1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (c) 2001-2004 by David Brownell 4 * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers 5 */ 6 7 /* this file is part of ehci-hcd.c */ 8 9 /*-------------------------------------------------------------------------*/ 10 11 /* 12 * EHCI scheduled transaction support: interrupt, iso, split iso 13 * These are called "periodic" transactions in the EHCI spec. 14 * 15 * Note that for interrupt transfers, the QH/QTD manipulation is shared 16 * with the "asynchronous" transaction support (control/bulk transfers). 17 * The only real difference is in how interrupt transfers are scheduled. 18 * 19 * For ISO, we make an "iso_stream" head to serve the same role as a QH. 20 * It keeps track of every ITD (or SITD) that's linked, and holds enough 21 * pre-calculated schedule data to make appending to the queue be quick. 22 */ 23 24 static int ehci_get_frame(struct usb_hcd *hcd); 25 26 /* 27 * periodic_next_shadow - return "next" pointer on shadow list 28 * @periodic: host pointer to qh/itd/sitd 29 * @tag: hardware tag for type of this record 30 */ 31 static union ehci_shadow * 32 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic, 33 __hc32 tag) 34 { 35 switch (hc32_to_cpu(ehci, tag)) { 36 case Q_TYPE_QH: 37 return &periodic->qh->qh_next; 38 case Q_TYPE_FSTN: 39 return &periodic->fstn->fstn_next; 40 case Q_TYPE_ITD: 41 return &periodic->itd->itd_next; 42 /* case Q_TYPE_SITD: */ 43 default: 44 return &periodic->sitd->sitd_next; 45 } 46 } 47 48 static __hc32 * 49 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic, 50 __hc32 tag) 51 { 52 switch (hc32_to_cpu(ehci, tag)) { 53 /* our ehci_shadow.qh is actually software part */ 54 case Q_TYPE_QH: 55 return &periodic->qh->hw->hw_next; 56 /* others are hw parts */ 57 default: 58 return periodic->hw_next; 59 } 60 } 61 62 /* caller must hold ehci->lock */ 63 static void periodic_unlink(struct ehci_hcd *ehci, unsigned frame, void *ptr) 64 { 65 union ehci_shadow *prev_p = &ehci->pshadow[frame]; 66 __hc32 *hw_p = &ehci->periodic[frame]; 67 union ehci_shadow here = *prev_p; 68 69 /* find predecessor of "ptr"; hw and shadow lists are in sync */ 70 while (here.ptr && here.ptr != ptr) { 71 prev_p = periodic_next_shadow(ehci, prev_p, 72 Q_NEXT_TYPE(ehci, *hw_p)); 73 hw_p = shadow_next_periodic(ehci, &here, 74 Q_NEXT_TYPE(ehci, *hw_p)); 75 here = *prev_p; 76 } 77 /* an interrupt entry (at list end) could have been shared */ 78 if (!here.ptr) 79 return; 80 81 /* update shadow and hardware lists ... the old "next" pointers 82 * from ptr may still be in use, the caller updates them. 83 */ 84 *prev_p = *periodic_next_shadow(ehci, &here, 85 Q_NEXT_TYPE(ehci, *hw_p)); 86 87 if (!ehci->use_dummy_qh || 88 *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p)) 89 != EHCI_LIST_END(ehci)) 90 *hw_p = *shadow_next_periodic(ehci, &here, 91 Q_NEXT_TYPE(ehci, *hw_p)); 92 else 93 *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma); 94 } 95 96 /*-------------------------------------------------------------------------*/ 97 98 /* Bandwidth and TT management */ 99 100 /* Find the TT data structure for this device; create it if necessary */ 101 static struct ehci_tt *find_tt(struct usb_device *udev) 102 { 103 struct usb_tt *utt = udev->tt; 104 struct ehci_tt *tt, **tt_index, **ptt; 105 unsigned port; 106 bool allocated_index = false; 107 108 if (!utt) 109 return NULL; /* Not below a TT */ 110 111 /* 112 * Find/create our data structure. 113 * For hubs with a single TT, we get it directly. 114 * For hubs with multiple TTs, there's an extra level of pointers. 115 */ 116 tt_index = NULL; 117 if (utt->multi) { 118 tt_index = utt->hcpriv; 119 if (!tt_index) { /* Create the index array */ 120 tt_index = kzalloc(utt->hub->maxchild * 121 sizeof(*tt_index), GFP_ATOMIC); 122 if (!tt_index) 123 return ERR_PTR(-ENOMEM); 124 utt->hcpriv = tt_index; 125 allocated_index = true; 126 } 127 port = udev->ttport - 1; 128 ptt = &tt_index[port]; 129 } else { 130 port = 0; 131 ptt = (struct ehci_tt **) &utt->hcpriv; 132 } 133 134 tt = *ptt; 135 if (!tt) { /* Create the ehci_tt */ 136 struct ehci_hcd *ehci = 137 hcd_to_ehci(bus_to_hcd(udev->bus)); 138 139 tt = kzalloc(sizeof(*tt), GFP_ATOMIC); 140 if (!tt) { 141 if (allocated_index) { 142 utt->hcpriv = NULL; 143 kfree(tt_index); 144 } 145 return ERR_PTR(-ENOMEM); 146 } 147 list_add_tail(&tt->tt_list, &ehci->tt_list); 148 INIT_LIST_HEAD(&tt->ps_list); 149 tt->usb_tt = utt; 150 tt->tt_port = port; 151 *ptt = tt; 152 } 153 154 return tt; 155 } 156 157 /* Release the TT above udev, if it's not in use */ 158 static void drop_tt(struct usb_device *udev) 159 { 160 struct usb_tt *utt = udev->tt; 161 struct ehci_tt *tt, **tt_index, **ptt; 162 int cnt, i; 163 164 if (!utt || !utt->hcpriv) 165 return; /* Not below a TT, or never allocated */ 166 167 cnt = 0; 168 if (utt->multi) { 169 tt_index = utt->hcpriv; 170 ptt = &tt_index[udev->ttport - 1]; 171 172 /* How many entries are left in tt_index? */ 173 for (i = 0; i < utt->hub->maxchild; ++i) 174 cnt += !!tt_index[i]; 175 } else { 176 tt_index = NULL; 177 ptt = (struct ehci_tt **) &utt->hcpriv; 178 } 179 180 tt = *ptt; 181 if (!tt || !list_empty(&tt->ps_list)) 182 return; /* never allocated, or still in use */ 183 184 list_del(&tt->tt_list); 185 *ptt = NULL; 186 kfree(tt); 187 if (cnt == 1) { 188 utt->hcpriv = NULL; 189 kfree(tt_index); 190 } 191 } 192 193 static void bandwidth_dbg(struct ehci_hcd *ehci, int sign, char *type, 194 struct ehci_per_sched *ps) 195 { 196 dev_dbg(&ps->udev->dev, 197 "ep %02x: %s %s @ %u+%u (%u.%u+%u) [%u/%u us] mask %04x\n", 198 ps->ep->desc.bEndpointAddress, 199 (sign >= 0 ? "reserve" : "release"), type, 200 (ps->bw_phase << 3) + ps->phase_uf, ps->bw_uperiod, 201 ps->phase, ps->phase_uf, ps->period, 202 ps->usecs, ps->c_usecs, ps->cs_mask); 203 } 204 205 static void reserve_release_intr_bandwidth(struct ehci_hcd *ehci, 206 struct ehci_qh *qh, int sign) 207 { 208 unsigned start_uf; 209 unsigned i, j, m; 210 int usecs = qh->ps.usecs; 211 int c_usecs = qh->ps.c_usecs; 212 int tt_usecs = qh->ps.tt_usecs; 213 struct ehci_tt *tt; 214 215 if (qh->ps.phase == NO_FRAME) /* Bandwidth wasn't reserved */ 216 return; 217 start_uf = qh->ps.bw_phase << 3; 218 219 bandwidth_dbg(ehci, sign, "intr", &qh->ps); 220 221 if (sign < 0) { /* Release bandwidth */ 222 usecs = -usecs; 223 c_usecs = -c_usecs; 224 tt_usecs = -tt_usecs; 225 } 226 227 /* Entire transaction (high speed) or start-split (full/low speed) */ 228 for (i = start_uf + qh->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE; 229 i += qh->ps.bw_uperiod) 230 ehci->bandwidth[i] += usecs; 231 232 /* Complete-split (full/low speed) */ 233 if (qh->ps.c_usecs) { 234 /* NOTE: adjustments needed for FSTN */ 235 for (i = start_uf; i < EHCI_BANDWIDTH_SIZE; 236 i += qh->ps.bw_uperiod) { 237 for ((j = 2, m = 1 << (j+8)); j < 8; (++j, m <<= 1)) { 238 if (qh->ps.cs_mask & m) 239 