xref: /openbmc/linux/drivers/usb/host/ehci-sched.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * Copyright (c) 2001-2004 by David Brownell
3  * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation; either version 2 of the License, or (at your
8  * option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software Foundation,
17  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19 
20 /* this file is part of ehci-hcd.c */
21 
22 /*-------------------------------------------------------------------------*/
23 
24 /*
25  * EHCI scheduled transaction support:  interrupt, iso, split iso
26  * These are called "periodic" transactions in the EHCI spec.
27  *
28  * Note that for interrupt transfers, the QH/QTD manipulation is shared
29  * with the "asynchronous" transaction support (control/bulk transfers).
30  * The only real difference is in how interrupt transfers are scheduled.
31  *
32  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33  * It keeps track of every ITD (or SITD) that's linked, and holds enough
34  * pre-calculated schedule data to make appending to the queue be quick.
35  */
36 
37 static int ehci_get_frame (struct usb_hcd *hcd);
38 
39 /*-------------------------------------------------------------------------*/
40 
41 /*
42  * periodic_next_shadow - return "next" pointer on shadow list
43  * @periodic: host pointer to qh/itd/sitd
44  * @tag: hardware tag for type of this record
45  */
46 static union ehci_shadow *
47 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
48 		__hc32 tag)
49 {
50 	switch (hc32_to_cpu(ehci, tag)) {
51 	case Q_TYPE_QH:
52 		return &periodic->qh->qh_next;
53 	case Q_TYPE_FSTN:
54 		return &periodic->fstn->fstn_next;
55 	case Q_TYPE_ITD:
56 		return &periodic->itd->itd_next;
57 	// case Q_TYPE_SITD:
58 	default:
59 		return &periodic->sitd->sitd_next;
60 	}
61 }
62 
63 static __hc32 *
64 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
65 		__hc32 tag)
66 {
67 	switch (hc32_to_cpu(ehci, tag)) {
68 	/* our ehci_shadow.qh is actually software part */
69 	case Q_TYPE_QH:
70 		return &periodic->qh->hw->hw_next;
71 	/* others are hw parts */
72 	default:
73 		return periodic->hw_next;
74 	}
75 }
76 
77 /* caller must hold ehci->lock */
78 static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr)
79 {
80 	union ehci_shadow	*prev_p = &ehci->pshadow[frame];
81 	__hc32			*hw_p = &ehci->periodic[frame];
82 	union ehci_shadow	here = *prev_p;
83 
84 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
85 	while (here.ptr && here.ptr != ptr) {
86 		prev_p = periodic_next_shadow(ehci, prev_p,
87 				Q_NEXT_TYPE(ehci, *hw_p));
88 		hw_p = shadow_next_periodic(ehci, &here,
89 				Q_NEXT_TYPE(ehci, *hw_p));
90 		here = *prev_p;
91 	}
92 	/* an interrupt entry (at list end) could have been shared */
93 	if (!here.ptr)
94 		return;
95 
96 	/* update shadow and hardware lists ... the old "next" pointers
97 	 * from ptr may still be in use, the caller updates them.
98 	 */
99 	*prev_p = *periodic_next_shadow(ehci, &here,
100 			Q_NEXT_TYPE(ehci, *hw_p));
101 
102 	if (!ehci->use_dummy_qh ||
103 	    *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
104 			!= EHCI_LIST_END(ehci))
105 		*hw_p = *shadow_next_periodic(ehci, &here,
106 				Q_NEXT_TYPE(ehci, *hw_p));
107 	else
108 		*hw_p = ehci->dummy->qh_dma;
109 }
110 
111 /* how many of the uframe's 125 usecs are allocated? */
112 static unsigned short
113 periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe)
114 {
115 	__hc32			*hw_p = &ehci->periodic [frame];
116 	union ehci_shadow	*q = &ehci->pshadow [frame];
117 	unsigned		usecs = 0;
118 	struct ehci_qh_hw	*hw;
119 
120 	while (q->ptr) {
121 		switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
122 		case Q_TYPE_QH:
123 			hw = q->qh->hw;
124 			/* is it in the S-mask? */
125 			if (hw->hw_info2 & cpu_to_hc32(ehci, 1 << uframe))
126 				usecs += q->qh->usecs;
127 			/* ... or C-mask? */
128 			if (hw->hw_info2 & cpu_to_hc32(ehci,
129 					1 << (8 + uframe)))
130 				usecs += q->qh->c_usecs;
131 			hw_p = &hw->hw_next;
132 			q = &q->qh->qh_next;
133 			break;
134 		// case Q_TYPE_FSTN:
135 		default:
136 			/* for "save place" FSTNs, count the relevant INTR
137 			 * bandwidth from the previous frame
138 			 */
139 			if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) {
140 				ehci_dbg (ehci, "ignoring FSTN cost ...\n");
141 			}
142 			hw_p = &q->fstn->hw_next;
143 			q = &q->fstn->fstn_next;
144 			break;
145 		case Q_TYPE_ITD:
146 			if (q->itd->hw_transaction[uframe])
147 				usecs += q->itd->stream->usecs;
148 			hw_p = &q->itd->hw_next;
149 			q = &q->itd->itd_next;
150 			break;
151 		case Q_TYPE_SITD:
152 			/* is it in the S-mask?  (count SPLIT, DATA) */
153 			if (q->sitd->hw_uframe & cpu_to_hc32(ehci,
154 					1 << uframe)) {
155 				if (q->sitd->hw_fullspeed_ep &
156 						cpu_to_hc32(ehci, 1<<31))
157 					usecs += q->sitd->stream->usecs;
158 				else	/* worst case for OUT start-split */
159 					usecs += HS_USECS_ISO (188);
160 			}
161 
162 			/* ... C-mask?  (count CSPLIT, DATA) */
163 			if (q->sitd->hw_uframe &
164 					cpu_to_hc32(ehci, 1 << (8 + uframe))) {
165 				/* worst case for IN complete-split */
166 				usecs += q->sitd->stream->c_usecs;
167 			}
168 
169 			hw_p = &q->sitd->hw_next;
170 			q = &q->sitd->sitd_next;
171 			break;
172 		}
173 	}
174 #ifdef	DEBUG
175 	if (usecs > 100)
176 		ehci_err (ehci, "uframe %d sched overrun: %d usecs\n",
177 			frame * 8 + uframe, usecs);
178 #endif
179 	return usecs;
180 }
181 
182 /*-------------------------------------------------------------------------*/
183 
184 static int same_tt (struct usb_device *dev1, struct usb_device *dev2)
185 {
186 	if (!dev1->tt || !dev2->tt)
187 		return 0;
188 	if (dev1->tt != dev2->tt)
189 		return 0;
190 	if (dev1->tt->multi)
191 		return dev1->ttport == dev2->ttport;
192 	else
193 		return 1;
194 }
195 
196 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
197 
198 /* Which uframe does the low/fullspeed transfer start in?
199  *
200  * The parameter is the mask of ssplits in "H-frame" terms
201  * and this returns the transfer start uframe in "B-frame" terms,
202  * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
203  * will cause a transfer in "B-frame" uframe 0.  "B-frames" lag
204  * "H-frames" by 1 uframe.  See the EHCI spec sec 4.5 and figure 4.7.
205  */
206 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
207 {
208 	unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask);
209 	if (!smask) {
210 		ehci_err(ehci, "invalid empty smask!\n");
211 		/* uframe 7 can't have bw so this will indicate failure */
212 		return 7;
213 	}
214 	return ffs(smask) - 1;
215 }
216 
217 static const unsigned char
218 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
219 
220 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
221 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
222 {
223 	int i;
224 	for (i=0; i<7; i++) {
225 		if (max_tt_usecs[i] < tt_usecs[i]) {
226 			tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
227 			tt_usecs[i] = max_tt_usecs[i];
228 		}
229 	}
230 }
231 
232 /* How many of the tt's periodic downstream 1000 usecs are allocated?
233  *
234  * While this measures the bandwidth in terms of usecs/uframe,
235  * the low/fullspeed bus has no notion of uframes, so any particular
236  * low/fullspeed transfer can "carry over" from one uframe to the next,
237  * since the TT just performs downstream transfers in sequence.
238  *
239  * For example two separate 100 usec transfers can start in the same uframe,
240  * and the second one would "carry over" 75 usecs into the next uframe.
241  */
242 static void
243 periodic_tt_usecs (
244 	struct ehci_hcd *ehci,
245 	struct usb_device *dev,
246 	unsigned frame,
247 	unsigned short tt_usecs[8]
248 )
249 {
250 	__hc32			*hw_p = &ehci->periodic [frame];
251 	union ehci_shadow	*q = &ehci->pshadow [frame];
252 	unsigned char		uf;
253 
254 	memset(tt_usecs, 0, 16);
255 
256 	while (q->ptr) {
257 		switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
258 		case Q_TYPE_ITD:
259 			hw_p = &q->itd->hw_next;
260 			q = &q->itd->itd_next;
261 			continue;
262 		case Q_TYPE_QH:
263 			if (same_tt(dev, q->qh->dev)) {
264 				uf = tt_start_uframe(ehci, q->qh->hw->hw_info2);
265 				tt_usecs[uf] += q->qh->tt_usecs;
266 			}
267 			hw_p = &q->qh->hw->hw_next;
268 			q = &q->qh->qh_next;
269 			continue;
270 		case Q_TYPE_SITD:
271 			if (same_tt(dev, q->sitd->urb->dev)) {
272 				uf = tt_start_uframe(ehci, q->sitd->hw_uframe);
273 				tt_usecs[uf] += q->sitd->stream->tt_usecs;
274 			}
275 			hw_p = &q->sitd->hw_next;
276 			q = &q->sitd->sitd_next;
277 			continue;
278 		// case Q_TYPE_FSTN:
279 		default:
280 			ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n",
281 					frame);
282 			hw_p = &q->fstn->hw_next;
283 			q = &q->fstn->fstn_next;
284 		}
285 	}
286 
287 	carryover_tt_bandwidth(tt_usecs);
288 
289 	if (max_tt_usecs[7] < tt_usecs[7])
290 		ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n",
291 			frame, tt_usecs[7] - max_tt_usecs[7]);
292 }
293 
294 /*
295  * Return true if the device's tt's downstream bus is available for a
296  * periodic transfer of the specified length (usecs), starting at the
297  * specified frame/uframe.  Note that (as summarized in section 11.19
298  * of the usb 2.0 spec) TTs can buffer multiple transactions for each
299  * uframe.
300  *
301  * The uframe parameter is when the fullspeed/lowspeed transfer
302  * should be executed in "B-frame" terms, which is the same as the
303  * highspeed ssplit's uframe (which is in "H-frame" terms).  For example
304  * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
305  * See the EHCI spec sec 4.5 and fig 4.7.
306  *
307  * This checks if the full/lowspeed bus, at the specified starting uframe,
308  * has the specified bandwidth available, according to rules listed
309  * in USB 2.0 spec section 11.18.1 fig 11-60.
310  *
311  * This does not check if the transfer would exceed the max ssplit
312  * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
313  * since proper scheduling limits ssplits to less than 16 per uframe.
