xref: /openbmc/linux/drivers/usb/host/ehci-sched.c (revision b6bec26c)
1 /*
2  * Copyright (c) 2001-2004 by David Brownell
3  * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation; either version 2 of the License, or (at your
8  * option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software Foundation,
17  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19 
20 /* this file is part of ehci-hcd.c */
21 
22 /*-------------------------------------------------------------------------*/
23 
24 /*
25  * EHCI scheduled transaction support:  interrupt, iso, split iso
26  * These are called "periodic" transactions in the EHCI spec.
27  *
28  * Note that for interrupt transfers, the QH/QTD manipulation is shared
29  * with the "asynchronous" transaction support (control/bulk transfers).
30  * The only real difference is in how interrupt transfers are scheduled.
31  *
32  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33  * It keeps track of every ITD (or SITD) that's linked, and holds enough
34  * pre-calculated schedule data to make appending to the queue be quick.
35  */
36 
37 static int ehci_get_frame (struct usb_hcd *hcd);
38 
39 /*
40  * periodic_next_shadow - return "next" pointer on shadow list
41  * @periodic: host pointer to qh/itd/sitd
42  * @tag: hardware tag for type of this record
43  */
44 static union ehci_shadow *
45 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
46 		__hc32 tag)
47 {
48 	switch (hc32_to_cpu(ehci, tag)) {
49 	case Q_TYPE_QH:
50 		return &periodic->qh->qh_next;
51 	case Q_TYPE_FSTN:
52 		return &periodic->fstn->fstn_next;
53 	case Q_TYPE_ITD:
54 		return &periodic->itd->itd_next;
55 	// case Q_TYPE_SITD:
56 	default:
57 		return &periodic->sitd->sitd_next;
58 	}
59 }
60 
61 static __hc32 *
62 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
63 		__hc32 tag)
64 {
65 	switch (hc32_to_cpu(ehci, tag)) {
66 	/* our ehci_shadow.qh is actually software part */
67 	case Q_TYPE_QH:
68 		return &periodic->qh->hw->hw_next;
69 	/* others are hw parts */
70 	default:
71 		return periodic->hw_next;
72 	}
73 }
74 
75 /* caller must hold ehci->lock */
76 static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr)
77 {
78 	union ehci_shadow	*prev_p = &ehci->pshadow[frame];
79 	__hc32			*hw_p = &ehci->periodic[frame];
80 	union ehci_shadow	here = *prev_p;
81 
82 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
83 	while (here.ptr && here.ptr != ptr) {
84 		prev_p = periodic_next_shadow(ehci, prev_p,
85 				Q_NEXT_TYPE(ehci, *hw_p));
86 		hw_p = shadow_next_periodic(ehci, &here,
87 				Q_NEXT_TYPE(ehci, *hw_p));
88 		here = *prev_p;
89 	}
90 	/* an interrupt entry (at list end) could have been shared */
91 	if (!here.ptr)
92 		return;
93 
94 	/* update shadow and hardware lists ... the old "next" pointers
95 	 * from ptr may still be in use, the caller updates them.
96 	 */
97 	*prev_p = *periodic_next_shadow(ehci, &here,
98 			Q_NEXT_TYPE(ehci, *hw_p));
99 
100 	if (!ehci->use_dummy_qh ||
101 	    *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
102 			!= EHCI_LIST_END(ehci))
103 		*hw_p = *shadow_next_periodic(ehci, &here,
104 				Q_NEXT_TYPE(ehci, *hw_p));
105 	else
106 		*hw_p = ehci->dummy->qh_dma;
107 }
108 
109 /* how many of the uframe's 125 usecs are allocated? */
110 static unsigned short
111 periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe)
112 {
113 	__hc32			*hw_p = &ehci->periodic [frame];
114 	union ehci_shadow	*q = &ehci->pshadow [frame];
115 	unsigned		usecs = 0;
116 	struct ehci_qh_hw	*hw;
117 
118 	while (q->ptr) {
119 		switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
120 		case Q_TYPE_QH:
121 			hw = q->qh->hw;
122 			/* is it in the S-mask? */
123 			if (hw->hw_info2 & cpu_to_hc32(ehci, 1 << uframe))
124 				usecs += q->qh->usecs;
125 			/* ... or C-mask? */
126 			if (hw->hw_info2 & cpu_to_hc32(ehci,
127 					1 << (8 + uframe)))
128 				usecs += q->qh->c_usecs;
129 			hw_p = &hw->hw_next;
130 			q = &q->qh->qh_next;
131 			break;
132 		// case Q_TYPE_FSTN:
133 		default:
134 			/* for "save place" FSTNs, count the relevant INTR
135 			 * bandwidth from the previous frame
136 			 */
137 			if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) {
138 				ehci_dbg (ehci, "ignoring FSTN cost ...\n");
139 			}
140 			hw_p = &q->fstn->hw_next;
141 			q = &q->fstn->fstn_next;
142 			break;
143 		case Q_TYPE_ITD:
144 			if (q->itd->hw_transaction[uframe])
145 				usecs += q->itd->stream->usecs;
146 			hw_p = &q->itd->hw_next;
147 			q = &q->itd->itd_next;
148 			break;
149 		case Q_TYPE_SITD:
150 			/* is it in the S-mask?  (count SPLIT, DATA) */
151 			if (q->sitd->hw_uframe & cpu_to_hc32(ehci,
152 					1 << uframe)) {
153 				if (q->sitd->hw_fullspeed_ep &
154 						cpu_to_hc32(ehci, 1<<31))
155 					usecs += q->sitd->stream->usecs;
156 				else	/* worst case for OUT start-split */
157 					usecs += HS_USECS_ISO (188);
158 			}
159 
160 			/* ... C-mask?  (count CSPLIT, DATA) */
161 			if (q->sitd->hw_uframe &
162 					cpu_to_hc32(ehci, 1 << (8 + uframe))) {
163 				/* worst case for IN complete-split */
164 				usecs += q->sitd->stream->c_usecs;
165 			}
166 
167 			hw_p = &q->sitd->hw_next;
168 			q = &q->sitd->sitd_next;
169 			break;
170 		}
171 	}
172 #ifdef	DEBUG
173 	if (usecs > ehci->uframe_periodic_max)
174 		ehci_err (ehci, "uframe %d sched overrun: %d usecs\n",
175 			frame * 8 + uframe, usecs);
176 #endif
177 	return usecs;
178 }
179 
180 /*-------------------------------------------------------------------------*/
181 
182 static int same_tt (struct usb_device *dev1, struct usb_device *dev2)
183 {
184 	if (!dev1->tt || !dev2->tt)
185 		return 0;
186 	if (dev1->tt != dev2->tt)
187 		return 0;
188 	if (dev1->tt->multi)
189 		return dev1->ttport == dev2->ttport;
190 	else
191 		return 1;
192 }
193 
194 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
195 
196 /* Which uframe does the low/fullspeed transfer start in?
197  *
198  * The parameter is the mask of ssplits in "H-frame" terms
199  * and this returns the transfer start uframe in "B-frame" terms,
200  * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
201  * will cause a transfer in "B-frame" uframe 0.  "B-frames" lag
202  * "H-frames" by 1 uframe.  See the EHCI spec sec 4.5 and figure 4.7.
203  */
204 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
205 {
206 	unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask);
207 	if (!smask) {
208 		ehci_err(ehci, "invalid empty smask!\n");
209 		/* uframe 7 can't have bw so this will indicate failure */
210 		return 7;
211 	}
212 	return ffs(smask) - 1;
213 }
214 
215 static const unsigned char
216 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 125, 25 };
217 
218 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
219 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
220 {
221 	int i;
222 	for (i=0; i<7; i++) {
223 		if (max_tt_usecs[i] < tt_usecs[i]) {
224 			tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
225 			tt_usecs[i] = max_tt_usecs[i];
226 		}
227 	}
228 }
229 
230 /* How many of the tt's periodic downstream 1000 usecs are allocated?
231  *
232  * While this measures the bandwidth in terms of usecs/uframe,
233  * the low/fullspeed bus has no notion of uframes, so any particular
234  * low/fullspeed transfer can "carry over" from one uframe to the next,
235  * since the TT just performs downstream transfers in sequence.
236  *
237  * For example two separate 100 usec transfers can start in the same uframe,
238  * and the second one would "carry over" 75 usecs into the next uframe.
239  */
240 static void
241 periodic_tt_usecs (
242 	struct ehci_hcd *ehci,
243 	struct usb_device *dev,
244 	unsigned frame,
245 	unsigned short tt_usecs[8]
246 )
247 {
248 	__hc32			*hw_p = &ehci->periodic [frame];
249 	union ehci_shadow	*q = &ehci->pshadow [frame];
250 	unsigned char		uf;
251 
252 	memset(tt_usecs, 0, 16);
253 
254 	while (q->ptr) {
255 		switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
256 		case Q_TYPE_ITD:
257 			hw_p = &q->itd->hw_next;
258 			q = &q->itd->itd_next;
259 			continue;
260 		case Q_TYPE_QH:
261 			if (same_tt(dev, q->qh->dev)) {
262 				uf = tt_start_uframe(ehci, q->qh->hw->hw_info2);
263 				tt_usecs[uf] += q->qh->tt_usecs;
264 			}
265 			hw_p = &q->qh->hw->hw_next;
266 			q = &q->qh->qh_next;
267 			continue;
268 		case Q_TYPE_SITD:
269 			if (same_tt(dev, q->sitd->urb->dev)) {
270 				uf = tt_start_uframe(ehci, q->sitd->hw_uframe);
271 				tt_usecs[uf] += q->sitd->stream->tt_usecs;
272 			}
273 			hw_p = &q->sitd->hw_next;
274 			q = &q->sitd->sitd_next;
275 			continue;
276 		// case Q_TYPE_FSTN:
277 		default:
278 			ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n",
279 					frame);
280 			hw_p = &q->fstn->hw_next;
281 			q = &q->fstn->fstn_next;
282 		}
283 	}
284 
285 	carryover_tt_bandwidth(tt_usecs);
286 
287 	if (max_tt_usecs[7] < tt_usecs[7])
288 		ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n",
289 			frame, tt_usecs[7] - max_tt_usecs[7]);
290 }
291 
292 /*
293  * Return true if the device's tt's downstream bus is available for a
294  * periodic transfer of the specified length (usecs), starting at the
295  * specified frame/uframe.  Note that (as summarized in section 11.19
296  * of the usb 2.0 spec) TTs can buffer multiple transactions for each
297  * uframe.
