 85 while (here.ptr && here.ptr != ptr) { 86 prev_p = periodic_next_shadow(ehci, prev_p, 87 Q_NEXT_TYPE(ehci, *hw_p)); 88 hw_p = shadow_next_periodic(ehci, &here, 89 Q_NEXT_TYPE(ehci, *hw_p)); 90 here = *prev_p; 91 } 92 /* an interrupt entry (at list end) could have been shared */ 93 if (!here.ptr) 94 return; 95 96 /* update shadow and hardware lists ... the old "next" pointers 97 * from ptr may still be in use, the caller updates them. 98 */ 99 *prev_p = *periodic_next_shadow(ehci, &here, 100 Q_NEXT_TYPE(ehci, *hw_p)); 101 102 if (!ehci->use_dummy_qh || 103 *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p)) 104 != EHCI_LIST_END(ehci)) 105 *hw_p = *shadow_next_periodic(ehci, &here, 106 Q_NEXT_TYPE(ehci, *hw_p)); 107 else 108 *hw_p = ehci->dummy->qh_dma; 109 } 110 111 /* how many of the uframe's 125 usecs are allocated? */ 112 static unsigned short 113 periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe) 114 { 115 __hc32 *hw_p = &ehci->periodic [frame]; 116 union ehci_shadow *q = &ehci->pshadow [frame]; 117 unsigned usecs = 0; 118 struct ehci_qh_hw *hw; 119 120 while (q->ptr) { 121 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) { 122 case Q_TYPE_QH: 123 hw = q->qh->hw; 124 /* is it in the S-mask? */ 125 if (hw->hw_info2 & cpu_to_hc32(ehci, 1 << uframe)) 126 usecs += q->qh->usecs; 127 /* ... or C-mask? */ 128 if (hw->hw_info2 & cpu_to_hc32(ehci, 129 1 << (8 + uframe))) 130 usecs += q->qh->c_usecs; 131 hw_p = &hw->hw_next; 132 q = &q->qh->qh_next; 133 break; 134 // case Q_TYPE_FSTN: 135 default: 136 /* for "save place" FSTNs, count the relevant INTR 137 * bandwidth from the previous frame 138 */ 139 if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) { 140 ehci_dbg (ehci, "ignoring FSTN cost ...\n"); 141 } 142 hw_p = &q->fstn->hw_next; 143 q = &q->fstn->fstn_next; 144 break; 145 case Q_TYPE_ITD: 146 if (q->itd->hw_transaction[uframe]) 147 usecs += q->itd->stream->usecs; 148 hw_p = &q->itd->hw_next; 149 q = &q->itd->itd_next; 150 break; 151 case Q_TYPE_SITD: 152 /* is it in the S-mask? (count SPLIT, DATA) */ 153 if (q->sitd->hw_uframe & cpu_to_hc32(ehci, 154 1 << uframe)) { 155 if (q->sitd->hw_fullspeed_ep & 156 cpu_to_hc32(ehci, 1<<31)) 157 usecs += q->sitd->stream->usecs; 158 else /* worst case for OUT start-split */ 159 usecs += HS_USECS_ISO (188); 160 } 161 162 /* ... C-mask? (count CSPLIT, DATA) */ 163 if (q->sitd->hw_uframe & 164 cpu_to_hc32(ehci, 1 << (8 + uframe))) { 165 /* worst case for IN complete-split */ 166 usecs += q->sitd->stream->c_usecs; 167 } 168 169 hw_p = &q->sitd->hw_next; 170 q = &q->sitd->sitd_next; 171 break; 172 } 173 } 174 #ifdef DEBUG 175 if (usecs > 100) 176 ehci_err (ehci, "uframe %d sched overrun: %d usecs\n", 177 frame * 8 + uframe, usecs); 178 #endif 179 return usecs; 180 } 181 182 /*-------------------------------------------------------------------------*/ 183 184 static int same_tt (struct usb_device *dev1, struct usb_device *dev2) 185 { 186 if (!dev1->tt || !dev2->tt) 187 return 0; 188 if (dev1->tt != dev2->tt) 189 return 0; 190 if (dev1->tt->multi) 191 return dev1->ttport == dev2->ttport; 192 else 193 return 1; 194 } 195 196 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED 197 198 /* Which uframe does the low/fullspeed transfer start in? 199 * 200 * The parameter is the mask of ssplits in "H-frame" terms 201 * and this returns the transfer start uframe in "B-frame" terms, 202 * which allows both to match, e.g. a ssplit in "H-frame" uframe 0 203 * will cause a transfer in "B-frame" uframe 0. "B-frames" lag 204 * "H-frames" by 1 uframe. See the EHCI spec sec 4.5 and figure 4.7. 205 */ 206 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask) 207 { 208 unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask); 209 if (!smask) { 210 ehci_err(ehci, "invalid empty smask!\n"); 211 /* uframe 7 can't have bw so this will indicate failure */ 212 return 7; 213 } 214 return ffs(smask) - 1; 215 } 216 217 static const unsigned char 218 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 }; 219 220 /* carryover low/fullspeed bandwidth that crosses uframe boundries */ 221 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8]) 222 { 223 int i; 224 for (i=0; i<7; i++) { 225 if (max_tt_usecs[i] < tt_usecs[i]) { 226 tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i]; 227 tt_usecs[i] = max_tt_usecs[i]; 228 } 229 } 230 } 231 232 /* How many of the tt's periodic downstream 1000 usecs are allocated? 233 * 234 * While this measures the bandwidth in terms of usecs/uframe, 235 * the low/fullspeed bus has no notion of uframes, so any particular 236 * low/fullspeed transfer can "carry over" from one uframe to the next, 237 * since the TT just performs downstream transfers in sequence. 238 * 239 * For example two separate 100 usec transfers can start in the same uframe, 240 * and the second one would "carry over" 75 usecs into the next uframe. 241 */ 242 static void 243 periodic_tt_usecs ( 244 struct ehci_hcd *ehci, 245 struct usb_device *dev, 246 unsigned frame, 247 unsigned short tt_usecs[8] 248 ) 249 { 250 __hc32 *hw_p = &ehci->periodic [frame]; 251 union ehci_shadow *q = &ehci->pshadow [frame]; 252 unsigned char uf; 253 254 memset(tt_usecs, 0, 16); 255 256 while (q->ptr) { 257 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) { 258 case Q_TYPE_ITD: 259 hw_p = &q->itd->hw_next; 260 q = &q->itd->itd_next; 261 continue; 262 case Q_TYPE_QH: 263 if (same_tt(dev, q->qh->dev)) { 264 uf = tt_start_uframe(ehci, q->qh->hw->hw_info2); 265 tt_usecs[uf] += q->qh->tt_usecs; 266 } 267 hw_p = &q->qh->hw->hw_next; 268 q = &q->qh->qh_next; 269 continue; 270 case Q_TYPE_SITD: 271 if (same_tt(dev, q->sitd->urb->dev)) { 272 uf = tt_start_uframe(ehci, q->sitd->hw_uframe); 273 tt_usecs[uf] += q->sitd->stream->tt_usecs; 274 } 275 hw_p = &q->sitd->hw_next; 276 q = &q->sitd->sitd_next; 277 continue; 278 // case Q_TYPE_FSTN: 279 default: 280 ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n", 281 frame); 282 hw_p = &q->fstn->hw_next; 283 q = &q->fstn->fstn_next; 284 } 285 } 286 287 carryover_tt_bandwidth(tt_usecs); 288 289 if (max_tt_usecs[7] < tt_usecs[7]) 290 ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n", 291 frame, tt_usecs[7] - max_tt_usecs[7]); 292 } 293 294 /* 295 * Return true if the device's tt's downstream bus is available for a 296 * periodic transfer of the specified length (usecs), starting at the 297 * specified frame/uframe. Note that (as summarized in section 11.19 298 * of the usb 2.0 spec) TTs can buffer multiple transactions for each 299 * uframe. 300 * 301 * The uframe parameter is when the fullspeed/lowspeed transfer 302 * should be executed in "B-frame" terms, which is the same as the 303 * highspeed ssplit's uframe (which is in "H-frame" terms). For example 304 * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0. 305 * See the EHCI spec sec 4.5 and fig 4.7. 306 * 307 * This checks if the full/lowspeed bus, at the specified starting uframe, 308 * has the specified bandwidth available, according to rules listed 309 * in USB 2.0 spec section 11.18.1 fig 11-60. 310 * 311 * This does not check if the transfer would exceed the max ssplit 312 * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4, 313 * since proper scheduling limits ssplits to less than 16 per uframe. 314 */ 315 static int tt_available ( 316 struct ehci_hcd *ehci, 317 unsigned period, 318 struct usb_device *dev, 319 unsigned frame, 320 unsigned uframe, 321 u16 usecs 322 ) 323 { 324 if ((period == 0) || (uframe >= 7)) /* error */ 325 return 0; 326 327 for (; frame < ehci->periodic_size; frame += period) { 328 unsigned short tt_usecs[8]; 329 330 periodic_tt_usecs (ehci, dev, frame, tt_usecs); 331 332 ehci_vdbg(ehci, "tt frame %d check %d usecs start uframe %d in" 333 " schedule %d/%d/%d/%d/%d/%d/%d/%d\n", 334 frame, usecs, uframe, 335 tt_usecs[0], tt_usecs[1], tt_usecs[2], tt_usecs[3], 336 tt_usecs[4], tt_usecs[5], tt_usecs[6], tt_usecs[7]); 337 338 if (max_tt_usecs[uframe] <= tt_usecs[uframe]) { 339 ehci_vdbg(ehci, "frame %d uframe %d fully scheduled\n", 340 frame, uframe); 341 return 0; 342 } 343 344 /* special case for isoc transfers larger than 125us: 345 * the first and each subsequent fully used uframe 346 * must be empty, so as to not illegally delay 347 * already scheduled transactions 348 */ 349 if (125 < usecs) { 350 int ufs = (usecs / 125); 351 int i; 352 for (i = uframe; i < (uframe + ufs) && i < 8; i++) 353 if (0 < tt_usecs[i]) { 354 ehci_vdbg(ehci, 355 "multi-uframe xfer can't fit " 356 "in frame %d uframe %d\n", 357 frame, i); 358 return 0; 359 } 360 } 361 362 tt_usecs[uframe] += usecs; 363 364 carryover_tt_bandwidth(tt_usecs); 365 366 /* fail if the carryover pushed bw past the last uframe's limit */ 367 if (max_tt_usecs[7] < tt_usecs[7]) { 368 ehci_vdbg(ehci, 369 "tt unavailable usecs %d frame %d uframe %d\n", 370 usecs, frame, uframe); 371 return 0; 372 } 373 } 374 375 return 1; 376 } 377 378 #else 379 380 /* return true iff the device's transaction translator is available 381 * for a periodic transfer starting at the specified frame, using 382 * all the uframes in the mask. 383 */ 384 static int tt_no_collision ( 385 struct ehci_hcd *ehci, 386 unsigned period, 387 struct usb_device *dev, 388 unsigned frame, 389 u32 uf_mask 390 ) 391 { 392 if (period == 0) /* error */ 393 return 0; 394 395 /* note bandwidth wastage: split never follows csplit 396 * (different dev or endpoint) until the next uframe. 