xref: /openbmc/linux/drivers/usb/host/ehci-sched.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * Copyright (c) 2001-2004 by David Brownell
3  * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation; either version 2 of the License, or (at your
8  * option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software Foundation,
17  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19 
20 /* this file is part of ehci-hcd.c */
21 
22 /*-------------------------------------------------------------------------*/
23 
24 /*
25  * EHCI scheduled transaction support:  interrupt, iso, split iso
26  * These are called "periodic" transactions in the EHCI spec.
27  *
28  * Note that for interrupt transfers, the QH/QTD manipulation is shared
29  * with the "asynchronous" transaction support (control/bulk transfers).
30  * The only real difference is in how interrupt transfers are scheduled.
31  *
32  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33  * It keeps track of every ITD (or SITD) that's linked, and holds enough
34  * pre-calculated schedule data to make appending to the queue be quick.
35  */
36 
37 static int ehci_get_frame (struct usb_hcd *hcd);
38 
39 /*-------------------------------------------------------------------------*/
40 
41 /*
42  * periodic_next_shadow - return "next" pointer on shadow list
43  * @periodic: host pointer to qh/itd/sitd
44  * @tag: hardware tag for type of this record
45  */
46 static union ehci_shadow *
47 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
48 		__hc32 tag)
49 {
50 	switch (hc32_to_cpu(ehci, tag)) {
51 	case Q_TYPE_QH:
52 		return &periodic->qh->qh_next;
53 	case Q_TYPE_FSTN:
54 		return &periodic->fstn->fstn_next;
55 	case Q_TYPE_ITD:
56 		return &periodic->itd->itd_next;
57 	// case Q_TYPE_SITD:
58 	default:
59 		return &periodic->sitd->sitd_next;
60 	}
61 }
62 
63 /* caller must hold ehci->lock */
64 static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr)
65 {
66 	union ehci_shadow	*prev_p = &ehci->pshadow[frame];
67 	__hc32			*hw_p = &ehci->periodic[frame];
68 	union ehci_shadow	here = *prev_p;
69 
70 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
71 	while (here.ptr && here.ptr != ptr) {
72 		prev_p = periodic_next_shadow(ehci, prev_p,
73 				Q_NEXT_TYPE(ehci, *hw_p));
74 		hw_p = here.hw_next;
75 		here = *prev_p;
76 	}
77 	/* an interrupt entry (at list end) could have been shared */
78 	if (!here.ptr)
79 		return;
80 
81 	/* update shadow and hardware lists ... the old "next" pointers
82 	 * from ptr may still be in use, the caller updates them.
83 	 */
84 	*prev_p = *periodic_next_shadow(ehci, &here,
85 			Q_NEXT_TYPE(ehci, *hw_p));
86 	*hw_p = *here.hw_next;
87 }
88 
89 /* how many of the uframe's 125 usecs are allocated? */
90 static unsigned short
91 periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe)
92 {
93 	__hc32			*hw_p = &ehci->periodic [frame];
94 	union ehci_shadow	*q = &ehci->pshadow [frame];
95 	unsigned		usecs = 0;
96 
97 	while (q->ptr) {
98 		switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
99 		case Q_TYPE_QH:
100 			/* is it in the S-mask? */
101 			if (q->qh->hw_info2 & cpu_to_hc32(ehci, 1 << uframe))
102 				usecs += q->qh->usecs;
103 			/* ... or C-mask? */
104 			if (q->qh->hw_info2 & cpu_to_hc32(ehci,
105 					1 << (8 + uframe)))
106 				usecs += q->qh->c_usecs;
107 			hw_p = &q->qh->hw_next;
108 			q = &q->qh->qh_next;
109 			break;
110 		// case Q_TYPE_FSTN:
111 		default:
112 			/* for "save place" FSTNs, count the relevant INTR
113 			 * bandwidth from the previous frame
114 			 */
115 			if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) {
116 				ehci_dbg (ehci, "ignoring FSTN cost ...\n");
117 			}
118 			hw_p = &q->fstn->hw_next;
119 			q = &q->fstn->fstn_next;
120 			break;
121 		case Q_TYPE_ITD:
122 			if (q->itd->hw_transaction[uframe])
123 				usecs += q->itd->stream->usecs;
124 			hw_p = &q->itd->hw_next;
125 			q = &q->itd->itd_next;
126 			break;
127 		case Q_TYPE_SITD:
128 			/* is it in the S-mask?  (count SPLIT, DATA) */
129 			if (q->sitd->hw_uframe & cpu_to_hc32(ehci,
130 					1 << uframe)) {
131 				if (q->sitd->hw_fullspeed_ep &
132 						cpu_to_hc32(ehci, 1<<31))
133 					usecs += q->sitd->stream->usecs;
134 				else	/* worst case for OUT start-split */
135 					usecs += HS_USECS_ISO (188);
136 			}
137 
138 			/* ... C-mask?  (count CSPLIT, DATA) */
139 			if (q->sitd->hw_uframe &
140 					cpu_to_hc32(ehci, 1 << (8 + uframe))) {
141 				/* worst case for IN complete-split */
142 				usecs += q->sitd->stream->c_usecs;
143 			}
144 
145 			hw_p = &q->sitd->hw_next;
146 			q = &q->sitd->sitd_next;
147 			break;
148 		}
149 	}
150 #ifdef	DEBUG
151 	if (usecs > 100)
152 		ehci_err (ehci, "uframe %d sched overrun: %d usecs\n",
153 			frame * 8 + uframe, usecs);
154 #endif
155 	return usecs;
156 }
157 
158 /*-------------------------------------------------------------------------*/
159 
160 static int same_tt (struct usb_device *dev1, struct usb_device *dev2)
161 {
162 	if (!dev1->tt || !dev2->tt)
163 		return 0;
164 	if (dev1->tt != dev2->tt)
165 		return 0;
166 	if (dev1->tt->multi)
167 		return dev1->ttport == dev2->ttport;
168 	else
169 		return 1;
170 }
171 
172 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
173 
174 /* Which uframe does the low/fullspeed transfer start in?
175  *
176  * The parameter is the mask of ssplits in "H-frame" terms
177  * and this returns the transfer start uframe in "B-frame" terms,
178  * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
179  * will cause a transfer in "B-frame" uframe 0.  "B-frames" lag
180  * "H-frames" by 1 uframe.  See the EHCI spec sec 4.5 and figure 4.7.
181  */
182 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
183 {
184 	unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask);
185 	if (!smask) {
186 		ehci_err(ehci, "invalid empty smask!\n");
187 		/* uframe 7 can't have bw so this will indicate failure */
188 		return 7;
189 	}
190 	return ffs(smask) - 1;
191 }
192 
193 static const unsigned char
194 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
195 
196 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
197 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
198 {
199 	int i;
200 	for (i=0; i<7; i++) {
201 		if (max_tt_usecs[i] < tt_usecs[i]) {
202 			tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
203 			tt_usecs[i] = max_tt_usecs[i];
204 		}
205 	}
206 }
207 
208 /* How many of the tt's periodic downstream 1000 usecs are allocated?
209  *
210  * While this measures the bandwidth in terms of usecs/uframe,
211  * the low/fullspeed bus has no notion of uframes, so any particular
212  * low/fullspeed transfer can "carry over" from one uframe to the next,
213  * since the TT just performs downstream transfers in sequence.
214  *
215  * For example two separate 100 usec transfers can start in the same uframe,
216  * and the second one would "carry over" 75 usecs into the next uframe.
217  */
218 static void
219 periodic_tt_usecs (
220 	struct ehci_hcd *ehci,
221 	struct usb_device *dev,
222 	unsigned frame,
223 	unsigned short tt_usecs[8]
224 )
225 {
226 	__hc32			*hw_p = &ehci->periodic [frame];
227 	union ehci_shadow	*q = &ehci->pshadow [frame];
228 	unsigned char		uf;
229 
230 	memset(tt_usecs, 0, 16);
231 
232 	while (q->ptr) {
233 		switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
234 		case Q_TYPE_ITD:
235 			hw_p = &q->itd->hw_next;
236 			q = &q->itd->itd_next;
237 			continue;
238 		case Q_TYPE_QH:
239 			if (same_tt(dev, q->qh->dev)) {
240 				uf = tt_start_uframe(ehci, q->qh->hw_info2);
241 				tt_usecs[uf] += q->qh->tt_usecs;
242 			}
243 			hw_p = &q->qh->hw_next;
244 			q = &q->qh->qh_next;
245 			continue;
246 		case Q_TYPE_SITD:
247 			if (same_tt(dev, q->sitd->urb->dev)) {
248 				uf = tt_start_uframe(ehci, q->sitd->hw_uframe);
249 				tt_usecs[uf] += q->sitd->stream->tt_usecs;
250 			}
251 			hw_p = &q->sitd->hw_next;
252 			q = &q->sitd->sitd_next;
253 			continue;
254 		// case Q_TYPE_FSTN:
255 		default:
256 			ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n",
257 					frame);
258 			hw_p = &q->fstn->hw_next;
259 			q = &q->fstn->fstn_next;
260 		}
261 	}
262 
263 	carryover_tt_bandwidth(tt_usecs);
264 
265 	if (max_tt_usecs[7] < tt_usecs[7])
266 		ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n",
267 			frame, tt_usecs[7] - max_tt_usecs[7]);
268 }
269 
270 /*
271  * Return true if the device's tt's downstream bus is available for a
272  * periodic transfer of the specified length (usecs), starting at the
273  * specified frame/uframe.  Note that (as summarized in section 11.19
274  * of the usb 2.0 spec) TTs can buffer multiple transactions for each
275  * uframe.
276  *
277  * The uframe parameter is when the fullspeed/lowspeed transfer
278  * should be executed in "B-frame" terms, which is the same as the
279  * highspeed ssplit's uframe (which is in "H-frame" terms).  For example
280  * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
281  * See the EHCI spec sec 4.5 and fig 4.7.
282  *
283  * This checks if the full/lowspeed bus, at the specified starting uframe,
284  * has the specified bandwidth available, according to rules listed
285  * in USB 2.0 spec section 11.18.1 fig 11-60.
286  *
287  * This does not check if the transfer would exceed the max ssplit
288  * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
289  * since proper scheduling limits ssplits to less than 16 per uframe.