298  *
299  * The uframe parameter is when the fullspeed/lowspeed transfer
300  * should be executed in "B-frame" terms, which is the same as the
301  * highspeed ssplit's uframe (which is in "H-frame" terms).  For example
302  * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
303  * See the EHCI spec sec 4.5 and fig 4.7.
304  *
305  * This checks if the full/lowspeed bus, at the specified starting uframe,
306  * has the specified bandwidth available, according to rules listed
307  * in USB 2.0 spec section 11.18.1 fig 11-60.
308  *
309  * This does not check if the transfer would exceed the max ssplit
310  * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
311  * since proper scheduling limits ssplits to less than 16 per uframe.
312  */
313 static int tt_available (
314 	struct ehci_hcd		*ehci,
315 	unsigned		period,
316 	struct usb_device	*dev,
317 	unsigned		frame,
318 	unsigned		uframe,
319 	u16			usecs
320 )
321 {
322 	if ((period == 0) || (uframe >= 7))	/* error */
323 		return 0;
324 
325 	for (; frame < ehci->periodic_size; frame += period) {
326 		unsigned short tt_usecs[8];
327 
328 		periodic_tt_usecs (ehci, dev, frame, tt_usecs);
329 
330 		ehci_vdbg(ehci, "tt frame %d check %d usecs start uframe %d in"
331 			" schedule %d/%d/%d/%d/%d/%d/%d/%d\n",
332 			frame, usecs, uframe,
333 			tt_usecs[0], tt_usecs[1], tt_usecs[2], tt_usecs[3],
334 			tt_usecs[4], tt_usecs[5], tt_usecs[6], tt_usecs[7]);
335 
336 		if (max_tt_usecs[uframe] <= tt_usecs[uframe]) {
337 			ehci_vdbg(ehci, "frame %d uframe %d fully scheduled\n",
338 				frame, uframe);
339 			return 0;
340 		}
341 
342 		/* special case for isoc transfers larger than 125us:
343 		 * the first and each subsequent fully used uframe
344 		 * must be empty, so as to not illegally delay
345 		 * already scheduled transactions
346 		 */
347 		if (125 < usecs) {
348 			int ufs = (usecs / 125);
349 			int i;
350 			for (i = uframe; i < (uframe + ufs) && i < 8; i++)
351 				if (0 < tt_usecs[i]) {
352 					ehci_vdbg(ehci,
353 						"multi-uframe xfer can't fit "
354 						"in frame %d uframe %d\n",
355 						frame, i);
356 					return 0;
357 				}
358 		}
359 
360 		tt_usecs[uframe] += usecs;
361 
362 		carryover_tt_bandwidth(tt_usecs);
363 
364 		/* fail if the carryover pushed bw past the last uframe's limit */
365 		if (max_tt_usecs[7] < tt_usecs[7]) {
366 			ehci_vdbg(ehci,
367 				"tt unavailable usecs %d frame %d uframe %d\n",
368 				usecs, frame, uframe);
369 			return 0;
370 		}
371 	}
372 
373 	return 1;
374 }
375 
376 #else
377 
378 /* return true iff the device's transaction translator is available
379  * for a periodic transfer starting at the specified frame, using
380  * all the uframes in the mask.
381  */
382 static int tt_no_collision (
383 	struct ehci_hcd		*ehci,
384 	unsigned		period,
385 	struct usb_device	*dev,
386 	unsigned		frame,
387 	u32			uf_mask
388 )
389 {
390 	if (period == 0)	/* error */
391 		return 0;
392 
393 	/* note bandwidth wastage:  split never follows csplit
394 	 * (different dev or endpoint) until the next uframe.
395 	 * calling convention doesn't make that distinction.
396 	 */
397 	for (; frame < ehci->periodic_size; frame += period) {
398 		union ehci_shadow	here;
399 		__hc32			type;
400 		struct ehci_qh_hw	*hw;
401 
402 		here = ehci->pshadow [frame];
403 		type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]);
404 		while (here.ptr) {
405 			switch (hc32_to_cpu(ehci, type)) {
406 			case Q_TYPE_ITD:
407 				type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
408 				here = here.itd->itd_next;
409 				continue;
410 			case Q_TYPE_QH:
411 				hw = here.qh->hw;
412 				if (same_tt (dev, here.qh->dev)) {
413 					u32		mask;
414 
415 					mask = hc32_to_cpu(ehci,
416 							hw->hw_info2);
417 					/* "knows" no gap is needed */
418 					mask |= mask >> 8;
419 					if (mask & uf_mask)
420 						break;
421 				}
422 				type = Q_NEXT_TYPE(ehci, hw->hw_next);
423 				here = here.qh->qh_next;
424 				continue;
425 			case Q_TYPE_SITD:
426 				if (same_tt (dev, here.sitd->urb->dev)) {
427 					u16		mask;
428 
429 					mask = hc32_to_cpu(ehci, here.sitd
430 								->hw_uframe);
431 					/* FIXME assumes no gap for IN! */
432 					mask |= mask >> 8;
433 					if (mask & uf_mask)
434 						break;
435 				}
436 				type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
437 				here = here.sitd->sitd_next;
438 				continue;
439 			// case Q_TYPE_FSTN:
440 			default:
441 				ehci_dbg (ehci,
442 					"periodic frame %d bogus type %d\n",
443 					frame, type);
444 			}
445 
446 			/* collision or error */
447 			return 0;
448 		}
449 	}
450 
451 	/* no collision */
452 	return 1;
453 }
454 
455 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
456 
457 /*-------------------------------------------------------------------------*/
458 
459 static void enable_periodic(struct ehci_hcd *ehci)
460 {
461 	if (ehci->periodic_count++)
462 		return;
463 
464 	/* Stop waiting to turn off the periodic schedule */
465 	ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC);
466 
467 	/* Don't start the schedule until PSS is 0 */
468 	ehci_poll_PSS(ehci);
469 	turn_on_io_watchdog(ehci);
470 }
471 
472 static void disable_periodic(struct ehci_hcd *ehci)
473 {
474 	if (--ehci->periodic_count)
475 		return;
476 
477 	/* Don't turn off the schedule until PSS is 1 */
478 	ehci_poll_PSS(ehci);
479 }
480 
481 /*-------------------------------------------------------------------------*/
482 
483 /* periodic schedule slots have iso tds (normal or split) first, then a
484  * sparse tree for active interrupt transfers.
485  *
486  * this just links in a qh; caller guarantees uframe masks are set right.
487  * no FSTN support (yet; ehci 0.96+)
488  */
489 static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
490 {
491 	unsigned	i;
492 	unsigned	period = qh->period;
493 
494 	dev_dbg (&qh->dev->dev,
495 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
496 		period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
497 			& (QH_CMASK | QH_SMASK),
498 		qh, qh->start, qh->usecs, qh->c_usecs);
499 
500 	/* high bandwidth, or otherwise every microframe */
501 	if (period == 0)
502 		period = 1;
503 
504 	for (i = qh->start; i < ehci->periodic_size; i += period) {
505 		union ehci_shadow	*prev = &ehci->pshadow[i];
506 		__hc32			*hw_p = &ehci->periodic[i];
507 		union ehci_shadow	here = *prev;
508 		__hc32			type = 0;
509 
510 		/* skip the iso nodes at list head */
511 		while (here.ptr) {
512 			type = Q_NEXT_TYPE(ehci, *hw_p);
513 			if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
514 				break;
515 			prev = periodic_next_shadow(ehci, prev, type);
516 			hw_p = shadow_next_periodic(ehci, &here, type);
517 			here = *prev;
518 		}
519 
520 		/* sorting each branch by period (slow-->fast)
521 		 * enables sharing interior tree nodes
522 		 */
523 		while (here.ptr && qh != here.qh) {
524 			if (qh->period > here.qh->period)
525 				break;
526 			prev = &here.qh->qh_next;
527 			hw_p = &here.qh->hw->hw_next;
528 			here = *prev;
529 		}
530 		/* link in this qh, unless some earlier pass did that */
531 		if (qh != here.qh) {
532 			qh->qh_next = here;
533 			if (here.qh)
534 				qh->hw->hw_next = *hw_p;
535 			wmb ();
536 			prev->qh = qh;
537 			*hw_p = QH_NEXT (ehci, qh->qh_dma);
538 		}
539 	}
540 	qh->qh_state = QH_STATE_LINKED;
541 	qh->xacterrs = 0;
542 
543 	/* update per-qh bandwidth for usbfs */
544 	ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period
545 		? ((qh->usecs + qh->c_usecs) / qh->period)
546 		: (qh->usecs * 8);
547 
548 	list_add(&qh->intr_node, &ehci->intr_qh_list);
549 
550 	/* maybe enable periodic schedule processing */
551 	++ehci->intr_count;
552 	enable_periodic(ehci);
553 }
554 
555 static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
556 {
557 	unsigned	i;
558 	unsigned	period;
559 
560 	/*
561 	 * If qh is for a low/full-speed device, simply unlinking it
562 	 * could interfere with an ongoing split transaction.  To unlink
563 	 * it safely would require setting the QH_INACTIVATE bit and
564 	 * waiting at least one frame, as described in EHCI 4.12.2.5.
565 	 *
566 	 * We won't bother with any of this.  Instead, we assume that the
567 	 * only reason for unlinking an interrupt QH while the current URB
568 	 * is still active is to dequeue all the URBs (flush the whole
569 	 * endpoint queue).
570 	 *
571 	 * If rebalancing the periodic schedule is ever implemented, this
572 	 * approach will no longer be valid.
573 	 */
574 
575 	/* high bandwidth, or otherwise part of every microframe */
576 	if ((period = qh->period) == 0)
577 		period = 1;
578 
579 	for (i = qh->start; i < ehci->periodic_size; i += period)
580 		periodic_unlink (ehci, i, qh);
581 
582 	/* update per-qh bandwidth for usbfs */
583 	ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period
584 		? ((qh->usecs + qh->c_usecs) / qh->period)
585 		: (qh->usecs * 8);
586 
587 	dev_dbg (&qh->dev->dev,
588 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
589 		qh->period,
590 		hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
591 		qh, qh->start, qh->usecs, qh->c_usecs);
592 
593 	/* qh->qh_next still "live" to HC */
594 	qh->qh_state = QH_STATE_UNLINK;
595 	qh->qh_next.ptr = NULL;
596 
597 	if (ehci->qh_scan_next == qh)
598 		ehci->qh_scan_next = list_entry(qh->intr_node.next,
599 				struct ehci_qh, intr_node);
600 	list_del(&qh->intr_node);
601 }
602 
603 static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
604 {
605 	/* If the QH isn't linked then there's nothing we can do
606 	 * unless we were called during a giveback, in which case
607 	 * qh_completions() has to deal with it.
