1 /* 2 * Copyright (c) 2001-2004 by David Brownell 3 * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License as published by the 7 * Free Software Foundation; either version 2 of the License, or (at your 8 * option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, but 11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software Foundation, 17 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 18 */ 19 20 /* this file is part of ehci-hcd.c */ 21 22 /*-------------------------------------------------------------------------*/ 23 24 /* 25 * EHCI scheduled transaction support: interrupt, iso, split iso 26 * These are called "periodic" transactions in the EHCI spec. 27 * 28 * Note that for interrupt transfers, the QH/QTD manipulation is shared 29 * with the "asynchronous" transaction support (control/bulk transfers). 30 * The only real difference is in how interrupt transfers are scheduled. 31 * 32 * For ISO, we make an "iso_stream" head to serve the same role as a QH. 33 * It keeps track of every ITD (or SITD) that's linked, and holds enough 34 * pre-calculated schedule data to make appending to the queue be quick. 35 */ 36 37 static int ehci_get_frame (struct usb_hcd *hcd); 38 39 /* 40 * periodic_next_shadow - return "next" pointer on shadow list 41 * @periodic: host pointer to qh/itd/sitd 42 * @tag: hardware tag for type of this record 43 */ 44 static union ehci_shadow * 45 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic, 46 __hc32 tag) 47 { 48 switch (hc32_to_cpu(ehci, tag)) { 49 case Q_TYPE_QH: 50 return &periodic->qh->qh_next; 51 case Q_TYPE_FSTN: 52 return &periodic->fstn->fstn_next; 53 case Q_TYPE_ITD: 54 return &periodic->itd->itd_next; 55 // case Q_TYPE_SITD: 56 default: 57 return &periodic->sitd->sitd_next; 58 } 59 } 60 61 static __hc32 * 62 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic, 63 __hc32 tag) 64 { 65 switch (hc32_to_cpu(ehci, tag)) { 66 /* our ehci_shadow.qh is actually software part */ 67 case Q_TYPE_QH: 68 return &periodic->qh->hw->hw_next; 69 /* others are hw parts */ 70 default: 71 return periodic->hw_next; 72 } 73 } 74 75 /* caller must hold ehci->lock */ 76 static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr) 77 { 78 union ehci_shadow *prev_p = &ehci->pshadow[frame]; 79 __hc32 *hw_p = &ehci->periodic[frame]; 80 union ehci_shadow here = *prev_p; 81 82 /* find predecessor of "ptr"; hw and shadow lists are in sync */ 83 while (here.ptr && here.ptr != ptr) { 84 prev_p = periodic_next_shadow(ehci, prev_p, 85 Q_NEXT_TYPE(ehci, *hw_p)); 86 hw_p = shadow_next_periodic(ehci, &here, 87 Q_NEXT_TYPE(ehci, *hw_p)); 88 here = *prev_p; 89 } 90 /* an interrupt entry (at list end) could have been shared */ 91 if (!here.ptr) 92 return; 93 94 /* update shadow and hardware lists ... the old "next" pointers 95 * from ptr may still be in use, the caller updates them. 96 */ 97 *prev_p = *periodic_next_shadow(ehci, &here, 98 Q_NEXT_TYPE(ehci, *hw_p)); 99 100 if (!ehci->use_dummy_qh || 101 *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p)) 102 != EHCI_LIST_END(ehci)) 103 *hw_p = *shadow_next_periodic(ehci, &here, 104 Q_NEXT_TYPE(ehci, *hw_p)); 105 else 106 *hw_p = ehci->dummy->qh_dma; 107 } 108 109 /* how many of the uframe's 125 usecs are allocated? */ 110 static unsigned short 111 periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe) 112 { 113 __hc32 *hw_p = &ehci->periodic [frame]; 114 union ehci_shadow *q = &ehci->pshadow [frame]; 115 unsigned usecs = 0; 116 struct ehci_qh_hw *hw; 117 118 while (q->ptr) { 119 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) { 120 case Q_TYPE_QH: 121 hw = q->qh->hw; 122 /* is it in the S-mask? */ 123 if (hw->hw_info2 & cpu_to_hc32(ehci, 1 << uframe)) 124 usecs += q->qh->usecs; 125 /* ... or C-mask? */ 126 if (hw->hw_info2 & cpu_to_hc32(ehci, 127 1 << (8 + uframe))) 128 usecs += q->qh->c_usecs; 129 hw_p = &hw->hw_next; 130 q = &q->qh->qh_next; 131 break; 132 // case Q_TYPE_FSTN: 133 default: 134 /* for "save place" FSTNs, count the relevant INTR 135 * bandwidth from the previous frame 136 */ 137 if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) { 138 ehci_dbg (ehci, "ignoring FSTN cost ...\n"); 139 } 140 hw_p = &q->fstn->hw_next; 141 q = &q->fstn->fstn_next; 142 break; 143 case Q_TYPE_ITD: 144 if (q->itd->hw_transaction[uframe]) 145 usecs += q->itd->stream->usecs; 146 hw_p = &q->itd->hw_next; 147 q = &q->itd->itd_next; 148 break; 149 case Q_TYPE_SITD: 150 /* is it in the S-mask? (count SPLIT, DATA) */ 151 if (q->sitd->hw_uframe & cpu_to_hc32(ehci, 152 1 << uframe)) { 153 if (q->sitd->hw_fullspeed_ep & 154 cpu_to_hc32(ehci, 1<<31)) 155 usecs += q->sitd->stream->usecs; 156 else /* worst case for OUT start-split */ 157 usecs += HS_USECS_ISO (188); 158 } 159 160 /* ... C-mask? (count CSPLIT, DATA) */ 161 if (q->sitd->hw_uframe & 162 cpu_to_hc32(ehci, 1 << (8 + uframe))) { 163 /* worst case for IN complete-split */ 164 usecs += q->sitd->stream->c_usecs; 165 } 166 167 hw_p = &q->sitd->hw_next; 168 q = &q->sitd->sitd_next; 169 break; 170 } 171 } 172 #ifdef DEBUG 173 if (usecs > ehci->uframe_periodic_max) 174 ehci_err (ehci, "uframe %d sched overrun: %d usecs\n", 175 frame * 8 + uframe, usecs); 176 #endif 177 return usecs; 178 } 179 180 /*-------------------------------------------------------------------------*/ 181 182 static int same_tt (struct usb_device *dev1, struct usb_device *dev2) 183 { 184 if (!dev1->tt || !dev2->tt) 185 return 0; 186 if (dev1->tt != dev2->tt) 187 return 0; 188 if (dev1->tt->multi) 189 return dev1->ttport == dev2->ttport; 190 else 191 return 1; 192 } 193 194 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED 195 196 /* Which uframe does the low/fullspeed transfer start in? 197 * 198 * The parameter is the mask of ssplits in "H-frame" terms 199 * and this returns the transfer start uframe in "B-frame" terms, 200 * which allows both to match, e.g. a ssplit in "H-frame" uframe 0 201 * will cause a transfer in "B-frame" uframe 0. "B-frames" lag 202 * "H-frames" by 1 uframe. See the EHCI spec sec 4.5 and figure 4.7. 203 */ 204 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask) 205 { 206 unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask); 207 if (!smask) { 208 ehci_err(ehci, "invalid empty smask!\n"); 209 /* uframe 7 can't have bw so this will indicate failure */ 210 return 7; 211 } 212 return ffs(smask) - 1; 213 } 214 215 static const unsigned char 216 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 125, 25 }; 217 218 /* carryover low/fullspeed bandwidth that crosses uframe boundries */ 219 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8]) 220 { 221 int i; 222 for (i=0; i<7; i++) { 223 if (max_tt_usecs[i] < tt_usecs[i]) { 224 tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i]; 225 tt_usecs[i] = max_tt_usecs[i]; 226 } 227 } 228 } 229 230 /* How many of the tt's periodic downstream 1000 usecs are allocated? 231 * 232 * While this measures the bandwidth in terms of usecs/uframe, 233 * the low/fullspeed bus has no notion of uframes, so any particular 234 * low/fullspeed transfer can "carry over" from one uframe to the next, 235 * since the TT just performs downstream transfers in sequence. 236 * 237 * For example two separate 100 usec transfers can start in the same uframe, 238 * and the second one would "carry over" 75 usecs into the next uframe. 239 */ 240 static void 241 periodic_tt_usecs ( 242 struct ehci_hcd *ehci, 243 struct usb_device *dev, 244 unsigned frame, 245 unsigned short tt_usecs[8] 246 ) 247 { 248 __hc32 *hw_p = &ehci->periodic [frame]; 249 union ehci_shadow *q = &ehci->pshadow [frame]; 250 unsigned char uf; 251 252 memset(tt_usecs, 0, 16); 253 254 while (q->ptr) { 255 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) { 256 case Q_TYPE_ITD: 257 hw_p = &q->itd->hw_next; 258 q = &q->itd->itd_next; 259 continue; 260 case Q_TYPE_QH: 261 if (same_tt(dev, q->qh->dev)) { 262 uf = tt_start_uframe(ehci, q->qh->hw->hw_info2); 263 tt_usecs[uf] += q->qh->tt_usecs; 264 } 265 hw_p = &q->qh->hw->hw_next; 266 q = &q->qh->qh_next; 267 continue; 268 case Q_TYPE_SITD: 269 if (same_tt(dev, q->sitd->urb->dev)) { 270 uf = tt_start_uframe(ehci, q->sitd->hw_uframe); 271 tt_usecs[uf] += q->sitd->stream->tt_usecs; 272 } 273 hw_p = &q->sitd->hw_next; 274 q = &q->sitd->sitd_next; 275 continue; 276 // case Q_TYPE_FSTN: 277 default: 278 ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n", 279 frame); 280 hw_p = &q->fstn->hw_next; 281 q = &q->fstn->fstn_next; 282 } 283 } 284 285 carryover_tt_bandwidth(tt_usecs); 286 287 if (max_tt_usecs[7] < tt_usecs[7]) 288 ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n", 289 frame, tt_usecs[7] - max_tt_usecs[7]); 290 } 291 292 /* 293 * Return true if the device's tt's downstream bus is available for a 294 * periodic transfer of the specified length (usecs), starting at the 295 * specified frame/uframe. Note that (as summarized in section 11.19 296 * of the usb 2.0 spec) TTs can buffer multiple transactions for each 297 * uframe. 