ehci->bandwidth[i+j] += c_usecs; 240 } 241 } 242 } 243 244 /* FS/LS bus bandwidth */ 245 if (tt_usecs) { 246 tt = find_tt(qh->ps.udev); 247 if (sign > 0) 248 list_add_tail(&qh->ps.ps_list, &tt->ps_list); 249 else 250 list_del(&qh->ps.ps_list); 251 252 for (i = start_uf >> 3; i < EHCI_BANDWIDTH_FRAMES; 253 i += qh->ps.bw_period) 254 tt->bandwidth[i] += tt_usecs; 255 } 256 } 257 258 /*-------------------------------------------------------------------------*/ 259 260 static void compute_tt_budget(u8 budget_table[EHCI_BANDWIDTH_SIZE], 261 struct ehci_tt *tt) 262 { 263 struct ehci_per_sched *ps; 264 unsigned uframe, uf, x; 265 u8 *budget_line; 266 267 if (!tt) 268 return; 269 memset(budget_table, 0, EHCI_BANDWIDTH_SIZE); 270 271 /* Add up the contributions from all the endpoints using this TT */ 272 list_for_each_entry(ps, &tt->ps_list, ps_list) { 273 for (uframe = ps->bw_phase << 3; uframe < EHCI_BANDWIDTH_SIZE; 274 uframe += ps->bw_uperiod) { 275 budget_line = &budget_table[uframe]; 276 x = ps->tt_usecs; 277 278 /* propagate the time forward */ 279 for (uf = ps->phase_uf; uf < 8; ++uf) { 280 x += budget_line[uf]; 281 282 /* Each microframe lasts 125 us */ 283 if (x <= 125) { 284 budget_line[uf] = x; 285 break; 286 } 287 budget_line[uf] = 125; 288 x -= 125; 289 } 290 } 291 } 292 } 293 294 static int __maybe_unused same_tt(struct usb_device *dev1, 295 struct usb_device *dev2) 296 { 297 if (!dev1->tt || !dev2->tt) 298 return 0; 299 if (dev1->tt != dev2->tt) 300 return 0; 301 if (dev1->tt->multi) 302 return dev1->ttport == dev2->ttport; 303 else 304 return 1; 305 } 306 307 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED 308 309 /* Which uframe does the low/fullspeed transfer start in? 310 * 311 * The parameter is the mask of ssplits in "H-frame" terms 312 * and this returns the transfer start uframe in "B-frame" terms, 313 * which allows both to match, e.g. a ssplit in "H-frame" uframe 0 314 * will cause a transfer in "B-frame" uframe 0. "B-frames" lag 315 * "H-frames" by 1 uframe. See the EHCI spec sec 4.5 and figure 4.7. 316 */ 317 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask) 318 { 319 unsigned char smask = hc32_to_cpu(ehci, mask) & QH_SMASK; 320 321 if (!smask) { 322 ehci_err(ehci, "invalid empty smask!\n"); 323 /* uframe 7 can't have bw so this will indicate failure */ 324 return 7; 325 } 326 return ffs(smask) - 1; 327 } 328 329 static const unsigned char 330 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 }; 331 332 /* carryover low/fullspeed bandwidth that crosses uframe boundries */ 333 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8]) 334 { 335 int i; 336 337 for (i = 0; i < 7; i++) { 338 if (max_tt_usecs[i] < tt_usecs[i]) { 339 tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i]; 340 tt_usecs[i] = max_tt_usecs[i]; 341 } 342 } 343 } 344 345 /* 346 * Return true if the device's tt's downstream bus is available for a 347 * periodic transfer of the specified length (usecs), starting at the 348 * specified frame/uframe. Note that (as summarized in section 11.19 349 * of the usb 2.0 spec) TTs can buffer multiple transactions for each 350 * uframe. 351 * 352 * The uframe parameter is when the fullspeed/lowspeed transfer 353 * should be executed in "B-frame" terms, which is the same as the 354 * highspeed ssplit's uframe (which is in "H-frame" terms). For example 355 * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0. 356 * See the EHCI spec sec 4.5 and fig 4.7. 357 * 358 * This checks if the full/lowspeed bus, at the specified starting uframe, 359 * has the specified bandwidth available, according to rules listed 360 * in USB 2.0 spec section 11.18.1 fig 11-60. 361 * 362 * This does not check if the transfer would exceed the max ssplit 363 * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4, 364 * since proper scheduling limits ssplits to less than 16 per uframe. 365 */ 366 static int tt_available( 367 struct ehci_hcd *ehci, 368 struct ehci_per_sched *ps, 369 struct ehci_tt *tt, 370 unsigned frame, 371 unsigned uframe 372 ) 373 { 374 unsigned period = ps->bw_period; 375 unsigned usecs = ps->tt_usecs; 376 377 if ((period == 0) || (uframe >= 7)) /* error */ 378 return 0; 379 380 for (frame &= period - 1; frame < EHCI_BANDWIDTH_FRAMES; 381 frame += period) { 382 unsigned i, uf; 383 unsigned short tt_usecs[8]; 384 385 if (tt->bandwidth[frame] + usecs > 900) 386 return 0; 387 388 uf = frame << 3; 389 for (i = 0; i < 8; (++i, ++uf)) 390 tt_usecs[i] = ehci->tt_budget[uf]; 391 392 if (max_tt_usecs[uframe] <= tt_usecs[uframe]) 393 return 0; 394 395 /* special case for isoc transfers larger than 125us: 396 * the first and each subsequent fully used uframe 397 * must be empty, so as to not illegally delay 398 * already scheduled transactions 399 */ 400 if (usecs > 125) { 401 int ufs = (usecs / 125); 402 403 for (i = uframe; i < (uframe + ufs) && i < 8; i++) 404 if (tt_usecs[i] > 0) 405 return 0; 406 } 407 408 tt_usecs[uframe] += usecs; 409 410 carryover_tt_bandwidth(tt_usecs); 411 412 /* fail if the carryover pushed bw past the last uframe's limit */ 413 if (max_tt_usecs[7] < tt_usecs[7]) 414 return 0; 415 } 416 417 return 1; 418 } 419 420 #else 421 422 /* return true iff the device's transaction translator is available 423 * for a periodic transfer starting at the specified frame, using 424 * all the uframes in the mask. 425 */ 426 static int tt_no_collision( 427 struct ehci_hcd *ehci, 428 unsigned period, 429 struct usb_device *dev, 430 unsigned frame, 431 u32 uf_mask 432 ) 433 { 434 if (period == 0) /* error */ 435 return 0; 436 437 /* note bandwidth wastage: split never follows csplit 438 * (different dev or endpoint) until the next uframe. 439 * calling convention doesn't make that distinction. 440 */ 441 for (; frame < ehci->periodic_size; frame += period) { 442 union ehci_shadow here; 443 __hc32 type; 444 struct ehci_qh_hw *hw; 445 446 here = ehci->pshadow[frame]; 447 type = Q_NEXT_TYPE(ehci, ehci->periodic[frame]); 448 while (here.ptr) { 449 switch (hc32_to_cpu(ehci, type)) { 450 case Q_TYPE_ITD: 451 type = Q_NEXT_TYPE(ehci, here.itd->hw_next); 452 here = here.itd->itd_next; 453 continue; 454 case Q_TYPE_QH: 455 hw = here.qh->hw; 456 if (same_tt(dev, here.qh->ps.udev)) { 457 u32 mask; 458 459 mask = hc32_to_cpu(ehci, 460 hw->hw_info2); 461 /* "knows" no gap is needed */ 462 mask |= mask >> 8; 463 if (mask & uf_mask) 464 break; 465 } 466 type = Q_NEXT_TYPE(ehci, hw->hw_next); 467 here = here.qh->qh_next; 468 continue; 469 case Q_TYPE_SITD: 470 if (same_tt(dev, here.sitd->urb->dev)) { 471 u16 mask; 472 473 mask = hc32_to_cpu(ehci, here.sitd 474 ->hw_uframe); 475 /* FIXME assumes no gap for IN! */ 476 mask |= mask >> 8; 477 if (mask & uf_mask) 478 break; 479 } 480 type = Q_NEXT_TYPE(ehci, here.sitd->hw_next); 481 here = here.sitd->sitd_next; 482 continue; 483 /* case Q_TYPE_FSTN: */ 484 default: 485 ehci_dbg(ehci, 486 "periodic frame %d bogus type %d\n", 487 frame, type); 488 } 489 490 /* collision or error */ 491 return 0; 492 } 493 } 494 495 /* no collision */ 496 return 1; 497 } 498 499 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */ 500 501 /*-------------------------------------------------------------------------*/ 502 503 static void enable_periodic(struct ehci_hcd *ehci) 504 { 505 if (ehci->periodic_count++) 506 return; 507 508 /* Stop waiting to turn off the periodic schedule */ 509 ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC); 510 511 /* Don't start the schedule until PSS is 0 */ 512 ehci_poll_PSS(ehci); 513 turn_on_io_watchdog(ehci); 514 } 515 516 static void disable_periodic(struct ehci_hcd *ehci) 517 { 518 if (--ehci->periodic_count) 519 return; 520 521 /* Don't turn off the schedule until PSS is 1 */ 522 ehci_poll_PSS(ehci); 523 } 524 525 /*-------------------------------------------------------------------------*/ 526 527 /* periodic schedule slots have iso tds (normal or split) first, then a 528 * sparse tree for active interrupt transfers. 