397 * calling convention doesn't make that distinction. 398 */ 399 for (; frame < ehci->periodic_size; frame += period) { 400 union ehci_shadow here; 401 __hc32 type; 402 struct ehci_qh_hw *hw; 403 404 here = ehci->pshadow [frame]; 405 type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]); 406 while (here.ptr) { 407 switch (hc32_to_cpu(ehci, type)) { 408 case Q_TYPE_ITD: 409 type = Q_NEXT_TYPE(ehci, here.itd->hw_next); 410 here = here.itd->itd_next; 411 continue; 412 case Q_TYPE_QH: 413 hw = here.qh->hw; 414 if (same_tt (dev, here.qh->dev)) { 415 u32 mask; 416 417 mask = hc32_to_cpu(ehci, 418 hw->hw_info2); 419 /* "knows" no gap is needed */ 420 mask |= mask >> 8; 421 if (mask & uf_mask) 422 break; 423 } 424 type = Q_NEXT_TYPE(ehci, hw->hw_next); 425 here = here.qh->qh_next; 426 continue; 427 case Q_TYPE_SITD: 428 if (same_tt (dev, here.sitd->urb->dev)) { 429 u16 mask; 430 431 mask = hc32_to_cpu(ehci, here.sitd 432 ->hw_uframe); 433 /* FIXME assumes no gap for IN! */ 434 mask |= mask >> 8; 435 if (mask & uf_mask) 436 break; 437 } 438 type = Q_NEXT_TYPE(ehci, here.sitd->hw_next); 439 here = here.sitd->sitd_next; 440 continue; 441 // case Q_TYPE_FSTN: 442 default: 443 ehci_dbg (ehci, 444 "periodic frame %d bogus type %d\n", 445 frame, type); 446 } 447 448 /* collision or error */ 449 return 0; 450 } 451 } 452 453 /* no collision */ 454 return 1; 455 } 456 457 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */ 458 459 /*-------------------------------------------------------------------------*/ 460 461 static int enable_periodic (struct ehci_hcd *ehci) 462 { 463 u32 cmd; 464 int status; 465 466 if (ehci->periodic_sched++) 467 return 0; 468 469 /* did clearing PSE did take effect yet? 470 * takes effect only at frame boundaries... 471 */ 472 status = handshake_on_error_set_halt(ehci, &ehci->regs->status, 473 STS_PSS, 0, 9 * 125); 474 if (status) 475 return status; 476 477 cmd = ehci_readl(ehci, &ehci->regs->command) | CMD_PSE; 478 ehci_writel(ehci, cmd, &ehci->regs->command); 479 /* posted write ... PSS happens later */ 480 ehci_to_hcd(ehci)->state = HC_STATE_RUNNING; 481 482 /* make sure ehci_work scans these */ 483 ehci->next_uframe = ehci_readl(ehci, &ehci->regs->frame_index) 484 % (ehci->periodic_size << 3); 485 if (unlikely(ehci->broken_periodic)) 486 ehci->last_periodic_enable = ktime_get_real(); 487 return 0; 488 } 489 490 static int disable_periodic (struct ehci_hcd *ehci) 491 { 492 u32 cmd; 493 int status; 494 495 if (--ehci->periodic_sched) 496 return 0; 497 498 if (unlikely(ehci->broken_periodic)) { 499 /* delay experimentally determined */ 500 ktime_t safe = ktime_add_us(ehci->last_periodic_enable, 1000); 501 ktime_t now = ktime_get_real(); 502 s64 delay = ktime_us_delta(safe, now); 503 504 if (unlikely(delay > 0)) 505 udelay(delay); 506 } 507 508 /* did setting PSE not take effect yet? 509 * takes effect only at frame boundaries... 510 */ 511 status = handshake_on_error_set_halt(ehci, &ehci->regs->status, 512 STS_PSS, STS_PSS, 9 * 125); 513 if (status) 514 return status; 515 516 cmd = ehci_readl(ehci, &ehci->regs->command) & ~CMD_PSE; 517 ehci_writel(ehci, cmd, &ehci->regs->command); 518 /* posted write ... */ 519 520 free_cached_lists(ehci); 521 522 ehci->next_uframe = -1; 523 return 0; 524 } 525 526 /*-------------------------------------------------------------------------*/ 527 528 /* periodic schedule slots have iso tds (normal or split) first, then a 529 * sparse tree for active interrupt transfers. 530 * 531 * this just links in a qh; caller guarantees uframe masks are set right. 532 * no FSTN support (yet; ehci 0.96+) 533 */ 534 static int qh_link_periodic (struct ehci_hcd *ehci, struct ehci_qh *qh) 535 { 536 unsigned i; 537 unsigned period = qh->period; 538 539 dev_dbg (&qh->dev->dev, 540 "link qh%d-%04x/%p start %d [%d/%d us]\n", 541 period, hc32_to_cpup(ehci, &qh->hw->hw_info2) 542 & (QH_CMASK | QH_SMASK), 543 qh, qh->start, qh->usecs, qh->c_usecs); 544 545 /* high bandwidth, or otherwise every microframe */ 546 if (period == 0) 547 period = 1; 548 549 for (i = qh->start; i < ehci->periodic_size; i += period) { 550 union ehci_shadow *prev = &ehci->pshadow[i]; 551 __hc32 *hw_p = &ehci->periodic[i]; 552 union ehci_shadow here = *prev; 553 __hc32 type = 0; 554 555 /* skip the iso nodes at list head */ 556 while (here.ptr) { 557 type = Q_NEXT_TYPE(ehci, *hw_p); 558 if (type == cpu_to_hc32(ehci, Q_TYPE_QH)) 559 break; 560 prev = periodic_next_shadow(ehci, prev, type); 561 hw_p = shadow_next_periodic(ehci, &here, type); 562 here = *prev; 563 } 564 565 /* sorting each branch by period (slow-->fast) 566 * enables sharing interior tree nodes 567 */ 568 while (here.ptr && qh != here.qh) { 569 if (qh->period > here.qh->period) 570 break; 571 prev = &here.qh->qh_next; 572 hw_p = &here.qh->hw->hw_next; 573 here = *prev; 574 } 575 /* link in this qh, unless some earlier pass did that */ 576 if (qh != here.qh) { 577 qh->qh_next = here; 578 if (here.qh) 579 qh->hw->hw_next = *hw_p; 580 wmb (); 581 prev->qh = qh; 582 *hw_p = QH_NEXT (ehci, qh->qh_dma); 583 } 584 } 585 qh->qh_state = QH_STATE_LINKED; 586 qh->xacterrs = 0; 587 qh_get (qh); 588 589 /* update per-qh bandwidth for usbfs */ 590 ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period 591 ? ((qh->usecs + qh->c_usecs) / qh->period) 592 : (qh->usecs * 8); 593 594 /* maybe enable periodic schedule processing */ 595 return enable_periodic(ehci); 596 } 597 598 static int qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh) 599 { 600 unsigned i; 601 unsigned period; 602 603 // FIXME: 604 // IF this isn't high speed 605 // and this qh is active in the current uframe 606 // (and overlay token SplitXstate is false?) 607 // THEN 608 // qh->hw_info1 |= cpu_to_hc32(1 << 7 /* "ignore" */); 609 610 /* high bandwidth, or otherwise part of every microframe */ 611 if ((period = qh->period) == 0) 612 period = 1; 613 614 for (i = qh->start; i < ehci->periodic_size; i += period) 615 periodic_unlink (ehci, i, qh); 616 617 /* update per-qh bandwidth for usbfs */ 618 ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period 619 ? ((qh->usecs + qh->c_usecs) / qh->period) 620 : (qh->usecs * 8); 621 622 dev_dbg (&qh->dev->dev, 623 "unlink qh%d-%04x/%p start %d [%d/%d us]\n", 624 qh->period, 625 hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK), 626 qh, qh->start, qh->usecs, qh->c_usecs); 627 628 /* qh->qh_next still "live" to HC */ 629 qh->qh_state = QH_STATE_UNLINK; 630 qh->qh_next.ptr = NULL; 631 qh_put (qh); 632 633 /* maybe turn off periodic schedule */ 634 return disable_periodic(ehci); 635 } 636 637 static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh) 638 { 639 unsigned wait; 640 struct ehci_qh_hw *hw = qh->hw; 641 int rc; 642 643 /* If the QH isn't linked then there's nothing we can do 644 * unless we were called during a giveback, in which case 645 * qh_completions() has to deal with it. 646 */ 647 if (qh->qh_state != QH_STATE_LINKED) { 648 if (qh->qh_state == QH_STATE_COMPLETING) 649 qh->needs_rescan = 1; 650 return; 651 } 652 653 qh_unlink_periodic (ehci, qh); 654 655 /* simple/paranoid: always delay, expecting the HC needs to read 656 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and 657 * expect khubd to clean up after any CSPLITs we won't issue. 658 * active high speed queues may need bigger delays... 659 */ 660 if (list_empty (&qh->qtd_list) 661 || (cpu_to_hc32(ehci, QH_CMASK) 662 & hw->hw_info2) != 0) 663 wait = 2; 664 else 665 wait = 55; /* worst case: 3 * 1024 */ 666 667 udelay (wait); 668 qh->qh_state = QH_STATE_IDLE; 669 hw->hw_next = EHCI_LIST_END(ehci); 670 wmb (); 671 672 qh_completions(ehci, qh); 673 674 /* reschedule QH iff another request is queued */ 675 if (!list_empty(&qh->qtd_list) && 676 HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) { 677 rc = qh_schedule(ehci, qh); 678 679 /* An error here likely indicates handshake failure 680 * or no space left in the schedule. Neither fault 681 * should happen often ... 682 * 683 * FIXME kill the now-dysfunctional queued urbs 684 */ 685 if (rc != 0) 686 ehci_err(ehci, "can't reschedule qh %p, err %d\n", 687 qh, rc); 688 } 689 } 690 691 /*-------------------------------------------------------------------------*/ 692 693 static int check_period ( 694 struct ehci_hcd *ehci, 695 unsigned frame, 696 unsigned uframe, 697 unsigned period, 698 unsigned usecs 699 ) { 700 int claimed; 701 702 /* complete split running into next frame? 