xref: /openbmc/linux/drivers/usb/host/ehci-sched.c (revision a1e58bbd)
1 /*
2  * Copyright (c) 2001-2004 by David Brownell
3  * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation; either version 2 of the License, or (at your
8  * option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software Foundation,
17  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19 
20 /* this file is part of ehci-hcd.c */
21 
22 /*-------------------------------------------------------------------------*/
23 
24 /*
25  * EHCI scheduled transaction support:  interrupt, iso, split iso
26  * These are called "periodic" transactions in the EHCI spec.
27  *
28  * Note that for interrupt transfers, the QH/QTD manipulation is shared
29  * with the "asynchronous" transaction support (control/bulk transfers).
30  * The only real difference is in how interrupt transfers are scheduled.
31  *
32  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33  * It keeps track of every ITD (or SITD) that's linked, and holds enough
34  * pre-calculated schedule data to make appending to the queue be quick.
35  */
36 
37 static int ehci_get_frame (struct usb_hcd *hcd);
38 
39 /*-------------------------------------------------------------------------*/
40 
41 /*
42  * periodic_next_shadow - return "next" pointer on shadow list
43  * @periodic: host pointer to qh/itd/sitd
44  * @tag: hardware tag for type of this record
45  */
46 static union ehci_shadow *
47 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
48 		__hc32 tag)
49 {
50 	switch (hc32_to_cpu(ehci, tag)) {
51 	case Q_TYPE_QH:
52 		return &periodic->qh->qh_next;
53 	case Q_TYPE_FSTN:
54 		return &periodic->fstn->fstn_next;
55 	case Q_TYPE_ITD:
56 		return &periodic->itd->itd_next;
57 	// case Q_TYPE_SITD:
58 	default:
59 		return &periodic->sitd->sitd_next;
60 	}
61 }
62 
63 /* caller must hold ehci->lock */
64 static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr)
65 {
66 	union ehci_shadow	*prev_p = &ehci->pshadow[frame];
67 	__hc32			*hw_p = &ehci->periodic[frame];
68 	union ehci_shadow	here = *prev_p;
69 
70 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
71 	while (here.ptr && here.ptr != ptr) {
72 		prev_p = periodic_next_shadow(ehci, prev_p,
73 				Q_NEXT_TYPE(ehci, *hw_p));
74 		hw_p = here.hw_next;
75 		here = *prev_p;
76 	}
77 	/* an interrupt entry (at list end) could have been shared */
78 	if (!here.ptr)
79 		return;
80 
81 	/* update shadow and hardware lists ... the old "next" pointers
82 	 * from ptr may still be in use, the caller updates them.
83 	 */
84 	*prev_p = *periodic_next_shadow(ehci, &here,
85 			Q_NEXT_TYPE(ehci, *hw_p));
86 	*hw_p = *here.hw_next;
87 }
88 
89 /* how many of the uframe's 125 usecs are allocated? */
90 static unsigned short
91 periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe)
92 {
93 	__hc32			*hw_p = &ehci->periodic [frame];
94 	union ehci_shadow	*q = &ehci->pshadow [frame];
95 	unsigned		usecs = 0;
96 
97 	while (q->ptr) {
98 		switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
99 		case Q_TYPE_QH:
100 			/* is it in the S-mask? */
101 			if (q->qh->hw_info2 & cpu_to_hc32(ehci, 1 << uframe))
102 				usecs += q->qh->usecs;
103 			/* ... or C-mask? */
104 			if (q->qh->hw_info2 & cpu_to_hc32(ehci,
105 					1 << (8 + uframe)))
106 				usecs += q->qh->c_usecs;
107 			hw_p = &q->qh->hw_next;
108 			q = &q->qh->qh_next;
109 			break;
110 		// case Q_TYPE_FSTN:
111 		default:
112 			/* for "save place" FSTNs, count the relevant INTR
113 			 * bandwidth from the previous frame
114 			 */
115 			if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) {
116 				ehci_dbg (ehci, "ignoring FSTN cost ...\n");
117 			}
118 			hw_p = &q->fstn->hw_next;
119 			q = &q->fstn->fstn_next;
120 			break;
121 		case Q_TYPE_ITD:
122 			if (q->itd->hw_transaction[uframe])
123 				usecs += q->itd->stream->usecs;
124 			hw_p = &q->itd->hw_next;
125 			q = &q->itd->itd_next;
126 			break;
127 		case Q_TYPE_SITD:
128 			/* is it in the S-mask?  (count SPLIT, DATA) */
129 			if (q->sitd->hw_uframe & cpu_to_hc32(ehci,
130 					1 << uframe)) {
131 				if (q->sitd->hw_fullspeed_ep &
132 						cpu_to_hc32(ehci, 1<<31))
133 					usecs += q->sitd->stream->usecs;
134 				else	/* worst case for OUT start-split */
135 					usecs += HS_USECS_ISO (188);
136 			}
137 
138 			/* ... C-mask?  (count CSPLIT, DATA) */
139 			if (q->sitd->hw_uframe &
140 					cpu_to_hc32(ehci, 1 << (8 + uframe))) {
141 				/* worst case for IN complete-split */
142 				usecs += q->sitd->stream->c_usecs;
143 			}
144 
145 			hw_p = &q->sitd->hw_next;
146 			q = &q->sitd->sitd_next;
147 			break;
148 		}
149 	}
150 #ifdef	DEBUG
151 	if (usecs > 100)
152 		ehci_err (ehci, "uframe %d sched overrun: %d usecs\n",
153 			frame * 8 + uframe, usecs);
154 #endif
155 	return usecs;
156 }
157 
158 /*-------------------------------------------------------------------------*/
159 
160 static int same_tt (struct usb_device *dev1, struct usb_device *dev2)
161 {
162 	if (!dev1->tt || !dev2->tt)
163 		return 0;
164 	if (dev1->tt != dev2->tt)
165 		return 0;
166 	if (dev1->tt->multi)
167 		return dev1->ttport == dev2->ttport;
168 	else
169 		return 1;
170 }
171 
172 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
173 
174 /* Which uframe does the low/fullspeed transfer start in?
175  *
176  * The parameter is the mask of ssplits in "H-frame" terms
177  * and this returns the transfer start uframe in "B-frame" terms,
178  * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
179  * will cause a transfer in "B-frame" uframe 0.  "B-frames" lag
180  * "H-frames" by 1 uframe.  See the EHCI spec sec 4.5 and figure 4.7.
181  */
182 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
183 {
184 	unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask);
185 	if (!smask) {
186 		ehci_err(ehci, "invalid empty smask!\n");
187 		/* uframe 7 can't have bw so this will indicate failure */
188 		return 7;
189 	}
190 	return ffs(smask) - 1;
191 }
192 
193 static const unsigned char
194 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
195 
196 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
197 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
198 {
199 	int i;
200 	for (i=0; i<7; i++) {
201 		if (max_tt_usecs[i] < tt_usecs[i]) {
202 			tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
203 			tt_usecs[i] = max_tt_usecs[i];
204 		}
205 	}
206 }
207 
208 /* How many of the tt's periodic downstream 1000 usecs are allocated?
209  *
210  * While this measures the bandwidth in terms of usecs/uframe,
211  * the low/fullspeed bus has no notion of uframes, so any particular
212  * low/fullspeed transfer can "carry over" from one uframe to the next,
213  * since the TT just performs downstream transfers in sequence.
214  *
215  * For example two separate 100 usec transfers can start in the same uframe,
216  * and the second one would "carry over" 75 usecs into the next uframe.
217  */
218 static void
219 periodic_tt_usecs (
220 	struct ehci_hcd *ehci,
221 	struct usb_device *dev,
222 	unsigned frame,
223 	unsigned short tt_usecs[8]
224 )
225 {
226 	__hc32			*hw_p = &ehci->periodic [frame];
227 	union ehci_shadow	*q = &ehci->pshadow [frame];
228 	unsigned char		uf;
229 
230 	memset(tt_usecs, 0, 16);
231 
232 	while (q->ptr) {
233 		switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
234 		case Q_TYPE_ITD:
235 			hw_p = &q->itd->hw_next;
236 			q = &q->itd->itd_next;
237 			continue;
238 		case Q_TYPE_QH:
239 			if (same_tt(dev, q->qh->dev)) {
240 				uf = tt_start_uframe(ehci, q->qh->hw_info2);
241 				tt_usecs[uf] += q->qh->tt_usecs;
242 			}
243 			hw_p = &q->qh->hw_next;
244 			q = &q->qh->qh_next;
245 			continue;
246 		case Q_TYPE_SITD:
247 			if (same_tt(dev, q->sitd->urb->dev)) {
248 				uf = tt_start_uframe(ehci, q->sitd->hw_uframe);
249 				tt_usecs[uf] += q->sitd->stream->tt_usecs;
250 			}
251 			hw_p = &q->sitd->hw_next;
252 			q = &q->sitd->sitd_next;
253 			continue;
254 		// case Q_TYPE_FSTN:
255 		default:
256 			ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n",
257 					frame);
258 			hw_p = &q->fstn->hw_next;
259 			q = &q->fstn->fstn_next;
260 		}
261 	}
262 
263 	carryover_tt_bandwidth(tt_usecs);
264 
265 	if (max_tt_usecs[7] < tt_usecs[7])
266 		ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n",
267 			frame, tt_usecs[7] - max_tt_usecs[7]);
268 }
269 
270 /*
271  * Return true if the device's tt's downstream bus is available for a
272  * periodic transfer of the specified length (usecs), starting at the
273  * specified frame/uframe.  Note that (as summarized in section 11.19
274  * of the usb 2.0 spec) TTs can buffer multiple transactions for each
275  * uframe.
276  *
277  * The uframe parameter is when the fullspeed/lowspeed transfer
278  * should be executed in "B-frame" terms, which is the same as the
279  * highspeed ssplit's uframe (which is in "H-frame" terms).  For example
280  * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
281  * See the EHCI spec sec 4.5 and fig 4.7.
282  *
283  * This checks if the full/lowspeed bus, at the specified starting uframe,
284  * has the specified bandwidth available, according to rules listed
285  * in USB 2.0 spec section 11.18.1 fig 11-60.
286  *
287  * This does not check if the transfer would exceed the max ssplit
288  * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
289  * since proper scheduling limits ssplits to less than 16 per uframe.
