1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (c) 2001-2004 by David Brownell 4 * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers 5 */ 6 7 /* this file is part of ehci-hcd.c */ 8 9 /*-------------------------------------------------------------------------*/ 10 11 /* 12 * EHCI scheduled transaction support: interrupt, iso, split iso 13 * These are called "periodic" transactions in the EHCI spec. 14 * 15 * Note that for interrupt transfers, the QH/QTD manipulation is shared 16 * with the "asynchronous" transaction support (control/bulk transfers). 17 * The only real difference is in how interrupt transfers are scheduled. 18 * 19 * For ISO, we make an "iso_stream" head to serve the same role as a QH. 20 * It keeps track of every ITD (or SITD) that's linked, and holds enough 21 * pre-calculated schedule data to make appending to the queue be quick. 22 */ 23 24 static int ehci_get_frame(struct usb_hcd *hcd); 25 26 /* 27 * periodic_next_shadow - return "next" pointer on shadow list 28 * @periodic: host pointer to qh/itd/sitd 29 * @tag: hardware tag for type of this record 30 */ 31 static union ehci_shadow * 32 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic, 33 __hc32 tag) 34 { 35 switch (hc32_to_cpu(ehci, tag)) { 36 case Q_TYPE_QH: 37 return &periodic->qh->qh_next; 38 case Q_TYPE_FSTN: 39 return &periodic->fstn->fstn_next; 40 case Q_TYPE_ITD: 41 return &periodic->itd->itd_next; 42 /* case Q_TYPE_SITD: */ 43 default: 44 return &periodic->sitd->sitd_next; 45 } 46 } 47 48 static __hc32 * 49 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic, 50 __hc32 tag) 51 { 52 switch (hc32_to_cpu(ehci, tag)) { 53 /* our ehci_shadow.qh is actually software part */ 54 case Q_TYPE_QH: 55 return &periodic->qh->hw->hw_next; 56 /* others are hw parts */ 57 default: 58 return periodic->hw_next; 59 } 60 } 61 62 /* caller must hold ehci->lock */ 63 static void periodic_unlink(struct ehci_hcd *ehci, unsigned frame, void *ptr) 64 { 65 union ehci_shadow *prev_p = &ehci->pshadow[frame]; 66 __hc32 *hw_p = &ehci->periodic[frame]; 67 union ehci_shadow here = *prev_p; 68 69 /* find predecessor of "ptr"; hw and shadow lists are in sync */ 70 while (here.ptr && here.ptr != ptr) { 71 prev_p = periodic_next_shadow(ehci, prev_p, 72 Q_NEXT_TYPE(ehci, *hw_p)); 73 hw_p = shadow_next_periodic(ehci, &here, 74 Q_NEXT_TYPE(ehci, *hw_p)); 75 here = *prev_p; 76 } 77 /* an interrupt entry (at list end) could have been shared */ 78 if (!here.ptr) 79 return; 80 81 /* update shadow and hardware lists ... the old "next" pointers 82 * from ptr may still be in use, the caller updates them. 83 */ 84 *prev_p = *periodic_next_shadow(ehci, &here, 85 Q_NEXT_TYPE(ehci, *hw_p)); 86 87 if (!ehci->use_dummy_qh || 88 *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p)) 89 != EHCI_LIST_END(ehci)) 90 *hw_p = *shadow_next_periodic(ehci, &here, 91 Q_NEXT_TYPE(ehci, *hw_p)); 92 else 93 *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma); 94 } 95 96 /*-------------------------------------------------------------------------*/ 97 98 /* Bandwidth and TT management */ 99 100 /* Find the TT data structure for this device; create it if necessary */ 101 static struct ehci_tt *find_tt(struct usb_device *udev) 102 { 103 struct usb_tt *utt = udev->tt; 104 struct ehci_tt *tt, **tt_index, **ptt; 105 unsigned port; 106 bool allocated_index = false; 107 108 if (!utt) 109 return NULL; /* Not below a TT */ 110 111 /* 112 * Find/create our data structure. 113 * For hubs with a single TT, we get it directly. 114 * For hubs with multiple TTs, there's an extra level of pointers. 115 */ 116 tt_index = NULL; 117 if (utt->multi) { 118 tt_index = utt->hcpriv; 119 if (!tt_index) { /* Create the index array */ 120 tt_index = kcalloc(utt->hub->maxchild, 121 sizeof(*tt_index), 122 GFP_ATOMIC); 123 if (!tt_index) 124 return ERR_PTR(-ENOMEM); 125 utt->hcpriv = tt_index; 126 allocated_index = true; 127 } 128 port = udev->ttport - 1; 129 ptt = &tt_index[port]; 130 } else { 131 port = 0; 132 ptt = (struct ehci_tt **) &utt->hcpriv; 133 } 134 135 tt = *ptt; 136 if (!tt) { /* Create the ehci_tt */ 137 struct ehci_hcd *ehci = 138 hcd_to_ehci(bus_to_hcd(udev->bus)); 139 140 tt = kzalloc(sizeof(*tt), GFP_ATOMIC); 141 if (!tt) { 142 if (allocated_index) { 143 utt->hcpriv = NULL; 144 kfree(tt_index); 145 } 146 return ERR_PTR(-ENOMEM); 147 } 148 list_add_tail(&tt->tt_list, &ehci->tt_list); 149 INIT_LIST_HEAD(&tt->ps_list); 150 tt->usb_tt = utt; 151 tt->tt_port = port; 152 *ptt = tt; 153 } 154 155 return tt; 156 } 157 158 /* Release the TT above udev, if it's not in use */ 159 static void drop_tt(struct usb_device *udev) 160 { 161 struct usb_tt *utt = udev->tt; 162 struct ehci_tt *tt, **tt_index, **ptt; 163 int cnt, i; 164 165 if (!utt || !utt->hcpriv) 166 return; /* Not below a TT, or never allocated */ 167 168 cnt = 0; 169 if (utt->multi) { 170 tt_index = utt->hcpriv; 171 ptt = &tt_index[udev->ttport - 1]; 172 173 /* How many entries are left in tt_index? */ 174 for (i = 0; i < utt->hub->maxchild; ++i) 175 cnt += !!tt_index[i]; 176 } else { 177 tt_index = NULL; 178 ptt = (struct ehci_tt **) &utt->hcpriv; 179 } 180 181 tt = *ptt; 182 if (!tt || !list_empty(&tt->ps_list)) 183 return; /* never allocated, or still in use */ 184 185 list_del(&tt->tt_list); 186 *ptt = NULL; 187 kfree(tt); 188 if (cnt == 1) { 189 utt->hcpriv = NULL; 190 kfree(tt_index); 191 } 192 } 193 194 static void bandwidth_dbg(struct ehci_hcd *ehci, int sign, char *type, 195 struct ehci_per_sched *ps) 196 { 197 dev_dbg(&ps->udev->dev, 198 "ep %02x: %s %s @ %u+%u (%u.%u+%u) [%u/%u us] mask %04x\n", 199 ps->ep->desc.bEndpointAddress, 200 (sign >= 0 ? "reserve" : "release"), type, 201 (ps->bw_phase << 3) + ps->phase_uf, ps->bw_uperiod, 202 ps->phase, ps->phase_uf, ps->period, 203 ps->usecs, ps->c_usecs, ps->cs_mask); 204 } 205 206 static void reserve_release_intr_bandwidth(struct ehci_hcd *ehci, 207 struct ehci_qh *qh, int sign) 208 { 209 unsigned start_uf; 210 unsigned i, j, m; 211 int usecs = qh->ps.usecs; 212 int c_usecs = qh->ps.c_usecs; 213 int tt_usecs = qh->ps.tt_usecs; 214 struct ehci_tt *tt; 215 216 if (qh->ps.phase == NO_FRAME) /* Bandwidth wasn't reserved */ 217 return; 218 start_uf = qh->ps.bw_phase << 3; 219 220 bandwidth_dbg(ehci, sign, "intr", &qh->ps); 221 222 if (sign < 0) { /* Release bandwidth */ 223 usecs = -usecs; 224 c_usecs = -c_usecs; 225 tt_usecs = -tt_usecs; 226 } 227 228 /* Entire transaction (high speed) or start-split (full/low speed) */ 229 for (i = start_uf + qh->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE; 230 i += qh->ps.bw_uperiod) 231 ehci->bandwidth[i] += usecs; 232 233 /* Complete-split (full/low speed) */ 234 if (qh->ps.c_usecs) { 235 /* NOTE: adjustments needed for FSTN */ 236 for (i = start_uf; i < EHCI_BANDWIDTH_SIZE; 237 i += qh->ps.bw_uperiod) { 238 for ((j = 2, m = 1 << (j+8)); j < 8; (++j, m <<= 1)) { 239 if (qh->ps.cs_mask & m) 240 ehci->bandwidth[i+j] += c_usecs; 241 } 242 } 243 } 244 245 /* FS/LS bus bandwidth */ 246 if (tt_usecs) { 247 /* 248 * find_tt() will not return any error here as we have 249 * already called find_tt() before calling this function 250 * and checked for any error return. The previous call 251 * would have created the data structure. 252 */ 253 tt = find_tt(qh->ps.udev); 254 if (sign > 0) 255 list_add_tail(&qh->ps.ps_list, &tt->ps_list); 256 else 257 list_del(&qh->ps.ps_list); 258 259 for (i = start_uf >> 3; i < EHCI_BANDWIDTH_FRAMES; 260 i += qh->ps.bw_period) 261 tt->bandwidth[i] += tt_usecs; 262 } 263 } 264 265 /*-------------------------------------------------------------------------*/ 266 267 static void compute_tt_budget(u8 budget_table[EHCI_BANDWIDTH_SIZE], 268 struct ehci_tt *tt) 269 { 270 struct ehci_per_sched *ps; 271 unsigned uframe, uf, x; 272 u8 *budget_line; 273 274 if (!tt) 275 return; 276 memset(budget_table, 0, EHCI_BANDWIDTH_SIZE); 277 278 /* Add up the contributions from all the endpoints using this TT */ 279 list_for_each_entry(ps, &tt->ps_list, ps_list) { 280 for (uframe = ps->bw_phase << 3; uframe < EHCI_BANDWIDTH_SIZE; 281 uframe += ps->bw_uperiod) { 282 budget_line = &budget_table[uframe]; 283 x = ps->tt_usecs; 284 285 /* propagate the time forward */ 286 for (uf = ps->phase_uf; uf < 8; ++uf) { 287 x += budget_line[uf]; 288 289 /* Each microframe lasts 125 us */ 290 if (x <= 125) { 291 budget_line[uf] = x; 292 break; 293 } 294 budget_line[uf] = 125; 295 x -= 125; 296 } 297 } 298 } 299 } 300 301 static int __maybe_unused same_tt(struct usb_device *dev1, 302 struct usb_device *dev2) 303 { 304 if (!dev1->tt || !dev2->tt) 305 return 0; 306 if (dev1->tt != dev2->tt) 307 return 0; 308 if (dev1->tt->multi) 309 return dev1->ttport == dev2->ttport; 310 else 311 return 1; 312 } 313 314 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED 315 316 static const unsigned char 317 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 }; 318 319 /* carryover low/fullspeed bandwidth that crosses uframe boundries */ 320 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8]) 321 { 322 int i; 323 324 for (i = 0; i < 7; i++) { 325 if (max_tt_usecs[i] < tt_usecs[i]) { 326 tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i]; 327 tt_usecs[i] = max_tt_usecs[i]; 328 } 329 } 330 } 331 332 /* 333 * Return true if the device's tt's downstream bus is available for a 334 * periodic transfer of the specified length (usecs), starting at the 335 * specified frame/uframe. Note that (as summarized in section 11.19 336 * of the usb 2.0 spec) TTs can buffer multiple transactions for each 337 * uframe. 