703 * given FSTN support, we could sometimes check... 704 */ 705 if (uframe >= 8) 706 return 0; 707 708 /* 709 * 80% periodic == 100 usec/uframe available 710 * convert "usecs we need" to "max already claimed" 711 */ 712 usecs = 100 - usecs; 713 714 /* we "know" 2 and 4 uframe intervals were rejected; so 715 * for period 0, check _every_ microframe in the schedule. 716 */ 717 if (unlikely (period == 0)) { 718 do { 719 for (uframe = 0; uframe < 7; uframe++) { 720 claimed = periodic_usecs (ehci, frame, uframe); 721 if (claimed > usecs) 722 return 0; 723 } 724 } while ((frame += 1) < ehci->periodic_size); 725 726 /* just check the specified uframe, at that period */ 727 } else { 728 do { 729 claimed = periodic_usecs (ehci, frame, uframe); 730 if (claimed > usecs) 731 return 0; 732 } while ((frame += period) < ehci->periodic_size); 733 } 734 735 // success! 736 return 1; 737 } 738 739 static int check_intr_schedule ( 740 struct ehci_hcd *ehci, 741 unsigned frame, 742 unsigned uframe, 743 const struct ehci_qh *qh, 744 __hc32 *c_maskp 745 ) 746 { 747 int retval = -ENOSPC; 748 u8 mask = 0; 749 750 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */ 751 goto done; 752 753 if (!check_period (ehci, frame, uframe, qh->period, qh->usecs)) 754 goto done; 755 if (!qh->c_usecs) { 756 retval = 0; 757 *c_maskp = 0; 758 goto done; 759 } 760 761 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED 762 if (tt_available (ehci, qh->period, qh->dev, frame, uframe, 763 qh->tt_usecs)) { 764 unsigned i; 765 766 /* TODO : this may need FSTN for SSPLIT in uframe 5. */ 767 for (i=uframe+1; i<8 && i<uframe+4; i++) 768 if (!check_period (ehci, frame, i, 769 qh->period, qh->c_usecs)) 770 goto done; 771 else 772 mask |= 1 << i; 773 774 retval = 0; 775 776 *c_maskp = cpu_to_hc32(ehci, mask << 8); 777 } 778 #else 779 /* Make sure this tt's buffer is also available for CSPLITs. 780 * We pessimize a bit; probably the typical full speed case 781 * doesn't need the second CSPLIT. 782 * 783 * NOTE: both SPLIT and CSPLIT could be checked in just 784 * one smart pass... 785 */ 786 mask = 0x03 << (uframe + qh->gap_uf); 787 *c_maskp = cpu_to_hc32(ehci, mask << 8); 788 789 mask |= 1 << uframe; 790 if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) { 791 if (!check_period (ehci, frame, uframe + qh->gap_uf + 1, 792 qh->period, qh->c_usecs)) 793 goto done; 794 if (!check_period (ehci, frame, uframe + qh->gap_uf, 795 qh->period, qh->c_usecs)) 796 goto done; 797 retval = 0; 798 } 799 #endif 800 done: 801 return retval; 802 } 803 804 /* "first fit" scheduling policy used the first time through, 805 * or when the previous schedule slot can't be re-used. 806 */ 807 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh) 808 { 809 int status; 810 unsigned uframe; 811 __hc32 c_mask; 812 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */ 813 struct ehci_qh_hw *hw = qh->hw; 814 815 qh_refresh(ehci, qh); 816 hw->hw_next = EHCI_LIST_END(ehci); 817 frame = qh->start; 818 819 /* reuse the previous schedule slots, if we can */ 820 if (frame < qh->period) { 821 uframe = ffs(hc32_to_cpup(ehci, &hw->hw_info2) & QH_SMASK); 822 status = check_intr_schedule (ehci, frame, --uframe, 823 qh, &c_mask); 824 } else { 825 uframe = 0; 826 c_mask = 0; 827 status = -ENOSPC; 828 } 829 830 /* else scan the schedule to find a group of slots such that all 831 * uframes have enough periodic bandwidth available. 832 */ 833 if (status) { 834 /* "normal" case, uframing flexible except with splits */ 835 if (qh->period) { 836 int i; 837 838 for (i = qh->period; status && i > 0; --i) { 839 frame = ++ehci->random_frame % qh->period; 840 for (uframe = 0; uframe < 8; uframe++) { 841 status = check_intr_schedule (ehci, 842 frame, uframe, qh, 843 &c_mask); 844 if (status == 0) 845 break; 846 } 847 } 848 849 /* qh->period == 0 means every uframe */ 850 } else { 851 frame = 0; 852 status = check_intr_schedule (ehci, 0, 0, qh, &c_mask); 853 } 854 if (status) 855 goto done; 856 qh->start = frame; 857 858 /* reset S-frame and (maybe) C-frame masks */ 859 hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK)); 860 hw->hw_info2 |= qh->period 861 ? cpu_to_hc32(ehci, 1 << uframe) 862 : cpu_to_hc32(ehci, QH_SMASK); 863 hw->hw_info2 |= c_mask; 864 } else 865 ehci_dbg (ehci, "reused qh %p schedule\n", qh); 866 867 /* stuff into the periodic schedule */ 868 status = qh_link_periodic (ehci, qh); 869 done: 870 return status; 871 } 872 873 static int intr_submit ( 874 struct ehci_hcd *ehci, 875 struct urb *urb, 876 struct list_head *qtd_list, 877 gfp_t mem_flags 878 ) { 879 unsigned epnum; 880 unsigned long flags; 881 struct ehci_qh *qh; 882 int status; 883 struct list_head empty; 884 885 /* get endpoint and transfer/schedule data */ 886 epnum = urb->ep->desc.bEndpointAddress; 887 888 spin_lock_irqsave (&ehci->lock, flags); 889 890 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { 891 status = -ESHUTDOWN; 892 goto done_not_linked; 893 } 894 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); 895 if (unlikely(status)) 896 goto done_not_linked; 897 898 /* get qh and force any scheduling errors */ 899 INIT_LIST_HEAD (&empty); 900 qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv); 901 if (qh == NULL) { 902 status = -ENOMEM; 903 goto done; 904 } 905 if (qh->qh_state == QH_STATE_IDLE) { 906 if ((status = qh_schedule (ehci, qh)) != 0) 907 goto done; 908 } 909 910 /* then queue the urb's tds to the qh */ 911 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv); 912 BUG_ON (qh == NULL); 913 914 /* ... update usbfs periodic stats */ 915 ehci_to_hcd(ehci)->self.bandwidth_int_reqs++; 916 917 done: 918 if (unlikely(status)) 919 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 920 done_not_linked: 921 spin_unlock_irqrestore (&ehci->lock, flags); 922 if (status) 923 qtd_list_free (ehci, urb, qtd_list); 924 925 return status; 926 } 927 928 /*-------------------------------------------------------------------------*/ 929 930 /* ehci_iso_stream ops work with both ITD and SITD */ 931 932 static struct ehci_iso_stream * 933 iso_stream_alloc (gfp_t mem_flags) 934 { 935 struct ehci_iso_stream *stream; 936 937 stream = kzalloc(sizeof *stream, mem_flags); 938 if (likely (stream != NULL)) { 939 INIT_LIST_HEAD(&stream->td_list); 940 INIT_LIST_HEAD(&stream->free_list); 941 stream->next_uframe = -1; 942 stream->refcount = 1; 943 } 944 return stream; 945 } 946 947 static void 948 iso_stream_init ( 949 struct ehci_hcd *ehci, 950 struct ehci_iso_stream *stream, 951 struct usb_device *dev, 952 int pipe, 953 unsigned interval 954 ) 955 { 956 static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f }; 957 958 u32 buf1; 959 unsigned epnum, maxp; 960 int is_input; 961 long bandwidth; 962 963 /* 964 * this might be a "high bandwidth" highspeed endpoint, 965 * as encoded in the ep descriptor's wMaxPacket field 966 */ 967 epnum = usb_pipeendpoint (pipe); 968 is_input = usb_pipein (pipe) ? USB_DIR_IN : 0; 969 maxp = usb_maxpacket(dev, pipe, !is_input); 970 if (is_input) { 971 buf1 = (1 << 11); 972 } else { 973 buf1 = 0; 974 } 975 976 /* knows about ITD vs SITD */ 977 if (dev->speed == USB_SPEED_HIGH) { 978 unsigned multi = hb_mult(maxp); 979 980 stream->highspeed = 1; 981 982 maxp = max_packet(maxp); 983 buf1 |= maxp; 984 maxp *= multi; 985 986 stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum); 987 stream->buf1 = cpu_to_hc32(ehci, buf1); 988 stream->buf2 = cpu_to_hc32(ehci, multi); 989 990 /* usbfs wants to report the average usecs per frame tied up 991 * when transfers on this endpoint are scheduled ... 992 */ 993 stream->usecs = HS_USECS_ISO (maxp); 994 bandwidth = stream->usecs * 8; 995 bandwidth /= interval; 996 997 } else { 998 u32 addr; 999 int think_time; 1000 int hs_transfers; 1001 1002 addr = dev->ttport << 24; 1003 if (!ehci_is_TDI(ehci) 1004 || (dev->tt->hub != 1005 ehci_to_hcd(ehci)->self.root_hub)) 1006 addr |= dev->tt->hub->devnum << 16; 1007 addr |= epnum << 8; 1008 addr |= dev->devnum; 1009 stream->usecs = HS_USECS_ISO (maxp); 1010 think_time = dev->tt ? dev->tt->think_time : 0; 1011 stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time ( 1012 dev->speed, is_input, 1, maxp)); 1013 hs_transfers = max (1u, (maxp + 187) / 188); 1014 if (is_input) { 1015 u32 tmp; 1016 1017 addr |= 1 << 31; 1018 stream->c_usecs = stream->usecs; 1019 stream->usecs = HS_USECS_ISO (1); 1020 stream->raw_mask = 1; 1021 1022 /* c-mask as specified in USB 2.0 11.18.4 3.c */ 1023 tmp = (1 << (hs_transfers + 2)) - 1; 1024 stream->raw_mask |= tmp << (8 + 2); 1025 } else 1026 stream->raw_mask = smask_out [hs_transfers - 1]; 1027 bandwidth = stream->usecs + stream->c_usecs; 1028 bandwidth /= interval << 3; 1029 1030 /* stream->splits gets created from raw_mask later */ 1031 stream->address = cpu_to_hc32(ehci, addr); 1032 } 1033 stream->bandwidth = bandwidth; 1034 1035 stream->udev = dev; 1036 1037 stream->bEndpointAddress = is_input | epnum; 1038 stream->interval = interval; 1039 stream->maxp = maxp; 1040 } 1041 1042 static void 1043 iso_stream_put(struct ehci_hcd *ehci, struct ehci_iso_stream *stream) 1044 { 1045 stream->refcount--; 1046 1047 /* free whenever just a dev->ep reference remains. 