298 * 299 * The uframe parameter is when the fullspeed/lowspeed transfer 300 * should be executed in "B-frame" terms, which is the same as the 301 * highspeed ssplit's uframe (which is in "H-frame" terms). For example 302 * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0. 303 * See the EHCI spec sec 4.5 and fig 4.7. 304 * 305 * This checks if the full/lowspeed bus, at the specified starting uframe, 306 * has the specified bandwidth available, according to rules listed 307 * in USB 2.0 spec section 11.18.1 fig 11-60. 308 * 309 * This does not check if the transfer would exceed the max ssplit 310 * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4, 311 * since proper scheduling limits ssplits to less than 16 per uframe. 312 */ 313 static int tt_available ( 314 struct ehci_hcd *ehci, 315 unsigned period, 316 struct usb_device *dev, 317 unsigned frame, 318 unsigned uframe, 319 u16 usecs 320 ) 321 { 322 if ((period == 0) || (uframe >= 7)) /* error */ 323 return 0; 324 325 for (; frame < ehci->periodic_size; frame += period) { 326 unsigned short tt_usecs[8]; 327 328 periodic_tt_usecs (ehci, dev, frame, tt_usecs); 329 330 ehci_vdbg(ehci, "tt frame %d check %d usecs start uframe %d in" 331 " schedule %d/%d/%d/%d/%d/%d/%d/%d\n", 332 frame, usecs, uframe, 333 tt_usecs[0], tt_usecs[1], tt_usecs[2], tt_usecs[3], 334 tt_usecs[4], tt_usecs[5], tt_usecs[6], tt_usecs[7]); 335 336 if (max_tt_usecs[uframe] <= tt_usecs[uframe]) { 337 ehci_vdbg(ehci, "frame %d uframe %d fully scheduled\n", 338 frame, uframe); 339 return 0; 340 } 341 342 /* special case for isoc transfers larger than 125us: 343 * the first and each subsequent fully used uframe 344 * must be empty, so as to not illegally delay 345 * already scheduled transactions 346 */ 347 if (125 < usecs) { 348 int ufs = (usecs / 125); 349 int i; 350 for (i = uframe; i < (uframe + ufs) && i < 8; i++) 351 if (0 < tt_usecs[i]) { 352 ehci_vdbg(ehci, 353 "multi-uframe xfer can't fit " 354 "in frame %d uframe %d\n", 355 frame, i); 356 return 0; 357 } 358 } 359 360 tt_usecs[uframe] += usecs; 361 362 carryover_tt_bandwidth(tt_usecs); 363 364 /* fail if the carryover pushed bw past the last uframe's limit */ 365 if (max_tt_usecs[7] < tt_usecs[7]) { 366 ehci_vdbg(ehci, 367 "tt unavailable usecs %d frame %d uframe %d\n", 368 usecs, frame, uframe); 369 return 0; 370 } 371 } 372 373 return 1; 374 } 375 376 #else 377 378 /* return true iff the device's transaction translator is available 379 * for a periodic transfer starting at the specified frame, using 380 * all the uframes in the mask. 381 */ 382 static int tt_no_collision ( 383 struct ehci_hcd *ehci, 384 unsigned period, 385 struct usb_device *dev, 386 unsigned frame, 387 u32 uf_mask 388 ) 389 { 390 if (period == 0) /* error */ 391 return 0; 392 393 /* note bandwidth wastage: split never follows csplit 394 * (different dev or endpoint) until the next uframe. 395 * calling convention doesn't make that distinction. 396 */ 397 for (; frame < ehci->periodic_size; frame += period) { 398 union ehci_shadow here; 399 __hc32 type; 400 struct ehci_qh_hw *hw; 401 402 here = ehci->pshadow [frame]; 403 type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]); 404 while (here.ptr) { 405 switch (hc32_to_cpu(ehci, type)) { 406 case Q_TYPE_ITD: 407 type = Q_NEXT_TYPE(ehci, here.itd->hw_next); 408 here = here.itd->itd_next; 409 continue; 410 case Q_TYPE_QH: 411 hw = here.qh->hw; 412 if (same_tt (dev, here.qh->dev)) { 413 u32 mask; 414 415 mask = hc32_to_cpu(ehci, 416 hw->hw_info2); 417 /* "knows" no gap is needed */ 418 mask |= mask >> 8; 419 if (mask & uf_mask) 420 break; 421 } 422 type = Q_NEXT_TYPE(ehci, hw->hw_next); 423 here = here.qh->qh_next; 424 continue; 425 case Q_TYPE_SITD: 426 if (same_tt (dev, here.sitd->urb->dev)) { 427 u16 mask; 428 429 mask = hc32_to_cpu(ehci, here.sitd 430 ->hw_uframe); 431 /* FIXME assumes no gap for IN! */ 432 mask |= mask >> 8; 433 if (mask & uf_mask) 434 break; 435 } 436 type = Q_NEXT_TYPE(ehci, here.sitd->hw_next); 437 here = here.sitd->sitd_next; 438 continue; 439 // case Q_TYPE_FSTN: 440 default: 441 ehci_dbg (ehci, 442 "periodic frame %d bogus type %d\n", 443 frame, type); 444 } 445 446 /* collision or error */ 447 return 0; 448 } 449 } 450 451 /* no collision */ 452 return 1; 453 } 454 455 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */ 456 457 /*-------------------------------------------------------------------------*/ 458 459 static void enable_periodic(struct ehci_hcd *ehci) 460 { 461 if (ehci->periodic_count++) 462 return; 463 464 /* Stop waiting to turn off the periodic schedule */ 465 ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC); 466 467 /* Don't start the schedule until PSS is 0 */ 468 ehci_poll_PSS(ehci); 469 turn_on_io_watchdog(ehci); 470 } 471 472 static void disable_periodic(struct ehci_hcd *ehci) 473 { 474 if (--ehci->periodic_count) 475 return; 476 477 /* Don't turn off the schedule until PSS is 1 */ 478 ehci_poll_PSS(ehci); 479 } 480 481 /*-------------------------------------------------------------------------*/ 482 483 /* periodic schedule slots have iso tds (normal or split) first, then a 484 * sparse tree for active interrupt transfers. 485 * 486 * this just links in a qh; caller guarantees uframe masks are set right. 487 * no FSTN support (yet; ehci 0.96+) 488 */ 489 static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh) 490 { 491 unsigned i; 492 unsigned period = qh->period; 493 494 dev_dbg (&qh->dev->dev, 495 "link qh%d-%04x/%p start %d [%d/%d us]\n", 496 period, hc32_to_cpup(ehci, &qh->hw->hw_info2) 497 & (QH_CMASK | QH_SMASK), 498 qh, qh->start, qh->usecs, qh->c_usecs); 499 500 /* high bandwidth, or otherwise every microframe */ 501 if (period == 0) 502 period = 1; 503 504 for (i = qh->start; i < ehci->periodic_size; i += period) { 505 union ehci_shadow *prev = &ehci->pshadow[i]; 506 __hc32 *hw_p = &ehci->periodic[i]; 507 union ehci_shadow here = *prev; 508 __hc32 type = 0; 509 510 /* skip the iso nodes at list head */ 511 while (here.ptr) { 512 type = Q_NEXT_TYPE(ehci, *hw_p); 513 if (type == cpu_to_hc32(ehci, Q_TYPE_QH)) 514 break; 515 prev = periodic_next_shadow(ehci, prev, type); 516 hw_p = shadow_next_periodic(ehci, &here, type); 517 here = *prev; 518 } 519 520 /* sorting each branch by period (slow-->fast) 521 * enables sharing interior tree nodes 522 */ 523 while (here.ptr && qh != here.qh) { 524 if (qh->period > here.qh->period) 525 break; 526 prev = &here.qh->qh_next; 527 hw_p = &here.qh->hw->hw_next; 528 here = *prev; 529 } 530 /* link in this qh, unless some earlier pass did that */ 531 if (qh != here.qh) { 532 qh->qh_next = here; 533 if (here.qh) 534 qh->hw->hw_next = *hw_p; 535 wmb (); 536 prev->qh = qh; 537 *hw_p = QH_NEXT (ehci, qh->qh_dma); 538 } 539 } 540 qh->qh_state = QH_STATE_LINKED; 541 qh->xacterrs = 0; 542 543 /* update per-qh bandwidth for usbfs */ 544 ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period 545 ? ((qh->usecs + qh->c_usecs) / qh->period) 546 : (qh->usecs * 8); 547 548 list_add(&qh->intr_node, &ehci->intr_qh_list); 549 550 /* maybe enable periodic schedule processing */ 551 ++ehci->intr_count; 552 enable_periodic(ehci); 553 } 554 555 static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh) 556 { 557 unsigned i; 558 unsigned period; 559 560 /* 561 * If qh is for a low/full-speed device, simply unlinking it 562 * could interfere with an ongoing split transaction. To unlink 563 * it safely would require setting the QH_INACTIVATE bit and 564 * waiting at least one frame, as described in EHCI 4.12.2.5. 565 * 566 * We won't bother with any of this. Instead, we assume that the 567 * only reason for unlinking an interrupt QH while the current URB 568 * is still active is to dequeue all the URBs (flush the whole 569 * endpoint queue). 570 * 571 * If rebalancing the periodic schedule is ever implemented, this 572 * approach will no longer be valid. 