290  */
291 static int tt_available (
292 	struct ehci_hcd		*ehci,
293 	unsigned		period,
294 	struct usb_device	*dev,
295 	unsigned		frame,
296 	unsigned		uframe,
297 	u16			usecs
298 )
299 {
300 	if ((period == 0) || (uframe >= 7))	/* error */
301 		return 0;
302 
303 	for (; frame < ehci->periodic_size; frame += period) {
304 		unsigned short tt_usecs[8];
305 
306 		periodic_tt_usecs (ehci, dev, frame, tt_usecs);
307 
308 		ehci_vdbg(ehci, "tt frame %d check %d usecs start uframe %d in"
309 			" schedule %d/%d/%d/%d/%d/%d/%d/%d\n",
310 			frame, usecs, uframe,
311 			tt_usecs[0], tt_usecs[1], tt_usecs[2], tt_usecs[3],
312 			tt_usecs[4], tt_usecs[5], tt_usecs[6], tt_usecs[7]);
313 
314 		if (max_tt_usecs[uframe] <= tt_usecs[uframe]) {
315 			ehci_vdbg(ehci, "frame %d uframe %d fully scheduled\n",
316 				frame, uframe);
317 			return 0;
318 		}
319 
320 		/* special case for isoc transfers larger than 125us:
321 		 * the first and each subsequent fully used uframe
322 		 * must be empty, so as to not illegally delay
323 		 * already scheduled transactions
324 		 */
325 		if (125 < usecs) {
326 			int ufs = (usecs / 125) - 1;
327 			int i;
328 			for (i = uframe; i < (uframe + ufs) && i < 8; i++)
329 				if (0 < tt_usecs[i]) {
330 					ehci_vdbg(ehci,
331 						"multi-uframe xfer can't fit "
332 						"in frame %d uframe %d\n",
333 						frame, i);
334 					return 0;
335 				}
336 		}
337 
338 		tt_usecs[uframe] += usecs;
339 
340 		carryover_tt_bandwidth(tt_usecs);
341 
342 		/* fail if the carryover pushed bw past the last uframe's limit */
343 		if (max_tt_usecs[7] < tt_usecs[7]) {
344 			ehci_vdbg(ehci,
345 				"tt unavailable usecs %d frame %d uframe %d\n",
346 				usecs, frame, uframe);
347 			return 0;
348 		}
349 	}
350 
351 	return 1;
352 }
353 
354 #else
355 
356 /* return true iff the device's transaction translator is available
357  * for a periodic transfer starting at the specified frame, using
358  * all the uframes in the mask.
359  */
360 static int tt_no_collision (
361 	struct ehci_hcd		*ehci,
362 	unsigned		period,
363 	struct usb_device	*dev,
364 	unsigned		frame,
365 	u32			uf_mask
366 )
367 {
368 	if (period == 0)	/* error */
369 		return 0;
370 
371 	/* note bandwidth wastage:  split never follows csplit
372 	 * (different dev or endpoint) until the next uframe.
373 	 * calling convention doesn't make that distinction.
374 	 */
375 	for (; frame < ehci->periodic_size; frame += period) {
376 		union ehci_shadow	here;
377 		__hc32			type;
378 
379 		here = ehci->pshadow [frame];
380 		type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]);
381 		while (here.ptr) {
382 			switch (hc32_to_cpu(ehci, type)) {
383 			case Q_TYPE_ITD:
384 				type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
385 				here = here.itd->itd_next;
386 				continue;
387 			case Q_TYPE_QH:
388 				if (same_tt (dev, here.qh->dev)) {
389 					u32		mask;
390 
391 					mask = hc32_to_cpu(ehci,
392 							here.qh->hw_info2);
393 					/* "knows" no gap is needed */
394 					mask |= mask >> 8;
395 					if (mask & uf_mask)
396 						break;
397 				}
398 				type = Q_NEXT_TYPE(ehci, here.qh->hw_next);
399 				here = here.qh->qh_next;
400 				continue;
401 			case Q_TYPE_SITD:
402 				if (same_tt (dev, here.sitd->urb->dev)) {
403 					u16		mask;
404 
405 					mask = hc32_to_cpu(ehci, here.sitd
406 								->hw_uframe);
407 					/* FIXME assumes no gap for IN! */
408 					mask |= mask >> 8;
409 					if (mask & uf_mask)
410 						break;
411 				}
412 				type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
413 				here = here.sitd->sitd_next;
414 				continue;
415 			// case Q_TYPE_FSTN:
416 			default:
417 				ehci_dbg (ehci,
418 					"periodic frame %d bogus type %d\n",
419 					frame, type);
420 			}
421 
422 			/* collision or error */
423 			return 0;
424 		}
425 	}
426 
427 	/* no collision */
428 	return 1;
429 }
430 
431 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
432 
433 /*-------------------------------------------------------------------------*/
434 
435 static int enable_periodic (struct ehci_hcd *ehci)
436 {
437 	u32	cmd;
438 	int	status;
439 
440 	/* did clearing PSE did take effect yet?
441 	 * takes effect only at frame boundaries...
442 	 */
443 	status = handshake(ehci, &ehci->regs->status, STS_PSS, 0, 9 * 125);
444 	if (status != 0) {
445 		ehci_to_hcd(ehci)->state = HC_STATE_HALT;
446 		return status;
447 	}
448 
449 	cmd = ehci_readl(ehci, &ehci->regs->command) | CMD_PSE;
450 	ehci_writel(ehci, cmd, &ehci->regs->command);
451 	/* posted write ... PSS happens later */
452 	ehci_to_hcd(ehci)->state = HC_STATE_RUNNING;
453 
454 	/* make sure ehci_work scans these */
455 	ehci->next_uframe = ehci_readl(ehci, &ehci->regs->frame_index)
456 		% (ehci->periodic_size << 3);
457 	return 0;
458 }
459 
460 static int disable_periodic (struct ehci_hcd *ehci)
461 {
462 	u32	cmd;
463 	int	status;
464 
465 	/* did setting PSE not take effect yet?
466 	 * takes effect only at frame boundaries...
467 	 */
468 	status = handshake(ehci, &ehci->regs->status, STS_PSS, STS_PSS, 9 * 125);
469 	if (status != 0) {
470 		ehci_to_hcd(ehci)->state = HC_STATE_HALT;
471 		return status;
472 	}
473 
474 	cmd = ehci_readl(ehci, &ehci->regs->command) & ~CMD_PSE;
475 	ehci_writel(ehci, cmd, &ehci->regs->command);
476 	/* posted write ... */
477 
478 	ehci->next_uframe = -1;
479 	return 0;
480 }
481 
482 /*-------------------------------------------------------------------------*/
483 
484 /* periodic schedule slots have iso tds (normal or split) first, then a
485  * sparse tree for active interrupt transfers.
486  *
487  * this just links in a qh; caller guarantees uframe masks are set right.
488  * no FSTN support (yet; ehci 0.96+)
489  */
490 static int qh_link_periodic (struct ehci_hcd *ehci, struct ehci_qh *qh)
491 {
492 	unsigned	i;
493 	unsigned	period = qh->period;
494 
495 	dev_dbg (&qh->dev->dev,
496 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
497 		period, hc32_to_cpup(ehci, &qh->hw_info2) & (QH_CMASK | QH_SMASK),
498 		qh, qh->start, qh->usecs, qh->c_usecs);
499 
500 	/* high bandwidth, or otherwise every microframe */
501 	if (period == 0)
502 		period = 1;
503 
504 	for (i = qh->start; i < ehci->periodic_size; i += period) {
505 		union ehci_shadow	*prev = &ehci->pshadow[i];
506 		__hc32			*hw_p = &ehci->periodic[i];
507 		union ehci_shadow	here = *prev;
508 		__hc32			type = 0;
509 
510 		/* skip the iso nodes at list head */
511 		while (here.ptr) {
512 			type = Q_NEXT_TYPE(ehci, *hw_p);
513 			if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
514 				break;
515 			prev = periodic_next_shadow(ehci, prev, type);
516 			hw_p = &here.qh->hw_next;
517 			here = *prev;
518 		}
519 
520 		/* sorting each branch by period (slow-->fast)
521 		 * enables sharing interior tree nodes
522 		 */
523 		while (here.ptr && qh != here.qh) {
524 			if (qh->period > here.qh->period)
525 				break;
526 			prev = &here.qh->qh_next;
527 			hw_p = &here.qh->hw_next;
528 			here = *prev;
529 		}
530 		/* link in this qh, unless some earlier pass did that */
531 		if (qh != here.qh) {
532 			qh->qh_next = here;
533 			if (here.qh)
534 				qh->hw_next = *hw_p;
535 			wmb ();
536 			prev->qh = qh;
537 			*hw_p = QH_NEXT (ehci, qh->qh_dma);
538 		}
539 	}
540 	qh->qh_state = QH_STATE_LINKED;
541 	qh_get (qh);
542 
543 	/* update per-qh bandwidth for usbfs */
544 	ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period
545 		? ((qh->usecs + qh->c_usecs) / qh->period)
546 		: (qh->usecs * 8);
547 
548 	/* maybe enable periodic schedule processing */
549 	if (!ehci->periodic_sched++)
550 		return enable_periodic (ehci);
551 
552 	return 0;
553 }
554 
555 static void qh_unlink_periodic (struct ehci_hcd *ehci, struct ehci_qh *qh)
556 {
557 	unsigned	i;
558 	unsigned	period;
559 
560 	// FIXME:
561 	// IF this isn't high speed
562 	//   and this qh is active in the current uframe
563 	//   (and overlay token SplitXstate is false?)