529 * 530 * this just links in a qh; caller guarantees uframe masks are set right. 531 * no FSTN support (yet; ehci 0.96+) 532 */ 533 static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh) 534 { 535 unsigned i; 536 unsigned period = qh->ps.period; 537 538 dev_dbg(&qh->ps.udev->dev, 539 "link qh%d-%04x/%p start %d [%d/%d us]\n", 540 period, hc32_to_cpup(ehci, &qh->hw->hw_info2) 541 & (QH_CMASK | QH_SMASK), 542 qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs); 543 544 /* high bandwidth, or otherwise every microframe */ 545 if (period == 0) 546 period = 1; 547 548 for (i = qh->ps.phase; i < ehci->periodic_size; i += period) { 549 union ehci_shadow *prev = &ehci->pshadow[i]; 550 __hc32 *hw_p = &ehci->periodic[i]; 551 union ehci_shadow here = *prev; 552 __hc32 type = 0; 553 554 /* skip the iso nodes at list head */ 555 while (here.ptr) { 556 type = Q_NEXT_TYPE(ehci, *hw_p); 557 if (type == cpu_to_hc32(ehci, Q_TYPE_QH)) 558 break; 559 prev = periodic_next_shadow(ehci, prev, type); 560 hw_p = shadow_next_periodic(ehci, &here, type); 561 here = *prev; 562 } 563 564 /* sorting each branch by period (slow-->fast) 565 * enables sharing interior tree nodes 566 */ 567 while (here.ptr && qh != here.qh) { 568 if (qh->ps.period > here.qh->ps.period) 569 break; 570 prev = &here.qh->qh_next; 571 hw_p = &here.qh->hw->hw_next; 572 here = *prev; 573 } 574 /* link in this qh, unless some earlier pass did that */ 575 if (qh != here.qh) { 576 qh->qh_next = here; 577 if (here.qh) 578 qh->hw->hw_next = *hw_p; 579 wmb(); 580 prev->qh = qh; 581 *hw_p = QH_NEXT(ehci, qh->qh_dma); 582 } 583 } 584 qh->qh_state = QH_STATE_LINKED; 585 qh->xacterrs = 0; 586 qh->unlink_reason = 0; 587 588 /* update per-qh bandwidth for debugfs */ 589 ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->ps.bw_period 590 ? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period) 591 : (qh->ps.usecs * 8); 592 593 list_add(&qh->intr_node, &ehci->intr_qh_list); 594 595 /* maybe enable periodic schedule processing */ 596 ++ehci->intr_count; 597 enable_periodic(ehci); 598 } 599 600 static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh) 601 { 602 unsigned i; 603 unsigned period; 604 605 /* 606 * If qh is for a low/full-speed device, simply unlinking it 607 * could interfere with an ongoing split transaction. To unlink 608 * it safely would require setting the QH_INACTIVATE bit and 609 * waiting at least one frame, as described in EHCI 4.12.2.5. 610 * 611 * We won't bother with any of this. Instead, we assume that the 612 * only reason for unlinking an interrupt QH while the current URB 613 * is still active is to dequeue all the URBs (flush the whole 614 * endpoint queue). 615 * 616 * If rebalancing the periodic schedule is ever implemented, this 617 * approach will no longer be valid. 618 */ 619 620 /* high bandwidth, or otherwise part of every microframe */ 621 period = qh->ps.period ? : 1; 622 623 for (i = qh->ps.phase; i < ehci->periodic_size; i += period) 624 periodic_unlink(ehci, i, qh); 625 626 /* update per-qh bandwidth for debugfs */ 627 ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->ps.bw_period 628 ? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period) 629 : (qh->ps.usecs * 8); 630 631 dev_dbg(&qh->ps.udev->dev, 632 "unlink qh%d-%04x/%p start %d [%d/%d us]\n", 633 qh->ps.period, 634 hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK), 635 qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs); 636 637 /* qh->qh_next still "live" to HC */ 638 qh->qh_state = QH_STATE_UNLINK; 639 qh->qh_next.ptr = NULL; 640 641 if (ehci->qh_scan_next == qh) 642 ehci->qh_scan_next = list_entry(qh->intr_node.next, 643 struct ehci_qh, intr_node); 644 list_del(&qh->intr_node); 645 } 646 647 static void cancel_unlink_wait_intr(struct ehci_hcd *ehci, struct ehci_qh *qh) 648 { 649 if (qh->qh_state != QH_STATE_LINKED || 650 list_empty(&qh->unlink_node)) 651 return; 652 653 list_del_init(&qh->unlink_node); 654 655 /* 656 * TODO: disable the event of EHCI_HRTIMER_START_UNLINK_INTR for 657 * avoiding unnecessary CPU wakeup 658 */ 659 } 660 661 static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh) 662 { 663 /* If the QH isn't linked then there's nothing we can do. */ 664 if (qh->qh_state != QH_STATE_LINKED) 665 return; 666 667 /* if the qh is waiting for unlink, cancel it now */ 668 cancel_unlink_wait_intr(ehci, qh); 669 670 qh_unlink_periodic(ehci, qh); 671 672 /* Make sure the unlinks are visible before starting the timer */ 673 wmb(); 674 675 /* 676 * The EHCI spec doesn't say how long it takes the controller to 677 * stop accessing an unlinked interrupt QH. The timer delay is 678 * 9 uframes; presumably that will be long enough. 679 */ 680 qh->unlink_cycle = ehci->intr_unlink_cycle; 681 682 /* New entries go at the end of the intr_unlink list */ 683 list_add_tail(&qh->unlink_node, &ehci->intr_unlink); 684 685 if (ehci->intr_unlinking) 686 ; /* Avoid recursive calls */ 687 else if (ehci->rh_state < EHCI_RH_RUNNING) 688 ehci_handle_intr_unlinks(ehci); 689 else if (ehci->intr_unlink.next == &qh->unlink_node) { 690 ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true); 691 ++ehci->intr_unlink_cycle; 692 } 693 } 694 695 /* 696 * It is common only one intr URB is scheduled on one qh, and 697 * given complete() is run in tasklet context, introduce a bit 698 * delay to avoid unlink qh too early. 