1048 * not like a QH -- no persistent state (toggle, halt) 1049 */ 1050 if (stream->refcount == 1) { 1051 int is_in; 1052 1053 // BUG_ON (!list_empty(&stream->td_list)); 1054 1055 while (!list_empty (&stream->free_list)) { 1056 struct list_head *entry; 1057 1058 entry = stream->free_list.next; 1059 list_del (entry); 1060 1061 /* knows about ITD vs SITD */ 1062 if (stream->highspeed) { 1063 struct ehci_itd *itd; 1064 1065 itd = list_entry (entry, struct ehci_itd, 1066 itd_list); 1067 dma_pool_free (ehci->itd_pool, itd, 1068 itd->itd_dma); 1069 } else { 1070 struct ehci_sitd *sitd; 1071 1072 sitd = list_entry (entry, struct ehci_sitd, 1073 sitd_list); 1074 dma_pool_free (ehci->sitd_pool, sitd, 1075 sitd->sitd_dma); 1076 } 1077 } 1078 1079 is_in = (stream->bEndpointAddress & USB_DIR_IN) ? 0x10 : 0; 1080 stream->bEndpointAddress &= 0x0f; 1081 if (stream->ep) 1082 stream->ep->hcpriv = NULL; 1083 1084 kfree(stream); 1085 } 1086 } 1087 1088 static inline struct ehci_iso_stream * 1089 iso_stream_get (struct ehci_iso_stream *stream) 1090 { 1091 if (likely (stream != NULL)) 1092 stream->refcount++; 1093 return stream; 1094 } 1095 1096 static struct ehci_iso_stream * 1097 iso_stream_find (struct ehci_hcd *ehci, struct urb *urb) 1098 { 1099 unsigned epnum; 1100 struct ehci_iso_stream *stream; 1101 struct usb_host_endpoint *ep; 1102 unsigned long flags; 1103 1104 epnum = usb_pipeendpoint (urb->pipe); 1105 if (usb_pipein(urb->pipe)) 1106 ep = urb->dev->ep_in[epnum]; 1107 else 1108 ep = urb->dev->ep_out[epnum]; 1109 1110 spin_lock_irqsave (&ehci->lock, flags); 1111 stream = ep->hcpriv; 1112 1113 if (unlikely (stream == NULL)) { 1114 stream = iso_stream_alloc(GFP_ATOMIC); 1115 if (likely (stream != NULL)) { 1116 /* dev->ep owns the initial refcount */ 1117 ep->hcpriv = stream; 1118 stream->ep = ep; 1119 iso_stream_init(ehci, stream, urb->dev, urb->pipe, 1120 urb->interval); 1121 } 1122 1123 /* if dev->ep [epnum] is a QH, hw is set */ 1124 } else if (unlikely (stream->hw != NULL)) { 1125 ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n", 1126 urb->dev->devpath, epnum, 1127 usb_pipein(urb->pipe) ? "in" : "out"); 1128 stream = NULL; 1129 } 1130 1131 /* caller guarantees an eventual matching iso_stream_put */ 1132 stream = iso_stream_get (stream); 1133 1134 spin_unlock_irqrestore (&ehci->lock, flags); 1135 return stream; 1136 } 1137 1138 /*-------------------------------------------------------------------------*/ 1139 1140 /* ehci_iso_sched ops can be ITD-only or SITD-only */ 1141 1142 static struct ehci_iso_sched * 1143 iso_sched_alloc (unsigned packets, gfp_t mem_flags) 1144 { 1145 struct ehci_iso_sched *iso_sched; 1146 int size = sizeof *iso_sched; 1147 1148 size += packets * sizeof (struct ehci_iso_packet); 1149 iso_sched = kzalloc(size, mem_flags); 1150 if (likely (iso_sched != NULL)) { 1151 INIT_LIST_HEAD (&iso_sched->td_list); 1152 } 1153 return iso_sched; 1154 } 1155 1156 static inline void 1157 itd_sched_init( 1158 struct ehci_hcd *ehci, 1159 struct ehci_iso_sched *iso_sched, 1160 struct ehci_iso_stream *stream, 1161 struct urb *urb 1162 ) 1163 { 1164 unsigned i; 1165 dma_addr_t dma = urb->transfer_dma; 1166 1167 /* how many uframes are needed for these transfers */ 1168 iso_sched->span = urb->number_of_packets * stream->interval; 1169 1170 /* figure out per-uframe itd fields that we'll need later 1171 * when we fit new itds into the schedule. 1172 */ 1173 for (i = 0; i < urb->number_of_packets; i++) { 1174 struct ehci_iso_packet *uframe = &iso_sched->packet [i]; 1175 unsigned length; 1176 dma_addr_t buf; 1177 u32 trans; 1178 1179 length = urb->iso_frame_desc [i].length; 1180 buf = dma + urb->iso_frame_desc [i].offset; 1181 1182 trans = EHCI_ISOC_ACTIVE; 1183 trans |= buf & 0x0fff; 1184 if (unlikely (((i + 1) == urb->number_of_packets)) 1185 && !(urb->transfer_flags & URB_NO_INTERRUPT)) 1186 trans |= EHCI_ITD_IOC; 1187 trans |= length << 16; 1188 uframe->transaction = cpu_to_hc32(ehci, trans); 1189 1190 /* might need to cross a buffer page within a uframe */ 1191 uframe->bufp = (buf & ~(u64)0x0fff); 1192 buf += length; 1193 if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff)))) 1194 uframe->cross = 1; 1195 } 1196 } 1197 1198 static void 1199 iso_sched_free ( 1200 struct ehci_iso_stream *stream, 1201 struct ehci_iso_sched *iso_sched 1202 ) 1203 { 1204 if (!iso_sched) 1205 return; 1206 // caller must hold ehci->lock! 1207 list_splice (&iso_sched->td_list, &stream->free_list); 1208 kfree (iso_sched); 1209 } 1210 1211 static int 1212 itd_urb_transaction ( 1213 struct ehci_iso_stream *stream, 1214 struct ehci_hcd *ehci, 1215 struct urb *urb, 1216 gfp_t mem_flags 1217 ) 1218 { 1219 struct ehci_itd *itd; 1220 dma_addr_t itd_dma; 1221 int i; 1222 unsigned num_itds; 1223 struct ehci_iso_sched *sched; 1224 unsigned long flags; 1225 1226 sched = iso_sched_alloc (urb->number_of_packets, mem_flags); 1227 if (unlikely (sched == NULL)) 1228 return -ENOMEM; 1229 1230 itd_sched_init(ehci, sched, stream, urb); 1231 1232 if (urb->interval < 8) 1233 num_itds = 1 + (sched->span + 7) / 8; 1234 else 1235 num_itds = urb->number_of_packets; 1236 1237 /* allocate/init ITDs */ 1238 spin_lock_irqsave (&ehci->lock, flags); 1239 for (i = 0; i < num_itds; i++) { 1240 1241 /* free_list.next might be cache-hot ... but maybe 1242 * the HC caches it too. avoid that issue for now. 1243 */ 1244 1245 /* prefer previously-allocated itds */ 1246 if (likely (!list_empty(&stream->free_list))) { 1247 itd = list_entry (stream->free_list.prev, 1248 struct ehci_itd, itd_list); 1249 list_del (&itd->itd_list); 1250 itd_dma = itd->itd_dma; 1251 } else { 1252 spin_unlock_irqrestore (&ehci->lock, flags); 1253 itd = dma_pool_alloc (ehci->itd_pool, mem_flags, 1254 &itd_dma); 1255 spin_lock_irqsave (&ehci->lock, flags); 1256 if (!itd) { 1257 iso_sched_free(stream, sched); 1258 spin_unlock_irqrestore(&ehci->lock, flags); 1259 return -ENOMEM; 1260 } 1261 } 1262 1263 memset (itd, 0, sizeof *itd); 1264 itd->itd_dma = itd_dma; 1265 list_add (&itd->itd_list, &sched->td_list); 1266 } 1267 spin_unlock_irqrestore (&ehci->lock, flags); 1268 1269 /* temporarily store schedule info in hcpriv */ 1270 urb->hcpriv = sched; 1271 urb->error_count = 0; 1272 return 0; 1273 } 1274 1275 /*-------------------------------------------------------------------------*/ 1276 1277 static inline int 1278 itd_slot_ok ( 1279 struct ehci_hcd *ehci, 1280 u32 mod, 1281 u32 uframe, 1282 u8 usecs, 1283 u32 period 1284 ) 1285 { 1286 uframe %= period; 1287 do { 1288 /* can't commit more than 80% periodic == 100 usec */ 1289 if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7) 1290 > (100 - usecs)) 1291 return 0; 1292 1293 /* we know urb->interval is 2^N uframes */ 1294 uframe += period; 1295 } while (uframe < mod); 1296 return 1; 1297 } 1298 1299 static inline int 1300 sitd_slot_ok ( 1301 struct ehci_hcd *ehci, 1302 u32 mod, 1303 struct ehci_iso_stream *stream, 1304 u32 uframe, 1305 struct ehci_iso_sched *sched, 1306 u32 period_uframes 1307 ) 1308 { 1309 u32 mask, tmp; 1310 u32 frame, uf; 1311 1312 mask = stream->raw_mask << (uframe & 7); 1313 1314 /* for IN, don't wrap CSPLIT into the next frame */ 1315 if (mask & ~0xffff) 1316 return 0; 1317 1318 /* this multi-pass logic is simple, but performance may 1319 * suffer when the schedule data isn't cached. 1320 */ 1321 1322 /* check bandwidth */ 1323 uframe %= period_uframes; 1324 do { 1325 u32 max_used; 1326 1327 frame = uframe >> 3; 1328 uf = uframe & 7; 1329 1330 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED 1331 /* The tt's fullspeed bus bandwidth must be available. 1332 * tt_available scheduling guarantees 10+% for control/bulk. 1333 */ 1334 if (!tt_available (ehci, period_uframes << 3, 1335 stream->udev, frame, uf, stream->tt_usecs)) 1336 return 0; 1337 #else 1338 /* tt must be idle for start(s), any gap, and csplit. 