564 	// THEN
565 	//   qh->hw_info1 |= __constant_cpu_to_hc32(1 << 7 /* "ignore" */);
566 
567 	/* high bandwidth, or otherwise part of every microframe */
568 	if ((period = qh->period) == 0)
569 		period = 1;
570 
571 	for (i = qh->start; i < ehci->periodic_size; i += period)
572 		periodic_unlink (ehci, i, qh);
573 
574 	/* update per-qh bandwidth for usbfs */
575 	ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period
576 		? ((qh->usecs + qh->c_usecs) / qh->period)
577 		: (qh->usecs * 8);
578 
579 	dev_dbg (&qh->dev->dev,
580 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
581 		qh->period,
582 		hc32_to_cpup(ehci, &qh->hw_info2) & (QH_CMASK | QH_SMASK),
583 		qh, qh->start, qh->usecs, qh->c_usecs);
584 
585 	/* qh->qh_next still "live" to HC */
586 	qh->qh_state = QH_STATE_UNLINK;
587 	qh->qh_next.ptr = NULL;
588 	qh_put (qh);
589 
590 	/* maybe turn off periodic schedule */
591 	ehci->periodic_sched--;
592 	if (!ehci->periodic_sched)
593 		(void) disable_periodic (ehci);
594 }
595 
596 static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh)
597 {
598 	unsigned	wait;
599 
600 	qh_unlink_periodic (ehci, qh);
601 
602 	/* simple/paranoid:  always delay, expecting the HC needs to read
603 	 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
604 	 * expect khubd to clean up after any CSPLITs we won't issue.
605 	 * active high speed queues may need bigger delays...
606 	 */
607 	if (list_empty (&qh->qtd_list)
608 			|| (cpu_to_hc32(ehci, QH_CMASK)
609 					& qh->hw_info2) != 0)
610 		wait = 2;
611 	else
612 		wait = 55;	/* worst case: 3 * 1024 */
613 
614 	udelay (wait);
615 	qh->qh_state = QH_STATE_IDLE;
616 	qh->hw_next = EHCI_LIST_END(ehci);
617 	wmb ();
618 }
619 
620 /*-------------------------------------------------------------------------*/
621 
622 static int check_period (
623 	struct ehci_hcd *ehci,
624 	unsigned	frame,
625 	unsigned	uframe,
626 	unsigned	period,
627 	unsigned	usecs
628 ) {
629 	int		claimed;
630 
631 	/* complete split running into next frame?
632 	 * given FSTN support, we could sometimes check...
633 	 */
634 	if (uframe >= 8)
635 		return 0;
636 
637 	/*
638 	 * 80% periodic == 100 usec/uframe available
639 	 * convert "usecs we need" to "max already claimed"
640 	 */
641 	usecs = 100 - usecs;
642 
643 	/* we "know" 2 and 4 uframe intervals were rejected; so
644 	 * for period 0, check _every_ microframe in the schedule.
645 	 */
646 	if (unlikely (period == 0)) {
647 		do {
648 			for (uframe = 0; uframe < 7; uframe++) {
649 				claimed = periodic_usecs (ehci, frame, uframe);
650 				if (claimed > usecs)
651 					return 0;
652 			}
653 		} while ((frame += 1) < ehci->periodic_size);
654 
655 	/* just check the specified uframe, at that period */
656 	} else {
657 		do {
658 			claimed = periodic_usecs (ehci, frame, uframe);
659 			if (claimed > usecs)
660 				return 0;
661 		} while ((frame += period) < ehci->periodic_size);
662 	}
663 
664 	// success!
665 	return 1;
666 }
667 
668 static int check_intr_schedule (
669 	struct ehci_hcd		*ehci,
670 	unsigned		frame,
671 	unsigned		uframe,
672 	const struct ehci_qh	*qh,
673 	__hc32			*c_maskp
674 )
675 {
676 	int		retval = -ENOSPC;
677 	u8		mask = 0;
678 
679 	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
680 		goto done;
681 
682 	if (!check_period (ehci, frame, uframe, qh->period, qh->usecs))
683 		goto done;
684 	if (!qh->c_usecs) {
685 		retval = 0;
686 		*c_maskp = 0;
687 		goto done;
688 	}
689 
690 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
691 	if (tt_available (ehci, qh->period, qh->dev, frame, uframe,
692 				qh->tt_usecs)) {
693 		unsigned i;
694 
695 		/* TODO : this may need FSTN for SSPLIT in uframe 5. */
696 		for (i=uframe+1; i<8 && i<uframe+4; i++)
697 			if (!check_period (ehci, frame, i,
698 						qh->period, qh->c_usecs))
699 				goto done;
700 			else
701 				mask |= 1 << i;
702 
703 		retval = 0;
704 
705 		*c_maskp = cpu_to_hc32(ehci, mask << 8);
706 	}
707 #else
708 	/* Make sure this tt's buffer is also available for CSPLITs.
709 	 * We pessimize a bit; probably the typical full speed case
710 	 * doesn't need the second CSPLIT.
711 	 *
712 	 * NOTE:  both SPLIT and CSPLIT could be checked in just
713 	 * one smart pass...
714 	 */
715 	mask = 0x03 << (uframe + qh->gap_uf);
716 	*c_maskp = cpu_to_hc32(ehci, mask << 8);
717 
718 	mask |= 1 << uframe;
719 	if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) {
720 		if (!check_period (ehci, frame, uframe + qh->gap_uf + 1,
721 					qh->period, qh->c_usecs))
722 			goto done;
723 		if (!check_period (ehci, frame, uframe + qh->gap_uf,
724 					qh->period, qh->c_usecs))
725 			goto done;
726 		retval = 0;
727 	}
728 #endif
729 done:
730 	return retval;
731 }
732 
733 /* "first fit" scheduling policy used the first time through,
734  * or when the previous schedule slot can't be re-used.
735  */
736 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
737 {
738 	int		status;
739 	unsigned	uframe;
740 	__hc32		c_mask;
741 	unsigned	frame;		/* 0..(qh->period - 1), or NO_FRAME */
742 
743 	qh_refresh(ehci, qh);
744 	qh->hw_next = EHCI_LIST_END(ehci);
745 	frame = qh->start;
746 
747 	/* reuse the previous schedule slots, if we can */
748 	if (frame < qh->period) {
749 		uframe = ffs(hc32_to_cpup(ehci, &qh->hw_info2) & QH_SMASK);
750 		status = check_intr_schedule (ehci, frame, --uframe,
751 				qh, &c_mask);
752 	} else {
753 		uframe = 0;
754 		c_mask = 0;
755 		status = -ENOSPC;
756 	}
757 
758 	/* else scan the schedule to find a group of slots such that all
759 	 * uframes have enough periodic bandwidth available.
760 	 */
761 	if (status) {
762 		/* "normal" case, uframing flexible except with splits */
763 		if (qh->period) {
764 			frame = qh->period - 1;
765 			do {
766 				for (uframe = 0; uframe < 8; uframe++) {
767 					status = check_intr_schedule (ehci,
768 							frame, uframe, qh,
769 							&c_mask);
770 					if (status == 0)
771 						break;
772 				}
773 			} while (status && frame--);
774 
775 		/* qh->period == 0 means every uframe */
776 		} else {
777 			frame = 0;
778 			status = check_intr_schedule (ehci, 0, 0, qh, &c_mask);
779 		}
780 		if (status)
781 			goto done;
782 		qh->start = frame;
783 
784 		/* reset S-frame and (maybe) C-frame masks */
785 		qh->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
786 		qh->hw_info2 |= qh->period
787 			? cpu_to_hc32(ehci, 1 << uframe)
788 			: cpu_to_hc32(ehci, QH_SMASK);
789 		qh->hw_info2 |= c_mask;
790 	} else
791 		ehci_dbg (ehci, "reused qh %p schedule\n", qh);
792 
793 	/* stuff into the periodic schedule */
794 	status = qh_link_periodic (ehci, qh);
795 done:
796 	return status;
797 }
798 
799 static int intr_submit (
800 	struct ehci_hcd		*ehci,
801 	struct urb		*urb,
802 	struct list_head	*qtd_list,
803 	gfp_t			mem_flags
804 ) {
805 	unsigned		epnum;
806 	unsigned long		flags;
807 	struct ehci_qh		*qh;
808 	int			status;
809 	struct list_head	empty;
810 
811 	/* get endpoint and transfer/schedule data */
812 	epnum = urb->ep->desc.bEndpointAddress;
813 
814 	spin_lock_irqsave (&ehci->lock, flags);
815 
816 	if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
817 			&ehci_to_hcd(ehci)->flags))) {
818 		status = -ESHUTDOWN;
819 		goto done_not_linked;
820 	}
821 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
822 	if (unlikely(status))
823 		goto done_not_linked;
824 
825 	/* get qh and force any scheduling errors */
826 	INIT_LIST_HEAD (&empty);
827 	qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
828 	if (qh == NULL) {
829 		status = -ENOMEM;
830 		goto done;
831 	}
832 	if (qh->qh_state == QH_STATE_IDLE) {
833 		if ((status = qh_schedule (ehci, qh)) != 0)
834 			goto done;
835 	}
836 
837 	/* then queue the urb's tds to the qh */
838 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
839 	BUG_ON (qh == NULL);
840 
841 	/* ... update usbfs periodic stats */
842 	ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
843 
844 done:
845 	if (unlikely(status))
846 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
847 done_not_linked:
848 	spin_unlock_irqrestore (&ehci->lock, flags);
849 	if (status)
850 		qtd_list_free (ehci, urb, qtd_list);
851 
852 	return status;
853 }
854 
855 /*-------------------------------------------------------------------------*/
856 
857 /* ehci_iso_stream ops work with both ITD and SITD */
858 
859 static struct ehci_iso_stream *
860 iso_stream_alloc (gfp_t mem_flags)
861 {
862 	struct ehci_iso_stream *stream;
863 
864 	stream = kzalloc(sizeof *stream, mem_flags);
865 	if (likely (stream != NULL)) {
866 		INIT_LIST_HEAD(&stream->td_list);
867 		INIT_LIST_HEAD(&stream->free_list);
868 		stream->next_uframe = -1;
869 		stream->refcount = 1;
870 	}
871 	return stream;
872 }
873 
874 static void
875 iso_stream_init (
876 	struct ehci_hcd		*ehci,
877 	struct ehci_iso_stream	*stream,
878 	struct usb_device	*dev,
879 	int			pipe,
880 	unsigned		interval
881 )
882 {
883 	static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
884 
885 	u32			buf1;
886 	unsigned		epnum, maxp;
887 	int			is_input;
888 	long			bandwidth;
889 
890 	/*
891 	 * this might be a "high bandwidth" highspeed endpoint,
892 	 * as encoded in the ep descriptor's wMaxPacket field
893 	 */
894 	epnum = usb_pipeendpoint (pipe);
895 	is_input = usb_pipein (pipe) ? USB_DIR_IN : 0;
896 	maxp = usb_maxpacket(dev, pipe, !is_input);
897 	if (is_input) {
898 		buf1 = (1 << 11);
899 	} else {
900 		buf1 = 0;
901 	}
902 
903 	/* knows about ITD vs SITD */
904 	if (dev->speed == USB_SPEED_HIGH) {
905 		unsigned multi = hb_mult(maxp);
906 
907 		stream->highspeed = 1;
908 
909 		maxp = max_packet(maxp);
910 		buf1 |= maxp;
911 		maxp *= multi;
912 
913 		stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
914 		stream->buf1 = cpu_to_hc32(ehci, buf1);
915 		stream->buf2 = cpu_to_hc32(ehci, multi);
916 
917 		/* usbfs wants to report the average usecs per frame tied up
918 		 * when transfers on this endpoint are scheduled ...