314  */
315 static int tt_available (
316 	struct ehci_hcd		*ehci,
317 	unsigned		period,
318 	struct usb_device	*dev,
319 	unsigned		frame,
320 	unsigned		uframe,
321 	u16			usecs
322 )
323 {
324 	if ((period == 0) || (uframe >= 7))	/* error */
325 		return 0;
326 
327 	for (; frame < ehci->periodic_size; frame += period) {
328 		unsigned short tt_usecs[8];
329 
330 		periodic_tt_usecs (ehci, dev, frame, tt_usecs);
331 
332 		ehci_vdbg(ehci, "tt frame %d check %d usecs start uframe %d in"
333 			" schedule %d/%d/%d/%d/%d/%d/%d/%d\n",
334 			frame, usecs, uframe,
335 			tt_usecs[0], tt_usecs[1], tt_usecs[2], tt_usecs[3],
336 			tt_usecs[4], tt_usecs[5], tt_usecs[6], tt_usecs[7]);
337 
338 		if (max_tt_usecs[uframe] <= tt_usecs[uframe]) {
339 			ehci_vdbg(ehci, "frame %d uframe %d fully scheduled\n",
340 				frame, uframe);
341 			return 0;
342 		}
343 
344 		/* special case for isoc transfers larger than 125us:
345 		 * the first and each subsequent fully used uframe
346 		 * must be empty, so as to not illegally delay
347 		 * already scheduled transactions
348 		 */
349 		if (125 < usecs) {
350 			int ufs = (usecs / 125);
351 			int i;
352 			for (i = uframe; i < (uframe + ufs) && i < 8; i++)
353 				if (0 < tt_usecs[i]) {
354 					ehci_vdbg(ehci,
355 						"multi-uframe xfer can't fit "
356 						"in frame %d uframe %d\n",
357 						frame, i);
358 					return 0;
359 				}
360 		}
361 
362 		tt_usecs[uframe] += usecs;
363 
364 		carryover_tt_bandwidth(tt_usecs);
365 
366 		/* fail if the carryover pushed bw past the last uframe's limit */
367 		if (max_tt_usecs[7] < tt_usecs[7]) {
368 			ehci_vdbg(ehci,
369 				"tt unavailable usecs %d frame %d uframe %d\n",
370 				usecs, frame, uframe);
371 			return 0;
372 		}
373 	}
374 
375 	return 1;
376 }
377 
378 #else
379 
380 /* return true iff the device's transaction translator is available
381  * for a periodic transfer starting at the specified frame, using
382  * all the uframes in the mask.
383  */
384 static int tt_no_collision (
385 	struct ehci_hcd		*ehci,
386 	unsigned		period,
387 	struct usb_device	*dev,
388 	unsigned		frame,
389 	u32			uf_mask
390 )
391 {
392 	if (period == 0)	/* error */
393 		return 0;
394 
395 	/* note bandwidth wastage:  split never follows csplit
396 	 * (different dev or endpoint) until the next uframe.
397 	 * calling convention doesn't make that distinction.
398 	 */
399 	for (; frame < ehci->periodic_size; frame += period) {
400 		union ehci_shadow	here;
401 		__hc32			type;
402 		struct ehci_qh_hw	*hw;
403 
404 		here = ehci->pshadow [frame];
405 		type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]);
406 		while (here.ptr) {
407 			switch (hc32_to_cpu(ehci, type)) {
408 			case Q_TYPE_ITD:
409 				type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
410 				here = here.itd->itd_next;
411 				continue;
412 			case Q_TYPE_QH:
413 				hw = here.qh->hw;
414 				if (same_tt (dev, here.qh->dev)) {
415 					u32		mask;
416 
417 					mask = hc32_to_cpu(ehci,
418 							hw->hw_info2);
419 					/* "knows" no gap is needed */
420 					mask |= mask >> 8;
421 					if (mask & uf_mask)
422 						break;
423 				}
424 				type = Q_NEXT_TYPE(ehci, hw->hw_next);
425 				here = here.qh->qh_next;
426 				continue;
427 			case Q_TYPE_SITD:
428 				if (same_tt (dev, here.sitd->urb->dev)) {
429 					u16		mask;
430 
431 					mask = hc32_to_cpu(ehci, here.sitd
432 								->hw_uframe);
433 					/* FIXME assumes no gap for IN! */
434 					mask |= mask >> 8;
435 					if (mask & uf_mask)
436 						break;
437 				}
438 				type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
439 				here = here.sitd->sitd_next;
440 				continue;
441 			// case Q_TYPE_FSTN:
442 			default:
443 				ehci_dbg (ehci,
444 					"periodic frame %d bogus type %d\n",
445 					frame, type);
446 			}
447 
448 			/* collision or error */
449 			return 0;
450 		}
451 	}
452 
453 	/* no collision */
454 	return 1;
455 }
456 
457 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
458 
459 /*-------------------------------------------------------------------------*/
460 
461 static int enable_periodic (struct ehci_hcd *ehci)
462 {
463 	u32	cmd;
464 	int	status;
465 
466 	if (ehci->periodic_sched++)
467 		return 0;
468 
469 	/* did clearing PSE did take effect yet?
470 	 * takes effect only at frame boundaries...
471 	 */
472 	status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
473 					     STS_PSS, 0, 9 * 125);
474 	if (status)
475 		return status;
476 
477 	cmd = ehci_readl(ehci, &ehci->regs->command) | CMD_PSE;
478 	ehci_writel(ehci, cmd, &ehci->regs->command);
479 	/* posted write ... PSS happens later */
480 	ehci_to_hcd(ehci)->state = HC_STATE_RUNNING;
481 
482 	/* make sure ehci_work scans these */
483 	ehci->next_uframe = ehci_readl(ehci, &ehci->regs->frame_index)
484 		% (ehci->periodic_size << 3);
485 	if (unlikely(ehci->broken_periodic))
486 		ehci->last_periodic_enable = ktime_get_real();
487 	return 0;
488 }
489 
490 static int disable_periodic (struct ehci_hcd *ehci)
491 {
492 	u32	cmd;
493 	int	status;
494 
495 	if (--ehci->periodic_sched)
496 		return 0;
497 
498 	if (unlikely(ehci->broken_periodic)) {
499 		/* delay experimentally determined */
500 		ktime_t safe = ktime_add_us(ehci->last_periodic_enable, 1000);
501 		ktime_t now = ktime_get_real();
502 		s64 delay = ktime_us_delta(safe, now);
503 
504 		if (unlikely(delay > 0))
505 			udelay(delay);
506 	}
507 
508 	/* did setting PSE not take effect yet?
509 	 * takes effect only at frame boundaries...
510 	 */
511 	status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
512 					     STS_PSS, STS_PSS, 9 * 125);
513 	if (status)
514 		return status;
515 
516 	cmd = ehci_readl(ehci, &ehci->regs->command) & ~CMD_PSE;
517 	ehci_writel(ehci, cmd, &ehci->regs->command);
518 	/* posted write ... */
519 
520 	free_cached_lists(ehci);
521 
522 	ehci->next_uframe = -1;
523 	return 0;
524 }
525 
526 /*-------------------------------------------------------------------------*/
527 
528 /* periodic schedule slots have iso tds (normal or split) first, then a
529  * sparse tree for active interrupt transfers.
530  *
531  * this just links in a qh; caller guarantees uframe masks are set right.
532  * no FSTN support (yet; ehci 0.96+)
533  */
534 static int qh_link_periodic (struct ehci_hcd *ehci, struct ehci_qh *qh)
535 {
536 	unsigned	i;
537 	unsigned	period = qh->period;
538 
539 	dev_dbg (&qh->dev->dev,
540 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
541 		period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
542 			& (QH_CMASK | QH_SMASK),
543 		qh, qh->start, qh->usecs, qh->c_usecs);
544 
545 	/* high bandwidth, or otherwise every microframe */
546 	if (period == 0)
547 		period = 1;
548 
549 	for (i = qh->start; i < ehci->periodic_size; i += period) {
550 		union ehci_shadow	*prev = &ehci->pshadow[i];
551 		__hc32			*hw_p = &ehci->periodic[i];
552 		union ehci_shadow	here = *prev;
553 		__hc32			type = 0;
554 
555 		/* skip the iso nodes at list head */
556 		while (here.ptr) {
557 			type = Q_NEXT_TYPE(ehci, *hw_p);
558 			if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
559 				break;
560 			prev = periodic_next_shadow(ehci, prev, type);
561 			hw_p = shadow_next_periodic(ehci, &here, type);
562 			here = *prev;
563 		}
564 
565 		/* sorting each branch by period (slow-->fast)
566 		 * enables sharing interior tree nodes
567 		 */
568 		while (here.ptr && qh != here.qh) {
569 			if (qh->period > here.qh->period)
570 				break;
571 			prev = &here.qh->qh_next;
572 			hw_p = &here.qh->hw->hw_next;
573 			here = *prev;
574 		}
575 		/* link in this qh, unless some earlier pass did that */
576 		if (qh != here.qh) {
577 			qh->qh_next = here;
578 			if (here.qh)
579 				qh->hw->hw_next = *hw_p;
580 			wmb ();
581 			prev->qh = qh;
582 			*hw_p = QH_NEXT (ehci, qh->qh_dma);
583 		}
584 	}
585 	qh->qh_state = QH_STATE_LINKED;
586 	qh->xacterrs = 0;
587 	qh_get (qh);
588 
589 	/* update per-qh bandwidth for usbfs */
590 	ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period
591 		? ((qh->usecs + qh->c_usecs) / qh->period)
592 		: (qh->usecs * 8);
593 
594 	/* maybe enable periodic schedule processing */
595 	return enable_periodic(ehci);
596 }
597 
598 static int qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
599 {
600 	unsigned	i;
601 	unsigned	period;
602 
603 	// FIXME:
604 	// IF this isn't high speed
605 	//   and this qh is active in the current uframe
606 	//   (and overlay token SplitXstate is false?)
607 	// THEN
608 	//   qh->hw_info1 |= cpu_to_hc32(1 << 7 /* "ignore" */);
609 
610 	/* high bandwidth, or otherwise part of every microframe */
611 	if ((period = qh->period) == 0)
612 		period = 1;
613 
614 	for (i = qh->start; i < ehci->periodic_size; i += period)
615 		periodic_unlink (ehci, i, qh);
616 
617 	/* update per-qh bandwidth for usbfs */
618 	ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period
619 		? ((qh->usecs + qh->c_usecs) / qh->period)
620 		: (qh->usecs * 8);
621 
622 	dev_dbg (&qh->dev->dev,
623 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
624 		qh->period,
625 		hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
626 		qh, qh->start, qh->usecs, qh->c_usecs);
627 
628 	/* qh->qh_next still "live" to HC */
629 	qh->qh_state = QH_STATE_UNLINK;
630 	qh->qh_next.ptr = NULL;
631 	qh_put (qh);
632 
633 	/* maybe turn off periodic schedule */
634 	return disable_periodic(ehci);
635 }
636 
637 static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh)
638 {
639 	unsigned		wait;
640 	struct ehci_qh_hw	*hw = qh->hw;
641 	int			rc;
642 
643 	/* If the QH isn't linked then there's nothing we can do
644 	 * unless we were called during a giveback, in which case
645 	 * qh_completions() has to deal with it.
646 	 */
647 	if (qh->qh_state != QH_STATE_LINKED) {
648 		if (qh->qh_state == QH_STATE_COMPLETING)
649 			qh->needs_rescan = 1;
650 		return;
651 	}
652 
653 	qh_unlink_periodic (ehci, qh);
654 
655 	/* simple/paranoid:  always delay, expecting the HC needs to read
656 	 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
657 	 * expect khubd to clean up after any CSPLITs we won't issue.
658 	 * active high speed queues may need bigger delays...