290  */
291 static int tt_available (
292 	struct ehci_hcd		*ehci,
293 	unsigned		period,
294 	struct usb_device	*dev,
295 	unsigned		frame,
296 	unsigned		uframe,
297 	u16			usecs
298 )
299 {
300 	if ((period == 0) || (uframe >= 7))	/* error */
301 		return 0;
302 
303 	for (; frame < ehci->periodic_size; frame += period) {
304 		unsigned short tt_usecs[8];
305 
306 		periodic_tt_usecs (ehci, dev, frame, tt_usecs);
307 
308 		ehci_vdbg(ehci, "tt frame %d check %d usecs start uframe %d in"
309 			" schedule %d/%d/%d/%d/%d/%d/%d/%d\n",
310 			frame, usecs, uframe,
311 			tt_usecs[0], tt_usecs[1], tt_usecs[2], tt_usecs[3],
312 			tt_usecs[4], tt_usecs[5], tt_usecs[6], tt_usecs[7]);
313 
314 		if (max_tt_usecs[uframe] <= tt_usecs[uframe]) {
315 			ehci_vdbg(ehci, "frame %d uframe %d fully scheduled\n",
316 				frame, uframe);
317 			return 0;
318 		}
319 
320 		/* special case for isoc transfers larger than 125us:
321 		 * the first and each subsequent fully used uframe
322 		 * must be empty, so as to not illegally delay
323 		 * already scheduled transactions
324 		 */
325 		if (125 < usecs) {
326 			int ufs = (usecs / 125) - 1;
327 			int i;
328 			for (i = uframe; i < (uframe + ufs) && i < 8; i++)
329 				if (0 < tt_usecs[i]) {
330 					ehci_vdbg(ehci,
331 						"multi-uframe xfer can't fit "
332 						"in frame %d uframe %d\n",
333 						frame, i);
334 					return 0;
335 				}
336 		}
337 
338 		tt_usecs[uframe] += usecs;
339 
340 		carryover_tt_bandwidth(tt_usecs);
341 
342 		/* fail if the carryover pushed bw past the last uframe's limit */
343 		if (max_tt_usecs[7] < tt_usecs[7]) {
344 			ehci_vdbg(ehci,
345 				"tt unavailable usecs %d frame %d uframe %d\n",
346 				usecs, frame, uframe);
347 			return 0;
348 		}
349 	}
350 
351 	return 1;
352 }
353 
354 #else
355 
356 /* return true iff the device's transaction translator is available
357  * for a periodic transfer starting at the specified frame, using
358  * all the uframes in the mask.
359  */
360 static int tt_no_collision (
361 	struct ehci_hcd		*ehci,
362 	unsigned		period,
363 	struct usb_device	*dev,
364 	unsigned		frame,
365 	u32			uf_mask
366 )
367 {
368 	if (period == 0)	/* error */
369 		return 0;
370 
371 	/* note bandwidth wastage:  split never follows csplit
372 	 * (different dev or endpoint) until the next uframe.
373 	 * calling convention doesn't make that distinction.
374 	 */
375 	for (; frame < ehci->periodic_size; frame += period) {
376 		union ehci_shadow	here;
377 		__hc32			type;
378 
379 		here = ehci->pshadow [frame];
380 		type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]);
381 		while (here.ptr) {
382 			switch (hc32_to_cpu(ehci, type)) {
383 			case Q_TYPE_ITD:
384 				type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
385 				here = here.itd->itd_next;
386 				continue;
387 			case Q_TYPE_QH:
388 				if (same_tt (dev, here.qh->dev)) {
389 					u32		mask;
390 
391 					mask = hc32_to_cpu(ehci,
392 							here.qh->hw_info2);
393 					/* "knows" no gap is needed */
394 					mask |= mask >> 8;
395 					if (mask & uf_mask)
396 						break;
397 				}
398 				type = Q_NEXT_TYPE(ehci, here.qh->hw_next);
399 				here = here.qh->qh_next;
400 				continue;
401 			case Q_TYPE_SITD:
402 				if (same_tt (dev, here.sitd->urb->dev)) {
403 					u16		mask;
404 
405 					mask = hc32_to_cpu(ehci, here.sitd
406 								->hw_uframe);
407 					/* FIXME assumes no gap for IN! */
408 					mask |= mask >> 8;
409 					if (mask & uf_mask)
410 						break;
411 				}
412 				type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
413 				here = here.sitd->sitd_next;
414 				continue;
415 			// case Q_TYPE_FSTN:
416 			default:
417 				ehci_dbg (ehci,
418 					"periodic frame %d bogus type %d\n",
419 					frame, type);
420 			}
421 
422 			/* collision or error */
423 			return 0;
424 		}
425 	}
426 
427 	/* no collision */
428 	return 1;
429 }
430 
431 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
432 
433 /*-------------------------------------------------------------------------*/
434 
435 static int enable_periodic (struct ehci_hcd *ehci)
436 {
437 	u32	cmd;
438 	int	status;
439 
440 	if (ehci->periodic_sched++)
441 		return 0;
442 
443 	/* did clearing PSE did take effect yet?
444 	 * takes effect only at frame boundaries...
445 	 */
446 	status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
447 					     STS_PSS, 0, 9 * 125);
448 	if (status)
449 		return status;
450 
451 	cmd = ehci_readl(ehci, &ehci->regs->command) | CMD_PSE;
452 	ehci_writel(ehci, cmd, &ehci->regs->command);
453 	/* posted write ... PSS happens later */
454 	ehci_to_hcd(ehci)->state = HC_STATE_RUNNING;
455 
456 	/* make sure ehci_work scans these */
457 	ehci->next_uframe = ehci_readl(ehci, &ehci->regs->frame_index)
458 		% (ehci->periodic_size << 3);
459 	return 0;
460 }
461 
462 static int disable_periodic (struct ehci_hcd *ehci)
463 {
464 	u32	cmd;
465 	int	status;
466 
467 	if (--ehci->periodic_sched)
468 		return 0;
469 
470 	/* did setting PSE not take effect yet?
471 	 * takes effect only at frame boundaries...
472 	 */
473 	status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
474 					     STS_PSS, STS_PSS, 9 * 125);
475 	if (status)
476 		return status;
477 
478 	cmd = ehci_readl(ehci, &ehci->regs->command) & ~CMD_PSE;
479 	ehci_writel(ehci, cmd, &ehci->regs->command);
480 	/* posted write ... */
481 
482 	ehci->next_uframe = -1;
483 	return 0;
484 }
485 
486 /*-------------------------------------------------------------------------*/
487 
488 /* periodic schedule slots have iso tds (normal or split) first, then a
489  * sparse tree for active interrupt transfers.
490  *
491  * this just links in a qh; caller guarantees uframe masks are set right.
492  * no FSTN support (yet; ehci 0.96+)
493  */
494 static int qh_link_periodic (struct ehci_hcd *ehci, struct ehci_qh *qh)
495 {
496 	unsigned	i;
497 	unsigned	period = qh->period;
498 
499 	dev_dbg (&qh->dev->dev,
500 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
501 		period, hc32_to_cpup(ehci, &qh->hw_info2) & (QH_CMASK | QH_SMASK),
502 		qh, qh->start, qh->usecs, qh->c_usecs);
503 
504 	/* high bandwidth, or otherwise every microframe */
505 	if (period == 0)
506 		period = 1;
507 
508 	for (i = qh->start; i < ehci->periodic_size; i += period) {
509 		union ehci_shadow	*prev = &ehci->pshadow[i];
510 		__hc32			*hw_p = &ehci->periodic[i];
511 		union ehci_shadow	here = *prev;
512 		__hc32			type = 0;
513 
514 		/* skip the iso nodes at list head */
515 		while (here.ptr) {
516 			type = Q_NEXT_TYPE(ehci, *hw_p);
517 			if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
518 				break;
519 			prev = periodic_next_shadow(ehci, prev, type);
520 			hw_p = &here.qh->hw_next;
521 			here = *prev;
522 		}
523 
524 		/* sorting each branch by period (slow-->fast)
525 		 * enables sharing interior tree nodes
526 		 */
527 		while (here.ptr && qh != here.qh) {
528 			if (qh->period > here.qh->period)
529 				break;
530 			prev = &here.qh->qh_next;
531 			hw_p = &here.qh->hw_next;
532 			here = *prev;
533 		}
534 		/* link in this qh, unless some earlier pass did that */
535 		if (qh != here.qh) {
536 			qh->qh_next = here;
537 			if (here.qh)
538 				qh->hw_next = *hw_p;
539 			wmb ();
540 			prev->qh = qh;
541 			*hw_p = QH_NEXT (ehci, qh->qh_dma);
542 		}
543 	}
544 	qh->qh_state = QH_STATE_LINKED;
545 	qh_get (qh);
546 
547 	/* update per-qh bandwidth for usbfs */
548 	ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period
549 		? ((qh->usecs + qh->c_usecs) / qh->period)
550 		: (qh->usecs * 8);
551 
552 	/* maybe enable periodic schedule processing */
553 	return enable_periodic(ehci);
554 }
555 
556 static int qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
557 {
558 	unsigned	i;
559 	unsigned	period;
560 
561 	// FIXME:
562 	// IF this isn't high speed
563 	//   and this qh is active in the current uframe
564 	//   (and overlay token SplitXstate is false?)
565 	// THEN
566 	//   qh->hw_info1 |= __constant_cpu_to_hc32(1 << 7 /* "ignore" */);
567 
568 	/* high bandwidth, or otherwise part of every microframe */
569 	if ((period = qh->period) == 0)
570 		period = 1;
571 
572 	for (i = qh->start; i < ehci->periodic_size; i += period)
573 		periodic_unlink (ehci, i, qh);
574 
575 	/* update per-qh bandwidth for usbfs */
576 	ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period
577 		? ((qh->usecs + qh->c_usecs) / qh->period)
578 		: (qh->usecs * 8);
579 
580 	dev_dbg (&qh->dev->dev,
581 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
582 		qh->period,
583 		hc32_to_cpup(ehci, &qh->hw_info2) & (QH_CMASK | QH_SMASK),
584 		qh, qh->start, qh->usecs, qh->c_usecs);
585 
586 	/* qh->qh_next still "live" to HC */
587 	qh->qh_state = QH_STATE_UNLINK;
588 	qh->qh_next.ptr = NULL;
589 	qh_put (qh);
590 
591 	/* maybe turn off periodic schedule */
592 	return disable_periodic(ehci);
593 }
594 
595 static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh)
596 {
597 	unsigned	wait;
598 
599 	qh_unlink_periodic (ehci, qh);
600 
601 	/* simple/paranoid:  always delay, expecting the HC needs to read
602 	 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
603 	 * expect khubd to clean up after any CSPLITs we won't issue.