919 		 */
920 		stream->usecs = HS_USECS_ISO (maxp);
921 		bandwidth = stream->usecs * 8;
922 		bandwidth /= 1 << (interval - 1);
923 
924 	} else {
925 		u32		addr;
926 		int		think_time;
927 		int		hs_transfers;
928 
929 		addr = dev->ttport << 24;
930 		if (!ehci_is_TDI(ehci)
931 				|| (dev->tt->hub !=
932 					ehci_to_hcd(ehci)->self.root_hub))
933 			addr |= dev->tt->hub->devnum << 16;
934 		addr |= epnum << 8;
935 		addr |= dev->devnum;
936 		stream->usecs = HS_USECS_ISO (maxp);
937 		think_time = dev->tt ? dev->tt->think_time : 0;
938 		stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time (
939 				dev->speed, is_input, 1, maxp));
940 		hs_transfers = max (1u, (maxp + 187) / 188);
941 		if (is_input) {
942 			u32	tmp;
943 
944 			addr |= 1 << 31;
945 			stream->c_usecs = stream->usecs;
946 			stream->usecs = HS_USECS_ISO (1);
947 			stream->raw_mask = 1;
948 
949 			/* c-mask as specified in USB 2.0 11.18.4 3.c */
950 			tmp = (1 << (hs_transfers + 2)) - 1;
951 			stream->raw_mask |= tmp << (8 + 2);
952 		} else
953 			stream->raw_mask = smask_out [hs_transfers - 1];
954 		bandwidth = stream->usecs + stream->c_usecs;
955 		bandwidth /= 1 << (interval + 2);
956 
957 		/* stream->splits gets created from raw_mask later */
958 		stream->address = cpu_to_hc32(ehci, addr);
959 	}
960 	stream->bandwidth = bandwidth;
961 
962 	stream->udev = dev;
963 
964 	stream->bEndpointAddress = is_input | epnum;
965 	stream->interval = interval;
966 	stream->maxp = maxp;
967 }
968 
969 static void
970 iso_stream_put(struct ehci_hcd *ehci, struct ehci_iso_stream *stream)
971 {
972 	stream->refcount--;
973 
974 	/* free whenever just a dev->ep reference remains.
975 	 * not like a QH -- no persistent state (toggle, halt)
976 	 */
977 	if (stream->refcount == 1) {
978 		int		is_in;
979 
980 		// BUG_ON (!list_empty(&stream->td_list));
981 
982 		while (!list_empty (&stream->free_list)) {
983 			struct list_head	*entry;
984 
985 			entry = stream->free_list.next;
986 			list_del (entry);
987 
988 			/* knows about ITD vs SITD */
989 			if (stream->highspeed) {
990 				struct ehci_itd		*itd;
991 
992 				itd = list_entry (entry, struct ehci_itd,
993 						itd_list);
994 				dma_pool_free (ehci->itd_pool, itd,
995 						itd->itd_dma);
996 			} else {
997 				struct ehci_sitd	*sitd;
998 
999 				sitd = list_entry (entry, struct ehci_sitd,
1000 						sitd_list);
1001 				dma_pool_free (ehci->sitd_pool, sitd,
1002 						sitd->sitd_dma);
1003 			}
1004 		}
1005 
1006 		is_in = (stream->bEndpointAddress & USB_DIR_IN) ? 0x10 : 0;
1007 		stream->bEndpointAddress &= 0x0f;
1008 		stream->ep->hcpriv = NULL;
1009 
1010 		if (stream->rescheduled) {
1011 			ehci_info (ehci, "ep%d%s-iso rescheduled "
1012 				"%lu times in %lu seconds\n",
1013 				stream->bEndpointAddress, is_in ? "in" : "out",
1014 				stream->rescheduled,
1015 				((jiffies - stream->start)/HZ)
1016 				);
1017 		}
1018 
1019 		kfree(stream);
1020 	}
1021 }
1022 
1023 static inline struct ehci_iso_stream *
1024 iso_stream_get (struct ehci_iso_stream *stream)
1025 {
1026 	if (likely (stream != NULL))
1027 		stream->refcount++;
1028 	return stream;
1029 }
1030 
1031 static struct ehci_iso_stream *
1032 iso_stream_find (struct ehci_hcd *ehci, struct urb *urb)
1033 {
1034 	unsigned		epnum;
1035 	struct ehci_iso_stream	*stream;
1036 	struct usb_host_endpoint *ep;
1037 	unsigned long		flags;
1038 
1039 	epnum = usb_pipeendpoint (urb->pipe);
1040 	if (usb_pipein(urb->pipe))
1041 		ep = urb->dev->ep_in[epnum];
1042 	else
1043 		ep = urb->dev->ep_out[epnum];
1044 
1045 	spin_lock_irqsave (&ehci->lock, flags);
1046 	stream = ep->hcpriv;
1047 
1048 	if (unlikely (stream == NULL)) {
1049 		stream = iso_stream_alloc(GFP_ATOMIC);
1050 		if (likely (stream != NULL)) {
1051 			/* dev->ep owns the initial refcount */
1052 			ep->hcpriv = stream;
1053 			stream->ep = ep;
1054 			iso_stream_init(ehci, stream, urb->dev, urb->pipe,
1055 					urb->interval);
1056 		}
1057 
1058 	/* if dev->ep [epnum] is a QH, info1.maxpacket is nonzero */
1059 	} else if (unlikely (stream->hw_info1 != 0)) {
1060 		ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n",
1061 			urb->dev->devpath, epnum,
1062 			usb_pipein(urb->pipe) ? "in" : "out");
1063 		stream = NULL;
1064 	}
1065 
1066 	/* caller guarantees an eventual matching iso_stream_put */
1067 	stream = iso_stream_get (stream);
1068 
1069 	spin_unlock_irqrestore (&ehci->lock, flags);
1070 	return stream;
1071 }
1072 
1073 /*-------------------------------------------------------------------------*/
1074 
1075 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1076 
1077 static struct ehci_iso_sched *
1078 iso_sched_alloc (unsigned packets, gfp_t mem_flags)
1079 {
1080 	struct ehci_iso_sched	*iso_sched;
1081 	int			size = sizeof *iso_sched;
1082 
1083 	size += packets * sizeof (struct ehci_iso_packet);
1084 	iso_sched = kzalloc(size, mem_flags);
1085 	if (likely (iso_sched != NULL)) {
1086 		INIT_LIST_HEAD (&iso_sched->td_list);
1087 	}
1088 	return iso_sched;
1089 }
1090 
1091 static inline void
1092 itd_sched_init(
1093 	struct ehci_hcd		*ehci,
1094 	struct ehci_iso_sched	*iso_sched,
1095 	struct ehci_iso_stream	*stream,
1096 	struct urb		*urb
1097 )
1098 {
1099 	unsigned	i;
1100 	dma_addr_t	dma = urb->transfer_dma;
1101 
1102 	/* how many uframes are needed for these transfers */
1103 	iso_sched->span = urb->number_of_packets * stream->interval;
1104 
1105 	/* figure out per-uframe itd fields that we'll need later
1106 	 * when we fit new itds into the schedule.
1107 	 */
1108 	for (i = 0; i < urb->number_of_packets; i++) {
1109 		struct ehci_iso_packet	*uframe = &iso_sched->packet [i];
1110 		unsigned		length;
1111 		dma_addr_t		buf;
1112 		u32			trans;
1113 
1114 		length = urb->iso_frame_desc [i].length;
1115 		buf = dma + urb->iso_frame_desc [i].offset;
1116 
1117 		trans = EHCI_ISOC_ACTIVE;
1118 		trans |= buf & 0x0fff;
1119 		if (unlikely (((i + 1) == urb->number_of_packets))
1120 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1121 			trans |= EHCI_ITD_IOC;
1122 		trans |= length << 16;
1123 		uframe->transaction = cpu_to_hc32(ehci, trans);
1124 
1125 		/* might need to cross a buffer page within a uframe */
1126 		uframe->bufp = (buf & ~(u64)0x0fff);
1127 		buf += length;
1128 		if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff))))
1129 			uframe->cross = 1;
1130 	}
1131 }
1132 
1133 static void
1134 iso_sched_free (
1135 	struct ehci_iso_stream	*stream,
1136 	struct ehci_iso_sched	*iso_sched
1137 )
1138 {
1139 	if (!iso_sched)
1140 		return;
1141 	// caller must hold ehci->lock!
1142 	list_splice (&iso_sched->td_list, &stream->free_list);
1143 	kfree (iso_sched);
1144 }
1145 
1146 static int
1147 itd_urb_transaction (
1148 	struct ehci_iso_stream	*stream,
1149 	struct ehci_hcd		*ehci,
1150 	struct urb		*urb,
1151 	gfp_t			mem_flags
1152 )
1153 {
1154 	struct ehci_itd		*itd;
1155 	dma_addr_t		itd_dma;
1156 	int			i;
1157 	unsigned		num_itds;
1158 	struct ehci_iso_sched	*sched;
1159 	unsigned long		flags;
1160 
1161 	sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1162 	if (unlikely (sched == NULL))
1163 		return -ENOMEM;
1164 
1165 	itd_sched_init(ehci, sched, stream, urb);
1166 
1167 	if (urb->interval < 8)
1168 		num_itds = 1 + (sched->span + 7) / 8;
1169 	else
1170 		num_itds = urb->number_of_packets;
1171 
1172 	/* allocate/init ITDs */
1173 	spin_lock_irqsave (&ehci->lock, flags);
1174 	for (i = 0; i < num_itds; i++) {
1175 
1176 		/* free_list.next might be cache-hot ... but maybe
1177 		 * the HC caches it too. avoid that issue for now.
