xref: /openbmc/linux/drivers/usb/host/ehci-sched.c (revision da2ef666)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2001-2004 by David Brownell
4  * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
5  */
6 
7 /* this file is part of ehci-hcd.c */
8 
9 /*-------------------------------------------------------------------------*/
10 
11 /*
12  * EHCI scheduled transaction support:  interrupt, iso, split iso
13  * These are called "periodic" transactions in the EHCI spec.
14  *
15  * Note that for interrupt transfers, the QH/QTD manipulation is shared
16  * with the "asynchronous" transaction support (control/bulk transfers).
17  * The only real difference is in how interrupt transfers are scheduled.
18  *
19  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
20  * It keeps track of every ITD (or SITD) that's linked, and holds enough
21  * pre-calculated schedule data to make appending to the queue be quick.
22  */
23 
24 static int ehci_get_frame(struct usb_hcd *hcd);
25 
26 /*
27  * periodic_next_shadow - return "next" pointer on shadow list
28  * @periodic: host pointer to qh/itd/sitd
29  * @tag: hardware tag for type of this record
30  */
31 static union ehci_shadow *
32 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
33 		__hc32 tag)
34 {
35 	switch (hc32_to_cpu(ehci, tag)) {
36 	case Q_TYPE_QH:
37 		return &periodic->qh->qh_next;
38 	case Q_TYPE_FSTN:
39 		return &periodic->fstn->fstn_next;
40 	case Q_TYPE_ITD:
41 		return &periodic->itd->itd_next;
42 	/* case Q_TYPE_SITD: */
43 	default:
44 		return &periodic->sitd->sitd_next;
45 	}
46 }
47 
48 static __hc32 *
49 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
50 		__hc32 tag)
51 {
52 	switch (hc32_to_cpu(ehci, tag)) {
53 	/* our ehci_shadow.qh is actually software part */
54 	case Q_TYPE_QH:
55 		return &periodic->qh->hw->hw_next;
56 	/* others are hw parts */
57 	default:
58 		return periodic->hw_next;
59 	}
60 }
61 
62 /* caller must hold ehci->lock */
63 static void periodic_unlink(struct ehci_hcd *ehci, unsigned frame, void *ptr)
64 {
65 	union ehci_shadow	*prev_p = &ehci->pshadow[frame];
66 	__hc32			*hw_p = &ehci->periodic[frame];
67 	union ehci_shadow	here = *prev_p;
68 
69 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
70 	while (here.ptr && here.ptr != ptr) {
71 		prev_p = periodic_next_shadow(ehci, prev_p,
72 				Q_NEXT_TYPE(ehci, *hw_p));
73 		hw_p = shadow_next_periodic(ehci, &here,
74 				Q_NEXT_TYPE(ehci, *hw_p));
75 		here = *prev_p;
76 	}
77 	/* an interrupt entry (at list end) could have been shared */
78 	if (!here.ptr)
79 		return;
80 
81 	/* update shadow and hardware lists ... the old "next" pointers
82 	 * from ptr may still be in use, the caller updates them.
83 	 */
84 	*prev_p = *periodic_next_shadow(ehci, &here,
85 			Q_NEXT_TYPE(ehci, *hw_p));
86 
87 	if (!ehci->use_dummy_qh ||
88 	    *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
89 			!= EHCI_LIST_END(ehci))
90 		*hw_p = *shadow_next_periodic(ehci, &here,
91 				Q_NEXT_TYPE(ehci, *hw_p));
92 	else
93 		*hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
94 }
95 
96 /*-------------------------------------------------------------------------*/
97 
98 /* Bandwidth and TT management */
99 
100 /* Find the TT data structure for this device; create it if necessary */
101 static struct ehci_tt *find_tt(struct usb_device *udev)
102 {
103 	struct usb_tt		*utt = udev->tt;
104 	struct ehci_tt		*tt, **tt_index, **ptt;
105 	unsigned		port;
106 	bool			allocated_index = false;
107 
108 	if (!utt)
109 		return NULL;		/* Not below a TT */
110 
111 	/*
112 	 * Find/create our data structure.
113 	 * For hubs with a single TT, we get it directly.
114 	 * For hubs with multiple TTs, there's an extra level of pointers.
115 	 */
116 	tt_index = NULL;
117 	if (utt->multi) {
118 		tt_index = utt->hcpriv;
119 		if (!tt_index) {		/* Create the index array */
120 			tt_index = kcalloc(utt->hub->maxchild,
121 					   sizeof(*tt_index),
122 					   GFP_ATOMIC);
123 			if (!tt_index)
124 				return ERR_PTR(-ENOMEM);
125 			utt->hcpriv = tt_index;
126 			allocated_index = true;
127 		}
128 		port = udev->ttport - 1;
129 		ptt = &tt_index[port];
130 	} else {
131 		port = 0;
132 		ptt = (struct ehci_tt **) &utt->hcpriv;
133 	}
134 
135 	tt = *ptt;
136 	if (!tt) {				/* Create the ehci_tt */
137 		struct ehci_hcd		*ehci =
138 				hcd_to_ehci(bus_to_hcd(udev->bus));
139 
140 		tt = kzalloc(sizeof(*tt), GFP_ATOMIC);
141 		if (!tt) {
142 			if (allocated_index) {
143 				utt->hcpriv = NULL;
144 				kfree(tt_index);
145 			}
146 			return ERR_PTR(-ENOMEM);
147 		}
148 		list_add_tail(&tt->tt_list, &ehci->tt_list);
149 		INIT_LIST_HEAD(&tt->ps_list);
150 		tt->usb_tt = utt;
151 		tt->tt_port = port;
152 		*ptt = tt;
153 	}
154 
155 	return tt;
156 }
157 
158 /* Release the TT above udev, if it's not in use */
159 static void drop_tt(struct usb_device *udev)
160 {
161 	struct usb_tt		*utt = udev->tt;
162 	struct ehci_tt		*tt, **tt_index, **ptt;
163 	int			cnt, i;
164 
165 	if (!utt || !utt->hcpriv)
166 		return;		/* Not below a TT, or never allocated */
167 
168 	cnt = 0;
169 	if (utt->multi) {
170 		tt_index = utt->hcpriv;
171 		ptt = &tt_index[udev->ttport - 1];
172 
173 		/* How many entries are left in tt_index? */
174 		for (i = 0; i < utt->hub->maxchild; ++i)
175 			cnt += !!tt_index[i];
176 	} else {
177 		tt_index = NULL;
178 		ptt = (struct ehci_tt **) &utt->hcpriv;
179 	}
180 
181 	tt = *ptt;
182 	if (!tt || !list_empty(&tt->ps_list))
183 		return;		/* never allocated, or still in use */
184 
185 	list_del(&tt->tt_list);
186 	*ptt = NULL;
187 	kfree(tt);
188 	if (cnt == 1) {
189 		utt->hcpriv = NULL;
190 		kfree(tt_index);
191 	}
192 }
193 
194 static void bandwidth_dbg(struct ehci_hcd *ehci, int sign, char *type,
195 		struct ehci_per_sched *ps)
196 {
197 	dev_dbg(&ps->udev->dev,
198 			"ep %02x: %s %s @ %u+%u (%u.%u+%u) [%u/%u us] mask %04x\n",
199 			ps->ep->desc.bEndpointAddress,
200 			(sign >= 0 ? "reserve" : "release"), type,
201 			(ps->bw_phase << 3) + ps->phase_uf, ps->bw_uperiod,
202 			ps->phase, ps->phase_uf, ps->period,
203 			ps->usecs, ps->c_usecs, ps->cs_mask);
204 }
205 
206 static void reserve_release_intr_bandwidth(struct ehci_hcd *ehci,
207 		struct ehci_qh *qh, int sign)
208 {
209 	unsigned		start_uf;
210 	unsigned		i, j, m;
211 	int			usecs = qh->ps.usecs;
212 	int			c_usecs = qh->ps.c_usecs;
213 	int			tt_usecs = qh->ps.tt_usecs;
214 	struct ehci_tt		*tt;
215 
216 	if (qh->ps.phase == NO_FRAME)	/* Bandwidth wasn't reserved */
217 		return;
218 	start_uf = qh->ps.bw_phase << 3;
219 
220 	bandwidth_dbg(ehci, sign, "intr", &qh->ps);
221 
222 	if (sign < 0) {		/* Release bandwidth */
223 		usecs = -usecs;
224 		c_usecs = -c_usecs;
225 		tt_usecs = -tt_usecs;
226 	}
227 
228 	/* Entire transaction (high speed) or start-split (full/low speed) */
229 	for (i = start_uf + qh->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
230 			i += qh->ps.bw_uperiod)
231 		ehci->bandwidth[i] += usecs;
232 
233 	/* Complete-split (full/low speed) */
234 	if (qh->ps.c_usecs) {
235 		/* NOTE: adjustments needed for FSTN */
236 		for (i = start_uf; i < EHCI_BANDWIDTH_SIZE;
237 				i += qh->ps.bw_uperiod) {
238 			for ((j = 2, m = 1 << (j+8)); j < 8; (++j, m <<= 1)) {
239 				if (qh->ps.cs_mask & m)
240 					ehci->bandwidth[i+j] += c_usecs;
241 			}
242 		}
243 	}
244 
245 	/* FS/LS bus bandwidth */
246 	if (tt_usecs) {
247 		tt = find_tt(qh->ps.udev);
248 		if (sign > 0)
249 			list_add_tail(&qh->ps.ps_list, &tt->ps_list);
250 		else
251 			list_del(&qh->ps.ps_list);
252 
253 		for (i = start_uf >> 3; i < EHCI_BANDWIDTH_FRAMES;
254 				i += qh->ps.bw_period)
255 			tt->bandwidth[i] += tt_usecs;
256 	}
257 }
258 
259 /*-------------------------------------------------------------------------*/
260 
261 static void compute_tt_budget(u8 budget_table[EHCI_BANDWIDTH_SIZE],
262 		struct ehci_tt *tt)
263 {
264 	struct ehci_per_sched	*ps;
265 	unsigned		uframe, uf, x;
266 	u8			*budget_line;
267 
268 	if (!tt)
269 		return;
270 	memset(budget_table, 0, EHCI_BANDWIDTH_SIZE);
271 
272 	/* Add up the contributions from all the endpoints using this TT */
273 	list_for_each_entry(ps, &tt->ps_list, ps_list) {
274 		for (uframe = ps->bw_phase << 3; uframe < EHCI_BANDWIDTH_SIZE;
275 				uframe += ps->bw_uperiod) {
276 			budget_line = &budget_table[uframe];
277 			x = ps->tt_usecs;
278 
279 			/* propagate the time forward */
280 			for (uf = ps->phase_uf; uf < 8; ++uf) {
281 				x += budget_line[uf];
282 
283 				/* Each microframe lasts 125 us */
284 				if (x <= 125) {
285 					budget_line[uf] = x;
286 					break;
287 				}
288 				budget_line[uf] = 125;
289 				x -= 125;
290 			}
291 		}
292 	}
293 }
294 
295 static int __maybe_unused same_tt(struct usb_device *dev1,
296 		struct usb_device *dev2)
297 {
298 	if (!dev1->tt || !dev2->tt)
299 		return 0;
300 	if (dev1->tt != dev2->tt)
301 		return 0;
302 	if (dev1->tt->multi)
303 		return dev1->ttport == dev2->ttport;
304 	else
305 		return 1;
306 }
307 
308 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
309 
310 /* Which uframe does the low/fullspeed transfer start in?