604 	 * active high speed queues may need bigger delays...
605 	 */
606 	if (list_empty (&qh->qtd_list)
607 			|| (cpu_to_hc32(ehci, QH_CMASK)
608 					& qh->hw_info2) != 0)
609 		wait = 2;
610 	else
611 		wait = 55;	/* worst case: 3 * 1024 */
612 
613 	udelay (wait);
614 	qh->qh_state = QH_STATE_IDLE;
615 	qh->hw_next = EHCI_LIST_END(ehci);
616 	wmb ();
617 }
618 
619 /*-------------------------------------------------------------------------*/
620 
621 static int check_period (
622 	struct ehci_hcd *ehci,
623 	unsigned	frame,
624 	unsigned	uframe,
625 	unsigned	period,
626 	unsigned	usecs
627 ) {
628 	int		claimed;
629 
630 	/* complete split running into next frame?
631 	 * given FSTN support, we could sometimes check...
632 	 */
633 	if (uframe >= 8)
634 		return 0;
635 
636 	/*
637 	 * 80% periodic == 100 usec/uframe available
638 	 * convert "usecs we need" to "max already claimed"
639 	 */
640 	usecs = 100 - usecs;
641 
642 	/* we "know" 2 and 4 uframe intervals were rejected; so
643 	 * for period 0, check _every_ microframe in the schedule.
644 	 */
645 	if (unlikely (period == 0)) {
646 		do {
647 			for (uframe = 0; uframe < 7; uframe++) {
648 				claimed = periodic_usecs (ehci, frame, uframe);
649 				if (claimed > usecs)
650 					return 0;
651 			}
652 		} while ((frame += 1) < ehci->periodic_size);
653 
654 	/* just check the specified uframe, at that period */
655 	} else {
656 		do {
657 			claimed = periodic_usecs (ehci, frame, uframe);
658 			if (claimed > usecs)
659 				return 0;
660 		} while ((frame += period) < ehci->periodic_size);
661 	}
662 
663 	// success!
664 	return 1;
665 }
666 
667 static int check_intr_schedule (
668 	struct ehci_hcd		*ehci,
669 	unsigned		frame,
670 	unsigned		uframe,
671 	const struct ehci_qh	*qh,
672 	__hc32			*c_maskp
673 )
674 {
675 	int		retval = -ENOSPC;
676 	u8		mask = 0;
677 
678 	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
679 		goto done;
680 
681 	if (!check_period (ehci, frame, uframe, qh->period, qh->usecs))
682 		goto done;
683 	if (!qh->c_usecs) {
684 		retval = 0;
685 		*c_maskp = 0;
686 		goto done;
687 	}
688 
689 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
690 	if (tt_available (ehci, qh->period, qh->dev, frame, uframe,
691 				qh->tt_usecs)) {
692 		unsigned i;
693 
694 		/* TODO : this may need FSTN for SSPLIT in uframe 5. */
695 		for (i=uframe+1; i<8 && i<uframe+4; i++)
696 			if (!check_period (ehci, frame, i,
697 						qh->period, qh->c_usecs))
698 				goto done;
699 			else
700 				mask |= 1 << i;
701 
702 		retval = 0;
703 
704 		*c_maskp = cpu_to_hc32(ehci, mask << 8);
705 	}
706 #else
707 	/* Make sure this tt's buffer is also available for CSPLITs.
708 	 * We pessimize a bit; probably the typical full speed case
709 	 * doesn't need the second CSPLIT.
710 	 *
711 	 * NOTE:  both SPLIT and CSPLIT could be checked in just
712 	 * one smart pass...
713 	 */
714 	mask = 0x03 << (uframe + qh->gap_uf);
715 	*c_maskp = cpu_to_hc32(ehci, mask << 8);
716 
717 	mask |= 1 << uframe;
718 	if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) {
719 		if (!check_period (ehci, frame, uframe + qh->gap_uf + 1,
720 					qh->period, qh->c_usecs))
721 			goto done;
722 		if (!check_period (ehci, frame, uframe + qh->gap_uf,
723 					qh->period, qh->c_usecs))
724 			goto done;
725 		retval = 0;
726 	}
727 #endif
728 done:
729 	return retval;
730 }
731 
732 /* "first fit" scheduling policy used the first time through,
733  * or when the previous schedule slot can't be re-used.
734  */
735 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
736 {
737 	int		status;
738 	unsigned	uframe;
739 	__hc32		c_mask;
740 	unsigned	frame;		/* 0..(qh->period - 1), or NO_FRAME */
741 
742 	qh_refresh(ehci, qh);
743 	qh->hw_next = EHCI_LIST_END(ehci);
744 	frame = qh->start;
745 
746 	/* reuse the previous schedule slots, if we can */
747 	if (frame < qh->period) {
748 		uframe = ffs(hc32_to_cpup(ehci, &qh->hw_info2) & QH_SMASK);
749 		status = check_intr_schedule (ehci, frame, --uframe,
750 				qh, &c_mask);
751 	} else {
752 		uframe = 0;
753 		c_mask = 0;
754 		status = -ENOSPC;
755 	}
756 
757 	/* else scan the schedule to find a group of slots such that all
758 	 * uframes have enough periodic bandwidth available.
759 	 */
760 	if (status) {
761 		/* "normal" case, uframing flexible except with splits */
762 		if (qh->period) {
763 			frame = qh->period - 1;
764 			do {
765 				for (uframe = 0; uframe < 8; uframe++) {
766 					status = check_intr_schedule (ehci,
767 							frame, uframe, qh,
768 							&c_mask);
769 					if (status == 0)
770 						break;
771 				}
772 			} while (status && frame--);
773 
774 		/* qh->period == 0 means every uframe */
775 		} else {
776 			frame = 0;
777 			status = check_intr_schedule (ehci, 0, 0, qh, &c_mask);
778 		}
779 		if (status)
780 			goto done;
781 		qh->start = frame;
782 
783 		/* reset S-frame and (maybe) C-frame masks */
784 		qh->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
785 		qh->hw_info2 |= qh->period
786 			? cpu_to_hc32(ehci, 1 << uframe)
787 			: cpu_to_hc32(ehci, QH_SMASK);
788 		qh->hw_info2 |= c_mask;
789 	} else
790 		ehci_dbg (ehci, "reused qh %p schedule\n", qh);
791 
792 	/* stuff into the periodic schedule */
793 	status = qh_link_periodic (ehci, qh);
794 done:
795 	return status;
796 }
797 
798 static int intr_submit (
799 	struct ehci_hcd		*ehci,
800 	struct urb		*urb,
801 	struct list_head	*qtd_list,
802 	gfp_t			mem_flags
803 ) {
804 	unsigned		epnum;
805 	unsigned long		flags;
806 	struct ehci_qh		*qh;
807 	int			status;
808 	struct list_head	empty;
809 
810 	/* get endpoint and transfer/schedule data */
811 	epnum = urb->ep->desc.bEndpointAddress;
812 
813 	spin_lock_irqsave (&ehci->lock, flags);
814 
815 	if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
816 			&ehci_to_hcd(ehci)->flags))) {
817 		status = -ESHUTDOWN;
818 		goto done_not_linked;
819 	}
820 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
821 	if (unlikely(status))
822 		goto done_not_linked;
823 
824 	/* get qh and force any scheduling errors */
825 	INIT_LIST_HEAD (&empty);
826 	qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
827 	if (qh == NULL) {
828 		status = -ENOMEM;
829 		goto done;
830 	}
831 	if (qh->qh_state == QH_STATE_IDLE) {
832 		if ((status = qh_schedule (ehci, qh)) != 0)
833 			goto done;
834 	}
835 
836 	/* then queue the urb's tds to the qh */
837 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
838 	BUG_ON (qh == NULL);
839 
840 	/* ... update usbfs periodic stats */
841 	ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
842 
843 done:
844 	if (unlikely(status))
845 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
846 done_not_linked:
847 	spin_unlock_irqrestore (&ehci->lock, flags);
848 	if (status)
849 		qtd_list_free (ehci, urb, qtd_list);
850 
851 	return status;
852 }
853 
854 /*-------------------------------------------------------------------------*/
855 
856 /* ehci_iso_stream ops work with both ITD and SITD */
857 
858 static struct ehci_iso_stream *
859 iso_stream_alloc (gfp_t mem_flags)
860 {
861 	struct ehci_iso_stream *stream;
862 
863 	stream = kzalloc(sizeof *stream, mem_flags);
864 	if (likely (stream != NULL)) {
865 		INIT_LIST_HEAD(&stream->td_list);
866 		INIT_LIST_HEAD(&stream->free_list);
867 		stream->next_uframe = -1;
868 		stream->refcount = 1;
869 	}
870 	return stream;
871 }
872 
873 static void
874 iso_stream_init (
875 	struct ehci_hcd		*ehci,
876 	struct ehci_iso_stream	*stream,
877 	struct usb_device	*dev,
878 	int			pipe,
879 	unsigned		interval
880 )
881 {
882 	static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
883 
884 	u32			buf1;
885 	unsigned		epnum, maxp;
886 	int			is_input;
887 	long			bandwidth;
888 
889 	/*
890 	 * this might be a "high bandwidth" highspeed endpoint,
891 	 * as encoded in the ep descriptor's wMaxPacket field
892 	 */
893 	epnum = usb_pipeendpoint (pipe);
894 	is_input = usb_pipein (pipe) ? USB_DIR_IN : 0;
895 	maxp = usb_maxpacket(dev, pipe, !is_input);
896 	if (is_input) {
897 		buf1 = (1 << 11);
898 	} else {
899 		buf1 = 0;
900 	}
901 
902 	/* knows about ITD vs SITD */
903 	if (dev->speed == USB_SPEED_HIGH) {
904 		unsigned multi = hb_mult(maxp);
905 
906 		stream->highspeed = 1;
907 
908 		maxp = max_packet(maxp);
909 		buf1 |= maxp;
910 		maxp *= multi;
911 
912 		stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
913 		stream->buf1 = cpu_to_hc32(ehci, buf1);
914 		stream->buf2 = cpu_to_hc32(ehci, multi);
915 
916 		/* usbfs wants to report the average usecs per frame tied up
917 		 * when transfers on this endpoint are scheduled ...
