1 /* 2 * Copyright (c) 2001-2004 by David Brownell 3 * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License as published by the 7 * Free Software Foundation; either version 2 of the License, or (at your 8 * option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, but 11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software Foundation, 17 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 18 */ 19 20 /* this file is part of ehci-hcd.c */ 21 22 /*-------------------------------------------------------------------------*/ 23 24 /* 25 * EHCI scheduled transaction support: interrupt, iso, split iso 26 * These are called "periodic" transactions in the EHCI spec. 27 * 28 * Note that for interrupt transfers, the QH/QTD manipulation is shared 29 * with the "asynchronous" transaction support (control/bulk transfers). 30 * The only real difference is in how interrupt transfers are scheduled. 31 * 32 * For ISO, we make an "iso_stream" head to serve the same role as a QH. 33 * It keeps track of every ITD (or SITD) that's linked, and holds enough 34 * pre-calculated schedule data to make appending to the queue be quick. 35 */ 36 37 static int ehci_get_frame (struct usb_hcd *hcd); 38 39 /*-------------------------------------------------------------------------*/ 40 41 /* 42 * periodic_next_shadow - return "next" pointer on shadow list 43 * @periodic: host pointer to qh/itd/sitd 44 * @tag: hardware tag for type of this record 45 */ 46 static union ehci_shadow * 47 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic, 48 __hc32 tag) 49 { 50 switch (hc32_to_cpu(ehci, tag)) { 51 case Q_TYPE_QH: 52 return &periodic->qh->qh_next; 53 case Q_TYPE_FSTN: 54 return &periodic->fstn->fstn_next; 55 case Q_TYPE_ITD: 56 return &periodic->itd->itd_next; 57 // case Q_TYPE_SITD: 58 default: 59 return &periodic->sitd->sitd_next; 60 } 61 } 62 63 /* caller must hold ehci->lock */ 64 static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr) 65 { 66 union ehci_shadow *prev_p = &ehci->pshadow[frame]; 67 __hc32 *hw_p = &ehci->periodic[frame]; 68 union ehci_shadow here = *prev_p; 69 70 /* find predecessor of "ptr"; hw and shadow lists are in sync */ 71 while (here.ptr && here.ptr != ptr) { 72 prev_p = periodic_next_shadow(ehci, prev_p, 73 Q_NEXT_TYPE(ehci, *hw_p)); 74 hw_p = here.hw_next; 75 here = *prev_p; 76 } 77 /* an interrupt entry (at list end) could have been shared */ 78 if (!here.ptr) 79 return; 80 81 /* update shadow and hardware lists ... the old "next" pointers 82 * from ptr may still be in use, the caller updates them. 83 */ 84 *prev_p = *periodic_next_shadow(ehci, &here, 85 Q_NEXT_TYPE(ehci, *hw_p)); 86 *hw_p = *here.hw_next; 87 } 88 89 /* how many of the uframe's 125 usecs are allocated? */ 90 static unsigned short 91 periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe) 92 { 93 __hc32 *hw_p = &ehci->periodic [frame]; 94 union ehci_shadow *q = &ehci->pshadow [frame]; 95 unsigned usecs = 0; 96 97 while (q->ptr) { 98 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) { 99 case Q_TYPE_QH: 100 /* is it in the S-mask? */ 101 if (q->qh->hw_info2 & cpu_to_hc32(ehci, 1 << uframe)) 102 usecs += q->qh->usecs; 103 /* ... or C-mask? */ 104 if (q->qh->hw_info2 & cpu_to_hc32(ehci, 105 1 << (8 + uframe))) 106 usecs += q->qh->c_usecs; 107 hw_p = &q->qh->hw_next; 108 q = &q->qh->qh_next; 109 break; 110 // case Q_TYPE_FSTN: 111 default: 112 /* for "save place" FSTNs, count the relevant INTR 113 * bandwidth from the previous frame 114 */ 115 if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) { 116 ehci_dbg (ehci, "ignoring FSTN cost ...\n"); 117 } 118 hw_p = &q->fstn->hw_next; 119 q = &q->fstn->fstn_next; 120 break; 121 case Q_TYPE_ITD: 122 if (q->itd->hw_transaction[uframe]) 123 usecs += q->itd->stream->usecs; 124 hw_p = &q->itd->hw_next; 125 q = &q->itd->itd_next; 126 break; 127 case Q_TYPE_SITD: 128 /* is it in the S-mask? (count SPLIT, DATA) */ 129 if (q->sitd->hw_uframe & cpu_to_hc32(ehci, 130 1 << uframe)) { 131 if (q->sitd->hw_fullspeed_ep & 132 cpu_to_hc32(ehci, 1<<31)) 133 usecs += q->sitd->stream->usecs; 134 else /* worst case for OUT start-split */ 135 usecs += HS_USECS_ISO (188); 136 } 137 138 /* ... C-mask? (count CSPLIT, DATA) */ 139 if (q->sitd->hw_uframe & 140 cpu_to_hc32(ehci, 1 << (8 + uframe))) { 141 /* worst case for IN complete-split */ 142 usecs += q->sitd->stream->c_usecs; 143 } 144 145 hw_p = &q->sitd->hw_next; 146 q = &q->sitd->sitd_next; 147 break; 148 } 149 } 150 #ifdef DEBUG 151 if (usecs > 100) 152 ehci_err (ehci, "uframe %d sched overrun: %d usecs\n", 153 frame * 8 + uframe, usecs); 154 #endif 155 return usecs; 156 } 157 158 /*-------------------------------------------------------------------------*/ 159 160 static int same_tt (struct usb_device *dev1, struct usb_device *dev2) 161 { 162 if (!dev1->tt || !dev2->tt) 163 return 0; 164 if (dev1->tt != dev2->tt) 165 return 0; 166 if (dev1->tt->multi) 167 return dev1->ttport == dev2->ttport; 168 else 169 return 1; 170 } 171 172 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED 173 174 /* Which uframe does the low/fullspeed transfer start in? 175 * 176 * The parameter is the mask of ssplits in "H-frame" terms 177 * and this returns the transfer start uframe in "B-frame" terms, 178 * which allows both to match, e.g. a ssplit in "H-frame" uframe 0 179 * will cause a transfer in "B-frame" uframe 0. "B-frames" lag 180 * "H-frames" by 1 uframe. See the EHCI spec sec 4.5 and figure 4.7. 181 */ 182 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask) 183 { 184 unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask); 185 if (!smask) { 186 ehci_err(ehci, "invalid empty smask!\n"); 187 /* uframe 7 can't have bw so this will indicate failure */ 188 return 7; 189 } 190 return ffs(smask) - 1; 191 } 192 193 static const unsigned char 194 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 }; 195 196 /* carryover low/fullspeed bandwidth that crosses uframe boundries */ 197 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8]) 198 { 199 int i; 200 for (i=0; i<7; i++) { 201 if (max_tt_usecs[i] < tt_usecs[i]) { 202 tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i]; 203 tt_usecs[i] = max_tt_usecs[i]; 204 } 205 } 206 } 207 208 /* How many of the tt's periodic downstream 1000 usecs are allocated? 209 * 210 * While this measures the bandwidth in terms of usecs/uframe, 211 * the low/fullspeed bus has no notion of uframes, so any particular 212 * low/fullspeed transfer can "carry over" from one uframe to the next, 213 * since the TT just performs downstream transfers in sequence. 214 * 215 * For example two separate 100 usec transfers can start in the same uframe, 216 * and the second one would "carry over" 75 usecs into the next uframe. 217 */ 218 static void 219 periodic_tt_usecs ( 220 struct ehci_hcd *ehci, 221 struct usb_device *dev, 222 unsigned frame, 223 unsigned short tt_usecs[8] 224 ) 225 { 226 __hc32 *hw_p = &ehci->periodic [frame]; 227 union ehci_shadow *q = &ehci->pshadow [frame]; 228 unsigned char uf; 229 230 memset(tt_usecs, 0, 16); 231 232 while (q->ptr) { 233 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) { 234 case Q_TYPE_ITD: 235 hw_p = &q->itd->hw_next; 236 q = &q->itd->itd_next; 237 continue; 238 case Q_TYPE_QH: 239 if (same_tt(dev, q->qh->dev)) { 240 uf = tt_start_uframe(ehci, q->qh->hw_info2); 241 tt_usecs[uf] += q->qh->tt_usecs; 242 } 243 hw_p = &q->qh->hw_next; 244 q = &q->qh->qh_next; 245 continue; 246 case Q_TYPE_SITD: 247 if (same_tt(dev, q->sitd->urb->dev)) { 248 uf = tt_start_uframe(ehci, q->sitd->hw_uframe); 249 tt_usecs[uf] += q->sitd->stream->tt_usecs; 250 } 251 hw_p = &q->sitd->hw_next; 252 q = &q->sitd->sitd_next; 253 continue; 254 // case Q_TYPE_FSTN: 255 default: 256 ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n", 257 frame); 258 hw_p = &q->fstn->hw_next; 259 q = &q->fstn->fstn_next; 260 } 261 } 262 263 carryover_tt_bandwidth(tt_usecs); 264 265 if (max_tt_usecs[7] < tt_usecs[7]) 266 ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n", 267 frame, tt_usecs[7] - max_tt_usecs[7]); 268 } 269 270 /* 271 * Return true if the device's tt's downstream bus is available for a 272 * periodic transfer of the specified length (usecs), starting at the 273 * specified frame/uframe. Note that (as summarized in section 11.19 274 * of the usb 2.0 spec) TTs can buffer multiple transactions for each 275 * uframe. 