311  *
312  * The parameter is the mask of ssplits in "H-frame" terms
313  * and this returns the transfer start uframe in "B-frame" terms,
314  * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
315  * will cause a transfer in "B-frame" uframe 0.  "B-frames" lag
316  * "H-frames" by 1 uframe.  See the EHCI spec sec 4.5 and figure 4.7.
317  */
318 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
319 {
320 	unsigned char smask = hc32_to_cpu(ehci, mask) & QH_SMASK;
321 
322 	if (!smask) {
323 		ehci_err(ehci, "invalid empty smask!\n");
324 		/* uframe 7 can't have bw so this will indicate failure */
325 		return 7;
326 	}
327 	return ffs(smask) - 1;
328 }
329 
330 static const unsigned char
331 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
332 
333 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
334 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
335 {
336 	int i;
337 
338 	for (i = 0; i < 7; i++) {
339 		if (max_tt_usecs[i] < tt_usecs[i]) {
340 			tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
341 			tt_usecs[i] = max_tt_usecs[i];
342 		}
343 	}
344 }
345 
346 /*
347  * Return true if the device's tt's downstream bus is available for a
348  * periodic transfer of the specified length (usecs), starting at the
349  * specified frame/uframe.  Note that (as summarized in section 11.19
350  * of the usb 2.0 spec) TTs can buffer multiple transactions for each
351  * uframe.
352  *
353  * The uframe parameter is when the fullspeed/lowspeed transfer
354  * should be executed in "B-frame" terms, which is the same as the
355  * highspeed ssplit's uframe (which is in "H-frame" terms).  For example
356  * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
357  * See the EHCI spec sec 4.5 and fig 4.7.
358  *
359  * This checks if the full/lowspeed bus, at the specified starting uframe,
360  * has the specified bandwidth available, according to rules listed
361  * in USB 2.0 spec section 11.18.1 fig 11-60.
362  *
363  * This does not check if the transfer would exceed the max ssplit
364  * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
365  * since proper scheduling limits ssplits to less than 16 per uframe.
366  */
367 static int tt_available(
368 	struct ehci_hcd		*ehci,
369 	struct ehci_per_sched	*ps,
370 	struct ehci_tt		*tt,
371 	unsigned		frame,
372 	unsigned		uframe
373 )
374 {
375 	unsigned		period = ps->bw_period;
376 	unsigned		usecs = ps->tt_usecs;
377 
378 	if ((period == 0) || (uframe >= 7))	/* error */
379 		return 0;
380 
381 	for (frame &= period - 1; frame < EHCI_BANDWIDTH_FRAMES;
382 			frame += period) {
383 		unsigned	i, uf;
384 		unsigned short	tt_usecs[8];
385 
386 		if (tt->bandwidth[frame] + usecs > 900)
387 			return 0;
388 
389 		uf = frame << 3;
390 		for (i = 0; i < 8; (++i, ++uf))
391 			tt_usecs[i] = ehci->tt_budget[uf];
392 
393 		if (max_tt_usecs[uframe] <= tt_usecs[uframe])
394 			return 0;
395 
396 		/* special case for isoc transfers larger than 125us:
397 		 * the first and each subsequent fully used uframe
398 		 * must be empty, so as to not illegally delay
399 		 * already scheduled transactions
400 		 */
401 		if (usecs > 125) {
402 			int ufs = (usecs / 125);
403 
404 			for (i = uframe; i < (uframe + ufs) && i < 8; i++)
405 				if (tt_usecs[i] > 0)
406 					return 0;
407 		}
408 
409 		tt_usecs[uframe] += usecs;
410 
411 		carryover_tt_bandwidth(tt_usecs);
412 
413 		/* fail if the carryover pushed bw past the last uframe's limit */
414 		if (max_tt_usecs[7] < tt_usecs[7])
415 			return 0;
416 	}
417 
418 	return 1;
419 }
420 
421 #else
422 
423 /* return true iff the device's transaction translator is available
424  * for a periodic transfer starting at the specified frame, using
425  * all the uframes in the mask.
426  */
427 static int tt_no_collision(
428 	struct ehci_hcd		*ehci,
429 	unsigned		period,
430 	struct usb_device	*dev,
431 	unsigned		frame,
432 	u32			uf_mask
433 )
434 {
435 	if (period == 0)	/* error */
436 		return 0;
437 
438 	/* note bandwidth wastage:  split never follows csplit
439 	 * (different dev or endpoint) until the next uframe.
440 	 * calling convention doesn't make that distinction.
441 	 */
442 	for (; frame < ehci->periodic_size; frame += period) {
443 		union ehci_shadow	here;
444 		__hc32			type;
445 		struct ehci_qh_hw	*hw;
446 
447 		here = ehci->pshadow[frame];
448 		type = Q_NEXT_TYPE(ehci, ehci->periodic[frame]);
449 		while (here.ptr) {
450 			switch (hc32_to_cpu(ehci, type)) {
451 			case Q_TYPE_ITD:
452 				type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
453 				here = here.itd->itd_next;
454 				continue;
455 			case Q_TYPE_QH:
456 				hw = here.qh->hw;
457 				if (same_tt(dev, here.qh->ps.udev)) {
458 					u32		mask;
459 
460 					mask = hc32_to_cpu(ehci,
461 							hw->hw_info2);
462 					/* "knows" no gap is needed */
463 					mask |= mask >> 8;
464 					if (mask & uf_mask)
465 						break;
466 				}
467 				type = Q_NEXT_TYPE(ehci, hw->hw_next);
468 				here = here.qh->qh_next;
469 				continue;
470 			case Q_TYPE_SITD:
471 				if (same_tt(dev, here.sitd->urb->dev)) {
472 					u16		mask;
473 
474 					mask = hc32_to_cpu(ehci, here.sitd
475 								->hw_uframe);
476 					/* FIXME assumes no gap for IN! */
477 					mask |= mask >> 8;
478 					if (mask & uf_mask)
479 						break;
480 				}
481 				type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
482 				here = here.sitd->sitd_next;
483 				continue;
484 			/* case Q_TYPE_FSTN: */
485 			default:
486 				ehci_dbg(ehci,
487 					"periodic frame %d bogus type %d\n",
488 					frame, type);
489 			}
490 
491 			/* collision or error */
492 			return 0;
493 		}
494 	}
495 
496 	/* no collision */
497 	return 1;
498 }
499 
500 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
501 
502 /*-------------------------------------------------------------------------*/
503 
504 static void enable_periodic(struct ehci_hcd *ehci)
505 {
506 	if (ehci->periodic_count++)
507 		return;
508 
509 	/* Stop waiting to turn off the periodic schedule */
510 	ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC);
511 
512 	/* Don't start the schedule until PSS is 0 */
513 	ehci_poll_PSS(ehci);
514 	turn_on_io_watchdog(ehci);
515 }
516 
517 static void disable_periodic(struct ehci_hcd *ehci)
518 {
519 	if (--ehci->periodic_count)
520 		return;
521 
522 	/* Don't turn off the schedule until PSS is 1 */
523 	ehci_poll_PSS(ehci);
524 }
525 
526 /*-------------------------------------------------------------------------*/
527 
528 /* periodic schedule slots have iso tds (normal or split) first, then a
529  * sparse tree for active interrupt transfers.
530  *
531  * this just links in a qh; caller guarantees uframe masks are set right.
532  * no FSTN support (yet; ehci 0.96+)
533  */
534 static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
535 {
536 	unsigned	i;
537 	unsigned	period = qh->ps.period;
538 
539 	dev_dbg(&qh->ps.udev->dev,
540 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
541 		period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
542 			& (QH_CMASK | QH_SMASK),
543 		qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
544 
545 	/* high bandwidth, or otherwise every microframe */
546 	if (period == 0)
547 		period = 1;
548 
549 	for (i = qh->ps.phase; i < ehci->periodic_size; i += period) {
550 		union ehci_shadow	*prev = &ehci->pshadow[i];
551 		__hc32			*hw_p = &ehci->periodic[i];
552 		union ehci_shadow	here = *prev;
553 		__hc32			type = 0;
554 
555 		/* skip the iso nodes at list head */
556 		while (here.ptr) {
557 			type = Q_NEXT_TYPE(ehci, *hw_p);
558 			if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
559 				break;
560 			prev = periodic_next_shadow(ehci, prev, type);
561 			hw_p = shadow_next_periodic(ehci, &here, type);
562 			here = *prev;
563 		}
564 
565 		/* sorting each branch by period (slow-->fast)
566 		 * enables sharing interior tree nodes
567 		 */
568 		while (here.ptr && qh != here.qh) {
569 			if (qh->ps.period > here.qh->ps.period)
570 				break;
571 			prev = &here.qh->qh_next;
572 			hw_p = &here.qh->hw->hw_next;
573 			here = *prev;
574 		}
575 		/* link in this qh, unless some earlier pass did that */
576 		if (qh != here.qh) {
577 			qh->qh_next = here;
578 			if (here.qh)
579 				qh->hw->hw_next = *hw_p;
580 			wmb();
581 			prev->qh = qh;
582 			*hw_p = QH_NEXT(ehci, qh->qh_dma);
583 		}
584 	}
585 	qh->qh_state = QH_STATE_LINKED;
586 	qh->xacterrs = 0;
587 	qh->unlink_reason = 0;
588 
589 	/* update per-qh bandwidth for debugfs */
590 	ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->ps.bw_period
591 		? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
592 		: (qh->ps.usecs * 8);
593 
594 	list_add(&qh->intr_node, &ehci->intr_qh_list);
595 
596 	/* maybe enable periodic schedule processing */
597 	++ehci->intr_count;
598 	enable_periodic(ehci);
599 }
600 
601 static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
602 {
603 	unsigned	i;
604 	unsigned	period;
605 
606 	/*
607 	 * If qh is for a low/full-speed device, simply unlinking it
608 	 * could interfere with an ongoing split transaction.  To unlink
609 	 * it safely would require setting the QH_INACTIVATE bit and
610 	 * waiting at least one frame, as described in EHCI 4.12.2.5.
611 	 *
612 	 * We won't bother with any of this.  Instead, we assume that the
613 	 * only reason for unlinking an interrupt QH while the current URB
614 	 * is still active is to dequeue all the URBs (flush the whole
615 	 * endpoint queue).
616 	 *
617 	 * If rebalancing the periodic schedule is ever implemented, this
618 	 * approach will no longer be valid.
619 	 */
620 
621 	/* high bandwidth, or otherwise part of every microframe */
622 	period = qh->ps.period ? : 1;
623 
624 	for (i = qh->ps.phase; i < ehci->periodic_size; i += period)
625 		periodic_unlink(ehci, i, qh);
626 
627 	/* update per-qh bandwidth for debugfs */
628 	ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->ps.bw_period
629 		? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
630 		: (qh->ps.usecs * 8);
631 
632 	dev_dbg(&qh->ps.udev->dev,
633 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
634 		qh->ps.period,
635 		hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
636 		qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
637 
638 	/* qh->qh_next still "live" to HC */
639 	qh->qh_state = QH_STATE_UNLINK;
640 	qh->qh_next.ptr = NULL;
641 
642 	if (ehci->qh_scan_next == qh)
643 		ehci->qh_scan_next = list_entry(qh->intr_node.next,
644 				struct ehci_qh, intr_node);
645 	list_del(&qh->intr_node);
646 }
647 
648 static void cancel_unlink_wait_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
649 {
650 	if (qh->qh_state != QH_STATE_LINKED ||
651 			list_empty(&qh->unlink_node))
652 		return;
653 
654 	list_del_init(&qh->unlink_node);
655 
656 	/*
657 	 * TODO: disable the event of EHCI_HRTIMER_START_UNLINK_INTR for
658 	 * avoiding unnecessary CPU wakeup
659 	 */
660 }
661 
662 static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
663 {
664 	/* If the QH isn't linked then there's nothing we can do. */
665 	if (qh->qh_state != QH_STATE_LINKED)
666 		return;
667 
668 	/* if the qh is waiting for unlink, cancel it now */
669 	cancel_unlink_wait_intr(ehci, qh);
670 
671 	qh_unlink_periodic(ehci, qh);
672 
673 	/* Make sure the unlinks are visible before starting the timer */
674 	wmb();
675 
676 	/*
677 	 * The EHCI spec doesn't say how long it takes the controller to
678 	 * stop accessing an unlinked interrupt QH.  The timer delay is
679 	 * 9 uframes; presumably that will be long enough.