573 */ 574 575 /* high bandwidth, or otherwise part of every microframe */ 576 if ((period = qh->period) == 0) 577 period = 1; 578 579 for (i = qh->start; i < ehci->periodic_size; i += period) 580 periodic_unlink (ehci, i, qh); 581 582 /* update per-qh bandwidth for usbfs */ 583 ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period 584 ? ((qh->usecs + qh->c_usecs) / qh->period) 585 : (qh->usecs * 8); 586 587 dev_dbg (&qh->dev->dev, 588 "unlink qh%d-%04x/%p start %d [%d/%d us]\n", 589 qh->period, 590 hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK), 591 qh, qh->start, qh->usecs, qh->c_usecs); 592 593 /* qh->qh_next still "live" to HC */ 594 qh->qh_state = QH_STATE_UNLINK; 595 qh->qh_next.ptr = NULL; 596 597 if (ehci->qh_scan_next == qh) 598 ehci->qh_scan_next = list_entry(qh->intr_node.next, 599 struct ehci_qh, intr_node); 600 list_del(&qh->intr_node); 601 } 602 603 static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh) 604 { 605 /* If the QH isn't linked then there's nothing we can do 606 * unless we were called during a giveback, in which case 607 * qh_completions() has to deal with it. 608 */ 609 if (qh->qh_state != QH_STATE_LINKED) { 610 if (qh->qh_state == QH_STATE_COMPLETING) 611 qh->needs_rescan = 1; 612 return; 613 } 614 615 qh_unlink_periodic (ehci, qh); 616 617 /* Make sure the unlinks are visible before starting the timer */ 618 wmb(); 619 620 /* 621 * The EHCI spec doesn't say how long it takes the controller to 622 * stop accessing an unlinked interrupt QH. The timer delay is 623 * 9 uframes; presumably that will be long enough. 624 */ 625 qh->unlink_cycle = ehci->intr_unlink_cycle; 626 627 /* New entries go at the end of the intr_unlink list */ 628 if (ehci->intr_unlink) 629 ehci->intr_unlink_last->unlink_next = qh; 630 else 631 ehci->intr_unlink = qh; 632 ehci->intr_unlink_last = qh; 633 634 if (ehci->intr_unlinking) 635 ; /* Avoid recursive calls */ 636 else if (ehci->rh_state < EHCI_RH_RUNNING) 637 ehci_handle_intr_unlinks(ehci); 638 else if (ehci->intr_unlink == qh) { 639 ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true); 640 ++ehci->intr_unlink_cycle; 641 } 642 } 643 644 static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh) 645 { 646 struct ehci_qh_hw *hw = qh->hw; 647 int rc; 648 649 qh->qh_state = QH_STATE_IDLE; 650 hw->hw_next = EHCI_LIST_END(ehci); 651 652 qh_completions(ehci, qh); 653 654 /* reschedule QH iff another request is queued */ 655 if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) { 656 rc = qh_schedule(ehci, qh); 657 658 /* An error here likely indicates handshake failure 659 * or no space left in the schedule. Neither fault 660 * should happen often ... 661 * 662 * FIXME kill the now-dysfunctional queued urbs 663 */ 664 if (rc != 0) 665 ehci_err(ehci, "can't reschedule qh %p, err %d\n", 666 qh, rc); 667 } 668 669 /* maybe turn off periodic schedule */ 670 --ehci->intr_count; 671 disable_periodic(ehci); 672 } 673 674 /*-------------------------------------------------------------------------*/ 675 676 static int check_period ( 677 struct ehci_hcd *ehci, 678 unsigned frame, 679 unsigned uframe, 680 unsigned period, 681 unsigned usecs 682 ) { 683 int claimed; 684 685 /* complete split running into next frame? 686 * given FSTN support, we could sometimes check... 687 */ 688 if (uframe >= 8) 689 return 0; 690 691 /* convert "usecs we need" to "max already claimed" */ 692 usecs = ehci->uframe_periodic_max - usecs; 693 694 /* we "know" 2 and 4 uframe intervals were rejected; so 695 * for period 0, check _every_ microframe in the schedule. 696 */ 697 if (unlikely (period == 0)) { 698 do { 699 for (uframe = 0; uframe < 7; uframe++) { 700 claimed = periodic_usecs (ehci, frame, uframe); 701 if (claimed > usecs) 702 return 0; 703 } 704 } while ((frame += 1) < ehci->periodic_size); 705 706 /* just check the specified uframe, at that period */ 707 } else { 708 do { 709 claimed = periodic_usecs (ehci, frame, uframe); 710 if (claimed > usecs) 711 return 0; 712 } while ((frame += period) < ehci->periodic_size); 713 } 714 715 // success! 716 return 1; 717 } 718 719 static int check_intr_schedule ( 720 struct ehci_hcd *ehci, 721 unsigned frame, 722 unsigned uframe, 723 const struct ehci_qh *qh, 724 __hc32 *c_maskp 725 ) 726 { 727 int retval = -ENOSPC; 728 u8 mask = 0; 729 730 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */ 731 goto done; 732 733 if (!check_period (ehci, frame, uframe, qh->period, qh->usecs)) 734 goto done; 735 if (!qh->c_usecs) { 736 retval = 0; 737 *c_maskp = 0; 738 goto done; 739 } 740 741 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED 742 if (tt_available (ehci, qh->period, qh->dev, frame, uframe, 743 qh->tt_usecs)) { 744 unsigned i; 745 746 /* TODO : this may need FSTN for SSPLIT in uframe 5. */ 747 for (i=uframe+1; i<8 && i<uframe+4; i++) 748 if (!check_period (ehci, frame, i, 749 qh->period, qh->c_usecs)) 750 goto done; 751 else 752 mask |= 1 << i; 753 754 retval = 0; 755 756 *c_maskp = cpu_to_hc32(ehci, mask << 8); 757 } 758 #else 759 /* Make sure this tt's buffer is also available for CSPLITs. 760 * We pessimize a bit; probably the typical full speed case 761 * doesn't need the second CSPLIT. 762 * 763 * NOTE: both SPLIT and CSPLIT could be checked in just 764 * one smart pass... 765 */ 766 mask = 0x03 << (uframe + qh->gap_uf); 767 *c_maskp = cpu_to_hc32(ehci, mask << 8); 768 769 mask |= 1 << uframe; 770 if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) { 771 if (!check_period (ehci, frame, uframe + qh->gap_uf + 1, 772 qh->period, qh->c_usecs)) 773 goto done; 774 if (!check_period (ehci, frame, uframe + qh->gap_uf, 775 qh->period, qh->c_usecs)) 776 goto done; 777 retval = 0; 778 } 779 #endif 780 done: 781 return retval; 782 } 783 784 /* "first fit" scheduling policy used the first time through, 785 * or when the previous schedule slot can't be re-used. 786 */ 787 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh) 788 { 789 int status; 790 unsigned uframe; 791 __hc32 c_mask; 792 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */ 793 struct ehci_qh_hw *hw = qh->hw; 794 795 qh_refresh(ehci, qh); 796 hw->hw_next = EHCI_LIST_END(ehci); 797 frame = qh->start; 798 799 /* reuse the previous schedule slots, if we can */ 800 if (frame < qh->period) { 801 uframe = ffs(hc32_to_cpup(ehci, &hw->hw_info2) & QH_SMASK); 802 status = check_intr_schedule (ehci, frame, --uframe, 803 qh, &c_mask); 804 } else { 805 uframe = 0; 806 c_mask = 0; 807 status = -ENOSPC; 808 } 809 810 /* else scan the schedule to find a group of slots such that all 811 * uframes have enough periodic bandwidth available. 812 */ 813 if (status) { 814 /* "normal" case, uframing flexible except with splits */ 815 if (qh->period) { 816 int i; 817 818 for (i = qh->period; status && i > 0; --i) { 819 frame = ++ehci->random_frame % qh->period; 820 for (uframe = 0; uframe < 8; uframe++) { 821 status = check_intr_schedule (ehci, 822 frame, uframe, qh, 823 &c_mask); 824 if (status == 0) 825 break; 826 } 827 } 828 829 /* qh->period == 0 means every uframe */ 830 } else { 831 frame = 0; 832 status = check_intr_schedule (ehci, 0, 0, qh, &c_mask); 833 } 834 if (status) 835 goto done; 836 qh->start = frame; 837 838 /* reset S-frame and (maybe) C-frame masks */ 839 hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK)); 840 hw->hw_info2 |= qh->period 841 ? cpu_to_hc32(ehci, 1 << uframe) 842 : cpu_to_hc32(ehci, QH_SMASK); 843 hw->hw_info2 |= c_mask; 844 } else 845 ehci_dbg (ehci, "reused qh %p schedule\n", qh); 846 847 /* stuff into the periodic schedule */ 848 qh_link_periodic(ehci, qh); 849 done: 850 return status; 851 } 852 853 static int intr_submit ( 854 struct ehci_hcd *ehci, 855 struct urb *urb, 856 struct list_head *qtd_list, 857 gfp_t mem_flags 858 ) { 859 unsigned epnum; 860 unsigned long flags; 861 struct ehci_qh *qh; 862 int status; 863 struct list_head empty; 864 865 /* get endpoint and transfer/schedule data */ 866 epnum = urb->ep->desc.bEndpointAddress; 867 868 spin_lock_irqsave (&ehci->lock, flags); 869 870 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { 871 status = -ESHUTDOWN; 872 goto done_not_linked; 873 } 874 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); 875 if (unlikely(status)) 876 goto done_not_linked; 877 878 /* get qh and force any scheduling errors */ 879 INIT_LIST_HEAD (&empty); 880 qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv); 881 if (qh == NULL) { 882 status = -ENOMEM; 883 goto done; 884 } 885 if (qh->qh_state == QH_STATE_IDLE) { 886 if ((status = qh_schedule (ehci, qh)) != 0) 887 goto done; 888 } 889 890 /* then queue the urb's tds to the qh */ 891 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv); 892 BUG_ON (qh == NULL); 893 894 /* ... update usbfs periodic stats */ 895 ehci_to_hcd(ehci)->self.bandwidth_int_reqs++; 896 897 done: 898 if (unlikely(status)) 899 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 900 done_not_linked: 901 spin_unlock_irqrestore (&ehci->lock, flags); 902 if (status) 903 qtd_list_free (ehci, urb, qtd_list); 904 905 return status; 906 } 907 908 static void scan_intr(struct ehci_hcd *ehci) 909 { 910 struct ehci_qh *qh; 911 912 list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list, 913 intr_node) { 914 rescan: 915 /* clean any finished work for this qh */ 916 if (!list_empty(&qh->qtd_list)) { 917 int temp; 918 919 /* 920 * Unlinks could happen here; completion reporting 921 * drops the lock. That's why ehci->qh_scan_next 922 * always holds the next qh to scan; if the next qh 923 * gets unlinked then ehci->qh_scan_next is adjusted 924 * in qh_unlink_periodic(). 