276 * 277 * The uframe parameter is when the fullspeed/lowspeed transfer 278 * should be executed in "B-frame" terms, which is the same as the 279 * highspeed ssplit's uframe (which is in "H-frame" terms). For example 280 * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0. 281 * See the EHCI spec sec 4.5 and fig 4.7. 282 * 283 * This checks if the full/lowspeed bus, at the specified starting uframe, 284 * has the specified bandwidth available, according to rules listed 285 * in USB 2.0 spec section 11.18.1 fig 11-60. 286 * 287 * This does not check if the transfer would exceed the max ssplit 288 * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4, 289 * since proper scheduling limits ssplits to less than 16 per uframe. 290 */ 291 static int tt_available ( 292 struct ehci_hcd *ehci, 293 unsigned period, 294 struct usb_device *dev, 295 unsigned frame, 296 unsigned uframe, 297 u16 usecs 298 ) 299 { 300 if ((period == 0) || (uframe >= 7)) /* error */ 301 return 0; 302 303 for (; frame < ehci->periodic_size; frame += period) { 304 unsigned short tt_usecs[8]; 305 306 periodic_tt_usecs (ehci, dev, frame, tt_usecs); 307 308 ehci_vdbg(ehci, "tt frame %d check %d usecs start uframe %d in" 309 " schedule %d/%d/%d/%d/%d/%d/%d/%d\n", 310 frame, usecs, uframe, 311 tt_usecs[0], tt_usecs[1], tt_usecs[2], tt_usecs[3], 312 tt_usecs[4], tt_usecs[5], tt_usecs[6], tt_usecs[7]); 313 314 if (max_tt_usecs[uframe] <= tt_usecs[uframe]) { 315 ehci_vdbg(ehci, "frame %d uframe %d fully scheduled\n", 316 frame, uframe); 317 return 0; 318 } 319 320 /* special case for isoc transfers larger than 125us: 321 * the first and each subsequent fully used uframe 322 * must be empty, so as to not illegally delay 323 * already scheduled transactions 324 */ 325 if (125 < usecs) { 326 int ufs = (usecs / 125) - 1; 327 int i; 328 for (i = uframe; i < (uframe + ufs) && i < 8; i++) 329 if (0 < tt_usecs[i]) { 330 ehci_vdbg(ehci, 331 "multi-uframe xfer can't fit " 332 "in frame %d uframe %d\n", 333 frame, i); 334 return 0; 335 } 336 } 337 338 tt_usecs[uframe] += usecs; 339 340 carryover_tt_bandwidth(tt_usecs); 341 342 /* fail if the carryover pushed bw past the last uframe's limit */ 343 if (max_tt_usecs[7] < tt_usecs[7]) { 344 ehci_vdbg(ehci, 345 "tt unavailable usecs %d frame %d uframe %d\n", 346 usecs, frame, uframe); 347 return 0; 348 } 349 } 350 351 return 1; 352 } 353 354 #else 355 356 /* return true iff the device's transaction translator is available 357 * for a periodic transfer starting at the specified frame, using 358 * all the uframes in the mask. 359 */ 360 static int tt_no_collision ( 361 struct ehci_hcd *ehci, 362 unsigned period, 363 struct usb_device *dev, 364 unsigned frame, 365 u32 uf_mask 366 ) 367 { 368 if (period == 0) /* error */ 369 return 0; 370 371 /* note bandwidth wastage: split never follows csplit 372 * (different dev or endpoint) until the next uframe. 373 * calling convention doesn't make that distinction. 374 */ 375 for (; frame < ehci->periodic_size; frame += period) { 376 union ehci_shadow here; 377 __hc32 type; 378 379 here = ehci->pshadow [frame]; 380 type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]); 381 while (here.ptr) { 382 switch (hc32_to_cpu(ehci, type)) { 383 case Q_TYPE_ITD: 384 type = Q_NEXT_TYPE(ehci, here.itd->hw_next); 385 here = here.itd->itd_next; 386 continue; 387 case Q_TYPE_QH: 388 if (same_tt (dev, here.qh->dev)) { 389 u32 mask; 390 391 mask = hc32_to_cpu(ehci, 392 here.qh->hw_info2); 393 /* "knows" no gap is needed */ 394 mask |= mask >> 8; 395 if (mask & uf_mask) 396 break; 397 } 398 type = Q_NEXT_TYPE(ehci, here.qh->hw_next); 399 here = here.qh->qh_next; 400 continue; 401 case Q_TYPE_SITD: 402 if (same_tt (dev, here.sitd->urb->dev)) { 403 u16 mask; 404 405 mask = hc32_to_cpu(ehci, here.sitd 406 ->hw_uframe); 407 /* FIXME assumes no gap for IN! */ 408 mask |= mask >> 8; 409 if (mask & uf_mask) 410 break; 411 } 412 type = Q_NEXT_TYPE(ehci, here.sitd->hw_next); 413 here = here.sitd->sitd_next; 414 continue; 415 // case Q_TYPE_FSTN: 416 default: 417 ehci_dbg (ehci, 418 "periodic frame %d bogus type %d\n", 419 frame, type); 420 } 421 422 /* collision or error */ 423 return 0; 424 } 425 } 426 427 /* no collision */ 428 return 1; 429 } 430 431 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */ 432 433 /*-------------------------------------------------------------------------*/ 434 435 static int enable_periodic (struct ehci_hcd *ehci) 436 { 437 u32 cmd; 438 int status; 439 440 /* did clearing PSE did take effect yet? 441 * takes effect only at frame boundaries... 442 */ 443 status = handshake(ehci, &ehci->regs->status, STS_PSS, 0, 9 * 125); 444 if (status != 0) { 445 ehci_to_hcd(ehci)->state = HC_STATE_HALT; 446 return status; 447 } 448 449 cmd = ehci_readl(ehci, &ehci->regs->command) | CMD_PSE; 450 ehci_writel(ehci, cmd, &ehci->regs->command); 451 /* posted write ... PSS happens later */ 452 ehci_to_hcd(ehci)->state = HC_STATE_RUNNING; 453 454 /* make sure ehci_work scans these */ 455 ehci->next_uframe = ehci_readl(ehci, &ehci->regs->frame_index) 456 % (ehci->periodic_size << 3); 457 return 0; 458 } 459 460 static int disable_periodic (struct ehci_hcd *ehci) 461 { 462 u32 cmd; 463 int status; 464 465 /* did setting PSE not take effect yet? 466 * takes effect only at frame boundaries... 467 */ 468 status = handshake(ehci, &ehci->regs->status, STS_PSS, STS_PSS, 9 * 125); 469 if (status != 0) { 470 ehci_to_hcd(ehci)->state = HC_STATE_HALT; 471 return status; 472 } 473 474 cmd = ehci_readl(ehci, &ehci->regs->command) & ~CMD_PSE; 475 ehci_writel(ehci, cmd, &ehci->regs->command); 476 /* posted write ... */ 477 478 ehci->next_uframe = -1; 479 return 0; 480 } 481 482 /*-------------------------------------------------------------------------*/ 483 484 /* periodic schedule slots have iso tds (normal or split) first, then a 485 * sparse tree for active interrupt transfers. 486 * 487 * this just links in a qh; caller guarantees uframe masks are set right. 488 * no FSTN support (yet; ehci 0.96+) 489 */ 490 static int qh_link_periodic (struct ehci_hcd *ehci, struct ehci_qh *qh) 491 { 492 unsigned i; 493 unsigned period = qh->period; 494 495 dev_dbg (&qh->dev->dev, 496 "link qh%d-%04x/%p start %d [%d/%d us]\n", 497 period, hc32_to_cpup(ehci, &qh->hw_info2) & (QH_CMASK | QH_SMASK), 498 qh, qh->start, qh->usecs, qh->c_usecs); 499 500 /* high bandwidth, or otherwise every microframe */ 501 if (period == 0) 502 period = 1; 503 504 for (i = qh->start; i < ehci->periodic_size; i += period) { 505 union ehci_shadow *prev = &ehci->pshadow[i]; 506 __hc32 *hw_p = &ehci->periodic[i]; 507 union ehci_shadow here = *prev; 508 __hc32 type = 0; 509 510 /* skip the iso nodes at list head */ 511 while (here.ptr) { 512 type = Q_NEXT_TYPE(ehci, *hw_p); 513 if (type == cpu_to_hc32(ehci, Q_TYPE_QH)) 514 break; 515 prev = periodic_next_shadow(ehci, prev, type); 516 hw_p = &here.qh->hw_next; 517 here = *prev; 518 } 519 520 /* sorting each branch by period (slow-->fast) 521 * enables sharing interior tree nodes 522 */ 523 while (here.ptr && qh != here.qh) { 524 if (qh->period > here.qh->period) 525 break; 526 prev = &here.qh->qh_next; 527 hw_p = &here.qh->hw_next; 528 here = *prev; 529 } 530 /* link in this qh, unless some earlier pass did that */ 531 if (qh != here.qh) { 532 qh->qh_next = here; 533 if (here.qh) 534 qh->hw_next = *hw_p; 535 wmb (); 536 prev->qh = qh; 537 *hw_p = QH_NEXT (ehci, qh->qh_dma); 538 } 539 } 540 qh->qh_state = QH_STATE_LINKED; 541 qh_get (qh); 542 543 /* update per-qh bandwidth for usbfs */ 544 ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period 545 ? ((qh->usecs + qh->c_usecs) / qh->period) 546 : (qh->usecs * 8); 547 548 /* maybe enable periodic schedule processing */ 549 if (!ehci->periodic_sched++) 550 return enable_periodic (ehci); 551 552 return 0; 553 } 554 555 static void qh_unlink_periodic (struct ehci_hcd *ehci, struct ehci_qh *qh) 556 { 557 unsigned i; 558 unsigned period; 559 560 // FIXME: 561 // IF this isn't high speed 562 // and this qh is active in the current uframe 563 // (and overlay token SplitXstate is false?) 