680 	 */
681 	qh->unlink_cycle = ehci->intr_unlink_cycle;
682 
683 	/* New entries go at the end of the intr_unlink list */
684 	list_add_tail(&qh->unlink_node, &ehci->intr_unlink);
685 
686 	if (ehci->intr_unlinking)
687 		;	/* Avoid recursive calls */
688 	else if (ehci->rh_state < EHCI_RH_RUNNING)
689 		ehci_handle_intr_unlinks(ehci);
690 	else if (ehci->intr_unlink.next == &qh->unlink_node) {
691 		ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true);
692 		++ehci->intr_unlink_cycle;
693 	}
694 }
695 
696 /*
697  * It is common only one intr URB is scheduled on one qh, and
698  * given complete() is run in tasklet context, introduce a bit
699  * delay to avoid unlink qh too early.
700  */
701 static void start_unlink_intr_wait(struct ehci_hcd *ehci,
702 				   struct ehci_qh *qh)
703 {
704 	qh->unlink_cycle = ehci->intr_unlink_wait_cycle;
705 
706 	/* New entries go at the end of the intr_unlink_wait list */
707 	list_add_tail(&qh->unlink_node, &ehci->intr_unlink_wait);
708 
709 	if (ehci->rh_state < EHCI_RH_RUNNING)
710 		ehci_handle_start_intr_unlinks(ehci);
711 	else if (ehci->intr_unlink_wait.next == &qh->unlink_node) {
712 		ehci_enable_event(ehci, EHCI_HRTIMER_START_UNLINK_INTR, true);
713 		++ehci->intr_unlink_wait_cycle;
714 	}
715 }
716 
717 static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
718 {
719 	struct ehci_qh_hw	*hw = qh->hw;
720 	int			rc;
721 
722 	qh->qh_state = QH_STATE_IDLE;
723 	hw->hw_next = EHCI_LIST_END(ehci);
724 
725 	if (!list_empty(&qh->qtd_list))
726 		qh_completions(ehci, qh);
727 
728 	/* reschedule QH iff another request is queued */
729 	if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) {
730 		rc = qh_schedule(ehci, qh);
731 		if (rc == 0) {
732 			qh_refresh(ehci, qh);
733 			qh_link_periodic(ehci, qh);
734 		}
735 
736 		/* An error here likely indicates handshake failure
737 		 * or no space left in the schedule.  Neither fault
738 		 * should happen often ...
739 		 *
740 		 * FIXME kill the now-dysfunctional queued urbs
741 		 */
742 		else {
743 			ehci_err(ehci, "can't reschedule qh %p, err %d\n",
744 					qh, rc);
745 		}
746 	}
747 
748 	/* maybe turn off periodic schedule */
749 	--ehci->intr_count;
750 	disable_periodic(ehci);
751 }
752 
753 /*-------------------------------------------------------------------------*/
754 
755 static int check_period(
756 	struct ehci_hcd *ehci,
757 	unsigned	frame,
758 	unsigned	uframe,
759 	unsigned	uperiod,
760 	unsigned	usecs
761 ) {
762 	/* complete split running into next frame?
763 	 * given FSTN support, we could sometimes check...
764 	 */
765 	if (uframe >= 8)
766 		return 0;
767 
768 	/* convert "usecs we need" to "max already claimed" */
769 	usecs = ehci->uframe_periodic_max - usecs;
770 
771 	for (uframe += frame << 3; uframe < EHCI_BANDWIDTH_SIZE;
772 			uframe += uperiod) {
773 		if (ehci->bandwidth[uframe] > usecs)
774 			return 0;
775 	}
776 
777 	/* success! */
778 	return 1;
779 }
780 
781 static int check_intr_schedule(
782 	struct ehci_hcd		*ehci,
783 	unsigned		frame,
784 	unsigned		uframe,
785 	struct ehci_qh		*qh,
786 	unsigned		*c_maskp,
787 	struct ehci_tt		*tt
788 )
789 {
790 	int		retval = -ENOSPC;
791 	u8		mask = 0;
792 
793 	if (qh->ps.c_usecs && uframe >= 6)	/* FSTN territory? */
794 		goto done;
795 
796 	if (!check_period(ehci, frame, uframe, qh->ps.bw_uperiod, qh->ps.usecs))
797 		goto done;
798 	if (!qh->ps.c_usecs) {
799 		retval = 0;
800 		*c_maskp = 0;
801 		goto done;
802 	}
803 
804 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
805 	if (tt_available(ehci, &qh->ps, tt, frame, uframe)) {
806 		unsigned i;
807 
808 		/* TODO : this may need FSTN for SSPLIT in uframe 5. */
809 		for (i = uframe+2; i < 8 && i <= uframe+4; i++)
810 			if (!check_period(ehci, frame, i,
811 					qh->ps.bw_uperiod, qh->ps.c_usecs))
812 				goto done;
813 			else
814 				mask |= 1 << i;
815 
816 		retval = 0;
817 
818 		*c_maskp = mask;
819 	}
820 #else
821 	/* Make sure this tt's buffer is also available for CSPLITs.
822 	 * We pessimize a bit; probably the typical full speed case
823 	 * doesn't need the second CSPLIT.
824 	 *
825 	 * NOTE:  both SPLIT and CSPLIT could be checked in just
826 	 * one smart pass...
827 	 */
828 	mask = 0x03 << (uframe + qh->gap_uf);
829 	*c_maskp = mask;
830 
831 	mask |= 1 << uframe;
832 	if (tt_no_collision(ehci, qh->ps.bw_period, qh->ps.udev, frame, mask)) {
833 		if (!check_period(ehci, frame, uframe + qh->gap_uf + 1,
834 				qh->ps.bw_uperiod, qh->ps.c_usecs))
835 			goto done;
836 		if (!check_period(ehci, frame, uframe + qh->gap_uf,
837 				qh->ps.bw_uperiod, qh->ps.c_usecs))
838 			goto done;
839 		retval = 0;
840 	}
841 #endif
842 done:
843 	return retval;
844 }
845 
846 /* "first fit" scheduling policy used the first time through,
847  * or when the previous schedule slot can't be re-used.
848  */
849 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
850 {
851 	int		status = 0;
852 	unsigned	uframe;
853 	unsigned	c_mask;
854 	struct ehci_qh_hw	*hw = qh->hw;
855 	struct ehci_tt		*tt;
856 
857 	hw->hw_next = EHCI_LIST_END(ehci);
858 
859 	/* reuse the previous schedule slots, if we can */
860 	if (qh->ps.phase != NO_FRAME) {
861 		ehci_dbg(ehci, "reused qh %p schedule\n", qh);
862 		return 0;
863 	}
864 
865 	uframe = 0;
866 	c_mask = 0;
867 	tt = find_tt(qh->ps.udev);
868 	if (IS_ERR(tt)) {
869 		status = PTR_ERR(tt);
870 		goto done;
871 	}
872 	compute_tt_budget(ehci->tt_budget, tt);
873 
874 	/* else scan the schedule to find a group of slots such that all
875 	 * uframes have enough periodic bandwidth available.
876 	 */
877 	/* "normal" case, uframing flexible except with splits */
878 	if (qh->ps.bw_period) {
879 		int		i;
880 		unsigned	frame;
881 
882 		for (i = qh->ps.bw_period; i > 0; --i) {
883 			frame = ++ehci->random_frame & (qh->ps.bw_period - 1);
884 			for (uframe = 0; uframe < 8; uframe++) {
885 				status = check_intr_schedule(ehci,
886 						frame, uframe, qh, &c_mask, tt);
887 				if (status == 0)
888 					goto got_it;
889 			}
890 		}
891 
892 	/* qh->ps.bw_period == 0 means every uframe */
893 	} else {
894 		status = check_intr_schedule(ehci, 0, 0, qh, &c_mask, tt);
895 	}
896 	if (status)
897 		goto done;
898 
899  got_it:
900 	qh->ps.phase = (qh->ps.period ? ehci->random_frame &
901 			(qh->ps.period - 1) : 0);
902 	qh->ps.bw_phase = qh->ps.phase & (qh->ps.bw_period - 1);
903 	qh->ps.phase_uf = uframe;
904 	qh->ps.cs_mask = qh->ps.period ?
905 			(c_mask << 8) | (1 << uframe) :
906 			QH_SMASK;
907 
908 	/* reset S-frame and (maybe) C-frame masks */
909 	hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
910 	hw->hw_info2 |= cpu_to_hc32(ehci, qh->ps.cs_mask);
911 	reserve_release_intr_bandwidth(ehci, qh, 1);
912 
913 done:
914 	return status;
915 }
916 
917 static int intr_submit(
918 	struct ehci_hcd		*ehci,
919 	struct urb		*urb,
920 	struct list_head	*qtd_list,
921 	gfp_t			mem_flags
922 ) {
923 	unsigned		epnum;
924 	unsigned long		flags;
925 	struct ehci_qh		*qh;
926 	int			status;
927 	struct list_head	empty;
928 
929 	/* get endpoint and transfer/schedule data */
930 	epnum = urb->ep->desc.bEndpointAddress;
931 
932 	spin_lock_irqsave(&ehci->lock, flags);
933 
934 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
935 		status = -ESHUTDOWN;
936 		goto done_not_linked;
937 	}
938 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
939 	if (unlikely(status))
940 		goto done_not_linked;
941 
942 	/* get qh and force any scheduling errors */
943 	INIT_LIST_HEAD(&empty);
944 	qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
945 	if (qh == NULL) {
946 		status = -ENOMEM;
947 		goto done;
948 	}
949 	if (qh->qh_state == QH_STATE_IDLE) {
950 		status = qh_schedule(ehci, qh);
951 		if (status)
952 			goto done;
953 	}
954 
955 	/* then queue the urb's tds to the qh */
956 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
957 	BUG_ON(qh == NULL);
958 
959 	/* stuff into the periodic schedule */
960 	if (qh->qh_state == QH_STATE_IDLE) {
961 		qh_refresh(ehci, qh);
962 		qh_link_periodic(ehci, qh);
963 	} else {
964 		/* cancel unlink wait for the qh */
965 		cancel_unlink_wait_intr(ehci, qh);
966 	}
967 
968 	/* ... update usbfs periodic stats */
969 	ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
970 
971 done:
972 	if (unlikely(status))
973 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
974 done_not_linked:
975 	spin_unlock_irqrestore(&ehci->lock, flags);
976 	if (status)
977 		qtd_list_free(ehci, urb, qtd_list);
978 
979 	return status;
980 }
981 
982 static void scan_intr(struct ehci_hcd *ehci)
983 {
984 	struct ehci_qh		*qh;
985 
986 	list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list,
987 			intr_node) {
988 
989 		/* clean any finished work for this qh */
990 		if (!list_empty(&qh->qtd_list)) {
991 			int temp;
992 
993 			/*
994 			 * Unlinks could happen here; completion reporting
995 			 * drops the lock.  That's why ehci->qh_scan_next
996 			 * always holds the next qh to scan; if the next qh
997 			 * gets unlinked then ehci->qh_scan_next is adjusted
998 			 * in qh_unlink_periodic().