659 	 */
660 	if (list_empty (&qh->qtd_list)
661 			|| (cpu_to_hc32(ehci, QH_CMASK)
662 					& hw->hw_info2) != 0)
663 		wait = 2;
664 	else
665 		wait = 55;	/* worst case: 3 * 1024 */
666 
667 	udelay (wait);
668 	qh->qh_state = QH_STATE_IDLE;
669 	hw->hw_next = EHCI_LIST_END(ehci);
670 	wmb ();
671 
672 	qh_completions(ehci, qh);
673 
674 	/* reschedule QH iff another request is queued */
675 	if (!list_empty(&qh->qtd_list) &&
676 			HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
677 		rc = qh_schedule(ehci, qh);
678 
679 		/* An error here likely indicates handshake failure
680 		 * or no space left in the schedule.  Neither fault
681 		 * should happen often ...
682 		 *
683 		 * FIXME kill the now-dysfunctional queued urbs
684 		 */
685 		if (rc != 0)
686 			ehci_err(ehci, "can't reschedule qh %p, err %d\n",
687 					qh, rc);
688 	}
689 }
690 
691 /*-------------------------------------------------------------------------*/
692 
693 static int check_period (
694 	struct ehci_hcd *ehci,
695 	unsigned	frame,
696 	unsigned	uframe,
697 	unsigned	period,
698 	unsigned	usecs
699 ) {
700 	int		claimed;
701 
702 	/* complete split running into next frame?
703 	 * given FSTN support, we could sometimes check...
704 	 */
705 	if (uframe >= 8)
706 		return 0;
707 
708 	/*
709 	 * 80% periodic == 100 usec/uframe available
710 	 * convert "usecs we need" to "max already claimed"
711 	 */
712 	usecs = 100 - usecs;
713 
714 	/* we "know" 2 and 4 uframe intervals were rejected; so
715 	 * for period 0, check _every_ microframe in the schedule.
716 	 */
717 	if (unlikely (period == 0)) {
718 		do {
719 			for (uframe = 0; uframe < 7; uframe++) {
720 				claimed = periodic_usecs (ehci, frame, uframe);
721 				if (claimed > usecs)
722 					return 0;
723 			}
724 		} while ((frame += 1) < ehci->periodic_size);
725 
726 	/* just check the specified uframe, at that period */
727 	} else {
728 		do {
729 			claimed = periodic_usecs (ehci, frame, uframe);
730 			if (claimed > usecs)
731 				return 0;
732 		} while ((frame += period) < ehci->periodic_size);
733 	}
734 
735 	// success!
736 	return 1;
737 }
738 
739 static int check_intr_schedule (
740 	struct ehci_hcd		*ehci,
741 	unsigned		frame,
742 	unsigned		uframe,
743 	const struct ehci_qh	*qh,
744 	__hc32			*c_maskp
745 )
746 {
747 	int		retval = -ENOSPC;
748 	u8		mask = 0;
749 
750 	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
751 		goto done;
752 
753 	if (!check_period (ehci, frame, uframe, qh->period, qh->usecs))
754 		goto done;
755 	if (!qh->c_usecs) {
756 		retval = 0;
757 		*c_maskp = 0;
758 		goto done;
759 	}
760 
761 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
762 	if (tt_available (ehci, qh->period, qh->dev, frame, uframe,
763 				qh->tt_usecs)) {
764 		unsigned i;
765 
766 		/* TODO : this may need FSTN for SSPLIT in uframe 5. */
767 		for (i=uframe+1; i<8 && i<uframe+4; i++)
768 			if (!check_period (ehci, frame, i,
769 						qh->period, qh->c_usecs))
770 				goto done;
771 			else
772 				mask |= 1 << i;
773 
774 		retval = 0;
775 
776 		*c_maskp = cpu_to_hc32(ehci, mask << 8);
777 	}
778 #else
779 	/* Make sure this tt's buffer is also available for CSPLITs.
780 	 * We pessimize a bit; probably the typical full speed case
781 	 * doesn't need the second CSPLIT.
782 	 *
783 	 * NOTE:  both SPLIT and CSPLIT could be checked in just
784 	 * one smart pass...
785 	 */
786 	mask = 0x03 << (uframe + qh->gap_uf);
787 	*c_maskp = cpu_to_hc32(ehci, mask << 8);
788 
789 	mask |= 1 << uframe;
790 	if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) {
791 		if (!check_period (ehci, frame, uframe + qh->gap_uf + 1,
792 					qh->period, qh->c_usecs))
793 			goto done;
794 		if (!check_period (ehci, frame, uframe + qh->gap_uf,
795 					qh->period, qh->c_usecs))
796 			goto done;
797 		retval = 0;
798 	}
799 #endif
800 done:
801 	return retval;
802 }
803 
804 /* "first fit" scheduling policy used the first time through,
805  * or when the previous schedule slot can't be re-used.
806  */
807 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
808 {
809 	int		status;
810 	unsigned	uframe;
811 	__hc32		c_mask;
812 	unsigned	frame;		/* 0..(qh->period - 1), or NO_FRAME */
813 	struct ehci_qh_hw	*hw = qh->hw;
814 
815 	qh_refresh(ehci, qh);
816 	hw->hw_next = EHCI_LIST_END(ehci);
817 	frame = qh->start;
818 
819 	/* reuse the previous schedule slots, if we can */
820 	if (frame < qh->period) {
821 		uframe = ffs(hc32_to_cpup(ehci, &hw->hw_info2) & QH_SMASK);
822 		status = check_intr_schedule (ehci, frame, --uframe,
823 				qh, &c_mask);
824 	} else {
825 		uframe = 0;
826 		c_mask = 0;
827 		status = -ENOSPC;
828 	}
829 
830 	/* else scan the schedule to find a group of slots such that all
831 	 * uframes have enough periodic bandwidth available.
832 	 */
833 	if (status) {
834 		/* "normal" case, uframing flexible except with splits */
835 		if (qh->period) {
836 			int		i;
837 
838 			for (i = qh->period; status && i > 0; --i) {
839 				frame = ++ehci->random_frame % qh->period;
840 				for (uframe = 0; uframe < 8; uframe++) {
841 					status = check_intr_schedule (ehci,
842 							frame, uframe, qh,
843 							&c_mask);
844 					if (status == 0)
845 						break;
846 				}
847 			}
848 
849 		/* qh->period == 0 means every uframe */
850 		} else {
851 			frame = 0;
852 			status = check_intr_schedule (ehci, 0, 0, qh, &c_mask);
853 		}
854 		if (status)
855 			goto done;
856 		qh->start = frame;
857 
858 		/* reset S-frame and (maybe) C-frame masks */
859 		hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
860 		hw->hw_info2 |= qh->period
861 			? cpu_to_hc32(ehci, 1 << uframe)
862 			: cpu_to_hc32(ehci, QH_SMASK);
863 		hw->hw_info2 |= c_mask;
864 	} else
865 		ehci_dbg (ehci, "reused qh %p schedule\n", qh);
866 
867 	/* stuff into the periodic schedule */
868 	status = qh_link_periodic (ehci, qh);
869 done:
870 	return status;
871 }
872 
873 static int intr_submit (
874 	struct ehci_hcd		*ehci,
875 	struct urb		*urb,
876 	struct list_head	*qtd_list,
877 	gfp_t			mem_flags
878 ) {
879 	unsigned		epnum;
880 	unsigned long		flags;
881 	struct ehci_qh		*qh;
882 	int			status;
883 	struct list_head	empty;
884 
885 	/* get endpoint and transfer/schedule data */
886 	epnum = urb->ep->desc.bEndpointAddress;
887 
888 	spin_lock_irqsave (&ehci->lock, flags);
889 
890 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
891 		status = -ESHUTDOWN;
892 		goto done_not_linked;
893 	}
894 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
895 	if (unlikely(status))
896 		goto done_not_linked;
897 
898 	/* get qh and force any scheduling errors */
899 	INIT_LIST_HEAD (&empty);
900 	qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
901 	if (qh == NULL) {
902 		status = -ENOMEM;
903 		goto done;
904 	}
905 	if (qh->qh_state == QH_STATE_IDLE) {
906 		if ((status = qh_schedule (ehci, qh)) != 0)
907 			goto done;
908 	}
909 
910 	/* then queue the urb's tds to the qh */
911 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
912 	BUG_ON (qh == NULL);
913 
914 	/* ... update usbfs periodic stats */
915 	ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
916 
917 done:
918 	if (unlikely(status))
919 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
920 done_not_linked:
921 	spin_unlock_irqrestore (&ehci->lock, flags);
922 	if (status)
923 		qtd_list_free (ehci, urb, qtd_list);
924 
925 	return status;
926 }
927 
928 /*-------------------------------------------------------------------------*/
929 
930 /* ehci_iso_stream ops work with both ITD and SITD */
931 
932 static struct ehci_iso_stream *
933 iso_stream_alloc (gfp_t mem_flags)
934 {
935 	struct ehci_iso_stream *stream;
936 
937 	stream = kzalloc(sizeof *stream, mem_flags);
938 	if (likely (stream != NULL)) {
939 		INIT_LIST_HEAD(&stream->td_list);
940 		INIT_LIST_HEAD(&stream->free_list);
941 		stream->next_uframe = -1;
942 		stream->refcount = 1;
943 	}
944 	return stream;
945 }
946 
947 static void
948 iso_stream_init (
949 	struct ehci_hcd		*ehci,
950 	struct ehci_iso_stream	*stream,
951 	struct usb_device	*dev,
952 	int			pipe,
953 	unsigned		interval
954 )
955 {
956 	static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
957 
958 	u32			buf1;
959 	unsigned		epnum, maxp;
960 	int			is_input;
961 	long			bandwidth;
962 
963 	/*
964 	 * this might be a "high bandwidth" highspeed endpoint,
965 	 * as encoded in the ep descriptor's wMaxPacket field
966 	 */
967 	epnum = usb_pipeendpoint (pipe);
968 	is_input = usb_pipein (pipe) ? USB_DIR_IN : 0;
969 	maxp = usb_maxpacket(dev, pipe, !is_input);
970 	if (is_input) {
971 		buf1 = (1 << 11);
972 	} else {
973 		buf1 = 0;
974 	}
975 
976 	/* knows about ITD vs SITD */
977 	if (dev->speed == USB_SPEED_HIGH) {
978 		unsigned multi = hb_mult(maxp);
979 
980 		stream->highspeed = 1;
981 
982 		maxp = max_packet(maxp);
983 		buf1 |= maxp;
984 		maxp *= multi;
985 
986 		stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
987 		stream->buf1 = cpu_to_hc32(ehci, buf1);
988 		stream->buf2 = cpu_to_hc32(ehci, multi);
989 
990 		/* usbfs wants to report the average usecs per frame tied up
991 		 * when transfers on this endpoint are scheduled ...