1339 * assume scheduling slop leaves 10+% for control/bulk. 1340 */ 1341 if (!tt_no_collision (ehci, period_uframes << 3, 1342 stream->udev, frame, mask)) 1343 return 0; 1344 #endif 1345 1346 /* check starts (OUT uses more than one) */ 1347 max_used = 100 - stream->usecs; 1348 for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) { 1349 if (periodic_usecs (ehci, frame, uf) > max_used) 1350 return 0; 1351 } 1352 1353 /* for IN, check CSPLIT */ 1354 if (stream->c_usecs) { 1355 uf = uframe & 7; 1356 max_used = 100 - stream->c_usecs; 1357 do { 1358 tmp = 1 << uf; 1359 tmp <<= 8; 1360 if ((stream->raw_mask & tmp) == 0) 1361 continue; 1362 if (periodic_usecs (ehci, frame, uf) 1363 > max_used) 1364 return 0; 1365 } while (++uf < 8); 1366 } 1367 1368 /* we know urb->interval is 2^N uframes */ 1369 uframe += period_uframes; 1370 } while (uframe < mod); 1371 1372 stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7)); 1373 return 1; 1374 } 1375 1376 /* 1377 * This scheduler plans almost as far into the future as it has actual 1378 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to 1379 * "as small as possible" to be cache-friendlier.) That limits the size 1380 * transfers you can stream reliably; avoid more than 64 msec per urb. 1381 * Also avoid queue depths of less than ehci's worst irq latency (affected 1382 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter, 1383 * and other factors); or more than about 230 msec total (for portability, 1384 * given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler! 1385 */ 1386 1387 #define SCHEDULE_SLOP 80 /* microframes */ 1388 1389 static int 1390 iso_stream_schedule ( 1391 struct ehci_hcd *ehci, 1392 struct urb *urb, 1393 struct ehci_iso_stream *stream 1394 ) 1395 { 1396 u32 now, next, start, period, span; 1397 int status; 1398 unsigned mod = ehci->periodic_size << 3; 1399 struct ehci_iso_sched *sched = urb->hcpriv; 1400 1401 period = urb->interval; 1402 span = sched->span; 1403 if (!stream->highspeed) { 1404 period <<= 3; 1405 span <<= 3; 1406 } 1407 1408 if (span > mod - SCHEDULE_SLOP) { 1409 ehci_dbg (ehci, "iso request %p too long\n", urb); 1410 status = -EFBIG; 1411 goto fail; 1412 } 1413 1414 now = ehci_readl(ehci, &ehci->regs->frame_index) & (mod - 1); 1415 1416 /* Typical case: reuse current schedule, stream is still active. 1417 * Hopefully there are no gaps from the host falling behind 1418 * (irq delays etc), but if there are we'll take the next 1419 * slot in the schedule, implicitly assuming URB_ISO_ASAP. 1420 */ 1421 if (likely (!list_empty (&stream->td_list))) { 1422 u32 excess; 1423 1424 /* For high speed devices, allow scheduling within the 1425 * isochronous scheduling threshold. For full speed devices 1426 * and Intel PCI-based controllers, don't (work around for 1427 * Intel ICH9 bug). 1428 */ 1429 if (!stream->highspeed && ehci->fs_i_thresh) 1430 next = now + ehci->i_thresh; 1431 else 1432 next = now; 1433 1434 /* Fell behind (by up to twice the slop amount)? 1435 * We decide based on the time of the last currently-scheduled 1436 * slot, not the time of the next available slot. 1437 */ 1438 excess = (stream->next_uframe - period - next) & (mod - 1); 1439 if (excess >= mod - 2 * SCHEDULE_SLOP) 1440 start = next + excess - mod + period * 1441 DIV_ROUND_UP(mod - excess, period); 1442 else 1443 start = next + excess + period; 1444 if (start - now >= mod) { 1445 ehci_dbg(ehci, "request %p would overflow (%d+%d >= %d)\n", 1446 urb, start - now - period, period, 1447 mod); 1448 status = -EFBIG; 1449 goto fail; 1450 } 1451 } 1452 1453 /* need to schedule; when's the next (u)frame we could start? 1454 * this is bigger than ehci->i_thresh allows; scheduling itself 1455 * isn't free, the slop should handle reasonably slow cpus. it 1456 * can also help high bandwidth if the dma and irq loads don't 1457 * jump until after the queue is primed. 1458 */ 1459 else { 1460 start = SCHEDULE_SLOP + (now & ~0x07); 1461 1462 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */ 1463 1464 /* find a uframe slot with enough bandwidth */ 1465 next = start + period; 1466 for (; start < next; start++) { 1467 1468 /* check schedule: enough space? */ 1469 if (stream->highspeed) { 1470 if (itd_slot_ok(ehci, mod, start, 1471 stream->usecs, period)) 1472 break; 1473 } else { 1474 if ((start % 8) >= 6) 1475 continue; 1476 if (sitd_slot_ok(ehci, mod, stream, 1477 start, sched, period)) 1478 break; 1479 } 1480 } 1481 1482 /* no room in the schedule */ 1483 if (start == next) { 1484 ehci_dbg(ehci, "iso resched full %p (now %d max %d)\n", 1485 urb, now, now + mod); 1486 status = -ENOSPC; 1487 goto fail; 1488 } 1489 } 1490 1491 /* Tried to schedule too far into the future? */ 1492 if (unlikely(start - now + span - period 1493 >= mod - 2 * SCHEDULE_SLOP)) { 1494 ehci_dbg(ehci, "request %p would overflow (%d+%d >= %d)\n", 1495 urb, start - now, span - period, 1496 mod - 2 * SCHEDULE_SLOP); 1497 status = -EFBIG; 1498 goto fail; 1499 } 1500 1501 stream->next_uframe = start & (mod - 1); 1502 1503 /* report high speed start in uframes; full speed, in frames */ 1504 urb->start_frame = stream->next_uframe; 1505 if (!stream->highspeed) 1506 urb->start_frame >>= 3; 1507 return 0; 1508 1509 fail: 1510 iso_sched_free(stream, sched); 1511 urb->hcpriv = NULL; 1512 return status; 1513 } 1514 1515 /*-------------------------------------------------------------------------*/ 1516 1517 static inline void 1518 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream, 1519 struct ehci_itd *itd) 1520 { 1521 int i; 1522 1523 /* it's been recently zeroed */ 1524 itd->hw_next = EHCI_LIST_END(ehci); 1525 itd->hw_bufp [0] = stream->buf0; 1526 itd->hw_bufp [1] = stream->buf1; 1527 itd->hw_bufp [2] = stream->buf2; 1528 1529 for (i = 0; i < 8; i++) 1530 itd->index[i] = -1; 1531 1532 /* All other fields are filled when scheduling */ 1533 } 1534 1535 static inline void 1536 itd_patch( 1537 struct ehci_hcd *ehci, 1538 struct ehci_itd *itd, 1539 struct ehci_iso_sched *iso_sched, 1540 unsigned index, 1541 u16 uframe 1542 ) 1543 { 1544 struct ehci_iso_packet *uf = &iso_sched->packet [index]; 1545 unsigned pg = itd->pg; 1546 1547 // BUG_ON (pg == 6 && uf->cross); 1548 1549 uframe &= 0x07; 1550 itd->index [uframe] = index; 1551 1552 itd->hw_transaction[uframe] = uf->transaction; 1553 itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12); 1554 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0); 1555 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32)); 1556 1557 /* iso_frame_desc[].offset must be strictly increasing */ 1558 if (unlikely (uf->cross)) { 1559 u64 bufp = uf->bufp + 4096; 1560 1561 itd->pg = ++pg; 1562 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0); 1563 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32)); 1564 } 1565 } 1566 1567 static inline void 1568 itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd) 1569 { 1570 union ehci_shadow *prev = &ehci->pshadow[frame]; 1571 __hc32 *hw_p = &ehci->periodic[frame]; 1572 union ehci_shadow here = *prev; 1573 __hc32 type = 0; 1574 1575 /* skip any iso nodes which might belong to previous microframes */ 1576 while (here.ptr) { 1577 type = Q_NEXT_TYPE(ehci, *hw_p); 1578 if (type == cpu_to_hc32(ehci, Q_TYPE_QH)) 1579 break; 1580 prev = periodic_next_shadow(ehci, prev, type); 1581 hw_p = shadow_next_periodic(ehci, &here, type); 1582 here = *prev; 1583 } 1584 1585 itd->itd_next = here; 1586 itd->hw_next = *hw_p; 1587 prev->itd = itd; 1588 itd->frame = frame; 1589 wmb (); 1590 *hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD); 1591 } 1592 1593 #define AB_REG_BAR_LOW 0xe0 1594 #define AB_REG_BAR_HIGH 0xe1 1595 #define AB_INDX(addr) ((addr) + 0x00) 1596 #define AB_DATA(addr) ((addr) + 0x04) 1597 #define NB_PCIE_INDX_ADDR 0xe0 1598 #define NB_PCIE_INDX_DATA 0xe4 1599 #define NB_PIF0_PWRDOWN_0 0x01100012 1600 #define NB_PIF0_PWRDOWN_1 0x01100013 1601 1602 static void ehci_quirk_amd_L1(struct ehci_hcd *ehci, int disable) 1603 { 1604 u32 addr, addr_low, addr_high, val; 1605 1606 outb_p(AB_REG_BAR_LOW, 0xcd6); 1607 addr_low = inb_p(0xcd7); 1608 outb_p(AB_REG_BAR_HIGH, 0xcd6); 1609 addr_high = inb_p(0xcd7); 1610 addr = addr_high << 8 | addr_low; 1611 outl_p(0x30, AB_INDX(addr)); 1612 outl_p(0x40, AB_DATA(addr)); 1613 outl_p(0x34, AB_INDX(addr)); 1614 val = inl_p(AB_DATA(addr)); 1615 1616 if (disable) { 1617 val &= ~0x8; 1618 val |= (1 << 4) | (1 << 9); 1619 } else { 1620 val |= 0x8; 1621 val &= ~((1 << 4) | (1 << 9)); 1622 } 1623 outl_p(val, AB_DATA(addr)); 1624 1625 if (amd_nb_dev) { 1626 addr = NB_PIF0_PWRDOWN_0; 1627 pci_write_config_dword(amd_nb_dev, NB_PCIE_INDX_ADDR, addr); 1628 pci_read_config_dword(amd_nb_dev, NB_PCIE_INDX_DATA, &val); 1629 if (disable) 1630 val &= ~(0x3f << 7); 1631 else 1632 val |= 0x3f << 7; 1633 1634 pci_write_config_dword(amd_nb_dev, NB_PCIE_INDX_DATA, val); 1635 1636 addr = NB_PIF0_PWRDOWN_1; 1637 pci_write_config_dword(amd_nb_dev, NB_PCIE_INDX_ADDR, addr); 1638 pci_read_config_dword(amd_nb_dev, NB_PCIE_INDX_DATA, &val); 1639 if (disable) 1640 val &= ~(0x3f << 7); 1641 else 1642 val |= 0x3f << 7; 1643 1644 pci_write_config_dword(amd_nb_dev, NB_PCIE_INDX_DATA, val); 1645 } 1646 1647 return; 1648 } 1649 1650 /* fit urb's itds into the selected schedule slot; activate as needed */ 1651 static int 1652 itd_link_urb ( 1653 struct ehci_hcd *ehci, 1654 struct urb *urb, 1655 unsigned mod, 1656 struct ehci_iso_stream *stream 1657 ) 1658 { 1659 int packet; 1660 unsigned next_uframe, uframe, frame; 1661 struct ehci_iso_sched *iso_sched = urb->hcpriv; 1662 struct ehci_itd *itd; 1663 1664 next_uframe = stream->next_uframe & (mod - 1); 1665 1666 if (unlikely (list_empty(&stream->td_list))) { 1667 ehci_to_hcd(ehci)->self.bandwidth_allocated 1668 += stream->bandwidth; 1669 ehci_vdbg (ehci, 1670 "schedule devp %s ep%d%s-iso period %d start %d.