699 */ 700 static void start_unlink_intr_wait(struct ehci_hcd *ehci, 701 struct ehci_qh *qh) 702 { 703 qh->unlink_cycle = ehci->intr_unlink_wait_cycle; 704 705 /* New entries go at the end of the intr_unlink_wait list */ 706 list_add_tail(&qh->unlink_node, &ehci->intr_unlink_wait); 707 708 if (ehci->rh_state < EHCI_RH_RUNNING) 709 ehci_handle_start_intr_unlinks(ehci); 710 else if (ehci->intr_unlink_wait.next == &qh->unlink_node) { 711 ehci_enable_event(ehci, EHCI_HRTIMER_START_UNLINK_INTR, true); 712 ++ehci->intr_unlink_wait_cycle; 713 } 714 } 715 716 static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh) 717 { 718 struct ehci_qh_hw *hw = qh->hw; 719 int rc; 720 721 qh->qh_state = QH_STATE_IDLE; 722 hw->hw_next = EHCI_LIST_END(ehci); 723 724 if (!list_empty(&qh->qtd_list)) 725 qh_completions(ehci, qh); 726 727 /* reschedule QH iff another request is queued */ 728 if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) { 729 rc = qh_schedule(ehci, qh); 730 if (rc == 0) { 731 qh_refresh(ehci, qh); 732 qh_link_periodic(ehci, qh); 733 } 734 735 /* An error here likely indicates handshake failure 736 * or no space left in the schedule. Neither fault 737 * should happen often ... 738 * 739 * FIXME kill the now-dysfunctional queued urbs 740 */ 741 else { 742 ehci_err(ehci, "can't reschedule qh %p, err %d\n", 743 qh, rc); 744 } 745 } 746 747 /* maybe turn off periodic schedule */ 748 --ehci->intr_count; 749 disable_periodic(ehci); 750 } 751 752 /*-------------------------------------------------------------------------*/ 753 754 static int check_period( 755 struct ehci_hcd *ehci, 756 unsigned frame, 757 unsigned uframe, 758 unsigned uperiod, 759 unsigned usecs 760 ) { 761 /* complete split running into next frame? 762 * given FSTN support, we could sometimes check... 763 */ 764 if (uframe >= 8) 765 return 0; 766 767 /* convert "usecs we need" to "max already claimed" */ 768 usecs = ehci->uframe_periodic_max - usecs; 769 770 for (uframe += frame << 3; uframe < EHCI_BANDWIDTH_SIZE; 771 uframe += uperiod) { 772 if (ehci->bandwidth[uframe] > usecs) 773 return 0; 774 } 775 776 /* success! */ 777 return 1; 778 } 779 780 static int check_intr_schedule( 781 struct ehci_hcd *ehci, 782 unsigned frame, 783 unsigned uframe, 784 struct ehci_qh *qh, 785 unsigned *c_maskp, 786 struct ehci_tt *tt 787 ) 788 { 789 int retval = -ENOSPC; 790 u8 mask = 0; 791 792 if (qh->ps.c_usecs && uframe >= 6) /* FSTN territory? */ 793 goto done; 794 795 if (!check_period(ehci, frame, uframe, qh->ps.bw_uperiod, qh->ps.usecs)) 796 goto done; 797 if (!qh->ps.c_usecs) { 798 retval = 0; 799 *c_maskp = 0; 800 goto done; 801 } 802 803 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED 804 if (tt_available(ehci, &qh->ps, tt, frame, uframe)) { 805 unsigned i; 806 807 /* TODO : this may need FSTN for SSPLIT in uframe 5. */ 808 for (i = uframe+2; i < 8 && i <= uframe+4; i++) 809 if (!check_period(ehci, frame, i, 810 qh->ps.bw_uperiod, qh->ps.c_usecs)) 811 goto done; 812 else 813 mask |= 1 << i; 814 815 retval = 0; 816 817 *c_maskp = mask; 818 } 819 #else 820 /* Make sure this tt's buffer is also available for CSPLITs. 821 * We pessimize a bit; probably the typical full speed case 822 * doesn't need the second CSPLIT. 823 * 824 * NOTE: both SPLIT and CSPLIT could be checked in just 825 * one smart pass... 826 */ 827 mask = 0x03 << (uframe + qh->gap_uf); 828 *c_maskp = mask; 829 830 mask |= 1 << uframe; 831 if (tt_no_collision(ehci, qh->ps.bw_period, qh->ps.udev, frame, mask)) { 832 if (!check_period(ehci, frame, uframe + qh->gap_uf + 1, 833 qh->ps.bw_uperiod, qh->ps.c_usecs)) 834 goto done; 835 if (!check_period(ehci, frame, uframe + qh->gap_uf, 836 qh->ps.bw_uperiod, qh->ps.c_usecs)) 837 goto done; 838 retval = 0; 839 } 840 #endif 841 done: 842 return retval; 843 } 844 845 /* "first fit" scheduling policy used the first time through, 846 * or when the previous schedule slot can't be re-used. 847 */ 848 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh) 849 { 850 int status = 0; 851 unsigned uframe; 852 unsigned c_mask; 853 struct ehci_qh_hw *hw = qh->hw; 854 struct ehci_tt *tt; 855 856 hw->hw_next = EHCI_LIST_END(ehci); 857 858 /* reuse the previous schedule slots, if we can */ 859 if (qh->ps.phase != NO_FRAME) { 860 ehci_dbg(ehci, "reused qh %p schedule\n", qh); 861 return 0; 862 } 863 864 uframe = 0; 865 c_mask = 0; 866 tt = find_tt(qh->ps.udev); 867 if (IS_ERR(tt)) { 868 status = PTR_ERR(tt); 869 goto done; 870 } 871 compute_tt_budget(ehci->tt_budget, tt); 872 873 /* else scan the schedule to find a group of slots such that all 874 * uframes have enough periodic bandwidth available. 875 */ 876 /* "normal" case, uframing flexible except with splits */ 877 if (qh->ps.bw_period) { 878 int i; 879 unsigned frame; 880 881 for (i = qh->ps.bw_period; i > 0; --i) { 882 frame = ++ehci->random_frame & (qh->ps.bw_period - 1); 883 for (uframe = 0; uframe < 8; uframe++) { 884 status = check_intr_schedule(ehci, 885 frame, uframe, qh, &c_mask, tt); 886 if (status == 0) 887 goto got_it; 888 } 889 } 890 891 /* qh->ps.bw_period == 0 means every uframe */ 892 } else { 893 status = check_intr_schedule(ehci, 0, 0, qh, &c_mask, tt); 894 } 895 if (status) 896 goto done; 897 898 got_it: 899 qh->ps.phase = (qh->ps.period ? ehci->random_frame & 900 (qh->ps.period - 1) : 0); 901 qh->ps.bw_phase = qh->ps.phase & (qh->ps.bw_period - 1); 902 qh->ps.phase_uf = uframe; 903 qh->ps.cs_mask = qh->ps.period ? 904 (c_mask << 8) | (1 << uframe) : 905 QH_SMASK; 906 907 /* reset S-frame and (maybe) C-frame masks */ 908 hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK)); 909 hw->hw_info2 |= cpu_to_hc32(ehci, qh->ps.cs_mask); 910 reserve_release_intr_bandwidth(ehci, qh, 1); 911 912 done: 913 return status; 914 } 915 916 static int intr_submit( 917 struct ehci_hcd *ehci, 918 struct urb *urb, 919 struct list_head *qtd_list, 920 gfp_t mem_flags 921 ) { 922 unsigned epnum; 923 unsigned long flags; 924 struct ehci_qh *qh; 925 int status; 926 struct list_head empty; 927 928 /* get endpoint and transfer/schedule data */ 929 epnum = urb->ep->desc.bEndpointAddress; 930 931 spin_lock_irqsave(&ehci->lock, flags); 932 933 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { 934 status = -ESHUTDOWN; 935 goto done_not_linked; 936 } 937 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); 938 if (unlikely(status)) 939 goto done_not_linked; 940 941 /* get qh and force any scheduling errors */ 942 INIT_LIST_HEAD(&empty); 943 qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv); 944 if (qh == NULL) { 945 status = -ENOMEM; 946 goto done; 947 } 948 if (qh->qh_state == QH_STATE_IDLE) { 949 status = qh_schedule(ehci, qh); 950 if (status) 951 goto done; 952 } 953 954 /* then queue the urb's tds to the qh */ 955 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv); 956 BUG_ON(qh == NULL); 957 958 /* stuff into the periodic schedule */ 959 if (qh->qh_state == QH_STATE_IDLE) { 960 qh_refresh(ehci, qh); 961 qh_link_periodic(ehci, qh); 962 } else { 963 /* cancel unlink wait for the qh */ 964 cancel_unlink_wait_intr(ehci, qh); 965 } 966 967 /* ... update usbfs periodic stats */ 968 ehci_to_hcd(ehci)->self.bandwidth_int_reqs++; 969 970 done: 971 if (unlikely(status)) 972 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 973 done_not_linked: 974 spin_unlock_irqrestore(&ehci->lock, flags); 975 if (status) 976 qtd_list_free(ehci, urb, qtd_list); 977 978 return status; 979 } 980 981 static void scan_intr(struct ehci_hcd *ehci) 982 { 983 struct ehci_qh *qh; 984 985 list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list, 986 intr_node) { 987 988 /* clean any finished work for this qh */ 989 if (!list_empty(&qh->qtd_list)) { 990 int temp; 991 992 /* 993 * Unlinks could happen here; completion reporting 994 * drops the lock. That's why ehci->qh_scan_next 995 * always holds the next qh to scan; if the next qh 996 * gets unlinked then ehci->qh_scan_next is adjusted 997 * in qh_unlink_periodic(). 