338 * 339 * The uframe parameter is when the fullspeed/lowspeed transfer 340 * should be executed in "B-frame" terms, which is the same as the 341 * highspeed ssplit's uframe (which is in "H-frame" terms). For example 342 * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0. 343 * See the EHCI spec sec 4.5 and fig 4.7. 344 * 345 * This checks if the full/lowspeed bus, at the specified starting uframe, 346 * has the specified bandwidth available, according to rules listed 347 * in USB 2.0 spec section 11.18.1 fig 11-60. 348 * 349 * This does not check if the transfer would exceed the max ssplit 350 * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4, 351 * since proper scheduling limits ssplits to less than 16 per uframe. 352 */ 353 static int tt_available( 354 struct ehci_hcd *ehci, 355 struct ehci_per_sched *ps, 356 struct ehci_tt *tt, 357 unsigned frame, 358 unsigned uframe 359 ) 360 { 361 unsigned period = ps->bw_period; 362 unsigned usecs = ps->tt_usecs; 363 364 if ((period == 0) || (uframe >= 7)) /* error */ 365 return 0; 366 367 for (frame &= period - 1; frame < EHCI_BANDWIDTH_FRAMES; 368 frame += period) { 369 unsigned i, uf; 370 unsigned short tt_usecs[8]; 371 372 if (tt->bandwidth[frame] + usecs > 900) 373 return 0; 374 375 uf = frame << 3; 376 for (i = 0; i < 8; (++i, ++uf)) 377 tt_usecs[i] = ehci->tt_budget[uf]; 378 379 if (max_tt_usecs[uframe] <= tt_usecs[uframe]) 380 return 0; 381 382 /* special case for isoc transfers larger than 125us: 383 * the first and each subsequent fully used uframe 384 * must be empty, so as to not illegally delay 385 * already scheduled transactions 386 */ 387 if (usecs > 125) { 388 int ufs = (usecs / 125); 389 390 for (i = uframe; i < (uframe + ufs) && i < 8; i++) 391 if (tt_usecs[i] > 0) 392 return 0; 393 } 394 395 tt_usecs[uframe] += usecs; 396 397 carryover_tt_bandwidth(tt_usecs); 398 399 /* fail if the carryover pushed bw past the last uframe's limit */ 400 if (max_tt_usecs[7] < tt_usecs[7]) 401 return 0; 402 } 403 404 return 1; 405 } 406 407 #else 408 409 /* return true iff the device's transaction translator is available 410 * for a periodic transfer starting at the specified frame, using 411 * all the uframes in the mask. 412 */ 413 static int tt_no_collision( 414 struct ehci_hcd *ehci, 415 unsigned period, 416 struct usb_device *dev, 417 unsigned frame, 418 u32 uf_mask 419 ) 420 { 421 if (period == 0) /* error */ 422 return 0; 423 424 /* note bandwidth wastage: split never follows csplit 425 * (different dev or endpoint) until the next uframe. 426 * calling convention doesn't make that distinction. 427 */ 428 for (; frame < ehci->periodic_size; frame += period) { 429 union ehci_shadow here; 430 __hc32 type; 431 struct ehci_qh_hw *hw; 432 433 here = ehci->pshadow[frame]; 434 type = Q_NEXT_TYPE(ehci, ehci->periodic[frame]); 435 while (here.ptr) { 436 switch (hc32_to_cpu(ehci, type)) { 437 case Q_TYPE_ITD: 438 type = Q_NEXT_TYPE(ehci, here.itd->hw_next); 439 here = here.itd->itd_next; 440 continue; 441 case Q_TYPE_QH: 442 hw = here.qh->hw; 443 if (same_tt(dev, here.qh->ps.udev)) { 444 u32 mask; 445 446 mask = hc32_to_cpu(ehci, 447 hw->hw_info2); 448 /* "knows" no gap is needed */ 449 mask |= mask >> 8; 450 if (mask & uf_mask) 451 break; 452 } 453 type = Q_NEXT_TYPE(ehci, hw->hw_next); 454 here = here.qh->qh_next; 455 continue; 456 case Q_TYPE_SITD: 457 if (same_tt(dev, here.sitd->urb->dev)) { 458 u16 mask; 459 460 mask = hc32_to_cpu(ehci, here.sitd 461 ->hw_uframe); 462 /* FIXME assumes no gap for IN! */ 463 mask |= mask >> 8; 464 if (mask & uf_mask) 465 break; 466 } 467 type = Q_NEXT_TYPE(ehci, here.sitd->hw_next); 468 here = here.sitd->sitd_next; 469 continue; 470 /* case Q_TYPE_FSTN: */ 471 default: 472 ehci_dbg(ehci, 473 "periodic frame %d bogus type %d\n", 474 frame, type); 475 } 476 477 /* collision or error */ 478 return 0; 479 } 480 } 481 482 /* no collision */ 483 return 1; 484 } 485 486 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */ 487 488 /*-------------------------------------------------------------------------*/ 489 490 static void enable_periodic(struct ehci_hcd *ehci) 491 { 492 if (ehci->periodic_count++) 493 return; 494 495 /* Stop waiting to turn off the periodic schedule */ 496 ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC); 497 498 /* Don't start the schedule until PSS is 0 */ 499 ehci_poll_PSS(ehci); 500 turn_on_io_watchdog(ehci); 501 } 502 503 static void disable_periodic(struct ehci_hcd *ehci) 504 { 505 if (--ehci->periodic_count) 506 return; 507 508 /* Don't turn off the schedule until PSS is 1 */ 509 ehci_poll_PSS(ehci); 510 } 511 512 /*-------------------------------------------------------------------------*/ 513 514 /* periodic schedule slots have iso tds (normal or split) first, then a 515 * sparse tree for active interrupt transfers. 516 * 517 * this just links in a qh; caller guarantees uframe masks are set right. 518 * no FSTN support (yet; ehci 0.96+) 519 */ 520 static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh) 521 { 522 unsigned i; 523 unsigned period = qh->ps.period; 524 525 dev_dbg(&qh->ps.udev->dev, 526 "link qh%d-%04x/%p start %d [%d/%d us]\n", 527 period, hc32_to_cpup(ehci, &qh->hw->hw_info2) 528 & (QH_CMASK | QH_SMASK), 529 qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs); 530 531 /* high bandwidth, or otherwise every microframe */ 532 if (period == 0) 533 period = 1; 534 535 for (i = qh->ps.phase; i < ehci->periodic_size; i += period) { 536 union ehci_shadow *prev = &ehci->pshadow[i]; 537 __hc32 *hw_p = &ehci->periodic[i]; 538 union ehci_shadow here = *prev; 539 __hc32 type = 0; 540 541 /* skip the iso nodes at list head */ 542 while (here.ptr) { 543 type = Q_NEXT_TYPE(ehci, *hw_p); 544 if (type == cpu_to_hc32(ehci, Q_TYPE_QH)) 545 break; 546 prev = periodic_next_shadow(ehci, prev, type); 547 hw_p = shadow_next_periodic(ehci, &here, type); 548 here = *prev; 549 } 550 551 /* sorting each branch by period (slow-->fast) 552 * enables sharing interior tree nodes 553 */ 554 while (here.ptr && qh != here.qh) { 555 if (qh->ps.period > here.qh->ps.period) 556 break; 557 prev = &here.qh->qh_next; 558 hw_p = &here.qh->hw->hw_next; 559 here = *prev; 560 } 561 /* link in this qh, unless some earlier pass did that */ 562 if (qh != here.qh) { 563 qh->qh_next = here; 564 if (here.qh) 565 qh->hw->hw_next = *hw_p; 566 wmb(); 567 prev->qh = qh; 568 *hw_p = QH_NEXT(ehci, qh->qh_dma); 569 } 570 } 571 qh->qh_state = QH_STATE_LINKED; 572 qh->xacterrs = 0; 573 qh->unlink_reason = 0; 574 575 /* update per-qh bandwidth for debugfs */ 576 ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->ps.bw_period 577 ? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period) 578 : (qh->ps.usecs * 8); 579 580 list_add(&qh->intr_node, &ehci->intr_qh_list); 581 582 /* maybe enable periodic schedule processing */ 583 ++ehci->intr_count; 584 enable_periodic(ehci); 585 } 586 587 static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh) 588 { 589 unsigned i; 590 unsigned period; 591 592 /* 593 * If qh is for a low/full-speed device, simply unlinking it 594 * could interfere with an ongoing split transaction. To unlink 595 * it safely would require setting the QH_INACTIVATE bit and 596 * waiting at least one frame, as described in EHCI 4.12.2.5. 597 * 598 * We won't bother with any of this. Instead, we assume that the 599 * only reason for unlinking an interrupt QH while the current URB 600 * is still active is to dequeue all the URBs (flush the whole 601 * endpoint queue). 602 * 603 * If rebalancing the periodic schedule is ever implemented, this 604 * approach will no longer be valid. 605 */ 606 607 /* high bandwidth, or otherwise part of every microframe */ 608 period = qh->ps.period ? : 1; 609 610 for (i = qh->ps.phase; i < ehci->periodic_size; i += period) 611 periodic_unlink(ehci, i, qh); 612 613 /* update per-qh bandwidth for debugfs */ 614 ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->ps.bw_period 615 ? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period) 616 : (qh->ps.usecs * 8); 617 618 dev_dbg(&qh->ps.udev->dev, 619 "unlink qh%d-%04x/%p start %d [%d/%d us]\n", 620 qh->ps.period, 621 hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK), 622 qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs); 623 624 /* qh->qh_next still "live" to HC */ 625 qh->qh_state = QH_STATE_UNLINK; 626 qh->qh_next.ptr = NULL; 627 628 if (ehci->qh_scan_next == qh) 629 ehci->qh_scan_next = list_entry(qh->intr_node.next, 630 struct ehci_qh, intr_node); 631 list_del(&qh->intr_node); 632 } 633 634 static void cancel_unlink_wait_intr(struct ehci_hcd *ehci, struct ehci_qh *qh) 635 { 636 if (qh->qh_state != QH_STATE_LINKED || 637 list_empty(&qh->unlink_node)) 638 return; 639 640 list_del_init(&qh->unlink_node); 641 642 /* 643 * TODO: disable the event of EHCI_HRTIMER_START_UNLINK_INTR for 644 * avoiding unnecessary CPU wakeup 645 */ 646 } 647 648 static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh) 649 { 650 /* If the QH isn't linked then there's nothing we can do. */ 651 if (qh->qh_state != QH_STATE_LINKED) 652 return; 653 654 /* if the qh is waiting for unlink, cancel it now */ 655 cancel_unlink_wait_intr(ehci, qh); 656 657 qh_unlink_periodic(ehci, qh); 658 659 /* Make sure the unlinks are visible before starting the timer */ 660 wmb(); 661 662 /* 663 * The EHCI spec doesn't say how long it takes the controller to 664 * stop accessing an unlinked interrupt QH. The timer delay is 665 * 9 uframes; presumably that will be long enough. 666 */ 667 qh->unlink_cycle = ehci->intr_unlink_cycle; 668 669 /* New entries go at the end of the intr_unlink list */ 670 list_add_tail(&qh->unlink_node, &ehci->intr_unlink); 671 672 if (ehci->intr_unlinking) 673 ; /* Avoid recursive calls */ 674 else if (ehci->rh_state < EHCI_RH_RUNNING) 675 ehci_handle_intr_unlinks(ehci); 676 else if (ehci->intr_unlink.next == &qh->unlink_node) { 677 ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true); 678 ++ehci->intr_unlink_cycle; 679 } 680 } 681 682 /* 683 * It is common only one intr URB is scheduled on one qh, and 684 * given complete() is run in tasklet context, introduce a bit 685 * delay to avoid unlink qh too early. 686 */ 687 static void start_unlink_intr_wait(struct ehci_hcd *ehci, 688 struct ehci_qh *qh) 689 { 690 qh->unlink_cycle = ehci->intr_unlink_wait_cycle; 691 692 /* New entries go at the end of the intr_unlink_wait list */ 693 list_add_tail(&qh->unlink_node, &ehci->intr_unlink_wait); 694 695 if (ehci->rh_state < EHCI_RH_RUNNING) 696 ehci_handle_start_intr_unlinks(ehci); 697 else if (ehci->intr_unlink_wait.next == &qh->unlink_node) { 698 ehci_enable_event(ehci, EHCI_HRTIMER_START_UNLINK_INTR, true); 699 ++ehci->intr_unlink_wait_cycle; 700 } 701 } 702 703 static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh) 704 { 705 struct ehci_qh_hw *hw = qh->hw; 706 int rc; 707 708 qh->qh_state = QH_STATE_IDLE; 709 hw->hw_next = EHCI_LIST_END(ehci); 710 711 if (!list_empty(&qh->qtd_list)) 712 qh_completions(ehci, qh); 713 714 /* reschedule QH iff another request is queued */ 715 if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) { 716 rc = qh_schedule(ehci, qh); 717 if (rc == 0) { 718 qh_refresh(ehci, qh); 719 qh_link_periodic(ehci, qh); 720 } 721 722 /* An error here likely indicates handshake failure 723 * or no space left in the schedule. Neither fault 724 * should happen often ... 725 * 726 * FIXME kill the now-dysfunctional queued urbs 727 */ 728 else { 729 ehci_err(ehci, "can't reschedule qh %p, err %d\n", 730 qh, rc); 731 } 732 } 733 734 /* maybe turn off periodic schedule */ 735 --ehci->intr_count; 736 disable_periodic(ehci); 737 } 738 739 /*-------------------------------------------------------------------------*/ 740 741 static int check_period( 742 struct ehci_hcd *ehci, 743 unsigned frame, 744 unsigned uframe, 745 unsigned uperiod, 746 unsigned usecs 747 ) { 748 /* complete split running into next frame? 749 * given FSTN support, we could sometimes check... 750 */ 751 if (uframe >= 8) 752 return 0; 753 754 /* convert "usecs we need" to "max already claimed" */ 755 usecs = ehci->uframe_periodic_max - usecs; 756 757 for (uframe += frame << 3; uframe < EHCI_BANDWIDTH_SIZE; 758 uframe += uperiod) { 759 if (ehci->bandwidth[uframe] > usecs) 760 return 0; 761 } 762 763 /* success! */ 764 return 1; 765 } 766 767 static int check_intr_schedule( 768 struct ehci_hcd *ehci, 769 unsigned frame, 770 unsigned uframe, 771 struct ehci_qh *qh, 772 unsigned *c_maskp, 773 struct ehci_tt *tt 774 ) 775 { 776 int retval = -ENOSPC; 777 u8 mask = 0; 778 779 if (qh->ps.c_usecs && uframe >= 6) /* FSTN territory? */ 780 goto done; 781 782 if (!check_period(ehci, frame, uframe, qh->ps.bw_uperiod, qh->ps.usecs)) 783 goto done; 784 if (!qh->ps.c_usecs) { 785 retval = 0; 786 *c_maskp = 0; 787 goto done; 788 } 789 790 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED 791 if (tt_available(ehci, &qh->ps, tt, frame, uframe)) { 792 unsigned i; 793 794 /* TODO : this may need FSTN for SSPLIT in uframe 5. */ 795 for (i = uframe+2; i < 8 && i <= uframe+4; i++) 796 if (!check_period(ehci, frame, i, 797 qh->ps.bw_uperiod, qh->ps.c_usecs)) 798 goto done; 799 else 800 mask |= 1 << i; 801 802 retval = 0; 803 804 *c_maskp = mask; 805 } 806 #else 807 /* Make sure this tt's buffer is also available for CSPLITs. 808 * We pessimize a bit; probably the typical full speed case 809 * doesn't need the second CSPLIT. 810 * 811 * NOTE: both SPLIT and CSPLIT could be checked in just 812 * one smart pass... 813 */ 814 mask = 0x03 << (uframe + qh->gap_uf); 815 *c_maskp = mask; 816 817 mask |= 1 << uframe; 818 if (tt_no_collision(ehci, qh->ps.bw_period, qh->ps.udev, frame, mask)) { 819 if (!check_period(ehci, frame, uframe + qh->gap_uf + 1, 820 qh->ps.bw_uperiod, qh->ps.c_usecs)) 821 goto done; 822 if (!check_period(ehci, frame, uframe + qh->gap_uf, 823 qh->ps.bw_uperiod, qh->ps.c_usecs)) 824 goto done; 825 retval = 0; 826 } 827 #endif 828 done: 829 return retval; 830 } 831 832 /* "first fit" scheduling policy used the first time through, 833 * or when the previous schedule slot can't be re-used. 834 */ 835 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh) 836 { 837 int status = 0; 838 unsigned uframe; 839 unsigned c_mask; 840 struct ehci_qh_hw *hw = qh->hw; 841 struct ehci_tt *tt; 842 843 hw->hw_next = EHCI_LIST_END(ehci); 844 845 /* reuse the previous schedule slots, if we can */ 846 if (qh->ps.phase != NO_FRAME) { 847 ehci_dbg(ehci, "reused qh %p schedule\n", qh); 848 return 0; 849 } 850 851 uframe = 0; 852 c_mask = 0; 853 tt = find_tt(qh->ps.udev); 854 if (IS_ERR(tt)) { 855 status = PTR_ERR(tt); 856 goto done; 857 } 858 compute_tt_budget(ehci->tt_budget, tt); 859 860 /* else scan the schedule to find a group of slots such that all 861 * uframes have enough periodic bandwidth available. 862 */ 863 /* "normal" case, uframing flexible except with splits */ 864 if (qh->ps.bw_period) { 865 int i; 866 unsigned frame; 867 868 for (i = qh->ps.bw_period; i > 0; --i) { 869 frame = ++ehci->random_frame & (qh->ps.bw_period - 1); 870 for (uframe = 0; uframe < 8; uframe++) { 871 status = check_intr_schedule(ehci, 872 frame, uframe, qh, &c_mask, tt); 873 if (status == 0) 874 goto got_it; 875 } 876 } 877 878 /* qh->ps.bw_period == 0 means every uframe */ 879 } else { 880 status = check_intr_schedule(ehci, 0, 0, qh, &c_mask, tt); 881 } 882 if (status) 883 goto done; 884 885 got_it: 886 qh->ps.phase = (qh->ps.period ? ehci->random_frame & 887 (qh->ps.period - 1) : 0); 888 qh->ps.bw_phase = qh->ps.phase & (qh->ps.bw_period - 1); 889 qh->ps.phase_uf = uframe; 890 qh->ps.cs_mask = qh->ps.period ? 891 (c_mask << 8) | (1 << uframe) : 892 QH_SMASK; 893 894 /* reset S-frame and (maybe) C-frame masks */ 895 hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK)); 896 hw->hw_info2 |= cpu_to_hc32(ehci, qh->ps.cs_mask); 897 reserve_release_intr_bandwidth(ehci, qh, 1); 898 899 done: 900 return status; 901 } 902 903 static int intr_submit( 904 struct ehci_hcd *ehci, 905 struct urb *urb, 906 struct list_head *qtd_list, 907 gfp_t mem_flags 908 ) { 909 unsigned epnum; 910 unsigned long flags; 911 struct ehci_qh *qh; 912 int status; 913 struct list_head empty; 914 915 /* get endpoint and transfer/schedule data */ 916 epnum = urb->ep->desc.bEndpointAddress; 917 918 spin_lock_irqsave(&ehci->lock, flags); 919 920 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { 921 status = -ESHUTDOWN; 922 goto done_not_linked; 923 } 924 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); 925 if (unlikely(status)) 926 goto done_not_linked; 927 928 /* get qh and force any scheduling errors */ 929 INIT_LIST_HEAD(&empty); 930 qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv); 931 if (qh == NULL) { 932 status = -ENOMEM; 933 goto done; 934 } 935 if (qh->qh_state == QH_STATE_IDLE) { 936 status = qh_schedule(ehci, qh); 937 if (status) 938 goto done; 939 } 940 941 /* then queue the urb's tds to the qh */ 942 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv); 943 BUG_ON(qh == NULL); 944 945 /* stuff into the periodic schedule */ 946 if (qh->qh_state == QH_STATE_IDLE) { 947 qh_refresh(ehci, qh); 948 qh_link_periodic(ehci, qh); 949 } else { 950 /* cancel unlink wait for the qh */ 951 cancel_unlink_wait_intr(ehci, qh); 952 } 953 954 /* ... update usbfs periodic stats */ 955 ehci_to_hcd(ehci)->self.bandwidth_int_reqs++; 956 957 done: 958 if (unlikely(status)) 959 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 960 done_not_linked: 961 spin_unlock_irqrestore(&ehci->lock, flags); 962 if (status) 963 qtd_list_free(ehci, urb, qtd_list); 964 965 return status; 966 } 967 968 static void scan_intr(struct ehci_hcd *ehci) 969 { 970 struct ehci_qh *qh; 971 972 list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list, 973 intr_node) { 974 975 /* clean any finished work for this qh */ 976 if (!list_empty(&qh->qtd_list)) { 977 int temp; 978 979 /* 980 * Unlinks could happen here; completion reporting 981 * drops the lock. That's why ehci->qh_scan_next 982 * always holds the next qh to scan; if the next qh 983 * gets unlinked then ehci->qh_scan_next is adjusted 984 * in qh_unlink_periodic(). 