999 			 */
1000 			temp = qh_completions(ehci, qh);
1001 			if (unlikely(temp))
1002 				start_unlink_intr(ehci, qh);
1003 			else if (unlikely(list_empty(&qh->qtd_list) &&
1004 					qh->qh_state == QH_STATE_LINKED))
1005 				start_unlink_intr_wait(ehci, qh);
1006 		}
1007 	}
1008 }
1009 
1010 /*-------------------------------------------------------------------------*/
1011 
1012 /* ehci_iso_stream ops work with both ITD and SITD */
1013 
1014 static struct ehci_iso_stream *
1015 iso_stream_alloc(gfp_t mem_flags)
1016 {
1017 	struct ehci_iso_stream *stream;
1018 
1019 	stream = kzalloc(sizeof(*stream), mem_flags);
1020 	if (likely(stream != NULL)) {
1021 		INIT_LIST_HEAD(&stream->td_list);
1022 		INIT_LIST_HEAD(&stream->free_list);
1023 		stream->next_uframe = NO_FRAME;
1024 		stream->ps.phase = NO_FRAME;
1025 	}
1026 	return stream;
1027 }
1028 
1029 static void
1030 iso_stream_init(
1031 	struct ehci_hcd		*ehci,
1032 	struct ehci_iso_stream	*stream,
1033 	struct urb		*urb
1034 )
1035 {
1036 	static const u8 smask_out[] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
1037 
1038 	struct usb_device	*dev = urb->dev;
1039 	u32			buf1;
1040 	unsigned		epnum, maxp;
1041 	int			is_input;
1042 	unsigned		tmp;
1043 
1044 	/*
1045 	 * this might be a "high bandwidth" highspeed endpoint,
1046 	 * as encoded in the ep descriptor's wMaxPacket field
1047 	 */
1048 	epnum = usb_pipeendpoint(urb->pipe);
1049 	is_input = usb_pipein(urb->pipe) ? USB_DIR_IN : 0;
1050 	maxp = usb_endpoint_maxp(&urb->ep->desc);
1051 	buf1 = is_input ? 1 << 11 : 0;
1052 
1053 	/* knows about ITD vs SITD */
1054 	if (dev->speed == USB_SPEED_HIGH) {
1055 		unsigned multi = usb_endpoint_maxp_mult(&urb->ep->desc);
1056 
1057 		stream->highspeed = 1;
1058 
1059 		buf1 |= maxp;
1060 		maxp *= multi;
1061 
1062 		stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
1063 		stream->buf1 = cpu_to_hc32(ehci, buf1);
1064 		stream->buf2 = cpu_to_hc32(ehci, multi);
1065 
1066 		/* usbfs wants to report the average usecs per frame tied up
1067 		 * when transfers on this endpoint are scheduled ...
1068 		 */
1069 		stream->ps.usecs = HS_USECS_ISO(maxp);
1070 
1071 		/* period for bandwidth allocation */
1072 		tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
1073 				1 << (urb->ep->desc.bInterval - 1));
1074 
1075 		/* Allow urb->interval to override */
1076 		stream->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
1077 
1078 		stream->uperiod = urb->interval;
1079 		stream->ps.period = urb->interval >> 3;
1080 		stream->bandwidth = stream->ps.usecs * 8 /
1081 				stream->ps.bw_uperiod;
1082 
1083 	} else {
1084 		u32		addr;
1085 		int		think_time;
1086 		int		hs_transfers;
1087 
1088 		addr = dev->ttport << 24;
1089 		if (!ehci_is_TDI(ehci)
1090 				|| (dev->tt->hub !=
1091 					ehci_to_hcd(ehci)->self.root_hub))
1092 			addr |= dev->tt->hub->devnum << 16;
1093 		addr |= epnum << 8;
1094 		addr |= dev->devnum;
1095 		stream->ps.usecs = HS_USECS_ISO(maxp);
1096 		think_time = dev->tt->think_time;
1097 		stream->ps.tt_usecs = NS_TO_US(think_time + usb_calc_bus_time(
1098 				dev->speed, is_input, 1, maxp));
1099 		hs_transfers = max(1u, (maxp + 187) / 188);
1100 		if (is_input) {
1101 			u32	tmp;
1102 
1103 			addr |= 1 << 31;
1104 			stream->ps.c_usecs = stream->ps.usecs;
1105 			stream->ps.usecs = HS_USECS_ISO(1);
1106 			stream->ps.cs_mask = 1;
1107 
1108 			/* c-mask as specified in USB 2.0 11.18.4 3.c */
1109 			tmp = (1 << (hs_transfers + 2)) - 1;
1110 			stream->ps.cs_mask |= tmp << (8 + 2);
1111 		} else
1112 			stream->ps.cs_mask = smask_out[hs_transfers - 1];
1113 
1114 		/* period for bandwidth allocation */
1115 		tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
1116 				1 << (urb->ep->desc.bInterval - 1));
1117 
1118 		/* Allow urb->interval to override */
1119 		stream->ps.bw_period = min_t(unsigned, tmp, urb->interval);
1120 		stream->ps.bw_uperiod = stream->ps.bw_period << 3;
1121 
1122 		stream->ps.period = urb->interval;
1123 		stream->uperiod = urb->interval << 3;
1124 		stream->bandwidth = (stream->ps.usecs + stream->ps.c_usecs) /
1125 				stream->ps.bw_period;
1126 
1127 		/* stream->splits gets created from cs_mask later */
1128 		stream->address = cpu_to_hc32(ehci, addr);
1129 	}
1130 
1131 	stream->ps.udev = dev;
1132 	stream->ps.ep = urb->ep;
1133 
1134 	stream->bEndpointAddress = is_input | epnum;
1135 	stream->maxp = maxp;
1136 }
1137 
1138 static struct ehci_iso_stream *
1139 iso_stream_find(struct ehci_hcd *ehci, struct urb *urb)
1140 {
1141 	unsigned		epnum;
1142 	struct ehci_iso_stream	*stream;
1143 	struct usb_host_endpoint *ep;
1144 	unsigned long		flags;
1145 
1146 	epnum = usb_pipeendpoint (urb->pipe);
1147 	if (usb_pipein(urb->pipe))
1148 		ep = urb->dev->ep_in[epnum];
1149 	else
1150 		ep = urb->dev->ep_out[epnum];
1151 
1152 	spin_lock_irqsave(&ehci->lock, flags);
1153 	stream = ep->hcpriv;
1154 
1155 	if (unlikely(stream == NULL)) {
1156 		stream = iso_stream_alloc(GFP_ATOMIC);
1157 		if (likely(stream != NULL)) {
1158 			ep->hcpriv = stream;
1159 			iso_stream_init(ehci, stream, urb);
1160 		}
1161 
1162 	/* if dev->ep [epnum] is a QH, hw is set */
1163 	} else if (unlikely(stream->hw != NULL)) {
1164 		ehci_dbg(ehci, "dev %s ep%d%s, not iso??\n",
1165 			urb->dev->devpath, epnum,
1166 			usb_pipein(urb->pipe) ? "in" : "out");
1167 		stream = NULL;
1168 	}
1169 
1170 	spin_unlock_irqrestore(&ehci->lock, flags);
1171 	return stream;
1172 }
1173 
1174 /*-------------------------------------------------------------------------*/
1175 
1176 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1177 
1178 static struct ehci_iso_sched *
1179 iso_sched_alloc(unsigned packets, gfp_t mem_flags)
1180 {
1181 	struct ehci_iso_sched	*iso_sched;
1182 	int			size = sizeof(*iso_sched);
1183 
1184 	size += packets * sizeof(struct ehci_iso_packet);
1185 	iso_sched = kzalloc(size, mem_flags);
1186 	if (likely(iso_sched != NULL))
1187 		INIT_LIST_HEAD(&iso_sched->td_list);
1188 
1189 	return iso_sched;
1190 }
1191 
1192 static inline void
1193 itd_sched_init(
1194 	struct ehci_hcd		*ehci,
1195 	struct ehci_iso_sched	*iso_sched,
1196 	struct ehci_iso_stream	*stream,
1197 	struct urb		*urb
1198 )
1199 {
1200 	unsigned	i;
1201 	dma_addr_t	dma = urb->transfer_dma;
1202 
1203 	/* how many uframes are needed for these transfers */
1204 	iso_sched->span = urb->number_of_packets * stream->uperiod;
1205 
1206 	/* figure out per-uframe itd fields that we'll need later
1207 	 * when we fit new itds into the schedule.
1208 	 */
1209 	for (i = 0; i < urb->number_of_packets; i++) {
1210 		struct ehci_iso_packet	*uframe = &iso_sched->packet[i];
1211 		unsigned		length;
1212 		dma_addr_t		buf;
1213 		u32			trans;
1214 
1215 		length = urb->iso_frame_desc[i].length;
1216 		buf = dma + urb->iso_frame_desc[i].offset;
1217 
1218 		trans = EHCI_ISOC_ACTIVE;
1219 		trans |= buf & 0x0fff;
1220 		if (unlikely(((i + 1) == urb->number_of_packets))
1221 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1222 			trans |= EHCI_ITD_IOC;
1223 		trans |= length << 16;
1224 		uframe->transaction = cpu_to_hc32(ehci, trans);
1225 
1226 		/* might need to cross a buffer page within a uframe */
1227 		uframe->bufp = (buf & ~(u64)0x0fff);
1228 		buf += length;
1229 		if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
1230 			uframe->cross = 1;
1231 	}
1232 }
1233 
1234 static void
1235 iso_sched_free(
1236 	struct ehci_iso_stream	*stream,
1237 	struct ehci_iso_sched	*iso_sched
1238 )
1239 {
1240 	if (!iso_sched)
1241 		return;
1242 	/* caller must hold ehci->lock! */
1243 	list_splice(&iso_sched->td_list, &stream->free_list);
1244 	kfree(iso_sched);
1245 }
1246 
1247 static int
1248 itd_urb_transaction(
1249 	struct ehci_iso_stream	*stream,
1250 	struct ehci_hcd		*ehci,
1251 	struct urb		*urb,
1252 	gfp_t			mem_flags
1253 )
1254 {
1255 	struct ehci_itd		*itd;
1256 	dma_addr_t		itd_dma;
1257 	int			i;
1258 	unsigned		num_itds;
1259 	struct ehci_iso_sched	*sched;
1260 	unsigned long		flags;
1261 
1262 	sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
1263 	if (unlikely(sched == NULL))
1264 		return -ENOMEM;
1265 
1266 	itd_sched_init(ehci, sched, stream, urb);
1267 
1268 	if (urb->interval < 8)
1269 		num_itds = 1 + (sched->span + 7) / 8;
1270 	else
1271 		num_itds = urb->number_of_packets;
1272 
1273 	/* allocate/init ITDs */
1274 	spin_lock_irqsave(&ehci->lock, flags);
1275 	for (i = 0; i < num_itds; i++) {
1276 
1277 		/*
1278 		 * Use iTDs from the free list, but not iTDs that may
1279 		 * still be in use by the hardware.