992 		 */
993 		stream->usecs = HS_USECS_ISO (maxp);
994 		bandwidth = stream->usecs * 8;
995 		bandwidth /= interval;
996 
997 	} else {
998 		u32		addr;
999 		int		think_time;
1000 		int		hs_transfers;
1001 
1002 		addr = dev->ttport << 24;
1003 		if (!ehci_is_TDI(ehci)
1004 				|| (dev->tt->hub !=
1005 					ehci_to_hcd(ehci)->self.root_hub))
1006 			addr |= dev->tt->hub->devnum << 16;
1007 		addr |= epnum << 8;
1008 		addr |= dev->devnum;
1009 		stream->usecs = HS_USECS_ISO (maxp);
1010 		think_time = dev->tt ? dev->tt->think_time : 0;
1011 		stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time (
1012 				dev->speed, is_input, 1, maxp));
1013 		hs_transfers = max (1u, (maxp + 187) / 188);
1014 		if (is_input) {
1015 			u32	tmp;
1016 
1017 			addr |= 1 << 31;
1018 			stream->c_usecs = stream->usecs;
1019 			stream->usecs = HS_USECS_ISO (1);
1020 			stream->raw_mask = 1;
1021 
1022 			/* c-mask as specified in USB 2.0 11.18.4 3.c */
1023 			tmp = (1 << (hs_transfers + 2)) - 1;
1024 			stream->raw_mask |= tmp << (8 + 2);
1025 		} else
1026 			stream->raw_mask = smask_out [hs_transfers - 1];
1027 		bandwidth = stream->usecs + stream->c_usecs;
1028 		bandwidth /= interval << 3;
1029 
1030 		/* stream->splits gets created from raw_mask later */
1031 		stream->address = cpu_to_hc32(ehci, addr);
1032 	}
1033 	stream->bandwidth = bandwidth;
1034 
1035 	stream->udev = dev;
1036 
1037 	stream->bEndpointAddress = is_input | epnum;
1038 	stream->interval = interval;
1039 	stream->maxp = maxp;
1040 }
1041 
1042 static void
1043 iso_stream_put(struct ehci_hcd *ehci, struct ehci_iso_stream *stream)
1044 {
1045 	stream->refcount--;
1046 
1047 	/* free whenever just a dev->ep reference remains.
1048 	 * not like a QH -- no persistent state (toggle, halt)
1049 	 */
1050 	if (stream->refcount == 1) {
1051 		int		is_in;
1052 
1053 		// BUG_ON (!list_empty(&stream->td_list));
1054 
1055 		while (!list_empty (&stream->free_list)) {
1056 			struct list_head	*entry;
1057 
1058 			entry = stream->free_list.next;
1059 			list_del (entry);
1060 
1061 			/* knows about ITD vs SITD */
1062 			if (stream->highspeed) {
1063 				struct ehci_itd		*itd;
1064 
1065 				itd = list_entry (entry, struct ehci_itd,
1066 						itd_list);
1067 				dma_pool_free (ehci->itd_pool, itd,
1068 						itd->itd_dma);
1069 			} else {
1070 				struct ehci_sitd	*sitd;
1071 
1072 				sitd = list_entry (entry, struct ehci_sitd,
1073 						sitd_list);
1074 				dma_pool_free (ehci->sitd_pool, sitd,
1075 						sitd->sitd_dma);
1076 			}
1077 		}
1078 
1079 		is_in = (stream->bEndpointAddress & USB_DIR_IN) ? 0x10 : 0;
1080 		stream->bEndpointAddress &= 0x0f;
1081 		if (stream->ep)
1082 			stream->ep->hcpriv = NULL;
1083 
1084 		kfree(stream);
1085 	}
1086 }
1087 
1088 static inline struct ehci_iso_stream *
1089 iso_stream_get (struct ehci_iso_stream *stream)
1090 {
1091 	if (likely (stream != NULL))
1092 		stream->refcount++;
1093 	return stream;
1094 }
1095 
1096 static struct ehci_iso_stream *
1097 iso_stream_find (struct ehci_hcd *ehci, struct urb *urb)
1098 {
1099 	unsigned		epnum;
1100 	struct ehci_iso_stream	*stream;
1101 	struct usb_host_endpoint *ep;
1102 	unsigned long		flags;
1103 
1104 	epnum = usb_pipeendpoint (urb->pipe);
1105 	if (usb_pipein(urb->pipe))
1106 		ep = urb->dev->ep_in[epnum];
1107 	else
1108 		ep = urb->dev->ep_out[epnum];
1109 
1110 	spin_lock_irqsave (&ehci->lock, flags);
1111 	stream = ep->hcpriv;
1112 
1113 	if (unlikely (stream == NULL)) {
1114 		stream = iso_stream_alloc(GFP_ATOMIC);
1115 		if (likely (stream != NULL)) {
1116 			/* dev->ep owns the initial refcount */
1117 			ep->hcpriv = stream;
1118 			stream->ep = ep;
1119 			iso_stream_init(ehci, stream, urb->dev, urb->pipe,
1120 					urb->interval);
1121 		}
1122 
1123 	/* if dev->ep [epnum] is a QH, hw is set */
1124 	} else if (unlikely (stream->hw != NULL)) {
1125 		ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n",
1126 			urb->dev->devpath, epnum,
1127 			usb_pipein(urb->pipe) ? "in" : "out");
1128 		stream = NULL;
1129 	}
1130 
1131 	/* caller guarantees an eventual matching iso_stream_put */
1132 	stream = iso_stream_get (stream);
1133 
1134 	spin_unlock_irqrestore (&ehci->lock, flags);
1135 	return stream;
1136 }
1137 
1138 /*-------------------------------------------------------------------------*/
1139 
1140 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1141 
1142 static struct ehci_iso_sched *
1143 iso_sched_alloc (unsigned packets, gfp_t mem_flags)
1144 {
1145 	struct ehci_iso_sched	*iso_sched;
1146 	int			size = sizeof *iso_sched;
1147 
1148 	size += packets * sizeof (struct ehci_iso_packet);
1149 	iso_sched = kzalloc(size, mem_flags);
1150 	if (likely (iso_sched != NULL)) {
1151 		INIT_LIST_HEAD (&iso_sched->td_list);
1152 	}
1153 	return iso_sched;
1154 }
1155 
1156 static inline void
1157 itd_sched_init(
1158 	struct ehci_hcd		*ehci,
1159 	struct ehci_iso_sched	*iso_sched,
1160 	struct ehci_iso_stream	*stream,
1161 	struct urb		*urb
1162 )
1163 {
1164 	unsigned	i;
1165 	dma_addr_t	dma = urb->transfer_dma;
1166 
1167 	/* how many uframes are needed for these transfers */
1168 	iso_sched->span = urb->number_of_packets * stream->interval;
1169 
1170 	/* figure out per-uframe itd fields that we'll need later
1171 	 * when we fit new itds into the schedule.
1172 	 */
1173 	for (i = 0; i < urb->number_of_packets; i++) {
1174 		struct ehci_iso_packet	*uframe = &iso_sched->packet [i];
1175 		unsigned		length;
1176 		dma_addr_t		buf;
1177 		u32			trans;
1178 
1179 		length = urb->iso_frame_desc [i].length;
1180 		buf = dma + urb->iso_frame_desc [i].offset;
1181 
1182 		trans = EHCI_ISOC_ACTIVE;
1183 		trans |= buf & 0x0fff;
1184 		if (unlikely (((i + 1) == urb->number_of_packets))
1185 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1186 			trans |= EHCI_ITD_IOC;
1187 		trans |= length << 16;
1188 		uframe->transaction = cpu_to_hc32(ehci, trans);
1189 
1190 		/* might need to cross a buffer page within a uframe */
1191 		uframe->bufp = (buf & ~(u64)0x0fff);
1192 		buf += length;
1193 		if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff))))
1194 			uframe->cross = 1;
1195 	}
1196 }
1197 
1198 static void
1199 iso_sched_free (
1200 	struct ehci_iso_stream	*stream,
1201 	struct ehci_iso_sched	*iso_sched
1202 )
1203 {
1204 	if (!iso_sched)
1205 		return;
1206 	// caller must hold ehci->lock!
1207 	list_splice (&iso_sched->td_list, &stream->free_list);
1208 	kfree (iso_sched);
1209 }
1210 
1211 static int
1212 itd_urb_transaction (
1213 	struct ehci_iso_stream	*stream,
1214 	struct ehci_hcd		*ehci,
1215 	struct urb		*urb,
1216 	gfp_t			mem_flags
1217 )
1218 {
1219 	struct ehci_itd		*itd;
1220 	dma_addr_t		itd_dma;
1221 	int			i;
1222 	unsigned		num_itds;
1223 	struct ehci_iso_sched	*sched;
1224 	unsigned long		flags;
1225 
1226 	sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1227 	if (unlikely (sched == NULL))
1228 		return -ENOMEM;
1229 
1230 	itd_sched_init(ehci, sched, stream, urb);
1231 
1232 	if (urb->interval < 8)
1233 		num_itds = 1 + (sched->span + 7) / 8;
1234 	else
1235 		num_itds = urb->number_of_packets;
1236 
1237 	/* allocate/init ITDs */
1238 	spin_lock_irqsave (&ehci->lock, flags);
1239 	for (i = 0; i < num_itds; i++) {
1240 
1241 		/* free_list.next might be cache-hot ... but maybe
1242 		 * the HC caches it too. avoid that issue for now.
1243 		 */
1244 
1245 		/* prefer previously-allocated itds */
1246 		if (likely (!list_empty(&stream->free_list))) {
1247 			itd = list_entry (stream->free_list.prev,
1248 					struct ehci_itd, itd_list);
1249 			list_del (&itd->itd_list);
1250 			itd_dma = itd->itd_dma;
1251 		} else {
1252 			spin_unlock_irqrestore (&ehci->lock, flags);
1253 			itd = dma_pool_alloc (ehci->itd_pool, mem_flags,
1254 					&itd_dma);
1255 			spin_lock_irqsave (&ehci->lock, flags);
1256 			if (!itd) {
1257 				iso_sched_free(stream, sched);
1258 				spin_unlock_irqrestore(&ehci->lock, flags);
1259 				return -ENOMEM;
1260 			}
1261 		}
1262 
1263 		memset (itd, 0, sizeof *itd);
1264 		itd->itd_dma = itd_dma;
1265 		list_add (&itd->itd_list, &sched->td_list);
1266 	}
1267 	spin_unlock_irqrestore (&ehci->lock, flags);
1268 
1269 	/* temporarily store schedule info in hcpriv */
1270 	urb->hcpriv = sched;
1271 	urb->error_count = 0;
1272 	return 0;
1273 }
1274 
1275 /*-------------------------------------------------------------------------*/
1276 
1277 static inline int
1278 itd_slot_ok (
1279 	struct ehci_hcd		*ehci,
1280 	u32			mod,
1281 	u32			uframe,
1282 	u8			usecs,
1283 	u32			period
1284 )
1285 {
1286 	uframe %= period;
1287 	do {
1288 		/* can't commit more than 80% periodic == 100 usec */
1289 		if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7)
1290 				> (100 - usecs))
1291 			return 0;
1292 
1293 		/* we know urb->interval is 2^N uframes */
1294 		uframe += period;
1295 	} while (uframe < mod);
1296 	return 1;
1297 }
1298 
1299 static inline int
1300 sitd_slot_ok (
1301 	struct ehci_hcd		*ehci,
1302 	u32			mod,
1303 	struct ehci_iso_stream	*stream,
1304 	u32			uframe,
1305 	struct ehci_iso_sched	*sched,
1306 	u32			period_uframes
1307 )
1308 {
1309 	u32			mask, tmp;
1310 	u32			frame, uf;
1311 
1312 	mask = stream->raw_mask << (uframe & 7);
1313 
1314 	/* for IN, don't wrap CSPLIT into the next frame */
1315 	if (mask & ~0xffff)
1316 		return 0;
1317 
1318 	/* this multi-pass logic is simple, but performance may
1319 	 * suffer when the schedule data isn't cached.