985 */ 986 temp = qh_completions(ehci, qh); 987 if (unlikely(temp)) 988 start_unlink_intr(ehci, qh); 989 else if (unlikely(list_empty(&qh->qtd_list) && 990 qh->qh_state == QH_STATE_LINKED)) 991 start_unlink_intr_wait(ehci, qh); 992 } 993 } 994 } 995 996 /*-------------------------------------------------------------------------*/ 997 998 /* ehci_iso_stream ops work with both ITD and SITD */ 999 1000 static struct ehci_iso_stream * 1001 iso_stream_alloc(gfp_t mem_flags) 1002 { 1003 struct ehci_iso_stream *stream; 1004 1005 stream = kzalloc(sizeof(*stream), mem_flags); 1006 if (likely(stream != NULL)) { 1007 INIT_LIST_HEAD(&stream->td_list); 1008 INIT_LIST_HEAD(&stream->free_list); 1009 stream->next_uframe = NO_FRAME; 1010 stream->ps.phase = NO_FRAME; 1011 } 1012 return stream; 1013 } 1014 1015 static void 1016 iso_stream_init( 1017 struct ehci_hcd *ehci, 1018 struct ehci_iso_stream *stream, 1019 struct urb *urb 1020 ) 1021 { 1022 static const u8 smask_out[] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f }; 1023 1024 struct usb_device *dev = urb->dev; 1025 u32 buf1; 1026 unsigned epnum, maxp; 1027 int is_input; 1028 unsigned tmp; 1029 1030 /* 1031 * this might be a "high bandwidth" highspeed endpoint, 1032 * as encoded in the ep descriptor's wMaxPacket field 1033 */ 1034 epnum = usb_pipeendpoint(urb->pipe); 1035 is_input = usb_pipein(urb->pipe) ? USB_DIR_IN : 0; 1036 maxp = usb_endpoint_maxp(&urb->ep->desc); 1037 buf1 = is_input ? 1 << 11 : 0; 1038 1039 /* knows about ITD vs SITD */ 1040 if (dev->speed == USB_SPEED_HIGH) { 1041 unsigned multi = usb_endpoint_maxp_mult(&urb->ep->desc); 1042 1043 stream->highspeed = 1; 1044 1045 buf1 |= maxp; 1046 maxp *= multi; 1047 1048 stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum); 1049 stream->buf1 = cpu_to_hc32(ehci, buf1); 1050 stream->buf2 = cpu_to_hc32(ehci, multi); 1051 1052 /* usbfs wants to report the average usecs per frame tied up 1053 * when transfers on this endpoint are scheduled ... 1054 */ 1055 stream->ps.usecs = HS_USECS_ISO(maxp); 1056 1057 /* period for bandwidth allocation */ 1058 tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE, 1059 1 << (urb->ep->desc.bInterval - 1)); 1060 1061 /* Allow urb->interval to override */ 1062 stream->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval); 1063 1064 stream->uperiod = urb->interval; 1065 stream->ps.period = urb->interval >> 3; 1066 stream->bandwidth = stream->ps.usecs * 8 / 1067 stream->ps.bw_uperiod; 1068 1069 } else { 1070 u32 addr; 1071 int think_time; 1072 int hs_transfers; 1073 1074 addr = dev->ttport << 24; 1075 if (!ehci_is_TDI(ehci) 1076 || (dev->tt->hub != 1077 ehci_to_hcd(ehci)->self.root_hub)) 1078 addr |= dev->tt->hub->devnum << 16; 1079 addr |= epnum << 8; 1080 addr |= dev->devnum; 1081 stream->ps.usecs = HS_USECS_ISO(maxp); 1082 think_time = dev->tt->think_time; 1083 stream->ps.tt_usecs = NS_TO_US(think_time + usb_calc_bus_time( 1084 dev->speed, is_input, 1, maxp)); 1085 hs_transfers = max(1u, (maxp + 187) / 188); 1086 if (is_input) { 1087 u32 tmp; 1088 1089 addr |= 1 << 31; 1090 stream->ps.c_usecs = stream->ps.usecs; 1091 stream->ps.usecs = HS_USECS_ISO(1); 1092 stream->ps.cs_mask = 1; 1093 1094 /* c-mask as specified in USB 2.0 11.18.4 3.c */ 1095 tmp = (1 << (hs_transfers + 2)) - 1; 1096 stream->ps.cs_mask |= tmp << (8 + 2); 1097 } else 1098 stream->ps.cs_mask = smask_out[hs_transfers - 1]; 1099 1100 /* period for bandwidth allocation */ 1101 tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES, 1102 1 << (urb->ep->desc.bInterval - 1)); 1103 1104 /* Allow urb->interval to override */ 1105 stream->ps.bw_period = min_t(unsigned, tmp, urb->interval); 1106 stream->ps.bw_uperiod = stream->ps.bw_period << 3; 1107 1108 stream->ps.period = urb->interval; 1109 stream->uperiod = urb->interval << 3; 1110 stream->bandwidth = (stream->ps.usecs + stream->ps.c_usecs) / 1111 stream->ps.bw_period; 1112 1113 /* stream->splits gets created from cs_mask later */ 1114 stream->address = cpu_to_hc32(ehci, addr); 1115 } 1116 1117 stream->ps.udev = dev; 1118 stream->ps.ep = urb->ep; 1119 1120 stream->bEndpointAddress = is_input | epnum; 1121 stream->maxp = maxp; 1122 } 1123 1124 static struct ehci_iso_stream * 1125 iso_stream_find(struct ehci_hcd *ehci, struct urb *urb) 1126 { 1127 unsigned epnum; 1128 struct ehci_iso_stream *stream; 1129 struct usb_host_endpoint *ep; 1130 unsigned long flags; 1131 1132 epnum = usb_pipeendpoint (urb->pipe); 1133 if (usb_pipein(urb->pipe)) 1134 ep = urb->dev->ep_in[epnum]; 1135 else 1136 ep = urb->dev->ep_out[epnum]; 1137 1138 spin_lock_irqsave(&ehci->lock, flags); 1139 stream = ep->hcpriv; 1140 1141 if (unlikely(stream == NULL)) { 1142 stream = iso_stream_alloc(GFP_ATOMIC); 1143 if (likely(stream != NULL)) { 1144 ep->hcpriv = stream; 1145 iso_stream_init(ehci, stream, urb); 1146 } 1147 1148 /* if dev->ep [epnum] is a QH, hw is set */ 1149 } else if (unlikely(stream->hw != NULL)) { 1150 ehci_dbg(ehci, "dev %s ep%d%s, not iso??\n", 1151 urb->dev->devpath, epnum, 1152 usb_pipein(urb->pipe) ? "in" : "out"); 1153 stream = NULL; 1154 } 1155 1156 spin_unlock_irqrestore(&ehci->lock, flags); 1157 return stream; 1158 } 1159 1160 /*-------------------------------------------------------------------------*/ 1161 1162 /* ehci_iso_sched ops can be ITD-only or SITD-only */ 1163 1164 static struct ehci_iso_sched * 1165 iso_sched_alloc(unsigned packets, gfp_t mem_flags) 1166 { 1167 struct ehci_iso_sched *iso_sched; 1168 1169 iso_sched = kzalloc(struct_size(iso_sched, packet, packets), mem_flags); 1170 if (likely(iso_sched != NULL)) 1171 INIT_LIST_HEAD(&iso_sched->td_list); 1172 1173 return iso_sched; 1174 } 1175 1176 static inline void 1177 itd_sched_init( 1178 struct ehci_hcd *ehci, 1179 struct ehci_iso_sched *iso_sched, 1180 struct ehci_iso_stream *stream, 1181 struct urb *urb 1182 ) 1183 { 1184 unsigned i; 1185 dma_addr_t dma = urb->transfer_dma; 1186 1187 /* how many uframes are needed for these transfers */ 1188 iso_sched->span = urb->number_of_packets * stream->uperiod; 1189 1190 /* figure out per-uframe itd fields that we'll need later 1191 * when we fit new itds into the schedule. 1192 */ 1193 for (i = 0; i < urb->number_of_packets; i++) { 1194 struct ehci_iso_packet *uframe = &iso_sched->packet[i]; 1195 unsigned length; 1196 dma_addr_t buf; 1197 u32 trans; 1198 1199 length = urb->iso_frame_desc[i].length; 1200 buf = dma + urb->iso_frame_desc[i].offset; 1201 1202 trans = EHCI_ISOC_ACTIVE; 1203 trans |= buf & 0x0fff; 1204 if (unlikely(((i + 1) == urb->number_of_packets)) 1205 && !(urb->transfer_flags & URB_NO_INTERRUPT)) 1206 trans |= EHCI_ITD_IOC; 1207 trans |= length << 16; 1208 uframe->transaction = cpu_to_hc32(ehci, trans); 1209 1210 /* might need to cross a buffer page within a uframe */ 1211 uframe->bufp = (buf & ~(u64)0x0fff); 1212 buf += length; 1213 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff)))) 1214 uframe->cross = 1; 1215 } 1216 } 1217 1218 static void 1219 iso_sched_free( 1220 struct ehci_iso_stream *stream, 1221 struct ehci_iso_sched *iso_sched 1222 ) 1223 { 1224 if (!iso_sched) 1225 return; 1226 /* caller must hold ehci->lock! */ 1227 list_splice(&iso_sched->td_list, &stream->free_list); 1228 kfree(iso_sched); 1229 } 1230 1231 static int 1232 itd_urb_transaction( 1233 struct ehci_iso_stream *stream, 1234 struct ehci_hcd *ehci, 1235 struct urb *urb, 1236 gfp_t mem_flags 1237 ) 1238 { 1239 struct ehci_itd *itd; 1240 dma_addr_t itd_dma; 1241 int i; 1242 unsigned num_itds; 1243 struct ehci_iso_sched *sched; 1244 unsigned long flags; 1245 1246 sched = iso_sched_alloc(urb->number_of_packets, mem_flags); 1247 if (unlikely(sched == NULL)) 1248 return -ENOMEM; 1249 1250 itd_sched_init(ehci, sched, stream, urb); 1251 1252 if (urb->interval < 8) 1253 num_itds = 1 + (sched->span + 7) / 8; 1254 else 1255 num_itds = urb->number_of_packets; 1256 1257 /* allocate/init ITDs */ 1258 spin_lock_irqsave(&ehci->lock, flags); 1259 for (i = 0; i < num_itds; i++) { 1260 1261 /* 1262 * Use iTDs from the free list, but not iTDs that may 1263 * still be in use by the hardware. 