918 		 */
919 		stream->usecs = HS_USECS_ISO (maxp);
920 		bandwidth = stream->usecs * 8;
921 		bandwidth /= 1 << (interval - 1);
922 
923 	} else {
924 		u32		addr;
925 		int		think_time;
926 		int		hs_transfers;
927 
928 		addr = dev->ttport << 24;
929 		if (!ehci_is_TDI(ehci)
930 				|| (dev->tt->hub !=
931 					ehci_to_hcd(ehci)->self.root_hub))
932 			addr |= dev->tt->hub->devnum << 16;
933 		addr |= epnum << 8;
934 		addr |= dev->devnum;
935 		stream->usecs = HS_USECS_ISO (maxp);
936 		think_time = dev->tt ? dev->tt->think_time : 0;
937 		stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time (
938 				dev->speed, is_input, 1, maxp));
939 		hs_transfers = max (1u, (maxp + 187) / 188);
940 		if (is_input) {
941 			u32	tmp;
942 
943 			addr |= 1 << 31;
944 			stream->c_usecs = stream->usecs;
945 			stream->usecs = HS_USECS_ISO (1);
946 			stream->raw_mask = 1;
947 
948 			/* c-mask as specified in USB 2.0 11.18.4 3.c */
949 			tmp = (1 << (hs_transfers + 2)) - 1;
950 			stream->raw_mask |= tmp << (8 + 2);
951 		} else
952 			stream->raw_mask = smask_out [hs_transfers - 1];
953 		bandwidth = stream->usecs + stream->c_usecs;
954 		bandwidth /= 1 << (interval + 2);
955 
956 		/* stream->splits gets created from raw_mask later */
957 		stream->address = cpu_to_hc32(ehci, addr);
958 	}
959 	stream->bandwidth = bandwidth;
960 
961 	stream->udev = dev;
962 
963 	stream->bEndpointAddress = is_input | epnum;
964 	stream->interval = interval;
965 	stream->maxp = maxp;
966 }
967 
968 static void
969 iso_stream_put(struct ehci_hcd *ehci, struct ehci_iso_stream *stream)
970 {
971 	stream->refcount--;
972 
973 	/* free whenever just a dev->ep reference remains.
974 	 * not like a QH -- no persistent state (toggle, halt)
975 	 */
976 	if (stream->refcount == 1) {
977 		int		is_in;
978 
979 		// BUG_ON (!list_empty(&stream->td_list));
980 
981 		while (!list_empty (&stream->free_list)) {
982 			struct list_head	*entry;
983 
984 			entry = stream->free_list.next;
985 			list_del (entry);
986 
987 			/* knows about ITD vs SITD */
988 			if (stream->highspeed) {
989 				struct ehci_itd		*itd;
990 
991 				itd = list_entry (entry, struct ehci_itd,
992 						itd_list);
993 				dma_pool_free (ehci->itd_pool, itd,
994 						itd->itd_dma);
995 			} else {
996 				struct ehci_sitd	*sitd;
997 
998 				sitd = list_entry (entry, struct ehci_sitd,
999 						sitd_list);
1000 				dma_pool_free (ehci->sitd_pool, sitd,
1001 						sitd->sitd_dma);
1002 			}
1003 		}
1004 
1005 		is_in = (stream->bEndpointAddress & USB_DIR_IN) ? 0x10 : 0;
1006 		stream->bEndpointAddress &= 0x0f;
1007 		stream->ep->hcpriv = NULL;
1008 
1009 		if (stream->rescheduled) {
1010 			ehci_info (ehci, "ep%d%s-iso rescheduled "
1011 				"%lu times in %lu seconds\n",
1012 				stream->bEndpointAddress, is_in ? "in" : "out",
1013 				stream->rescheduled,
1014 				((jiffies - stream->start)/HZ)
1015 				);
1016 		}
1017 
1018 		kfree(stream);
1019 	}
1020 }
1021 
1022 static inline struct ehci_iso_stream *
1023 iso_stream_get (struct ehci_iso_stream *stream)
1024 {
1025 	if (likely (stream != NULL))
1026 		stream->refcount++;
1027 	return stream;
1028 }
1029 
1030 static struct ehci_iso_stream *
1031 iso_stream_find (struct ehci_hcd *ehci, struct urb *urb)
1032 {
1033 	unsigned		epnum;
1034 	struct ehci_iso_stream	*stream;
1035 	struct usb_host_endpoint *ep;
1036 	unsigned long		flags;
1037 
1038 	epnum = usb_pipeendpoint (urb->pipe);
1039 	if (usb_pipein(urb->pipe))
1040 		ep = urb->dev->ep_in[epnum];
1041 	else
1042 		ep = urb->dev->ep_out[epnum];
1043 
1044 	spin_lock_irqsave (&ehci->lock, flags);
1045 	stream = ep->hcpriv;
1046 
1047 	if (unlikely (stream == NULL)) {
1048 		stream = iso_stream_alloc(GFP_ATOMIC);
1049 		if (likely (stream != NULL)) {
1050 			/* dev->ep owns the initial refcount */
1051 			ep->hcpriv = stream;
1052 			stream->ep = ep;
1053 			iso_stream_init(ehci, stream, urb->dev, urb->pipe,
1054 					urb->interval);
1055 		}
1056 
1057 	/* if dev->ep [epnum] is a QH, info1.maxpacket is nonzero */
1058 	} else if (unlikely (stream->hw_info1 != 0)) {
1059 		ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n",
1060 			urb->dev->devpath, epnum,
1061 			usb_pipein(urb->pipe) ? "in" : "out");
1062 		stream = NULL;
1063 	}
1064 
1065 	/* caller guarantees an eventual matching iso_stream_put */
1066 	stream = iso_stream_get (stream);
1067 
1068 	spin_unlock_irqrestore (&ehci->lock, flags);
1069 	return stream;
1070 }
1071 
1072 /*-------------------------------------------------------------------------*/
1073 
1074 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1075 
1076 static struct ehci_iso_sched *
1077 iso_sched_alloc (unsigned packets, gfp_t mem_flags)
1078 {
1079 	struct ehci_iso_sched	*iso_sched;
1080 	int			size = sizeof *iso_sched;
1081 
1082 	size += packets * sizeof (struct ehci_iso_packet);
1083 	iso_sched = kzalloc(size, mem_flags);
1084 	if (likely (iso_sched != NULL)) {
1085 		INIT_LIST_HEAD (&iso_sched->td_list);
1086 	}
1087 	return iso_sched;
1088 }
1089 
1090 static inline void
1091 itd_sched_init(
1092 	struct ehci_hcd		*ehci,
1093 	struct ehci_iso_sched	*iso_sched,
1094 	struct ehci_iso_stream	*stream,
1095 	struct urb		*urb
1096 )
1097 {
1098 	unsigned	i;
1099 	dma_addr_t	dma = urb->transfer_dma;
1100 
1101 	/* how many uframes are needed for these transfers */
1102 	iso_sched->span = urb->number_of_packets * stream->interval;
1103 
1104 	/* figure out per-uframe itd fields that we'll need later
1105 	 * when we fit new itds into the schedule.
1106 	 */
1107 	for (i = 0; i < urb->number_of_packets; i++) {
1108 		struct ehci_iso_packet	*uframe = &iso_sched->packet [i];
1109 		unsigned		length;
1110 		dma_addr_t		buf;
1111 		u32			trans;
1112 
1113 		length = urb->iso_frame_desc [i].length;
1114 		buf = dma + urb->iso_frame_desc [i].offset;
1115 
1116 		trans = EHCI_ISOC_ACTIVE;
1117 		trans |= buf & 0x0fff;
1118 		if (unlikely (((i + 1) == urb->number_of_packets))
1119 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1120 			trans |= EHCI_ITD_IOC;
1121 		trans |= length << 16;
1122 		uframe->transaction = cpu_to_hc32(ehci, trans);
1123 
1124 		/* might need to cross a buffer page within a uframe */
1125 		uframe->bufp = (buf & ~(u64)0x0fff);
1126 		buf += length;
1127 		if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff))))
1128 			uframe->cross = 1;
1129 	}
1130 }
1131 
1132 static void
1133 iso_sched_free (
1134 	struct ehci_iso_stream	*stream,
1135 	struct ehci_iso_sched	*iso_sched
1136 )
1137 {
1138 	if (!iso_sched)
1139 		return;
1140 	// caller must hold ehci->lock!
1141 	list_splice (&iso_sched->td_list, &stream->free_list);
1142 	kfree (iso_sched);
1143 }
1144 
1145 static int
1146 itd_urb_transaction (
1147 	struct ehci_iso_stream	*stream,
1148 	struct ehci_hcd		*ehci,
1149 	struct urb		*urb,
1150 	gfp_t			mem_flags
1151 )
1152 {
1153 	struct ehci_itd		*itd;
1154 	dma_addr_t		itd_dma;
1155 	int			i;
1156 	unsigned		num_itds;
1157 	struct ehci_iso_sched	*sched;
1158 	unsigned long		flags;
1159 
1160 	sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1161 	if (unlikely (sched == NULL))
1162 		return -ENOMEM;
1163 
1164 	itd_sched_init(ehci, sched, stream, urb);
1165 
1166 	if (urb->interval < 8)
1167 		num_itds = 1 + (sched->span + 7) / 8;
1168 	else
1169 		num_itds = urb->number_of_packets;
1170 
1171 	/* allocate/init ITDs */
1172 	spin_lock_irqsave (&ehci->lock, flags);
1173 	for (i = 0; i < num_itds; i++) {
1174 
1175 		/* free_list.next might be cache-hot ... but maybe
1176 		 * the HC caches it too. avoid that issue for now.