925 */ 926 temp = qh_completions(ehci, qh); 927 if (unlikely(qh->needs_rescan || 928 (list_empty(&qh->qtd_list) && 929 qh->qh_state == QH_STATE_LINKED))) 930 start_unlink_intr(ehci, qh); 931 else if (temp != 0) 932 goto rescan; 933 } 934 } 935 } 936 937 /*-------------------------------------------------------------------------*/ 938 939 /* ehci_iso_stream ops work with both ITD and SITD */ 940 941 static struct ehci_iso_stream * 942 iso_stream_alloc (gfp_t mem_flags) 943 { 944 struct ehci_iso_stream *stream; 945 946 stream = kzalloc(sizeof *stream, mem_flags); 947 if (likely (stream != NULL)) { 948 INIT_LIST_HEAD(&stream->td_list); 949 INIT_LIST_HEAD(&stream->free_list); 950 stream->next_uframe = -1; 951 } 952 return stream; 953 } 954 955 static void 956 iso_stream_init ( 957 struct ehci_hcd *ehci, 958 struct ehci_iso_stream *stream, 959 struct usb_device *dev, 960 int pipe, 961 unsigned interval 962 ) 963 { 964 static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f }; 965 966 u32 buf1; 967 unsigned epnum, maxp; 968 int is_input; 969 long bandwidth; 970 971 /* 972 * this might be a "high bandwidth" highspeed endpoint, 973 * as encoded in the ep descriptor's wMaxPacket field 974 */ 975 epnum = usb_pipeendpoint (pipe); 976 is_input = usb_pipein (pipe) ? USB_DIR_IN : 0; 977 maxp = usb_maxpacket(dev, pipe, !is_input); 978 if (is_input) { 979 buf1 = (1 << 11); 980 } else { 981 buf1 = 0; 982 } 983 984 /* knows about ITD vs SITD */ 985 if (dev->speed == USB_SPEED_HIGH) { 986 unsigned multi = hb_mult(maxp); 987 988 stream->highspeed = 1; 989 990 maxp = max_packet(maxp); 991 buf1 |= maxp; 992 maxp *= multi; 993 994 stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum); 995 stream->buf1 = cpu_to_hc32(ehci, buf1); 996 stream->buf2 = cpu_to_hc32(ehci, multi); 997 998 /* usbfs wants to report the average usecs per frame tied up 999 * when transfers on this endpoint are scheduled ... 1000 */ 1001 stream->usecs = HS_USECS_ISO (maxp); 1002 bandwidth = stream->usecs * 8; 1003 bandwidth /= interval; 1004 1005 } else { 1006 u32 addr; 1007 int think_time; 1008 int hs_transfers; 1009 1010 addr = dev->ttport << 24; 1011 if (!ehci_is_TDI(ehci) 1012 || (dev->tt->hub != 1013 ehci_to_hcd(ehci)->self.root_hub)) 1014 addr |= dev->tt->hub->devnum << 16; 1015 addr |= epnum << 8; 1016 addr |= dev->devnum; 1017 stream->usecs = HS_USECS_ISO (maxp); 1018 think_time = dev->tt ? dev->tt->think_time : 0; 1019 stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time ( 1020 dev->speed, is_input, 1, maxp)); 1021 hs_transfers = max (1u, (maxp + 187) / 188); 1022 if (is_input) { 1023 u32 tmp; 1024 1025 addr |= 1 << 31; 1026 stream->c_usecs = stream->usecs; 1027 stream->usecs = HS_USECS_ISO (1); 1028 stream->raw_mask = 1; 1029 1030 /* c-mask as specified in USB 2.0 11.18.4 3.c */ 1031 tmp = (1 << (hs_transfers + 2)) - 1; 1032 stream->raw_mask |= tmp << (8 + 2); 1033 } else 1034 stream->raw_mask = smask_out [hs_transfers - 1]; 1035 bandwidth = stream->usecs + stream->c_usecs; 1036 bandwidth /= interval << 3; 1037 1038 /* stream->splits gets created from raw_mask later */ 1039 stream->address = cpu_to_hc32(ehci, addr); 1040 } 1041 stream->bandwidth = bandwidth; 1042 1043 stream->udev = dev; 1044 1045 stream->bEndpointAddress = is_input | epnum; 1046 stream->interval = interval; 1047 stream->maxp = maxp; 1048 } 1049 1050 static struct ehci_iso_stream * 1051 iso_stream_find (struct ehci_hcd *ehci, struct urb *urb) 1052 { 1053 unsigned epnum; 1054 struct ehci_iso_stream *stream; 1055 struct usb_host_endpoint *ep; 1056 unsigned long flags; 1057 1058 epnum = usb_pipeendpoint (urb->pipe); 1059 if (usb_pipein(urb->pipe)) 1060 ep = urb->dev->ep_in[epnum]; 1061 else 1062 ep = urb->dev->ep_out[epnum]; 1063 1064 spin_lock_irqsave (&ehci->lock, flags); 1065 stream = ep->hcpriv; 1066 1067 if (unlikely (stream == NULL)) { 1068 stream = iso_stream_alloc(GFP_ATOMIC); 1069 if (likely (stream != NULL)) { 1070 ep->hcpriv = stream; 1071 stream->ep = ep; 1072 iso_stream_init(ehci, stream, urb->dev, urb->pipe, 1073 urb->interval); 1074 } 1075 1076 /* if dev->ep [epnum] is a QH, hw is set */ 1077 } else if (unlikely (stream->hw != NULL)) { 1078 ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n", 1079 urb->dev->devpath, epnum, 1080 usb_pipein(urb->pipe) ? "in" : "out"); 1081 stream = NULL; 1082 } 1083 1084 spin_unlock_irqrestore (&ehci->lock, flags); 1085 return stream; 1086 } 1087 1088 /*-------------------------------------------------------------------------*/ 1089 1090 /* ehci_iso_sched ops can be ITD-only or SITD-only */ 1091 1092 static struct ehci_iso_sched * 1093 iso_sched_alloc (unsigned packets, gfp_t mem_flags) 1094 { 1095 struct ehci_iso_sched *iso_sched; 1096 int size = sizeof *iso_sched; 1097 1098 size += packets * sizeof (struct ehci_iso_packet); 1099 iso_sched = kzalloc(size, mem_flags); 1100 if (likely (iso_sched != NULL)) { 1101 INIT_LIST_HEAD (&iso_sched->td_list); 1102 } 1103 return iso_sched; 1104 } 1105 1106 static inline void 1107 itd_sched_init( 1108 struct ehci_hcd *ehci, 1109 struct ehci_iso_sched *iso_sched, 1110 struct ehci_iso_stream *stream, 1111 struct urb *urb 1112 ) 1113 { 1114 unsigned i; 1115 dma_addr_t dma = urb->transfer_dma; 1116 1117 /* how many uframes are needed for these transfers */ 1118 iso_sched->span = urb->number_of_packets * stream->interval; 1119 1120 /* figure out per-uframe itd fields that we'll need later 1121 * when we fit new itds into the schedule. 1122 */ 1123 for (i = 0; i < urb->number_of_packets; i++) { 1124 struct ehci_iso_packet *uframe = &iso_sched->packet [i]; 1125 unsigned length; 1126 dma_addr_t buf; 1127 u32 trans; 1128 1129 length = urb->iso_frame_desc [i].length; 1130 buf = dma + urb->iso_frame_desc [i].offset; 1131 1132 trans = EHCI_ISOC_ACTIVE; 1133 trans |= buf & 0x0fff; 1134 if (unlikely (((i + 1) == urb->number_of_packets)) 1135 && !(urb->transfer_flags & URB_NO_INTERRUPT)) 1136 trans |= EHCI_ITD_IOC; 1137 trans |= length << 16; 1138 uframe->transaction = cpu_to_hc32(ehci, trans); 1139 1140 /* might need to cross a buffer page within a uframe */ 1141 uframe->bufp = (buf & ~(u64)0x0fff); 1142 buf += length; 1143 if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff)))) 1144 uframe->cross = 1; 1145 } 1146 } 1147 1148 static void 1149 iso_sched_free ( 1150 struct ehci_iso_stream *stream, 1151 struct ehci_iso_sched *iso_sched 1152 ) 1153 { 1154 if (!iso_sched) 1155 return; 1156 // caller must hold ehci->lock! 1157 list_splice (&iso_sched->td_list, &stream->free_list); 1158 kfree (iso_sched); 1159 } 1160 1161 static int 1162 itd_urb_transaction ( 1163 struct ehci_iso_stream *stream, 1164 struct ehci_hcd *ehci, 1165 struct urb *urb, 1166 gfp_t mem_flags 1167 ) 1168 { 1169 struct ehci_itd *itd; 1170 dma_addr_t itd_dma; 1171 int i; 1172 unsigned num_itds; 1173 struct ehci_iso_sched *sched; 1174 unsigned long flags; 1175 1176 sched = iso_sched_alloc (urb->number_of_packets, mem_flags); 1177 if (unlikely (sched == NULL)) 1178 return -ENOMEM; 1179 1180 itd_sched_init(ehci, sched, stream, urb); 1181 1182 if (urb->interval < 8) 1183 num_itds = 1 + (sched->span + 7) / 8; 1184 else 1185 num_itds = urb->number_of_packets; 1186 1187 /* allocate/init ITDs */ 1188 spin_lock_irqsave (&ehci->lock, flags); 1189 for (i = 0; i < num_itds; i++) { 1190 1191 /* 1192 * Use iTDs from the free list, but not iTDs that may 1193 * still be in use by the hardware. 