1280 		 */
1281 		if (likely(!list_empty(&stream->free_list))) {
1282 			itd = list_first_entry(&stream->free_list,
1283 					struct ehci_itd, itd_list);
1284 			if (itd->frame == ehci->now_frame)
1285 				goto alloc_itd;
1286 			list_del(&itd->itd_list);
1287 			itd_dma = itd->itd_dma;
1288 		} else {
1289  alloc_itd:
1290 			spin_unlock_irqrestore(&ehci->lock, flags);
1291 			itd = dma_pool_alloc(ehci->itd_pool, mem_flags,
1292 					&itd_dma);
1293 			spin_lock_irqsave(&ehci->lock, flags);
1294 			if (!itd) {
1295 				iso_sched_free(stream, sched);
1296 				spin_unlock_irqrestore(&ehci->lock, flags);
1297 				return -ENOMEM;
1298 			}
1299 		}
1300 
1301 		memset(itd, 0, sizeof(*itd));
1302 		itd->itd_dma = itd_dma;
1303 		itd->frame = NO_FRAME;
1304 		list_add(&itd->itd_list, &sched->td_list);
1305 	}
1306 	spin_unlock_irqrestore(&ehci->lock, flags);
1307 
1308 	/* temporarily store schedule info in hcpriv */
1309 	urb->hcpriv = sched;
1310 	urb->error_count = 0;
1311 	return 0;
1312 }
1313 
1314 /*-------------------------------------------------------------------------*/
1315 
1316 static void reserve_release_iso_bandwidth(struct ehci_hcd *ehci,
1317 		struct ehci_iso_stream *stream, int sign)
1318 {
1319 	unsigned		uframe;
1320 	unsigned		i, j;
1321 	unsigned		s_mask, c_mask, m;
1322 	int			usecs = stream->ps.usecs;
1323 	int			c_usecs = stream->ps.c_usecs;
1324 	int			tt_usecs = stream->ps.tt_usecs;
1325 	struct ehci_tt		*tt;
1326 
1327 	if (stream->ps.phase == NO_FRAME)	/* Bandwidth wasn't reserved */
1328 		return;
1329 	uframe = stream->ps.bw_phase << 3;
1330 
1331 	bandwidth_dbg(ehci, sign, "iso", &stream->ps);
1332 
1333 	if (sign < 0) {		/* Release bandwidth */
1334 		usecs = -usecs;
1335 		c_usecs = -c_usecs;
1336 		tt_usecs = -tt_usecs;
1337 	}
1338 
1339 	if (!stream->splits) {		/* High speed */
1340 		for (i = uframe + stream->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
1341 				i += stream->ps.bw_uperiod)
1342 			ehci->bandwidth[i] += usecs;
1343 
1344 	} else {			/* Full speed */
1345 		s_mask = stream->ps.cs_mask;
1346 		c_mask = s_mask >> 8;
1347 
1348 		/* NOTE: adjustment needed for frame overflow */
1349 		for (i = uframe; i < EHCI_BANDWIDTH_SIZE;
1350 				i += stream->ps.bw_uperiod) {
1351 			for ((j = stream->ps.phase_uf, m = 1 << j); j < 8;
1352 					(++j, m <<= 1)) {
1353 				if (s_mask & m)
1354 					ehci->bandwidth[i+j] += usecs;
1355 				else if (c_mask & m)
1356 					ehci->bandwidth[i+j] += c_usecs;
1357 			}
1358 		}
1359 
1360 		tt = find_tt(stream->ps.udev);
1361 		if (sign > 0)
1362 			list_add_tail(&stream->ps.ps_list, &tt->ps_list);
1363 		else
1364 			list_del(&stream->ps.ps_list);
1365 
1366 		for (i = uframe >> 3; i < EHCI_BANDWIDTH_FRAMES;
1367 				i += stream->ps.bw_period)
1368 			tt->bandwidth[i] += tt_usecs;
1369 	}
1370 }
1371 
1372 static inline int
1373 itd_slot_ok(
1374 	struct ehci_hcd		*ehci,
1375 	struct ehci_iso_stream	*stream,
1376 	unsigned		uframe
1377 )
1378 {
1379 	unsigned		usecs;
1380 
1381 	/* convert "usecs we need" to "max already claimed" */
1382 	usecs = ehci->uframe_periodic_max - stream->ps.usecs;
1383 
1384 	for (uframe &= stream->ps.bw_uperiod - 1; uframe < EHCI_BANDWIDTH_SIZE;
1385 			uframe += stream->ps.bw_uperiod) {
1386 		if (ehci->bandwidth[uframe] > usecs)
1387 			return 0;
1388 	}
1389 	return 1;
1390 }
1391 
1392 static inline int
1393 sitd_slot_ok(
1394 	struct ehci_hcd		*ehci,
1395 	struct ehci_iso_stream	*stream,
1396 	unsigned		uframe,
1397 	struct ehci_iso_sched	*sched,
1398 	struct ehci_tt		*tt
1399 )
1400 {
1401 	unsigned		mask, tmp;
1402 	unsigned		frame, uf;
1403 
1404 	mask = stream->ps.cs_mask << (uframe & 7);
1405 
1406 	/* for OUT, don't wrap SSPLIT into H-microframe 7 */
1407 	if (((stream->ps.cs_mask & 0xff) << (uframe & 7)) >= (1 << 7))
1408 		return 0;
1409 
1410 	/* for IN, don't wrap CSPLIT into the next frame */
1411 	if (mask & ~0xffff)
1412 		return 0;
1413 
1414 	/* check bandwidth */
1415 	uframe &= stream->ps.bw_uperiod - 1;
1416 	frame = uframe >> 3;
1417 
1418 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1419 	/* The tt's fullspeed bus bandwidth must be available.
1420 	 * tt_available scheduling guarantees 10+% for control/bulk.
1421 	 */
1422 	uf = uframe & 7;
1423 	if (!tt_available(ehci, &stream->ps, tt, frame, uf))
1424 		return 0;
1425 #else
1426 	/* tt must be idle for start(s), any gap, and csplit.
1427 	 * assume scheduling slop leaves 10+% for control/bulk.
1428 	 */
1429 	if (!tt_no_collision(ehci, stream->ps.bw_period,
1430 			stream->ps.udev, frame, mask))
1431 		return 0;
1432 #endif
1433 
1434 	do {
1435 		unsigned	max_used;
1436 		unsigned	i;
1437 
1438 		/* check starts (OUT uses more than one) */
1439 		uf = uframe;
1440 		max_used = ehci->uframe_periodic_max - stream->ps.usecs;
1441 		for (tmp = stream->ps.cs_mask & 0xff; tmp; tmp >>= 1, uf++) {
1442 			if (ehci->bandwidth[uf] > max_used)
1443 				return 0;
1444 		}
1445 
1446 		/* for IN, check CSPLIT */
1447 		if (stream->ps.c_usecs) {
1448 			max_used = ehci->uframe_periodic_max -
1449 					stream->ps.c_usecs;
1450 			uf = uframe & ~7;
1451 			tmp = 1 << (2+8);
1452 			for (i = (uframe & 7) + 2; i < 8; (++i, tmp <<= 1)) {
1453 				if ((stream->ps.cs_mask & tmp) == 0)
1454 					continue;
1455 				if (ehci->bandwidth[uf+i] > max_used)
1456 					return 0;
1457 			}
1458 		}
1459 
1460 		uframe += stream->ps.bw_uperiod;
1461 	} while (uframe < EHCI_BANDWIDTH_SIZE);
1462 
1463 	stream->ps.cs_mask <<= uframe & 7;
1464 	stream->splits = cpu_to_hc32(ehci, stream->ps.cs_mask);
1465 	return 1;
1466 }
1467 
1468 /*
1469  * This scheduler plans almost as far into the future as it has actual
1470  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
1471  * "as small as possible" to be cache-friendlier.)  That limits the size
1472  * transfers you can stream reliably; avoid more than 64 msec per urb.
1473  * Also avoid queue depths of less than ehci's worst irq latency (affected
1474  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1475  * and other factors); or more than about 230 msec total (for portability,
1476  * given EHCI_TUNE_FLS and the slop).  Or, write a smarter scheduler!
1477  */
1478 
1479 static int
1480 iso_stream_schedule(
1481 	struct ehci_hcd		*ehci,
1482 	struct urb		*urb,
1483 	struct ehci_iso_stream	*stream
1484 )
1485 {
1486 	u32			now, base, next, start, period, span, now2;
1487 	u32			wrap = 0, skip = 0;
1488 	int			status = 0;
1489 	unsigned		mod = ehci->periodic_size << 3;
1490 	struct ehci_iso_sched	*sched = urb->hcpriv;
1491 	bool			empty = list_empty(&stream->td_list);
1492 	bool			new_stream = false;
1493 
1494 	period = stream->uperiod;
1495 	span = sched->span;
1496 	if (!stream->highspeed)
1497 		span <<= 3;
1498 
1499 	/* Start a new isochronous stream? */
1500 	if (unlikely(empty && !hcd_periodic_completion_in_progress(
1501 			ehci_to_hcd(ehci), urb->ep))) {
1502 
1503 		/* Schedule the endpoint */
1504 		if (stream->ps.phase == NO_FRAME) {
1505 			int		done = 0;
1506 			struct ehci_tt	*tt = find_tt(stream->ps.udev);
1507 
1508 			if (IS_ERR(tt)) {
1509 				status = PTR_ERR(tt);
1510 				goto fail;
1511 			}
1512 			compute_tt_budget(ehci->tt_budget, tt);
1513 
1514 			start = ((-(++ehci->random_frame)) << 3) & (period - 1);
1515 
1516 			/* find a uframe slot with enough bandwidth.
1517 			 * Early uframes are more precious because full-speed
1518 			 * iso IN transfers can't use late uframes,
1519 			 * and therefore they should be allocated last.
1520 			 */
1521 			next = start;
1522 			start += period;
1523 			do {
1524 				start--;
1525 				/* check schedule: enough space? */
1526 				if (stream->highspeed) {
1527 					if (itd_slot_ok(ehci, stream, start))
1528 						done = 1;
1529 				} else {
1530 					if ((start % 8) >= 6)
1531 						continue;
1532 					if (sitd_slot_ok(ehci, stream, start,
1533 							sched, tt))
1534 						done = 1;
1535 				}
1536 			} while (start > next && !done);
1537 
1538 			/* no room in the schedule */
1539 			if (!done) {
1540 				ehci_dbg(ehci, "iso sched full %p", urb);
1541 				status = -ENOSPC;
1542 				goto fail;
1543 			}
1544 			stream->ps.phase = (start >> 3) &
1545 					(stream->ps.period - 1);
1546 			stream->ps.bw_phase = stream->ps.phase &
1547 					(stream->ps.bw_period - 1);
1548 			stream->ps.phase_uf = start & 7;
1549 			reserve_release_iso_bandwidth(ehci, stream, 1);
1550 		}
1551 
1552 		/* New stream is already scheduled; use the upcoming slot */
1553 		else {
1554 			start = (stream->ps.phase << 3) + stream->ps.phase_uf;
1555 		}
1556 
1557 		stream->next_uframe = start;
1558 		new_stream = true;
1559 	}
1560 
1561 	now = ehci_read_frame_index(ehci) & (mod - 1);
1562 
1563 	/* Take the isochronous scheduling threshold into account */
1564 	if (ehci->i_thresh)
1565 		next = now + ehci->i_thresh;	/* uframe cache */
1566 	else
1567 		next = (now + 2 + 7) & ~0x07;	/* full frame cache */
1568 
1569 	/* If needed, initialize last_iso_frame so that this URB will be seen */
1570 	if (ehci->isoc_count == 0)
1571 		ehci->last_iso_frame = now >> 3;
1572 
1573 	/*
1574 	 * Use ehci->last_iso_frame as the base.  There can't be any
1575 	 * TDs scheduled for earlier than that.