%d\n", 1671 urb->dev->devpath, stream->bEndpointAddress & 0x0f, 1672 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out", 1673 urb->interval, 1674 next_uframe >> 3, next_uframe & 0x7); 1675 } 1676 1677 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { 1678 if (ehci->amd_l1_fix == 1) 1679 ehci_quirk_amd_L1(ehci, 1); 1680 } 1681 1682 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++; 1683 1684 /* fill iTDs uframe by uframe */ 1685 for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) { 1686 if (itd == NULL) { 1687 /* ASSERT: we have all necessary itds */ 1688 // BUG_ON (list_empty (&iso_sched->td_list)); 1689 1690 /* ASSERT: no itds for this endpoint in this uframe */ 1691 1692 itd = list_entry (iso_sched->td_list.next, 1693 struct ehci_itd, itd_list); 1694 list_move_tail (&itd->itd_list, &stream->td_list); 1695 itd->stream = iso_stream_get (stream); 1696 itd->urb = urb; 1697 itd_init (ehci, stream, itd); 1698 } 1699 1700 uframe = next_uframe & 0x07; 1701 frame = next_uframe >> 3; 1702 1703 itd_patch(ehci, itd, iso_sched, packet, uframe); 1704 1705 next_uframe += stream->interval; 1706 next_uframe &= mod - 1; 1707 packet++; 1708 1709 /* link completed itds into the schedule */ 1710 if (((next_uframe >> 3) != frame) 1711 || packet == urb->number_of_packets) { 1712 itd_link(ehci, frame & (ehci->periodic_size - 1), itd); 1713 itd = NULL; 1714 } 1715 } 1716 stream->next_uframe = next_uframe; 1717 1718 /* don't need that schedule data any more */ 1719 iso_sched_free (stream, iso_sched); 1720 urb->hcpriv = NULL; 1721 1722 timer_action (ehci, TIMER_IO_WATCHDOG); 1723 return enable_periodic(ehci); 1724 } 1725 1726 #define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR) 1727 1728 /* Process and recycle a completed ITD. Return true iff its urb completed, 1729 * and hence its completion callback probably added things to the hardware 1730 * schedule. 1731 * 1732 * Note that we carefully avoid recycling this descriptor until after any 1733 * completion callback runs, so that it won't be reused quickly. That is, 1734 * assuming (a) no more than two urbs per frame on this endpoint, and also 1735 * (b) only this endpoint's completions submit URBs. It seems some silicon 1736 * corrupts things if you reuse completed descriptors very quickly... 1737 */ 1738 static unsigned 1739 itd_complete ( 1740 struct ehci_hcd *ehci, 1741 struct ehci_itd *itd 1742 ) { 1743 struct urb *urb = itd->urb; 1744 struct usb_iso_packet_descriptor *desc; 1745 u32 t; 1746 unsigned uframe; 1747 int urb_index = -1; 1748 struct ehci_iso_stream *stream = itd->stream; 1749 struct usb_device *dev; 1750 unsigned retval = false; 1751 1752 /* for each uframe with a packet */ 1753 for (uframe = 0; uframe < 8; uframe++) { 1754 if (likely (itd->index[uframe] == -1)) 1755 continue; 1756 urb_index = itd->index[uframe]; 1757 desc = &urb->iso_frame_desc [urb_index]; 1758 1759 t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]); 1760 itd->hw_transaction [uframe] = 0; 1761 1762 /* report transfer status */ 1763 if (unlikely (t & ISO_ERRS)) { 1764 urb->error_count++; 1765 if (t & EHCI_ISOC_BUF_ERR) 1766 desc->status = usb_pipein (urb->pipe) 1767 ? -ENOSR /* hc couldn't read */ 1768 : -ECOMM; /* hc couldn't write */ 1769 else if (t & EHCI_ISOC_BABBLE) 1770 desc->status = -EOVERFLOW; 1771 else /* (t & EHCI_ISOC_XACTERR) */ 1772 desc->status = -EPROTO; 1773 1774 /* HC need not update length with this error */ 1775 if (!(t & EHCI_ISOC_BABBLE)) { 1776 desc->actual_length = EHCI_ITD_LENGTH(t); 1777 urb->actual_length += desc->actual_length; 1778 } 1779 } else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) { 1780 desc->status = 0; 1781 desc->actual_length = EHCI_ITD_LENGTH(t); 1782 urb->actual_length += desc->actual_length; 1783 } else { 1784 /* URB was too late */ 1785 desc->status = -EXDEV; 1786 } 1787 } 1788 1789 /* handle completion now? */ 1790 if (likely ((urb_index + 1) != urb->number_of_packets)) 1791 goto done; 1792 1793 /* ASSERT: it's really the last itd for this urb 1794 list_for_each_entry (itd, &stream->td_list, itd_list) 1795 BUG_ON (itd->urb == urb); 1796 */ 1797 1798 /* give urb back to the driver; completion often (re)submits */ 1799 dev = urb->dev; 1800 ehci_urb_done(ehci, urb, 0); 1801 retval = true; 1802 urb = NULL; 1803 (void) disable_periodic(ehci); 1804 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--; 1805 1806 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { 1807 if (ehci->amd_l1_fix == 1) 1808 ehci_quirk_amd_L1(ehci, 0); 1809 } 1810 1811 if (unlikely(list_is_singular(&stream->td_list))) { 1812 ehci_to_hcd(ehci)->self.bandwidth_allocated 1813 -= stream->bandwidth; 1814 ehci_vdbg (ehci, 1815 "deschedule devp %s ep%d%s-iso\n", 1816 dev->devpath, stream->bEndpointAddress & 0x0f, 1817 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out"); 1818 } 1819 iso_stream_put (ehci, stream); 1820 1821 done: 1822 itd->urb = NULL; 1823 if (ehci->clock_frame != itd->frame || itd->index[7] != -1) { 1824 /* OK to recycle this ITD now. */ 1825 itd->stream = NULL; 1826 list_move(&itd->itd_list, &stream->free_list); 1827 iso_stream_put(ehci, stream); 1828 } else { 1829 /* HW might remember this ITD, so we can't recycle it yet. 1830 * Move it to a safe place until a new frame starts. 1831 */ 1832 list_move(&itd->itd_list, &ehci->cached_itd_list); 1833 if (stream->refcount == 2) { 1834 /* If iso_stream_put() were called here, stream 1835 * would be freed. Instead, just prevent reuse. 1836 */ 1837 stream->ep->hcpriv = NULL; 1838 stream->ep = NULL; 1839 } 1840 } 1841 return retval; 1842 } 1843 1844 /*-------------------------------------------------------------------------*/ 1845 1846 static int itd_submit (struct ehci_hcd *ehci, struct urb *urb, 1847 gfp_t mem_flags) 1848 { 1849 int status = -EINVAL; 1850 unsigned long flags; 1851 struct ehci_iso_stream *stream; 1852 1853 /* Get iso_stream head */ 1854 stream = iso_stream_find (ehci, urb); 1855 if (unlikely (stream == NULL)) { 1856 ehci_dbg (ehci, "can't get iso stream\n"); 1857 return -ENOMEM; 1858 } 1859 if (unlikely (urb->interval != stream->interval)) { 1860 ehci_dbg (ehci, "can't change iso interval %d --> %d\n", 1861 stream->interval, urb->interval); 1862 goto done; 1863 } 1864 1865 #ifdef EHCI_URB_TRACE 1866 ehci_dbg (ehci, 1867 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n", 1868 __func__, urb->dev->devpath, urb, 1869 usb_pipeendpoint (urb->pipe), 1870 usb_pipein (urb->pipe) ? "in" : "out", 1871 urb->transfer_buffer_length, 1872 urb->number_of_packets, urb->interval, 1873 stream); 1874 #endif 1875 1876 /* allocate ITDs w/o locking anything */ 1877 status = itd_urb_transaction (stream, ehci, urb, mem_flags); 1878 if (unlikely (status < 0)) { 1879 ehci_dbg (ehci, "can't init itds\n"); 1880 goto done; 1881 } 1882 1883 /* schedule ... need to lock */ 1884 spin_lock_irqsave (&ehci->lock, flags); 1885 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { 1886 status = -ESHUTDOWN; 1887 goto done_not_linked; 1888 } 1889 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); 1890 if (unlikely(status)) 1891 goto done_not_linked; 1892 status = iso_stream_schedule(ehci, urb, stream); 1893 if (likely (status == 0)) 1894 itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream); 1895 else 1896 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 1897 done_not_linked: 1898 spin_unlock_irqrestore (&ehci->lock, flags); 1899 1900 done: 1901 if (unlikely (status < 0)) 1902 iso_stream_put (ehci, stream); 1903 return status; 1904 } 1905 1906 /*-------------------------------------------------------------------------*/ 1907 1908 /* 1909 * "Split ISO TDs" ... used for USB 1.1 devices going through the 1910 * TTs in USB 2.0 hubs. These need microframe scheduling. 1911 */ 1912 1913 static inline void 1914 sitd_sched_init( 1915 struct ehci_hcd *ehci, 1916 struct ehci_iso_sched *iso_sched, 1917 struct ehci_iso_stream *stream, 1918 struct urb *urb 1919 ) 1920 { 1921 unsigned i; 1922 dma_addr_t dma = urb->transfer_dma; 1923 1924 /* how many frames are needed for these transfers */ 1925 iso_sched->span = urb->number_of_packets * stream->interval; 1926 1927 /* figure out per-frame sitd fields that we'll need later 1928 * when we fit new sitds into the schedule. 1929 */ 1930 for (i = 0; i < urb->number_of_packets; i++) { 1931 struct ehci_iso_packet *packet = &iso_sched->packet [i]; 1932 unsigned length; 1933 dma_addr_t buf; 1934 u32 trans; 1935 1936 length = urb->iso_frame_desc [i].length & 0x03ff; 1937 buf = dma + urb->iso_frame_desc [i].offset; 1938 1939 trans = SITD_STS_ACTIVE; 1940 if (((i + 1) == urb->number_of_packets) 1941 && !