608 	 */
609 	if (qh->qh_state != QH_STATE_LINKED) {
610 		if (qh->qh_state == QH_STATE_COMPLETING)
611 			qh->needs_rescan = 1;
612 		return;
613 	}
614 
615 	qh_unlink_periodic (ehci, qh);
616 
617 	/* Make sure the unlinks are visible before starting the timer */
618 	wmb();
619 
620 	/*
621 	 * The EHCI spec doesn't say how long it takes the controller to
622 	 * stop accessing an unlinked interrupt QH.  The timer delay is
623 	 * 9 uframes; presumably that will be long enough.
624 	 */
625 	qh->unlink_cycle = ehci->intr_unlink_cycle;
626 
627 	/* New entries go at the end of the intr_unlink list */
628 	if (ehci->intr_unlink)
629 		ehci->intr_unlink_last->unlink_next = qh;
630 	else
631 		ehci->intr_unlink = qh;
632 	ehci->intr_unlink_last = qh;
633 
634 	if (ehci->intr_unlinking)
635 		;	/* Avoid recursive calls */
636 	else if (ehci->rh_state < EHCI_RH_RUNNING)
637 		ehci_handle_intr_unlinks(ehci);
638 	else if (ehci->intr_unlink == qh) {
639 		ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true);
640 		++ehci->intr_unlink_cycle;
641 	}
642 }
643 
644 static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
645 {
646 	struct ehci_qh_hw	*hw = qh->hw;
647 	int			rc;
648 
649 	qh->qh_state = QH_STATE_IDLE;
650 	hw->hw_next = EHCI_LIST_END(ehci);
651 
652 	qh_completions(ehci, qh);
653 
654 	/* reschedule QH iff another request is queued */
655 	if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) {
656 		rc = qh_schedule(ehci, qh);
657 
658 		/* An error here likely indicates handshake failure
659 		 * or no space left in the schedule.  Neither fault
660 		 * should happen often ...
661 		 *
662 		 * FIXME kill the now-dysfunctional queued urbs
663 		 */
664 		if (rc != 0)
665 			ehci_err(ehci, "can't reschedule qh %p, err %d\n",
666 					qh, rc);
667 	}
668 
669 	/* maybe turn off periodic schedule */
670 	--ehci->intr_count;
671 	disable_periodic(ehci);
672 }
673 
674 /*-------------------------------------------------------------------------*/
675 
676 static int check_period (
677 	struct ehci_hcd *ehci,
678 	unsigned	frame,
679 	unsigned	uframe,
680 	unsigned	period,
681 	unsigned	usecs
682 ) {
683 	int		claimed;
684 
685 	/* complete split running into next frame?
686 	 * given FSTN support, we could sometimes check...
687 	 */
688 	if (uframe >= 8)
689 		return 0;
690 
691 	/* convert "usecs we need" to "max already claimed" */
692 	usecs = ehci->uframe_periodic_max - usecs;
693 
694 	/* we "know" 2 and 4 uframe intervals were rejected; so
695 	 * for period 0, check _every_ microframe in the schedule.
696 	 */
697 	if (unlikely (period == 0)) {
698 		do {
699 			for (uframe = 0; uframe < 7; uframe++) {
700 				claimed = periodic_usecs (ehci, frame, uframe);
701 				if (claimed > usecs)
702 					return 0;
703 			}
704 		} while ((frame += 1) < ehci->periodic_size);
705 
706 	/* just check the specified uframe, at that period */
707 	} else {
708 		do {
709 			claimed = periodic_usecs (ehci, frame, uframe);
710 			if (claimed > usecs)
711 				return 0;
712 		} while ((frame += period) < ehci->periodic_size);
713 	}
714 
715 	// success!
716 	return 1;
717 }
718 
719 static int check_intr_schedule (
720 	struct ehci_hcd		*ehci,
721 	unsigned		frame,
722 	unsigned		uframe,
723 	const struct ehci_qh	*qh,
724 	__hc32			*c_maskp
725 )
726 {
727 	int		retval = -ENOSPC;
728 	u8		mask = 0;
729 
730 	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
731 		goto done;
732 
733 	if (!check_period (ehci, frame, uframe, qh->period, qh->usecs))
734 		goto done;
735 	if (!qh->c_usecs) {
736 		retval = 0;
737 		*c_maskp = 0;
738 		goto done;
739 	}
740 
741 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
742 	if (tt_available (ehci, qh->period, qh->dev, frame, uframe,
743 				qh->tt_usecs)) {
744 		unsigned i;
745 
746 		/* TODO : this may need FSTN for SSPLIT in uframe 5. */
747 		for (i=uframe+1; i<8 && i<uframe+4; i++)
748 			if (!check_period (ehci, frame, i,
749 						qh->period, qh->c_usecs))
750 				goto done;
751 			else
752 				mask |= 1 << i;
753 
754 		retval = 0;
755 
756 		*c_maskp = cpu_to_hc32(ehci, mask << 8);
757 	}
758 #else
759 	/* Make sure this tt's buffer is also available for CSPLITs.
760 	 * We pessimize a bit; probably the typical full speed case
761 	 * doesn't need the second CSPLIT.
762 	 *
763 	 * NOTE:  both SPLIT and CSPLIT could be checked in just
764 	 * one smart pass...
765 	 */
766 	mask = 0x03 << (uframe + qh->gap_uf);
767 	*c_maskp = cpu_to_hc32(ehci, mask << 8);
768 
769 	mask |= 1 << uframe;
770 	if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) {
771 		if (!check_period (ehci, frame, uframe + qh->gap_uf + 1,
772 					qh->period, qh->c_usecs))
773 			goto done;
774 		if (!check_period (ehci, frame, uframe + qh->gap_uf,
775 					qh->period, qh->c_usecs))
776 			goto done;
777 		retval = 0;
778 	}
779 #endif
780 done:
781 	return retval;
782 }
783 
784 /* "first fit" scheduling policy used the first time through,
785  * or when the previous schedule slot can't be re-used.
786  */
787 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
788 {
789 	int		status;
790 	unsigned	uframe;
791 	__hc32		c_mask;
792 	unsigned	frame;		/* 0..(qh->period - 1), or NO_FRAME */
793 	struct ehci_qh_hw	*hw = qh->hw;
794 
795 	qh_refresh(ehci, qh);
796 	hw->hw_next = EHCI_LIST_END(ehci);
797 	frame = qh->start;
798 
799 	/* reuse the previous schedule slots, if we can */
800 	if (frame < qh->period) {
801 		uframe = ffs(hc32_to_cpup(ehci, &hw->hw_info2) & QH_SMASK);
802 		status = check_intr_schedule (ehci, frame, --uframe,
803 				qh, &c_mask);
804 	} else {
805 		uframe = 0;
806 		c_mask = 0;
807 		status = -ENOSPC;
808 	}
809 
810 	/* else scan the schedule to find a group of slots such that all
811 	 * uframes have enough periodic bandwidth available.
812 	 */
813 	if (status) {
814 		/* "normal" case, uframing flexible except with splits */
815 		if (qh->period) {
816 			int		i;
817 
818 			for (i = qh->period; status && i > 0; --i) {
819 				frame = ++ehci->random_frame % qh->period;
820 				for (uframe = 0; uframe < 8; uframe++) {
821 					status = check_intr_schedule (ehci,
822 							frame, uframe, qh,
823 							&c_mask);
824 					if (status == 0)
825 						break;
826 				}
827 			}
828 
829 		/* qh->period == 0 means every uframe */
830 		} else {
831 			frame = 0;
832 			status = check_intr_schedule (ehci, 0, 0, qh, &c_mask);
833 		}
834 		if (status)
835 			goto done;
836 		qh->start = frame;
837 
838 		/* reset S-frame and (maybe) C-frame masks */
839 		hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
840 		hw->hw_info2 |= qh->period
841 			? cpu_to_hc32(ehci, 1 << uframe)
842 			: cpu_to_hc32(ehci, QH_SMASK);
843 		hw->hw_info2 |= c_mask;
844 	} else
845 		ehci_dbg (ehci, "reused qh %p schedule\n", qh);
846 
847 	/* stuff into the periodic schedule */
848 	qh_link_periodic(ehci, qh);
849 done:
850 	return status;
851 }
852 
853 static int intr_submit (
854 	struct ehci_hcd		*ehci,
855 	struct urb		*urb,
856 	struct list_head	*qtd_list,
857 	gfp_t			mem_flags
858 ) {
859 	unsigned		epnum;
860 	unsigned long		flags;
861 	struct ehci_qh		*qh;
862 	int			status;
863 	struct list_head	empty;
864 
865 	/* get endpoint and transfer/schedule data */
866 	epnum = urb->ep->desc.bEndpointAddress;
867 
868 	spin_lock_irqsave (&ehci->lock, flags);
869 
870 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
871 		status = -ESHUTDOWN;
872 		goto done_not_linked;
873 	}
874 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
875 	if (unlikely(status))
876 		goto done_not_linked;
877 
878 	/* get qh and force any scheduling errors */
879 	INIT_LIST_HEAD (&empty);
880 	qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
881 	if (qh == NULL) {
882 		status = -ENOMEM;
883 		goto done;
884 	}
885 	if (qh->qh_state == QH_STATE_IDLE) {
886 		if ((status = qh_schedule (ehci, qh)) != 0)
887 			goto done;
888 	}
889 
890 	/* then queue the urb's tds to the qh */
891 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
892 	BUG_ON (qh == NULL);
893 
894 	/* ... update usbfs periodic stats */
895 	ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
896 
897 done:
898 	if (unlikely(status))
899 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
900 done_not_linked:
901 	spin_unlock_irqrestore (&ehci->lock, flags);
902 	if (status)
903 		qtd_list_free (ehci, urb, qtd_list);
904 
905 	return status;
906 }
907 
908 static void scan_intr(struct ehci_hcd *ehci)
909 {
910 	struct ehci_qh		*qh;
911 
912 	list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list,
913 			intr_node) {
914  rescan:
915 		/* clean any finished work for this qh */
916 		if (!list_empty(&qh->qtd_list)) {
917 			int temp;
918 
919 			/*
920 			 * Unlinks could happen here; completion reporting
921 			 * drops the lock.  That's why ehci->qh_scan_next
922 			 * always holds the next qh to scan; if the next qh
923 			 * gets unlinked then ehci->qh_scan_next is adjusted
924 			 * in qh_unlink_periodic().