1194 */ 1195 if (likely(!list_empty(&stream->free_list))) { 1196 itd = list_first_entry(&stream->free_list, 1197 struct ehci_itd, itd_list); 1198 if (itd->frame == ehci->now_frame) 1199 goto alloc_itd; 1200 list_del (&itd->itd_list); 1201 itd_dma = itd->itd_dma; 1202 } else { 1203 alloc_itd: 1204 spin_unlock_irqrestore (&ehci->lock, flags); 1205 itd = dma_pool_alloc (ehci->itd_pool, mem_flags, 1206 &itd_dma); 1207 spin_lock_irqsave (&ehci->lock, flags); 1208 if (!itd) { 1209 iso_sched_free(stream, sched); 1210 spin_unlock_irqrestore(&ehci->lock, flags); 1211 return -ENOMEM; 1212 } 1213 } 1214 1215 memset (itd, 0, sizeof *itd); 1216 itd->itd_dma = itd_dma; 1217 list_add (&itd->itd_list, &sched->td_list); 1218 } 1219 spin_unlock_irqrestore (&ehci->lock, flags); 1220 1221 /* temporarily store schedule info in hcpriv */ 1222 urb->hcpriv = sched; 1223 urb->error_count = 0; 1224 return 0; 1225 } 1226 1227 /*-------------------------------------------------------------------------*/ 1228 1229 static inline int 1230 itd_slot_ok ( 1231 struct ehci_hcd *ehci, 1232 u32 mod, 1233 u32 uframe, 1234 u8 usecs, 1235 u32 period 1236 ) 1237 { 1238 uframe %= period; 1239 do { 1240 /* can't commit more than uframe_periodic_max usec */ 1241 if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7) 1242 > (ehci->uframe_periodic_max - usecs)) 1243 return 0; 1244 1245 /* we know urb->interval is 2^N uframes */ 1246 uframe += period; 1247 } while (uframe < mod); 1248 return 1; 1249 } 1250 1251 static inline int 1252 sitd_slot_ok ( 1253 struct ehci_hcd *ehci, 1254 u32 mod, 1255 struct ehci_iso_stream *stream, 1256 u32 uframe, 1257 struct ehci_iso_sched *sched, 1258 u32 period_uframes 1259 ) 1260 { 1261 u32 mask, tmp; 1262 u32 frame, uf; 1263 1264 mask = stream->raw_mask << (uframe & 7); 1265 1266 /* for IN, don't wrap CSPLIT into the next frame */ 1267 if (mask & ~0xffff) 1268 return 0; 1269 1270 /* check bandwidth */ 1271 uframe %= period_uframes; 1272 frame = uframe >> 3; 1273 1274 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED 1275 /* The tt's fullspeed bus bandwidth must be available. 1276 * tt_available scheduling guarantees 10+% for control/bulk. 1277 */ 1278 uf = uframe & 7; 1279 if (!tt_available(ehci, period_uframes >> 3, 1280 stream->udev, frame, uf, stream->tt_usecs)) 1281 return 0; 1282 #else 1283 /* tt must be idle for start(s), any gap, and csplit. 1284 * assume scheduling slop leaves 10+% for control/bulk. 1285 */ 1286 if (!tt_no_collision(ehci, period_uframes >> 3, 1287 stream->udev, frame, mask)) 1288 return 0; 1289 #endif 1290 1291 /* this multi-pass logic is simple, but performance may 1292 * suffer when the schedule data isn't cached. 1293 */ 1294 do { 1295 u32 max_used; 1296 1297 frame = uframe >> 3; 1298 uf = uframe & 7; 1299 1300 /* check starts (OUT uses more than one) */ 1301 max_used = ehci->uframe_periodic_max - stream->usecs; 1302 for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) { 1303 if (periodic_usecs (ehci, frame, uf) > max_used) 1304 return 0; 1305 } 1306 1307 /* for IN, check CSPLIT */ 1308 if (stream->c_usecs) { 1309 uf = uframe & 7; 1310 max_used = ehci->uframe_periodic_max - stream->c_usecs; 1311 do { 1312 tmp = 1 << uf; 1313 tmp <<= 8; 1314 if ((stream->raw_mask & tmp) == 0) 1315 continue; 1316 if (periodic_usecs (ehci, frame, uf) 1317 > max_used) 1318 return 0; 1319 } while (++uf < 8); 1320 } 1321 1322 /* we know urb->interval is 2^N uframes */ 1323 uframe += period_uframes; 1324 } while (uframe < mod); 1325 1326 stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7)); 1327 return 1; 1328 } 1329 1330 /* 1331 * This scheduler plans almost as far into the future as it has actual 1332 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to 1333 * "as small as possible" to be cache-friendlier.) That limits the size 1334 * transfers you can stream reliably; avoid more than 64 msec per urb. 1335 * Also avoid queue depths of less than ehci's worst irq latency (affected 1336 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter, 1337 * and other factors); or more than about 230 msec total (for portability, 1338 * given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler! 1339 */ 1340 1341 #define SCHEDULING_DELAY 40 /* microframes */ 1342 1343 static int 1344 iso_stream_schedule ( 1345 struct ehci_hcd *ehci, 1346 struct urb *urb, 1347 struct ehci_iso_stream *stream 1348 ) 1349 { 1350 u32 now, base, next, start, period, span; 1351 int status; 1352 unsigned mod = ehci->periodic_size << 3; 1353 struct ehci_iso_sched *sched = urb->hcpriv; 1354 1355 period = urb->interval; 1356 span = sched->span; 1357 if (!stream->highspeed) { 1358 period <<= 3; 1359 span <<= 3; 1360 } 1361 1362 now = ehci_read_frame_index(ehci) & (mod - 1); 1363 1364 /* Typical case: reuse current schedule, stream is still active. 1365 * Hopefully there are no gaps from the host falling behind 1366 * (irq delays etc). If there are, the behavior depends on 1367 * whether URB_ISO_ASAP is set. 1368 */ 1369 if (likely (!list_empty (&stream->td_list))) { 1370 1371 /* Take the isochronous scheduling threshold into account */ 1372 if (ehci->i_thresh) 1373 next = now + ehci->i_thresh; /* uframe cache */ 1374 else 1375 next = (now + 2 + 7) & ~0x07; /* full frame cache */ 1376 1377 /* 1378 * Use ehci->last_iso_frame as the base. There can't be any 1379 * TDs scheduled for earlier than that. 1380 */ 1381 base = ehci->last_iso_frame << 3; 1382 next = (next - base) & (mod - 1); 1383 start = (stream->next_uframe - base) & (mod - 1); 1384 1385 /* Is the schedule already full? */ 1386 if (unlikely(start < period)) { 1387 ehci_dbg(ehci, "iso sched full %p (%u-%u < %u mod %u)\n", 1388 urb, stream->next_uframe, base, 1389 period, mod); 1390 status = -ENOSPC; 1391 goto fail; 1392 } 1393 1394 /* Behind the scheduling threshold? */ 1395 if (unlikely(start < next)) { 1396 1397 /* USB_ISO_ASAP: Round up to the first available slot */ 1398 if (urb->transfer_flags & URB_ISO_ASAP) 1399 start += (next - start + period - 1) & -period; 1400 1401 /* 1402 * Not ASAP: Use the next slot in the stream. If 1403 * the entire URB falls before the threshold, fail. 1404 */ 1405 else if (start + span - period < next) { 1406 ehci_dbg(ehci, "iso urb late %p (%u+%u < %u)\n", 1407 urb, start + base, 1408 span - period, next + base); 1409 status = -EXDEV; 1410 goto fail; 1411 } 1412 } 1413 1414 start += base; 1415 } 1416 1417 /* need to schedule; when's the next (u)frame we could start? 1418 * this is bigger than ehci->i_thresh allows; scheduling itself 1419 * isn't free, the delay should handle reasonably slow cpus. it 1420 * can also help high bandwidth if the dma and irq loads don't 1421 * jump until after the queue is primed. 1422 */ 1423 else { 1424 int done = 0; 1425 1426 base = now & ~0x07; 1427 start = base + SCHEDULING_DELAY; 1428 1429 /* find a uframe slot with enough bandwidth. 1430 * Early uframes are more precious because full-speed 1431 * iso IN transfers can't use late uframes, 1432 * and therefore they should be allocated last. 1433 */ 1434 next = start; 1435 start += period; 1436 do { 1437 start--; 1438 /* check schedule: enough space? */ 1439 if (stream->highspeed) { 1440 if (itd_slot_ok(ehci, mod, start, 1441 stream->usecs, period)) 1442 done = 1; 1443 } else { 1444 if ((start % 8) >= 6) 1445 continue; 1446 if (sitd_slot_ok(ehci, mod, stream, 1447 start, sched, period)) 1448 done = 1; 1449 } 1450 } while (start > next && !done); 1451 1452 /* no room in the schedule */ 1453 if (!done) { 1454 ehci_dbg(ehci, "iso sched full %p", urb); 1455 status = -ENOSPC; 1456 goto fail; 1457 } 1458 } 1459 1460 /* Tried to schedule too far into the future? */ 1461 if (unlikely(start - base + span - period >= mod)) { 1462 ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n", 1463 urb, start - base, span - period, mod); 1464 status = -EFBIG; 1465 goto fail; 1466 } 1467 1468 stream->next_uframe = start & (mod - 1); 1469 1470 /* report high speed start in uframes; full speed, in frames */ 1471 urb->start_frame = stream->next_uframe; 1472 if (!stream->highspeed) 1473 urb->start_frame >>= 3; 1474 1475 /* Make sure scan_isoc() sees these */ 1476 if (ehci->isoc_count == 0) 1477 ehci->last_iso_frame = now >> 3; 1478 return 0; 1479 1480 fail: 1481 iso_sched_free(stream, sched); 1482 urb->hcpriv = NULL; 1483 return status; 1484 } 1485 1486 /*-------------------------------------------------------------------------*/ 1487 1488 static inline void 1489 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream, 