1178 		 */
1179 
1180 		/* prefer previously-allocated itds */
1181 		if (likely (!list_empty(&stream->free_list))) {
1182 			itd = list_entry (stream->free_list.prev,
1183 					struct ehci_itd, itd_list);
1184 			list_del (&itd->itd_list);
1185 			itd_dma = itd->itd_dma;
1186 		} else
1187 			itd = NULL;
1188 
1189 		if (!itd) {
1190 			spin_unlock_irqrestore (&ehci->lock, flags);
1191 			itd = dma_pool_alloc (ehci->itd_pool, mem_flags,
1192 					&itd_dma);
1193 			spin_lock_irqsave (&ehci->lock, flags);
1194 		}
1195 
1196 		if (unlikely (NULL == itd)) {
1197 			iso_sched_free (stream, sched);
1198 			spin_unlock_irqrestore (&ehci->lock, flags);
1199 			return -ENOMEM;
1200 		}
1201 		memset (itd, 0, sizeof *itd);
1202 		itd->itd_dma = itd_dma;
1203 		list_add (&itd->itd_list, &sched->td_list);
1204 	}
1205 	spin_unlock_irqrestore (&ehci->lock, flags);
1206 
1207 	/* temporarily store schedule info in hcpriv */
1208 	urb->hcpriv = sched;
1209 	urb->error_count = 0;
1210 	return 0;
1211 }
1212 
1213 /*-------------------------------------------------------------------------*/
1214 
1215 static inline int
1216 itd_slot_ok (
1217 	struct ehci_hcd		*ehci,
1218 	u32			mod,
1219 	u32			uframe,
1220 	u8			usecs,
1221 	u32			period
1222 )
1223 {
1224 	uframe %= period;
1225 	do {
1226 		/* can't commit more than 80% periodic == 100 usec */
1227 		if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7)
1228 				> (100 - usecs))
1229 			return 0;
1230 
1231 		/* we know urb->interval is 2^N uframes */
1232 		uframe += period;
1233 	} while (uframe < mod);
1234 	return 1;
1235 }
1236 
1237 static inline int
1238 sitd_slot_ok (
1239 	struct ehci_hcd		*ehci,
1240 	u32			mod,
1241 	struct ehci_iso_stream	*stream,
1242 	u32			uframe,
1243 	struct ehci_iso_sched	*sched,
1244 	u32			period_uframes
1245 )
1246 {
1247 	u32			mask, tmp;
1248 	u32			frame, uf;
1249 
1250 	mask = stream->raw_mask << (uframe & 7);
1251 
1252 	/* for IN, don't wrap CSPLIT into the next frame */
1253 	if (mask & ~0xffff)
1254 		return 0;
1255 
1256 	/* this multi-pass logic is simple, but performance may
1257 	 * suffer when the schedule data isn't cached.
1258 	 */
1259 
1260 	/* check bandwidth */
1261 	uframe %= period_uframes;
1262 	do {
1263 		u32		max_used;
1264 
1265 		frame = uframe >> 3;
1266 		uf = uframe & 7;
1267 
1268 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1269 		/* The tt's fullspeed bus bandwidth must be available.
1270 		 * tt_available scheduling guarantees 10+% for control/bulk.
1271 		 */
1272 		if (!tt_available (ehci, period_uframes << 3,
1273 				stream->udev, frame, uf, stream->tt_usecs))
1274 			return 0;
1275 #else
1276 		/* tt must be idle for start(s), any gap, and csplit.
1277 		 * assume scheduling slop leaves 10+% for control/bulk.
1278 		 */
1279 		if (!tt_no_collision (ehci, period_uframes << 3,
1280 				stream->udev, frame, mask))
1281 			return 0;
1282 #endif
1283 
1284 		/* check starts (OUT uses more than one) */
1285 		max_used = 100 - stream->usecs;
1286 		for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) {
1287 			if (periodic_usecs (ehci, frame, uf) > max_used)
1288 				return 0;
1289 		}
1290 
1291 		/* for IN, check CSPLIT */
1292 		if (stream->c_usecs) {
1293 			uf = uframe & 7;
1294 			max_used = 100 - stream->c_usecs;
1295 			do {
1296 				tmp = 1 << uf;
1297 				tmp <<= 8;
1298 				if ((stream->raw_mask & tmp) == 0)
1299 					continue;
1300 				if (periodic_usecs (ehci, frame, uf)
1301 						> max_used)
1302 					return 0;
1303 			} while (++uf < 8);
1304 		}
1305 
1306 		/* we know urb->interval is 2^N uframes */
1307 		uframe += period_uframes;
1308 	} while (uframe < mod);
1309 
1310 	stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7));
1311 	return 1;
1312 }
1313 
1314 /*
1315  * This scheduler plans almost as far into the future as it has actual
1316  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
1317  * "as small as possible" to be cache-friendlier.)  That limits the size
1318  * transfers you can stream reliably; avoid more than 64 msec per urb.
1319  * Also avoid queue depths of less than ehci's worst irq latency (affected
1320  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1321  * and other factors); or more than about 230 msec total (for portability,
1322  * given EHCI_TUNE_FLS and the slop).  Or, write a smarter scheduler!
1323  */
1324 
1325 #define SCHEDULE_SLOP	10	/* frames */
1326 
1327 static int
1328 iso_stream_schedule (
1329 	struct ehci_hcd		*ehci,
1330 	struct urb		*urb,
1331 	struct ehci_iso_stream	*stream
1332 )
1333 {
1334 	u32			now, start, max, period;
1335 	int			status;
1336 	unsigned		mod = ehci->periodic_size << 3;
1337 	struct ehci_iso_sched	*sched = urb->hcpriv;
1338 
1339 	if (sched->span > (mod - 8 * SCHEDULE_SLOP)) {
1340 		ehci_dbg (ehci, "iso request %p too long\n", urb);
1341 		status = -EFBIG;
1342 		goto fail;
1343 	}
1344 
1345 	if ((stream->depth + sched->span) > mod) {
1346 		ehci_dbg (ehci, "request %p would overflow (%d+%d>%d)\n",
1347 			urb, stream->depth, sched->span, mod);
1348 		status = -EFBIG;
1349 		goto fail;
1350 	}
1351 
1352 	now = ehci_readl(ehci, &ehci->regs->frame_index) % mod;
1353 
1354 	/* when's the last uframe this urb could start? */
1355 	max = now + mod;
1356 
1357 	/* typical case: reuse current schedule. stream is still active,
1358 	 * and no gaps from host falling behind (irq delays etc)
1359 	 */
1360 	if (likely (!list_empty (&stream->td_list))) {
1361 		start = stream->next_uframe;
1362 		if (start < now)
1363 			start += mod;
1364 		if (likely ((start + sched->span) < max))
1365 			goto ready;
1366 		/* else fell behind; someday, try to reschedule */
1367 		status = -EL2NSYNC;
1368 		goto fail;
1369 	}
1370 
1371 	/* need to schedule; when's the next (u)frame we could start?
1372 	 * this is bigger than ehci->i_thresh allows; scheduling itself
1373 	 * isn't free, the slop should handle reasonably slow cpus.  it
1374 	 * can also help high bandwidth if the dma and irq loads don't
1375 	 * jump until after the queue is primed.