1576 	 */
1577 	base = ehci->last_iso_frame << 3;
1578 	next = (next - base) & (mod - 1);
1579 	start = (stream->next_uframe - base) & (mod - 1);
1580 
1581 	if (unlikely(new_stream))
1582 		goto do_ASAP;
1583 
1584 	/*
1585 	 * Typical case: reuse current schedule, stream may still be active.
1586 	 * Hopefully there are no gaps from the host falling behind
1587 	 * (irq delays etc).  If there are, the behavior depends on
1588 	 * whether URB_ISO_ASAP is set.
1589 	 */
1590 	now2 = (now - base) & (mod - 1);
1591 
1592 	/* Is the schedule about to wrap around? */
1593 	if (unlikely(!empty && start < period)) {
1594 		ehci_dbg(ehci, "request %p would overflow (%u-%u < %u mod %u)\n",
1595 				urb, stream->next_uframe, base, period, mod);
1596 		status = -EFBIG;
1597 		goto fail;
1598 	}
1599 
1600 	/* Is the next packet scheduled after the base time? */
1601 	if (likely(!empty || start <= now2 + period)) {
1602 
1603 		/* URB_ISO_ASAP: make sure that start >= next */
1604 		if (unlikely(start < next &&
1605 				(urb->transfer_flags & URB_ISO_ASAP)))
1606 			goto do_ASAP;
1607 
1608 		/* Otherwise use start, if it's not in the past */
1609 		if (likely(start >= now2))
1610 			goto use_start;
1611 
1612 	/* Otherwise we got an underrun while the queue was empty */
1613 	} else {
1614 		if (urb->transfer_flags & URB_ISO_ASAP)
1615 			goto do_ASAP;
1616 		wrap = mod;
1617 		now2 += mod;
1618 	}
1619 
1620 	/* How many uframes and packets do we need to skip? */
1621 	skip = (now2 - start + period - 1) & -period;
1622 	if (skip >= span) {		/* Entirely in the past? */
1623 		ehci_dbg(ehci, "iso underrun %p (%u+%u < %u) [%u]\n",
1624 				urb, start + base, span - period, now2 + base,
1625 				base);
1626 
1627 		/* Try to keep the last TD intact for scanning later */
1628 		skip = span - period;
1629 
1630 		/* Will it come before the current scan position? */
1631 		if (empty) {
1632 			skip = span;	/* Skip the entire URB */
1633 			status = 1;	/* and give it back immediately */
1634 			iso_sched_free(stream, sched);
1635 			sched = NULL;
1636 		}
1637 	}
1638 	urb->error_count = skip / period;
1639 	if (sched)
1640 		sched->first_packet = urb->error_count;
1641 	goto use_start;
1642 
1643  do_ASAP:
1644 	/* Use the first slot after "next" */
1645 	start = next + ((start - next) & (period - 1));
1646 
1647  use_start:
1648 	/* Tried to schedule too far into the future? */
1649 	if (unlikely(start + span - period >= mod + wrap)) {
1650 		ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n",
1651 				urb, start, span - period, mod + wrap);
1652 		status = -EFBIG;
1653 		goto fail;
1654 	}
1655 
1656 	start += base;
1657 	stream->next_uframe = (start + skip) & (mod - 1);
1658 
1659 	/* report high speed start in uframes; full speed, in frames */
1660 	urb->start_frame = start & (mod - 1);
1661 	if (!stream->highspeed)
1662 		urb->start_frame >>= 3;
1663 	return status;
1664 
1665  fail:
1666 	iso_sched_free(stream, sched);
1667 	urb->hcpriv = NULL;
1668 	return status;
1669 }
1670 
1671 /*-------------------------------------------------------------------------*/
1672 
1673 static inline void
1674 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1675 		struct ehci_itd *itd)
1676 {
1677 	int i;
1678 
1679 	/* it's been recently zeroed */
1680 	itd->hw_next = EHCI_LIST_END(ehci);
1681 	itd->hw_bufp[0] = stream->buf0;
1682 	itd->hw_bufp[1] = stream->buf1;
1683 	itd->hw_bufp[2] = stream->buf2;
1684 
1685 	for (i = 0; i < 8; i++)
1686 		itd->index[i] = -1;
1687 
1688 	/* All other fields are filled when scheduling */
1689 }
1690 
1691 static inline void
1692 itd_patch(
1693 	struct ehci_hcd		*ehci,
1694 	struct ehci_itd		*itd,
1695 	struct ehci_iso_sched	*iso_sched,
1696 	unsigned		index,
1697 	u16			uframe
1698 )
1699 {
1700 	struct ehci_iso_packet	*uf = &iso_sched->packet[index];
1701 	unsigned		pg = itd->pg;
1702 
1703 	/* BUG_ON(pg == 6 && uf->cross); */
1704 
1705 	uframe &= 0x07;
1706 	itd->index[uframe] = index;
1707 
1708 	itd->hw_transaction[uframe] = uf->transaction;
1709 	itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1710 	itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1711 	itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1712 
1713 	/* iso_frame_desc[].offset must be strictly increasing */
1714 	if (unlikely(uf->cross)) {
1715 		u64	bufp = uf->bufp + 4096;
1716 
1717 		itd->pg = ++pg;
1718 		itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1719 		itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1720 	}
1721 }
1722 
1723 static inline void
1724 itd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1725 {
1726 	union ehci_shadow	*prev = &ehci->pshadow[frame];
1727 	__hc32			*hw_p = &ehci->periodic[frame];
1728 	union ehci_shadow	here = *prev;
1729 	__hc32			type = 0;
1730 
1731 	/* skip any iso nodes which might belong to previous microframes */
1732 	while (here.ptr) {
1733 		type = Q_NEXT_TYPE(ehci, *hw_p);
1734 		if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1735 			break;
1736 		prev = periodic_next_shadow(ehci, prev, type);
1737 		hw_p = shadow_next_periodic(ehci, &here, type);
1738 		here = *prev;
1739 	}
1740 
1741 	itd->itd_next = here;
1742 	itd->hw_next = *hw_p;
1743 	prev->itd = itd;
1744 	itd->frame = frame;
1745 	wmb();
1746 	*hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1747 }
1748 
1749 /* fit urb's itds into the selected schedule slot; activate as needed */
1750 static void itd_link_urb(
1751 	struct ehci_hcd		*ehci,
1752 	struct urb		*urb,
1753 	unsigned		mod,
1754 	struct ehci_iso_stream	*stream
1755 )
1756 {
1757 	int			packet;
1758 	unsigned		next_uframe, uframe, frame;
1759 	struct ehci_iso_sched	*iso_sched = urb->hcpriv;
1760 	struct ehci_itd		*itd;
1761 
1762 	next_uframe = stream->next_uframe & (mod - 1);
1763 
1764 	if (unlikely(list_empty(&stream->td_list)))
1765 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1766 				+= stream->bandwidth;
1767 
1768 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1769 		if (ehci->amd_pll_fix == 1)
1770 			usb_amd_quirk_pll_disable();
1771 	}
1772 
1773 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1774 
1775 	/* fill iTDs uframe by uframe */
1776 	for (packet = iso_sched->first_packet, itd = NULL;
1777 			packet < urb->number_of_packets;) {
1778 		if (itd == NULL) {
1779 			/* ASSERT:  we have all necessary itds */
1780 			/* BUG_ON(list_empty(&iso_sched->td_list)); */
1781 
1782 			/* ASSERT:  no itds for this endpoint in this uframe */
1783 
1784 			itd = list_entry(iso_sched->td_list.next,
1785 					struct ehci_itd, itd_list);
1786 			list_move_tail(&itd->itd_list, &stream->td_list);
1787 			itd->stream = stream;
1788 			itd->urb = urb;
1789 			itd_init(ehci, stream, itd);
1790 		}
1791 
1792 		uframe = next_uframe & 0x07;
1793 		frame = next_uframe >> 3;
1794 
1795 		itd_patch(ehci, itd, iso_sched, packet, uframe);
1796 
1797 		next_uframe += stream->uperiod;
1798 		next_uframe &= mod - 1;
1799 		packet++;
1800 
1801 		/* link completed itds into the schedule */
1802 		if (((next_uframe >> 3) != frame)
1803 				|| packet == urb->number_of_packets) {
1804 			itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1805 			itd = NULL;
1806 		}
1807 	}
1808 	stream->next_uframe = next_uframe;
1809 
1810 	/* don't need that schedule data any more */
1811 	iso_sched_free(stream, iso_sched);
1812 	urb->hcpriv = stream;
1813 
1814 	++ehci->isoc_count;
1815 	enable_periodic(ehci);
1816 }
1817 
1818 #define	ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1819 
1820 /* Process and recycle a completed ITD.  Return true iff its urb completed,
1821  * and hence its completion callback probably added things to the hardware
1822  * schedule.
1823  *
1824  * Note that we carefully avoid recycling this descriptor until after any
1825  * completion callback runs, so that it won't be reused quickly.  That is,
1826  * assuming (a) no more than two urbs per frame on this endpoint, and also
1827  * (b) only this endpoint's completions submit URBs.  It seems some silicon
1828  * corrupts things if you reuse completed descriptors very quickly...