1177 		 */
1178 
1179 		/* prefer previously-allocated itds */
1180 		if (likely (!list_empty(&stream->free_list))) {
1181 			itd = list_entry (stream->free_list.prev,
1182 					struct ehci_itd, itd_list);
1183 			list_del (&itd->itd_list);
1184 			itd_dma = itd->itd_dma;
1185 		} else {
1186 			spin_unlock_irqrestore (&ehci->lock, flags);
1187 			itd = dma_pool_alloc (ehci->itd_pool, mem_flags,
1188 					&itd_dma);
1189 			spin_lock_irqsave (&ehci->lock, flags);
1190 			if (!itd) {
1191 				iso_sched_free(stream, sched);
1192 				spin_unlock_irqrestore(&ehci->lock, flags);
1193 				return -ENOMEM;
1194 			}
1195 		}
1196 
1197 		memset (itd, 0, sizeof *itd);
1198 		itd->itd_dma = itd_dma;
1199 		list_add (&itd->itd_list, &sched->td_list);
1200 	}
1201 	spin_unlock_irqrestore (&ehci->lock, flags);
1202 
1203 	/* temporarily store schedule info in hcpriv */
1204 	urb->hcpriv = sched;
1205 	urb->error_count = 0;
1206 	return 0;
1207 }
1208 
1209 /*-------------------------------------------------------------------------*/
1210 
1211 static inline int
1212 itd_slot_ok (
1213 	struct ehci_hcd		*ehci,
1214 	u32			mod,
1215 	u32			uframe,
1216 	u8			usecs,
1217 	u32			period
1218 )
1219 {
1220 	uframe %= period;
1221 	do {
1222 		/* can't commit more than 80% periodic == 100 usec */
1223 		if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7)
1224 				> (100 - usecs))
1225 			return 0;
1226 
1227 		/* we know urb->interval is 2^N uframes */
1228 		uframe += period;
1229 	} while (uframe < mod);
1230 	return 1;
1231 }
1232 
1233 static inline int
1234 sitd_slot_ok (
1235 	struct ehci_hcd		*ehci,
1236 	u32			mod,
1237 	struct ehci_iso_stream	*stream,
1238 	u32			uframe,
1239 	struct ehci_iso_sched	*sched,
1240 	u32			period_uframes
1241 )
1242 {
1243 	u32			mask, tmp;
1244 	u32			frame, uf;
1245 
1246 	mask = stream->raw_mask << (uframe & 7);
1247 
1248 	/* for IN, don't wrap CSPLIT into the next frame */
1249 	if (mask & ~0xffff)
1250 		return 0;
1251 
1252 	/* this multi-pass logic is simple, but performance may
1253 	 * suffer when the schedule data isn't cached.
1254 	 */
1255 
1256 	/* check bandwidth */
1257 	uframe %= period_uframes;
1258 	do {
1259 		u32		max_used;
1260 
1261 		frame = uframe >> 3;
1262 		uf = uframe & 7;
1263 
1264 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1265 		/* The tt's fullspeed bus bandwidth must be available.
1266 		 * tt_available scheduling guarantees 10+% for control/bulk.
1267 		 */
1268 		if (!tt_available (ehci, period_uframes << 3,
1269 				stream->udev, frame, uf, stream->tt_usecs))
1270 			return 0;
1271 #else
1272 		/* tt must be idle for start(s), any gap, and csplit.
1273 		 * assume scheduling slop leaves 10+% for control/bulk.
1274 		 */
1275 		if (!tt_no_collision (ehci, period_uframes << 3,
1276 				stream->udev, frame, mask))
1277 			return 0;
1278 #endif
1279 
1280 		/* check starts (OUT uses more than one) */
1281 		max_used = 100 - stream->usecs;
1282 		for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) {
1283 			if (periodic_usecs (ehci, frame, uf) > max_used)
1284 				return 0;
1285 		}
1286 
1287 		/* for IN, check CSPLIT */
1288 		if (stream->c_usecs) {
1289 			uf = uframe & 7;
1290 			max_used = 100 - stream->c_usecs;
1291 			do {
1292 				tmp = 1 << uf;
1293 				tmp <<= 8;
1294 				if ((stream->raw_mask & tmp) == 0)
1295 					continue;
1296 				if (periodic_usecs (ehci, frame, uf)
1297 						> max_used)
1298 					return 0;
1299 			} while (++uf < 8);
1300 		}
1301 
1302 		/* we know urb->interval is 2^N uframes */
1303 		uframe += period_uframes;
1304 	} while (uframe < mod);
1305 
1306 	stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7));
1307 	return 1;
1308 }
1309 
1310 /*
1311  * This scheduler plans almost as far into the future as it has actual
1312  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
1313  * "as small as possible" to be cache-friendlier.)  That limits the size
1314  * transfers you can stream reliably; avoid more than 64 msec per urb.
1315  * Also avoid queue depths of less than ehci's worst irq latency (affected
1316  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1317  * and other factors); or more than about 230 msec total (for portability,
1318  * given EHCI_TUNE_FLS and the slop).  Or, write a smarter scheduler!
1319  */
1320 
1321 #define SCHEDULE_SLOP	10	/* frames */
1322 
1323 static int
1324 iso_stream_schedule (
1325 	struct ehci_hcd		*ehci,
1326 	struct urb		*urb,
1327 	struct ehci_iso_stream	*stream
1328 )
1329 {
1330 	u32			now, start, max, period;
1331 	int			status;
1332 	unsigned		mod = ehci->periodic_size << 3;
1333 	struct ehci_iso_sched	*sched = urb->hcpriv;
1334 
1335 	if (sched->span > (mod - 8 * SCHEDULE_SLOP)) {
1336 		ehci_dbg (ehci, "iso request %p too long\n", urb);
1337 		status = -EFBIG;
1338 		goto fail;
1339 	}
1340 
1341 	if ((stream->depth + sched->span) > mod) {
1342 		ehci_dbg (ehci, "request %p would overflow (%d+%d>%d)\n",
1343 			urb, stream->depth, sched->span, mod);
1344 		status = -EFBIG;
1345 		goto fail;
1346 	}
1347 
1348 	now = ehci_readl(ehci, &ehci->regs->frame_index) % mod;
1349 
1350 	/* when's the last uframe this urb could start? */
1351 	max = now + mod;
1352 
1353 	/* Typical case: reuse current schedule, stream is still active.
1354 	 * Hopefully there are no gaps from the host falling behind
1355 	 * (irq delays etc), but if there are we'll take the next
1356 	 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
1357 	 */
1358 	if (likely (!list_empty (&stream->td_list))) {
1359 		start = stream->next_uframe;
1360 		if (start < now)
1361 			start += mod;
1362 
1363 		/* Fell behind (by up to twice the slop amount)? */
1364 		if (start >= max - 2 * 8 * SCHEDULE_SLOP)
1365 			start += stream->interval * DIV_ROUND_UP(
1366 					max - start, stream->interval) - mod;
1367 
1368 		/* Tried to schedule too far into the future? */
1369 		if (unlikely((start + sched->span) >= max)) {
1370 			status = -EFBIG;
1371 			goto fail;
1372 		}
1373 		goto ready;
1374 	}
1375 
1376 	/* need to schedule; when's the next (u)frame we could start?
1377 	 * this is bigger than ehci->i_thresh allows; scheduling itself
1378 	 * isn't free, the slop should handle reasonably slow cpus.  it
1379 	 * can also help high bandwidth if the dma and irq loads don't
1380 	 * jump until after the queue is primed.