1376 	 */
1377 	start = SCHEDULE_SLOP * 8 + (now & ~0x07);
1378 	start %= mod;
1379 	stream->next_uframe = start;
1380 
1381 	/* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
1382 
1383 	period = urb->interval;
1384 	if (!stream->highspeed)
1385 		period <<= 3;
1386 
1387 	/* find a uframe slot with enough bandwidth */
1388 	for (; start < (stream->next_uframe + period); start++) {
1389 		int		enough_space;
1390 
1391 		/* check schedule: enough space? */
1392 		if (stream->highspeed)
1393 			enough_space = itd_slot_ok (ehci, mod, start,
1394 					stream->usecs, period);
1395 		else {
1396 			if ((start % 8) >= 6)
1397 				continue;
1398 			enough_space = sitd_slot_ok (ehci, mod, stream,
1399 					start, sched, period);
1400 		}
1401 
1402 		/* schedule it here if there's enough bandwidth */
1403 		if (enough_space) {
1404 			stream->next_uframe = start % mod;
1405 			goto ready;
1406 		}
1407 	}
1408 
1409 	/* no room in the schedule */
1410 	ehci_dbg (ehci, "iso %ssched full %p (now %d max %d)\n",
1411 		list_empty (&stream->td_list) ? "" : "re",
1412 		urb, now, max);
1413 	status = -ENOSPC;
1414 
1415 fail:
1416 	iso_sched_free (stream, sched);
1417 	urb->hcpriv = NULL;
1418 	return status;
1419 
1420 ready:
1421 	/* report high speed start in uframes; full speed, in frames */
1422 	urb->start_frame = stream->next_uframe;
1423 	if (!stream->highspeed)
1424 		urb->start_frame >>= 3;
1425 	return 0;
1426 }
1427 
1428 /*-------------------------------------------------------------------------*/
1429 
1430 static inline void
1431 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1432 		struct ehci_itd *itd)
1433 {
1434 	int i;
1435 
1436 	/* it's been recently zeroed */
1437 	itd->hw_next = EHCI_LIST_END(ehci);
1438 	itd->hw_bufp [0] = stream->buf0;
1439 	itd->hw_bufp [1] = stream->buf1;
1440 	itd->hw_bufp [2] = stream->buf2;
1441 
1442 	for (i = 0; i < 8; i++)
1443 		itd->index[i] = -1;
1444 
1445 	/* All other fields are filled when scheduling */
1446 }
1447 
1448 static inline void
1449 itd_patch(
1450 	struct ehci_hcd		*ehci,
1451 	struct ehci_itd		*itd,
1452 	struct ehci_iso_sched	*iso_sched,
1453 	unsigned		index,
1454 	u16			uframe
1455 )
1456 {
1457 	struct ehci_iso_packet	*uf = &iso_sched->packet [index];
1458 	unsigned		pg = itd->pg;
1459 
1460 	// BUG_ON (pg == 6 && uf->cross);
1461 
1462 	uframe &= 0x07;
1463 	itd->index [uframe] = index;
1464 
1465 	itd->hw_transaction[uframe] = uf->transaction;
1466 	itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1467 	itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1468 	itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1469 
1470 	/* iso_frame_desc[].offset must be strictly increasing */
1471 	if (unlikely (uf->cross)) {
1472 		u64	bufp = uf->bufp + 4096;
1473 
1474 		itd->pg = ++pg;
1475 		itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1476 		itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1477 	}
1478 }
1479 
1480 static inline void
1481 itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1482 {
1483 	/* always prepend ITD/SITD ... only QH tree is order-sensitive */
1484 	itd->itd_next = ehci->pshadow [frame];
1485 	itd->hw_next = ehci->periodic [frame];
1486 	ehci->pshadow [frame].itd = itd;
1487 	itd->frame = frame;
1488 	wmb ();
1489 	ehci->periodic[frame] = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1490 }
1491 
1492 /* fit urb's itds into the selected schedule slot; activate as needed */
1493 static int
1494 itd_link_urb (
1495 	struct ehci_hcd		*ehci,
1496 	struct urb		*urb,
1497 	unsigned		mod,
1498 	struct ehci_iso_stream	*stream
1499 )
1500 {
1501 	int			packet;
1502 	unsigned		next_uframe, uframe, frame;
1503 	struct ehci_iso_sched	*iso_sched = urb->hcpriv;
1504 	struct ehci_itd		*itd;
1505 
1506 	next_uframe = stream->next_uframe % mod;
1507 
1508 	if (unlikely (list_empty(&stream->td_list))) {
1509 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1510 				+= stream->bandwidth;
1511 		ehci_vdbg (ehci,
1512 			"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
1513 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1514 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1515 			urb->interval,
1516 			next_uframe >> 3, next_uframe & 0x7);
1517 		stream->start = jiffies;
1518 	}
1519 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1520 
1521 	/* fill iTDs uframe by uframe */
1522 	for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) {
1523 		if (itd == NULL) {
1524 			/* ASSERT:  we have all necessary itds */
1525 			// BUG_ON (list_empty (&iso_sched->td_list));
1526 
1527 			/* ASSERT:  no itds for this endpoint in this uframe */
1528 
1529 			itd = list_entry (iso_sched->td_list.next,
1530 					struct ehci_itd, itd_list);
1531 			list_move_tail (&itd->itd_list, &stream->td_list);
1532 			itd->stream = iso_stream_get (stream);
1533 			itd->urb = usb_get_urb (urb);
1534 			itd_init (ehci, stream, itd);
1535 		}
1536 
1537 		uframe = next_uframe & 0x07;
1538 		frame = next_uframe >> 3;
1539 
1540 		itd_patch(ehci, itd, iso_sched, packet, uframe);
1541 
1542 		next_uframe += stream->interval;
1543 		stream->depth += stream->interval;
1544 		next_uframe %= mod;
1545 		packet++;
1546 
1547 		/* link completed itds into the schedule */
1548 		if (((next_uframe >> 3) != frame)
1549 				|| packet == urb->number_of_packets) {
1550 			itd_link (ehci, frame % ehci->periodic_size, itd);
1551 			itd = NULL;
1552 		}
1553 	}
1554 	stream->next_uframe = next_uframe;
1555 
1556 	/* don't need that schedule data any more */
1557 	iso_sched_free (stream, iso_sched);
1558 	urb->hcpriv = NULL;
1559 
1560 	timer_action (ehci, TIMER_IO_WATCHDOG);
1561 	if (unlikely (!ehci->periodic_sched++))
1562 		return enable_periodic (ehci);
1563 	return 0;
1564 }
1565 
1566 #define	ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1567 
1568 /* Process and recycle a completed ITD.  Return true iff its urb completed,
1569  * and hence its completion callback probably added things to the hardware
1570  * schedule.
1571  *
1572  * Note that we carefully avoid recycling this descriptor until after any
1573  * completion callback runs, so that it won't be reused quickly.  That is,
1574  * assuming (a) no more than two urbs per frame on this endpoint, and also
1575  * (b) only this endpoint's completions submit URBs.  It seems some silicon
1576  * corrupts things if you reuse completed descriptors very quickly...
1577  */
1578 static unsigned
1579 itd_complete (
1580 	struct ehci_hcd	*ehci,
1581 	struct ehci_itd	*itd
1582 ) {
1583 	struct urb				*urb = itd->urb;
1584 	struct usb_iso_packet_descriptor	*desc;
1585 	u32					t;
1586 	unsigned				uframe;
1587 	int					urb_index = -1;
1588 	struct ehci_iso_stream			*stream = itd->stream;
1589 	struct usb_device			*dev;
1590 	unsigned				retval = false;
1591 
1592 	/* for each uframe with a packet */
1593 	for (uframe = 0; uframe < 8; uframe++) {
1594 		if (likely (itd->index[uframe] == -1))
1595 			continue;
1596 		urb_index = itd->index[uframe];
1597 		desc = &urb->iso_frame_desc [urb_index];
1598 
1599 		t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]);
1600 		itd->hw_transaction [uframe] = 0;
1601 		stream->depth -= stream->interval;
1602 
1603 		/* report transfer status */
1604 		if (unlikely (t & ISO_ERRS)) {
1605 			urb->error_count++;
1606 			if (t & EHCI_ISOC_BUF_ERR)
1607 				desc->status = usb_pipein (urb->pipe)
1608 					? -ENOSR  /* hc couldn't read */
1609 					: -ECOMM; /* hc couldn't write */
1610 			else if (t & EHCI_ISOC_BABBLE)
1611 				desc->status = -EOVERFLOW;
1612 			else /* (t & EHCI_ISOC_XACTERR) */
1613 				desc->status = -EPROTO;
1614 
1615 			/* HC need not update length with this error */
1616 			if (!(t & EHCI_ISOC_BABBLE))
1617 				desc->actual_length = EHCI_ITD_LENGTH (t);
1618 		} else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) {
1619 			desc->status = 0;
1620 			desc->actual_length = EHCI_ITD_LENGTH (t);
1621 		}
1622 	}
1623 
1624 	/* handle completion now? */
1625 	if (likely ((urb_index + 1) != urb->number_of_packets))
1626 		goto done;
1627 
1628 	/* ASSERT: it's really the last itd for this urb
1629 	list_for_each_entry (itd, &stream->td_list, itd_list)
1630 		BUG_ON (itd->urb == urb);
1631 	 */
1632 
1633 	/* give urb back to the driver; completion often (re)submits */
1634 	dev = urb->dev;
1635 	ehci_urb_done(ehci, urb, 0);
1636 	retval = true;
1637 	urb = NULL;
1638 	ehci->periodic_sched--;
1639 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1640 
1641 	if (unlikely (list_empty (&stream->td_list))) {
1642 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1643 				-= stream->bandwidth;
1644 		ehci_vdbg (ehci,
1645 			"deschedule devp %s ep%d%s-iso\n",
1646 			dev->devpath, stream->bEndpointAddress & 0x0f,
1647 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
1648 	}
1649 	iso_stream_put (ehci, stream);
1650 	/* OK to recycle this ITD now that its completion callback ran. */
1651 done:
1652 	usb_put_urb(urb);
1653 	itd->urb = NULL;
1654 	itd->stream = NULL;
1655 	list_move(&itd->itd_list, &stream->free_list);
1656 	iso_stream_put(ehci, stream);
1657 
1658 	return retval;
1659 }
1660 
1661 /*-------------------------------------------------------------------------*/
1662 
1663 static int itd_submit (struct ehci_hcd *ehci, struct urb *urb,
1664 	gfp_t mem_flags)
1665 {
1666 	int			status = -EINVAL;
1667 	unsigned long		flags;
1668 	struct ehci_iso_stream	*stream;
1669 
1670 	/* Get iso_stream head */
1671 	stream = iso_stream_find (ehci, urb);
1672 	if (unlikely (stream == NULL)) {
1673 		ehci_dbg (ehci, "can't get iso stream\n");
1674 		return -ENOMEM;
1675 	}
1676 	if (unlikely (urb->interval != stream->interval)) {
1677 		ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
1678 			stream->interval, urb->interval);
1679 		goto done;
1680 	}
1681 
1682 #ifdef EHCI_URB_TRACE
1683 	ehci_dbg (ehci,
1684 		"%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1685 		__FUNCTION__, urb->dev->devpath, urb,
1686 		usb_pipeendpoint (urb->pipe),
1687 		usb_pipein (urb->pipe) ? "in" : "out",
1688 		urb->transfer_buffer_length,
1689 		urb->number_of_packets, urb->interval,
1690 		stream);
1691 #endif
1692 
1693 	/* allocate ITDs w/o locking anything */
1694 	status = itd_urb_transaction (stream, ehci, urb, mem_flags);
1695 	if (unlikely (status < 0)) {
1696 		ehci_dbg (ehci, "can't init itds\n");
1697 		goto done;
1698 	}
1699 
1700 	/* schedule ... need to lock */
1701 	spin_lock_irqsave (&ehci->lock, flags);
1702 	if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
1703 			       &ehci_to_hcd(ehci)->flags))) {
1704 		status = -ESHUTDOWN;
1705 		goto done_not_linked;
1706 	}
1707 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1708 	if (unlikely(status))
1709 		goto done_not_linked;
1710 	status = iso_stream_schedule(ehci, urb, stream);
1711 	if (likely (status == 0))
1712 		itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
1713 	else
1714 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1715 done_not_linked:
1716 	spin_unlock_irqrestore (&ehci->lock, flags);
1717 
1718 done:
1719 	if (unlikely (status < 0))
1720 		iso_stream_put (ehci, stream);
1721 	return status;
1722 }
1723 
1724 /*-------------------------------------------------------------------------*/
1725 
1726 /*
1727  * "Split ISO TDs" ... used for USB 1.1 devices going through the
1728  * TTs in USB 2.0 hubs.  These need microframe scheduling.