1829  */
1830 static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd)
1831 {
1832 	struct urb				*urb = itd->urb;
1833 	struct usb_iso_packet_descriptor	*desc;
1834 	u32					t;
1835 	unsigned				uframe;
1836 	int					urb_index = -1;
1837 	struct ehci_iso_stream			*stream = itd->stream;
1838 	bool					retval = false;
1839 
1840 	/* for each uframe with a packet */
1841 	for (uframe = 0; uframe < 8; uframe++) {
1842 		if (likely(itd->index[uframe] == -1))
1843 			continue;
1844 		urb_index = itd->index[uframe];
1845 		desc = &urb->iso_frame_desc[urb_index];
1846 
1847 		t = hc32_to_cpup(ehci, &itd->hw_transaction[uframe]);
1848 		itd->hw_transaction[uframe] = 0;
1849 
1850 		/* report transfer status */
1851 		if (unlikely(t & ISO_ERRS)) {
1852 			urb->error_count++;
1853 			if (t & EHCI_ISOC_BUF_ERR)
1854 				desc->status = usb_pipein(urb->pipe)
1855 					? -ENOSR  /* hc couldn't read */
1856 					: -ECOMM; /* hc couldn't write */
1857 			else if (t & EHCI_ISOC_BABBLE)
1858 				desc->status = -EOVERFLOW;
1859 			else /* (t & EHCI_ISOC_XACTERR) */
1860 				desc->status = -EPROTO;
1861 
1862 			/* HC need not update length with this error */
1863 			if (!(t & EHCI_ISOC_BABBLE)) {
1864 				desc->actual_length = EHCI_ITD_LENGTH(t);
1865 				urb->actual_length += desc->actual_length;
1866 			}
1867 		} else if (likely((t & EHCI_ISOC_ACTIVE) == 0)) {
1868 			desc->status = 0;
1869 			desc->actual_length = EHCI_ITD_LENGTH(t);
1870 			urb->actual_length += desc->actual_length;
1871 		} else {
1872 			/* URB was too late */
1873 			urb->error_count++;
1874 		}
1875 	}
1876 
1877 	/* handle completion now? */
1878 	if (likely((urb_index + 1) != urb->number_of_packets))
1879 		goto done;
1880 
1881 	/*
1882 	 * ASSERT: it's really the last itd for this urb
1883 	 * list_for_each_entry (itd, &stream->td_list, itd_list)
1884 	 *	 BUG_ON(itd->urb == urb);
1885 	 */
1886 
1887 	/* give urb back to the driver; completion often (re)submits */
1888 	ehci_urb_done(ehci, urb, 0);
1889 	retval = true;
1890 	urb = NULL;
1891 
1892 	--ehci->isoc_count;
1893 	disable_periodic(ehci);
1894 
1895 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1896 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1897 		if (ehci->amd_pll_fix == 1)
1898 			usb_amd_quirk_pll_enable();
1899 	}
1900 
1901 	if (unlikely(list_is_singular(&stream->td_list)))
1902 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1903 				-= stream->bandwidth;
1904 
1905 done:
1906 	itd->urb = NULL;
1907 
1908 	/* Add to the end of the free list for later reuse */
1909 	list_move_tail(&itd->itd_list, &stream->free_list);
1910 
1911 	/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
1912 	if (list_empty(&stream->td_list)) {
1913 		list_splice_tail_init(&stream->free_list,
1914 				&ehci->cached_itd_list);
1915 		start_free_itds(ehci);
1916 	}
1917 
1918 	return retval;
1919 }
1920 
1921 /*-------------------------------------------------------------------------*/
1922 
1923 static int itd_submit(struct ehci_hcd *ehci, struct urb *urb,
1924 	gfp_t mem_flags)
1925 {
1926 	int			status = -EINVAL;
1927 	unsigned long		flags;
1928 	struct ehci_iso_stream	*stream;
1929 
1930 	/* Get iso_stream head */
1931 	stream = iso_stream_find(ehci, urb);
1932 	if (unlikely(stream == NULL)) {
1933 		ehci_dbg(ehci, "can't get iso stream\n");
1934 		return -ENOMEM;
1935 	}
1936 	if (unlikely(urb->interval != stream->uperiod)) {
1937 		ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
1938 			stream->uperiod, urb->interval);
1939 		goto done;
1940 	}
1941 
1942 #ifdef EHCI_URB_TRACE
1943 	ehci_dbg(ehci,
1944 		"%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1945 		__func__, urb->dev->devpath, urb,
1946 		usb_pipeendpoint(urb->pipe),
1947 		usb_pipein(urb->pipe) ? "in" : "out",
1948 		urb->transfer_buffer_length,
1949 		urb->number_of_packets, urb->interval,
1950 		stream);
1951 #endif
1952 
1953 	/* allocate ITDs w/o locking anything */
1954 	status = itd_urb_transaction(stream, ehci, urb, mem_flags);
1955 	if (unlikely(status < 0)) {
1956 		ehci_dbg(ehci, "can't init itds\n");
1957 		goto done;
1958 	}
1959 
1960 	/* schedule ... need to lock */
1961 	spin_lock_irqsave(&ehci->lock, flags);
1962 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1963 		status = -ESHUTDOWN;
1964 		goto done_not_linked;
1965 	}
1966 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1967 	if (unlikely(status))
1968 		goto done_not_linked;
1969 	status = iso_stream_schedule(ehci, urb, stream);
1970 	if (likely(status == 0)) {
1971 		itd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
1972 	} else if (status > 0) {
1973 		status = 0;
1974 		ehci_urb_done(ehci, urb, 0);
1975 	} else {
1976 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1977 	}
1978  done_not_linked:
1979 	spin_unlock_irqrestore(&ehci->lock, flags);
1980  done:
1981 	return status;
1982 }
1983 
1984 /*-------------------------------------------------------------------------*/
1985 
1986 /*
1987  * "Split ISO TDs" ... used for USB 1.1 devices going through the
1988  * TTs in USB 2.0 hubs.  These need microframe scheduling.
1989  */
1990 
1991 static inline void
1992 sitd_sched_init(
1993 	struct ehci_hcd		*ehci,
1994 	struct ehci_iso_sched	*iso_sched,
1995 	struct ehci_iso_stream	*stream,
1996 	struct urb		*urb
1997 )
1998 {
1999 	unsigned	i;
2000 	dma_addr_t	dma = urb->transfer_dma;
2001 
2002 	/* how many frames are needed for these transfers */
2003 	iso_sched->span = urb->number_of_packets * stream->ps.period;
2004 
2005 	/* figure out per-frame sitd fields that we'll need later
2006 	 * when we fit new sitds into the schedule.
2007 	 */
2008 	for (i = 0; i < urb->number_of_packets; i++) {
2009 		struct ehci_iso_packet	*packet = &iso_sched->packet[i];
2010 		unsigned		length;
2011 		dma_addr_t		buf;
2012 		u32			trans;
2013 
2014 		length = urb->iso_frame_desc[i].length & 0x03ff;
2015 		buf = dma + urb->iso_frame_desc[i].offset;
2016 
2017 		trans = SITD_STS_ACTIVE;
2018 		if (((i + 1) == urb->number_of_packets)
2019 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
2020 			trans |= SITD_IOC;
2021 		trans |= length << 16;
2022 		packet->transaction = cpu_to_hc32(ehci, trans);
2023 
2024 		/* might need to cross a buffer page within a td */
2025 		packet->bufp = buf;
2026 		packet->buf1 = (buf + length) & ~0x0fff;
2027 		if (packet->buf1 != (buf & ~(u64)0x0fff))
2028 			packet->cross = 1;
2029 
2030 		/* OUT uses multiple start-splits */
2031 		if (stream->bEndpointAddress & USB_DIR_IN)
2032 			continue;
2033 		length = (length + 187) / 188;
2034 		if (length > 1) /* BEGIN vs ALL */
2035 			length |= 1 << 3;
2036 		packet->buf1 |= length;
2037 	}
2038 }
2039 
2040 static int
2041 sitd_urb_transaction(
2042 	struct ehci_iso_stream	*stream,
2043 	struct ehci_hcd		*ehci,
2044 	struct urb		*urb,
2045 	gfp_t			mem_flags
2046 )
2047 {
2048 	struct ehci_sitd	*sitd;
2049 	dma_addr_t		sitd_dma;
2050 	int			i;
2051 	struct ehci_iso_sched	*iso_sched;
2052 	unsigned long		flags;
2053 
2054 	iso_sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
2055 	if (iso_sched == NULL)
2056 		return -ENOMEM;
2057 
2058 	sitd_sched_init(ehci, iso_sched, stream, urb);
2059 
2060 	/* allocate/init sITDs */
2061 	spin_lock_irqsave(&ehci->lock, flags);
2062 	for (i = 0; i < urb->number_of_packets; i++) {
2063 
2064 		/* NOTE:  for now, we don't try to handle wraparound cases
2065 		 * for IN (using sitd->hw_backpointer, like a FSTN), which
2066 		 * means we never need two sitds for full speed packets.
2067 		 */
2068 
2069 		/*
2070 		 * Use siTDs from the free list, but not siTDs that may
2071 		 * still be in use by the hardware.
2072 		 */
2073 		if (likely(!list_empty(&stream->free_list))) {
2074 			sitd = list_first_entry(&stream->free_list,
2075 					 struct ehci_sitd, sitd_list);
2076 			if (sitd->frame == ehci->now_frame)
2077 				goto alloc_sitd;
2078 			list_del(&sitd->sitd_list);
2079 			sitd_dma = sitd->sitd_dma;
2080 		} else {
2081  alloc_sitd:
2082 			spin_unlock_irqrestore(&ehci->lock, flags);
2083 			sitd = dma_pool_alloc(ehci->sitd_pool, mem_flags,
2084 					&sitd_dma);
2085 			spin_lock_irqsave(&ehci->lock, flags);
2086 			if (!sitd) {
2087 				iso_sched_free(stream, iso_sched);
2088 				spin_unlock_irqrestore(&ehci->lock, flags);
2089 				return -ENOMEM;
2090 			}
2091 		}
2092 
2093 		memset(sitd, 0, sizeof(*sitd));
2094 		sitd->sitd_dma = sitd_dma;
2095 		sitd->frame = NO_FRAME;
2096 		list_add(&sitd->sitd_list, &iso_sched->td_list);
2097 	}
2098 
2099 	/* temporarily store schedule info in hcpriv */
2100 	urb->hcpriv = iso_sched;
2101 	urb->error_count = 0;
2102 
2103 	spin_unlock_irqrestore(&ehci->lock, flags);
2104 	return 0;
2105 }
2106 
2107 /*-------------------------------------------------------------------------*/
2108 
2109 static inline void
2110 sitd_patch(
2111 	struct ehci_hcd		*ehci,
2112 	struct ehci_iso_stream	*stream,
2113 	struct ehci_sitd	*sitd,
2114 	struct ehci_iso_sched	*iso_sched,
2115 	unsigned		index
2116 )
2117 {
2118 	struct ehci_iso_packet	*uf = &iso_sched->packet[index];
2119 	u64			bufp;
2120 
2121 	sitd->hw_next = EHCI_LIST_END(ehci);
2122 	sitd->hw_fullspeed_ep = stream->address;
2123 	sitd->hw_uframe = stream->splits;
2124 	sitd->hw_results = uf->transaction;
2125 	sitd->hw_backpointer = EHCI_LIST_END(ehci);
2126 
2127 	bufp = uf->bufp;
2128 	sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
2129 	sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
2130 
2131 	sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
2132 	if (uf->cross)
2133 		bufp += 4096;
2134 	sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
2135 	sitd->index = index;
2136 }
2137 
2138 static inline void
2139 sitd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
2140 {
2141 	/* note: sitd ordering could matter (CSPLIT then SSPLIT) */
2142 	sitd->sitd_next = ehci->pshadow[frame];
2143 	sitd->hw_next = ehci->periodic[frame];
2144 	ehci->pshadow[frame].sitd = sitd;
2145 	sitd->frame = frame;
2146 	wmb();
2147 	ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
2148 }
2149 
2150 /* fit urb's sitds into the selected schedule slot; activate as needed */
2151 static void sitd_link_urb(
2152 	struct ehci_hcd		*ehci,
2153 	struct urb		*urb,
2154 	unsigned		mod,
2155 	struct ehci_iso_stream	*stream
2156 )
2157 {
2158 	int			packet;
2159 	unsigned		next_uframe;
2160 	struct ehci_iso_sched	*sched = urb->hcpriv;
2161 	struct ehci_sitd	*sitd;
2162 
2163 	next_uframe = stream->next_uframe;
2164 
2165 	if (list_empty(&stream->td_list))
2166 		/* usbfs ignores TT bandwidth */
2167 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2168 				+= stream->bandwidth;
2169 
2170 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2171 		if (ehci->amd_pll_fix == 1)
2172 			usb_amd_quirk_pll_disable();
2173 	}
2174 
2175 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2176 
2177 	/* fill sITDs frame by frame */
2178 	for (packet = sched->first_packet, sitd = NULL;
2179 			packet < urb->number_of_packets;
2180 			packet++) {
2181 
2182 		/* ASSERT:  we have all necessary sitds */
2183 		BUG_ON(list_empty(&sched->td_list));
2184 
2185 		/* ASSERT:  no itds for this endpoint in this frame */
2186 
2187 		sitd = list_entry(sched->td_list.next,
2188 				struct ehci_sitd, sitd_list);
2189 		list_move_tail(&sitd->sitd_list, &stream->td_list);
2190 		sitd->stream = stream;
2191 		sitd->urb = urb;
2192 
2193 		sitd_patch(ehci, stream, sitd, sched, packet);
2194 		sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2195 				sitd);
2196 
2197 		next_uframe += stream->uperiod;
2198 	}
2199 	stream->next_uframe = next_uframe & (mod - 1);
2200 
2201 	/* don't need that schedule data any more */
2202 	iso_sched_free(stream, sched);
2203 	urb->hcpriv = stream;
2204 
2205 	++ehci->isoc_count;
2206 	enable_periodic(ehci);
2207 }
2208 
2209 /*-------------------------------------------------------------------------*/
2210 
2211 #define	SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2212 				| SITD_STS_XACT | SITD_STS_MMF)
2213 
2214 /* Process and recycle a completed SITD.  Return true iff its urb completed,
2215  * and hence its completion callback probably added things to the hardware
2216  * schedule.