925 			 */
926 			temp = qh_completions(ehci, qh);
927 			if (unlikely(qh->needs_rescan ||
928 					(list_empty(&qh->qtd_list) &&
929 						qh->qh_state == QH_STATE_LINKED)))
930 				start_unlink_intr(ehci, qh);
931 			else if (temp != 0)
932 				goto rescan;
933 		}
934 	}
935 }
936 
937 /*-------------------------------------------------------------------------*/
938 
939 /* ehci_iso_stream ops work with both ITD and SITD */
940 
941 static struct ehci_iso_stream *
942 iso_stream_alloc (gfp_t mem_flags)
943 {
944 	struct ehci_iso_stream *stream;
945 
946 	stream = kzalloc(sizeof *stream, mem_flags);
947 	if (likely (stream != NULL)) {
948 		INIT_LIST_HEAD(&stream->td_list);
949 		INIT_LIST_HEAD(&stream->free_list);
950 		stream->next_uframe = -1;
951 	}
952 	return stream;
953 }
954 
955 static void
956 iso_stream_init (
957 	struct ehci_hcd		*ehci,
958 	struct ehci_iso_stream	*stream,
959 	struct usb_device	*dev,
960 	int			pipe,
961 	unsigned		interval
962 )
963 {
964 	static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
965 
966 	u32			buf1;
967 	unsigned		epnum, maxp;
968 	int			is_input;
969 	long			bandwidth;
970 
971 	/*
972 	 * this might be a "high bandwidth" highspeed endpoint,
973 	 * as encoded in the ep descriptor's wMaxPacket field
974 	 */
975 	epnum = usb_pipeendpoint (pipe);
976 	is_input = usb_pipein (pipe) ? USB_DIR_IN : 0;
977 	maxp = usb_maxpacket(dev, pipe, !is_input);
978 	if (is_input) {
979 		buf1 = (1 << 11);
980 	} else {
981 		buf1 = 0;
982 	}
983 
984 	/* knows about ITD vs SITD */
985 	if (dev->speed == USB_SPEED_HIGH) {
986 		unsigned multi = hb_mult(maxp);
987 
988 		stream->highspeed = 1;
989 
990 		maxp = max_packet(maxp);
991 		buf1 |= maxp;
992 		maxp *= multi;
993 
994 		stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
995 		stream->buf1 = cpu_to_hc32(ehci, buf1);
996 		stream->buf2 = cpu_to_hc32(ehci, multi);
997 
998 		/* usbfs wants to report the average usecs per frame tied up
999 		 * when transfers on this endpoint are scheduled ...
1000 		 */
1001 		stream->usecs = HS_USECS_ISO (maxp);
1002 		bandwidth = stream->usecs * 8;
1003 		bandwidth /= interval;
1004 
1005 	} else {
1006 		u32		addr;
1007 		int		think_time;
1008 		int		hs_transfers;
1009 
1010 		addr = dev->ttport << 24;
1011 		if (!ehci_is_TDI(ehci)
1012 				|| (dev->tt->hub !=
1013 					ehci_to_hcd(ehci)->self.root_hub))
1014 			addr |= dev->tt->hub->devnum << 16;
1015 		addr |= epnum << 8;
1016 		addr |= dev->devnum;
1017 		stream->usecs = HS_USECS_ISO (maxp);
1018 		think_time = dev->tt ? dev->tt->think_time : 0;
1019 		stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time (
1020 				dev->speed, is_input, 1, maxp));
1021 		hs_transfers = max (1u, (maxp + 187) / 188);
1022 		if (is_input) {
1023 			u32	tmp;
1024 
1025 			addr |= 1 << 31;
1026 			stream->c_usecs = stream->usecs;
1027 			stream->usecs = HS_USECS_ISO (1);
1028 			stream->raw_mask = 1;
1029 
1030 			/* c-mask as specified in USB 2.0 11.18.4 3.c */
1031 			tmp = (1 << (hs_transfers + 2)) - 1;
1032 			stream->raw_mask |= tmp << (8 + 2);
1033 		} else
1034 			stream->raw_mask = smask_out [hs_transfers - 1];
1035 		bandwidth = stream->usecs + stream->c_usecs;
1036 		bandwidth /= interval << 3;
1037 
1038 		/* stream->splits gets created from raw_mask later */
1039 		stream->address = cpu_to_hc32(ehci, addr);
1040 	}
1041 	stream->bandwidth = bandwidth;
1042 
1043 	stream->udev = dev;
1044 
1045 	stream->bEndpointAddress = is_input | epnum;
1046 	stream->interval = interval;
1047 	stream->maxp = maxp;
1048 }
1049 
1050 static struct ehci_iso_stream *
1051 iso_stream_find (struct ehci_hcd *ehci, struct urb *urb)
1052 {
1053 	unsigned		epnum;
1054 	struct ehci_iso_stream	*stream;
1055 	struct usb_host_endpoint *ep;
1056 	unsigned long		flags;
1057 
1058 	epnum = usb_pipeendpoint (urb->pipe);
1059 	if (usb_pipein(urb->pipe))
1060 		ep = urb->dev->ep_in[epnum];
1061 	else
1062 		ep = urb->dev->ep_out[epnum];
1063 
1064 	spin_lock_irqsave (&ehci->lock, flags);
1065 	stream = ep->hcpriv;
1066 
1067 	if (unlikely (stream == NULL)) {
1068 		stream = iso_stream_alloc(GFP_ATOMIC);
1069 		if (likely (stream != NULL)) {
1070 			ep->hcpriv = stream;
1071 			stream->ep = ep;
1072 			iso_stream_init(ehci, stream, urb->dev, urb->pipe,
1073 					urb->interval);
1074 		}
1075 
1076 	/* if dev->ep [epnum] is a QH, hw is set */
1077 	} else if (unlikely (stream->hw != NULL)) {
1078 		ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n",
1079 			urb->dev->devpath, epnum,
1080 			usb_pipein(urb->pipe) ? "in" : "out");
1081 		stream = NULL;
1082 	}
1083 
1084 	spin_unlock_irqrestore (&ehci->lock, flags);
1085 	return stream;
1086 }
1087 
1088 /*-------------------------------------------------------------------------*/
1089 
1090 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1091 
1092 static struct ehci_iso_sched *
1093 iso_sched_alloc (unsigned packets, gfp_t mem_flags)
1094 {
1095 	struct ehci_iso_sched	*iso_sched;
1096 	int			size = sizeof *iso_sched;
1097 
1098 	size += packets * sizeof (struct ehci_iso_packet);
1099 	iso_sched = kzalloc(size, mem_flags);
1100 	if (likely (iso_sched != NULL)) {
1101 		INIT_LIST_HEAD (&iso_sched->td_list);
1102 	}
1103 	return iso_sched;
1104 }
1105 
1106 static inline void
1107 itd_sched_init(
1108 	struct ehci_hcd		*ehci,
1109 	struct ehci_iso_sched	*iso_sched,
1110 	struct ehci_iso_stream	*stream,
1111 	struct urb		*urb
1112 )
1113 {
1114 	unsigned	i;
1115 	dma_addr_t	dma = urb->transfer_dma;
1116 
1117 	/* how many uframes are needed for these transfers */
1118 	iso_sched->span = urb->number_of_packets * stream->interval;
1119 
1120 	/* figure out per-uframe itd fields that we'll need later
1121 	 * when we fit new itds into the schedule.
1122 	 */
1123 	for (i = 0; i < urb->number_of_packets; i++) {
1124 		struct ehci_iso_packet	*uframe = &iso_sched->packet [i];
1125 		unsigned		length;
1126 		dma_addr_t		buf;
1127 		u32			trans;
1128 
1129 		length = urb->iso_frame_desc [i].length;
1130 		buf = dma + urb->iso_frame_desc [i].offset;
1131 
1132 		trans = EHCI_ISOC_ACTIVE;
1133 		trans |= buf & 0x0fff;
1134 		if (unlikely (((i + 1) == urb->number_of_packets))
1135 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1136 			trans |= EHCI_ITD_IOC;
1137 		trans |= length << 16;
1138 		uframe->transaction = cpu_to_hc32(ehci, trans);
1139 
1140 		/* might need to cross a buffer page within a uframe */
1141 		uframe->bufp = (buf & ~(u64)0x0fff);
1142 		buf += length;
1143 		if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff))))
1144 			uframe->cross = 1;
1145 	}
1146 }
1147 
1148 static void
1149 iso_sched_free (
1150 	struct ehci_iso_stream	*stream,
1151 	struct ehci_iso_sched	*iso_sched
1152 )
1153 {
1154 	if (!iso_sched)
1155 		return;
1156 	// caller must hold ehci->lock!
1157 	list_splice (&iso_sched->td_list, &stream->free_list);
1158 	kfree (iso_sched);
1159 }
1160 
1161 static int
1162 itd_urb_transaction (
1163 	struct ehci_iso_stream	*stream,
1164 	struct ehci_hcd		*ehci,
1165 	struct urb		*urb,
1166 	gfp_t			mem_flags
1167 )
1168 {
1169 	struct ehci_itd		*itd;
1170 	dma_addr_t		itd_dma;
1171 	int			i;
1172 	unsigned		num_itds;
1173 	struct ehci_iso_sched	*sched;
1174 	unsigned long		flags;
1175 
1176 	sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1177 	if (unlikely (sched == NULL))
1178 		return -ENOMEM;
1179 
1180 	itd_sched_init(ehci, sched, stream, urb);
1181 
1182 	if (urb->interval < 8)
1183 		num_itds = 1 + (sched->span + 7) / 8;
1184 	else
1185 		num_itds = urb->number_of_packets;
1186 
1187 	/* allocate/init ITDs */
1188 	spin_lock_irqsave (&ehci->lock, flags);
1189 	for (i = 0; i < num_itds; i++) {
1190 
1191 		/*
1192 		 * Use iTDs from the free list, but not iTDs that may
1193 		 * still be in use by the hardware.