998 */ 999 temp = qh_completions(ehci, qh); 1000 if (unlikely(temp)) 1001 start_unlink_intr(ehci, qh); 1002 else if (unlikely(list_empty(&qh->qtd_list) && 1003 qh->qh_state == QH_STATE_LINKED)) 1004 start_unlink_intr_wait(ehci, qh); 1005 } 1006 } 1007 } 1008 1009 /*-------------------------------------------------------------------------*/ 1010 1011 /* ehci_iso_stream ops work with both ITD and SITD */ 1012 1013 static struct ehci_iso_stream * 1014 iso_stream_alloc(gfp_t mem_flags) 1015 { 1016 struct ehci_iso_stream *stream; 1017 1018 stream = kzalloc(sizeof(*stream), mem_flags); 1019 if (likely(stream != NULL)) { 1020 INIT_LIST_HEAD(&stream->td_list); 1021 INIT_LIST_HEAD(&stream->free_list); 1022 stream->next_uframe = NO_FRAME; 1023 stream->ps.phase = NO_FRAME; 1024 } 1025 return stream; 1026 } 1027 1028 static void 1029 iso_stream_init( 1030 struct ehci_hcd *ehci, 1031 struct ehci_iso_stream *stream, 1032 struct urb *urb 1033 ) 1034 { 1035 static const u8 smask_out[] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f }; 1036 1037 struct usb_device *dev = urb->dev; 1038 u32 buf1; 1039 unsigned epnum, maxp; 1040 int is_input; 1041 unsigned tmp; 1042 1043 /* 1044 * this might be a "high bandwidth" highspeed endpoint, 1045 * as encoded in the ep descriptor's wMaxPacket field 1046 */ 1047 epnum = usb_pipeendpoint(urb->pipe); 1048 is_input = usb_pipein(urb->pipe) ? USB_DIR_IN : 0; 1049 maxp = usb_endpoint_maxp(&urb->ep->desc); 1050 buf1 = is_input ? 1 << 11 : 0; 1051 1052 /* knows about ITD vs SITD */ 1053 if (dev->speed == USB_SPEED_HIGH) { 1054 unsigned multi = usb_endpoint_maxp_mult(&urb->ep->desc); 1055 1056 stream->highspeed = 1; 1057 1058 buf1 |= maxp; 1059 maxp *= multi; 1060 1061 stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum); 1062 stream->buf1 = cpu_to_hc32(ehci, buf1); 1063 stream->buf2 = cpu_to_hc32(ehci, multi); 1064 1065 /* usbfs wants to report the average usecs per frame tied up 1066 * when transfers on this endpoint are scheduled ... 1067 */ 1068 stream->ps.usecs = HS_USECS_ISO(maxp); 1069 1070 /* period for bandwidth allocation */ 1071 tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE, 1072 1 << (urb->ep->desc.bInterval - 1)); 1073 1074 /* Allow urb->interval to override */ 1075 stream->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval); 1076 1077 stream->uperiod = urb->interval; 1078 stream->ps.period = urb->interval >> 3; 1079 stream->bandwidth = stream->ps.usecs * 8 / 1080 stream->ps.bw_uperiod; 1081 1082 } else { 1083 u32 addr; 1084 int think_time; 1085 int hs_transfers; 1086 1087 addr = dev->ttport << 24; 1088 if (!ehci_is_TDI(ehci) 1089 || (dev->tt->hub != 1090 ehci_to_hcd(ehci)->self.root_hub)) 1091 addr |= dev->tt->hub->devnum << 16; 1092 addr |= epnum << 8; 1093 addr |= dev->devnum; 1094 stream->ps.usecs = HS_USECS_ISO(maxp); 1095 think_time = dev->tt->think_time; 1096 stream->ps.tt_usecs = NS_TO_US(think_time + usb_calc_bus_time( 1097 dev->speed, is_input, 1, maxp)); 1098 hs_transfers = max(1u, (maxp + 187) / 188); 1099 if (is_input) { 1100 u32 tmp; 1101 1102 addr |= 1 << 31; 1103 stream->ps.c_usecs = stream->ps.usecs; 1104 stream->ps.usecs = HS_USECS_ISO(1); 1105 stream->ps.cs_mask = 1; 1106 1107 /* c-mask as specified in USB 2.0 11.18.4 3.c */ 1108 tmp = (1 << (hs_transfers + 2)) - 1; 1109 stream->ps.cs_mask |= tmp << (8 + 2); 1110 } else 1111 stream->ps.cs_mask = smask_out[hs_transfers - 1]; 1112 1113 /* period for bandwidth allocation */ 1114 tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES, 1115 1 << (urb->ep->desc.bInterval - 1)); 1116 1117 /* Allow urb->interval to override */ 1118 stream->ps.bw_period = min_t(unsigned, tmp, urb->interval); 1119 stream->ps.bw_uperiod = stream->ps.bw_period << 3; 1120 1121 stream->ps.period = urb->interval; 1122 stream->uperiod = urb->interval << 3; 1123 stream->bandwidth = (stream->ps.usecs + stream->ps.c_usecs) / 1124 stream->ps.bw_period; 1125 1126 /* stream->splits gets created from cs_mask later */ 1127 stream->address = cpu_to_hc32(ehci, addr); 1128 } 1129 1130 stream->ps.udev = dev; 1131 stream->ps.ep = urb->ep; 1132 1133 stream->bEndpointAddress = is_input | epnum; 1134 stream->maxp = maxp; 1135 } 1136 1137 static struct ehci_iso_stream * 1138 iso_stream_find(struct ehci_hcd *ehci, struct urb *urb) 1139 { 1140 unsigned epnum; 1141 struct ehci_iso_stream *stream; 1142 struct usb_host_endpoint *ep; 1143 unsigned long flags; 1144 1145 epnum = usb_pipeendpoint (urb->pipe); 1146 if (usb_pipein(urb->pipe)) 1147 ep = urb->dev->ep_in[epnum]; 1148 else 1149 ep = urb->dev->ep_out[epnum]; 1150 1151 spin_lock_irqsave(&ehci->lock, flags); 1152 stream = ep->hcpriv; 1153 1154 if (unlikely(stream == NULL)) { 1155 stream = iso_stream_alloc(GFP_ATOMIC); 1156 if (likely(stream != NULL)) { 1157 ep->hcpriv = stream; 1158 iso_stream_init(ehci, stream, urb); 1159 } 1160 1161 /* if dev->ep [epnum] is a QH, hw is set */ 1162 } else if (unlikely(stream->hw != NULL)) { 1163 ehci_dbg(ehci, "dev %s ep%d%s, not iso??\n", 1164 urb->dev->devpath, epnum, 1165 usb_pipein(urb->pipe) ? "in" : "out"); 1166 stream = NULL; 1167 } 1168 1169 spin_unlock_irqrestore(&ehci->lock, flags); 1170 return stream; 1171 } 1172 1173 /*-------------------------------------------------------------------------*/ 1174 1175 /* ehci_iso_sched ops can be ITD-only or SITD-only */ 1176 1177 static struct ehci_iso_sched * 1178 iso_sched_alloc(unsigned packets, gfp_t mem_flags) 1179 { 1180 struct ehci_iso_sched *iso_sched; 1181 int size = sizeof(*iso_sched); 1182 1183 size += packets * sizeof(struct ehci_iso_packet); 1184 iso_sched = kzalloc(size, mem_flags); 1185 if (likely(iso_sched != NULL)) 1186 INIT_LIST_HEAD(&iso_sched->td_list); 1187 1188 return iso_sched; 1189 } 1190 1191 static inline void 1192 itd_sched_init( 1193 struct ehci_hcd *ehci, 1194 struct ehci_iso_sched *iso_sched, 1195 struct ehci_iso_stream *stream, 1196 struct urb *urb 1197 ) 1198 { 1199 unsigned i; 1200 dma_addr_t dma = urb->transfer_dma; 1201 1202 /* how many uframes are needed for these transfers */ 1203 iso_sched->span = urb->number_of_packets * stream->uperiod; 1204 1205 /* figure out per-uframe itd fields that we'll need later 1206 * when we fit new itds into the schedule. 