1320 	 */
1321 
1322 	/* check bandwidth */
1323 	uframe %= period_uframes;
1324 	do {
1325 		u32		max_used;
1326 
1327 		frame = uframe >> 3;
1328 		uf = uframe & 7;
1329 
1330 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1331 		/* The tt's fullspeed bus bandwidth must be available.
1332 		 * tt_available scheduling guarantees 10+% for control/bulk.
1333 		 */
1334 		if (!tt_available (ehci, period_uframes << 3,
1335 				stream->udev, frame, uf, stream->tt_usecs))
1336 			return 0;
1337 #else
1338 		/* tt must be idle for start(s), any gap, and csplit.
1339 		 * assume scheduling slop leaves 10+% for control/bulk.
1340 		 */
1341 		if (!tt_no_collision (ehci, period_uframes << 3,
1342 				stream->udev, frame, mask))
1343 			return 0;
1344 #endif
1345 
1346 		/* check starts (OUT uses more than one) */
1347 		max_used = 100 - stream->usecs;
1348 		for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) {
1349 			if (periodic_usecs (ehci, frame, uf) > max_used)
1350 				return 0;
1351 		}
1352 
1353 		/* for IN, check CSPLIT */
1354 		if (stream->c_usecs) {
1355 			uf = uframe & 7;
1356 			max_used = 100 - stream->c_usecs;
1357 			do {
1358 				tmp = 1 << uf;
1359 				tmp <<= 8;
1360 				if ((stream->raw_mask & tmp) == 0)
1361 					continue;
1362 				if (periodic_usecs (ehci, frame, uf)
1363 						> max_used)
1364 					return 0;
1365 			} while (++uf < 8);
1366 		}
1367 
1368 		/* we know urb->interval is 2^N uframes */
1369 		uframe += period_uframes;
1370 	} while (uframe < mod);
1371 
1372 	stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7));
1373 	return 1;
1374 }
1375 
1376 /*
1377  * This scheduler plans almost as far into the future as it has actual
1378  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
1379  * "as small as possible" to be cache-friendlier.)  That limits the size
1380  * transfers you can stream reliably; avoid more than 64 msec per urb.
1381  * Also avoid queue depths of less than ehci's worst irq latency (affected
1382  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1383  * and other factors); or more than about 230 msec total (for portability,
1384  * given EHCI_TUNE_FLS and the slop).  Or, write a smarter scheduler!
1385  */
1386 
1387 #define SCHEDULE_SLOP	80	/* microframes */
1388 
1389 static int
1390 iso_stream_schedule (
1391 	struct ehci_hcd		*ehci,
1392 	struct urb		*urb,
1393 	struct ehci_iso_stream	*stream
1394 )
1395 {
1396 	u32			now, next, start, period, span;
1397 	int			status;
1398 	unsigned		mod = ehci->periodic_size << 3;
1399 	struct ehci_iso_sched	*sched = urb->hcpriv;
1400 
1401 	period = urb->interval;
1402 	span = sched->span;
1403 	if (!stream->highspeed) {
1404 		period <<= 3;
1405 		span <<= 3;
1406 	}
1407 
1408 	if (span > mod - SCHEDULE_SLOP) {
1409 		ehci_dbg (ehci, "iso request %p too long\n", urb);
1410 		status = -EFBIG;
1411 		goto fail;
1412 	}
1413 
1414 	now = ehci_readl(ehci, &ehci->regs->frame_index) & (mod - 1);
1415 
1416 	/* Typical case: reuse current schedule, stream is still active.
1417 	 * Hopefully there are no gaps from the host falling behind
1418 	 * (irq delays etc), but if there are we'll take the next
1419 	 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
1420 	 */
1421 	if (likely (!list_empty (&stream->td_list))) {
1422 		u32	excess;
1423 
1424 		/* For high speed devices, allow scheduling within the
1425 		 * isochronous scheduling threshold.  For full speed devices
1426 		 * and Intel PCI-based controllers, don't (work around for
1427 		 * Intel ICH9 bug).
1428 		 */
1429 		if (!stream->highspeed && ehci->fs_i_thresh)
1430 			next = now + ehci->i_thresh;
1431 		else
1432 			next = now;
1433 
1434 		/* Fell behind (by up to twice the slop amount)?
1435 		 * We decide based on the time of the last currently-scheduled
1436 		 * slot, not the time of the next available slot.
1437 		 */
1438 		excess = (stream->next_uframe - period - next) & (mod - 1);
1439 		if (excess >= mod - 2 * SCHEDULE_SLOP)
1440 			start = next + excess - mod + period *
1441 					DIV_ROUND_UP(mod - excess, period);
1442 		else
1443 			start = next + excess + period;
1444 		if (start - now >= mod) {
1445 			ehci_dbg(ehci, "request %p would overflow (%d+%d >= %d)\n",
1446 					urb, start - now - period, period,
1447 					mod);
1448 			status = -EFBIG;
1449 			goto fail;
1450 		}
1451 	}
1452 
1453 	/* need to schedule; when's the next (u)frame we could start?
1454 	 * this is bigger than ehci->i_thresh allows; scheduling itself
1455 	 * isn't free, the slop should handle reasonably slow cpus.  it
1456 	 * can also help high bandwidth if the dma and irq loads don't
1457 	 * jump until after the queue is primed.
1458 	 */
1459 	else {
1460 		start = SCHEDULE_SLOP + (now & ~0x07);
1461 
1462 		/* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
1463 
1464 		/* find a uframe slot with enough bandwidth */
1465 		next = start + period;
1466 		for (; start < next; start++) {
1467 
1468 			/* check schedule: enough space? */
1469 			if (stream->highspeed) {
1470 				if (itd_slot_ok(ehci, mod, start,
1471 						stream->usecs, period))
1472 					break;
1473 			} else {
1474 				if ((start % 8) >= 6)
1475 					continue;
1476 				if (sitd_slot_ok(ehci, mod, stream,
1477 						start, sched, period))
1478 					break;
1479 			}
1480 		}
1481 
1482 		/* no room in the schedule */
1483 		if (start == next) {
1484 			ehci_dbg(ehci, "iso resched full %p (now %d max %d)\n",
1485 				urb, now, now + mod);
1486 			status = -ENOSPC;
1487 			goto fail;
1488 		}
1489 	}
1490 
1491 	/* Tried to schedule too far into the future? */
1492 	if (unlikely(start - now + span - period
1493 				>= mod - 2 * SCHEDULE_SLOP)) {
1494 		ehci_dbg(ehci, "request %p would overflow (%d+%d >= %d)\n",
1495 				urb, start - now, span - period,
1496 				mod - 2 * SCHEDULE_SLOP);
1497 		status = -EFBIG;
1498 		goto fail;
1499 	}
1500 
1501 	stream->next_uframe = start & (mod - 1);
1502 
1503 	/* report high speed start in uframes; full speed, in frames */
1504 	urb->start_frame = stream->next_uframe;
1505 	if (!stream->highspeed)
1506 		urb->start_frame >>= 3;
1507 	return 0;
1508 
1509  fail:
1510 	iso_sched_free(stream, sched);
1511 	urb->hcpriv = NULL;
1512 	return status;
1513 }
1514 
1515 /*-------------------------------------------------------------------------*/
1516 
1517 static inline void
1518 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1519 		struct ehci_itd *itd)
1520 {
1521 	int i;
1522 
1523 	/* it's been recently zeroed */
1524 	itd->hw_next = EHCI_LIST_END(ehci);
1525 	itd->hw_bufp [0] = stream->buf0;
1526 	itd->hw_bufp [1] = stream->buf1;
1527 	itd->hw_bufp [2] = stream->buf2;
1528 
1529 	for (i = 0; i < 8; i++)
1530 		itd->index[i] = -1;
1531 
1532 	/* All other fields are filled when scheduling */
1533 }
1534 
1535 static inline void
1536 itd_patch(
1537 	struct ehci_hcd		*ehci,
1538 	struct ehci_itd		*itd,
1539 	struct ehci_iso_sched	*iso_sched,
1540 	unsigned		index,
1541 	u16			uframe
1542 )
1543 {
1544 	struct ehci_iso_packet	*uf = &iso_sched->packet [index];
1545 	unsigned		pg = itd->pg;
1546 
1547 	// BUG_ON (pg == 6 && uf->cross);
1548 
1549 	uframe &= 0x07;
1550 	itd->index [uframe] = index;
1551 
1552 	itd->hw_transaction[uframe] = uf->transaction;
1553 	itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1554 	itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1555 	itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1556 
1557 	/* iso_frame_desc[].offset must be strictly increasing */
1558 	if (unlikely (uf->cross)) {
1559 		u64	bufp = uf->bufp + 4096;
1560 
1561 		itd->pg = ++pg;
1562 		itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1563 		itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1564 	}
1565 }
1566 
1567 static inline void
1568 itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1569 {
1570 	union ehci_shadow	*prev = &ehci->pshadow[frame];
1571 	__hc32			*hw_p = &ehci->periodic[frame];
1572 	union ehci_shadow	here = *prev;
1573 	__hc32			type = 0;
1574 
1575 	/* skip any iso nodes which might belong to previous microframes */
1576 	while (here.ptr) {
1577 		type = Q_NEXT_TYPE(ehci, *hw_p);
1578 		if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1579 			break;
1580 		prev = periodic_next_shadow(ehci, prev, type);
1581 		hw_p = shadow_next_periodic(ehci, &here, type);
1582 		here = *prev;
1583 	}
1584 
1585 	itd->itd_next = here;
1586 	itd->hw_next = *hw_p;
1587 	prev->itd = itd;
1588 	itd->frame = frame;
1589 	wmb ();
1590 	*hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1591 }
1592 
1593 #define AB_REG_BAR_LOW 0xe0
1594 #define AB_REG_BAR_HIGH 0xe1
1595 #define AB_INDX(addr) ((addr) + 0x00)
1596 #define AB_DATA(addr) ((addr) + 0x04)
1597 #define NB_PCIE_INDX_ADDR 0xe0
1598 #define NB_PCIE_INDX_DATA 0xe4
1599 #define NB_PIF0_PWRDOWN_0 0x01100012
1600 #define NB_PIF0_PWRDOWN_1 0x01100013
1601 
1602 static void ehci_quirk_amd_L1(struct ehci_hcd *ehci, int disable)
1603 {
1604 	u32 addr, addr_low, addr_high, val;
1605 
1606 	outb_p(AB_REG_BAR_LOW, 0xcd6);
1607 	addr_low = inb_p(0xcd7);
1608 	outb_p(AB_REG_BAR_HIGH, 0xcd6);
1609 	addr_high = inb_p(0xcd7);
1610 	addr = addr_high << 8 | addr_low;
1611 	outl_p(0x30, AB_INDX(addr));
1612 	outl_p(0x40, AB_DATA(addr));
1613 	outl_p(0x34, AB_INDX(addr));
1614 	val = inl_p(AB_DATA(addr));
1615 
1616 	if (disable) {
1617 		val &= ~0x8;
1618 		val |= (1 << 4) | (1 << 9);
1619 	} else {
1620 		val |= 0x8;
1621 		val &= ~((1 << 4) | (1 << 9));
1622 	}
1623 	outl_p(val, AB_DATA(addr));
1624 
1625 	if (amd_nb_dev) {
1626 		addr = NB_PIF0_PWRDOWN_0;
1627 		pci_write_config_dword(amd_nb_dev, NB_PCIE_INDX_ADDR, addr);
1628 		pci_read_config_dword(amd_nb_dev, NB_PCIE_INDX_DATA, &val);
1629 		if (disable)
1630 			val &= ~(0x3f << 7);
1631 		else