1194 		 */
1195 		if (likely(!list_empty(&stream->free_list))) {
1196 			itd = list_first_entry(&stream->free_list,
1197 					struct ehci_itd, itd_list);
1198 			if (itd->frame == ehci->now_frame)
1199 				goto alloc_itd;
1200 			list_del (&itd->itd_list);
1201 			itd_dma = itd->itd_dma;
1202 		} else {
1203  alloc_itd:
1204 			spin_unlock_irqrestore (&ehci->lock, flags);
1205 			itd = dma_pool_alloc (ehci->itd_pool, mem_flags,
1206 					&itd_dma);
1207 			spin_lock_irqsave (&ehci->lock, flags);
1208 			if (!itd) {
1209 				iso_sched_free(stream, sched);
1210 				spin_unlock_irqrestore(&ehci->lock, flags);
1211 				return -ENOMEM;
1212 			}
1213 		}
1214 
1215 		memset (itd, 0, sizeof *itd);
1216 		itd->itd_dma = itd_dma;
1217 		list_add (&itd->itd_list, &sched->td_list);
1218 	}
1219 	spin_unlock_irqrestore (&ehci->lock, flags);
1220 
1221 	/* temporarily store schedule info in hcpriv */
1222 	urb->hcpriv = sched;
1223 	urb->error_count = 0;
1224 	return 0;
1225 }
1226 
1227 /*-------------------------------------------------------------------------*/
1228 
1229 static inline int
1230 itd_slot_ok (
1231 	struct ehci_hcd		*ehci,
1232 	u32			mod,
1233 	u32			uframe,
1234 	u8			usecs,
1235 	u32			period
1236 )
1237 {
1238 	uframe %= period;
1239 	do {
1240 		/* can't commit more than uframe_periodic_max usec */
1241 		if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7)
1242 				> (ehci->uframe_periodic_max - usecs))
1243 			return 0;
1244 
1245 		/* we know urb->interval is 2^N uframes */
1246 		uframe += period;
1247 	} while (uframe < mod);
1248 	return 1;
1249 }
1250 
1251 static inline int
1252 sitd_slot_ok (
1253 	struct ehci_hcd		*ehci,
1254 	u32			mod,
1255 	struct ehci_iso_stream	*stream,
1256 	u32			uframe,
1257 	struct ehci_iso_sched	*sched,
1258 	u32			period_uframes
1259 )
1260 {
1261 	u32			mask, tmp;
1262 	u32			frame, uf;
1263 
1264 	mask = stream->raw_mask << (uframe & 7);
1265 
1266 	/* for IN, don't wrap CSPLIT into the next frame */
1267 	if (mask & ~0xffff)
1268 		return 0;
1269 
1270 	/* check bandwidth */
1271 	uframe %= period_uframes;
1272 	frame = uframe >> 3;
1273 
1274 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1275 	/* The tt's fullspeed bus bandwidth must be available.
1276 	 * tt_available scheduling guarantees 10+% for control/bulk.
1277 	 */
1278 	uf = uframe & 7;
1279 	if (!tt_available(ehci, period_uframes >> 3,
1280 			stream->udev, frame, uf, stream->tt_usecs))
1281 		return 0;
1282 #else
1283 	/* tt must be idle for start(s), any gap, and csplit.
1284 	 * assume scheduling slop leaves 10+% for control/bulk.
1285 	 */
1286 	if (!tt_no_collision(ehci, period_uframes >> 3,
1287 			stream->udev, frame, mask))
1288 		return 0;
1289 #endif
1290 
1291 	/* this multi-pass logic is simple, but performance may
1292 	 * suffer when the schedule data isn't cached.
1293 	 */
1294 	do {
1295 		u32		max_used;
1296 
1297 		frame = uframe >> 3;
1298 		uf = uframe & 7;
1299 
1300 		/* check starts (OUT uses more than one) */
1301 		max_used = ehci->uframe_periodic_max - stream->usecs;
1302 		for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) {
1303 			if (periodic_usecs (ehci, frame, uf) > max_used)
1304 				return 0;
1305 		}
1306 
1307 		/* for IN, check CSPLIT */
1308 		if (stream->c_usecs) {
1309 			uf = uframe & 7;
1310 			max_used = ehci->uframe_periodic_max - stream->c_usecs;
1311 			do {
1312 				tmp = 1 << uf;
1313 				tmp <<= 8;
1314 				if ((stream->raw_mask & tmp) == 0)
1315 					continue;
1316 				if (periodic_usecs (ehci, frame, uf)
1317 						> max_used)
1318 					return 0;
1319 			} while (++uf < 8);
1320 		}
1321 
1322 		/* we know urb->interval is 2^N uframes */
1323 		uframe += period_uframes;
1324 	} while (uframe < mod);
1325 
1326 	stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7));
1327 	return 1;
1328 }
1329 
1330 /*
1331  * This scheduler plans almost as far into the future as it has actual
1332  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
1333  * "as small as possible" to be cache-friendlier.)  That limits the size
1334  * transfers you can stream reliably; avoid more than 64 msec per urb.
1335  * Also avoid queue depths of less than ehci's worst irq latency (affected
1336  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1337  * and other factors); or more than about 230 msec total (for portability,
1338  * given EHCI_TUNE_FLS and the slop).  Or, write a smarter scheduler!
1339  */
1340 
1341 #define SCHEDULING_DELAY	40	/* microframes */
1342 
1343 static int
1344 iso_stream_schedule (
1345 	struct ehci_hcd		*ehci,
1346 	struct urb		*urb,
1347 	struct ehci_iso_stream	*stream
1348 )
1349 {
1350 	u32			now, base, next, start, period, span;
1351 	int			status;
1352 	unsigned		mod = ehci->periodic_size << 3;
1353 	struct ehci_iso_sched	*sched = urb->hcpriv;
1354 
1355 	period = urb->interval;
1356 	span = sched->span;
1357 	if (!stream->highspeed) {
1358 		period <<= 3;
1359 		span <<= 3;
1360 	}
1361 
1362 	now = ehci_read_frame_index(ehci) & (mod - 1);
1363 
1364 	/* Typical case: reuse current schedule, stream is still active.
1365 	 * Hopefully there are no gaps from the host falling behind
1366 	 * (irq delays etc).  If there are, the behavior depends on
1367 	 * whether URB_ISO_ASAP is set.
1368 	 */
1369 	if (likely (!list_empty (&stream->td_list))) {
1370 
1371 		/* Take the isochronous scheduling threshold into account */
1372 		if (ehci->i_thresh)
1373 			next = now + ehci->i_thresh;	/* uframe cache */
1374 		else
1375 			next = (now + 2 + 7) & ~0x07;	/* full frame cache */
1376 
1377 		/*
1378 		 * Use ehci->last_iso_frame as the base.  There can't be any
1379 		 * TDs scheduled for earlier than that.
1380 		 */
1381 		base = ehci->last_iso_frame << 3;
1382 		next = (next - base) & (mod - 1);
1383 		start = (stream->next_uframe - base) & (mod - 1);
1384 
1385 		/* Is the schedule already full? */
1386 		if (unlikely(start < period)) {
1387 			ehci_dbg(ehci, "iso sched full %p (%u-%u < %u mod %u)\n",
1388 					urb, stream->next_uframe, base,
1389 					period, mod);
1390 			status = -ENOSPC;
1391 			goto fail;
1392 		}
1393 
1394 		/* Behind the scheduling threshold? */
1395 		if (unlikely(start < next)) {
1396 
1397 			/* USB_ISO_ASAP: Round up to the first available slot */
1398 			if (urb->transfer_flags & URB_ISO_ASAP)
1399 				start += (next - start + period - 1) & -period;
1400 
1401 			/*
1402 			 * Not ASAP: Use the next slot in the stream.  If
1403 			 * the entire URB falls before the threshold, fail.
1404 			 */
1405 			else if (start + span - period < next) {
1406 				ehci_dbg(ehci, "iso urb late %p (%u+%u < %u)\n",
1407 						urb, start + base,
1408 						span - period, next + base);
1409 				status = -EXDEV;
1410 				goto fail;
1411 			}
1412 		}
1413 
1414 		start += base;
1415 	}
1416 
1417 	/* need to schedule; when's the next (u)frame we could start?
1418 	 * this is bigger than ehci->i_thresh allows; scheduling itself
1419 	 * isn't free, the delay should handle reasonably slow cpus.  it
1420 	 * can also help high bandwidth if the dma and irq loads don't
1421 	 * jump until after the queue is primed.
1422 	 */
1423 	else {
1424 		int done = 0;
1425 
1426 		base = now & ~0x07;
1427 		start = base + SCHEDULING_DELAY;
1428 
1429 		/* find a uframe slot with enough bandwidth.
1430 		 * Early uframes are more precious because full-speed
1431 		 * iso IN transfers can't use late uframes,
1432 		 * and therefore they should be allocated last.