1381 	 */
1382 	start = SCHEDULE_SLOP * 8 + (now & ~0x07);
1383 	start %= mod;
1384 	stream->next_uframe = start;
1385 
1386 	/* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
1387 
1388 	period = urb->interval;
1389 	if (!stream->highspeed)
1390 		period <<= 3;
1391 
1392 	/* find a uframe slot with enough bandwidth */
1393 	for (; start < (stream->next_uframe + period); start++) {
1394 		int		enough_space;
1395 
1396 		/* check schedule: enough space? */
1397 		if (stream->highspeed)
1398 			enough_space = itd_slot_ok (ehci, mod, start,
1399 					stream->usecs, period);
1400 		else {
1401 			if ((start % 8) >= 6)
1402 				continue;
1403 			enough_space = sitd_slot_ok (ehci, mod, stream,
1404 					start, sched, period);
1405 		}
1406 
1407 		/* schedule it here if there's enough bandwidth */
1408 		if (enough_space) {
1409 			stream->next_uframe = start % mod;
1410 			goto ready;
1411 		}
1412 	}
1413 
1414 	/* no room in the schedule */
1415 	ehci_dbg (ehci, "iso %ssched full %p (now %d max %d)\n",
1416 		list_empty (&stream->td_list) ? "" : "re",
1417 		urb, now, max);
1418 	status = -ENOSPC;
1419 
1420 fail:
1421 	iso_sched_free (stream, sched);
1422 	urb->hcpriv = NULL;
1423 	return status;
1424 
1425 ready:
1426 	/* report high speed start in uframes; full speed, in frames */
1427 	urb->start_frame = stream->next_uframe;
1428 	if (!stream->highspeed)
1429 		urb->start_frame >>= 3;
1430 	return 0;
1431 }
1432 
1433 /*-------------------------------------------------------------------------*/
1434 
1435 static inline void
1436 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1437 		struct ehci_itd *itd)
1438 {
1439 	int i;
1440 
1441 	/* it's been recently zeroed */
1442 	itd->hw_next = EHCI_LIST_END(ehci);
1443 	itd->hw_bufp [0] = stream->buf0;
1444 	itd->hw_bufp [1] = stream->buf1;
1445 	itd->hw_bufp [2] = stream->buf2;
1446 
1447 	for (i = 0; i < 8; i++)
1448 		itd->index[i] = -1;
1449 
1450 	/* All other fields are filled when scheduling */
1451 }
1452 
1453 static inline void
1454 itd_patch(
1455 	struct ehci_hcd		*ehci,
1456 	struct ehci_itd		*itd,
1457 	struct ehci_iso_sched	*iso_sched,
1458 	unsigned		index,
1459 	u16			uframe
1460 )
1461 {
1462 	struct ehci_iso_packet	*uf = &iso_sched->packet [index];
1463 	unsigned		pg = itd->pg;
1464 
1465 	// BUG_ON (pg == 6 && uf->cross);
1466 
1467 	uframe &= 0x07;
1468 	itd->index [uframe] = index;
1469 
1470 	itd->hw_transaction[uframe] = uf->transaction;
1471 	itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1472 	itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1473 	itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1474 
1475 	/* iso_frame_desc[].offset must be strictly increasing */
1476 	if (unlikely (uf->cross)) {
1477 		u64	bufp = uf->bufp + 4096;
1478 
1479 		itd->pg = ++pg;
1480 		itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1481 		itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1482 	}
1483 }
1484 
1485 static inline void
1486 itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1487 {
1488 	/* always prepend ITD/SITD ... only QH tree is order-sensitive */
1489 	itd->itd_next = ehci->pshadow [frame];
1490 	itd->hw_next = ehci->periodic [frame];
1491 	ehci->pshadow [frame].itd = itd;
1492 	itd->frame = frame;
1493 	wmb ();
1494 	ehci->periodic[frame] = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1495 }
1496 
1497 /* fit urb's itds into the selected schedule slot; activate as needed */
1498 static int
1499 itd_link_urb (
1500 	struct ehci_hcd		*ehci,
1501 	struct urb		*urb,
1502 	unsigned		mod,
1503 	struct ehci_iso_stream	*stream
1504 )
1505 {
1506 	int			packet;
1507 	unsigned		next_uframe, uframe, frame;
1508 	struct ehci_iso_sched	*iso_sched = urb->hcpriv;
1509 	struct ehci_itd		*itd;
1510 
1511 	next_uframe = stream->next_uframe % mod;
1512 
1513 	if (unlikely (list_empty(&stream->td_list))) {
1514 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1515 				+= stream->bandwidth;
1516 		ehci_vdbg (ehci,
1517 			"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
1518 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1519 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1520 			urb->interval,
1521 			next_uframe >> 3, next_uframe & 0x7);
1522 		stream->start = jiffies;
1523 	}
1524 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1525 
1526 	/* fill iTDs uframe by uframe */
1527 	for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) {
1528 		if (itd == NULL) {
1529 			/* ASSERT:  we have all necessary itds */
1530 			// BUG_ON (list_empty (&iso_sched->td_list));
1531 
1532 			/* ASSERT:  no itds for this endpoint in this uframe */
1533 
1534 			itd = list_entry (iso_sched->td_list.next,
1535 					struct ehci_itd, itd_list);
1536 			list_move_tail (&itd->itd_list, &stream->td_list);
1537 			itd->stream = iso_stream_get (stream);
1538 			itd->urb = usb_get_urb (urb);
1539 			itd_init (ehci, stream, itd);
1540 		}
1541 
1542 		uframe = next_uframe & 0x07;
1543 		frame = next_uframe >> 3;
1544 
1545 		itd_patch(ehci, itd, iso_sched, packet, uframe);
1546 
1547 		next_uframe += stream->interval;
1548 		stream->depth += stream->interval;
1549 		next_uframe %= mod;
1550 		packet++;
1551 
1552 		/* link completed itds into the schedule */
1553 		if (((next_uframe >> 3) != frame)
1554 				|| packet == urb->number_of_packets) {
1555 			itd_link (ehci, frame % ehci->periodic_size, itd);
1556 			itd = NULL;
1557 		}
1558 	}
1559 	stream->next_uframe = next_uframe;
1560 
1561 	/* don't need that schedule data any more */
1562 	iso_sched_free (stream, iso_sched);
1563 	urb->hcpriv = NULL;
1564 
1565 	timer_action (ehci, TIMER_IO_WATCHDOG);
1566 	return enable_periodic(ehci);
1567 }
1568 
1569 #define	ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1570 
1571 /* Process and recycle a completed ITD.  Return true iff its urb completed,
1572  * and hence its completion callback probably added things to the hardware
1573  * schedule.
1574  *
1575  * Note that we carefully avoid recycling this descriptor until after any
1576  * completion callback runs, so that it won't be reused quickly.  That is,
1577  * assuming (a) no more than two urbs per frame on this endpoint, and also
1578  * (b) only this endpoint's completions submit URBs.  It seems some silicon
1579  * corrupts things if you reuse completed descriptors very quickly...
1580  */
1581 static unsigned
1582 itd_complete (
1583 	struct ehci_hcd	*ehci,
1584 	struct ehci_itd	*itd
1585 ) {
1586 	struct urb				*urb = itd->urb;
1587 	struct usb_iso_packet_descriptor	*desc;
1588 	u32					t;
1589 	unsigned				uframe;
1590 	int					urb_index = -1;
1591 	struct ehci_iso_stream			*stream = itd->stream;
1592 	struct usb_device			*dev;
1593 	unsigned				retval = false;
1594 
1595 	/* for each uframe with a packet */
1596 	for (uframe = 0; uframe < 8; uframe++) {
1597 		if (likely (itd->index[uframe] == -1))
1598 			continue;
1599 		urb_index = itd->index[uframe];
1600 		desc = &urb->iso_frame_desc [urb_index];
1601 
1602 		t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]);
1603 		itd->hw_transaction [uframe] = 0;
1604 		stream->depth -= stream->interval;
1605 
1606 		/* report transfer status */
1607 		if (unlikely (t & ISO_ERRS)) {
1608 			urb->error_count++;
1609 			if (t & EHCI_ISOC_BUF_ERR)
1610 				desc->status = usb_pipein (urb->pipe)
1611 					? -ENOSR  /* hc couldn't read */
1612 					: -ECOMM; /* hc couldn't write */
1613 			else if (t & EHCI_ISOC_BABBLE)
1614 				desc->status = -EOVERFLOW;
1615 			else /* (t & EHCI_ISOC_XACTERR) */
1616 				desc->status = -EPROTO;
1617 
1618 			/* HC need not update length with this error */
1619 			if (!(t & EHCI_ISOC_BABBLE))
1620 				desc->actual_length = EHCI_ITD_LENGTH (t);
1621 		} else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) {
1622 			desc->status = 0;
1623 			desc->actual_length = EHCI_ITD_LENGTH (t);
1624 		} else {
1625 			/* URB was too late */
1626 			desc->status = -EXDEV;
1627 		}
1628 	}
1629 
1630 	/* handle completion now? */
1631 	if (likely ((urb_index + 1) != urb->number_of_packets))
1632 		goto done;
1633 
1634 	/* ASSERT: it's really the last itd for this urb
1635 	list_for_each_entry (itd, &stream->td_list, itd_list)
1636 		BUG_ON (itd->urb == urb);
1637 	 */
1638 
1639 	/* give urb back to the driver; completion often (re)submits */
1640 	dev = urb->dev;
1641 	ehci_urb_done(ehci, urb, 0);
1642 	retval = true;
1643 	urb = NULL;
1644 	(void) disable_periodic(ehci);
1645 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1646 
1647 	if (unlikely (list_empty (&stream->td_list))) {
1648 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1649 				-= stream->bandwidth;
1650 		ehci_vdbg (ehci,
1651 			"deschedule devp %s ep%d%s-iso\n",
1652 			dev->devpath, stream->bEndpointAddress & 0x0f,
1653 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
1654 	}
1655 	iso_stream_put (ehci, stream);
1656 	/* OK to recycle this ITD now that its completion callback ran. */
1657 done:
1658 	usb_put_urb(urb);
1659 	itd->urb = NULL;
1660 	itd->stream = NULL;
1661 	list_move(&itd->itd_list, &stream->free_list);
1662 	iso_stream_put(ehci, stream);
1663 
1664 	return retval;
1665 }
1666 
1667 /*-------------------------------------------------------------------------*/
1668 
1669 static int itd_submit (struct ehci_hcd *ehci, struct urb *urb,
1670 	gfp_t mem_flags)
1671 {
1672 	int			status = -EINVAL;
1673 	unsigned long		flags;
1674 	struct ehci_iso_stream	*stream;
1675 
1676 	/* Get iso_stream head */
1677 	stream = iso_stream_find (ehci, urb);
1678 	if (unlikely (stream == NULL)) {
1679 		ehci_dbg (ehci, "can't get iso stream\n");
1680 		return -ENOMEM;
1681 	}
1682 	if (unlikely (urb->interval != stream->interval)) {
1683 		ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
1684 			stream->interval, urb->interval);
1685 		goto done;
1686 	}
1687 
1688 #ifdef EHCI_URB_TRACE
1689 	ehci_dbg (ehci,
1690 		"%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1691 		__func__, urb->dev->devpath, urb,
1692 		usb_pipeendpoint (urb->pipe),
1693 		usb_pipein (urb->pipe) ? "in" : "out",
1694 		urb->transfer_buffer_length,
1695 		urb->number_of_packets, urb->interval,
1696 		stream);
1697 #endif
1698 
1699 	/* allocate ITDs w/o locking anything */
1700 	status = itd_urb_transaction (stream, ehci, urb, mem_flags);
1701 	if (unlikely (status < 0)) {
1702 		ehci_dbg (ehci, "can't init itds\n");
1703 		goto done;
1704 	}
1705 
1706 	/* schedule ... need to lock */
1707 	spin_lock_irqsave (&ehci->lock, flags);
1708 	if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
1709 			       &ehci_to_hcd(ehci)->flags))) {
1710 		status = -ESHUTDOWN;
1711 		goto done_not_linked;
1712 	}
1713 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1714 	if (unlikely(status))
1715 		goto done_not_linked;
1716 	status = iso_stream_schedule(ehci, urb, stream);
1717 	if (likely (status == 0))
1718 		itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
1719 	else
1720 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1721 done_not_linked:
1722 	spin_unlock_irqrestore (&ehci->lock, flags);
1723 
1724 done:
1725 	if (unlikely (status < 0))
1726 		iso_stream_put (ehci, stream);
1727 	return status;
1728 }
1729 
1730 /*-------------------------------------------------------------------------*/
1731 
1732 /*
1733  * "Split ISO TDs" ... used for USB 1.1 devices going through the
1734  * TTs in USB 2.0 hubs.  These need microframe scheduling.
1735  */
1736 
1737 static inline void
1738 sitd_sched_init(
1739 	struct ehci_hcd		*ehci,
1740 	struct ehci_iso_sched	*iso_sched,
1741 	struct ehci_iso_stream	*stream,
1742 	struct urb		*urb
1743 )
1744 {
1745 	unsigned	i;
1746 	dma_addr_t	dma = urb->transfer_dma;
1747 
1748 	/* how many frames are needed for these transfers */
1749 	iso_sched->span = urb->number_of_packets * stream->interval;
1750 
1751 	/* figure out per-frame sitd fields that we'll need later
1752 	 * when we fit new sitds into the schedule.