1264 */ 1265 if (likely(!list_empty(&stream->free_list))) { 1266 itd = list_first_entry(&stream->free_list, 1267 struct ehci_itd, itd_list); 1268 if (itd->frame == ehci->now_frame) 1269 goto alloc_itd; 1270 list_del(&itd->itd_list); 1271 itd_dma = itd->itd_dma; 1272 } else { 1273 alloc_itd: 1274 spin_unlock_irqrestore(&ehci->lock, flags); 1275 itd = dma_pool_alloc(ehci->itd_pool, mem_flags, 1276 &itd_dma); 1277 spin_lock_irqsave(&ehci->lock, flags); 1278 if (!itd) { 1279 iso_sched_free(stream, sched); 1280 spin_unlock_irqrestore(&ehci->lock, flags); 1281 return -ENOMEM; 1282 } 1283 } 1284 1285 memset(itd, 0, sizeof(*itd)); 1286 itd->itd_dma = itd_dma; 1287 itd->frame = NO_FRAME; 1288 list_add(&itd->itd_list, &sched->td_list); 1289 } 1290 spin_unlock_irqrestore(&ehci->lock, flags); 1291 1292 /* temporarily store schedule info in hcpriv */ 1293 urb->hcpriv = sched; 1294 urb->error_count = 0; 1295 return 0; 1296 } 1297 1298 /*-------------------------------------------------------------------------*/ 1299 1300 static void reserve_release_iso_bandwidth(struct ehci_hcd *ehci, 1301 struct ehci_iso_stream *stream, int sign) 1302 { 1303 unsigned uframe; 1304 unsigned i, j; 1305 unsigned s_mask, c_mask, m; 1306 int usecs = stream->ps.usecs; 1307 int c_usecs = stream->ps.c_usecs; 1308 int tt_usecs = stream->ps.tt_usecs; 1309 struct ehci_tt *tt; 1310 1311 if (stream->ps.phase == NO_FRAME) /* Bandwidth wasn't reserved */ 1312 return; 1313 uframe = stream->ps.bw_phase << 3; 1314 1315 bandwidth_dbg(ehci, sign, "iso", &stream->ps); 1316 1317 if (sign < 0) { /* Release bandwidth */ 1318 usecs = -usecs; 1319 c_usecs = -c_usecs; 1320 tt_usecs = -tt_usecs; 1321 } 1322 1323 if (!stream->splits) { /* High speed */ 1324 for (i = uframe + stream->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE; 1325 i += stream->ps.bw_uperiod) 1326 ehci->bandwidth[i] += usecs; 1327 1328 } else { /* Full speed */ 1329 s_mask = stream->ps.cs_mask; 1330 c_mask = s_mask >> 8; 1331 1332 /* NOTE: adjustment needed for frame overflow */ 1333 for (i = uframe; i < EHCI_BANDWIDTH_SIZE; 1334 i += stream->ps.bw_uperiod) { 1335 for ((j = stream->ps.phase_uf, m = 1 << j); j < 8; 1336 (++j, m <<= 1)) { 1337 if (s_mask & m) 1338 ehci->bandwidth[i+j] += usecs; 1339 else if (c_mask & m) 1340 ehci->bandwidth[i+j] += c_usecs; 1341 } 1342 } 1343 1344 /* 1345 * find_tt() will not return any error here as we have 1346 * already called find_tt() before calling this function 1347 * and checked for any error return. The previous call 1348 * would have created the data structure. 1349 */ 1350 tt = find_tt(stream->ps.udev); 1351 if (sign > 0) 1352 list_add_tail(&stream->ps.ps_list, &tt->ps_list); 1353 else 1354 list_del(&stream->ps.ps_list); 1355 1356 for (i = uframe >> 3; i < EHCI_BANDWIDTH_FRAMES; 1357 i += stream->ps.bw_period) 1358 tt->bandwidth[i] += tt_usecs; 1359 } 1360 } 1361 1362 static inline int 1363 itd_slot_ok( 1364 struct ehci_hcd *ehci, 1365 struct ehci_iso_stream *stream, 1366 unsigned uframe 1367 ) 1368 { 1369 unsigned usecs; 1370 1371 /* convert "usecs we need" to "max already claimed" */ 1372 usecs = ehci->uframe_periodic_max - stream->ps.usecs; 1373 1374 for (uframe &= stream->ps.bw_uperiod - 1; uframe < EHCI_BANDWIDTH_SIZE; 1375 uframe += stream->ps.bw_uperiod) { 1376 if (ehci->bandwidth[uframe] > usecs) 1377 return 0; 1378 } 1379 return 1; 1380 } 1381 1382 static inline int 1383 sitd_slot_ok( 1384 struct ehci_hcd *ehci, 1385 struct ehci_iso_stream *stream, 1386 unsigned uframe, 1387 struct ehci_iso_sched *sched, 1388 struct ehci_tt *tt 1389 ) 1390 { 1391 unsigned mask, tmp; 1392 unsigned frame, uf; 1393 1394 mask = stream->ps.cs_mask << (uframe & 7); 1395 1396 /* for OUT, don't wrap SSPLIT into H-microframe 7 */ 1397 if (((stream->ps.cs_mask & 0xff) << (uframe & 7)) >= (1 << 7)) 1398 return 0; 1399 1400 /* for IN, don't wrap CSPLIT into the next frame */ 1401 if (mask & ~0xffff) 1402 return 0; 1403 1404 /* check bandwidth */ 1405 uframe &= stream->ps.bw_uperiod - 1; 1406 frame = uframe >> 3; 1407 1408 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED 1409 /* The tt's fullspeed bus bandwidth must be available. 1410 * tt_available scheduling guarantees 10+% for control/bulk. 1411 */ 1412 uf = uframe & 7; 1413 if (!tt_available(ehci, &stream->ps, tt, frame, uf)) 1414 return 0; 1415 #else 1416 /* tt must be idle for start(s), any gap, and csplit. 1417 * assume scheduling slop leaves 10+% for control/bulk. 1418 */ 1419 if (!tt_no_collision(ehci, stream->ps.bw_period, 1420 stream->ps.udev, frame, mask)) 1421 return 0; 1422 #endif 1423 1424 do { 1425 unsigned max_used; 1426 unsigned i; 1427 1428 /* check starts (OUT uses more than one) */ 1429 uf = uframe; 1430 max_used = ehci->uframe_periodic_max - stream->ps.usecs; 1431 for (tmp = stream->ps.cs_mask & 0xff; tmp; tmp >>= 1, uf++) { 1432 if (ehci->bandwidth[uf] > max_used) 1433 return 0; 1434 } 1435 1436 /* for IN, check CSPLIT */ 1437 if (stream->ps.c_usecs) { 1438 max_used = ehci->uframe_periodic_max - 1439 stream->ps.c_usecs; 1440 uf = uframe & ~7; 1441 tmp = 1 << (2+8); 1442 for (i = (uframe & 7) + 2; i < 8; (++i, tmp <<= 1)) { 1443 if ((stream->ps.cs_mask & tmp) == 0) 1444 continue; 1445 if (ehci->bandwidth[uf+i] > max_used) 1446 return 0; 1447 } 1448 } 1449 1450 uframe += stream->ps.bw_uperiod; 1451 } while (uframe < EHCI_BANDWIDTH_SIZE); 1452 1453 stream->ps.cs_mask <<= uframe & 7; 1454 stream->splits = cpu_to_hc32(ehci, stream->ps.cs_mask); 1455 return 1; 1456 } 1457 1458 /* 1459 * This scheduler plans almost as far into the future as it has actual 1460 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to 1461 * "as small as possible" to be cache-friendlier.) That limits the size 1462 * transfers you can stream reliably; avoid more than 64 msec per urb. 1463 * Also avoid queue depths of less than ehci's worst irq latency (affected 1464 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter, 1465 * and other factors); or more than about 230 msec total (for portability, 1466 * given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler! 1467 */ 1468 1469 static int 1470 iso_stream_schedule( 1471 struct ehci_hcd *ehci, 1472 struct urb *urb, 1473 struct ehci_iso_stream *stream 1474 ) 1475 { 1476 u32 now, base, next, start, period, span, now2; 1477 u32 wrap = 0, skip = 0; 1478 int status = 0; 1479 unsigned mod = ehci->periodic_size << 3; 1480 struct ehci_iso_sched *sched = urb->hcpriv; 1481 bool empty = list_empty(&stream->td_list); 1482 bool new_stream = false; 1483 1484 period = stream->uperiod; 1485 span = sched->span; 1486 if (!stream->highspeed) 1487 span <<= 3; 1488 1489 /* Start a new isochronous stream? */ 1490 if (unlikely(empty && !hcd_periodic_completion_in_progress( 1491 ehci_to_hcd(ehci), urb->ep))) { 1492 1493 /* Schedule the endpoint */ 1494 if (stream->ps.phase == NO_FRAME) { 1495 int done = 0; 1496 struct ehci_tt *tt = find_tt(stream->ps.udev); 1497 1498 if (IS_ERR(tt)) { 1499 status = PTR_ERR(tt); 1500 goto fail; 1501 } 1502 compute_tt_budget(ehci->tt_budget, tt); 1503 1504 start = ((-(++ehci->random_frame)) << 3) & (period - 1); 1505 1506 /* find a uframe slot with enough bandwidth. 1507 * Early uframes are more precious because full-speed 1508 * iso IN transfers can't use late uframes, 1509 * and therefore they should be allocated last. 1510 */ 1511 next = start; 1512 start += period; 1513 do { 1514 start--; 1515 /* check schedule: enough space? */ 1516 if (stream->highspeed) { 1517 if (itd_slot_ok(ehci, stream, start)) 1518 done = 1; 1519 } else { 1520 if ((start % 8) >= 6) 1521 continue; 1522 if (sitd_slot_ok(ehci, stream, start, 1523 sched, tt)) 1524 done = 1; 1525 } 1526 } while (start > next && !done); 1527 1528 /* no room in the schedule */ 1529 if (!done) { 1530 ehci_dbg(ehci, "iso sched full %p", urb); 1531 status = -ENOSPC; 1532 goto fail; 1533 } 1534 stream->ps.phase = (start >> 3) & 1535 (stream->ps.period - 1); 1536 stream->ps.bw_phase = stream->ps.phase & 1537 (stream->ps.bw_period - 1); 1538 stream->ps.phase_uf = start & 7; 1539 reserve_release_iso_bandwidth(ehci, stream, 1); 1540 } 1541 1542 /* New stream is already scheduled; use the upcoming slot */ 1543 else { 1544 start = (stream->ps.phase << 3) + stream->ps.phase_uf; 1545 } 1546 1547 stream->next_uframe = start; 1548 new_stream = true; 1549 } 1550 1551 now = ehci_read_frame_index(ehci) & (mod - 1); 1552 1553 /* Take the isochronous scheduling threshold into account */ 1554 if (ehci->i_thresh) 1555 next = now + ehci->i_thresh; /* uframe cache */ 1556 else 1557 next = (now + 2 + 7) & ~0x07; /* full frame cache */ 1558 1559 /* If needed, initialize last_iso_frame so that this URB will be seen */ 1560 if (ehci->isoc_count == 0) 1561 ehci->last_iso_frame = now >> 3; 1562 1563 /* 1564 * Use ehci->last_iso_frame as the base. There can't be any 1565 * TDs scheduled for earlier than that. 1566 */ 1567 base = ehci->last_iso_frame << 3; 1568 next = (next - base) & (mod - 1); 1569 start = (stream->next_uframe - base) & (mod - 1); 1570 1571 if (unlikely(new_stream)) 1572 goto do_ASAP; 1573 1574 /* 1575 * Typical case: reuse current schedule, stream may still be active. 