1207 */ 1208 for (i = 0; i < urb->number_of_packets; i++) { 1209 struct ehci_iso_packet *uframe = &iso_sched->packet[i]; 1210 unsigned length; 1211 dma_addr_t buf; 1212 u32 trans; 1213 1214 length = urb->iso_frame_desc[i].length; 1215 buf = dma + urb->iso_frame_desc[i].offset; 1216 1217 trans = EHCI_ISOC_ACTIVE; 1218 trans |= buf & 0x0fff; 1219 if (unlikely(((i + 1) == urb->number_of_packets)) 1220 && !(urb->transfer_flags & URB_NO_INTERRUPT)) 1221 trans |= EHCI_ITD_IOC; 1222 trans |= length << 16; 1223 uframe->transaction = cpu_to_hc32(ehci, trans); 1224 1225 /* might need to cross a buffer page within a uframe */ 1226 uframe->bufp = (buf & ~(u64)0x0fff); 1227 buf += length; 1228 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff)))) 1229 uframe->cross = 1; 1230 } 1231 } 1232 1233 static void 1234 iso_sched_free( 1235 struct ehci_iso_stream *stream, 1236 struct ehci_iso_sched *iso_sched 1237 ) 1238 { 1239 if (!iso_sched) 1240 return; 1241 /* caller must hold ehci->lock! */ 1242 list_splice(&iso_sched->td_list, &stream->free_list); 1243 kfree(iso_sched); 1244 } 1245 1246 static int 1247 itd_urb_transaction( 1248 struct ehci_iso_stream *stream, 1249 struct ehci_hcd *ehci, 1250 struct urb *urb, 1251 gfp_t mem_flags 1252 ) 1253 { 1254 struct ehci_itd *itd; 1255 dma_addr_t itd_dma; 1256 int i; 1257 unsigned num_itds; 1258 struct ehci_iso_sched *sched; 1259 unsigned long flags; 1260 1261 sched = iso_sched_alloc(urb->number_of_packets, mem_flags); 1262 if (unlikely(sched == NULL)) 1263 return -ENOMEM; 1264 1265 itd_sched_init(ehci, sched, stream, urb); 1266 1267 if (urb->interval < 8) 1268 num_itds = 1 + (sched->span + 7) / 8; 1269 else 1270 num_itds = urb->number_of_packets; 1271 1272 /* allocate/init ITDs */ 1273 spin_lock_irqsave(&ehci->lock, flags); 1274 for (i = 0; i < num_itds; i++) { 1275 1276 /* 1277 * Use iTDs from the free list, but not iTDs that may 1278 * still be in use by the hardware. 1279 */ 1280 if (likely(!list_empty(&stream->free_list))) { 1281 itd = list_first_entry(&stream->free_list, 1282 struct ehci_itd, itd_list); 1283 if (itd->frame == ehci->now_frame) 1284 goto alloc_itd; 1285 list_del(&itd->itd_list); 1286 itd_dma = itd->itd_dma; 1287 } else { 1288 alloc_itd: 1289 spin_unlock_irqrestore(&ehci->lock, flags); 1290 itd = dma_pool_zalloc(ehci->itd_pool, mem_flags, 1291 &itd_dma); 1292 spin_lock_irqsave(&ehci->lock, flags); 1293 if (!itd) { 1294 iso_sched_free(stream, sched); 1295 spin_unlock_irqrestore(&ehci->lock, flags); 1296 return -ENOMEM; 1297 } 1298 } 1299 1300 itd->itd_dma = itd_dma; 1301 itd->frame = NO_FRAME; 1302 list_add(&itd->itd_list, &sched->td_list); 1303 } 1304 spin_unlock_irqrestore(&ehci->lock, flags); 1305 1306 /* temporarily store schedule info in hcpriv */ 1307 urb->hcpriv = sched; 1308 urb->error_count = 0; 1309 return 0; 1310 } 1311 1312 /*-------------------------------------------------------------------------*/ 1313 1314 static void reserve_release_iso_bandwidth(struct ehci_hcd *ehci, 1315 struct ehci_iso_stream *stream, int sign) 1316 { 1317 unsigned uframe; 1318 unsigned i, j; 1319 unsigned s_mask, c_mask, m; 1320 int usecs = stream->ps.usecs; 1321 int c_usecs = stream->ps.c_usecs; 1322 int tt_usecs = stream->ps.tt_usecs; 1323 struct ehci_tt *tt; 1324 1325 if (stream->ps.phase == NO_FRAME) /* Bandwidth wasn't reserved */ 1326 return; 1327 uframe = stream->ps.bw_phase << 3; 1328 1329 bandwidth_dbg(ehci, sign, "iso", &stream->ps); 1330 1331 if (sign < 0) { /* Release bandwidth */ 1332 usecs = -usecs; 1333 c_usecs = -c_usecs; 1334 tt_usecs = -tt_usecs; 1335 } 1336 1337 if (!stream->splits) { /* High speed */ 1338 for (i = uframe + stream->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE; 1339 i += stream->ps.bw_uperiod) 1340 ehci->bandwidth[i] += usecs; 1341 1342 } else { /* Full speed */ 1343 s_mask = stream->ps.cs_mask; 1344 c_mask = s_mask >> 8; 1345 1346 /* NOTE: adjustment needed for frame overflow */ 1347 for (i = uframe; i < EHCI_BANDWIDTH_SIZE; 1348 i += stream->ps.bw_uperiod) { 1349 for ((j = stream->ps.phase_uf, m = 1 << j); j < 8; 1350 (++j, m <<= 1)) { 1351 if (s_mask & m) 1352 ehci->bandwidth[i+j] += usecs; 1353 else if (c_mask & m) 1354 ehci->bandwidth[i+j] += c_usecs; 1355 } 1356 } 1357 1358 tt = find_tt(stream->ps.udev); 1359 if (sign > 0) 1360 list_add_tail(&stream->ps.ps_list, &tt->ps_list); 1361 else 1362 list_del(&stream->ps.ps_list); 1363 1364 for (i = uframe >> 3; i < EHCI_BANDWIDTH_FRAMES; 1365 i += stream->ps.bw_period) 1366 tt->bandwidth[i] += tt_usecs; 1367 } 1368 } 1369 1370 static inline int 1371 itd_slot_ok( 1372 struct ehci_hcd *ehci, 1373 struct ehci_iso_stream *stream, 1374 unsigned uframe 1375 ) 1376 { 1377 unsigned usecs; 1378 1379 /* convert "usecs we need" to "max already claimed" */ 1380 usecs = ehci->uframe_periodic_max - stream->ps.usecs; 1381 1382 for (uframe &= stream->ps.bw_uperiod - 1; uframe < EHCI_BANDWIDTH_SIZE; 1383 uframe += stream->ps.bw_uperiod) { 1384 if (ehci->bandwidth[uframe] > usecs) 1385 return 0; 1386 } 1387 return 1; 1388 } 1389 1390 static inline int 1391 sitd_slot_ok( 1392 struct ehci_hcd *ehci, 1393 struct ehci_iso_stream *stream, 1394 unsigned uframe, 1395 struct ehci_iso_sched *sched, 1396 struct ehci_tt *tt 1397 ) 1398 { 1399 unsigned mask, tmp; 1400 unsigned frame, uf; 1401 1402 mask = stream->ps.cs_mask << (uframe & 7); 1403 1404 /* for OUT, don't wrap SSPLIT into H-microframe 7 */ 1405 if (((stream->ps.cs_mask & 0xff) << (uframe & 7)) >= (1 << 7)) 1406 return 0; 1407 1408 /* for IN, don't wrap CSPLIT into the next frame */ 1409 if (mask & ~0xffff) 1410 return 0; 1411 1412 /* check bandwidth */ 1413 uframe &= stream->ps.bw_uperiod - 1; 1414 frame = uframe >> 3; 1415 1416 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED 1417 /* The tt's fullspeed bus bandwidth must be available. 1418 * tt_available scheduling guarantees 10+% for control/bulk. 1419 */ 1420 uf = uframe & 7; 1421 if (!tt_available(ehci, &stream->ps, tt, frame, uf)) 1422 return 0; 1423 #else 1424 /* tt must be idle for start(s), any gap, and csplit. 1425 * assume scheduling slop leaves 10+% for control/bulk. 1426 */ 1427 if (!tt_no_collision(ehci, stream->ps.bw_period, 1428 stream->ps.udev, frame, mask)) 1429 return 0; 1430 #endif 1431 1432 do { 1433 unsigned max_used; 1434 unsigned i; 1435 1436 /* check starts (OUT uses more than one) */ 1437 uf = uframe; 1438 max_used = ehci->uframe_periodic_max - stream->ps.usecs; 1439 for (tmp = stream->ps.cs_mask & 0xff; tmp; tmp >>= 1, uf++) { 1440 if (ehci->bandwidth[uf] > max_used) 1441 return 0; 1442 } 1443 1444 /* for IN, check CSPLIT */ 1445 if (stream->ps.c_usecs) { 1446 max_used = ehci->uframe_periodic_max - 1447 stream->ps.c_usecs; 1448 uf = uframe & ~7; 1449 tmp = 1 << (2+8); 1450 for (i = (uframe & 7) + 2; i < 8; (++i, tmp <<= 1)) { 1451 if ((stream->ps.cs_mask & tmp) == 0) 1452 continue; 1453 if (ehci->bandwidth[uf+i] > max_used) 1454 return 0; 1455 } 1456 } 1457 1458 uframe += stream->ps.bw_uperiod; 1459 } while (uframe < EHCI_BANDWIDTH_SIZE); 1460 1461 stream->ps.cs_mask <<= uframe & 7; 1462 stream->splits = cpu_to_hc32(ehci, stream->ps.cs_mask); 