1729  */
1730 
1731 static inline void
1732 sitd_sched_init(
1733 	struct ehci_hcd		*ehci,
1734 	struct ehci_iso_sched	*iso_sched,
1735 	struct ehci_iso_stream	*stream,
1736 	struct urb		*urb
1737 )
1738 {
1739 	unsigned	i;
1740 	dma_addr_t	dma = urb->transfer_dma;
1741 
1742 	/* how many frames are needed for these transfers */
1743 	iso_sched->span = urb->number_of_packets * stream->interval;
1744 
1745 	/* figure out per-frame sitd fields that we'll need later
1746 	 * when we fit new sitds into the schedule.
1747 	 */
1748 	for (i = 0; i < urb->number_of_packets; i++) {
1749 		struct ehci_iso_packet	*packet = &iso_sched->packet [i];
1750 		unsigned		length;
1751 		dma_addr_t		buf;
1752 		u32			trans;
1753 
1754 		length = urb->iso_frame_desc [i].length & 0x03ff;
1755 		buf = dma + urb->iso_frame_desc [i].offset;
1756 
1757 		trans = SITD_STS_ACTIVE;
1758 		if (((i + 1) == urb->number_of_packets)
1759 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1760 			trans |= SITD_IOC;
1761 		trans |= length << 16;
1762 		packet->transaction = cpu_to_hc32(ehci, trans);
1763 
1764 		/* might need to cross a buffer page within a td */
1765 		packet->bufp = buf;
1766 		packet->buf1 = (buf + length) & ~0x0fff;
1767 		if (packet->buf1 != (buf & ~(u64)0x0fff))
1768 			packet->cross = 1;
1769 
1770 		/* OUT uses multiple start-splits */
1771 		if (stream->bEndpointAddress & USB_DIR_IN)
1772 			continue;
1773 		length = (length + 187) / 188;
1774 		if (length > 1) /* BEGIN vs ALL */
1775 			length |= 1 << 3;
1776 		packet->buf1 |= length;
1777 	}
1778 }
1779 
1780 static int
1781 sitd_urb_transaction (
1782 	struct ehci_iso_stream	*stream,
1783 	struct ehci_hcd		*ehci,
1784 	struct urb		*urb,
1785 	gfp_t			mem_flags
1786 )
1787 {
1788 	struct ehci_sitd	*sitd;
1789 	dma_addr_t		sitd_dma;
1790 	int			i;
1791 	struct ehci_iso_sched	*iso_sched;
1792 	unsigned long		flags;
1793 
1794 	iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1795 	if (iso_sched == NULL)
1796 		return -ENOMEM;
1797 
1798 	sitd_sched_init(ehci, iso_sched, stream, urb);
1799 
1800 	/* allocate/init sITDs */
1801 	spin_lock_irqsave (&ehci->lock, flags);
1802 	for (i = 0; i < urb->number_of_packets; i++) {
1803 
1804 		/* NOTE:  for now, we don't try to handle wraparound cases
1805 		 * for IN (using sitd->hw_backpointer, like a FSTN), which
1806 		 * means we never need two sitds for full speed packets.
1807 		 */
1808 
1809 		/* free_list.next might be cache-hot ... but maybe
1810 		 * the HC caches it too. avoid that issue for now.
1811 		 */
1812 
1813 		/* prefer previously-allocated sitds */
1814 		if (!list_empty(&stream->free_list)) {
1815 			sitd = list_entry (stream->free_list.prev,
1816 					 struct ehci_sitd, sitd_list);
1817 			list_del (&sitd->sitd_list);
1818 			sitd_dma = sitd->sitd_dma;
1819 		} else
1820 			sitd = NULL;
1821 
1822 		if (!sitd) {
1823 			spin_unlock_irqrestore (&ehci->lock, flags);
1824 			sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags,
1825 					&sitd_dma);
1826 			spin_lock_irqsave (&ehci->lock, flags);
1827 		}
1828 
1829 		if (!sitd) {
1830 			iso_sched_free (stream, iso_sched);
1831 			spin_unlock_irqrestore (&ehci->lock, flags);
1832 			return -ENOMEM;
1833 		}
1834 		memset (sitd, 0, sizeof *sitd);
1835 		sitd->sitd_dma = sitd_dma;
1836 		list_add (&sitd->sitd_list, &iso_sched->td_list);
1837 	}
1838 
1839 	/* temporarily store schedule info in hcpriv */
1840 	urb->hcpriv = iso_sched;
1841 	urb->error_count = 0;
1842 
1843 	spin_unlock_irqrestore (&ehci->lock, flags);
1844 	return 0;
1845 }
1846 
1847 /*-------------------------------------------------------------------------*/
1848 
1849 static inline void
1850 sitd_patch(
1851 	struct ehci_hcd		*ehci,
1852 	struct ehci_iso_stream	*stream,
1853 	struct ehci_sitd	*sitd,
1854 	struct ehci_iso_sched	*iso_sched,
1855 	unsigned		index
1856 )
1857 {
1858 	struct ehci_iso_packet	*uf = &iso_sched->packet [index];
1859 	u64			bufp = uf->bufp;
1860 
1861 	sitd->hw_next = EHCI_LIST_END(ehci);
1862 	sitd->hw_fullspeed_ep = stream->address;
1863 	sitd->hw_uframe = stream->splits;
1864 	sitd->hw_results = uf->transaction;
1865 	sitd->hw_backpointer = EHCI_LIST_END(ehci);
1866 
1867 	bufp = uf->bufp;
1868 	sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
1869 	sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
1870 
1871 	sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
1872 	if (uf->cross)
1873 		bufp += 4096;
1874 	sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
1875 	sitd->index = index;
1876 }
1877 
1878 static inline void
1879 sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
1880 {
1881 	/* note: sitd ordering could matter (CSPLIT then SSPLIT) */
1882 	sitd->sitd_next = ehci->pshadow [frame];
1883 	sitd->hw_next = ehci->periodic [frame];
1884 	ehci->pshadow [frame].sitd = sitd;
1885 	sitd->frame = frame;
1886 	wmb ();
1887 	ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
1888 }
1889 
1890 /* fit urb's sitds into the selected schedule slot; activate as needed */
1891 static int
1892 sitd_link_urb (
1893 	struct ehci_hcd		*ehci,
1894 	struct urb		*urb,
1895 	unsigned		mod,
1896 	struct ehci_iso_stream	*stream
1897 )
1898 {
1899 	int			packet;
1900 	unsigned		next_uframe;
1901 	struct ehci_iso_sched	*sched = urb->hcpriv;
1902 	struct ehci_sitd	*sitd;
1903 
1904 	next_uframe = stream->next_uframe;
1905 
1906 	if (list_empty(&stream->td_list)) {
1907 		/* usbfs ignores TT bandwidth */
1908 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1909 				+= stream->bandwidth;
1910 		ehci_vdbg (ehci,
1911 			"sched devp %s ep%d%s-iso [%d] %dms/%04x\n",
1912 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1913 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1914 			(next_uframe >> 3) % ehci->periodic_size,
1915 			stream->interval, hc32_to_cpu(ehci, stream->splits));
1916 		stream->start = jiffies;
1917 	}
1918 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1919 
1920 	/* fill sITDs frame by frame */
1921 	for (packet = 0, sitd = NULL;
1922 			packet < urb->number_of_packets;
1923 			packet++) {
1924 
1925 		/* ASSERT:  we have all necessary sitds */
1926 		BUG_ON (list_empty (&sched->td_list));
1927 
1928 		/* ASSERT:  no itds for this endpoint in this frame */
1929 
1930 		sitd = list_entry (sched->td_list.next,
1931 				struct ehci_sitd, sitd_list);
1932 		list_move_tail (&sitd->sitd_list, &stream->td_list);
1933 		sitd->stream = iso_stream_get (stream);
1934 		sitd->urb = usb_get_urb (urb);
1935 
1936 		sitd_patch(ehci, stream, sitd, sched, packet);
1937 		sitd_link (ehci, (next_uframe >> 3) % ehci->periodic_size,
1938 				sitd);
1939 
1940 		next_uframe += stream->interval << 3;
1941 		stream->depth += stream->interval << 3;
1942 	}
1943 	stream->next_uframe = next_uframe % mod;
1944 
1945 	/* don't need that schedule data any more */
1946 	iso_sched_free (stream, sched);
1947 	urb->hcpriv = NULL;
1948 
1949 	timer_action (ehci, TIMER_IO_WATCHDOG);
1950 	if (!ehci->periodic_sched++)
1951 		return enable_periodic (ehci);
1952 	return 0;
1953 }
1954 
1955 /*-------------------------------------------------------------------------*/
1956 
1957 #define	SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
1958 				| SITD_STS_XACT | SITD_STS_MMF)
1959 
1960 /* Process and recycle a completed SITD.  Return true iff its urb completed,
1961  * and hence its completion callback probably added things to the hardware
1962  * schedule.
1963  *
1964  * Note that we carefully avoid recycling this descriptor until after any
1965  * completion callback runs, so that it won't be reused quickly.  That is,
1966  * assuming (a) no more than two urbs per frame on this endpoint, and also
1967  * (b) only this endpoint's completions submit URBs.  It seems some silicon
1968  * corrupts things if you reuse completed descriptors very quickly...