1576 * Hopefully there are no gaps from the host falling behind 1577 * (irq delays etc). If there are, the behavior depends on 1578 * whether URB_ISO_ASAP is set. 1579 */ 1580 now2 = (now - base) & (mod - 1); 1581 1582 /* Is the schedule about to wrap around? */ 1583 if (unlikely(!empty && start < period)) { 1584 ehci_dbg(ehci, "request %p would overflow (%u-%u < %u mod %u)\n", 1585 urb, stream->next_uframe, base, period, mod); 1586 status = -EFBIG; 1587 goto fail; 1588 } 1589 1590 /* Is the next packet scheduled after the base time? */ 1591 if (likely(!empty || start <= now2 + period)) { 1592 1593 /* URB_ISO_ASAP: make sure that start >= next */ 1594 if (unlikely(start < next && 1595 (urb->transfer_flags & URB_ISO_ASAP))) 1596 goto do_ASAP; 1597 1598 /* Otherwise use start, if it's not in the past */ 1599 if (likely(start >= now2)) 1600 goto use_start; 1601 1602 /* Otherwise we got an underrun while the queue was empty */ 1603 } else { 1604 if (urb->transfer_flags & URB_ISO_ASAP) 1605 goto do_ASAP; 1606 wrap = mod; 1607 now2 += mod; 1608 } 1609 1610 /* How many uframes and packets do we need to skip? */ 1611 skip = (now2 - start + period - 1) & -period; 1612 if (skip >= span) { /* Entirely in the past? */ 1613 ehci_dbg(ehci, "iso underrun %p (%u+%u < %u) [%u]\n", 1614 urb, start + base, span - period, now2 + base, 1615 base); 1616 1617 /* Try to keep the last TD intact for scanning later */ 1618 skip = span - period; 1619 1620 /* Will it come before the current scan position? */ 1621 if (empty) { 1622 skip = span; /* Skip the entire URB */ 1623 status = 1; /* and give it back immediately */ 1624 iso_sched_free(stream, sched); 1625 sched = NULL; 1626 } 1627 } 1628 urb->error_count = skip / period; 1629 if (sched) 1630 sched->first_packet = urb->error_count; 1631 goto use_start; 1632 1633 do_ASAP: 1634 /* Use the first slot after "next" */ 1635 start = next + ((start - next) & (period - 1)); 1636 1637 use_start: 1638 /* Tried to schedule too far into the future? */ 1639 if (unlikely(start + span - period >= mod + wrap)) { 1640 ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n", 1641 urb, start, span - period, mod + wrap); 1642 status = -EFBIG; 1643 goto fail; 1644 } 1645 1646 start += base; 1647 stream->next_uframe = (start + skip) & (mod - 1); 1648 1649 /* report high speed start in uframes; full speed, in frames */ 1650 urb->start_frame = start & (mod - 1); 1651 if (!stream->highspeed) 1652 urb->start_frame >>= 3; 1653 return status; 1654 1655 fail: 1656 iso_sched_free(stream, sched); 1657 urb->hcpriv = NULL; 1658 return status; 1659 } 1660 1661 /*-------------------------------------------------------------------------*/ 1662 1663 static inline void 1664 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream, 1665 struct ehci_itd *itd) 1666 { 1667 int i; 1668 1669 /* it's been recently zeroed */ 1670 itd->hw_next = EHCI_LIST_END(ehci); 1671 itd->hw_bufp[0] = stream->buf0; 1672 itd->hw_bufp[1] = stream->buf1; 1673 itd->hw_bufp[2] = stream->buf2; 1674 1675 for (i = 0; i < 8; i++) 1676 itd->index[i] = -1; 1677 1678 /* All other fields are filled when scheduling */ 1679 } 1680 1681 static inline void 1682 itd_patch( 1683 struct ehci_hcd *ehci, 1684 struct ehci_itd *itd, 1685 struct ehci_iso_sched *iso_sched, 1686 unsigned index, 1687 u16 uframe 1688 ) 1689 { 1690 struct ehci_iso_packet *uf = &iso_sched->packet[index]; 1691 unsigned pg = itd->pg; 1692 1693 /* BUG_ON(pg == 6 && uf->cross); */ 1694 1695 uframe &= 0x07; 1696 itd->index[uframe] = index; 1697 1698 itd->hw_transaction[uframe] = uf->transaction; 1699 itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12); 1700 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0); 1701 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32)); 1702 1703 /* iso_frame_desc[].offset must be strictly increasing */ 1704 if (unlikely(uf->cross)) { 1705 u64 bufp = uf->bufp + 4096; 1706 1707 itd->pg = ++pg; 1708 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0); 1709 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32)); 1710 } 1711 } 1712 1713 static inline void 1714 itd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd) 1715 { 1716 union ehci_shadow *prev = &ehci->pshadow[frame]; 1717 __hc32 *hw_p = &ehci->periodic[frame]; 1718 union ehci_shadow here = *prev; 1719 __hc32 type = 0; 1720 1721 /* skip any iso nodes which might belong to previous microframes */ 1722 while (here.ptr) { 1723 type = Q_NEXT_TYPE(ehci, *hw_p); 1724 if (type == cpu_to_hc32(ehci, Q_TYPE_QH)) 1725 break; 1726 prev = periodic_next_shadow(ehci, prev, type); 1727 hw_p = shadow_next_periodic(ehci, &here, type); 1728 here = *prev; 1729 } 1730 1731 itd->itd_next = here; 1732 itd->hw_next = *hw_p; 1733 prev->itd = itd; 1734 itd->frame = frame; 1735 wmb(); 1736 *hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD); 1737 } 1738 1739 /* fit urb's itds into the selected schedule slot; activate as needed */ 1740 static void itd_link_urb( 1741 struct ehci_hcd *ehci, 1742 struct urb *urb, 1743 unsigned mod, 1744 struct ehci_iso_stream *stream 1745 ) 1746 { 1747 int packet; 1748 unsigned next_uframe, uframe, frame; 1749 struct ehci_iso_sched *iso_sched = urb->hcpriv; 1750 struct ehci_itd *itd; 1751 1752 next_uframe = stream->next_uframe & (mod - 1); 1753 1754 if (unlikely(list_empty(&stream->td_list))) 1755 ehci_to_hcd(ehci)->self.bandwidth_allocated 1756 += stream->bandwidth; 1757 1758 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { 1759 if (ehci->amd_pll_fix == 1) 1760 usb_amd_quirk_pll_disable(); 1761 } 1762 1763 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++; 1764 1765 /* fill iTDs uframe by uframe */ 1766 for (packet = iso_sched->first_packet, itd = NULL; 1767 packet < urb->number_of_packets;) { 1768 if (itd == NULL) { 1769 /* ASSERT: we have all necessary itds */ 1770 /* BUG_ON(list_empty(&iso_sched->td_list)); */ 1771 1772 /* ASSERT: no itds for this endpoint in this uframe */ 1773 1774 itd = list_entry(iso_sched->td_list.next, 1775 struct ehci_itd, itd_list); 1776 list_move_tail(&itd->itd_list, &stream->td_list); 1777 itd->stream = stream; 1778 itd->urb = urb; 1779 itd_init(ehci, stream, itd); 1780 } 1781 1782 uframe = next_uframe & 0x07; 1783 frame = next_uframe >> 3; 1784 1785 itd_patch(ehci, itd, iso_sched, packet, uframe); 1786 1787 next_uframe += stream->uperiod; 1788 next_uframe &= mod - 1; 1789 packet++; 1790 1791 /* link completed itds into the schedule */ 1792 if (((next_uframe >> 3) != frame) 1793 || packet == urb->number_of_packets) { 1794 itd_link(ehci, frame & (ehci->periodic_size - 1), itd); 1795 itd = NULL; 1796 } 1797 } 1798 stream->next_uframe = next_uframe; 1799 1800 /* don't need that schedule data any more */ 1801 iso_sched_free(stream, iso_sched); 1802 urb->hcpriv = stream; 1803 1804 ++ehci->isoc_count; 1805 enable_periodic(ehci); 1806 } 1807 1808 #define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR) 1809 1810 /* Process and recycle a completed ITD. Return true iff its urb completed, 1811 * and hence its completion callback probably added things to the hardware 1812 * schedule. 1813 * 1814 * Note that we carefully avoid recycling this descriptor until after any 1815 * completion callback runs, so that it won't be reused quickly. That is, 1816 * assuming (a) no more than two urbs per frame on this endpoint, and also 1817 * (b) only this endpoint's completions submit URBs. It seems some silicon 1818 * corrupts things if you reuse completed descriptors very quickly... 1819 */ 1820 static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd) 1821 { 1822 struct urb *urb = itd->urb; 1823 struct usb_iso_packet_descriptor *desc; 1824 u32 t; 1825 unsigned uframe; 1826 int urb_index = -1; 1827 struct ehci_iso_stream *stream = itd->stream; 1828 bool retval = false; 1829 1830 /* for each uframe with a packet */ 1831 for (uframe = 0; uframe < 8; uframe++) { 1832 if (likely(itd->index[uframe] == -1)) 1833 continue; 1834 urb_index = itd->index[uframe]; 1835 desc = &urb->iso_frame_desc[urb_index]; 1836 1837 t = hc32_to_cpup(ehci, &itd->hw_transaction[uframe]); 1838 itd->hw_transaction[uframe] = 0; 1839 1840 /* report transfer status */ 1841 if (unlikely(t & ISO_ERRS)) { 1842 urb->error_count++; 1843 if (t & EHCI_ISOC_BUF_ERR) 1844 desc->status = usb_pipein(urb->pipe) 1845 ? -ENOSR /* hc couldn't read */ 1846 : -ECOMM; /* hc couldn't write */ 1847 else if (t & EHCI_ISOC_BABBLE) 1848 desc->status = -EOVERFLOW; 1849 else /* (t & EHCI_ISOC_XACTERR) */ 1850 desc->status = -EPROTO; 1851 1852 /* HC need not update length with this error */ 1853 if (!