1632 			val |= 0x3f << 7;
1633 
1634 		pci_write_config_dword(amd_nb_dev, NB_PCIE_INDX_DATA, val);
1635 
1636 		addr = NB_PIF0_PWRDOWN_1;
1637 		pci_write_config_dword(amd_nb_dev, NB_PCIE_INDX_ADDR, addr);
1638 		pci_read_config_dword(amd_nb_dev, NB_PCIE_INDX_DATA, &val);
1639 		if (disable)
1640 			val &= ~(0x3f << 7);
1641 		else
1642 			val |= 0x3f << 7;
1643 
1644 		pci_write_config_dword(amd_nb_dev, NB_PCIE_INDX_DATA, val);
1645 	}
1646 
1647 	return;
1648 }
1649 
1650 /* fit urb's itds into the selected schedule slot; activate as needed */
1651 static int
1652 itd_link_urb (
1653 	struct ehci_hcd		*ehci,
1654 	struct urb		*urb,
1655 	unsigned		mod,
1656 	struct ehci_iso_stream	*stream
1657 )
1658 {
1659 	int			packet;
1660 	unsigned		next_uframe, uframe, frame;
1661 	struct ehci_iso_sched	*iso_sched = urb->hcpriv;
1662 	struct ehci_itd		*itd;
1663 
1664 	next_uframe = stream->next_uframe & (mod - 1);
1665 
1666 	if (unlikely (list_empty(&stream->td_list))) {
1667 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1668 				+= stream->bandwidth;
1669 		ehci_vdbg (ehci,
1670 			"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
1671 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1672 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1673 			urb->interval,
1674 			next_uframe >> 3, next_uframe & 0x7);
1675 	}
1676 
1677 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1678 		if (ehci->amd_l1_fix == 1)
1679 			ehci_quirk_amd_L1(ehci, 1);
1680 	}
1681 
1682 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1683 
1684 	/* fill iTDs uframe by uframe */
1685 	for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) {
1686 		if (itd == NULL) {
1687 			/* ASSERT:  we have all necessary itds */
1688 			// BUG_ON (list_empty (&iso_sched->td_list));
1689 
1690 			/* ASSERT:  no itds for this endpoint in this uframe */
1691 
1692 			itd = list_entry (iso_sched->td_list.next,
1693 					struct ehci_itd, itd_list);
1694 			list_move_tail (&itd->itd_list, &stream->td_list);
1695 			itd->stream = iso_stream_get (stream);
1696 			itd->urb = urb;
1697 			itd_init (ehci, stream, itd);
1698 		}
1699 
1700 		uframe = next_uframe & 0x07;
1701 		frame = next_uframe >> 3;
1702 
1703 		itd_patch(ehci, itd, iso_sched, packet, uframe);
1704 
1705 		next_uframe += stream->interval;
1706 		next_uframe &= mod - 1;
1707 		packet++;
1708 
1709 		/* link completed itds into the schedule */
1710 		if (((next_uframe >> 3) != frame)
1711 				|| packet == urb->number_of_packets) {
1712 			itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1713 			itd = NULL;
1714 		}
1715 	}
1716 	stream->next_uframe = next_uframe;
1717 
1718 	/* don't need that schedule data any more */
1719 	iso_sched_free (stream, iso_sched);
1720 	urb->hcpriv = NULL;
1721 
1722 	timer_action (ehci, TIMER_IO_WATCHDOG);
1723 	return enable_periodic(ehci);
1724 }
1725 
1726 #define	ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1727 
1728 /* Process and recycle a completed ITD.  Return true iff its urb completed,
1729  * and hence its completion callback probably added things to the hardware
1730  * schedule.
1731  *
1732  * Note that we carefully avoid recycling this descriptor until after any
1733  * completion callback runs, so that it won't be reused quickly.  That is,
1734  * assuming (a) no more than two urbs per frame on this endpoint, and also
1735  * (b) only this endpoint's completions submit URBs.  It seems some silicon
1736  * corrupts things if you reuse completed descriptors very quickly...
1737  */
1738 static unsigned
1739 itd_complete (
1740 	struct ehci_hcd	*ehci,
1741 	struct ehci_itd	*itd
1742 ) {
1743 	struct urb				*urb = itd->urb;
1744 	struct usb_iso_packet_descriptor	*desc;
1745 	u32					t;
1746 	unsigned				uframe;
1747 	int					urb_index = -1;
1748 	struct ehci_iso_stream			*stream = itd->stream;
1749 	struct usb_device			*dev;
1750 	unsigned				retval = false;
1751 
1752 	/* for each uframe with a packet */
1753 	for (uframe = 0; uframe < 8; uframe++) {
1754 		if (likely (itd->index[uframe] == -1))
1755 			continue;
1756 		urb_index = itd->index[uframe];
1757 		desc = &urb->iso_frame_desc [urb_index];
1758 
1759 		t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]);
1760 		itd->hw_transaction [uframe] = 0;
1761 
1762 		/* report transfer status */
1763 		if (unlikely (t & ISO_ERRS)) {
1764 			urb->error_count++;
1765 			if (t & EHCI_ISOC_BUF_ERR)
1766 				desc->status = usb_pipein (urb->pipe)
1767 					? -ENOSR  /* hc couldn't read */
1768 					: -ECOMM; /* hc couldn't write */
1769 			else if (t & EHCI_ISOC_BABBLE)
1770 				desc->status = -EOVERFLOW;
1771 			else /* (t & EHCI_ISOC_XACTERR) */
1772 				desc->status = -EPROTO;
1773 
1774 			/* HC need not update length with this error */
1775 			if (!(t & EHCI_ISOC_BABBLE)) {
1776 				desc->actual_length = EHCI_ITD_LENGTH(t);
1777 				urb->actual_length += desc->actual_length;
1778 			}
1779 		} else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) {
1780 			desc->status = 0;
1781 			desc->actual_length = EHCI_ITD_LENGTH(t);
1782 			urb->actual_length += desc->actual_length;
1783 		} else {
1784 			/* URB was too late */
1785 			desc->status = -EXDEV;
1786 		}
1787 	}
1788 
1789 	/* handle completion now? */
1790 	if (likely ((urb_index + 1) != urb->number_of_packets))
1791 		goto done;
1792 
1793 	/* ASSERT: it's really the last itd for this urb
1794 	list_for_each_entry (itd, &stream->td_list, itd_list)
1795 		BUG_ON (itd->urb == urb);
1796 	 */
1797 
1798 	/* give urb back to the driver; completion often (re)submits */
1799 	dev = urb->dev;
1800 	ehci_urb_done(ehci, urb, 0);
1801 	retval = true;
1802 	urb = NULL;
1803 	(void) disable_periodic(ehci);
1804 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1805 
1806 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1807 		if (ehci->amd_l1_fix == 1)
1808 			ehci_quirk_amd_L1(ehci, 0);
1809 	}
1810 
1811 	if (unlikely(list_is_singular(&stream->td_list))) {
1812 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1813 				-= stream->bandwidth;
1814 		ehci_vdbg (ehci,
1815 			"deschedule devp %s ep%d%s-iso\n",
1816 			dev->devpath, stream->bEndpointAddress & 0x0f,
1817 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
1818 	}
1819 	iso_stream_put (ehci, stream);
1820 
1821 done:
1822 	itd->urb = NULL;
1823 	if (ehci->clock_frame != itd->frame || itd->index[7] != -1) {
1824 		/* OK to recycle this ITD now. */
1825 		itd->stream = NULL;
1826 		list_move(&itd->itd_list, &stream->free_list);
1827 		iso_stream_put(ehci, stream);
1828 	} else {
1829 		/* HW might remember this ITD, so we can't recycle it yet.
1830 		 * Move it to a safe place until a new frame starts.
1831 		 */
1832 		list_move(&itd->itd_list, &ehci->cached_itd_list);
1833 		if (stream->refcount == 2) {
1834 			/* If iso_stream_put() were called here, stream
1835 			 * would be freed.  Instead, just prevent reuse.
1836 			 */
1837 			stream->ep->hcpriv = NULL;
1838 			stream->ep = NULL;
1839 		}
1840 	}
1841 	return retval;
1842 }
1843 
1844 /*-------------------------------------------------------------------------*/
1845 
1846 static int itd_submit (struct ehci_hcd *ehci, struct urb *urb,
1847 	gfp_t mem_flags)
1848 {
1849 	int			status = -EINVAL;
1850 	unsigned long		flags;
1851 	struct ehci_iso_stream	*stream;
1852 
1853 	/* Get iso_stream head */
1854 	stream = iso_stream_find (ehci, urb);
1855 	if (unlikely (stream == NULL)) {
1856 		ehci_dbg (ehci, "can't get iso stream\n");
1857 		return -ENOMEM;
1858 	}
1859 	if (unlikely (urb->interval != stream->interval)) {
1860 		ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
1861 			stream->interval, urb->interval);
1862 		goto done;
1863 	}
1864 
1865 #ifdef EHCI_URB_TRACE
1866 	ehci_dbg (ehci,
1867 		"%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1868 		__func__, urb->dev->devpath, urb,
1869 		usb_pipeendpoint (urb->pipe),
1870 		usb_pipein (urb->pipe) ? "in" : "out",
1871 		urb->transfer_buffer_length,
1872 		urb->number_of_packets, urb->interval,
1873 		stream);
1874 #endif
1875 
1876 	/* allocate ITDs w/o locking anything */
1877 	status = itd_urb_transaction (stream, ehci, urb, mem_flags);
1878 	if (unlikely (status < 0)) {
1879 		ehci_dbg (ehci, "can't init itds\n");
1880 		goto done;
1881 	}
1882 
1883 	/* schedule ... need to lock */
1884 	spin_lock_irqsave (&ehci->lock, flags);
1885 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1886 		status = -ESHUTDOWN;
1887 		goto done_not_linked;
1888 	}
1889 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1890 	if (unlikely(status))
1891 		goto done_not_linked;
1892 	status = iso_stream_schedule(ehci, urb, stream);
1893 	if (likely (status == 0))
1894 		itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
1895 	else
1896 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1897 done_not_linked:
1898 	spin_unlock_irqrestore (&ehci->lock, flags);
1899 
1900 done:
1901 	if (unlikely (status < 0))
1902 		iso_stream_put (ehci, stream);
1903 	return status;
1904 }
1905 
1906 /*-------------------------------------------------------------------------*/
1907 
1908 /*
1909  * "Split ISO TDs" ... used for USB 1.1 devices going through the
1910  * TTs in USB 2.0 hubs.  These need microframe scheduling.
1911  */
1912 
1913 static inline void
1914 sitd_sched_init(
1915 	struct ehci_hcd		*ehci,
1916 	struct ehci_iso_sched	*iso_sched,
1917 	struct ehci_iso_stream	*stream,
1918 	struct urb		*urb
1919 )
1920 {
1921 	unsigned	i;
1922 	dma_addr_t	dma = urb->transfer_dma;
1923 
1924 	/* how many frames are needed for these transfers */
1925 	iso_sched->span = urb->number_of_packets * stream->interval;
1926 
1927 	/* figure out per-frame sitd fields that we'll need later
1928 	 * when we fit new sitds into the schedule.