1433 		 */
1434 		next = start;
1435 		start += period;
1436 		do {
1437 			start--;
1438 			/* check schedule: enough space? */
1439 			if (stream->highspeed) {
1440 				if (itd_slot_ok(ehci, mod, start,
1441 						stream->usecs, period))
1442 					done = 1;
1443 			} else {
1444 				if ((start % 8) >= 6)
1445 					continue;
1446 				if (sitd_slot_ok(ehci, mod, stream,
1447 						start, sched, period))
1448 					done = 1;
1449 			}
1450 		} while (start > next && !done);
1451 
1452 		/* no room in the schedule */
1453 		if (!done) {
1454 			ehci_dbg(ehci, "iso sched full %p", urb);
1455 			status = -ENOSPC;
1456 			goto fail;
1457 		}
1458 	}
1459 
1460 	/* Tried to schedule too far into the future? */
1461 	if (unlikely(start - base + span - period >= mod)) {
1462 		ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n",
1463 				urb, start - base, span - period, mod);
1464 		status = -EFBIG;
1465 		goto fail;
1466 	}
1467 
1468 	stream->next_uframe = start & (mod - 1);
1469 
1470 	/* report high speed start in uframes; full speed, in frames */
1471 	urb->start_frame = stream->next_uframe;
1472 	if (!stream->highspeed)
1473 		urb->start_frame >>= 3;
1474 
1475 	/* Make sure scan_isoc() sees these */
1476 	if (ehci->isoc_count == 0)
1477 		ehci->last_iso_frame = now >> 3;
1478 	return 0;
1479 
1480  fail:
1481 	iso_sched_free(stream, sched);
1482 	urb->hcpriv = NULL;
1483 	return status;
1484 }
1485 
1486 /*-------------------------------------------------------------------------*/
1487 
1488 static inline void
1489 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1490 		struct ehci_itd *itd)
1491 {
1492 	int i;
1493 
1494 	/* it's been recently zeroed */
1495 	itd->hw_next = EHCI_LIST_END(ehci);
1496 	itd->hw_bufp [0] = stream->buf0;
1497 	itd->hw_bufp [1] = stream->buf1;
1498 	itd->hw_bufp [2] = stream->buf2;
1499 
1500 	for (i = 0; i < 8; i++)
1501 		itd->index[i] = -1;
1502 
1503 	/* All other fields are filled when scheduling */
1504 }
1505 
1506 static inline void
1507 itd_patch(
1508 	struct ehci_hcd		*ehci,
1509 	struct ehci_itd		*itd,
1510 	struct ehci_iso_sched	*iso_sched,
1511 	unsigned		index,
1512 	u16			uframe
1513 )
1514 {
1515 	struct ehci_iso_packet	*uf = &iso_sched->packet [index];
1516 	unsigned		pg = itd->pg;
1517 
1518 	// BUG_ON (pg == 6 && uf->cross);
1519 
1520 	uframe &= 0x07;
1521 	itd->index [uframe] = index;
1522 
1523 	itd->hw_transaction[uframe] = uf->transaction;
1524 	itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1525 	itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1526 	itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1527 
1528 	/* iso_frame_desc[].offset must be strictly increasing */
1529 	if (unlikely (uf->cross)) {
1530 		u64	bufp = uf->bufp + 4096;
1531 
1532 		itd->pg = ++pg;
1533 		itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1534 		itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1535 	}
1536 }
1537 
1538 static inline void
1539 itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1540 {
1541 	union ehci_shadow	*prev = &ehci->pshadow[frame];
1542 	__hc32			*hw_p = &ehci->periodic[frame];
1543 	union ehci_shadow	here = *prev;
1544 	__hc32			type = 0;
1545 
1546 	/* skip any iso nodes which might belong to previous microframes */
1547 	while (here.ptr) {
1548 		type = Q_NEXT_TYPE(ehci, *hw_p);
1549 		if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1550 			break;
1551 		prev = periodic_next_shadow(ehci, prev, type);
1552 		hw_p = shadow_next_periodic(ehci, &here, type);
1553 		here = *prev;
1554 	}
1555 
1556 	itd->itd_next = here;
1557 	itd->hw_next = *hw_p;
1558 	prev->itd = itd;
1559 	itd->frame = frame;
1560 	wmb ();
1561 	*hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1562 }
1563 
1564 /* fit urb's itds into the selected schedule slot; activate as needed */
1565 static void itd_link_urb(
1566 	struct ehci_hcd		*ehci,
1567 	struct urb		*urb,
1568 	unsigned		mod,
1569 	struct ehci_iso_stream	*stream
1570 )
1571 {
1572 	int			packet;
1573 	unsigned		next_uframe, uframe, frame;
1574 	struct ehci_iso_sched	*iso_sched = urb->hcpriv;
1575 	struct ehci_itd		*itd;
1576 
1577 	next_uframe = stream->next_uframe & (mod - 1);
1578 
1579 	if (unlikely (list_empty(&stream->td_list))) {
1580 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1581 				+= stream->bandwidth;
1582 		ehci_vdbg (ehci,
1583 			"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
1584 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1585 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1586 			urb->interval,
1587 			next_uframe >> 3, next_uframe & 0x7);
1588 	}
1589 
1590 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1591 		if (ehci->amd_pll_fix == 1)
1592 			usb_amd_quirk_pll_disable();
1593 	}
1594 
1595 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1596 
1597 	/* fill iTDs uframe by uframe */
1598 	for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) {
1599 		if (itd == NULL) {
1600 			/* ASSERT:  we have all necessary itds */
1601 			// BUG_ON (list_empty (&iso_sched->td_list));
1602 
1603 			/* ASSERT:  no itds for this endpoint in this uframe */
1604 
1605 			itd = list_entry (iso_sched->td_list.next,
1606 					struct ehci_itd, itd_list);
1607 			list_move_tail (&itd->itd_list, &stream->td_list);
1608 			itd->stream = stream;
1609 			itd->urb = urb;
1610 			itd_init (ehci, stream, itd);
1611 		}
1612 
1613 		uframe = next_uframe & 0x07;
1614 		frame = next_uframe >> 3;
1615 
1616 		itd_patch(ehci, itd, iso_sched, packet, uframe);
1617 
1618 		next_uframe += stream->interval;
1619 		next_uframe &= mod - 1;
1620 		packet++;
1621 
1622 		/* link completed itds into the schedule */
1623 		if (((next_uframe >> 3) != frame)
1624 				|| packet == urb->number_of_packets) {
1625 			itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1626 			itd = NULL;
1627 		}
1628 	}
1629 	stream->next_uframe = next_uframe;
1630 
1631 	/* don't need that schedule data any more */
1632 	iso_sched_free (stream, iso_sched);
1633 	urb->hcpriv = stream;
1634 
1635 	++ehci->isoc_count;
1636 	enable_periodic(ehci);
1637 }
1638 
1639 #define	ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1640 
1641 /* Process and recycle a completed ITD.  Return true iff its urb completed,
1642  * and hence its completion callback probably added things to the hardware
1643  * schedule.
1644  *
1645  * Note that we carefully avoid recycling this descriptor until after any
1646  * completion callback runs, so that it won't be reused quickly.  That is,
1647  * assuming (a) no more than two urbs per frame on this endpoint, and also
1648  * (b) only this endpoint's completions submit URBs.  It seems some silicon
1649  * corrupts things if you reuse completed descriptors very quickly...
1650  */
1651 static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd)
1652 {
1653 	struct urb				*urb = itd->urb;
1654 	struct usb_iso_packet_descriptor	*desc;
1655 	u32					t;
1656 	unsigned				uframe;
1657 	int					urb_index = -1;
1658 	struct ehci_iso_stream			*stream = itd->stream;
1659 	struct usb_device			*dev;
1660 	bool					retval = false;
1661 
1662 	/* for each uframe with a packet */
1663 	for (uframe = 0; uframe < 8; uframe++) {
1664 		if (likely (itd->index[uframe] == -1))
1665 			continue;
1666 		urb_index = itd->index[uframe];
1667 		desc = &urb->iso_frame_desc [urb_index];
1668 
1669 		t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]);
1670 		itd->hw_transaction [uframe] = 0;
1671 
1672 		/* report transfer status */
1673 		if (unlikely (t & ISO_ERRS)) {
1674 			urb->error_count++;
1675 			if (t & EHCI_ISOC_BUF_ERR)
1676 				desc->status = usb_pipein (urb->pipe)
1677 					? -ENOSR  /* hc couldn't read */
1678 					: -ECOMM; /* hc couldn't write */
1679 			else if (t & EHCI_ISOC_BABBLE)
1680 				desc->status = -EOVERFLOW;
1681 			else /* (t & EHCI_ISOC_XACTERR) */
1682 				desc->status = -EPROTO;
1683 
1684 			/* HC need not update length with this error */
1685 			if (!(t & EHCI_ISOC_BABBLE)) {
1686 				desc->actual_length = EHCI_ITD_LENGTH(t);
1687 				urb->actual_length += desc->actual_length;
1688 			}
1689 		} else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) {
1690 			desc->status = 0;
1691 			desc->actual_length = EHCI_ITD_LENGTH(t);
1692 			urb->actual_length += desc->actual_length;
1693 		} else {
1694 			/* URB was too late */
1695 			urb->error_count++;
1696 		}
1697 	}
1698 
1699 	/* handle completion now? */
1700 	if (likely ((urb_index + 1) != urb->number_of_packets))
1701 		goto done;
1702 
1703 	/* ASSERT: it's really the last itd for this urb
1704 	list_for_each_entry (itd, &stream->td_list, itd_list)
1705 		BUG_ON (itd->urb == urb);
1706 	 */
1707 
1708 	/* give urb back to the driver; completion often (re)submits */
1709 	dev = urb->dev;
1710 	ehci_urb_done(ehci, urb, 0);
1711 	retval = true;
1712 	urb = NULL;
1713 
1714 	--ehci->isoc_count;
1715 	disable_periodic(ehci);
1716 
1717 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1718 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1719 		if (ehci->amd_pll_fix == 1)
1720 			usb_amd_quirk_pll_enable();
1721 	}
1722 
1723 	if (unlikely(list_is_singular(&stream->td_list))) {
1724 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1725 				-= stream->bandwidth;
1726 		ehci_vdbg (ehci,
1727 			"deschedule devp %s ep%d%s-iso\n",
1728 			dev->devpath, stream->bEndpointAddress & 0x0f,
1729 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
1730 	}
1731 
1732 done:
1733 	itd->urb = NULL;
1734 
1735 	/* Add to the end of the free list for later reuse */
1736 	list_move_tail(&itd->itd_list, &stream->free_list);
1737 
1738 	/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
1739 	if (list_empty(&stream->td_list)) {
1740 		list_splice_tail_init(&stream->free_list,
1741 				&ehci->cached_itd_list);
1742 		start_free_itds(ehci);
1743 	}
1744 
1745 	return retval;
1746 }
1747 
1748 /*-------------------------------------------------------------------------*/
1749 
1750 static int itd_submit (struct ehci_hcd *ehci, struct urb *urb,
1751 	gfp_t mem_flags)
1752 {
1753 	int			status = -EINVAL;
1754 	unsigned long		flags;
1755 	struct ehci_iso_stream	*stream;
1756 
1757 	/* Get iso_stream head */
1758 	stream = iso_stream_find (ehci, urb);
1759 	if (unlikely (stream == NULL)) {
1760 		ehci_dbg (ehci, "can't get iso stream\n");
1761 		return -ENOMEM;
1762 	}
1763 	if (unlikely (urb->interval != stream->interval)) {
1764 		ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
1765 			stream->interval, urb->interval);
1766 		goto done;
1767 	}
1768 
1769 #ifdef EHCI_URB_TRACE
1770 	ehci_dbg (ehci,
1771 		"%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1772 		__func__, urb->dev->devpath, urb,
1773 		usb_pipeendpoint (urb->pipe),
1774 		usb_pipein (urb->pipe) ? "in" : "out",
1775 		urb->transfer_buffer_length,
1776 		urb->number_of_packets, urb->interval,
1777 		stream);
1778 #endif
1779 
1780 	/* allocate ITDs w/o locking anything */
1781 	status = itd_urb_transaction (stream, ehci, urb, mem_flags);
1782 	if (unlikely (status < 0)) {
1783 		ehci_dbg (ehci, "can't init itds\n");
1784 		goto done;
1785 	}
1786 
1787 	/* schedule ... need to lock */
1788 	spin_lock_irqsave (&ehci->lock, flags);
1789 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1790 		status = -ESHUTDOWN;
1791 		goto done_not_linked;
1792 	}
1793 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1794 	if (unlikely(status))
1795 		goto done_not_linked;
1796 	status = iso_stream_schedule(ehci, urb, stream);
1797 	if (likely (status == 0))
1798 		itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
1799 	else
1800 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1801  done_not_linked:
1802 	spin_unlock_irqrestore (&ehci->lock, flags);
1803  done:
1804 	return status;
1805 }
1806 
1807 /*-------------------------------------------------------------------------*/
1808 
1809 /*
1810  * "Split ISO TDs" ... used for USB 1.1 devices going through the
1811  * TTs in USB 2.0 hubs.  These need microframe scheduling.