(urb->transfer_flags & URB_NO_INTERRUPT)) 1942 trans |= SITD_IOC; 1943 trans |= length << 16; 1944 packet->transaction = cpu_to_hc32(ehci, trans); 1945 1946 /* might need to cross a buffer page within a td */ 1947 packet->bufp = buf; 1948 packet->buf1 = (buf + length) & ~0x0fff; 1949 if (packet->buf1 != (buf & ~(u64)0x0fff)) 1950 packet->cross = 1; 1951 1952 /* OUT uses multiple start-splits */ 1953 if (stream->bEndpointAddress & USB_DIR_IN) 1954 continue; 1955 length = (length + 187) / 188; 1956 if (length > 1) /* BEGIN vs ALL */ 1957 length |= 1 << 3; 1958 packet->buf1 |= length; 1959 } 1960 } 1961 1962 static int 1963 sitd_urb_transaction ( 1964 struct ehci_iso_stream *stream, 1965 struct ehci_hcd *ehci, 1966 struct urb *urb, 1967 gfp_t mem_flags 1968 ) 1969 { 1970 struct ehci_sitd *sitd; 1971 dma_addr_t sitd_dma; 1972 int i; 1973 struct ehci_iso_sched *iso_sched; 1974 unsigned long flags; 1975 1976 iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags); 1977 if (iso_sched == NULL) 1978 return -ENOMEM; 1979 1980 sitd_sched_init(ehci, iso_sched, stream, urb); 1981 1982 /* allocate/init sITDs */ 1983 spin_lock_irqsave (&ehci->lock, flags); 1984 for (i = 0; i < urb->number_of_packets; i++) { 1985 1986 /* NOTE: for now, we don't try to handle wraparound cases 1987 * for IN (using sitd->hw_backpointer, like a FSTN), which 1988 * means we never need two sitds for full speed packets. 1989 */ 1990 1991 /* free_list.next might be cache-hot ... but maybe 1992 * the HC caches it too. avoid that issue for now. 1993 */ 1994 1995 /* prefer previously-allocated sitds */ 1996 if (!list_empty(&stream->free_list)) { 1997 sitd = list_entry (stream->free_list.prev, 1998 struct ehci_sitd, sitd_list); 1999 list_del (&sitd->sitd_list); 2000 sitd_dma = sitd->sitd_dma; 2001 } else { 2002 spin_unlock_irqrestore (&ehci->lock, flags); 2003 sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags, 2004 &sitd_dma); 2005 spin_lock_irqsave (&ehci->lock, flags); 2006 if (!sitd) { 2007 iso_sched_free(stream, iso_sched); 2008 spin_unlock_irqrestore(&ehci->lock, flags); 2009 return -ENOMEM; 2010 } 2011 } 2012 2013 memset (sitd, 0, sizeof *sitd); 2014 sitd->sitd_dma = sitd_dma; 2015 list_add (&sitd->sitd_list, &iso_sched->td_list); 2016 } 2017 2018 /* temporarily store schedule info in hcpriv */ 2019 urb->hcpriv = iso_sched; 2020 urb->error_count = 0; 2021 2022 spin_unlock_irqrestore (&ehci->lock, flags); 2023 return 0; 2024 } 2025 2026 /*-------------------------------------------------------------------------*/ 2027 2028 static inline void 2029 sitd_patch( 2030 struct ehci_hcd *ehci, 2031 struct ehci_iso_stream *stream, 2032 struct ehci_sitd *sitd, 2033 struct ehci_iso_sched *iso_sched, 2034 unsigned index 2035 ) 2036 { 2037 struct ehci_iso_packet *uf = &iso_sched->packet [index]; 2038 u64 bufp = uf->bufp; 2039 2040 sitd->hw_next = EHCI_LIST_END(ehci); 2041 sitd->hw_fullspeed_ep = stream->address; 2042 sitd->hw_uframe = stream->splits; 2043 sitd->hw_results = uf->transaction; 2044 sitd->hw_backpointer = EHCI_LIST_END(ehci); 2045 2046 bufp = uf->bufp; 2047 sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp); 2048 sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32); 2049 2050 sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1); 2051 if (uf->cross) 2052 bufp += 4096; 2053 sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32); 2054 sitd->index = index; 2055 } 2056 2057 static inline void 2058 sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd) 2059 { 2060 /* note: sitd ordering could matter (CSPLIT then SSPLIT) */ 2061 sitd->sitd_next = ehci->pshadow [frame]; 2062 sitd->hw_next = ehci->periodic [frame]; 2063 ehci->pshadow [frame].sitd = sitd; 2064 sitd->frame = frame; 2065 wmb (); 2066 ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD); 2067 } 2068 2069 /* fit urb's sitds into the selected schedule slot; activate as needed */ 2070 static int 2071 sitd_link_urb ( 2072 struct ehci_hcd *ehci, 2073 struct urb *urb, 2074 unsigned mod, 2075 struct ehci_iso_stream *stream 2076 ) 2077 { 2078 int packet; 2079 unsigned next_uframe; 2080 struct ehci_iso_sched *sched = urb->hcpriv; 2081 struct ehci_sitd *sitd; 2082 2083 next_uframe = stream->next_uframe; 2084 2085 if (list_empty(&stream->td_list)) { 2086 /* usbfs ignores TT bandwidth */ 2087 ehci_to_hcd(ehci)->self.bandwidth_allocated 2088 += stream->bandwidth; 2089 ehci_vdbg (ehci, 2090 "sched devp %s ep%d%s-iso [%d] %dms/%04x\n", 2091 urb->dev->devpath, stream->bEndpointAddress & 0x0f, 2092 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out", 2093 (next_uframe >> 3) & (ehci->periodic_size - 1), 2094 stream->interval, hc32_to_cpu(ehci, stream->splits)); 2095 } 2096 2097 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { 2098 if (ehci->amd_l1_fix == 1) 2099 ehci_quirk_amd_L1(ehci, 1); 2100 } 2101 2102 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++; 2103 2104 /* fill sITDs frame by frame */ 2105 for (packet = 0, sitd = NULL; 2106 packet < urb->number_of_packets; 2107 packet++) { 2108 2109 /* ASSERT: we have all necessary sitds */ 2110 BUG_ON (list_empty (&sched->td_list)); 2111 2112 /* ASSERT: no itds for this endpoint in this frame */ 2113 2114 sitd = list_entry (sched->td_list.next, 2115 struct ehci_sitd, sitd_list); 2116 list_move_tail (&sitd->sitd_list, &stream->td_list); 2117 sitd->stream = iso_stream_get (stream); 2118 sitd->urb = urb; 2119 2120 sitd_patch(ehci, stream, sitd, sched, packet); 2121 sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1), 2122 sitd); 2123 2124 next_uframe += stream->interval << 3; 2125 } 2126 stream->next_uframe = next_uframe & (mod - 1); 2127 2128 /* don't need that schedule data any more */ 2129 iso_sched_free (stream, sched); 2130 urb->hcpriv = NULL; 2131 2132 timer_action (ehci, TIMER_IO_WATCHDOG); 2133 return enable_periodic(ehci); 2134 } 2135 2136 /*-------------------------------------------------------------------------*/ 2137 2138 #define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \ 2139 | SITD_STS_XACT | SITD_STS_MMF) 2140 2141 /* Process and recycle a completed SITD. Return true iff its urb completed, 2142 * and hence its completion callback probably added things to the hardware 2143 * schedule. 2144 * 2145 * Note that we carefully avoid recycling this descriptor until after any 2146 * completion callback runs, so that it won't be reused quickly. That is, 2147 * assuming (a) no more than two urbs per frame on this endpoint, and also 2148 * (b) only this endpoint's completions submit URBs. It seems some silicon 2149 * corrupts things if you reuse completed descriptors very quickly... 2150 */ 2151 static unsigned 2152 sitd_complete ( 2153 struct ehci_hcd *ehci, 2154 struct ehci_sitd *sitd 2155 ) { 2156 struct urb *urb = sitd->urb; 2157 struct usb_iso_packet_descriptor *desc; 2158 u32 t; 2159 int urb_index = -1; 2160 struct ehci_iso_stream *stream = sitd->stream; 2161 struct usb_device *dev; 2162 unsigned retval = false; 2163 2164 urb_index = sitd->index; 2165 desc = &urb->iso_frame_desc [urb_index]; 2166 t = hc32_to_cpup(ehci, &sitd->hw_results); 2167 2168 /* report transfer status */ 2169 if (t & SITD_ERRS) { 2170 urb->error_count++; 2171 if (t & SITD_STS_DBE) 2172 desc->status = usb_pipein (urb->pipe) 2173 ? -ENOSR /* hc couldn't read */ 2174 : -ECOMM; /* hc couldn't write */ 2175 else if (t & SITD_STS_BABBLE) 2176 desc->status = -EOVERFLOW; 2177 else /* XACT, MMF, etc */ 2178 desc->status = -EPROTO; 2179 } else { 2180 desc->status = 0; 2181 desc->actual_length = desc->length - SITD_LENGTH(t); 2182 urb->actual_length += desc->actual_length; 2183 } 2184 2185 /* handle completion now? */ 2186 if ((urb_index + 1) != urb->number_of_packets) 2187 goto done; 2188 2189 /* ASSERT: it's really the last sitd for this urb 2190 list_for_each_entry (sitd, &stream->td_list, sitd_list) 2191 BUG_ON (sitd->urb == urb); 2192 */ 2193 2194 /* give urb back to the driver; completion often (re)submits */ 2195 dev = urb->dev; 2196 ehci_urb_done(ehci, urb, 0); 2197 retval = true; 2198 urb = NULL; 2199 (void) disable_periodic(ehci); 2200 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--; 2201 2202 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { 2203 if (ehci->amd_l1_fix == 1) 2204 ehci_quirk_amd_L1(ehci, 0); 2205 } 2206 2207 if (list_is_singular(&stream->td_list)) { 2208 ehci_to_hcd(ehci)->self.bandwidth_allocated 2209 -= stream->bandwidth; 2210 ehci_vdbg (ehci, 2211 "deschedule devp %s ep%d%s-iso\n", 2212 dev->devpath, stream->bEndpointAddress & 0x0f, 2213 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out"); 2214 } 2215 iso_stream_put (ehci, stream); 2216 2217 done: 2218 sitd->urb = NULL; 2219 if (ehci->clock_frame != sitd->frame) { 2220 /* OK to recycle this SITD now. */ 2221 sitd->stream = NULL; 2222 list_move(&sitd->sitd_list, &stream->free_list); 2223 iso_stream_put(ehci, stream); 2224 } else { 2225 /* HW might remember this SITD, so we can't recycle it yet. 2226 * Move it to a safe place until a new frame starts. 