1490 struct ehci_itd *itd) 1491 { 1492 int i; 1493 1494 /* it's been recently zeroed */ 1495 itd->hw_next = EHCI_LIST_END(ehci); 1496 itd->hw_bufp [0] = stream->buf0; 1497 itd->hw_bufp [1] = stream->buf1; 1498 itd->hw_bufp [2] = stream->buf2; 1499 1500 for (i = 0; i < 8; i++) 1501 itd->index[i] = -1; 1502 1503 /* All other fields are filled when scheduling */ 1504 } 1505 1506 static inline void 1507 itd_patch( 1508 struct ehci_hcd *ehci, 1509 struct ehci_itd *itd, 1510 struct ehci_iso_sched *iso_sched, 1511 unsigned index, 1512 u16 uframe 1513 ) 1514 { 1515 struct ehci_iso_packet *uf = &iso_sched->packet [index]; 1516 unsigned pg = itd->pg; 1517 1518 // BUG_ON (pg == 6 && uf->cross); 1519 1520 uframe &= 0x07; 1521 itd->index [uframe] = index; 1522 1523 itd->hw_transaction[uframe] = uf->transaction; 1524 itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12); 1525 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0); 1526 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32)); 1527 1528 /* iso_frame_desc[].offset must be strictly increasing */ 1529 if (unlikely (uf->cross)) { 1530 u64 bufp = uf->bufp + 4096; 1531 1532 itd->pg = ++pg; 1533 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0); 1534 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32)); 1535 } 1536 } 1537 1538 static inline void 1539 itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd) 1540 { 1541 union ehci_shadow *prev = &ehci->pshadow[frame]; 1542 __hc32 *hw_p = &ehci->periodic[frame]; 1543 union ehci_shadow here = *prev; 1544 __hc32 type = 0; 1545 1546 /* skip any iso nodes which might belong to previous microframes */ 1547 while (here.ptr) { 1548 type = Q_NEXT_TYPE(ehci, *hw_p); 1549 if (type == cpu_to_hc32(ehci, Q_TYPE_QH)) 1550 break; 1551 prev = periodic_next_shadow(ehci, prev, type); 1552 hw_p = shadow_next_periodic(ehci, &here, type); 1553 here = *prev; 1554 } 1555 1556 itd->itd_next = here; 1557 itd->hw_next = *hw_p; 1558 prev->itd = itd; 1559 itd->frame = frame; 1560 wmb (); 1561 *hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD); 1562 } 1563 1564 /* fit urb's itds into the selected schedule slot; activate as needed */ 1565 static void itd_link_urb( 1566 struct ehci_hcd *ehci, 1567 struct urb *urb, 1568 unsigned mod, 1569 struct ehci_iso_stream *stream 1570 ) 1571 { 1572 int packet; 1573 unsigned next_uframe, uframe, frame; 1574 struct ehci_iso_sched *iso_sched = urb->hcpriv; 1575 struct ehci_itd *itd; 1576 1577 next_uframe = stream->next_uframe & (mod - 1); 1578 1579 if (unlikely (list_empty(&stream->td_list))) { 1580 ehci_to_hcd(ehci)->self.bandwidth_allocated 1581 += stream->bandwidth; 1582 ehci_vdbg (ehci, 1583 "schedule devp %s ep%d%s-iso period %d start %d.%d\n", 1584 urb->dev->devpath, stream->bEndpointAddress & 0x0f, 1585 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out", 1586 urb->interval, 1587 next_uframe >> 3, next_uframe & 0x7); 1588 } 1589 1590 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { 1591 if (ehci->amd_pll_fix == 1) 1592 usb_amd_quirk_pll_disable(); 1593 } 1594 1595 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++; 1596 1597 /* fill iTDs uframe by uframe */ 1598 for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) { 1599 if (itd == NULL) { 1600 /* ASSERT: we have all necessary itds */ 1601 // BUG_ON (list_empty (&iso_sched->td_list)); 1602 1603 /* ASSERT: no itds for this endpoint in this uframe */ 1604 1605 itd = list_entry (iso_sched->td_list.next, 1606 struct ehci_itd, itd_list); 1607 list_move_tail (&itd->itd_list, &stream->td_list); 1608 itd->stream = stream; 1609 itd->urb = urb; 1610 itd_init (ehci, stream, itd); 1611 } 1612 1613 uframe = next_uframe & 0x07; 1614 frame = next_uframe >> 3; 1615 1616 itd_patch(ehci, itd, iso_sched, packet, uframe); 1617 1618 next_uframe += stream->interval; 1619 next_uframe &= mod - 1; 1620 packet++; 1621 1622 /* link completed itds into the schedule */ 1623 if (((next_uframe >> 3) != frame) 1624 || packet == urb->number_of_packets) { 1625 itd_link(ehci, frame & (ehci->periodic_size - 1), itd); 1626 itd = NULL; 1627 } 1628 } 1629 stream->next_uframe = next_uframe; 1630 1631 /* don't need that schedule data any more */ 1632 iso_sched_free (stream, iso_sched); 1633 urb->hcpriv = stream; 1634 1635 ++ehci->isoc_count; 1636 enable_periodic(ehci); 1637 } 1638 1639 #define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR) 1640 1641 /* Process and recycle a completed ITD. Return true iff its urb completed, 1642 * and hence its completion callback probably added things to the hardware 1643 * schedule. 1644 * 1645 * Note that we carefully avoid recycling this descriptor until after any 1646 * completion callback runs, so that it won't be reused quickly. That is, 1647 * assuming (a) no more than two urbs per frame on this endpoint, and also 1648 * (b) only this endpoint's completions submit URBs. It seems some silicon 1649 * corrupts things if you reuse completed descriptors very quickly... 1650 */ 1651 static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd) 1652 { 1653 struct urb *urb = itd->urb; 1654 struct usb_iso_packet_descriptor *desc; 1655 u32 t; 1656 unsigned uframe; 1657 int urb_index = -1; 1658 struct ehci_iso_stream *stream = itd->stream; 1659 struct usb_device *dev; 1660 bool retval = false; 1661 1662 /* for each uframe with a packet */ 1663 for (uframe = 0; uframe < 8; uframe++) { 1664 if (likely (itd->index[uframe] == -1)) 1665 continue; 1666 urb_index = itd->index[uframe]; 1667 desc = &urb->iso_frame_desc [urb_index]; 1668 1669 t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]); 1670 itd->hw_transaction [uframe] = 0; 1671 1672 /* report transfer status */ 1673 if (unlikely (t & ISO_ERRS)) { 1674 urb->error_count++; 1675 if (t & EHCI_ISOC_BUF_ERR) 1676 desc->status = usb_pipein (urb->pipe) 1677 ? -ENOSR /* hc couldn't read */ 1678 : -ECOMM; /* hc couldn't write */ 1679 else if (t & EHCI_ISOC_BABBLE) 1680 desc->status = -EOVERFLOW; 1681 else /* (t & EHCI_ISOC_XACTERR) */ 1682 desc->status = -EPROTO; 1683 1684 /* HC need not update length with this error */ 1685 if (!(t & EHCI_ISOC_BABBLE)) { 1686 desc->actual_length = EHCI_ITD_LENGTH(t); 1687 urb->actual_length += desc->actual_length; 1688 } 1689 } else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) { 1690 desc->status = 0; 1691 desc->actual_length = EHCI_ITD_LENGTH(t); 1692 urb->actual_length += desc->actual_length; 1693 } else { 1694 /* URB was too late */ 1695 urb->error_count++; 1696 } 1697 } 1698 1699 /* handle completion now? */ 1700 if (likely ((urb_index + 1) != urb->number_of_packets)) 1701 goto done; 1702 1703 /* ASSERT: it's really the last itd for this urb 1704 list_for_each_entry (itd, &stream->td_list, itd_list) 1705 BUG_ON (itd->urb == urb); 1706 */ 1707 1708 /* give urb back to the driver; completion often (re)submits */ 1709 dev = urb->dev; 1710 ehci_urb_done(ehci, urb, 0); 1711 retval = true; 1712 urb = NULL; 1713 1714 --ehci->isoc_count; 1715 disable_periodic(ehci); 1716 1717 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--; 1718 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { 1719 if (ehci->amd_pll_fix == 1) 1720 usb_amd_quirk_pll_enable(); 1721 } 1722 1723 if (unlikely(list_is_singular(&stream->td_list))) { 1724 ehci_to_hcd(ehci)->self.bandwidth_allocated 1725 -= stream->bandwidth; 1726 ehci_vdbg (ehci, 1727 "deschedule devp %s ep%d%s-iso\n", 1728 dev->devpath, stream->bEndpointAddress & 0x0f, 1729 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out"); 1730 } 1731 1732 done: 1733 itd->urb = NULL; 1734 1735 /* Add to the end of the free list for later reuse */ 1736 list_move_tail(&itd->itd_list, &stream->free_list); 1737 1738 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */ 1739 if (list_empty(&stream->td_list)) { 1740 list_splice_tail_init(&stream->free_list, 1741 &ehci->cached_itd_list); 1742 start_free_itds(ehci); 1743 } 1744 1745 return retval; 1746 } 1747 1748 /*-------------------------------------------------------------------------*/ 1749 1750 static int itd_submit (struct ehci_hcd *ehci, struct urb *urb, 1751 gfp_t mem_flags) 1752 { 1753 int status = -EINVAL; 1754 unsigned long flags; 1755 struct ehci_iso_stream *stream; 1756 1757 /* Get iso_stream head */ 1758 stream = iso_stream_find (ehci, urb); 1759 if (unlikely (stream == NULL)) { 1760 ehci_dbg (ehci, "can't get iso stream\n"); 1761 return -ENOMEM; 1762 } 1763 if (unlikely (urb->interval != stream->interval)) { 1764 ehci_dbg (ehci, "can't