1812  */
1813 
1814 static inline void
1815 sitd_sched_init(
1816 	struct ehci_hcd		*ehci,
1817 	struct ehci_iso_sched	*iso_sched,
1818 	struct ehci_iso_stream	*stream,
1819 	struct urb		*urb
1820 )
1821 {
1822 	unsigned	i;
1823 	dma_addr_t	dma = urb->transfer_dma;
1824 
1825 	/* how many frames are needed for these transfers */
1826 	iso_sched->span = urb->number_of_packets * stream->interval;
1827 
1828 	/* figure out per-frame sitd fields that we'll need later
1829 	 * when we fit new sitds into the schedule.
1830 	 */
1831 	for (i = 0; i < urb->number_of_packets; i++) {
1832 		struct ehci_iso_packet	*packet = &iso_sched->packet [i];
1833 		unsigned		length;
1834 		dma_addr_t		buf;
1835 		u32			trans;
1836 
1837 		length = urb->iso_frame_desc [i].length & 0x03ff;
1838 		buf = dma + urb->iso_frame_desc [i].offset;
1839 
1840 		trans = SITD_STS_ACTIVE;
1841 		if (((i + 1) == urb->number_of_packets)
1842 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1843 			trans |= SITD_IOC;
1844 		trans |= length << 16;
1845 		packet->transaction = cpu_to_hc32(ehci, trans);
1846 
1847 		/* might need to cross a buffer page within a td */
1848 		packet->bufp = buf;
1849 		packet->buf1 = (buf + length) & ~0x0fff;
1850 		if (packet->buf1 != (buf & ~(u64)0x0fff))
1851 			packet->cross = 1;
1852 
1853 		/* OUT uses multiple start-splits */
1854 		if (stream->bEndpointAddress & USB_DIR_IN)
1855 			continue;
1856 		length = (length + 187) / 188;
1857 		if (length > 1) /* BEGIN vs ALL */
1858 			length |= 1 << 3;
1859 		packet->buf1 |= length;
1860 	}
1861 }
1862 
1863 static int
1864 sitd_urb_transaction (
1865 	struct ehci_iso_stream	*stream,
1866 	struct ehci_hcd		*ehci,
1867 	struct urb		*urb,
1868 	gfp_t			mem_flags
1869 )
1870 {
1871 	struct ehci_sitd	*sitd;
1872 	dma_addr_t		sitd_dma;
1873 	int			i;
1874 	struct ehci_iso_sched	*iso_sched;
1875 	unsigned long		flags;
1876 
1877 	iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1878 	if (iso_sched == NULL)
1879 		return -ENOMEM;
1880 
1881 	sitd_sched_init(ehci, iso_sched, stream, urb);
1882 
1883 	/* allocate/init sITDs */
1884 	spin_lock_irqsave (&ehci->lock, flags);
1885 	for (i = 0; i < urb->number_of_packets; i++) {
1886 
1887 		/* NOTE:  for now, we don't try to handle wraparound cases
1888 		 * for IN (using sitd->hw_backpointer, like a FSTN), which
1889 		 * means we never need two sitds for full speed packets.
1890 		 */
1891 
1892 		/*
1893 		 * Use siTDs from the free list, but not siTDs that may
1894 		 * still be in use by the hardware.
1895 		 */
1896 		if (likely(!list_empty(&stream->free_list))) {
1897 			sitd = list_first_entry(&stream->free_list,
1898 					 struct ehci_sitd, sitd_list);
1899 			if (sitd->frame == ehci->now_frame)
1900 				goto alloc_sitd;
1901 			list_del (&sitd->sitd_list);
1902 			sitd_dma = sitd->sitd_dma;
1903 		} else {
1904  alloc_sitd:
1905 			spin_unlock_irqrestore (&ehci->lock, flags);
1906 			sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags,
1907 					&sitd_dma);
1908 			spin_lock_irqsave (&ehci->lock, flags);
1909 			if (!sitd) {
1910 				iso_sched_free(stream, iso_sched);
1911 				spin_unlock_irqrestore(&ehci->lock, flags);
1912 				return -ENOMEM;
1913 			}
1914 		}
1915 
1916 		memset (sitd, 0, sizeof *sitd);
1917 		sitd->sitd_dma = sitd_dma;
1918 		list_add (&sitd->sitd_list, &iso_sched->td_list);
1919 	}
1920 
1921 	/* temporarily store schedule info in hcpriv */
1922 	urb->hcpriv = iso_sched;
1923 	urb->error_count = 0;
1924 
1925 	spin_unlock_irqrestore (&ehci->lock, flags);
1926 	return 0;
1927 }
1928 
1929 /*-------------------------------------------------------------------------*/
1930 
1931 static inline void
1932 sitd_patch(
1933 	struct ehci_hcd		*ehci,
1934 	struct ehci_iso_stream	*stream,
1935 	struct ehci_sitd	*sitd,
1936 	struct ehci_iso_sched	*iso_sched,
1937 	unsigned		index
1938 )
1939 {
1940 	struct ehci_iso_packet	*uf = &iso_sched->packet [index];
1941 	u64			bufp = uf->bufp;
1942 
1943 	sitd->hw_next = EHCI_LIST_END(ehci);
1944 	sitd->hw_fullspeed_ep = stream->address;
1945 	sitd->hw_uframe = stream->splits;
1946 	sitd->hw_results = uf->transaction;
1947 	sitd->hw_backpointer = EHCI_LIST_END(ehci);
1948 
1949 	bufp = uf->bufp;
1950 	sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
1951 	sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
1952 
1953 	sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
1954 	if (uf->cross)
1955 		bufp += 4096;
1956 	sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
1957 	sitd->index = index;
1958 }
1959 
1960 static inline void
1961 sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
1962 {
1963 	/* note: sitd ordering could matter (CSPLIT then SSPLIT) */
1964 	sitd->sitd_next = ehci->pshadow [frame];
1965 	sitd->hw_next = ehci->periodic [frame];
1966 	ehci->pshadow [frame].sitd = sitd;
1967 	sitd->frame = frame;
1968 	wmb ();
1969 	ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
1970 }
1971 
1972 /* fit urb's sitds into the selected schedule slot; activate as needed */
1973 static void sitd_link_urb(
1974 	struct ehci_hcd		*ehci,
1975 	struct urb		*urb,
1976 	unsigned		mod,
1977 	struct ehci_iso_stream	*stream
1978 )
1979 {
1980 	int			packet;
1981 	unsigned		next_uframe;
1982 	struct ehci_iso_sched	*sched = urb->hcpriv;
1983 	struct ehci_sitd	*sitd;
1984 
1985 	next_uframe = stream->next_uframe;
1986 
1987 	if (list_empty(&stream->td_list)) {
1988 		/* usbfs ignores TT bandwidth */
1989 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1990 				+= stream->bandwidth;
1991 		ehci_vdbg (ehci,
1992 			"sched devp %s ep%d%s-iso [%d] %dms/%04x\n",
1993 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1994 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1995 			(next_uframe >> 3) & (ehci->periodic_size - 1),
1996 			stream->interval, hc32_to_cpu(ehci, stream->splits));
1997 	}
1998 
1999 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2000 		if (ehci->amd_pll_fix == 1)
2001 			usb_amd_quirk_pll_disable();
2002 	}
2003 
2004 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2005 
2006 	/* fill sITDs frame by frame */
2007 	for (packet = 0, sitd = NULL;
2008 			packet < urb->number_of_packets;
2009 			packet++) {
2010 
2011 		/* ASSERT:  we have all necessary sitds */
2012 		BUG_ON (list_empty (&sched->td_list));
2013 
2014 		/* ASSERT:  no itds for this endpoint in this frame */
2015 
2016 		sitd = list_entry (sched->td_list.next,
2017 				struct ehci_sitd, sitd_list);
2018 		list_move_tail (&sitd->sitd_list, &stream->td_list);
2019 		sitd->stream = stream;
2020 		sitd->urb = urb;
2021 
2022 		sitd_patch(ehci, stream, sitd, sched, packet);
2023 		sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2024 				sitd);
2025 
2026 		next_uframe += stream->interval << 3;
2027 	}
2028 	stream->next_uframe = next_uframe & (mod - 1);
2029 
2030 	/* don't need that schedule data any more */
2031 	iso_sched_free (stream, sched);
2032 	urb->hcpriv = stream;
2033 
2034 	++ehci->isoc_count;
2035 	enable_periodic(ehci);
2036 }
2037 
2038 /*-------------------------------------------------------------------------*/
2039 
2040 #define	SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2041 				| SITD_STS_XACT | SITD_STS_MMF)
2042 
2043 /* Process and recycle a completed SITD.  Return true iff its urb completed,
2044  * and hence its completion callback probably added things to the hardware
2045  * schedule.
2046  *
2047  * Note that we carefully avoid recycling this descriptor until after any
2048  * completion callback runs, so that it won't be reused quickly.  That is,
2049  * assuming (a) no more than two urbs per frame on this endpoint, and also
2050  * (b) only this endpoint's completions submit URBs.  It seems some silicon
2051  * corrupts things if you reuse completed descriptors very quickly...