564 // THEN 565 // qh->hw_info1 |= __constant_cpu_to_hc32(1 << 7 /* "ignore" */); 566 567 /* high bandwidth, or otherwise part of every microframe */ 568 if ((period = qh->period) == 0) 569 period = 1; 570 571 for (i = qh->start; i < ehci->periodic_size; i += period) 572 periodic_unlink (ehci, i, qh); 573 574 /* update per-qh bandwidth for usbfs */ 575 ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period 576 ? ((qh->usecs + qh->c_usecs) / qh->period) 577 : (qh->usecs * 8); 578 579 dev_dbg (&qh->dev->dev, 580 "unlink qh%d-%04x/%p start %d [%d/%d us]\n", 581 qh->period, 582 hc32_to_cpup(ehci, &qh->hw_info2) & (QH_CMASK | QH_SMASK), 583 qh, qh->start, qh->usecs, qh->c_usecs); 584 585 /* qh->qh_next still "live" to HC */ 586 qh->qh_state = QH_STATE_UNLINK; 587 qh->qh_next.ptr = NULL; 588 qh_put (qh); 589 590 /* maybe turn off periodic schedule */ 591 ehci->periodic_sched--; 592 if (!ehci->periodic_sched) 593 (void) disable_periodic (ehci); 594 } 595 596 static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh) 597 { 598 unsigned wait; 599 600 qh_unlink_periodic (ehci, qh); 601 602 /* simple/paranoid: always delay, expecting the HC needs to read 603 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and 604 * expect khubd to clean up after any CSPLITs we won't issue. 605 * active high speed queues may need bigger delays... 606 */ 607 if (list_empty (&qh->qtd_list) 608 || (cpu_to_hc32(ehci, QH_CMASK) 609 & qh->hw_info2) != 0) 610 wait = 2; 611 else 612 wait = 55; /* worst case: 3 * 1024 */ 613 614 udelay (wait); 615 qh->qh_state = QH_STATE_IDLE; 616 qh->hw_next = EHCI_LIST_END(ehci); 617 wmb (); 618 } 619 620 /*-------------------------------------------------------------------------*/ 621 622 static int check_period ( 623 struct ehci_hcd *ehci, 624 unsigned frame, 625 unsigned uframe, 626 unsigned period, 627 unsigned usecs 628 ) { 629 int claimed; 630 631 /* complete split running into next frame? 632 * given FSTN support, we could sometimes check... 633 */ 634 if (uframe >= 8) 635 return 0; 636 637 /* 638 * 80% periodic == 100 usec/uframe available 639 * convert "usecs we need" to "max already claimed" 640 */ 641 usecs = 100 - usecs; 642 643 /* we "know" 2 and 4 uframe intervals were rejected; so 644 * for period 0, check _every_ microframe in the schedule. 645 */ 646 if (unlikely (period == 0)) { 647 do { 648 for (uframe = 0; uframe < 7; uframe++) { 649 claimed = periodic_usecs (ehci, frame, uframe); 650 if (claimed > usecs) 651 return 0; 652 } 653 } while ((frame += 1) < ehci->periodic_size); 654 655 /* just check the specified uframe, at that period */ 656 } else { 657 do { 658 claimed = periodic_usecs (ehci, frame, uframe); 659 if (claimed > usecs) 660 return 0; 661 } while ((frame += period) < ehci->periodic_size); 662 } 663 664 // success! 665 return 1; 666 } 667 668 static int check_intr_schedule ( 669 struct ehci_hcd *ehci, 670 unsigned frame, 671 unsigned uframe, 672 const struct ehci_qh *qh, 673 __hc32 *c_maskp 674 ) 675 { 676 int retval = -ENOSPC; 677 u8 mask = 0; 678 679 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */ 680 goto done; 681 682 if (!check_period (ehci, frame, uframe, qh->period, qh->usecs)) 683 goto done; 684 if (!qh->c_usecs) { 685 retval = 0; 686 *c_maskp = 0; 687 goto done; 688 } 689 690 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED 691 if (tt_available (ehci, qh->period, qh->dev, frame, uframe, 692 qh->tt_usecs)) { 693 unsigned i; 694 695 /* TODO : this may need FSTN for SSPLIT in uframe 5. */ 696 for (i=uframe+1; i<8 && i<uframe+4; i++) 697 if (!check_period (ehci, frame, i, 698 qh->period, qh->c_usecs)) 699 goto done; 700 else 701 mask |= 1 << i; 702 703 retval = 0; 704 705 *c_maskp = cpu_to_hc32(ehci, mask << 8); 706 } 707 #else 708 /* Make sure this tt's buffer is also available for CSPLITs. 709 * We pessimize a bit; probably the typical full speed case 710 * doesn't need the second CSPLIT. 711 * 712 * NOTE: both SPLIT and CSPLIT could be checked in just 713 * one smart pass... 714 */ 715 mask = 0x03 << (uframe + qh->gap_uf); 716 *c_maskp = cpu_to_hc32(ehci, mask << 8); 717 718 mask |= 1 << uframe; 719 if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) { 720 if (!check_period (ehci, frame, uframe + qh->gap_uf + 1, 721 qh->period, qh->c_usecs)) 722 goto done; 723 if (!check_period (ehci, frame, uframe + qh->gap_uf, 724 qh->period, qh->c_usecs)) 725 goto done; 726 retval = 0; 727 } 728 #endif 729 done: 730 return retval; 731 } 732 733 /* "first fit" scheduling policy used the first time through, 734 * or when the previous schedule slot can't be re-used. 735 */ 736 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh) 737 { 738 int status; 739 unsigned uframe; 740 __hc32 c_mask; 741 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */ 742 743 qh_refresh(ehci, qh); 744 qh->hw_next = EHCI_LIST_END(ehci); 745 frame = qh->start; 746 747 /* reuse the previous schedule slots, if we can */ 748 if (frame < qh->period) { 749 uframe = ffs(hc32_to_cpup(ehci, &qh->hw_info2) & QH_SMASK); 750 status = check_intr_schedule (ehci, frame, --uframe, 751 qh, &c_mask); 752 } else { 753 uframe = 0; 754 c_mask = 0; 755 status = -ENOSPC; 756 } 757 758 /* else scan the schedule to find a group of slots such that all 759 * uframes have enough periodic bandwidth available. 760 */ 761 if (status) { 762 /* "normal" case, uframing flexible except with splits */ 763 if (qh->period) { 764 frame = qh->period - 1; 765 do { 766 for (uframe = 0; uframe < 8; uframe++) { 767 status = check_intr_schedule (ehci, 768 frame, uframe, qh, 769 &c_mask); 770 if (status == 0) 771 break; 772 } 773 } while (status && frame--); 774 775 /* qh->period == 0 means every uframe */ 776 } else { 777 frame = 0; 778 status = check_intr_schedule (ehci, 0, 0, qh, &c_mask); 779 } 780 if (status) 781 goto done; 782 qh->start = frame; 783 784 /* reset S-frame and (maybe) C-frame masks */ 785 qh->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK)); 786 qh->hw_info2 |= qh->period 787 ? cpu_to_hc32(ehci, 1 << uframe) 788 : cpu_to_hc32(ehci, QH_SMASK); 789 qh->hw_info2 |= c_mask; 790 } else 791 ehci_dbg (ehci, "reused qh %p schedule\n", qh); 792 793 /* stuff into the periodic schedule */ 794 status = qh_link_periodic (ehci, qh); 795 done: 796 return status; 797 } 798 799 static int intr_submit ( 800 struct ehci_hcd *ehci, 801 struct urb *urb, 802 struct list_head *qtd_list, 803 gfp_t mem_flags 804 ) { 805 unsigned epnum; 806 unsigned long flags; 807 struct ehci_qh *qh; 808 int status; 809 struct list_head empty; 810 811 /* get endpoint and transfer/schedule data */ 812 epnum = urb->ep->desc.bEndpointAddress; 813 814 spin_lock_irqsave (&ehci->lock, flags); 815 816 if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE, 817 &ehci_to_hcd(ehci)->flags))) { 818 status = -ESHUTDOWN; 819 goto done_not_linked; 820 } 821 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); 822 if (unlikely(status)) 823 goto done_not_linked; 824 825 /* get qh and force any scheduling errors */ 826 INIT_LIST_HEAD (&empty); 827 qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv); 828 if (qh == NULL) { 829 status = -ENOMEM; 830 goto done; 831 } 832 if (qh->qh_state == QH_STATE_IDLE) { 833 if ((status = qh_schedule (ehci, qh)) != 0) 834 goto done; 835 } 836 837 /* then queue the urb's tds to the qh */ 838 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv); 839 BUG_ON (qh == NULL); 840 841 /* ... update usbfs periodic stats */ 842 ehci_to_hcd(ehci)->self.bandwidth_int_reqs++; 843 844 done: 845 if (unlikely(status)) 846 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 847 done_not_linked: 848 spin_unlock_irqrestore (&ehci->lock, flags); 849 if (status) 850 qtd_list_free (ehci, urb, qtd_list); 851 852 return status; 853 } 854 855 /*-------------------------------------------------------------------------*/ 856 857 /* ehci_iso_stream ops work with both ITD and SITD */ 858 859 static struct ehci_iso_stream * 860 iso_stream_alloc (gfp_t mem_flags) 861 { 862 struct ehci_iso_stream *stream; 863 864 stream = kzalloc(sizeof *stream, mem_flags); 865 if (likely (stream != NULL)) { 866 INIT_LIST_HEAD(&stream->td_list); 867 INIT_LIST_HEAD(&stream->free_list); 868 stream->next_uframe = -1; 869 stream->refcount = 1; 870 } 871 return stream; 872 } 873 874 static void 875 iso_stream_init ( 876 struct ehci_hcd *ehci, 877 struct ehci_iso_stream *stream, 878 struct usb_device *dev, 879 int pipe, 880 unsigned interval 881 ) 882 { 883 static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f }; 884 885 u32 buf1; 886 unsigned epnum, maxp; 887 int is_input; 888 long bandwidth; 889 890 /* 891 * this might be a "high bandwidth" highspeed endpoint, 892 * as encoded in the ep descriptor's wMaxPacket field 893 */ 894 epnum = usb_pipeendpoint (pipe); 895 is_input = usb_pipein (pipe) ? USB_DIR_IN : 0; 896 maxp = usb_maxpacket(dev, pipe, !is_input); 897 if (is_input) { 898 buf1 = (1 << 11); 899 } else { 900 buf1 = 0; 901 } 902 903 /* knows about ITD vs SITD */ 904 if (dev->speed == USB_SPEED_HIGH) { 905 unsigned multi = hb_mult(maxp); 906 907 stream->highspeed = 1; 908 909 maxp = max_packet(maxp); 910 buf1 |= maxp; 911 maxp *= multi; 912 913 stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum); 914 stream->buf1 = cpu_to_hc32(ehci, buf1); 915 stream->buf2 = cpu_to_hc32(ehci, multi); 916 917 /* usbfs wants to report the average usecs per frame tied up 918 * when transfers on this endpoint are scheduled ... 