(t & EHCI_ISOC_BABBLE)) { 1854 desc->actual_length = EHCI_ITD_LENGTH(t); 1855 urb->actual_length += desc->actual_length; 1856 } 1857 } else if (likely((t & EHCI_ISOC_ACTIVE) == 0)) { 1858 desc->status = 0; 1859 desc->actual_length = EHCI_ITD_LENGTH(t); 1860 urb->actual_length += desc->actual_length; 1861 } else { 1862 /* URB was too late */ 1863 urb->error_count++; 1864 } 1865 } 1866 1867 /* handle completion now? */ 1868 if (likely((urb_index + 1) != urb->number_of_packets)) 1869 goto done; 1870 1871 /* 1872 * ASSERT: it's really the last itd for this urb 1873 * list_for_each_entry (itd, &stream->td_list, itd_list) 1874 * BUG_ON(itd->urb == urb); 1875 */ 1876 1877 /* give urb back to the driver; completion often (re)submits */ 1878 ehci_urb_done(ehci, urb, 0); 1879 retval = true; 1880 urb = NULL; 1881 1882 --ehci->isoc_count; 1883 disable_periodic(ehci); 1884 1885 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--; 1886 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { 1887 if (ehci->amd_pll_fix == 1) 1888 usb_amd_quirk_pll_enable(); 1889 } 1890 1891 if (unlikely(list_is_singular(&stream->td_list))) 1892 ehci_to_hcd(ehci)->self.bandwidth_allocated 1893 -= stream->bandwidth; 1894 1895 done: 1896 itd->urb = NULL; 1897 1898 /* Add to the end of the free list for later reuse */ 1899 list_move_tail(&itd->itd_list, &stream->free_list); 1900 1901 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */ 1902 if (list_empty(&stream->td_list)) { 1903 list_splice_tail_init(&stream->free_list, 1904 &ehci->cached_itd_list); 1905 start_free_itds(ehci); 1906 } 1907 1908 return retval; 1909 } 1910 1911 /*-------------------------------------------------------------------------*/ 1912 1913 static int itd_submit(struct ehci_hcd *ehci, struct urb *urb, 1914 gfp_t mem_flags) 1915 { 1916 int status = -EINVAL; 1917 unsigned long flags; 1918 struct ehci_iso_stream *stream; 1919 1920 /* Get iso_stream head */ 1921 stream = iso_stream_find(ehci, urb); 1922 if (unlikely(stream == NULL)) { 1923 ehci_dbg(ehci, "can't get iso stream\n"); 1924 return -ENOMEM; 1925 } 1926 if (unlikely(urb->interval != stream->uperiod)) { 1927 ehci_dbg(ehci, "can't change iso interval %d --> %d\n", 1928 stream->uperiod, urb->interval); 1929 goto done; 1930 } 1931 1932 #ifdef EHCI_URB_TRACE 1933 ehci_dbg(ehci, 1934 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n", 1935 __func__, urb->dev->devpath, urb, 1936 usb_pipeendpoint(urb->pipe), 1937 usb_pipein(urb->pipe) ? "in" : "out", 1938 urb->transfer_buffer_length, 1939 urb->number_of_packets, urb->interval, 1940 stream); 1941 #endif 1942 1943 /* allocate ITDs w/o locking anything */ 1944 status = itd_urb_transaction(stream, ehci, urb, mem_flags); 1945 if (unlikely(status < 0)) { 1946 ehci_dbg(ehci, "can't init itds\n"); 1947 goto done; 1948 } 1949 1950 /* schedule ... need to lock */ 1951 spin_lock_irqsave(&ehci->lock, flags); 1952 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { 1953 status = -ESHUTDOWN; 1954 goto done_not_linked; 1955 } 1956 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); 1957 if (unlikely(status)) 1958 goto done_not_linked; 1959 status = iso_stream_schedule(ehci, urb, stream); 1960 if (likely(status == 0)) { 1961 itd_link_urb(ehci, urb, ehci->periodic_size << 3, stream); 1962 } else if (status > 0) { 1963 status = 0; 1964 ehci_urb_done(ehci, urb, 0); 1965 } else { 1966 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 1967 } 1968 done_not_linked: 1969 spin_unlock_irqrestore(&ehci->lock, flags); 1970 done: 1971 return status; 1972 } 1973 1974 /*-------------------------------------------------------------------------*/ 1975 1976 /* 1977 * "Split ISO TDs" ... used for USB 1.1 devices going through the 1978 * TTs in USB 2.0 hubs. These need microframe scheduling. 1979 */ 1980 1981 static inline void 1982 sitd_sched_init( 1983 struct ehci_hcd *ehci, 1984 struct ehci_iso_sched *iso_sched, 1985 struct ehci_iso_stream *stream, 1986 struct urb *urb 1987 ) 1988 { 1989 unsigned i; 1990 dma_addr_t dma = urb->transfer_dma; 1991 1992 /* how many frames are needed for these transfers */ 1993 iso_sched->span = urb->number_of_packets * stream->ps.period; 1994 1995 /* figure out per-frame sitd fields that we'll need later 1996 * when we fit new sitds into the schedule. 1997 */ 1998 for (i = 0; i < urb->number_of_packets; i++) { 1999 struct ehci_iso_packet *packet = &iso_sched->packet[i]; 2000 unsigned length; 2001 dma_addr_t buf; 2002 u32 trans; 2003 2004 length = urb->iso_frame_desc[i].length & 0x03ff; 2005 buf = dma + urb->iso_frame_desc[i].offset; 2006 2007 trans = SITD_STS_ACTIVE; 2008 if (((i + 1) == urb->number_of_packets) 2009 && !(urb->transfer_flags & URB_NO_INTERRUPT)) 2010 trans |= SITD_IOC; 2011 trans |= length << 16; 2012 packet->transaction = cpu_to_hc32(ehci, trans); 2013 2014 /* might need to cross a buffer page within a td */ 2015 packet->bufp = buf; 2016 packet->buf1 = (buf + length) & ~0x0fff; 2017 if (packet->buf1 != (buf & ~(u64)0x0fff)) 2018 packet->cross = 1; 2019 2020 /* OUT uses multiple start-splits */ 2021 if (stream->bEndpointAddress & USB_DIR_IN) 2022 continue; 2023 length = (length + 187) / 188; 2024 if (length > 1) /* BEGIN vs ALL */ 2025 length |= 1 << 3; 2026 packet->buf1 |= length; 2027 } 2028 } 2029 2030 static int 2031 sitd_urb_transaction( 2032 struct ehci_iso_stream *stream, 2033 struct ehci_hcd *ehci, 2034 struct urb *urb, 2035 gfp_t mem_flags 2036 ) 2037 { 2038 struct ehci_sitd *sitd; 2039 dma_addr_t sitd_dma; 2040 int i; 2041 struct ehci_iso_sched *iso_sched; 2042 unsigned long flags; 2043 2044 iso_sched = iso_sched_alloc(urb->number_of_packets, mem_flags); 2045 if (iso_sched == NULL) 2046 return -ENOMEM; 2047 2048 sitd_sched_init(ehci, iso_sched, stream, urb); 2049 2050 /* allocate/init sITDs */ 2051 spin_lock_irqsave(&ehci->lock, flags); 2052 for (i = 0; i < urb->number_of_packets; i++) { 2053 2054 /* NOTE: for now, we don't try to handle wraparound cases 2055 * for IN (using sitd->hw_backpointer, like a FSTN), which 2056 * means we never need two sitds for full speed packets. 2057 */ 2058 2059 /* 2060 * Use siTDs from the free list, but not siTDs that may 2061 * still be in use by the hardware. 2062 */ 2063 if (likely(!list_empty(&stream->free_list))) { 2064 sitd = list_first_entry(&stream->free_list, 2065 struct ehci_sitd, sitd_list); 2066 if (sitd->frame == ehci->now_frame) 2067 goto alloc_sitd; 2068 list_del(&sitd->sitd_list); 2069 sitd_dma = sitd->sitd_dma; 2070 } else { 2071 alloc_sitd: 2072 spin_unlock_irqrestore(&ehci->lock, flags); 2073 sitd = dma_pool_alloc(ehci->sitd_pool, mem_flags, 2074 &sitd_dma); 2075 spin_lock_irqsave(&ehci->lock, flags); 2076 if (!sitd) { 2077 iso_sched_free(stream, iso_sched); 2078 spin_unlock_irqrestore(&ehci->lock, flags); 2079 return -ENOMEM; 2080 } 2081 } 2082 2083 memset(sitd, 0, sizeof(*sitd)); 2084 sitd->sitd_dma = sitd_dma; 2085 sitd->frame = NO_FRAME; 2086 list_add(&sitd->sitd_list, &iso_sched->td_list); 2087 } 2088 2089 /* temporarily store schedule info in hcpriv */ 2090 urb->hcpriv = iso_sched; 2091 urb->error_count = 0; 2092 2093 spin_unlock_irqrestore(&ehci->lock, flags); 2094 return 0; 2095 } 2096 2097 /*-------------------------------------------------------------------------*/ 2098 2099 static inline void 2100 sitd_patch( 2101 struct ehci_hcd *ehci, 2102 struct ehci_iso_stream *stream, 2103 struct ehci_sitd *sitd, 2104 struct ehci_iso_sched *iso_sched, 2105 unsigned index 2106 ) 2107 { 2108 struct ehci_iso_packet *uf = &iso_sched->packet[index]; 2109 u64 bufp; 2110 2111 sitd->hw_next = EHCI_LIST_END(ehci); 2112 sitd->hw_fullspeed_ep = stream->address; 2113 sitd->hw_uframe = stream->splits; 2114 sitd->hw_results = uf->transaction; 2115 sitd->hw_backpointer = EHCI_LIST_END(ehci); 2116 2117 bufp = uf->bufp; 2118 sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp); 2119 sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32); 2120 2121 sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1); 2122 if (uf->cross) 2123 bufp += 4096; 2124 sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32); 2125 sitd->index = index; 2126 } 2127 2128 static inline void 2129 sitd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd) 2130 { 2131 /* note: sitd ordering could matter (CSPLIT then SSPLIT) */ 2132 sitd->sitd_next = ehci->pshadow[frame]; 2133 sitd->hw_next = ehci->periodic[frame]; 2134 ehci->pshadow[frame].sitd = sitd; 2135 sitd->frame = frame; 2136 wmb(); 2137 ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD); 2138 } 2139 2140 /* fit urb's sitds into the selected schedule slot; activate as needed */ 2141 static void sitd_link_urb( 2142 struct ehci_hcd *ehci, 2143 struct urb *urb, 2144 unsigned mod, 2145 struct ehci_iso_stream *stream 2146 ) 2147 { 2148 int packet; 2149 unsigned next_uframe; 2150 struct ehci_iso_sched *sched = urb->hcpriv; 2151 struct ehci_sitd *sitd; 2152 2153 next_uframe = stream->next_uframe; 2154 2155 if (list_empty(&stream->td_list)) 2156 /* usbfs ignores TT bandwidth */ 2157 ehci_to_hcd(ehci)->self.bandwidth_allocated 2158 += stream->bandwidth; 2159 2160 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { 2161 if (ehci->amd_pll_fix == 1) 2162 usb_amd_quirk_pll_disable(); 2163 } 2164 2165 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++; 2166 2167 /* fill sITDs frame by frame */ 2168 for (packet = sched->first_packet, sitd = NULL; 2169 packet < urb->number_of_packets; 2170 packet++) { 2171 2172 /* ASSERT: we have all necessary sitds */ 2173 BUG_ON(list_empty(&sched->td_list)); 2174 2175 /* ASSERT: no itds for this endpoint in this frame */ 2176 2177 sitd = list_entry(sched->td_list.next, 2178 struct ehci_sitd, sitd_list); 2179 list_move_tail(&sitd->sitd_list, &stream->td_list); 2180 sitd->stream = stream; 2181 sitd->urb = urb; 2182 2183 sitd_patch(ehci, stream, sitd, sched, packet); 2184 sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1), 2185 sitd); 2186 2187 next_uframe += stream->uperiod; 2188 } 2189 stream->next_uframe = next_uframe & (mod - 1); 2190 2191 /* don't need that schedule data any more */ 2192 iso_sched_free(stream, sched); 2193 urb->hcpriv = stream; 2194 2195 ++ehci->isoc_count; 2196 enable_periodic(ehci); 2197 } 2198 2199 /*-------------------------------------------------------------------------*/ 2200 2201 #define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \ 2202 | SITD_STS_XACT | SITD_STS_MMF) 2203 2204 /* Process and recycle a completed SITD. Return true iff its urb completed, 2205 * and hence its completion callback probably added things to the hardware 2206 * schedule. 