1969  */
1970 static unsigned
1971 sitd_complete (
1972 	struct ehci_hcd		*ehci,
1973 	struct ehci_sitd	*sitd
1974 ) {
1975 	struct urb				*urb = sitd->urb;
1976 	struct usb_iso_packet_descriptor	*desc;
1977 	u32					t;
1978 	int					urb_index = -1;
1979 	struct ehci_iso_stream			*stream = sitd->stream;
1980 	struct usb_device			*dev;
1981 	unsigned				retval = false;
1982 
1983 	urb_index = sitd->index;
1984 	desc = &urb->iso_frame_desc [urb_index];
1985 	t = hc32_to_cpup(ehci, &sitd->hw_results);
1986 
1987 	/* report transfer status */
1988 	if (t & SITD_ERRS) {
1989 		urb->error_count++;
1990 		if (t & SITD_STS_DBE)
1991 			desc->status = usb_pipein (urb->pipe)
1992 				? -ENOSR  /* hc couldn't read */
1993 				: -ECOMM; /* hc couldn't write */
1994 		else if (t & SITD_STS_BABBLE)
1995 			desc->status = -EOVERFLOW;
1996 		else /* XACT, MMF, etc */
1997 			desc->status = -EPROTO;
1998 	} else {
1999 		desc->status = 0;
2000 		desc->actual_length = desc->length - SITD_LENGTH (t);
2001 	}
2002 	stream->depth -= stream->interval << 3;
2003 
2004 	/* handle completion now? */
2005 	if ((urb_index + 1) != urb->number_of_packets)
2006 		goto done;
2007 
2008 	/* ASSERT: it's really the last sitd for this urb
2009 	list_for_each_entry (sitd, &stream->td_list, sitd_list)
2010 		BUG_ON (sitd->urb == urb);
2011 	 */
2012 
2013 	/* give urb back to the driver; completion often (re)submits */
2014 	dev = urb->dev;
2015 	ehci_urb_done(ehci, urb, 0);
2016 	retval = true;
2017 	urb = NULL;
2018 	ehci->periodic_sched--;
2019 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2020 
2021 	if (list_empty (&stream->td_list)) {
2022 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2023 				-= stream->bandwidth;
2024 		ehci_vdbg (ehci,
2025 			"deschedule devp %s ep%d%s-iso\n",
2026 			dev->devpath, stream->bEndpointAddress & 0x0f,
2027 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
2028 	}
2029 	iso_stream_put (ehci, stream);
2030 	/* OK to recycle this SITD now that its completion callback ran. */
2031 done:
2032 	usb_put_urb(urb);
2033 	sitd->urb = NULL;
2034 	sitd->stream = NULL;
2035 	list_move(&sitd->sitd_list, &stream->free_list);
2036 	iso_stream_put(ehci, stream);
2037 
2038 	return retval;
2039 }
2040 
2041 
2042 static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb,
2043 	gfp_t mem_flags)
2044 {
2045 	int			status = -EINVAL;
2046 	unsigned long		flags;
2047 	struct ehci_iso_stream	*stream;
2048 
2049 	/* Get iso_stream head */
2050 	stream = iso_stream_find (ehci, urb);
2051 	if (stream == NULL) {
2052 		ehci_dbg (ehci, "can't get iso stream\n");
2053 		return -ENOMEM;
2054 	}
2055 	if (urb->interval != stream->interval) {
2056 		ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
2057 			stream->interval, urb->interval);
2058 		goto done;
2059 	}
2060 
2061 #ifdef EHCI_URB_TRACE
2062 	ehci_dbg (ehci,
2063 		"submit %p dev%s ep%d%s-iso len %d\n",
2064 		urb, urb->dev->devpath,
2065 		usb_pipeendpoint (urb->pipe),
2066 		usb_pipein (urb->pipe) ? "in" : "out",
2067 		urb->transfer_buffer_length);
2068 #endif
2069 
2070 	/* allocate SITDs */
2071 	status = sitd_urb_transaction (stream, ehci, urb, mem_flags);
2072 	if (status < 0) {
2073 		ehci_dbg (ehci, "can't init sitds\n");
2074 		goto done;
2075 	}
2076 
2077 	/* schedule ... need to lock */
2078 	spin_lock_irqsave (&ehci->lock, flags);
2079 	if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
2080 			       &ehci_to_hcd(ehci)->flags))) {
2081 		status = -ESHUTDOWN;
2082 		goto done_not_linked;
2083 	}
2084 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2085 	if (unlikely(status))
2086 		goto done_not_linked;
2087 	status = iso_stream_schedule(ehci, urb, stream);
2088 	if (status == 0)
2089 		sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
2090 	else
2091 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2092 done_not_linked:
2093 	spin_unlock_irqrestore (&ehci->lock, flags);
2094 
2095 done:
2096 	if (status < 0)
2097 		iso_stream_put (ehci, stream);
2098 	return status;
2099 }
2100 
2101 /*-------------------------------------------------------------------------*/
2102 
2103 static void
2104 scan_periodic (struct ehci_hcd *ehci)
2105 {
2106 	unsigned	frame, clock, now_uframe, mod;
2107 	unsigned	modified;
2108 
2109 	mod = ehci->periodic_size << 3;
2110 
2111 	/*
2112 	 * When running, scan from last scan point up to "now"
2113 	 * else clean up by scanning everything that's left.
2114 	 * Touches as few pages as possible:  cache-friendly.
2115 	 */
2116 	now_uframe = ehci->next_uframe;
2117 	if (HC_IS_RUNNING (ehci_to_hcd(ehci)->state))
2118 		clock = ehci_readl(ehci, &ehci->regs->frame_index);
2119 	else
2120 		clock = now_uframe + mod - 1;
2121 	clock %= mod;
2122 
2123 	for (;;) {
2124 		union ehci_shadow	q, *q_p;
2125 		__hc32			type, *hw_p;
2126 		unsigned		incomplete = false;
2127 
2128 		frame = now_uframe >> 3;
2129 
2130 restart:
2131 		/* scan each element in frame's queue for completions */
2132 		q_p = &ehci->pshadow [frame];
2133 		hw_p = &ehci->periodic [frame];
2134 		q.ptr = q_p->ptr;
2135 		type = Q_NEXT_TYPE(ehci, *hw_p);
2136 		modified = 0;
2137 
2138 		while (q.ptr != NULL) {
2139 			unsigned		uf;
2140 			union ehci_shadow	temp;
2141 			int			live;
2142 
2143 			live = HC_IS_RUNNING (ehci_to_hcd(ehci)->state);
2144 			switch (hc32_to_cpu(ehci, type)) {
2145 			case Q_TYPE_QH:
2146 				/* handle any completions */
2147 				temp.qh = qh_get (q.qh);
2148 				type = Q_NEXT_TYPE(ehci, q.qh->hw_next);
2149 				q = q.qh->qh_next;
2150 				modified = qh_completions (ehci, temp.qh);
2151 				if (unlikely (list_empty (&temp.qh->qtd_list)))
2152 					intr_deschedule (ehci, temp.qh);
2153 				qh_put (temp.qh);
2154 				break;
2155 			case Q_TYPE_FSTN:
2156 				/* for "save place" FSTNs, look at QH entries
2157 				 * in the previous frame for completions.
2158 				 */
2159 				if (q.fstn->hw_prev != EHCI_LIST_END(ehci)) {
2160 					dbg ("ignoring completions from FSTNs");
2161 				}
2162 				type = Q_NEXT_TYPE(ehci, q.fstn->hw_next);
2163 				q = q.fstn->fstn_next;
2164 				break;
2165 			case Q_TYPE_ITD:
2166 				/* If this ITD is still active, leave it for
2167 				 * later processing ... check the next entry.
2168 				 */
2169 				rmb ();
2170 				for (uf = 0; uf < 8 && live; uf++) {
2171 					if (0 == (q.itd->hw_transaction [uf]
2172 							& ITD_ACTIVE(ehci)))
2173 						continue;
2174 					incomplete = true;
2175 					q_p = &q.itd->itd_next;
2176 					hw_p = &q.itd->hw_next;
2177 					type = Q_NEXT_TYPE(ehci,
2178 							q.itd->hw_next);
2179 					q = *q_p;
2180 					break;
2181 				}
2182 				if (uf < 8 && live)
2183 					break;
2184 
2185 				/* Take finished ITDs out of the schedule
2186 				 * and process them:  recycle, maybe report
2187 				 * URB completion.  HC won't cache the
2188 				 * pointer for much longer, if at all.
2189 				 */
2190 				*q_p = q.itd->itd_next;
2191 				*hw_p = q.itd->hw_next;
2192 				type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2193 				wmb();
2194 				modified = itd_complete (ehci, q.itd);
2195 				q = *q_p;
2196 				break;
2197 			case Q_TYPE_SITD:
2198 				/* If this SITD is still active, leave it for
2199 				 * later processing ... check the next entry.
2200 				 */
2201 				if ((q.sitd->hw_results & SITD_ACTIVE(ehci))
2202 						&& live) {
2203 					incomplete = true;
2204 					q_p = &q.sitd->sitd_next;
2205 					hw_p = &q.sitd->hw_next;
2206 					type = Q_NEXT_TYPE(ehci,
2207 							q.sitd->hw_next);
2208 					q = *q_p;
2209 					break;
2210 				}
2211 
2212 				/* Take finished SITDs out of the schedule
2213 				 * and process them:  recycle, maybe report
2214 				 * URB completion.
2215 				 */
2216 				*q_p = q.sitd->sitd_next;
2217 				*hw_p = q.sitd->hw_next;
2218 				type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2219 				wmb();
2220 				modified = sitd_complete (ehci, q.sitd);
2221 				q = *q_p;
2222 				break;
2223 			default:
2224 				dbg ("corrupt type %d frame %d shadow %p",
2225 					type, frame, q.ptr);
2226 				// BUG ();
2227 				q.ptr = NULL;
2228 			}
2229 
2230 			/* assume completion callbacks modify the queue */
2231 			if (unlikely (modified)) {
2232 				if (likely(ehci->periodic_sched > 0))
2233 					goto restart;
2234 				/* maybe we can short-circuit this scan! */
2235 				disable_periodic(ehci);
2236 				now_uframe = clock;
2237 				break;
2238 			}
2239 		}
2240 
2241 		/* If we can tell we caught up to the hardware, stop now.
2242 		 * We can't advance our scan without collecting the ISO
2243 		 * transfers that are still pending in this frame.
2244 		 */
2245 		if (incomplete && HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
2246 			ehci->next_uframe = now_uframe;
2247 			break;
2248 		}
2249 
2250 		// FIXME:  this assumes we won't get lapped when
2251 		// latencies climb; that should be rare, but...
2252 		// detect it, and just go all the way around.
2253 		// FLR might help detect this case, so long as latencies
2254 		// don't exceed periodic_size msec (default 1.024 sec).
2255 
2256 		// FIXME:  likewise assumes HC doesn't halt mid-scan
2257 
2258 		if (now_uframe == clock) {
2259 			unsigned	now;
2260 
2261 			if (!HC_IS_RUNNING (ehci_to_hcd(ehci)->state)
2262 					|| ehci->periodic_sched == 0)
2263 				break;
2264 			ehci->next_uframe = now_uframe;
2265 			now = ehci_readl(ehci, &ehci->regs->frame_index) % mod;
2266 			if (now_uframe == now)
2267 				break;
2268 
2269 			/* rescan the rest of this frame, then ... */
2270 			clock = now;
2271 		} else {
2272 			now_uframe++;
2273 			now_uframe %= mod;
2274 		}
2275 	}
2276 }
2277