1463 return 1; 1464 } 1465 1466 /* 1467 * This scheduler plans almost as far into the future as it has actual 1468 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to 1469 * "as small as possible" to be cache-friendlier.) That limits the size 1470 * transfers you can stream reliably; avoid more than 64 msec per urb. 1471 * Also avoid queue depths of less than ehci's worst irq latency (affected 1472 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter, 1473 * and other factors); or more than about 230 msec total (for portability, 1474 * given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler! 1475 */ 1476 1477 static int 1478 iso_stream_schedule( 1479 struct ehci_hcd *ehci, 1480 struct urb *urb, 1481 struct ehci_iso_stream *stream 1482 ) 1483 { 1484 u32 now, base, next, start, period, span, now2; 1485 u32 wrap = 0, skip = 0; 1486 int status = 0; 1487 unsigned mod = ehci->periodic_size << 3; 1488 struct ehci_iso_sched *sched = urb->hcpriv; 1489 bool empty = list_empty(&stream->td_list); 1490 bool new_stream = false; 1491 1492 period = stream->uperiod; 1493 span = sched->span; 1494 if (!stream->highspeed) 1495 span <<= 3; 1496 1497 /* Start a new isochronous stream? */ 1498 if (unlikely(empty && !hcd_periodic_completion_in_progress( 1499 ehci_to_hcd(ehci), urb->ep))) { 1500 1501 /* Schedule the endpoint */ 1502 if (stream->ps.phase == NO_FRAME) { 1503 int done = 0; 1504 struct ehci_tt *tt = find_tt(stream->ps.udev); 1505 1506 if (IS_ERR(tt)) { 1507 status = PTR_ERR(tt); 1508 goto fail; 1509 } 1510 compute_tt_budget(ehci->tt_budget, tt); 1511 1512 start = ((-(++ehci->random_frame)) << 3) & (period - 1); 1513 1514 /* find a uframe slot with enough bandwidth. 1515 * Early uframes are more precious because full-speed 1516 * iso IN transfers can't use late uframes, 1517 * and therefore they should be allocated last. 1518 */ 1519 next = start; 1520 start += period; 1521 do { 1522 start--; 1523 /* check schedule: enough space? */ 1524 if (stream->highspeed) { 1525 if (itd_slot_ok(ehci, stream, start)) 1526 done = 1; 1527 } else { 1528 if ((start % 8) >= 6) 1529 continue; 1530 if (sitd_slot_ok(ehci, stream, start, 1531 sched, tt)) 1532 done = 1; 1533 } 1534 } while (start > next && !done); 1535 1536 /* no room in the schedule */ 1537 if (!done) { 1538 ehci_dbg(ehci, "iso sched full %p", urb); 1539 status = -ENOSPC; 1540 goto fail; 1541 } 1542 stream->ps.phase = (start >> 3) & 1543 (stream->ps.period - 1); 1544 stream->ps.bw_phase = stream->ps.phase & 1545 (stream->ps.bw_period - 1); 1546 stream->ps.phase_uf = start & 7; 1547 reserve_release_iso_bandwidth(ehci, stream, 1); 1548 } 1549 1550 /* New stream is already scheduled; use the upcoming slot */ 1551 else { 1552 start = (stream->ps.phase << 3) + stream->ps.phase_uf; 1553 } 1554 1555 stream->next_uframe = start; 1556 new_stream = true; 1557 } 1558 1559 now = ehci_read_frame_index(ehci) & (mod - 1); 1560 1561 /* Take the isochronous scheduling threshold into account */ 1562 if (ehci->i_thresh) 1563 next = now + ehci->i_thresh; /* uframe cache */ 1564 else 1565 next = (now + 2 + 7) & ~0x07; /* full frame cache */ 1566 1567 /* If needed, initialize last_iso_frame so that this URB will be seen */ 1568 if (ehci->isoc_count == 0) 1569 ehci->last_iso_frame = now >> 3; 1570 1571 /* 1572 * Use ehci->last_iso_frame as the base. There can't be any 1573 * TDs scheduled for earlier than that. 1574 */ 1575 base = ehci->last_iso_frame << 3; 1576 next = (next - base) & (mod - 1); 1577 start = (stream->next_uframe - base) & (mod - 1); 1578 1579 if (unlikely(new_stream)) 1580 goto do_ASAP; 1581 1582 /* 1583 * Typical case: reuse current schedule, stream may still be active. 1584 * Hopefully there are no gaps from the host falling behind 1585 * (irq delays etc). If there are, the behavior depends on 1586 * whether URB_ISO_ASAP is set. 1587 */ 1588 now2 = (now - base) & (mod - 1); 1589 1590 /* Is the schedule about to wrap around? */ 1591 if (unlikely(!empty && start < period)) { 1592 ehci_dbg(ehci, "request %p would overflow (%u-%u < %u mod %u)\n", 1593 urb, stream->next_uframe, base, period, mod); 1594 status = -EFBIG; 1595 goto fail; 1596 } 1597 1598 /* Is the next packet scheduled after the base time? */ 1599 if (likely(!empty || start <= now2 + period)) { 1600 1601 /* URB_ISO_ASAP: make sure that start >= next */ 1602 if (unlikely(start < next && 1603 (urb->transfer_flags & URB_ISO_ASAP))) 1604 goto do_ASAP; 1605 1606 /* Otherwise use start, if it's not in the past */ 1607 if (likely(start >= now2)) 1608 goto use_start; 1609 1610 /* Otherwise we got an underrun while the queue was empty */ 1611 } else { 1612 if (urb->transfer_flags & URB_ISO_ASAP) 1613 goto do_ASAP; 1614 wrap = mod; 1615 now2 += mod; 1616 } 1617 1618 /* How many uframes and packets do we need to skip? */ 1619 skip = (now2 - start + period - 1) & -period; 1620 if (skip >= span) { /* Entirely in the past? */ 1621 ehci_dbg(ehci, "iso underrun %p (%u+%u < %u) [%u]\n", 1622 urb, start + base, span - period, now2 + base, 1623 base); 1624 1625 /* Try to keep the last TD intact for scanning later */ 1626 skip = span - period; 1627 1628 /* Will it come before the current scan position? */ 1629 if (empty) { 1630 skip = span; /* Skip the entire URB */ 1631 status = 1; /* and give it back immediately */ 1632 iso_sched_free(stream, sched); 1633 sched = NULL; 1634 } 1635 } 1636 urb->error_count = skip / period; 1637 if (sched) 1638 sched->first_packet = urb->error_count; 1639 goto use_start; 1640 1641 do_ASAP: 1642 /* Use the first slot after "next" */ 1643 start = next + ((start - next) & (period - 1)); 1644 1645 use_start: 1646 /* Tried to schedule too far into the future? */ 1647 if (unlikely(start + span - period >= mod + wrap)) { 1648 ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n", 1649 urb, start, span - period, mod + wrap); 1650 status = -EFBIG; 1651 goto fail; 1652 } 1653 1654 start += base; 1655 stream->next_uframe = (start + skip) & (mod - 1); 1656 1657 /* report high speed start in uframes; full speed, in frames */ 1658 urb->start_frame = start & (mod - 1); 1659 if (!stream->highspeed) 1660 urb->start_frame >>= 3; 1661 return status; 1662 1663 fail: 1664 iso_sched_free(stream, sched); 1665 urb->hcpriv = NULL; 1666 return status; 1667 } 1668 1669 /*-------------------------------------------------------------------------*/ 1670 1671 static inline void 1672 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream, 1673 struct ehci_itd *itd) 1674 { 1675 int i; 1676 1677 /* it's been recently zeroed */ 1678 itd->hw_next = EHCI_LIST_END(ehci); 1679 itd->hw_bufp[0] = stream->buf0; 1680 itd->hw_bufp[1] = stream->buf1; 1681 itd->hw_bufp[2] = stream->buf2; 1682 1683 for (i = 0; i < 8; i++) 1684 itd->index[i] = -1; 1685 1686 /* All other fields are filled when scheduling */ 1687 } 1688 1689 static inline void 1690 itd_patch( 1691 struct ehci_hcd *ehci, 1692 struct ehci_itd *itd, 