1929 	 */
1930 	for (i = 0; i < urb->number_of_packets; i++) {
1931 		struct ehci_iso_packet	*packet = &iso_sched->packet [i];
1932 		unsigned		length;
1933 		dma_addr_t		buf;
1934 		u32			trans;
1935 
1936 		length = urb->iso_frame_desc [i].length & 0x03ff;
1937 		buf = dma + urb->iso_frame_desc [i].offset;
1938 
1939 		trans = SITD_STS_ACTIVE;
1940 		if (((i + 1) == urb->number_of_packets)
1941 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1942 			trans |= SITD_IOC;
1943 		trans |= length << 16;
1944 		packet->transaction = cpu_to_hc32(ehci, trans);
1945 
1946 		/* might need to cross a buffer page within a td */
1947 		packet->bufp = buf;
1948 		packet->buf1 = (buf + length) & ~0x0fff;
1949 		if (packet->buf1 != (buf & ~(u64)0x0fff))
1950 			packet->cross = 1;
1951 
1952 		/* OUT uses multiple start-splits */
1953 		if (stream->bEndpointAddress & USB_DIR_IN)
1954 			continue;
1955 		length = (length + 187) / 188;
1956 		if (length > 1) /* BEGIN vs ALL */
1957 			length |= 1 << 3;
1958 		packet->buf1 |= length;
1959 	}
1960 }
1961 
1962 static int
1963 sitd_urb_transaction (
1964 	struct ehci_iso_stream	*stream,
1965 	struct ehci_hcd		*ehci,
1966 	struct urb		*urb,
1967 	gfp_t			mem_flags
1968 )
1969 {
1970 	struct ehci_sitd	*sitd;
1971 	dma_addr_t		sitd_dma;
1972 	int			i;
1973 	struct ehci_iso_sched	*iso_sched;
1974 	unsigned long		flags;
1975 
1976 	iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1977 	if (iso_sched == NULL)
1978 		return -ENOMEM;
1979 
1980 	sitd_sched_init(ehci, iso_sched, stream, urb);
1981 
1982 	/* allocate/init sITDs */
1983 	spin_lock_irqsave (&ehci->lock, flags);
1984 	for (i = 0; i < urb->number_of_packets; i++) {
1985 
1986 		/* NOTE:  for now, we don't try to handle wraparound cases
1987 		 * for IN (using sitd->hw_backpointer, like a FSTN), which
1988 		 * means we never need two sitds for full speed packets.
1989 		 */
1990 
1991 		/* free_list.next might be cache-hot ... but maybe
1992 		 * the HC caches it too. avoid that issue for now.
1993 		 */
1994 
1995 		/* prefer previously-allocated sitds */
1996 		if (!list_empty(&stream->free_list)) {
1997 			sitd = list_entry (stream->free_list.prev,
1998 					 struct ehci_sitd, sitd_list);
1999 			list_del (&sitd->sitd_list);
2000 			sitd_dma = sitd->sitd_dma;
2001 		} else {
2002 			spin_unlock_irqrestore (&ehci->lock, flags);
2003 			sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags,
2004 					&sitd_dma);
2005 			spin_lock_irqsave (&ehci->lock, flags);
2006 			if (!sitd) {
2007 				iso_sched_free(stream, iso_sched);
2008 				spin_unlock_irqrestore(&ehci->lock, flags);
2009 				return -ENOMEM;
2010 			}
2011 		}
2012 
2013 		memset (sitd, 0, sizeof *sitd);
2014 		sitd->sitd_dma = sitd_dma;
2015 		list_add (&sitd->sitd_list, &iso_sched->td_list);
2016 	}
2017 
2018 	/* temporarily store schedule info in hcpriv */
2019 	urb->hcpriv = iso_sched;
2020 	urb->error_count = 0;
2021 
2022 	spin_unlock_irqrestore (&ehci->lock, flags);
2023 	return 0;
2024 }
2025 
2026 /*-------------------------------------------------------------------------*/
2027 
2028 static inline void
2029 sitd_patch(
2030 	struct ehci_hcd		*ehci,
2031 	struct ehci_iso_stream	*stream,
2032 	struct ehci_sitd	*sitd,
2033 	struct ehci_iso_sched	*iso_sched,
2034 	unsigned		index
2035 )
2036 {
2037 	struct ehci_iso_packet	*uf = &iso_sched->packet [index];
2038 	u64			bufp = uf->bufp;
2039 
2040 	sitd->hw_next = EHCI_LIST_END(ehci);
2041 	sitd->hw_fullspeed_ep = stream->address;
2042 	sitd->hw_uframe = stream->splits;
2043 	sitd->hw_results = uf->transaction;
2044 	sitd->hw_backpointer = EHCI_LIST_END(ehci);
2045 
2046 	bufp = uf->bufp;
2047 	sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
2048 	sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
2049 
2050 	sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
2051 	if (uf->cross)
2052 		bufp += 4096;
2053 	sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
2054 	sitd->index = index;
2055 }
2056 
2057 static inline void
2058 sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
2059 {
2060 	/* note: sitd ordering could matter (CSPLIT then SSPLIT) */
2061 	sitd->sitd_next = ehci->pshadow [frame];
2062 	sitd->hw_next = ehci->periodic [frame];
2063 	ehci->pshadow [frame].sitd = sitd;
2064 	sitd->frame = frame;
2065 	wmb ();
2066 	ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
2067 }
2068 
2069 /* fit urb's sitds into the selected schedule slot; activate as needed */
2070 static int
2071 sitd_link_urb (
2072 	struct ehci_hcd		*ehci,
2073 	struct urb		*urb,
2074 	unsigned		mod,
2075 	struct ehci_iso_stream	*stream
2076 )
2077 {
2078 	int			packet;
2079 	unsigned		next_uframe;
2080 	struct ehci_iso_sched	*sched = urb->hcpriv;
2081 	struct ehci_sitd	*sitd;
2082 
2083 	next_uframe = stream->next_uframe;
2084 
2085 	if (list_empty(&stream->td_list)) {
2086 		/* usbfs ignores TT bandwidth */
2087 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2088 				+= stream->bandwidth;
2089 		ehci_vdbg (ehci,
2090 			"sched devp %s ep%d%s-iso [%d] %dms/%04x\n",
2091 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
2092 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
2093 			(next_uframe >> 3) & (ehci->periodic_size - 1),
2094 			stream->interval, hc32_to_cpu(ehci, stream->splits));
2095 	}
2096 
2097 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2098 		if (ehci->amd_l1_fix == 1)
2099 			ehci_quirk_amd_L1(ehci, 1);
2100 	}
2101 
2102 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2103 
2104 	/* fill sITDs frame by frame */
2105 	for (packet = 0, sitd = NULL;
2106 			packet < urb->number_of_packets;
2107 			packet++) {
2108 
2109 		/* ASSERT:  we have all necessary sitds */
2110 		BUG_ON (list_empty (&sched->td_list));
2111 
2112 		/* ASSERT:  no itds for this endpoint in this frame */
2113 
2114 		sitd = list_entry (sched->td_list.next,
2115 				struct ehci_sitd, sitd_list);
2116 		list_move_tail (&sitd->sitd_list, &stream->td_list);
2117 		sitd->stream = iso_stream_get (stream);
2118 		sitd->urb = urb;
2119 
2120 		sitd_patch(ehci, stream, sitd, sched, packet);
2121 		sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2122 				sitd);
2123 
2124 		next_uframe += stream->interval << 3;
2125 	}
2126 	stream->next_uframe = next_uframe & (mod - 1);
2127 
2128 	/* don't need that schedule data any more */
2129 	iso_sched_free (stream, sched);
2130 	urb->hcpriv = NULL;
2131 
2132 	timer_action (ehci, TIMER_IO_WATCHDOG);
2133 	return enable_periodic(ehci);
2134 }
2135 
2136 /*-------------------------------------------------------------------------*/
2137 
2138 #define	SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2139 				| SITD_STS_XACT | SITD_STS_MMF)
2140 
2141 /* Process and recycle a completed SITD.  Return true iff its urb completed,
2142  * and hence its completion callback probably added things to the hardware
2143  * schedule.
2144  *
2145  * Note that we carefully avoid recycling this descriptor until after any
2146  * completion callback runs, so that it won't be reused quickly.  That is,
2147  * assuming (a) no more than two urbs per frame on this endpoint, and also
2148  * (b) only this endpoint's completions submit URBs.  It seems some silicon
2149  * corrupts things if you reuse completed descriptors very quickly...
2150  */
2151 static unsigned
2152 sitd_complete (
2153 	struct ehci_hcd		*ehci,
2154 	struct ehci_sitd	*sitd
2155 ) {
2156 	struct urb				*urb = sitd->urb;
2157 	struct usb_iso_packet_descriptor	*desc;
2158 	u32					t;
2159 	int					urb_index = -1;
2160 	struct ehci_iso_stream			*stream = sitd->stream;
2161 	struct usb_device			*dev;
2162 	unsigned				retval = false;
2163 
2164 	urb_index = sitd->index;
2165 	desc = &urb->iso_frame_desc [urb_index];
2166 	t = hc32_to_cpup(ehci, &sitd->hw_results);
2167 
2168 	/* report transfer status */
2169 	if (t & SITD_ERRS) {
2170 		urb->error_count++;
2171 		if (t & SITD_STS_DBE)
2172 			desc->status = usb_pipein (urb->pipe)
2173 				? -ENOSR  /* hc couldn't read */
2174 				: -ECOMM; /* hc couldn't write */
2175 		else if (t & SITD_STS_BABBLE)
2176 			desc->status = -EOVERFLOW;
2177 		else /* XACT, MMF, etc */
2178 			desc->status = -EPROTO;
2179 	} else {
2180 		desc->status = 0;
2181 		desc->actual_length = desc->length - SITD_LENGTH(t);
2182 		urb->actual_length += desc->actual_length;
2183 	}
2184 
2185 	/* handle completion now? */
2186 	if ((urb_index + 1) != urb->number_of_packets)
2187 		goto done;
2188 
2189 	/* ASSERT: it's really the last sitd for this urb
2190 	list_for_each_entry (sitd, &stream->td_list, sitd_list)
2191 		BUG_ON (sitd->urb == urb);
2192 	 */
2193 
2194 	/* give urb back to the driver; completion often (re)submits */
2195 	dev = urb->dev;
2196 	ehci_urb_done(ehci, urb, 0);
2197 	retval = true;
2198 	urb = NULL;
2199 	(void) disable_periodic(ehci);
2200 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2201 
2202 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2203 		if (ehci->amd_l1_fix == 1)
2204 			ehci_quirk_amd_L1(ehci, 0);
2205 	}
2206 
2207 	if (list_is_singular(&stream->td_list)) {
2208 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2209 				-= stream->bandwidth;
2210 		ehci_vdbg (ehci,
2211 			"deschedule devp %s ep%d%s-iso\n",
2212 			dev->devpath, stream->bEndpointAddress & 0x0f,
2213 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
2214 	}
2215 	iso_stream_put (ehci, stream);
2216 
2217 done:
2218 	sitd->urb = NULL;
2219 	if (ehci->clock_frame != sitd->frame) {
2220 		/* OK to recycle this SITD now. */
2221 		sitd->stream = NULL;
2222 		list_move(&sitd->sitd_list, &stream->free_list);
2223 		iso_stream_put(ehci, stream);
2224 	} else {
2225 		/* HW might remember this SITD, so we can't recycle it yet.
2226 		 * Move it to a safe place until a new frame starts.