change iso interval %d --> %d\n", 1765 stream->interval, urb->interval); 1766 goto done; 1767 } 1768 1769 #ifdef EHCI_URB_TRACE 1770 ehci_dbg (ehci, 1771 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n", 1772 __func__, urb->dev->devpath, urb, 1773 usb_pipeendpoint (urb->pipe), 1774 usb_pipein (urb->pipe) ? "in" : "out", 1775 urb->transfer_buffer_length, 1776 urb->number_of_packets, urb->interval, 1777 stream); 1778 #endif 1779 1780 /* allocate ITDs w/o locking anything */ 1781 status = itd_urb_transaction (stream, ehci, urb, mem_flags); 1782 if (unlikely (status < 0)) { 1783 ehci_dbg (ehci, "can't init itds\n"); 1784 goto done; 1785 } 1786 1787 /* schedule ... need to lock */ 1788 spin_lock_irqsave (&ehci->lock, flags); 1789 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { 1790 status = -ESHUTDOWN; 1791 goto done_not_linked; 1792 } 1793 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); 1794 if (unlikely(status)) 1795 goto done_not_linked; 1796 status = iso_stream_schedule(ehci, urb, stream); 1797 if (likely (status == 0)) 1798 itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream); 1799 else 1800 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 1801 done_not_linked: 1802 spin_unlock_irqrestore (&ehci->lock, flags); 1803 done: 1804 return status; 1805 } 1806 1807 /*-------------------------------------------------------------------------*/ 1808 1809 /* 1810 * "Split ISO TDs" ... used for USB 1.1 devices going through the 1811 * TTs in USB 2.0 hubs. These need microframe scheduling. 1812 */ 1813 1814 static inline void 1815 sitd_sched_init( 1816 struct ehci_hcd *ehci, 1817 struct ehci_iso_sched *iso_sched, 1818 struct ehci_iso_stream *stream, 1819 struct urb *urb 1820 ) 1821 { 1822 unsigned i; 1823 dma_addr_t dma = urb->transfer_dma; 1824 1825 /* how many frames are needed for these transfers */ 1826 iso_sched->span = urb->number_of_packets * stream->interval; 1827 1828 /* figure out per-frame sitd fields that we'll need later 1829 * when we fit new sitds into the schedule. 1830 */ 1831 for (i = 0; i < urb->number_of_packets; i++) { 1832 struct ehci_iso_packet *packet = &iso_sched->packet [i]; 1833 unsigned length; 1834 dma_addr_t buf; 1835 u32 trans; 1836 1837 length = urb->iso_frame_desc [i].length & 0x03ff; 1838 buf = dma + urb->iso_frame_desc [i].offset; 1839 1840 trans = SITD_STS_ACTIVE; 1841 if (((i + 1) == urb->number_of_packets) 1842 && !(urb->transfer_flags & URB_NO_INTERRUPT)) 1843 trans |= SITD_IOC; 1844 trans |= length << 16; 1845 packet->transaction = cpu_to_hc32(ehci, trans); 1846 1847 /* might need to cross a buffer page within a td */ 1848 packet->bufp = buf; 1849 packet->buf1 = (buf + length) & ~0x0fff; 1850 if (packet->buf1 != (buf & ~(u64)0x0fff)) 1851 packet->cross = 1; 1852 1853 /* OUT uses multiple start-splits */ 1854 if (stream->bEndpointAddress & USB_DIR_IN) 1855 continue; 1856 length = (length + 187) / 188; 1857 if (length > 1) /* BEGIN vs ALL */ 1858 length |= 1 << 3; 1859 packet->buf1 |= length; 1860 } 1861 } 1862 1863 static int 1864 sitd_urb_transaction ( 1865 struct ehci_iso_stream *stream, 1866 struct ehci_hcd *ehci, 1867 struct urb *urb, 1868 gfp_t mem_flags 1869 ) 1870 { 1871 struct ehci_sitd *sitd; 1872 dma_addr_t sitd_dma; 1873 int i; 1874 struct ehci_iso_sched *iso_sched; 1875 unsigned long flags; 1876 1877 iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags); 1878 if (iso_sched == NULL) 1879 return -ENOMEM; 1880 1881 sitd_sched_init(ehci, iso_sched, stream, urb); 1882 1883 /* allocate/init sITDs */ 1884 spin_lock_irqsave (&ehci->lock, flags); 1885 for (i = 0; i < urb->number_of_packets; i++) { 1886 1887 /* NOTE: for now, we don't try to handle wraparound cases 1888 * for IN (using sitd->hw_backpointer, like a FSTN), which 1889 * means we never need two sitds for full speed packets. 1890 */ 1891 1892 /* 1893 * Use siTDs from the free list, but not siTDs that may 1894 * still be in use by the hardware. 1895 */ 1896 if (likely(!list_empty(&stream->free_list))) { 1897 sitd = list_first_entry(&stream->free_list, 1898 struct ehci_sitd, sitd_list); 1899 if (sitd->frame == ehci->now_frame) 1900 goto alloc_sitd; 1901 list_del (&sitd->sitd_list); 1902 sitd_dma = sitd->sitd_dma; 1903 } else { 1904 alloc_sitd: 1905 spin_unlock_irqrestore (&ehci->lock, flags); 1906 sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags, 1907 &sitd_dma); 1908 spin_lock_irqsave (&ehci->lock, flags); 1909 if (!sitd) { 1910 iso_sched_free(stream, iso_sched); 1911 spin_unlock_irqrestore(&ehci->lock, flags); 1912 return -ENOMEM; 1913 } 1914 } 1915 1916 memset (sitd, 0, sizeof *sitd); 1917 sitd->sitd_dma = sitd_dma; 1918 list_add (&sitd->sitd_list, &iso_sched->td_list); 1919 } 1920 1921 /* temporarily store schedule info in hcpriv */ 1922 urb->hcpriv = iso_sched; 1923 urb->error_count = 0; 1924 1925 spin_unlock_irqrestore (&ehci->lock, flags); 1926 return 0; 1927 } 1928 1929 /*-------------------------------------------------------------------------*/ 1930 1931 static inline void 1932 sitd_patch( 1933 struct ehci_hcd *ehci, 1934 struct ehci_iso_stream *stream, 1935 struct ehci_sitd *sitd, 1936 struct ehci_iso_sched *iso_sched, 1937 unsigned index 1938 ) 1939 { 1940 struct ehci_iso_packet *uf = &iso_sched->packet [index]; 1941 u64 bufp = uf->bufp; 1942 1943 sitd->hw_next = EHCI_LIST_END(ehci); 1944 sitd->hw_fullspeed_ep = stream->address; 1945 sitd->hw_uframe = stream->splits; 1946 sitd->hw_results = uf->transaction; 1947 sitd->hw_backpointer = EHCI_LIST_END(ehci); 1948 1949 bufp = uf->bufp; 1950 sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp); 1951 sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32); 1952 1953 sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1); 1954 if (uf->cross) 1955 bufp += 4096; 1956 sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32); 1957 sitd->index = index; 1958 } 1959 1960 static inline void 1961 sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd) 1962 { 1963 /* note: sitd ordering could matter (CSPLIT then SSPLIT) */ 1964 sitd->sitd_next = ehci->pshadow [frame]; 1965 sitd->hw_next = ehci->periodic [frame]; 1966 ehci->pshadow [frame].sitd = sitd; 1967 sitd->frame = frame; 1968 wmb (); 1969 ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD); 1970 } 1971 1972 /* fit urb's sitds into the selected schedule slot; activate as needed */ 1973 static void sitd_link_urb( 1974 struct ehci_hcd *ehci, 1975 struct urb *urb, 1976 unsigned mod, 1977 struct ehci_iso_stream *stream 1978 ) 1979 { 1980 int packet; 1981 unsigned next_uframe; 1982 struct ehci_iso_sched *sched = urb->hcpriv; 1983 struct ehci_sitd *sitd; 1984 1985 next_uframe = stream->next_uframe; 1986 1987 if (list_empty(&stream->td_list)) { 1988 /* usbfs ignores TT bandwidth */ 1989 ehci_to_hcd(ehci)->self.bandwidth_allocated 1990 += stream->bandwidth; 1991 ehci_vdbg (ehci, 1992 "sched devp %s ep%d%s-iso [%d] %dms/%04x\n", 1993 urb->dev->devpath, stream->bEndpointAddress & 0x0f, 1994 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out", 1995 (next_uframe >> 3) & (ehci->periodic_size - 1), 1996 stream->interval, hc32_to_cpu(ehci, stream->splits)); 1997 } 1998 1999 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { 2000 if (ehci->amd_pll_fix == 1) 2001 usb_amd_quirk_pll_disable(); 2002 } 2003 2004 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++; 2005 2006 /* fill sITDs frame by frame */ 2007 for (packet = 0, sitd = NULL; 2008 packet < urb->number_of_packets; 2009 packet++) { 2010 2011 /* ASSERT: we have all necessary sitds */ 2012 BUG_ON (list_empty (&sched->td_list)); 2013 2014 /* ASSERT: no itds for this endpoint in this frame */ 2015 2016 sitd = list_entry (sched->td_list.next, 2017 struct ehci_sitd, sitd_list); 2018 list_move_tail (&sitd->sitd_list, &stream->td_list); 2019 sitd->stream = stream; 2020 sitd->urb = urb; 2021 2022 sitd_patch(ehci, stream, sitd, sched, packet); 2023 sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1), 2024 sitd); 2025 2026 next_uframe += stream->interval << 3; 2027 } 2028 stream->next_uframe = next_uframe & (mod - 1); 2029 2030 /* don't need that schedule data any more */ 2031 iso_sched_free (stream, sched); 2032 urb->hcpriv = stream; 2033 2034 ++ehci->isoc_count; 2035 enable_periodic(ehci); 2036 } 2037 2038 /*-------------------------------------------------------------------------*/ 2039 2040 #define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \ 2041 | SITD_STS_XACT | SITD_STS_MMF) 2042 2043 /* Process and recycle a completed SITD. Return true iff its urb completed, 2044 * and hence its completion callback probably added things to the hardware 2045 * schedule. 