919 */ 920 stream->usecs = HS_USECS_ISO (maxp); 921 bandwidth = stream->usecs * 8; 922 bandwidth /= 1 << (interval - 1); 923 924 } else { 925 u32 addr; 926 int think_time; 927 int hs_transfers; 928 929 addr = dev->ttport << 24; 930 if (!ehci_is_TDI(ehci) 931 || (dev->tt->hub != 932 ehci_to_hcd(ehci)->self.root_hub)) 933 addr |= dev->tt->hub->devnum << 16; 934 addr |= epnum << 8; 935 addr |= dev->devnum; 936 stream->usecs = HS_USECS_ISO (maxp); 937 think_time = dev->tt ? dev->tt->think_time : 0; 938 stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time ( 939 dev->speed, is_input, 1, maxp)); 940 hs_transfers = max (1u, (maxp + 187) / 188); 941 if (is_input) { 942 u32 tmp; 943 944 addr |= 1 << 31; 945 stream->c_usecs = stream->usecs; 946 stream->usecs = HS_USECS_ISO (1); 947 stream->raw_mask = 1; 948 949 /* c-mask as specified in USB 2.0 11.18.4 3.c */ 950 tmp = (1 << (hs_transfers + 2)) - 1; 951 stream->raw_mask |= tmp << (8 + 2); 952 } else 953 stream->raw_mask = smask_out [hs_transfers - 1]; 954 bandwidth = stream->usecs + stream->c_usecs; 955 bandwidth /= 1 << (interval + 2); 956 957 /* stream->splits gets created from raw_mask later */ 958 stream->address = cpu_to_hc32(ehci, addr); 959 } 960 stream->bandwidth = bandwidth; 961 962 stream->udev = dev; 963 964 stream->bEndpointAddress = is_input | epnum; 965 stream->interval = interval; 966 stream->maxp = maxp; 967 } 968 969 static void 970 iso_stream_put(struct ehci_hcd *ehci, struct ehci_iso_stream *stream) 971 { 972 stream->refcount--; 973 974 /* free whenever just a dev->ep reference remains. 975 * not like a QH -- no persistent state (toggle, halt) 976 */ 977 if (stream->refcount == 1) { 978 int is_in; 979 980 // BUG_ON (!list_empty(&stream->td_list)); 981 982 while (!list_empty (&stream->free_list)) { 983 struct list_head *entry; 984 985 entry = stream->free_list.next; 986 list_del (entry); 987 988 /* knows about ITD vs SITD */ 989 if (stream->highspeed) { 990 struct ehci_itd *itd; 991 992 itd = list_entry (entry, struct ehci_itd, 993 itd_list); 994 dma_pool_free (ehci->itd_pool, itd, 995 itd->itd_dma); 996 } else { 997 struct ehci_sitd *sitd; 998 999 sitd = list_entry (entry, struct ehci_sitd, 1000 sitd_list); 1001 dma_pool_free (ehci->sitd_pool, sitd, 1002 sitd->sitd_dma); 1003 } 1004 } 1005 1006 is_in = (stream->bEndpointAddress & USB_DIR_IN) ? 0x10 : 0; 1007 stream->bEndpointAddress &= 0x0f; 1008 stream->ep->hcpriv = NULL; 1009 1010 if (stream->rescheduled) { 1011 ehci_info (ehci, "ep%d%s-iso rescheduled " 1012 "%lu times in %lu seconds\n", 1013 stream->bEndpointAddress, is_in ? "in" : "out", 1014 stream->rescheduled, 1015 ((jiffies - stream->start)/HZ) 1016 ); 1017 } 1018 1019 kfree(stream); 1020 } 1021 } 1022 1023 static inline struct ehci_iso_stream * 1024 iso_stream_get (struct ehci_iso_stream *stream) 1025 { 1026 if (likely (stream != NULL)) 1027 stream->refcount++; 1028 return stream; 1029 } 1030 1031 static struct ehci_iso_stream * 1032 iso_stream_find (struct ehci_hcd *ehci, struct urb *urb) 1033 { 1034 unsigned epnum; 1035 struct ehci_iso_stream *stream; 1036 struct usb_host_endpoint *ep; 1037 unsigned long flags; 1038 1039 epnum = usb_pipeendpoint (urb->pipe); 1040 if (usb_pipein(urb->pipe)) 1041 ep = urb->dev->ep_in[epnum]; 1042 else 1043 ep = urb->dev->ep_out[epnum]; 1044 1045 spin_lock_irqsave (&ehci->lock, flags); 1046 stream = ep->hcpriv; 1047 1048 if (unlikely (stream == NULL)) { 1049 stream = iso_stream_alloc(GFP_ATOMIC); 1050 if (likely (stream != NULL)) { 1051 /* dev->ep owns the initial refcount */ 1052 ep->hcpriv = stream; 1053 stream->ep = ep; 1054 iso_stream_init(ehci, stream, urb->dev, urb->pipe, 1055 urb->interval); 1056 } 1057 1058 /* if dev->ep [epnum] is a QH, info1.maxpacket is nonzero */ 1059 } else if (unlikely (stream->hw_info1 != 0)) { 1060 ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n", 1061 urb->dev->devpath, epnum, 1062 usb_pipein(urb->pipe) ? "in" : "out"); 1063 stream = NULL; 1064 } 1065 1066 /* caller guarantees an eventual matching iso_stream_put */ 1067 stream = iso_stream_get (stream); 1068 1069 spin_unlock_irqrestore (&ehci->lock, flags); 1070 return stream; 1071 } 1072 1073 /*-------------------------------------------------------------------------*/ 1074 1075 /* ehci_iso_sched ops can be ITD-only or SITD-only */ 1076 1077 static struct ehci_iso_sched * 1078 iso_sched_alloc (unsigned packets, gfp_t mem_flags) 1079 { 1080 struct ehci_iso_sched *iso_sched; 1081 int size = sizeof *iso_sched; 1082 1083 size += packets * sizeof (struct ehci_iso_packet); 1084 iso_sched = kzalloc(size, mem_flags); 1085 if (likely (iso_sched != NULL)) { 1086 INIT_LIST_HEAD (&iso_sched->td_list); 1087 } 1088 return iso_sched; 1089 } 1090 1091 static inline void 1092 itd_sched_init( 1093 struct ehci_hcd *ehci, 1094 struct ehci_iso_sched *iso_sched, 1095 struct ehci_iso_stream *stream, 1096 struct urb *urb 1097 ) 1098 { 1099 unsigned i; 1100 dma_addr_t dma = urb->transfer_dma; 1101 1102 /* how many uframes are needed for these transfers */ 1103 iso_sched->span = urb->number_of_packets * stream->interval; 1104 1105 /* figure out per-uframe itd fields that we'll need later 1106 * when we fit new itds into the schedule. 1107 */ 1108 for (i = 0; i < urb->number_of_packets; i++) { 1109 struct ehci_iso_packet *uframe = &iso_sched->packet [i]; 1110 unsigned length; 1111 dma_addr_t buf; 1112 u32 trans; 1113 1114 length = urb->iso_frame_desc [i].length; 1115 buf = dma + urb->iso_frame_desc [i].offset; 1116 1117 trans = EHCI_ISOC_ACTIVE; 1118 trans |= buf & 0x0fff; 1119 if (unlikely (((i + 1) == urb->number_of_packets)) 1120 && !(urb->transfer_flags & URB_NO_INTERRUPT)) 1121 trans |= EHCI_ITD_IOC; 1122 trans |= length << 16; 1123 uframe->transaction = cpu_to_hc32(ehci, trans); 1124 1125 /* might need to cross a buffer page within a uframe */ 1126 uframe->bufp = (buf & ~(u64)0x0fff); 1127 buf += length; 1128 if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff)))) 1129 uframe->cross = 1; 1130 } 1131 } 1132 1133 static void 1134 iso_sched_free ( 1135 struct ehci_iso_stream *stream, 1136 struct ehci_iso_sched *iso_sched 1137 ) 1138 { 1139 if (!iso_sched) 1140 return; 1141 // caller must hold ehci->lock! 1142 list_splice (&iso_sched->td_list, &stream->free_list); 1143 kfree (iso_sched); 1144 } 1145 1146 static int 1147 itd_urb_transaction ( 1148 struct ehci_iso_stream *stream, 1149 struct ehci_hcd *ehci, 1150 struct urb *urb, 1151 gfp_t mem_flags 1152 ) 1153 { 1154 struct ehci_itd *itd; 1155 dma_addr_t itd_dma; 1156 int i; 1157 unsigned num_itds; 1158 struct ehci_iso_sched *sched; 1159 unsigned long flags; 1160 1161 sched = iso_sched_alloc (urb->number_of_packets, mem_flags); 1162 if (unlikely (sched == NULL)) 1163 return -ENOMEM; 1164 1165 itd_sched_init(ehci, sched, stream, urb); 1166 1167 if (urb->interval < 8) 1168 num_itds = 1 + (sched->span + 7) / 8; 1169 else 1170 num_itds = urb->number_of_packets; 1171 1172 /* allocate/init ITDs */ 1173 spin_lock_irqsave (&ehci->lock, flags); 1174 for (i = 0; i < num_itds; i++) { 1175 1176 /* free_list.next might be cache-hot ... but maybe 1177 * the HC caches it too. avoid that issue