2217  *
2218  * Note that we carefully avoid recycling this descriptor until after any
2219  * completion callback runs, so that it won't be reused quickly.  That is,
2220  * assuming (a) no more than two urbs per frame on this endpoint, and also
2221  * (b) only this endpoint's completions submit URBs.  It seems some silicon
2222  * corrupts things if you reuse completed descriptors very quickly...
2223  */
2224 static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd)
2225 {
2226 	struct urb				*urb = sitd->urb;
2227 	struct usb_iso_packet_descriptor	*desc;
2228 	u32					t;
2229 	int					urb_index;
2230 	struct ehci_iso_stream			*stream = sitd->stream;
2231 	bool					retval = false;
2232 
2233 	urb_index = sitd->index;
2234 	desc = &urb->iso_frame_desc[urb_index];
2235 	t = hc32_to_cpup(ehci, &sitd->hw_results);
2236 
2237 	/* report transfer status */
2238 	if (unlikely(t & SITD_ERRS)) {
2239 		urb->error_count++;
2240 		if (t & SITD_STS_DBE)
2241 			desc->status = usb_pipein(urb->pipe)
2242 				? -ENOSR  /* hc couldn't read */
2243 				: -ECOMM; /* hc couldn't write */
2244 		else if (t & SITD_STS_BABBLE)
2245 			desc->status = -EOVERFLOW;
2246 		else /* XACT, MMF, etc */
2247 			desc->status = -EPROTO;
2248 	} else if (unlikely(t & SITD_STS_ACTIVE)) {
2249 		/* URB was too late */
2250 		urb->error_count++;
2251 	} else {
2252 		desc->status = 0;
2253 		desc->actual_length = desc->length - SITD_LENGTH(t);
2254 		urb->actual_length += desc->actual_length;
2255 	}
2256 
2257 	/* handle completion now? */
2258 	if ((urb_index + 1) != urb->number_of_packets)
2259 		goto done;
2260 
2261 	/*
2262 	 * ASSERT: it's really the last sitd for this urb
2263 	 * list_for_each_entry (sitd, &stream->td_list, sitd_list)
2264 	 *	 BUG_ON(sitd->urb == urb);
2265 	 */
2266 
2267 	/* give urb back to the driver; completion often (re)submits */
2268 	ehci_urb_done(ehci, urb, 0);
2269 	retval = true;
2270 	urb = NULL;
2271 
2272 	--ehci->isoc_count;
2273 	disable_periodic(ehci);
2274 
2275 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2276 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2277 		if (ehci->amd_pll_fix == 1)
2278 			usb_amd_quirk_pll_enable();
2279 	}
2280 
2281 	if (list_is_singular(&stream->td_list))
2282 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2283 				-= stream->bandwidth;
2284 
2285 done:
2286 	sitd->urb = NULL;
2287 
2288 	/* Add to the end of the free list for later reuse */
2289 	list_move_tail(&sitd->sitd_list, &stream->free_list);
2290 
2291 	/* Recycle the siTDs when the pipeline is empty (ep no longer in use) */
2292 	if (list_empty(&stream->td_list)) {
2293 		list_splice_tail_init(&stream->free_list,
2294 				&ehci->cached_sitd_list);
2295 		start_free_itds(ehci);
2296 	}
2297 
2298 	return retval;
2299 }
2300 
2301 
2302 static int sitd_submit(struct ehci_hcd *ehci, struct urb *urb,
2303 	gfp_t mem_flags)
2304 {
2305 	int			status = -EINVAL;
2306 	unsigned long		flags;
2307 	struct ehci_iso_stream	*stream;
2308 
2309 	/* Get iso_stream head */
2310 	stream = iso_stream_find(ehci, urb);
2311 	if (stream == NULL) {
2312 		ehci_dbg(ehci, "can't get iso stream\n");
2313 		return -ENOMEM;
2314 	}
2315 	if (urb->interval != stream->ps.period) {
2316 		ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
2317 			stream->ps.period, urb->interval);
2318 		goto done;
2319 	}
2320 
2321 #ifdef EHCI_URB_TRACE
2322 	ehci_dbg(ehci,
2323 		"submit %p dev%s ep%d%s-iso len %d\n",
2324 		urb, urb->dev->devpath,
2325 		usb_pipeendpoint(urb->pipe),
2326 		usb_pipein(urb->pipe) ? "in" : "out",
2327 		urb->transfer_buffer_length);
2328 #endif
2329 
2330 	/* allocate SITDs */
2331 	status = sitd_urb_transaction(stream, ehci, urb, mem_flags);
2332 	if (status < 0) {
2333 		ehci_dbg(ehci, "can't init sitds\n");
2334 		goto done;
2335 	}
2336 
2337 	/* schedule ... need to lock */
2338 	spin_lock_irqsave(&ehci->lock, flags);
2339 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2340 		status = -ESHUTDOWN;
2341 		goto done_not_linked;
2342 	}
2343 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2344 	if (unlikely(status))
2345 		goto done_not_linked;
2346 	status = iso_stream_schedule(ehci, urb, stream);
2347 	if (likely(status == 0)) {
2348 		sitd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
2349 	} else if (status > 0) {
2350 		status = 0;
2351 		ehci_urb_done(ehci, urb, 0);
2352 	} else {
2353 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2354 	}
2355  done_not_linked:
2356 	spin_unlock_irqrestore(&ehci->lock, flags);
2357  done:
2358 	return status;
2359 }
2360 
2361 /*-------------------------------------------------------------------------*/
2362 
2363 static void scan_isoc(struct ehci_hcd *ehci)
2364 {
2365 	unsigned		uf, now_frame, frame;
2366 	unsigned		fmask = ehci->periodic_size - 1;
2367 	bool			modified, live;
2368 	union ehci_shadow	q, *q_p;
2369 	__hc32			type, *hw_p;
2370 
2371 	/*
2372 	 * When running, scan from last scan point up to "now"
2373 	 * else clean up by scanning everything that's left.
2374 	 * Touches as few pages as possible:  cache-friendly.
2375 	 */
2376 	if (ehci->rh_state >= EHCI_RH_RUNNING) {
2377 		uf = ehci_read_frame_index(ehci);
2378 		now_frame = (uf >> 3) & fmask;
2379 		live = true;
2380 	} else  {
2381 		now_frame = (ehci->last_iso_frame - 1) & fmask;
2382 		live = false;
2383 	}
2384 	ehci->now_frame = now_frame;
2385 
2386 	frame = ehci->last_iso_frame;
2387 
2388 restart:
2389 	/* Scan each element in frame's queue for completions */
2390 	q_p = &ehci->pshadow[frame];
2391 	hw_p = &ehci->periodic[frame];
2392 	q.ptr = q_p->ptr;
2393 	type = Q_NEXT_TYPE(ehci, *hw_p);
2394 	modified = false;
2395 
2396 	while (q.ptr != NULL) {
2397 		switch (hc32_to_cpu(ehci, type)) {
2398 		case Q_TYPE_ITD:
2399 			/*
2400 			 * If this ITD is still active, leave it for
2401 			 * later processing ... check the next entry.
2402 			 * No need to check for activity unless the
2403 			 * frame is current.
2404 			 */
2405 			if (frame == now_frame && live) {
2406 				rmb();
2407 				for (uf = 0; uf < 8; uf++) {
2408 					if (q.itd->hw_transaction[uf] &
2409 							ITD_ACTIVE(ehci))
2410 						break;
2411 				}
2412 				if (uf < 8) {
2413 					q_p = &q.itd->itd_next;
2414 					hw_p = &q.itd->hw_next;
2415 					type = Q_NEXT_TYPE(ehci,
2416 							q.itd->hw_next);
2417 					q = *q_p;
2418 					break;
2419 				}
2420 			}
2421 
2422 			/*
2423 			 * Take finished ITDs out of the schedule
2424 			 * and process them:  recycle, maybe report
2425 			 * URB completion.  HC won't cache the
2426 			 * pointer for much longer, if at all.
2427 			 */
2428 			*q_p = q.itd->itd_next;
2429 			if (!ehci->use_dummy_qh ||
2430 					q.itd->hw_next != EHCI_LIST_END(ehci))
2431 				*hw_p = q.itd->hw_next;
2432 			else
2433 				*hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
2434 			type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2435 			wmb();
2436 			modified = itd_complete(ehci, q.itd);
2437 			q = *q_p;
2438 			break;
2439 		case Q_TYPE_SITD:
2440 			/*
2441 			 * If this SITD is still active, leave it for
2442 			 * later processing ... check the next entry.
2443 			 * No need to check for activity unless the
2444 			 * frame is current.
2445 			 */
2446 			if (((frame == now_frame) ||
2447 					(((frame + 1) & fmask) == now_frame))
2448 				&& live
2449 				&& (q.sitd->hw_results & SITD_ACTIVE(ehci))) {
2450 
2451 				q_p = &q.sitd->sitd_next;
2452 				hw_p = &q.sitd->hw_next;
2453 				type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2454 				q = *q_p;
2455 				break;
2456 			}
2457 
2458 			/*
2459 			 * Take finished SITDs out of the schedule
2460 			 * and process them:  recycle, maybe report
2461 			 * URB completion.
2462 			 */
2463 			*q_p = q.sitd->sitd_next;
2464 			if (!ehci->use_dummy_qh ||
2465 					q.sitd->hw_next != EHCI_LIST_END(ehci))
2466 				*hw_p = q.sitd->hw_next;
2467 			else
2468 				*hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
2469 			type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2470 			wmb();
2471 			modified = sitd_complete(ehci, q.sitd);
2472 			q = *q_p;
2473 			break;
2474 		default:
2475 			ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n",
2476 					type, frame, q.ptr);
2477 			/* BUG(); */
2478 			/* FALL THROUGH */
2479 		case Q_TYPE_QH:
2480 		case Q_TYPE_FSTN:
2481 			/* End of the iTDs and siTDs */
2482 			q.ptr = NULL;
2483 			break;
2484 		}
2485 
2486 		/* Assume completion callbacks modify the queue */
2487 		if (unlikely(modified && ehci->isoc_count > 0))
2488 			goto restart;
2489 	}
2490 
2491 	/* Stop when we have reached the current frame */
2492 	if (frame == now_frame)
2493 		return;
2494 
2495 	/* The last frame may still have active siTDs */
2496 	ehci->last_iso_frame = frame;
2497 	frame = (frame + 1) & fmask;
2498 
2499 	goto restart;
2500 }
2501