2046 * 2047 * Note that we carefully avoid recycling this descriptor until after any 2048 * completion callback runs, so that it won't be reused quickly. That is, 2049 * assuming (a) no more than two urbs per frame on this endpoint, and also 2050 * (b) only this endpoint's completions submit URBs. It seems some silicon 2051 * corrupts things if you reuse completed descriptors very quickly... 2052 */ 2053 static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd) 2054 { 2055 struct urb *urb = sitd->urb; 2056 struct usb_iso_packet_descriptor *desc; 2057 u32 t; 2058 int urb_index = -1; 2059 struct ehci_iso_stream *stream = sitd->stream; 2060 struct usb_device *dev; 2061 bool retval = false; 2062 2063 urb_index = sitd->index; 2064 desc = &urb->iso_frame_desc [urb_index]; 2065 t = hc32_to_cpup(ehci, &sitd->hw_results); 2066 2067 /* report transfer status */ 2068 if (unlikely(t & SITD_ERRS)) { 2069 urb->error_count++; 2070 if (t & SITD_STS_DBE) 2071 desc->status = usb_pipein (urb->pipe) 2072 ? -ENOSR /* hc couldn't read */ 2073 : -ECOMM; /* hc couldn't write */ 2074 else if (t & SITD_STS_BABBLE) 2075 desc->status = -EOVERFLOW; 2076 else /* XACT, MMF, etc */ 2077 desc->status = -EPROTO; 2078 } else if (unlikely(t & SITD_STS_ACTIVE)) { 2079 /* URB was too late */ 2080 urb->error_count++; 2081 } else { 2082 desc->status = 0; 2083 desc->actual_length = desc->length - SITD_LENGTH(t); 2084 urb->actual_length += desc->actual_length; 2085 } 2086 2087 /* handle completion now? */ 2088 if ((urb_index + 1) != urb->number_of_packets) 2089 goto done; 2090 2091 /* ASSERT: it's really the last sitd for this urb 2092 list_for_each_entry (sitd, &stream->td_list, sitd_list) 2093 BUG_ON (sitd->urb == urb); 2094 */ 2095 2096 /* give urb back to the driver; completion often (re)submits */ 2097 dev = urb->dev; 2098 ehci_urb_done(ehci, urb, 0); 2099 retval = true; 2100 urb = NULL; 2101 2102 --ehci->isoc_count; 2103 disable_periodic(ehci); 2104 2105 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--; 2106 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { 2107 if (ehci->amd_pll_fix == 1) 2108 usb_amd_quirk_pll_enable(); 2109 } 2110 2111 if (list_is_singular(&stream->td_list)) { 2112 ehci_to_hcd(ehci)->self.bandwidth_allocated 2113 -= stream->bandwidth; 2114 ehci_vdbg (ehci, 2115 "deschedule devp %s ep%d%s-iso\n", 2116 dev->devpath, stream->bEndpointAddress & 0x0f, 2117 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out"); 2118 } 2119 2120 done: 2121 sitd->urb = NULL; 2122 2123 /* Add to the end of the free list for later reuse */ 2124 list_move_tail(&sitd->sitd_list, &stream->free_list); 2125 2126 /* Recycle the siTDs when the pipeline is empty (ep no longer in use) */ 2127 if (list_empty(&stream->td_list)) { 2128 list_splice_tail_init(&stream->free_list, 2129 &ehci->cached_sitd_list); 2130 start_free_itds(ehci); 2131 } 2132 2133 return retval; 2134 } 2135 2136 2137 static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb, 2138 gfp_t mem_flags) 2139 { 2140 int status = -EINVAL; 2141 unsigned long flags; 2142 struct ehci_iso_stream *stream; 2143 2144 /* Get iso_stream head */ 2145 stream = iso_stream_find (ehci, urb); 2146 if (stream == NULL) { 2147 ehci_dbg (ehci, "can't get iso stream\n"); 2148 return -ENOMEM; 2149 } 2150 if (urb->interval != stream->interval) { 2151 ehci_dbg (ehci, "can't change iso interval %d --> %d\n", 2152 stream->interval, urb->interval); 2153 goto done; 2154 } 2155 2156 #ifdef EHCI_URB_TRACE 2157 ehci_dbg (ehci, 2158 "submit %p dev%s ep%d%s-iso len %d\n", 2159 urb, urb->dev->devpath, 2160 usb_pipeendpoint (urb->pipe), 2161 usb_pipein (urb->pipe) ? "in" : "out", 2162 urb->transfer_buffer_length); 2163 #endif 2164 2165 /* allocate SITDs */ 2166 status = sitd_urb_transaction (stream, ehci, urb, mem_flags); 2167 if (status < 0) { 2168 ehci_dbg (ehci, "can't init sitds\n"); 2169 goto done; 2170 } 2171 2172 /* schedule ... need to lock */ 2173 spin_lock_irqsave (&ehci->lock, flags); 2174 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { 2175 status = -ESHUTDOWN; 2176 goto done_not_linked; 2177 } 2178 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); 2179 if (unlikely(status)) 2180 goto done_not_linked; 2181 status = iso_stream_schedule(ehci, urb, stream); 2182 if (status == 0) 2183 sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream); 2184 else 2185 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 2186 done_not_linked: 2187 spin_unlock_irqrestore (&ehci->lock, flags); 2188 done: 2189 return status; 2190 } 2191 2192 /*-------------------------------------------------------------------------*/ 2193 2194 static void scan_isoc(struct ehci_hcd *ehci) 2195 { 2196 unsigned uf, now_frame, frame; 2197 unsigned fmask = ehci->periodic_size - 1; 2198 bool modified, live; 2199 2200 /* 2201 * When running, scan from last scan point up to "now" 2202 * else clean up by scanning everything that's left. 2203 * Touches as few pages as possible: cache-friendly. 2204 */ 2205 if (ehci->rh_state >= EHCI_RH_RUNNING) { 2206 uf = ehci_read_frame_index(ehci); 2207 now_frame = (uf >> 3) & fmask; 2208 live = true; 2209 } else { 2210 now_frame = (ehci->last_iso_frame - 1) & fmask; 2211 live = false; 2212 } 2213 ehci->now_frame = now_frame; 2214 2215 frame = ehci->last_iso_frame; 2216 for (;;) { 2217 union ehci_shadow q, *q_p; 2218 __hc32 type, *hw_p; 2219 2220 restart: 2221 /* scan each element in frame's queue for completions */ 2222 q_p = &ehci->pshadow [frame]; 2223 hw_p = &ehci->periodic [frame]; 2224 q.ptr = q_p->ptr; 2225 type = Q_NEXT_TYPE(ehci, *hw_p); 2226 modified = false; 2227 2228 while (q.ptr != NULL) { 2229 switch (hc32_to_cpu(ehci, type)) { 2230 case Q_TYPE_ITD: 2231 /* If this ITD is still active, leave it for 2232 * later processing ... check the next entry. 2233 * No need to check for activity unless the 2234 * frame is current. 2235 */ 2236 if (frame == now_frame && live) { 2237 rmb(); 2238 for (uf = 0; uf < 8; uf++) { 2239 if (q.itd->hw_transaction[uf] & 2240 ITD_ACTIVE(ehci)) 2241 break; 2242 } 2243 if (uf < 8) { 2244 q_p = &q.itd->itd_next; 2245 hw_p = &q.itd->hw_next; 2246 type = Q_NEXT_TYPE(ehci, 2247 q.itd->hw_next); 2248 q = *q_p; 2249 break; 2250 } 2251 } 2252 2253 /* Take finished ITDs out of the schedule 2254 * and process them: recycle, maybe report 2255 * URB completion. HC won't cache the 2256 * pointer for much longer, if at all. 2257 */ 2258 *q_p = q.itd->itd_next; 2259 if (!ehci->use_dummy_qh || 2260 q.itd->hw_next != EHCI_LIST_END(ehci)) 2261 *hw_p = q.itd->hw_next; 2262 else 2263 *hw_p = ehci->dummy->qh_dma; 2264 type = Q_NEXT_TYPE(ehci, q.itd->hw_next); 2265 wmb(); 2266 modified = itd_complete (ehci, q.itd); 2267 q = *q_p; 2268 break; 2269 case Q_TYPE_SITD: 2270 /* If this SITD is still active, leave it for 2271 * later processing ... check the next entry. 2272 * No need to check for activity unless the 2273 * frame is current. 2274 */ 2275 if (((frame == now_frame) || 2276 (((frame + 1) & fmask) == now_frame)) 2277 && live 2278 && (q.sitd->hw_results & 2279 SITD_ACTIVE(ehci))) { 2280 2281 q_p = &q.sitd->sitd_next; 2282 hw_p = &q.sitd->hw_next; 2283 type = Q_NEXT_TYPE(ehci, 2284 q.sitd->hw_next); 2285 q = *q_p; 2286 break; 2287 } 2288 2289 /* Take finished SITDs out of the schedule 2290 * and process them: recycle, maybe report 2291 * URB completion. 2292 */ 2293 *q_p = q.sitd->sitd_next; 2294 if (!ehci->use_dummy_qh || 2295 q.sitd->hw_next != EHCI_LIST_END(ehci)) 2296 *hw_p = q.sitd->hw_next; 2297 else 2298 *hw_p = ehci->dummy->qh_dma; 2299 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next); 2300 wmb(); 2301 modified = sitd_complete (ehci, q.sitd); 2302 q = *q_p; 2303 break; 2304 default: 2305 ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n", 2306 type, frame, q.ptr); 2307 // BUG (); 2308 /* FALL THROUGH */ 2309 case Q_TYPE_QH: 2310 case Q_TYPE_FSTN: 2311 /* End of the iTDs and siTDs */ 2312 q.ptr = NULL; 2313 break; 2314 } 2315 2316 /* assume completion callbacks modify the queue */ 2317 if (unlikely(modified && ehci->isoc_count > 0)) 2318 goto restart; 2319 } 2320 2321 /* Stop when we have reached the current frame */ 2322 if (frame == now_frame) 2323 break; 2324 2325 /* The last frame may still have active siTDs */ 2326 ehci->last_iso_frame = frame; 2327 frame = (frame + 1) & fmask; 2328 } 2329 } 2330