for now. 1178 */ 1179 1180 /* prefer previously-allocated itds */ 1181 if (likely (!list_empty(&stream->free_list))) { 1182 itd = list_entry (stream->free_list.prev, 1183 struct ehci_itd, itd_list); 1184 list_del (&itd->itd_list); 1185 itd_dma = itd->itd_dma; 1186 } else 1187 itd = NULL; 1188 1189 if (!itd) { 1190 spin_unlock_irqrestore (&ehci->lock, flags); 1191 itd = dma_pool_alloc (ehci->itd_pool, mem_flags, 1192 &itd_dma); 1193 spin_lock_irqsave (&ehci->lock, flags); 1194 } 1195 1196 if (unlikely (NULL == itd)) { 1197 iso_sched_free (stream, sched); 1198 spin_unlock_irqrestore (&ehci->lock, flags); 1199 return -ENOMEM; 1200 } 1201 memset (itd, 0, sizeof *itd); 1202 itd->itd_dma = itd_dma; 1203 list_add (&itd->itd_list, &sched->td_list); 1204 } 1205 spin_unlock_irqrestore (&ehci->lock, flags); 1206 1207 /* temporarily store schedule info in hcpriv */ 1208 urb->hcpriv = sched; 1209 urb->error_count = 0; 1210 return 0; 1211 } 1212 1213 /*-------------------------------------------------------------------------*/ 1214 1215 static inline int 1216 itd_slot_ok ( 1217 struct ehci_hcd *ehci, 1218 u32 mod, 1219 u32 uframe, 1220 u8 usecs, 1221 u32 period 1222 ) 1223 { 1224 uframe %= period; 1225 do { 1226 /* can't commit more than 80% periodic == 100 usec */ 1227 if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7) 1228 > (100 - usecs)) 1229 return 0; 1230 1231 /* we know urb->interval is 2^N uframes */ 1232 uframe += period; 1233 } while (uframe < mod); 1234 return 1; 1235 } 1236 1237 static inline int 1238 sitd_slot_ok ( 1239 struct ehci_hcd *ehci, 1240 u32 mod, 1241 struct ehci_iso_stream *stream, 1242 u32 uframe, 1243 struct ehci_iso_sched *sched, 1244 u32 period_uframes 1245 ) 1246 { 1247 u32 mask, tmp; 1248 u32 frame, uf; 1249 1250 mask = stream->raw_mask << (uframe & 7); 1251 1252 /* for IN, don't wrap CSPLIT into the next frame */ 1253 if (mask & ~0xffff) 1254 return 0; 1255 1256 /* this multi-pass logic is simple, but performance may 1257 * suffer when the schedule data isn't cached. 1258 */ 1259 1260 /* check bandwidth */ 1261 uframe %= period_uframes; 1262 do { 1263 u32 max_used; 1264 1265 frame = uframe >> 3; 1266 uf = uframe & 7; 1267 1268 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED 1269 /* The tt's fullspeed bus bandwidth must be available. 1270 * tt_available scheduling guarantees 10+% for control/bulk. 1271 */ 1272 if (!tt_available (ehci, period_uframes << 3, 1273 stream->udev, frame, uf, stream->tt_usecs)) 1274 return 0; 1275 #else 1276 /* tt must be idle for start(s), any gap, and csplit. 1277 * assume scheduling slop leaves 10+% for control/bulk. 1278 */ 1279 if (!tt_no_collision (ehci, period_uframes << 3, 1280 stream->udev, frame, mask)) 1281 return 0; 1282 #endif 1283 1284 /* check starts (OUT uses more than one) */ 1285 max_used = 100 - stream->usecs; 1286 for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) { 1287 if (periodic_usecs (ehci, frame, uf) > max_used) 1288 return 0; 1289 } 1290 1291 /* for IN, check CSPLIT */ 1292 if (stream->c_usecs) { 1293 uf = uframe & 7; 1294 max_used = 100 - stream->c_usecs; 1295 do { 1296 tmp = 1 << uf; 1297 tmp <<= 8; 1298 if ((stream->raw_mask & tmp) == 0) 1299 continue; 1300 if (periodic_usecs (ehci, frame, uf) 1301 > max_used) 1302 return 0; 1303 } while (++uf < 8); 1304 } 1305 1306 /* we know urb->interval is 2^N uframes */ 1307 uframe += period_uframes; 1308 } while (uframe < mod); 1309 1310 stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7)); 1311 return 1; 1312 } 1313 1314 /* 1315 * This scheduler plans almost as far into the future as it has actual 1316 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to 1317 * "as small as possible" to be cache-friendlier.) That limits the size 1318 * transfers you can stream reliably; avoid more than 64 msec per urb. 1319 * Also avoid queue depths of less than ehci's worst irq latency (affected 1320 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter, 1321 * and other factors); or more than about 230 msec total (for portability, 1322 * given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler! 1323 */ 1324 1325 #define SCHEDULE_SLOP 10 /* frames */ 1326 1327 static int 1328 iso_stream_schedule ( 1329 struct ehci_hcd *ehci, 1330 struct urb *urb, 1331 struct ehci_iso_stream *stream 1332 ) 1333 { 1334 u32 now, start, max, period; 1335 int status; 1336 unsigned mod = ehci->periodic_size << 3; 1337 struct ehci_iso_sched *sched = urb->hcpriv; 1338 1339 if (sched->span > (mod - 8 * SCHEDULE_SLOP)) { 1340 ehci_dbg (ehci, "iso request %p too long\n", urb); 1341 status = -EFBIG; 1342 goto fail; 1343 } 1344 1345 if ((stream->depth + sched->span) > mod) { 1346 ehci_dbg (ehci, "request %p would overflow (%d+%d>%d)\n", 1347 urb, stream->depth, sched->span, mod); 1348 status = -EFBIG; 1349 goto fail; 1350 } 1351 1352 now = ehci_readl(ehci, &ehci->regs->frame_index) % mod; 1353 1354 /* when's the last uframe this urb could start? */ 1355 max = now + mod; 1356 1357 /* typical case: reuse current schedule. stream is still active, 1358 * and no gaps from host falling behind (irq delays etc) 1359 */ 1360 if (likely (!list_empty (&stream->td_list))) { 1361 start = stream->next_uframe; 1362 if (start < now) 1363 start += mod; 1364 if (likely ((start + sched->span) < max)) 1365 goto ready; 1366 /* else fell behind; someday, try to reschedule */ 1367 status = -EL2NSYNC; 1368 goto fail; 1369 } 1370 1371 /* need to schedule; when's the next (u)frame we could start? 1372 * this is bigger than ehci->i_thresh allows; scheduling itself 1373 * isn't free, the slop should handle reasonably slow cpus. it 1374 * can also help high bandwidth if the dma and irq loads don't 1375 * jump until after the queue is primed. 1376 */ 1377 start = SCHEDULE_SLOP * 8 + (now & ~0x07); 1378 start %= mod; 1379 stream->next_uframe = start; 1380 1381 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */ 1382 1383 period = urb->interval; 1384 if (!stream->highspeed) 1385 period <<= 3; 1386 1387 /* find a uframe slot with enough bandwidth */ 1388 for (; start < (stream->next_uframe + period); start++) { 1389 int enough_space; 1390 1391 /* check schedule: enough space? */ 1392 if (stream->highspeed) 1393 enough_space = itd_slot_ok (ehci, mod, start, 1394 stream->usecs, period); 1395 else { 1396 if ((start % 8) >= 6) 1397 continue; 1398 enough_space = sitd_slot_ok (ehci, mod, stream, 1399 start, sched, period); 1400 } 1401 1402 /* schedule it here if there's enough bandwidth */ 1403 if (enough_space) { 1404 stream->next_uframe = start % mod; 1405 goto ready; 1406 } 1407 } 1408 1409 /* no room in the schedule */ 1410 ehci_dbg (ehci, "iso %ssched full %p (now %d max %d)\n", 1411 list_empty (&stream->td_list) ? "" : "re", 1412 urb, now, max); 1413 status = -ENOSPC; 1414 1415 fail: 1416 iso_sched_free (stream, sched); 1417 urb->hcpriv = NULL; 1418 return status; 1419 1420 ready: 1421 /* report high speed start in uframes; full speed, in frames */ 1422 urb->start_frame = stream->next_uframe; 1423 if (!stream->highspeed) 1424 urb->start_frame >>= 3; 1425 return 0; 1426 } 1427 1428 /*-------------------------------------------------------------------------*/ 1429 1430 static inline void 1431 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream, 1432 struct ehci_itd *itd) 1433 { 1434 int i; 1435 1436 /* it's been recently zeroed */ 1437 itd->hw_next = EHCI_LIST_END(ehci); 1438 itd->hw_bufp [0] = stream->buf0; 1439 itd->hw_bufp [1] = stream->buf1; 1440 itd->hw_bufp [2] = stream->buf2; 1441 1442 for (i = 0; i < 8; i++) 1443 itd->index[i] = -1; 1444 1445 /* All other fields are filled when scheduling */ 1446 } 1447 1448 static inline void 1449 itd_patch( 1450 struct ehci_hcd *ehci, 1451 struct ehci_itd *itd, 1452 struct ehci_iso_sched *iso_sched, 1453 unsigned index, 1454 u16 uframe 1455 ) 1456 { 1457 struct ehci_iso_packet *uf = &iso_sched->packet [index]; 1458 unsigned pg = itd->pg; 1459 1460 // BUG_ON (pg == 6 && uf->cross); 1461 1462 uframe &= 0x07; 1463 itd->index [uframe] = index; 1464 1465 itd->hw_transaction[uframe] = uf->transaction; 1466 itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12); 1467 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0); 1468 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32)); 1469 1470 /* iso_frame_desc[].offset must be strictly increasing */ 1471 if (unlikely (uf->cross)) { 1472 u64 bufp = uf->bufp + 4096; 1473 1474 itd->pg = ++pg; 1475 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0); 1476 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32)); 1477 } 1478 } 1479 1480 static inline void 1481 itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd) 1482 { 1483 /* always prepend ITD/SITD ... only QH tree is order-sensitive */ 1484 itd->itd_next = ehci->pshadow [frame]; 1485 itd->hw_next = ehci->periodic [frame]; 1486 ehci->pshadow [frame].itd = itd; 1487 itd->frame = frame; 1488 wmb (); 1489 ehci->periodic[frame] = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD); 1490 } 1491 1492 /* fit urb's itds into the selected schedule slot; activate as needed */ 1493 static int 1494 itd_link_urb ( 1495 struct ehci_hcd *ehci, 1496 struct urb *urb, 1497 unsigned mod, 1498 struct ehci_iso_stream *stream 1499 ) 1500 { 1501 int packet; 1502 unsigned next_uframe, uframe, frame; 1503 struct ehci_iso_sched *iso_sched = urb->hcpriv; 1504 struct ehci_itd *itd; 1505 1506 next_uframe = stream->next_uframe % mod; 1507 1508 if (unlikely (list_empty(&stream->td_list))) { 1509 ehci_to_hcd(ehci)->self.bandwidth_allocated 1510 += stream->bandwidth; 1511 ehci_vdbg (ehci, 1512 "schedule devp %s ep%d%s-iso period %d start %d.%d\n", 1513 urb->dev->devpath, stream->bEndpointAddress & 0x0f, 1514 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out", 1515 urb->interval, 1516 next_uframe >> 3, next_uframe & 0x7); 1517 stream->start = jiffies; 1518 } 1519 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++; 1520 1521 /* fill iTDs uframe by uframe */ 1522 for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) { 1523 if (itd == NULL) { 1524 /* ASSERT: we have all necessary itds */ 1525 // BUG_ON (list_empty (&iso_sched->td_list)); 1526 1527 /* ASSERT: no itds for this endpoint in this uframe */ 1528 1529 itd = list_entry (iso_sched->td_list.next, 1530 struct ehci_itd, itd_list); 1531 list_move_tail (&itd->itd_list, &stream->td_list); 1532 itd->stream = iso_stream_get (stream); 1533 itd->urb = usb_get_urb (urb); 1534 itd_init (ehci, stream, itd); 1535 } 1536 1537 uframe = next_uframe & 0x07; 1538 frame = next_uframe >> 3; 1539 1540 itd_patch(ehci, itd, iso_sched, packet, uframe); 1541 1542 next_uframe += stream->interval; 1543 stream->depth += stream->interval; 1544 next_uframe %= mod; 1545 packet++; 1546 1547 /* link completed itds into the schedule */ 1548 if (((next_uframe >> 3) != frame) 1549 || packet == urb->number_of_packets) { 1550 itd_link (ehci, frame % ehci->periodic_size, itd); 1551 itd = NULL; 1552 } 1553 } 1554 stream->next_uframe = next_uframe; 1555 1556 /* don't need that schedule data any more */ 1557 iso_sched_free (stream, iso_sched); 1558 urb->hcpriv = NULL; 1559 1560 timer_action (ehci, TIMER_IO_WATCHDOG); 1561 if (unlikely (!ehci->periodic_sched++)) 1562 return enable_periodic (ehci); 1563 return 0; 1564 } 1565 1566 #define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR) 1567 1568 /* Process and recycle a completed ITD. Return true iff its urb completed, 1569 * and hence its completion callback probably added things to the hardware 1570 * schedule. 1571 * 1572 * Note that we carefully avoid recycling this descriptor until after any 1573 * completion callback runs, so that it won't be reused quickly. That is, 1574 * assuming (a) no more than two urbs per frame on this endpoint, and also 1575 * (b) only this endpoint's completions submit URBs. It seems some silicon 1576 * corrupts things if you reuse completed descriptors very quickly... 1577 */ 1578 static unsigned 1579 itd_complete ( 1580 struct ehci_hcd *ehci, 1581 struct ehci_itd *itd 1582 ) { 1583 struct urb *urb = itd->urb; 1584 struct usb_iso_packet_descriptor *desc; 1585 u32 t; 1586 unsigned uframe; 1587 int urb_index = -1; 1588 struct ehci_iso_stream *stream = itd->stream; 1589 struct usb_device *dev; 1590 unsigned retval = false; 1591 1592 /* for each uframe with a packet */ 1593 for (uframe = 0; uframe < 8; uframe++) { 1594 if (likely (itd->index[uframe] == -1)) 1595 continue; 1596 urb_index = itd->index[uframe]; 1597 desc = &urb->iso_frame_desc [urb_index]; 1598 1599 t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]); 1600 itd->hw_transaction [uframe] = 0; 1601 stream->depth -= stream->interval; 1602 1603 /* report transfer status */ 1604 if (unlikely (t & ISO_ERRS)) { 1605 urb->error_count++; 1606 if (t & EHCI_ISOC_BUF_ERR) 1607 desc->status = usb_pipein (urb->pipe) 1608 ? -ENOSR /* hc couldn't read */ 1609 : -ECOMM; /* hc couldn't write */ 1610 else if (t & EHCI_ISOC_BABBLE) 1611 desc->status = -EOVERFLOW; 1612 else /* (t & EHCI_ISOC_XACTERR) */ 1613 desc->status = -EPROTO; 1614 1615 /* HC need not update length with this error */ 1616 if (!(t & EHCI_ISOC_BABBLE)) 1617 desc->actual_length = EHCI_ITD_LENGTH (t); 1618 } else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) { 1619 desc->status = 0; 1620 desc->actual_length = EHCI_ITD_LENGTH (t); 1621 } 1622 } 1623 1624 /* handle completion now? */ 1625 if (likely ((urb_index + 1) != urb->number_of_packets)) 1626 goto done; 1627 1628 /* ASSERT: it's really the last itd for this urb 1629 list_for_each_entry (itd, &stream->td_list, itd_list) 1630 BUG_ON (itd->urb == urb); 1631 */ 1632 1633 /* give urb back to the driver; completion often (re)submits */ 1634 dev = urb->dev; 1635 ehci_urb_done(ehci, urb, 0); 1636 retval = true; 1637 urb = NULL; 1638 ehci->periodic_sched--; 1639 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--; 1640 1641 if (unlikely (list_empty (&stream->td_list))) { 1642 ehci_to_hcd(ehci)->self.bandwidth_allocated 1643 -= stream->bandwidth; 1644 ehci_vdbg (ehci, 1645 "deschedule devp %s ep%d%s-iso\n", 1646 dev->devpath, stream->bEndpointAddress & 0x0f, 1647 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out"); 1648 } 1649 iso_stream_put (ehci, stream); 1650 /* OK to recycle this ITD now that its completion callback ran. */ 1651 done: 1652 usb_put_urb(urb); 1653 itd->urb = NULL; 1654 itd->stream = NULL; 1655 list_move(&itd->itd_list, &stream->free_list); 1656 iso_stream_put(ehci, stream); 1657 1658 return retval; 1659 } 1660 1661 /*-------------------------------------------------------------------------*/ 1662 1663 static int itd_submit (struct ehci_hcd *ehci, struct urb *urb, 1664 gfp_t mem_flags) 1665 { 1666 int status = -EINVAL; 1667 unsigned long flags; 1668 struct ehci_iso_stream *stream; 1669 1670 /* Get iso_stream head */ 1671 stream = iso_stream_find (ehci, urb); 1672 if (unlikely (stream == NULL)) { 1673 ehci_dbg (ehci, "can't get iso stream\n"); 1674 return -ENOMEM; 1675 } 1676 if (unlikely (urb->interval != stream->interval)) { 1677 ehci_dbg (ehci, "can't change iso interval %d --> %d\n", 1678 stream->interval, urb->interval); 1679 goto done; 1680 } 1681 1682 #ifdef EHCI_URB_TRACE 1683 ehci_dbg (ehci, 1684 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n", 1685 __FUNCTION__, urb->dev->devpath, urb, 1686 usb_pipeendpoint (urb->pipe), 1687 usb_pipein (urb->pipe) ? "in" : "out", 1688 urb->transfer_buffer_length, 1689 urb->number_of_packets, urb->interval, 1690 stream); 1691 #endif 1692 1693 /* allocate ITDs w/o locking anything */ 1694 status = itd_urb_transaction (stream, ehci, urb, mem_flags); 1695 if (unlikely (status < 0)) { 1696 ehci_dbg (ehci, "can't init itds\n"); 1697 goto done; 1698 } 1699 1700 /* schedule ... need to lock */ 1701 spin_lock_irqsave (&ehci->lock, flags); 1702 if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE, 1703 &ehci_to_hcd(ehci)->flags))) { 1704 status = -ESHUTDOWN; 1705 goto done_not_linked; 1706 } 1707 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); 1708 if (unlikely(status)) 1709 goto done_not_linked; 1710 status = iso_stream_schedule(ehci, urb, stream); 1711 if (likely (status == 0)) 1712 itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream); 1713 else 1714 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 1715 done_not_linked: 1716 spin_unlock_irqrestore (&ehci->lock, flags); 1717 1718 done: 1719 if (unlikely (status < 0)) 1720 iso_stream_put (ehci, stream); 1721 return status; 1722 } 1723 1724 /*-------------------------------------------------------------------------*/ 1725 1726 /* 1727 * "Split ISO TDs" ... used for USB 1.1 devices going through the 1728 * TTs in USB 2.0 hubs. These need microframe scheduling. 