1753 	 */
1754 	for (i = 0; i < urb->number_of_packets; i++) {
1755 		struct ehci_iso_packet	*packet = &iso_sched->packet [i];
1756 		unsigned		length;
1757 		dma_addr_t		buf;
1758 		u32			trans;
1759 
1760 		length = urb->iso_frame_desc [i].length & 0x03ff;
1761 		buf = dma + urb->iso_frame_desc [i].offset;
1762 
1763 		trans = SITD_STS_ACTIVE;
1764 		if (((i + 1) == urb->number_of_packets)
1765 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1766 			trans |= SITD_IOC;
1767 		trans |= length << 16;
1768 		packet->transaction = cpu_to_hc32(ehci, trans);
1769 
1770 		/* might need to cross a buffer page within a td */
1771 		packet->bufp = buf;
1772 		packet->buf1 = (buf + length) & ~0x0fff;
1773 		if (packet->buf1 != (buf & ~(u64)0x0fff))
1774 			packet->cross = 1;
1775 
1776 		/* OUT uses multiple start-splits */
1777 		if (stream->bEndpointAddress & USB_DIR_IN)
1778 			continue;
1779 		length = (length + 187) / 188;
1780 		if (length > 1) /* BEGIN vs ALL */
1781 			length |= 1 << 3;
1782 		packet->buf1 |= length;
1783 	}
1784 }
1785 
1786 static int
1787 sitd_urb_transaction (
1788 	struct ehci_iso_stream	*stream,
1789 	struct ehci_hcd		*ehci,
1790 	struct urb		*urb,
1791 	gfp_t			mem_flags
1792 )
1793 {
1794 	struct ehci_sitd	*sitd;
1795 	dma_addr_t		sitd_dma;
1796 	int			i;
1797 	struct ehci_iso_sched	*iso_sched;
1798 	unsigned long		flags;
1799 
1800 	iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1801 	if (iso_sched == NULL)
1802 		return -ENOMEM;
1803 
1804 	sitd_sched_init(ehci, iso_sched, stream, urb);
1805 
1806 	/* allocate/init sITDs */
1807 	spin_lock_irqsave (&ehci->lock, flags);
1808 	for (i = 0; i < urb->number_of_packets; i++) {
1809 
1810 		/* NOTE:  for now, we don't try to handle wraparound cases
1811 		 * for IN (using sitd->hw_backpointer, like a FSTN), which
1812 		 * means we never need two sitds for full speed packets.
1813 		 */
1814 
1815 		/* free_list.next might be cache-hot ... but maybe
1816 		 * the HC caches it too. avoid that issue for now.
1817 		 */
1818 
1819 		/* prefer previously-allocated sitds */
1820 		if (!list_empty(&stream->free_list)) {
1821 			sitd = list_entry (stream->free_list.prev,
1822 					 struct ehci_sitd, sitd_list);
1823 			list_del (&sitd->sitd_list);
1824 			sitd_dma = sitd->sitd_dma;
1825 		} else {
1826 			spin_unlock_irqrestore (&ehci->lock, flags);
1827 			sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags,
1828 					&sitd_dma);
1829 			spin_lock_irqsave (&ehci->lock, flags);
1830 			if (!sitd) {
1831 				iso_sched_free(stream, iso_sched);
1832 				spin_unlock_irqrestore(&ehci->lock, flags);
1833 				return -ENOMEM;
1834 			}
1835 		}
1836 
1837 		memset (sitd, 0, sizeof *sitd);
1838 		sitd->sitd_dma = sitd_dma;
1839 		list_add (&sitd->sitd_list, &iso_sched->td_list);
1840 	}
1841 
1842 	/* temporarily store schedule info in hcpriv */
1843 	urb->hcpriv = iso_sched;
1844 	urb->error_count = 0;
1845 
1846 	spin_unlock_irqrestore (&ehci->lock, flags);
1847 	return 0;
1848 }
1849 
1850 /*-------------------------------------------------------------------------*/
1851 
1852 static inline void
1853 sitd_patch(
1854 	struct ehci_hcd		*ehci,
1855 	struct ehci_iso_stream	*stream,
1856 	struct ehci_sitd	*sitd,
1857 	struct ehci_iso_sched	*iso_sched,
1858 	unsigned		index
1859 )
1860 {
1861 	struct ehci_iso_packet	*uf = &iso_sched->packet [index];
1862 	u64			bufp = uf->bufp;
1863 
1864 	sitd->hw_next = EHCI_LIST_END(ehci);
1865 	sitd->hw_fullspeed_ep = stream->address;
1866 	sitd->hw_uframe = stream->splits;
1867 	sitd->hw_results = uf->transaction;
1868 	sitd->hw_backpointer = EHCI_LIST_END(ehci);
1869 
1870 	bufp = uf->bufp;
1871 	sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
1872 	sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
1873 
1874 	sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
1875 	if (uf->cross)
1876 		bufp += 4096;
1877 	sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
1878 	sitd->index = index;
1879 }
1880 
1881 static inline void
1882 sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
1883 {
1884 	/* note: sitd ordering could matter (CSPLIT then SSPLIT) */
1885 	sitd->sitd_next = ehci->pshadow [frame];
1886 	sitd->hw_next = ehci->periodic [frame];
1887 	ehci->pshadow [frame].sitd = sitd;
1888 	sitd->frame = frame;
1889 	wmb ();
1890 	ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
1891 }
1892 
1893 /* fit urb's sitds into the selected schedule slot; activate as needed */
1894 static int
1895 sitd_link_urb (
1896 	struct ehci_hcd		*ehci,
1897 	struct urb		*urb,
1898 	unsigned		mod,
1899 	struct ehci_iso_stream	*stream
1900 )
1901 {
1902 	int			packet;
1903 	unsigned		next_uframe;
1904 	struct ehci_iso_sched	*sched = urb->hcpriv;
1905 	struct ehci_sitd	*sitd;
1906 
1907 	next_uframe = stream->next_uframe;
1908 
1909 	if (list_empty(&stream->td_list)) {
1910 		/* usbfs ignores TT bandwidth */
1911 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1912 				+= stream->bandwidth;
1913 		ehci_vdbg (ehci,
1914 			"sched devp %s ep%d%s-iso [%d] %dms/%04x\n",
1915 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1916 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1917 			(next_uframe >> 3) % ehci->periodic_size,
1918 			stream->interval, hc32_to_cpu(ehci, stream->splits));
1919 		stream->start = jiffies;
1920 	}
1921 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1922 
1923 	/* fill sITDs frame by frame */
1924 	for (packet = 0, sitd = NULL;
1925 			packet < urb->number_of_packets;
1926 			packet++) {
1927 
1928 		/* ASSERT:  we have all necessary sitds */
1929 		BUG_ON (list_empty (&sched->td_list));
1930 
1931 		/* ASSERT:  no itds for this endpoint in this frame */
1932 
1933 		sitd = list_entry (sched->td_list.next,
1934 				struct ehci_sitd, sitd_list);
1935 		list_move_tail (&sitd->sitd_list, &stream->td_list);
1936 		sitd->stream = iso_stream_get (stream);
1937 		sitd->urb = usb_get_urb (urb);
1938 
1939 		sitd_patch(ehci, stream, sitd, sched, packet);
1940 		sitd_link (ehci, (next_uframe >> 3) % ehci->periodic_size,
1941 				sitd);
1942 
1943 		next_uframe += stream->interval << 3;
1944 		stream->depth += stream->interval << 3;
1945 	}
1946 	stream->next_uframe = next_uframe % mod;
1947 
1948 	/* don't need that schedule data any more */
1949 	iso_sched_free (stream, sched);
1950 	urb->hcpriv = NULL;
1951 
1952 	timer_action (ehci, TIMER_IO_WATCHDOG);
1953 	return enable_periodic(ehci);
1954 }
1955 
1956 /*-------------------------------------------------------------------------*/
1957 
1958 #define	SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
1959 				| SITD_STS_XACT | SITD_STS_MMF)
1960 
1961 /* Process and recycle a completed SITD.  Return true iff its urb completed,
1962  * and hence its completion callback probably added things to the hardware
1963  * schedule.
1964  *
1965  * Note that we carefully avoid recycling this descriptor until after any
1966  * completion callback runs, so that it won't be reused quickly.  That is,
1967  * assuming (a) no more than two urbs per frame on this endpoint, and also
1968  * (b) only this endpoint's completions submit URBs.  It seems some silicon
1969  * corrupts things if you reuse completed descriptors very quickly...