2227 */ 2228 list_move(&sitd->sitd_list, &ehci->cached_sitd_list); 2229 if (stream->refcount == 2) { 2230 /* If iso_stream_put() were called here, stream 2231 * would be freed. Instead, just prevent reuse. 2232 */ 2233 stream->ep->hcpriv = NULL; 2234 stream->ep = NULL; 2235 } 2236 } 2237 return retval; 2238 } 2239 2240 2241 static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb, 2242 gfp_t mem_flags) 2243 { 2244 int status = -EINVAL; 2245 unsigned long flags; 2246 struct ehci_iso_stream *stream; 2247 2248 /* Get iso_stream head */ 2249 stream = iso_stream_find (ehci, urb); 2250 if (stream == NULL) { 2251 ehci_dbg (ehci, "can't get iso stream\n"); 2252 return -ENOMEM; 2253 } 2254 if (urb->interval != stream->interval) { 2255 ehci_dbg (ehci, "can't change iso interval %d --> %d\n", 2256 stream->interval, urb->interval); 2257 goto done; 2258 } 2259 2260 #ifdef EHCI_URB_TRACE 2261 ehci_dbg (ehci, 2262 "submit %p dev%s ep%d%s-iso len %d\n", 2263 urb, urb->dev->devpath, 2264 usb_pipeendpoint (urb->pipe), 2265 usb_pipein (urb->pipe) ? "in" : "out", 2266 urb->transfer_buffer_length); 2267 #endif 2268 2269 /* allocate SITDs */ 2270 status = sitd_urb_transaction (stream, ehci, urb, mem_flags); 2271 if (status < 0) { 2272 ehci_dbg (ehci, "can't init sitds\n"); 2273 goto done; 2274 } 2275 2276 /* schedule ... need to lock */ 2277 spin_lock_irqsave (&ehci->lock, flags); 2278 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { 2279 status = -ESHUTDOWN; 2280 goto done_not_linked; 2281 } 2282 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); 2283 if (unlikely(status)) 2284 goto done_not_linked; 2285 status = iso_stream_schedule(ehci, urb, stream); 2286 if (status == 0) 2287 sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream); 2288 else 2289 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 2290 done_not_linked: 2291 spin_unlock_irqrestore (&ehci->lock, flags); 2292 2293 done: 2294 if (status < 0) 2295 iso_stream_put (ehci, stream); 2296 return status; 2297 } 2298 2299 /*-------------------------------------------------------------------------*/ 2300 2301 static void free_cached_lists(struct ehci_hcd *ehci) 2302 { 2303 struct ehci_itd *itd, *n; 2304 struct ehci_sitd *sitd, *sn; 2305 2306 list_for_each_entry_safe(itd, n, &ehci->cached_itd_list, itd_list) { 2307 struct ehci_iso_stream *stream = itd->stream; 2308 itd->stream = NULL; 2309 list_move(&itd->itd_list, &stream->free_list); 2310 iso_stream_put(ehci, stream); 2311 } 2312 2313 list_for_each_entry_safe(sitd, sn, &ehci->cached_sitd_list, sitd_list) { 2314 struct ehci_iso_stream *stream = sitd->stream; 2315 sitd->stream = NULL; 2316 list_move(&sitd->sitd_list, &stream->free_list); 2317 iso_stream_put(ehci, stream); 2318 } 2319 } 2320 2321 /*-------------------------------------------------------------------------*/ 2322 2323 static void 2324 scan_periodic (struct ehci_hcd *ehci) 2325 { 2326 unsigned now_uframe, frame, clock, clock_frame, mod; 2327 unsigned modified; 2328 2329 mod = ehci->periodic_size << 3; 2330 2331 /* 2332 * When running, scan from last scan point up to "now" 2333 * else clean up by scanning everything that's left. 2334 * Touches as few pages as possible: cache-friendly. 2335 */ 2336 now_uframe = ehci->next_uframe; 2337 if (HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) { 2338 clock = ehci_readl(ehci, &ehci->regs->frame_index); 2339 clock_frame = (clock >> 3) & (ehci->periodic_size - 1); 2340 } else { 2341 clock = now_uframe + mod - 1; 2342 clock_frame = -1; 2343 } 2344 if (ehci->clock_frame != clock_frame) { 2345 free_cached_lists(ehci); 2346 ehci->clock_frame = clock_frame; 2347 } 2348 clock &= mod - 1; 2349 clock_frame = clock >> 3; 2350 2351 for (;;) { 2352 union ehci_shadow q, *q_p; 2353 __hc32 type, *hw_p; 2354 unsigned incomplete = false; 2355 2356 frame = now_uframe >> 3; 2357 2358 restart: 2359 /* scan each element in frame's queue for completions */ 2360 q_p = &ehci->pshadow [frame]; 2361 hw_p = &ehci->periodic [frame]; 2362 q.ptr = q_p->ptr; 2363 type = Q_NEXT_TYPE(ehci, *hw_p); 2364 modified = 0; 2365 2366 while (q.ptr != NULL) { 2367 unsigned uf; 2368 union ehci_shadow temp; 2369 int live; 2370 2371 live = HC_IS_RUNNING (ehci_to_hcd(ehci)->state); 2372 switch (hc32_to_cpu(ehci, type)) { 2373 case Q_TYPE_QH: 2374 /* handle any completions */ 2375 temp.qh = qh_get (q.qh); 2376 type = Q_NEXT_TYPE(ehci, q.qh->hw->hw_next); 2377 q = q.qh->qh_next; 2378 modified = qh_completions (ehci, temp.qh); 2379 if (unlikely(list_empty(&temp.qh->qtd_list) || 2380 temp.qh->needs_rescan)) 2381 intr_deschedule (ehci, temp.qh); 2382 qh_put (temp.qh); 2383 break; 2384 case Q_TYPE_FSTN: 2385 /* for "save place" FSTNs, look at QH entries 2386 * in the previous frame for completions. 2387 */ 2388 if (q.fstn->hw_prev != EHCI_LIST_END(ehci)) { 2389 dbg ("ignoring completions from FSTNs"); 2390 } 2391 type = Q_NEXT_TYPE(ehci, q.fstn->hw_next); 2392 q = q.fstn->fstn_next; 2393 break; 2394 case Q_TYPE_ITD: 2395 /* If this ITD is still active, leave it for 2396 * later processing ... check the next entry. 2397 * No need to check for activity unless the 2398 * frame is current. 2399 */ 2400 if (frame == clock_frame && live) { 2401 rmb(); 2402 for (uf = 0; uf < 8; uf++) { 2403 if (q.itd->hw_transaction[uf] & 2404 ITD_ACTIVE(ehci)) 2405 break; 2406 } 2407 if (uf < 8) { 2408 incomplete = true; 2409 q_p = &q.itd->itd_next; 2410 hw_p = &q.itd->hw_next; 2411 type = Q_NEXT_TYPE(ehci, 2412 q.itd->hw_next); 2413 q = *q_p; 2414 break; 2415 } 2416 } 2417 2418 /* Take finished ITDs out of the schedule 2419 * and process them: recycle, maybe report 2420 * URB completion. HC won't cache the 2421 * pointer for much longer, if at all. 2422 */ 2423 *q_p = q.itd->itd_next; 2424 if (!ehci->use_dummy_qh || 2425 q.itd->hw_next != EHCI_LIST_END(ehci)) 2426 *hw_p = q.itd->hw_next; 2427 else 2428 *hw_p = ehci->dummy->qh_dma; 2429 type = Q_NEXT_TYPE(ehci, q.itd->hw_next); 2430 wmb(); 2431 modified = itd_complete (ehci, q.itd); 2432 q = *q_p; 2433 break; 2434 case Q_TYPE_SITD: 2435 /* If this SITD is still active, leave it for 2436 * later processing ... check the next entry. 2437 * No need to check for activity unless the 2438 * frame is current. 2439 */ 2440 if (((frame == clock_frame) || 2441 (((frame + 1) & (ehci->periodic_size - 1)) 2442 == clock_frame)) 2443 && live 2444 && (q.sitd->hw_results & 2445 SITD_ACTIVE(ehci))) { 2446 2447 incomplete = true; 2448 q_p = &q.sitd->sitd_next; 2449 hw_p = &q.sitd->hw_next; 2450 type = Q_NEXT_TYPE(ehci, 2451 q.sitd->hw_next); 2452 q = *q_p; 2453 break; 2454 } 2455 2456 /* Take finished SITDs out of the schedule 2457 * and process them: recycle, maybe report 2458 * URB completion. 2459 */ 2460 *q_p = q.sitd->sitd_next; 2461 if (!ehci->use_dummy_qh || 2462 q.sitd->hw_next != EHCI_LIST_END(ehci)) 2463 *hw_p = q.sitd->hw_next; 2464 else 2465 *hw_p = ehci->dummy->qh_dma; 2466 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next); 2467 wmb(); 2468 modified = sitd_complete (ehci, q.sitd); 2469 q = *q_p; 2470 break; 2471 default: 2472 dbg ("corrupt type %d frame %d shadow %p", 2473 type, frame, q.ptr); 2474 // BUG (); 2475 q.ptr = NULL; 2476 } 2477 2478 /* assume completion callbacks modify the queue */ 2479 if (unlikely (modified)) { 2480 if (likely(ehci->periodic_sched > 0)) 2481 goto restart; 2482 /* short-circuit this scan */ 2483 now_uframe = clock; 2484 break; 2485 } 2486 } 2487 2488 /* If we can tell we caught up to the hardware, stop now. 2489 * We can't advance our scan without collecting the ISO 2490 * transfers that are still pending in this frame. 2491 */ 2492 if (incomplete && HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) { 2493 ehci->next_uframe = now_uframe; 2494 break; 2495 } 2496 2497 // FIXME: this assumes we won't get lapped when 2498 // latencies climb; that should be rare, but... 2499 // detect it, and just go all the way around. 2500 // FLR might help detect this case, so long as latencies 2501 // don't exceed periodic_size msec (default 1.024 sec). 2502 2503 // FIXME: likewise assumes HC doesn't halt mid-scan 2504 2505 if (now_uframe == clock) { 2506 unsigned now; 2507 2508 if (!HC_IS_RUNNING (ehci_to_hcd(ehci)->state) 2509 || ehci->periodic_sched == 0) 2510 break; 2511 ehci->next_uframe = now_uframe; 2512 now = ehci_readl(ehci, &ehci->regs->frame_index) & 2513 (mod - 1); 2514 if (now_uframe == now) 2515 break; 2516 2517 /* rescan the rest of this frame, then ... */ 2518 clock = now; 2519 clock_frame = clock >> 3; 2520 if (ehci->clock_frame != clock_frame) { 2521 free_cached_lists(ehci); 2522 ehci->clock_frame = clock_frame; 2523 } 2524 } else { 2525 now_uframe++; 2526 now_uframe &= mod - 1; 2527 } 2528 } 2529 } 2530