1729 */ 1730 1731 static inline void 1732 sitd_sched_init( 1733 struct ehci_hcd *ehci, 1734 struct ehci_iso_sched *iso_sched, 1735 struct ehci_iso_stream *stream, 1736 struct urb *urb 1737 ) 1738 { 1739 unsigned i; 1740 dma_addr_t dma = urb->transfer_dma; 1741 1742 /* how many frames are needed for these transfers */ 1743 iso_sched->span = urb->number_of_packets * stream->interval; 1744 1745 /* figure out per-frame sitd fields that we'll need later 1746 * when we fit new sitds into the schedule. 1747 */ 1748 for (i = 0; i < urb->number_of_packets; i++) { 1749 struct ehci_iso_packet *packet = &iso_sched->packet [i]; 1750 unsigned length; 1751 dma_addr_t buf; 1752 u32 trans; 1753 1754 length = urb->iso_frame_desc [i].length & 0x03ff; 1755 buf = dma + urb->iso_frame_desc [i].offset; 1756 1757 trans = SITD_STS_ACTIVE; 1758 if (((i + 1) == urb->number_of_packets) 1759 && !(urb->transfer_flags & URB_NO_INTERRUPT)) 1760 trans |= SITD_IOC; 1761 trans |= length << 16; 1762 packet->transaction = cpu_to_hc32(ehci, trans); 1763 1764 /* might need to cross a buffer page within a td */ 1765 packet->bufp = buf; 1766 packet->buf1 = (buf + length) & ~0x0fff; 1767 if (packet->buf1 != (buf & ~(u64)0x0fff)) 1768 packet->cross = 1; 1769 1770 /* OUT uses multiple start-splits */ 1771 if (stream->bEndpointAddress & USB_DIR_IN) 1772 continue; 1773 length = (length + 187) / 188; 1774 if (length > 1) /* BEGIN vs ALL */ 1775 length |= 1 << 3; 1776 packet->buf1 |= length; 1777 } 1778 } 1779 1780 static int 1781 sitd_urb_transaction ( 1782 struct ehci_iso_stream *stream, 1783 struct ehci_hcd *ehci, 1784 struct urb *urb, 1785 gfp_t mem_flags 1786 ) 1787 { 1788 struct ehci_sitd *sitd; 1789 dma_addr_t sitd_dma; 1790 int i; 1791 struct ehci_iso_sched *iso_sched; 1792 unsigned long flags; 1793 1794 iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags); 1795 if (iso_sched == NULL) 1796 return -ENOMEM; 1797 1798 sitd_sched_init(ehci, iso_sched, stream, urb); 1799 1800 /* allocate/init sITDs */ 1801 spin_lock_irqsave (&ehci->lock, flags); 1802 for (i = 0; i < urb->number_of_packets; i++) { 1803 1804 /* NOTE: for now, we don't try to handle wraparound cases 1805 * for IN (using sitd->hw_backpointer, like a FSTN), which 1806 * means we never need two sitds for full speed packets. 1807 */ 1808 1809 /* free_list.next might be cache-hot ... but maybe 1810 * the HC caches it too. avoid that issue for now. 1811 */ 1812 1813 /* prefer previously-allocated sitds */ 1814 if (!list_empty(&stream->free_list)) { 1815 sitd = list_entry (stream->free_list.prev, 1816 struct ehci_sitd, sitd_list); 1817 list_del (&sitd->sitd_list); 1818 sitd_dma = sitd->sitd_dma; 1819 } else 1820 sitd = NULL; 1821 1822 if (!sitd) { 1823 spin_unlock_irqrestore (&ehci->lock, flags); 1824 sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags, 1825 &sitd_dma); 1826 spin_lock_irqsave (&ehci->lock, flags); 1827 } 1828 1829 if (!sitd) { 1830 iso_sched_free (stream, iso_sched); 1831 spin_unlock_irqrestore (&ehci->lock, flags); 1832 return -ENOMEM; 1833 } 1834 memset (sitd, 0, sizeof *sitd); 1835 sitd->sitd_dma = sitd_dma; 1836 list_add (&sitd->sitd_list, &iso_sched->td_list); 1837 } 1838 1839 /* temporarily store schedule info in hcpriv */ 1840 urb->hcpriv = iso_sched; 1841 urb->error_count = 0; 1842 1843 spin_unlock_irqrestore (&ehci->lock, flags); 1844 return 0; 1845 } 1846 1847 /*-------------------------------------------------------------------------*/ 1848 1849 static inline void 1850 sitd_patch( 1851 struct ehci_hcd *ehci, 1852 struct ehci_iso_stream *stream, 1853 struct ehci_sitd *sitd, 1854 struct ehci_iso_sched *iso_sched, 1855 unsigned index 1856 ) 1857 { 1858 struct ehci_iso_packet *uf = &iso_sched->packet [index]; 1859 u64 bufp = uf->bufp; 1860 1861 sitd->hw_next = EHCI_LIST_END(ehci); 1862 sitd->hw_fullspeed_ep = stream->address; 1863 sitd->hw_uframe = stream->splits; 1864 sitd->hw_results = uf->transaction; 1865 sitd->hw_backpointer = EHCI_LIST_END(ehci); 1866 1867 bufp = uf->bufp; 1868 sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp); 1869 sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32); 1870 1871 sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1); 1872 if (uf->cross) 1873 bufp += 4096; 1874 sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32); 1875 sitd->index = index; 1876 } 1877 1878 static inline void 1879 sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd) 1880 { 1881 /* note: sitd ordering could matter (CSPLIT then SSPLIT) */ 1882 sitd->sitd_next = ehci->pshadow [frame]; 1883 sitd->hw_next = ehci->periodic [frame]; 1884 ehci->pshadow [frame].sitd = sitd; 1885 sitd->frame = frame; 1886 wmb (); 1887 ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD); 1888 } 1889 1890 /* fit urb's sitds into the selected schedule slot; activate as needed */ 1891 static int 1892 sitd_link_urb ( 1893 struct ehci_hcd *ehci, 1894 struct urb *urb, 1895 unsigned mod, 1896 struct ehci_iso_stream *stream 1897 ) 1898 { 1899 int packet; 1900 unsigned next_uframe; 1901 struct ehci_iso_sched *sched = urb->hcpriv; 1902 struct ehci_sitd *sitd; 1903 1904 next_uframe = stream->next_uframe; 1905 1906 if (list_empty(&stream->td_list)) { 1907 /* usbfs ignores TT bandwidth */ 1908 ehci_to_hcd(ehci)->self.bandwidth_allocated 1909 += stream->bandwidth; 1910 ehci_vdbg (ehci, 1911 "sched devp %s ep%d%s-iso [%d] %dms/%04x\n", 1912 urb->dev->devpath, stream->bEndpointAddress & 0x0f, 1913 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out", 1914 (next_uframe >> 3) % ehci->periodic_size, 1915 stream->interval, hc32_to_cpu(ehci, stream->splits)); 1916 stream->start = jiffies; 1917 } 1918 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++; 1919 1920 /* fill sITDs frame by frame */ 1921 for (packet = 0, sitd = NULL; 1922 packet < urb->number_of_packets; 1923 packet++) { 1924 1925 /* ASSERT: we have all necessary sitds */ 1926 BUG_ON (list_empty (&sched->td_list)); 1927 1928 /* ASSERT: no itds for this endpoint in this frame */ 1929 1930 sitd = list_entry (sched->td_list.next, 1931 struct ehci_sitd, sitd_list); 1932 list_move_tail (&sitd->sitd_list, &stream->td_list); 1933 sitd->stream = iso_stream_get (stream); 1934 sitd->urb = usb_get_urb (urb); 1935 1936 sitd_patch(ehci, stream, sitd, sched, packet); 1937 sitd_link (ehci, (next_uframe >> 3) % ehci->periodic_size, 1938 sitd); 1939 1940 next_uframe += stream->interval << 3; 1941 stream->depth += stream->interval << 3; 1942 } 1943 stream->next_uframe = next_uframe % mod; 1944 1945 /* don't need that schedule data any more */ 1946 iso_sched_free (stream, sched); 1947 urb->hcpriv = NULL; 1948 1949 timer_action (ehci, TIMER_IO_WATCHDOG); 1950 if (!ehci->periodic_sched++) 1951 return enable_periodic (ehci); 1952 return 0; 1953 } 1954 1955 /*-------------------------------------------------------------------------*/ 1956 1957 #define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \ 1958 | SITD_STS_XACT | SITD_STS_MMF) 1959 1960 /* Process and recycle a completed SITD. Return true iff its urb completed, 1961 * and hence its completion callback probably added things to the hardware 1962 * schedule. 1963 * 1964 * Note that we carefully avoid recycling this descriptor until after any 1965 * completion callback runs, so that it won't be reused quickly. That is, 1966 * assuming (a) no more than two urbs per frame on this endpoint, and also 1967 * (b) only this endpoint's completions submit URBs. It seems some silicon 1968 * corrupts things if you reuse completed descriptors very quickly... 