2207 * 2208 * Note that we carefully avoid recycling this descriptor until after any 2209 * completion callback runs, so that it won't be reused quickly. That is, 2210 * assuming (a) no more than two urbs per frame on this endpoint, and also 2211 * (b) only this endpoint's completions submit URBs. It seems some silicon 2212 * corrupts things if you reuse completed descriptors very quickly... 2213 */ 2214 static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd) 2215 { 2216 struct urb *urb = sitd->urb; 2217 struct usb_iso_packet_descriptor *desc; 2218 u32 t; 2219 int urb_index; 2220 struct ehci_iso_stream *stream = sitd->stream; 2221 bool retval = false; 2222 2223 urb_index = sitd->index; 2224 desc = &urb->iso_frame_desc[urb_index]; 2225 t = hc32_to_cpup(ehci, &sitd->hw_results); 2226 2227 /* report transfer status */ 2228 if (unlikely(t & SITD_ERRS)) { 2229 urb->error_count++; 2230 if (t & SITD_STS_DBE) 2231 desc->status = usb_pipein(urb->pipe) 2232 ? -ENOSR /* hc couldn't read */ 2233 : -ECOMM; /* hc couldn't write */ 2234 else if (t & SITD_STS_BABBLE) 2235 desc->status = -EOVERFLOW; 2236 else /* XACT, MMF, etc */ 2237 desc->status = -EPROTO; 2238 } else if (unlikely(t & SITD_STS_ACTIVE)) { 2239 /* URB was too late */ 2240 urb->error_count++; 2241 } else { 2242 desc->status = 0; 2243 desc->actual_length = desc->length - SITD_LENGTH(t); 2244 urb->actual_length += desc->actual_length; 2245 } 2246 2247 /* handle completion now? */ 2248 if ((urb_index + 1) != urb->number_of_packets) 2249 goto done; 2250 2251 /* 2252 * ASSERT: it's really the last sitd for this urb 2253 * list_for_each_entry (sitd, &stream->td_list, sitd_list) 2254 * BUG_ON(sitd->urb == urb); 2255 */ 2256 2257 /* give urb back to the driver; completion often (re)submits */ 2258 ehci_urb_done(ehci, urb, 0); 2259 retval = true; 2260 urb = NULL; 2261 2262 --ehci->isoc_count; 2263 disable_periodic(ehci); 2264 2265 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--; 2266 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { 2267 if (ehci->amd_pll_fix == 1) 2268 usb_amd_quirk_pll_enable(); 2269 } 2270 2271 if (list_is_singular(&stream->td_list)) 2272 ehci_to_hcd(ehci)->self.bandwidth_allocated 2273 -= stream->bandwidth; 2274 2275 done: 2276 sitd->urb = NULL; 2277 2278 /* Add to the end of the free list for later reuse */ 2279 list_move_tail(&sitd->sitd_list, &stream->free_list); 2280 2281 /* Recycle the siTDs when the pipeline is empty (ep no longer in use) */ 2282 if (list_empty(&stream->td_list)) { 2283 list_splice_tail_init(&stream->free_list, 2284 &ehci->cached_sitd_list); 2285 start_free_itds(ehci); 2286 } 2287 2288 return retval; 2289 } 2290 2291 2292 static int sitd_submit(struct ehci_hcd *ehci, struct urb *urb, 2293 gfp_t mem_flags) 2294 { 2295 int status = -EINVAL; 2296 unsigned long flags; 2297 struct ehci_iso_stream *stream; 2298 2299 /* Get iso_stream head */ 2300 stream = iso_stream_find(ehci, urb); 2301 if (stream == NULL) { 2302 ehci_dbg(ehci, "can't get iso stream\n"); 2303 return -ENOMEM; 2304 } 2305 if (urb->interval != stream->ps.period) { 2306 ehci_dbg(ehci, "can't change iso interval %d --> %d\n", 2307 stream->ps.period, urb->interval); 2308 goto done; 2309 } 2310 2311 #ifdef EHCI_URB_TRACE 2312 ehci_dbg(ehci, 2313 "submit %p dev%s ep%d%s-iso len %d\n", 2314 urb, urb->dev->devpath, 2315 usb_pipeendpoint(urb->pipe), 2316 usb_pipein(urb->pipe) ? "in" : "out", 2317 urb->transfer_buffer_length); 2318 #endif 2319 2320 /* allocate SITDs */ 2321 status = sitd_urb_transaction(stream, ehci, urb, mem_flags); 2322 if (status < 0) { 2323 ehci_dbg(ehci, "can't init sitds\n"); 2324 goto done; 2325 } 2326 2327 /* schedule ... need to lock */ 2328 spin_lock_irqsave(&ehci->lock, flags); 2329 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { 2330 status = -ESHUTDOWN; 2331 goto done_not_linked; 2332 } 2333 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); 2334 if (unlikely(status)) 2335 goto done_not_linked; 2336 status = iso_stream_schedule(ehci, urb, stream); 2337 if (likely(status == 0)) { 2338 sitd_link_urb(ehci, urb, ehci->periodic_size << 3, stream); 2339 } else if (status > 0) { 2340 status = 0; 2341 ehci_urb_done(ehci, urb, 0); 2342 } else { 2343 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 2344 } 2345 done_not_linked: 2346 spin_unlock_irqrestore(&ehci->lock, flags); 2347 done: 2348 return status; 2349 } 2350 2351 /*-------------------------------------------------------------------------*/ 2352 2353 static void scan_isoc(struct ehci_hcd *ehci) 2354 { 2355 unsigned uf, now_frame, frame; 2356 unsigned fmask = ehci->periodic_size - 1; 2357 bool modified, live; 2358 union ehci_shadow q, *q_p; 2359 __hc32 type, *hw_p; 2360 2361 /* 2362 * When running, scan from last scan point up to "now" 2363 * else clean up by scanning everything that's left. 2364 * Touches as few pages as possible: cache-friendly. 2365 */ 2366 if (ehci->rh_state >= EHCI_RH_RUNNING) { 2367 uf = ehci_read_frame_index(ehci); 2368 now_frame = (uf >> 3) & fmask; 2369 live = true; 2370 } else { 2371 now_frame = (ehci->last_iso_frame - 1) & fmask; 2372 live = false; 2373 } 2374 ehci->now_frame = now_frame; 2375 2376 frame = ehci->last_iso_frame; 2377 2378 restart: 2379 /* Scan each element in frame's queue for completions */ 2380 q_p = &ehci->pshadow[frame]; 2381 hw_p = &ehci->periodic[frame]; 2382 q.ptr = q_p->ptr; 2383 type = Q_NEXT_TYPE(ehci, *hw_p); 2384 modified = false; 2385 2386 while (q.ptr != NULL) { 2387 switch (hc32_to_cpu(ehci, type)) { 2388 case Q_TYPE_ITD: 2389 /* 2390 * If this ITD is still active, leave it for 2391 * later processing ... check the next entry. 2392 * No need to check for activity unless the 2393 * frame is current. 2394 */ 2395 if (frame == now_frame && live) { 2396 rmb(); 2397 for (uf = 0; uf < 8; uf++) { 2398 if (q.itd->hw_transaction[uf] & 2399 ITD_ACTIVE(ehci)) 2400 break; 2401 } 2402 if (uf < 8) { 2403 q_p = &q.itd->itd_next; 2404 hw_p = &q.itd->hw_next; 2405 type = Q_NEXT_TYPE(ehci, 2406 q.itd->hw_next); 2407 q = *q_p; 2408 break; 2409 } 2410 } 2411 2412 /* 2413 * Take finished ITDs out of the schedule 2414 * and process them: recycle, maybe report 2415 * URB completion. HC won't cache the 2416 * pointer for much longer, if at all. 2417 */ 2418 *q_p = q.itd->itd_next; 2419 if (!ehci->use_dummy_qh || 2420 q.itd->hw_next != EHCI_LIST_END(ehci)) 2421 *hw_p = q.itd->hw_next; 2422 else 2423 *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma); 2424 type = Q_NEXT_TYPE(ehci, q.itd->hw_next); 2425 wmb(); 2426 modified = itd_complete(ehci, q.itd); 2427 q = *q_p; 2428 break; 2429 case Q_TYPE_SITD: 2430 /* 2431 * If this SITD is still active, leave it for 2432 * later processing ... check the next entry. 2433 * No need to check for activity unless the 2434 * frame is current. 2435 */ 2436 if (((frame == now_frame) || 2437 (((frame + 1) & fmask) == now_frame)) 2438 && live 2439 && (q.sitd->hw_results & SITD_ACTIVE(ehci))) { 2440 2441 q_p = &q.sitd->sitd_next; 2442 hw_p = &q.sitd->hw_next; 2443 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next); 2444 q = *q_p; 2445 break; 2446 } 2447 2448 /* 2449 * Take finished SITDs out of the schedule 2450 * and process them: recycle, maybe report 2451 * URB completion. 2452 */ 2453 *q_p = q.sitd->sitd_next; 2454 if (!ehci->use_dummy_qh || 2455 q.sitd->hw_next != EHCI_LIST_END(ehci)) 2456 *hw_p = q.sitd->hw_next; 2457 else 2458 *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma); 2459 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next); 2460 wmb(); 2461 modified = sitd_complete(ehci, q.sitd); 2462 q = *q_p; 2463 break; 2464 default: 2465 ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n", 2466 type, frame, q.ptr); 2467 /* BUG(); */ 2468 fallthrough; 2469 case Q_TYPE_QH: 2470 case Q_TYPE_FSTN: 2471 /* End of the iTDs and siTDs */ 2472 q.ptr = NULL; 2473 break; 2474 } 2475 2476 /* Assume completion callbacks modify the queue */ 2477 if (unlikely(modified && ehci->isoc_count > 0)) 2478 goto restart; 2479 } 2480 2481 /* Stop when we have reached the current frame */ 2482 if (frame == now_frame) 2483 return; 2484 2485 /* The last frame may still have active siTDs */ 2486 ehci->last_iso_frame = frame; 2487 frame = (frame + 1) & fmask; 2488 2489 goto restart; 2490 } 2491