1970  */
1971 static unsigned
1972 sitd_complete (
1973 	struct ehci_hcd		*ehci,
1974 	struct ehci_sitd	*sitd
1975 ) {
1976 	struct urb				*urb = sitd->urb;
1977 	struct usb_iso_packet_descriptor	*desc;
1978 	u32					t;
1979 	int					urb_index = -1;
1980 	struct ehci_iso_stream			*stream = sitd->stream;
1981 	struct usb_device			*dev;
1982 	unsigned				retval = false;
1983 
1984 	urb_index = sitd->index;
1985 	desc = &urb->iso_frame_desc [urb_index];
1986 	t = hc32_to_cpup(ehci, &sitd->hw_results);
1987 
1988 	/* report transfer status */
1989 	if (t & SITD_ERRS) {
1990 		urb->error_count++;
1991 		if (t & SITD_STS_DBE)
1992 			desc->status = usb_pipein (urb->pipe)
1993 				? -ENOSR  /* hc couldn't read */
1994 				: -ECOMM; /* hc couldn't write */
1995 		else if (t & SITD_STS_BABBLE)
1996 			desc->status = -EOVERFLOW;
1997 		else /* XACT, MMF, etc */
1998 			desc->status = -EPROTO;
1999 	} else {
2000 		desc->status = 0;
2001 		desc->actual_length = desc->length - SITD_LENGTH (t);
2002 	}
2003 	stream->depth -= stream->interval << 3;
2004 
2005 	/* handle completion now? */
2006 	if ((urb_index + 1) != urb->number_of_packets)
2007 		goto done;
2008 
2009 	/* ASSERT: it's really the last sitd for this urb
2010 	list_for_each_entry (sitd, &stream->td_list, sitd_list)
2011 		BUG_ON (sitd->urb == urb);
2012 	 */
2013 
2014 	/* give urb back to the driver; completion often (re)submits */
2015 	dev = urb->dev;
2016 	ehci_urb_done(ehci, urb, 0);
2017 	retval = true;
2018 	urb = NULL;
2019 	(void) disable_periodic(ehci);
2020 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2021 
2022 	if (list_empty (&stream->td_list)) {
2023 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2024 				-= stream->bandwidth;
2025 		ehci_vdbg (ehci,
2026 			"deschedule devp %s ep%d%s-iso\n",
2027 			dev->devpath, stream->bEndpointAddress & 0x0f,
2028 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
2029 	}
2030 	iso_stream_put (ehci, stream);
2031 	/* OK to recycle this SITD now that its completion callback ran. */
2032 done:
2033 	usb_put_urb(urb);
2034 	sitd->urb = NULL;
2035 	sitd->stream = NULL;
2036 	list_move(&sitd->sitd_list, &stream->free_list);
2037 	iso_stream_put(ehci, stream);
2038 
2039 	return retval;
2040 }
2041 
2042 
2043 static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb,
2044 	gfp_t mem_flags)
2045 {
2046 	int			status = -EINVAL;
2047 	unsigned long		flags;
2048 	struct ehci_iso_stream	*stream;
2049 
2050 	/* Get iso_stream head */
2051 	stream = iso_stream_find (ehci, urb);
2052 	if (stream == NULL) {
2053 		ehci_dbg (ehci, "can't get iso stream\n");
2054 		return -ENOMEM;
2055 	}
2056 	if (urb->interval != stream->interval) {
2057 		ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
2058 			stream->interval, urb->interval);
2059 		goto done;
2060 	}
2061 
2062 #ifdef EHCI_URB_TRACE
2063 	ehci_dbg (ehci,
2064 		"submit %p dev%s ep%d%s-iso len %d\n",
2065 		urb, urb->dev->devpath,
2066 		usb_pipeendpoint (urb->pipe),
2067 		usb_pipein (urb->pipe) ? "in" : "out",
2068 		urb->transfer_buffer_length);
2069 #endif
2070 
2071 	/* allocate SITDs */
2072 	status = sitd_urb_transaction (stream, ehci, urb, mem_flags);
2073 	if (status < 0) {
2074 		ehci_dbg (ehci, "can't init sitds\n");
2075 		goto done;
2076 	}
2077 
2078 	/* schedule ... need to lock */
2079 	spin_lock_irqsave (&ehci->lock, flags);
2080 	if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
2081 			       &ehci_to_hcd(ehci)->flags))) {
2082 		status = -ESHUTDOWN;
2083 		goto done_not_linked;
2084 	}
2085 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2086 	if (unlikely(status))
2087 		goto done_not_linked;
2088 	status = iso_stream_schedule(ehci, urb, stream);
2089 	if (status == 0)
2090 		sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
2091 	else
2092 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2093 done_not_linked:
2094 	spin_unlock_irqrestore (&ehci->lock, flags);
2095 
2096 done:
2097 	if (status < 0)
2098 		iso_stream_put (ehci, stream);
2099 	return status;
2100 }
2101 
2102 /*-------------------------------------------------------------------------*/
2103 
2104 static void
2105 scan_periodic (struct ehci_hcd *ehci)
2106 {
2107 	unsigned	now_uframe, frame, clock, clock_frame, mod;
2108 	unsigned	modified;
2109 
2110 	mod = ehci->periodic_size << 3;
2111 
2112 	/*
2113 	 * When running, scan from last scan point up to "now"
2114 	 * else clean up by scanning everything that's left.
2115 	 * Touches as few pages as possible:  cache-friendly.
2116 	 */
2117 	now_uframe = ehci->next_uframe;
2118 	if (HC_IS_RUNNING (ehci_to_hcd(ehci)->state))
2119 		clock = ehci_readl(ehci, &ehci->regs->frame_index);
2120 	else
2121 		clock = now_uframe + mod - 1;
2122 	clock %= mod;
2123 	clock_frame = clock >> 3;
2124 
2125 	for (;;) {
2126 		union ehci_shadow	q, *q_p;
2127 		__hc32			type, *hw_p;
2128 		unsigned		incomplete = false;
2129 
2130 		frame = now_uframe >> 3;
2131 
2132 restart:
2133 		/* scan each element in frame's queue for completions */
2134 		q_p = &ehci->pshadow [frame];
2135 		hw_p = &ehci->periodic [frame];
2136 		q.ptr = q_p->ptr;
2137 		type = Q_NEXT_TYPE(ehci, *hw_p);
2138 		modified = 0;
2139 
2140 		while (q.ptr != NULL) {
2141 			unsigned		uf;
2142 			union ehci_shadow	temp;
2143 			int			live;
2144 
2145 			live = HC_IS_RUNNING (ehci_to_hcd(ehci)->state);
2146 			switch (hc32_to_cpu(ehci, type)) {
2147 			case Q_TYPE_QH:
2148 				/* handle any completions */
2149 				temp.qh = qh_get (q.qh);
2150 				type = Q_NEXT_TYPE(ehci, q.qh->hw_next);
2151 				q = q.qh->qh_next;
2152 				modified = qh_completions (ehci, temp.qh);
2153 				if (unlikely (list_empty (&temp.qh->qtd_list)))
2154 					intr_deschedule (ehci, temp.qh);
2155 				qh_put (temp.qh);
2156 				break;
2157 			case Q_TYPE_FSTN:
2158 				/* for "save place" FSTNs, look at QH entries
2159 				 * in the previous frame for completions.
2160 				 */
2161 				if (q.fstn->hw_prev != EHCI_LIST_END(ehci)) {
2162 					dbg ("ignoring completions from FSTNs");
2163 				}
2164 				type = Q_NEXT_TYPE(ehci, q.fstn->hw_next);
2165 				q = q.fstn->fstn_next;
2166 				break;
2167 			case Q_TYPE_ITD:
2168 				/* If this ITD is still active, leave it for
2169 				 * later processing ... check the next entry.
2170 				 * No need to check for activity unless the
2171 				 * frame is current.
2172 				 */
2173 				if (frame == clock_frame && live) {
2174 					rmb();
2175 					for (uf = 0; uf < 8; uf++) {
2176 						if (q.itd->hw_transaction[uf] &
2177 							    ITD_ACTIVE(ehci))
2178 							break;
2179 					}
2180 					if (uf < 8) {
2181 						incomplete = true;
2182 						q_p = &q.itd->itd_next;
2183 						hw_p = &q.itd->hw_next;
2184 						type = Q_NEXT_TYPE(ehci,
2185 							q.itd->hw_next);
2186 						q = *q_p;
2187 						break;
2188 					}
2189 				}
2190 
2191 				/* Take finished ITDs out of the schedule
2192 				 * and process them:  recycle, maybe report
2193 				 * URB completion.  HC won't cache the
2194 				 * pointer for much longer, if at all.
2195 				 */
2196 				*q_p = q.itd->itd_next;
2197 				*hw_p = q.itd->hw_next;
2198 				type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2199 				wmb();
2200 				modified = itd_complete (ehci, q.itd);
2201 				q = *q_p;
2202 				break;
2203 			case Q_TYPE_SITD:
2204 				/* If this SITD is still active, leave it for
2205 				 * later processing ... check the next entry.
2206 				 * No need to check for activity unless the
2207 				 * frame is current.
2208 				 */
2209 				if (frame == clock_frame && live &&
2210 						(q.sitd->hw_results &
2211 							SITD_ACTIVE(ehci))) {
2212 					incomplete = true;
2213 					q_p = &q.sitd->sitd_next;
2214 					hw_p = &q.sitd->hw_next;
2215 					type = Q_NEXT_TYPE(ehci,
2216 							q.sitd->hw_next);
2217 					q = *q_p;
2218 					break;
2219 				}
2220 
2221 				/* Take finished SITDs out of the schedule
2222 				 * and process them:  recycle, maybe report
2223 				 * URB completion.
2224 				 */
2225 				*q_p = q.sitd->sitd_next;
2226 				*hw_p = q.sitd->hw_next;
2227 				type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2228 				wmb();
2229 				modified = sitd_complete (ehci, q.sitd);
2230 				q = *q_p;
2231 				break;
2232 			default:
2233 				dbg ("corrupt type %d frame %d shadow %p",
2234 					type, frame, q.ptr);
2235 				// BUG ();
2236 				q.ptr = NULL;
2237 			}
2238 
2239 			/* assume completion callbacks modify the queue */
2240 			if (unlikely (modified)) {
2241 				if (likely(ehci->periodic_sched > 0))
2242 					goto restart;
2243 				/* short-circuit this scan */
2244 				now_uframe = clock;
2245 				break;
2246 			}
2247 		}
2248 
2249 		/* If we can tell we caught up to the hardware, stop now.
2250 		 * We can't advance our scan without collecting the ISO
2251 		 * transfers that are still pending in this frame.
2252 		 */
2253 		if (incomplete && HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
2254 			ehci->next_uframe = now_uframe;
2255 			break;
2256 		}
2257 
2258 		// FIXME:  this assumes we won't get lapped when
2259 		// latencies climb; that should be rare, but...
2260 		// detect it, and just go all the way around.
2261 		// FLR might help detect this case, so long as latencies
2262 		// don't exceed periodic_size msec (default 1.024 sec).
2263 
2264 		// FIXME:  likewise assumes HC doesn't halt mid-scan
2265 
2266 		if (now_uframe == clock) {
2267 			unsigned	now;
2268 
2269 			if (!HC_IS_RUNNING (ehci_to_hcd(ehci)->state)
2270 					|| ehci->periodic_sched == 0)
2271 				break;
2272 			ehci->next_uframe = now_uframe;
2273 			now = ehci_readl(ehci, &ehci->regs->frame_index) % mod;
2274 			if (now_uframe == now)
2275 				break;
2276 
2277 			/* rescan the rest of this frame, then ... */
2278 			clock = now;
2279 			clock_frame = clock >> 3;
2280 		} else {
2281 			now_uframe++;
2282 			now_uframe %= mod;
2283 		}
2284 	}
2285 }
2286