1969 */ 1970 static unsigned 1971 sitd_complete ( 1972 struct ehci_hcd *ehci, 1973 struct ehci_sitd *sitd 1974 ) { 1975 struct urb *urb = sitd->urb; 1976 struct usb_iso_packet_descriptor *desc; 1977 u32 t; 1978 int urb_index = -1; 1979 struct ehci_iso_stream *stream = sitd->stream; 1980 struct usb_device *dev; 1981 unsigned retval = false; 1982 1983 urb_index = sitd->index; 1984 desc = &urb->iso_frame_desc [urb_index]; 1985 t = hc32_to_cpup(ehci, &sitd->hw_results); 1986 1987 /* report transfer status */ 1988 if (t & SITD_ERRS) { 1989 urb->error_count++; 1990 if (t & SITD_STS_DBE) 1991 desc->status = usb_pipein (urb->pipe) 1992 ? -ENOSR /* hc couldn't read */ 1993 : -ECOMM; /* hc couldn't write */ 1994 else if (t & SITD_STS_BABBLE) 1995 desc->status = -EOVERFLOW; 1996 else /* XACT, MMF, etc */ 1997 desc->status = -EPROTO; 1998 } else { 1999 desc->status = 0; 2000 desc->actual_length = desc->length - SITD_LENGTH (t); 2001 } 2002 stream->depth -= stream->interval << 3; 2003 2004 /* handle completion now? */ 2005 if ((urb_index + 1) != urb->number_of_packets) 2006 goto done; 2007 2008 /* ASSERT: it's really the last sitd for this urb 2009 list_for_each_entry (sitd, &stream->td_list, sitd_list) 2010 BUG_ON (sitd->urb == urb); 2011 */ 2012 2013 /* give urb back to the driver; completion often (re)submits */ 2014 dev = urb->dev; 2015 ehci_urb_done(ehci, urb, 0); 2016 retval = true; 2017 urb = NULL; 2018 ehci->periodic_sched--; 2019 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--; 2020 2021 if (list_empty (&stream->td_list)) { 2022 ehci_to_hcd(ehci)->self.bandwidth_allocated 2023 -= stream->bandwidth; 2024 ehci_vdbg (ehci, 2025 "deschedule devp %s ep%d%s-iso\n", 2026 dev->devpath, stream->bEndpointAddress & 0x0f, 2027 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out"); 2028 } 2029 iso_stream_put (ehci, stream); 2030 /* OK to recycle this SITD now that its completion callback ran. */ 2031 done: 2032 usb_put_urb(urb); 2033 sitd->urb = NULL; 2034 sitd->stream = NULL; 2035 list_move(&sitd->sitd_list, &stream->free_list); 2036 iso_stream_put(ehci, stream); 2037 2038 return retval; 2039 } 2040 2041 2042 static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb, 2043 gfp_t mem_flags) 2044 { 2045 int status = -EINVAL; 2046 unsigned long flags; 2047 struct ehci_iso_stream *stream; 2048 2049 /* Get iso_stream head */ 2050 stream = iso_stream_find (ehci, urb); 2051 if (stream == NULL) { 2052 ehci_dbg (ehci, "can't get iso stream\n"); 2053 return -ENOMEM; 2054 } 2055 if (urb->interval != stream->interval) { 2056 ehci_dbg (ehci, "can't change iso interval %d --> %d\n", 2057 stream->interval, urb->interval); 2058 goto done; 2059 } 2060 2061 #ifdef EHCI_URB_TRACE 2062 ehci_dbg (ehci, 2063 "submit %p dev%s ep%d%s-iso len %d\n", 2064 urb, urb->dev->devpath, 2065 usb_pipeendpoint (urb->pipe), 2066 usb_pipein (urb->pipe) ? "in" : "out", 2067 urb->transfer_buffer_length); 2068 #endif 2069 2070 /* allocate SITDs */ 2071 status = sitd_urb_transaction (stream, ehci, urb, mem_flags); 2072 if (status < 0) { 2073 ehci_dbg (ehci, "can't init sitds\n"); 2074 goto done; 2075 } 2076 2077 /* schedule ... need to lock */ 2078 spin_lock_irqsave (&ehci->lock, flags); 2079 if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE, 2080 &ehci_to_hcd(ehci)->flags))) { 2081 status = -ESHUTDOWN; 2082 goto done_not_linked; 2083 } 2084 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); 2085 if (unlikely(status)) 2086 goto done_not_linked; 2087 status = iso_stream_schedule(ehci, urb, stream); 2088 if (status == 0) 2089 sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream); 2090 else 2091 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 2092 done_not_linked: 2093 spin_unlock_irqrestore (&ehci->lock, flags); 2094 2095 done: 2096 if (status < 0) 2097 iso_stream_put (ehci, stream); 2098 return status; 2099 } 2100 2101 /*-------------------------------------------------------------------------*/ 2102 2103 static void 2104 scan_periodic (struct ehci_hcd *ehci) 2105 { 2106 unsigned frame, clock, now_uframe, mod; 2107 unsigned modified; 2108 2109 mod = ehci->periodic_size << 3; 2110 2111 /* 2112 * When running, scan from last scan point up to "now" 2113 * else clean up by scanning everything that's left. 2114 * Touches as few pages as possible: cache-friendly. 2115 */ 2116 now_uframe = ehci->next_uframe; 2117 if (HC_IS_RUNNING (ehci_to_hcd(ehci)->state)) 2118 clock = ehci_readl(ehci, &ehci->regs->frame_index); 2119 else 2120 clock = now_uframe + mod - 1; 2121 clock %= mod; 2122 2123 for (;;) { 2124 union ehci_shadow q, *q_p; 2125 __hc32 type, *hw_p; 2126 unsigned incomplete = false; 2127 2128 frame = now_uframe >> 3; 2129 2130 restart: 2131 /* scan each element in frame's queue for completions */ 2132 q_p = &ehci->pshadow [frame]; 2133 hw_p = &ehci->periodic [frame]; 2134 q.ptr = q_p->ptr; 2135 type = Q_NEXT_TYPE(ehci, *hw_p); 2136 modified = 0; 2137 2138 while (q.ptr != NULL) { 2139 unsigned uf; 2140 union ehci_shadow temp; 2141 int live; 2142 2143 live = HC_IS_RUNNING (ehci_to_hcd(ehci)->state); 2144 switch (hc32_to_cpu(ehci, type)) { 2145 case Q_TYPE_QH: 2146 /* handle any completions */ 2147 temp.qh = qh_get (q.qh); 2148 type = Q_NEXT_TYPE(ehci, q.qh->hw_next); 2149 q = q.qh->qh_next; 2150 modified = qh_completions (ehci, temp.qh); 2151 if (unlikely (list_empty (&temp.qh->qtd_list))) 2152 intr_deschedule (ehci, temp.qh); 2153 qh_put (temp.qh); 2154 break; 2155 case Q_TYPE_FSTN: 2156 /* for "save place" FSTNs, look at QH entries 2157 * in the previous frame for completions. 2158 */ 2159 if (q.fstn->hw_prev != EHCI_LIST_END(ehci)) { 2160 dbg ("ignoring completions from FSTNs"); 2161 } 2162 type = Q_NEXT_TYPE(ehci, q.fstn->hw_next); 2163 q = q.fstn->fstn_next; 2164 break; 2165 case Q_TYPE_ITD: 2166 /* If this ITD is still active, leave it for 2167 * later processing ... check the next entry. 2168 */ 2169 rmb (); 2170 for (uf = 0; uf < 8 && live; uf++) { 2171 if (0 == (q.itd->hw_transaction [uf] 2172 & ITD_ACTIVE(ehci))) 2173 continue; 2174 incomplete = true; 2175 q_p = &q.itd->itd_next; 2176 hw_p = &q.itd->hw_next; 2177 type = Q_NEXT_TYPE(ehci, 2178 q.itd->hw_next); 2179 q = *q_p; 2180 break; 2181 } 2182 if (uf < 8 && live) 2183 break; 2184 2185 /* Take finished ITDs out of the schedule 2186 * and process them: recycle, maybe report 2187 * URB completion. HC won't cache the 2188 * pointer for much longer, if at all. 2189 */ 2190 *q_p = q.itd->itd_next; 2191 *hw_p = q.itd->hw_next; 2192 type = Q_NEXT_TYPE(ehci, q.itd->hw_next); 2193 wmb(); 2194 modified = itd_complete (ehci, q.itd); 2195 q = *q_p; 2196 break; 2197 case Q_TYPE_SITD: 2198 /* If this SITD is still active, leave it for 2199 * later processing ... check the next entry. 2200 */ 2201 if ((q.sitd->hw_results & SITD_ACTIVE(ehci)) 2202 && live) { 2203 incomplete = true; 2204 q_p = &q.sitd->sitd_next; 2205 hw_p = &q.sitd->hw_next; 2206 type = Q_NEXT_TYPE(ehci, 2207 q.sitd->hw_next); 2208 q = *q_p; 2209 break; 2210 } 2211 2212 /* Take finished SITDs out of the schedule 2213 * and process them: recycle, maybe report 2214 * URB completion. 2215 */ 2216 *q_p = q.sitd->sitd_next; 2217 *hw_p = q.sitd->hw_next; 2218 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next); 2219 wmb(); 2220 modified = sitd_complete (ehci, q.sitd); 2221 q = *q_p; 2222 break; 2223 default: 2224 dbg ("corrupt type %d frame %d shadow %p", 2225 type, frame, q.ptr); 2226 // BUG (); 2227 q.ptr = NULL; 2228 } 2229 2230 /* assume completion callbacks modify the queue */ 2231 if (unlikely (modified)) { 2232 if (likely(ehci->periodic_sched > 0)) 2233 goto restart; 2234 /* maybe we can short-circuit this scan! */ 2235 disable_periodic(ehci); 2236 now_uframe = clock; 2237 break; 2238 } 2239 } 2240 2241 /* If we can tell we caught up to the hardware, stop now. 2242 * We can't advance our scan without collecting the ISO 2243 * transfers that are still pending in this frame. 2244 */ 2245 if (incomplete && HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) { 2246 ehci->next_uframe = now_uframe; 2247 break; 2248 } 2249 2250 // FIXME: this assumes we won't get lapped when 2251 // latencies climb; that should be rare, but... 2252 // detect it, and just go all the way around. 2253 // FLR might help detect this case, so long as latencies 2254 // don't exceed periodic_size msec (default 1.024 sec). 2255 2256 // FIXME: likewise assumes HC doesn't halt mid-scan 2257 2258 if (now_uframe == clock) { 2259 unsigned now; 2260 2261 if (!HC_IS_RUNNING (ehci_to_hcd(ehci)->state) 2262 || ehci->periodic_sched == 0) 2263 break; 2264 ehci->next_uframe = now_uframe; 2265 now = ehci_readl(ehci, &ehci->regs->frame_index) % mod; 2266 if (now_uframe == now) 2267 break; 2268 2269 /* rescan the rest of this frame, then ... */ 2270 clock = now; 2271 } else { 2272 now_uframe++; 2273 now_uframe %= mod; 2274 } 2275 } 2276 } 2277