2227 		 */
2228 		list_move(&sitd->sitd_list, &ehci->cached_sitd_list);
2229 		if (stream->refcount == 2) {
2230 			/* If iso_stream_put() were called here, stream
2231 			 * would be freed.  Instead, just prevent reuse.
2232 			 */
2233 			stream->ep->hcpriv = NULL;
2234 			stream->ep = NULL;
2235 		}
2236 	}
2237 	return retval;
2238 }
2239 
2240 
2241 static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb,
2242 	gfp_t mem_flags)
2243 {
2244 	int			status = -EINVAL;
2245 	unsigned long		flags;
2246 	struct ehci_iso_stream	*stream;
2247 
2248 	/* Get iso_stream head */
2249 	stream = iso_stream_find (ehci, urb);
2250 	if (stream == NULL) {
2251 		ehci_dbg (ehci, "can't get iso stream\n");
2252 		return -ENOMEM;
2253 	}
2254 	if (urb->interval != stream->interval) {
2255 		ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
2256 			stream->interval, urb->interval);
2257 		goto done;
2258 	}
2259 
2260 #ifdef EHCI_URB_TRACE
2261 	ehci_dbg (ehci,
2262 		"submit %p dev%s ep%d%s-iso len %d\n",
2263 		urb, urb->dev->devpath,
2264 		usb_pipeendpoint (urb->pipe),
2265 		usb_pipein (urb->pipe) ? "in" : "out",
2266 		urb->transfer_buffer_length);
2267 #endif
2268 
2269 	/* allocate SITDs */
2270 	status = sitd_urb_transaction (stream, ehci, urb, mem_flags);
2271 	if (status < 0) {
2272 		ehci_dbg (ehci, "can't init sitds\n");
2273 		goto done;
2274 	}
2275 
2276 	/* schedule ... need to lock */
2277 	spin_lock_irqsave (&ehci->lock, flags);
2278 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2279 		status = -ESHUTDOWN;
2280 		goto done_not_linked;
2281 	}
2282 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2283 	if (unlikely(status))
2284 		goto done_not_linked;
2285 	status = iso_stream_schedule(ehci, urb, stream);
2286 	if (status == 0)
2287 		sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
2288 	else
2289 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2290 done_not_linked:
2291 	spin_unlock_irqrestore (&ehci->lock, flags);
2292 
2293 done:
2294 	if (status < 0)
2295 		iso_stream_put (ehci, stream);
2296 	return status;
2297 }
2298 
2299 /*-------------------------------------------------------------------------*/
2300 
2301 static void free_cached_lists(struct ehci_hcd *ehci)
2302 {
2303 	struct ehci_itd *itd, *n;
2304 	struct ehci_sitd *sitd, *sn;
2305 
2306 	list_for_each_entry_safe(itd, n, &ehci->cached_itd_list, itd_list) {
2307 		struct ehci_iso_stream	*stream = itd->stream;
2308 		itd->stream = NULL;
2309 		list_move(&itd->itd_list, &stream->free_list);
2310 		iso_stream_put(ehci, stream);
2311 	}
2312 
2313 	list_for_each_entry_safe(sitd, sn, &ehci->cached_sitd_list, sitd_list) {
2314 		struct ehci_iso_stream	*stream = sitd->stream;
2315 		sitd->stream = NULL;
2316 		list_move(&sitd->sitd_list, &stream->free_list);
2317 		iso_stream_put(ehci, stream);
2318 	}
2319 }
2320 
2321 /*-------------------------------------------------------------------------*/
2322 
2323 static void
2324 scan_periodic (struct ehci_hcd *ehci)
2325 {
2326 	unsigned	now_uframe, frame, clock, clock_frame, mod;
2327 	unsigned	modified;
2328 
2329 	mod = ehci->periodic_size << 3;
2330 
2331 	/*
2332 	 * When running, scan from last scan point up to "now"
2333 	 * else clean up by scanning everything that's left.
2334 	 * Touches as few pages as possible:  cache-friendly.
2335 	 */
2336 	now_uframe = ehci->next_uframe;
2337 	if (HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
2338 		clock = ehci_readl(ehci, &ehci->regs->frame_index);
2339 		clock_frame = (clock >> 3) & (ehci->periodic_size - 1);
2340 	} else  {
2341 		clock = now_uframe + mod - 1;
2342 		clock_frame = -1;
2343 	}
2344 	if (ehci->clock_frame != clock_frame) {
2345 		free_cached_lists(ehci);
2346 		ehci->clock_frame = clock_frame;
2347 	}
2348 	clock &= mod - 1;
2349 	clock_frame = clock >> 3;
2350 
2351 	for (;;) {
2352 		union ehci_shadow	q, *q_p;
2353 		__hc32			type, *hw_p;
2354 		unsigned		incomplete = false;
2355 
2356 		frame = now_uframe >> 3;
2357 
2358 restart:
2359 		/* scan each element in frame's queue for completions */
2360 		q_p = &ehci->pshadow [frame];
2361 		hw_p = &ehci->periodic [frame];
2362 		q.ptr = q_p->ptr;
2363 		type = Q_NEXT_TYPE(ehci, *hw_p);
2364 		modified = 0;
2365 
2366 		while (q.ptr != NULL) {
2367 			unsigned		uf;
2368 			union ehci_shadow	temp;
2369 			int			live;
2370 
2371 			live = HC_IS_RUNNING (ehci_to_hcd(ehci)->state);
2372 			switch (hc32_to_cpu(ehci, type)) {
2373 			case Q_TYPE_QH:
2374 				/* handle any completions */
2375 				temp.qh = qh_get (q.qh);
2376 				type = Q_NEXT_TYPE(ehci, q.qh->hw->hw_next);
2377 				q = q.qh->qh_next;
2378 				modified = qh_completions (ehci, temp.qh);
2379 				if (unlikely(list_empty(&temp.qh->qtd_list) ||
2380 						temp.qh->needs_rescan))
2381 					intr_deschedule (ehci, temp.qh);
2382 				qh_put (temp.qh);
2383 				break;
2384 			case Q_TYPE_FSTN:
2385 				/* for "save place" FSTNs, look at QH entries
2386 				 * in the previous frame for completions.
2387 				 */
2388 				if (q.fstn->hw_prev != EHCI_LIST_END(ehci)) {
2389 					dbg ("ignoring completions from FSTNs");
2390 				}
2391 				type = Q_NEXT_TYPE(ehci, q.fstn->hw_next);
2392 				q = q.fstn->fstn_next;
2393 				break;
2394 			case Q_TYPE_ITD:
2395 				/* If this ITD is still active, leave it for
2396 				 * later processing ... check the next entry.
2397 				 * No need to check for activity unless the
2398 				 * frame is current.
2399 				 */
2400 				if (frame == clock_frame && live) {
2401 					rmb();
2402 					for (uf = 0; uf < 8; uf++) {
2403 						if (q.itd->hw_transaction[uf] &
2404 							    ITD_ACTIVE(ehci))
2405 							break;
2406 					}
2407 					if (uf < 8) {
2408 						incomplete = true;
2409 						q_p = &q.itd->itd_next;
2410 						hw_p = &q.itd->hw_next;
2411 						type = Q_NEXT_TYPE(ehci,
2412 							q.itd->hw_next);
2413 						q = *q_p;
2414 						break;
2415 					}
2416 				}
2417 
2418 				/* Take finished ITDs out of the schedule
2419 				 * and process them:  recycle, maybe report
2420 				 * URB completion.  HC won't cache the
2421 				 * pointer for much longer, if at all.
2422 				 */
2423 				*q_p = q.itd->itd_next;
2424 				if (!ehci->use_dummy_qh ||
2425 				    q.itd->hw_next != EHCI_LIST_END(ehci))
2426 					*hw_p = q.itd->hw_next;
2427 				else
2428 					*hw_p = ehci->dummy->qh_dma;
2429 				type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2430 				wmb();
2431 				modified = itd_complete (ehci, q.itd);
2432 				q = *q_p;
2433 				break;
2434 			case Q_TYPE_SITD:
2435 				/* If this SITD is still active, leave it for
2436 				 * later processing ... check the next entry.
2437 				 * No need to check for activity unless the
2438 				 * frame is current.
2439 				 */
2440 				if (((frame == clock_frame) ||
2441 				     (((frame + 1) & (ehci->periodic_size - 1))
2442 				      == clock_frame))
2443 				    && live
2444 				    && (q.sitd->hw_results &
2445 					SITD_ACTIVE(ehci))) {
2446 
2447 					incomplete = true;
2448 					q_p = &q.sitd->sitd_next;
2449 					hw_p = &q.sitd->hw_next;
2450 					type = Q_NEXT_TYPE(ehci,
2451 							q.sitd->hw_next);
2452 					q = *q_p;
2453 					break;
2454 				}
2455 
2456 				/* Take finished SITDs out of the schedule
2457 				 * and process them:  recycle, maybe report
2458 				 * URB completion.
2459 				 */
2460 				*q_p = q.sitd->sitd_next;
2461 				if (!ehci->use_dummy_qh ||
2462 				    q.sitd->hw_next != EHCI_LIST_END(ehci))
2463 					*hw_p = q.sitd->hw_next;
2464 				else
2465 					*hw_p = ehci->dummy->qh_dma;
2466 				type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2467 				wmb();
2468 				modified = sitd_complete (ehci, q.sitd);
2469 				q = *q_p;
2470 				break;
2471 			default:
2472 				dbg ("corrupt type %d frame %d shadow %p",
2473 					type, frame, q.ptr);
2474 				// BUG ();
2475 				q.ptr = NULL;
2476 			}
2477 
2478 			/* assume completion callbacks modify the queue */
2479 			if (unlikely (modified)) {
2480 				if (likely(ehci->periodic_sched > 0))
2481 					goto restart;
2482 				/* short-circuit this scan */
2483 				now_uframe = clock;
2484 				break;
2485 			}
2486 		}
2487 
2488 		/* If we can tell we caught up to the hardware, stop now.
2489 		 * We can't advance our scan without collecting the ISO
2490 		 * transfers that are still pending in this frame.
2491 		 */
2492 		if (incomplete && HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
2493 			ehci->next_uframe = now_uframe;
2494 			break;
2495 		}
2496 
2497 		// FIXME:  this assumes we won't get lapped when
2498 		// latencies climb; that should be rare, but...
2499 		// detect it, and just go all the way around.
2500 		// FLR might help detect this case, so long as latencies
2501 		// don't exceed periodic_size msec (default 1.024 sec).
2502 
2503 		// FIXME:  likewise assumes HC doesn't halt mid-scan
2504 
2505 		if (now_uframe == clock) {
2506 			unsigned	now;
2507 
2508 			if (!HC_IS_RUNNING (ehci_to_hcd(ehci)->state)
2509 					|| ehci->periodic_sched == 0)
2510 				break;
2511 			ehci->next_uframe = now_uframe;
2512 			now = ehci_readl(ehci, &ehci->regs->frame_index) &
2513 					(mod - 1);
2514 			if (now_uframe == now)
2515 				break;
2516 
2517 			/* rescan the rest of this frame, then ... */
2518 			clock = now;
2519 			clock_frame = clock >> 3;
2520 			if (ehci->clock_frame != clock_frame) {
2521 				free_cached_lists(ehci);
2522 				ehci->clock_frame = clock_frame;
2523 			}
2524 		} else {
2525 			now_uframe++;
2526 			now_uframe &= mod - 1;
2527 		}
2528 	}
2529 }
2530