2052  */
2053 static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd)
2054 {
2055 	struct urb				*urb = sitd->urb;
2056 	struct usb_iso_packet_descriptor	*desc;
2057 	u32					t;
2058 	int					urb_index = -1;
2059 	struct ehci_iso_stream			*stream = sitd->stream;
2060 	struct usb_device			*dev;
2061 	bool					retval = false;
2062 
2063 	urb_index = sitd->index;
2064 	desc = &urb->iso_frame_desc [urb_index];
2065 	t = hc32_to_cpup(ehci, &sitd->hw_results);
2066 
2067 	/* report transfer status */
2068 	if (unlikely(t & SITD_ERRS)) {
2069 		urb->error_count++;
2070 		if (t & SITD_STS_DBE)
2071 			desc->status = usb_pipein (urb->pipe)
2072 				? -ENOSR  /* hc couldn't read */
2073 				: -ECOMM; /* hc couldn't write */
2074 		else if (t & SITD_STS_BABBLE)
2075 			desc->status = -EOVERFLOW;
2076 		else /* XACT, MMF, etc */
2077 			desc->status = -EPROTO;
2078 	} else if (unlikely(t & SITD_STS_ACTIVE)) {
2079 		/* URB was too late */
2080 		urb->error_count++;
2081 	} else {
2082 		desc->status = 0;
2083 		desc->actual_length = desc->length - SITD_LENGTH(t);
2084 		urb->actual_length += desc->actual_length;
2085 	}
2086 
2087 	/* handle completion now? */
2088 	if ((urb_index + 1) != urb->number_of_packets)
2089 		goto done;
2090 
2091 	/* ASSERT: it's really the last sitd for this urb
2092 	list_for_each_entry (sitd, &stream->td_list, sitd_list)
2093 		BUG_ON (sitd->urb == urb);
2094 	 */
2095 
2096 	/* give urb back to the driver; completion often (re)submits */
2097 	dev = urb->dev;
2098 	ehci_urb_done(ehci, urb, 0);
2099 	retval = true;
2100 	urb = NULL;
2101 
2102 	--ehci->isoc_count;
2103 	disable_periodic(ehci);
2104 
2105 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2106 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2107 		if (ehci->amd_pll_fix == 1)
2108 			usb_amd_quirk_pll_enable();
2109 	}
2110 
2111 	if (list_is_singular(&stream->td_list)) {
2112 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2113 				-= stream->bandwidth;
2114 		ehci_vdbg (ehci,
2115 			"deschedule devp %s ep%d%s-iso\n",
2116 			dev->devpath, stream->bEndpointAddress & 0x0f,
2117 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
2118 	}
2119 
2120 done:
2121 	sitd->urb = NULL;
2122 
2123 	/* Add to the end of the free list for later reuse */
2124 	list_move_tail(&sitd->sitd_list, &stream->free_list);
2125 
2126 	/* Recycle the siTDs when the pipeline is empty (ep no longer in use) */
2127 	if (list_empty(&stream->td_list)) {
2128 		list_splice_tail_init(&stream->free_list,
2129 				&ehci->cached_sitd_list);
2130 		start_free_itds(ehci);
2131 	}
2132 
2133 	return retval;
2134 }
2135 
2136 
2137 static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb,
2138 	gfp_t mem_flags)
2139 {
2140 	int			status = -EINVAL;
2141 	unsigned long		flags;
2142 	struct ehci_iso_stream	*stream;
2143 
2144 	/* Get iso_stream head */
2145 	stream = iso_stream_find (ehci, urb);
2146 	if (stream == NULL) {
2147 		ehci_dbg (ehci, "can't get iso stream\n");
2148 		return -ENOMEM;
2149 	}
2150 	if (urb->interval != stream->interval) {
2151 		ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
2152 			stream->interval, urb->interval);
2153 		goto done;
2154 	}
2155 
2156 #ifdef EHCI_URB_TRACE
2157 	ehci_dbg (ehci,
2158 		"submit %p dev%s ep%d%s-iso len %d\n",
2159 		urb, urb->dev->devpath,
2160 		usb_pipeendpoint (urb->pipe),
2161 		usb_pipein (urb->pipe) ? "in" : "out",
2162 		urb->transfer_buffer_length);
2163 #endif
2164 
2165 	/* allocate SITDs */
2166 	status = sitd_urb_transaction (stream, ehci, urb, mem_flags);
2167 	if (status < 0) {
2168 		ehci_dbg (ehci, "can't init sitds\n");
2169 		goto done;
2170 	}
2171 
2172 	/* schedule ... need to lock */
2173 	spin_lock_irqsave (&ehci->lock, flags);
2174 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2175 		status = -ESHUTDOWN;
2176 		goto done_not_linked;
2177 	}
2178 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2179 	if (unlikely(status))
2180 		goto done_not_linked;
2181 	status = iso_stream_schedule(ehci, urb, stream);
2182 	if (status == 0)
2183 		sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
2184 	else
2185 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2186  done_not_linked:
2187 	spin_unlock_irqrestore (&ehci->lock, flags);
2188  done:
2189 	return status;
2190 }
2191 
2192 /*-------------------------------------------------------------------------*/
2193 
2194 static void scan_isoc(struct ehci_hcd *ehci)
2195 {
2196 	unsigned	uf, now_frame, frame;
2197 	unsigned	fmask = ehci->periodic_size - 1;
2198 	bool		modified, live;
2199 
2200 	/*
2201 	 * When running, scan from last scan point up to "now"
2202 	 * else clean up by scanning everything that's left.
2203 	 * Touches as few pages as possible:  cache-friendly.
2204 	 */
2205 	if (ehci->rh_state >= EHCI_RH_RUNNING) {
2206 		uf = ehci_read_frame_index(ehci);
2207 		now_frame = (uf >> 3) & fmask;
2208 		live = true;
2209 	} else  {
2210 		now_frame = (ehci->last_iso_frame - 1) & fmask;
2211 		live = false;
2212 	}
2213 	ehci->now_frame = now_frame;
2214 
2215 	frame = ehci->last_iso_frame;
2216 	for (;;) {
2217 		union ehci_shadow	q, *q_p;
2218 		__hc32			type, *hw_p;
2219 
2220 restart:
2221 		/* scan each element in frame's queue for completions */
2222 		q_p = &ehci->pshadow [frame];
2223 		hw_p = &ehci->periodic [frame];
2224 		q.ptr = q_p->ptr;
2225 		type = Q_NEXT_TYPE(ehci, *hw_p);
2226 		modified = false;
2227 
2228 		while (q.ptr != NULL) {
2229 			switch (hc32_to_cpu(ehci, type)) {
2230 			case Q_TYPE_ITD:
2231 				/* If this ITD is still active, leave it for
2232 				 * later processing ... check the next entry.
2233 				 * No need to check for activity unless the
2234 				 * frame is current.
2235 				 */
2236 				if (frame == now_frame && live) {
2237 					rmb();
2238 					for (uf = 0; uf < 8; uf++) {
2239 						if (q.itd->hw_transaction[uf] &
2240 							    ITD_ACTIVE(ehci))
2241 							break;
2242 					}
2243 					if (uf < 8) {
2244 						q_p = &q.itd->itd_next;
2245 						hw_p = &q.itd->hw_next;
2246 						type = Q_NEXT_TYPE(ehci,
2247 							q.itd->hw_next);
2248 						q = *q_p;
2249 						break;
2250 					}
2251 				}
2252 
2253 				/* Take finished ITDs out of the schedule
2254 				 * and process them:  recycle, maybe report
2255 				 * URB completion.  HC won't cache the
2256 				 * pointer for much longer, if at all.
2257 				 */
2258 				*q_p = q.itd->itd_next;
2259 				if (!ehci->use_dummy_qh ||
2260 				    q.itd->hw_next != EHCI_LIST_END(ehci))
2261 					*hw_p = q.itd->hw_next;
2262 				else
2263 					*hw_p = ehci->dummy->qh_dma;
2264 				type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2265 				wmb();
2266 				modified = itd_complete (ehci, q.itd);
2267 				q = *q_p;
2268 				break;
2269 			case Q_TYPE_SITD:
2270 				/* If this SITD is still active, leave it for
2271 				 * later processing ... check the next entry.
2272 				 * No need to check for activity unless the
2273 				 * frame is current.
2274 				 */
2275 				if (((frame == now_frame) ||
2276 				     (((frame + 1) & fmask) == now_frame))
2277 				    && live
2278 				    && (q.sitd->hw_results &
2279 					SITD_ACTIVE(ehci))) {
2280 
2281 					q_p = &q.sitd->sitd_next;
2282 					hw_p = &q.sitd->hw_next;
2283 					type = Q_NEXT_TYPE(ehci,
2284 							q.sitd->hw_next);
2285 					q = *q_p;
2286 					break;
2287 				}
2288 
2289 				/* Take finished SITDs out of the schedule
2290 				 * and process them:  recycle, maybe report
2291 				 * URB completion.
2292 				 */
2293 				*q_p = q.sitd->sitd_next;
2294 				if (!ehci->use_dummy_qh ||
2295 				    q.sitd->hw_next != EHCI_LIST_END(ehci))
2296 					*hw_p = q.sitd->hw_next;
2297 				else
2298 					*hw_p = ehci->dummy->qh_dma;
2299 				type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2300 				wmb();
2301 				modified = sitd_complete (ehci, q.sitd);
2302 				q = *q_p;
2303 				break;
2304 			default:
2305 				ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n",
2306 					type, frame, q.ptr);
2307 				// BUG ();
2308 				/* FALL THROUGH */
2309 			case Q_TYPE_QH:
2310 			case Q_TYPE_FSTN:
2311 				/* End of the iTDs and siTDs */
2312 				q.ptr = NULL;
2313 				break;
2314 			}
2315 
2316 			/* assume completion callbacks modify the queue */
2317 			if (unlikely(modified && ehci->isoc_count > 0))
2318 				goto restart;
2319 		}
2320 
2321 		/* Stop when we have reached the current frame */
2322 		if (frame == now_frame)
2323 			break;
2324 
2325 		/* The last frame may still have active siTDs */
2326 		ehci->last_iso_frame = frame;
2327 		frame = (frame + 1) & fmask;
2328 	}
2329 }
2330