1693 struct ehci_iso_sched *iso_sched, 1694 unsigned index, 1695 u16 uframe 1696 ) 1697 { 1698 struct ehci_iso_packet *uf = &iso_sched->packet[index]; 1699 unsigned pg = itd->pg; 1700 1701 /* BUG_ON(pg == 6 && uf->cross); */ 1702 1703 uframe &= 0x07; 1704 itd->index[uframe] = index; 1705 1706 itd->hw_transaction[uframe] = uf->transaction; 1707 itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12); 1708 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0); 1709 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32)); 1710 1711 /* iso_frame_desc[].offset must be strictly increasing */ 1712 if (unlikely(uf->cross)) { 1713 u64 bufp = uf->bufp + 4096; 1714 1715 itd->pg = ++pg; 1716 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0); 1717 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32)); 1718 } 1719 } 1720 1721 static inline void 1722 itd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd) 1723 { 1724 union ehci_shadow *prev = &ehci->pshadow[frame]; 1725 __hc32 *hw_p = &ehci->periodic[frame]; 1726 union ehci_shadow here = *prev; 1727 __hc32 type = 0; 1728 1729 /* skip any iso nodes which might belong to previous microframes */ 1730 while (here.ptr) { 1731 type = Q_NEXT_TYPE(ehci, *hw_p); 1732 if (type == cpu_to_hc32(ehci, Q_TYPE_QH)) 1733 break; 1734 prev = periodic_next_shadow(ehci, prev, type); 1735 hw_p = shadow_next_periodic(ehci, &here, type); 1736 here = *prev; 1737 } 1738 1739 itd->itd_next = here; 1740 itd->hw_next = *hw_p; 1741 prev->itd = itd; 1742 itd->frame = frame; 1743 wmb(); 1744 *hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD); 1745 } 1746 1747 /* fit urb's itds into the selected schedule slot; activate as needed */ 1748 static void itd_link_urb( 1749 struct ehci_hcd *ehci, 1750 struct urb *urb, 1751 unsigned mod, 1752 struct ehci_iso_stream *stream 1753 ) 1754 { 1755 int packet; 1756 unsigned next_uframe, uframe, frame; 1757 struct ehci_iso_sched *iso_sched = urb->hcpriv; 1758 struct ehci_itd *itd; 1759 1760 next_uframe = stream->next_uframe & (mod - 1); 1761 1762 if (unlikely(list_empty(&stream->td_list))) 1763 ehci_to_hcd(ehci)->self.bandwidth_allocated 1764 += stream->bandwidth; 1765 1766 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { 1767 if (ehci->amd_pll_fix == 1) 1768 usb_amd_quirk_pll_disable(); 1769 } 1770 1771 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++; 1772 1773 /* fill iTDs uframe by uframe */ 1774 for (packet = iso_sched->first_packet, itd = NULL; 1775 packet < urb->number_of_packets;) { 1776 if (itd == NULL) { 1777 /* ASSERT: we have all necessary itds */ 1778 /* BUG_ON(list_empty(&iso_sched->td_list)); */ 1779 1780 /* ASSERT: no itds for this endpoint in this uframe */ 1781 1782 itd = list_entry(iso_sched->td_list.next, 1783 struct ehci_itd, itd_list); 1784 list_move_tail(&itd->itd_list, &stream->td_list); 1785 itd->stream = stream; 1786 itd->urb = urb; 1787 itd_init(ehci, stream, itd); 1788 } 1789 1790 uframe = next_uframe & 0x07; 1791 frame = next_uframe >> 3; 1792 1793 itd_patch(ehci, itd, iso_sched, packet, uframe); 1794 1795 next_uframe += stream->uperiod; 1796 next_uframe &= mod - 1; 1797 packet++; 1798 1799 /* link completed itds into the schedule */ 1800 if (((next_uframe >> 3) != frame) 1801 || packet == urb->number_of_packets) { 1802 itd_link(ehci, frame & (ehci->periodic_size - 1), itd); 1803 itd = NULL; 1804 } 1805 } 1806 stream->next_uframe = next_uframe; 1807 1808 /* don't need that schedule data any more */ 1809 iso_sched_free(stream, iso_sched); 1810 urb->hcpriv = stream; 1811 1812 ++ehci->isoc_count; 1813 enable_periodic(ehci); 1814 } 1815 1816 #define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR) 1817 1818 /* Process and recycle a completed ITD. Return true iff its urb completed, 1819 * and hence its completion callback probably added things to the hardware 1820 * schedule. 1821 * 1822 * Note that we carefully avoid recycling this descriptor until after any 1823 * completion callback runs, so that it won't be reused quickly. That is, 1824 * assuming (a) no more than two urbs per frame on this endpoint, and also 1825 * (b) only this endpoint's completions submit URBs. It seems some silicon 1826 * corrupts things if you reuse completed descriptors very quickly... 1827 */ 1828 static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd) 1829 { 1830 struct urb *urb = itd->urb; 1831 struct usb_iso_packet_descriptor *desc; 1832 u32 t; 1833 unsigned uframe; 1834 int urb_index = -1; 1835 struct ehci_iso_stream *stream = itd->stream; 1836 struct usb_device *dev; 1837 bool retval = false; 1838 1839 /* for each uframe with a packet */ 1840 for (uframe = 0; uframe < 8; uframe++) { 1841 if (likely(itd->index[uframe] == -1)) 1842 continue; 1843 urb_index = itd->index[uframe]; 1844 desc = &urb->iso_frame_desc[urb_index]; 1845 1846 t = hc32_to_cpup(ehci, &itd->hw_transaction[uframe]); 1847 itd->hw_transaction[uframe] = 0; 1848 1849 /* report transfer status */ 1850 if (unlikely(t & ISO_ERRS)) { 1851 urb->error_count++; 1852 if (t & EHCI_ISOC_BUF_ERR) 1853 desc->status = usb_pipein(urb->pipe) 1854 ? -ENOSR /* hc couldn't read */ 1855 : -ECOMM; /* hc couldn't write */ 1856 else if (t & EHCI_ISOC_BABBLE) 1857 desc->status = -EOVERFLOW; 1858 else /* (t & EHCI_ISOC_XACTERR) */ 1859 desc->status = -EPROTO; 1860 1861 /* HC need not update length with this error */ 1862 if (!(t & EHCI_ISOC_BABBLE)) { 1863 desc->actual_length = EHCI_ITD_LENGTH(t); 1864 urb->actual_length += desc->actual_length; 1865 } 1866 } else if (likely((t & EHCI_ISOC_ACTIVE) == 0)) { 1867 desc->status = 0; 1868 desc->actual_length = EHCI_ITD_LENGTH(t); 1869 urb->actual_length += desc->actual_length; 1870 } else { 1871 /* URB was too late */ 1872 urb->error_count++; 1873 } 1874 } 1875 1876 /* handle completion now? */ 1877 if (likely((urb_index + 1) != urb->number_of_packets)) 1878 goto done; 1879 1880 /* 1881 * ASSERT: it's really the last itd for this urb 1882 * list_for_each_entry (itd, &stream->td_list, itd_list) 1883 * BUG_ON(itd->urb == urb); 1884 */ 1885 1886 /* give urb back to the driver; completion often (re)submits */ 1887 dev = urb->dev; 1888 ehci_urb_done(ehci, urb, 0); 1889 retval = true; 1890 urb = NULL; 1891 1892 --ehci->isoc_count; 1893 disable_periodic(ehci); 1894 1895 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--; 1896 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { 1897 if (ehci->amd_pll_fix == 1) 1898 usb_amd_quirk_pll_enable(); 1899 } 1900 1901 if (unlikely(list_is_singular(&stream->td_list))) 1902 ehci_to_hcd(ehci)->self.bandwidth_allocated 1903 -= stream->bandwidth; 1904 1905 done: 1906 itd->urb = NULL; 1907 1908 /* Add to the end of the free list for later reuse */ 1909 list_move_tail(&itd->itd_list, &stream->free_list); 1910 1911 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */ 1912 if (list_empty(&stream->td_list)) { 1913 list_splice_tail_init(&stream->free_list, 1914 &ehci->cached_itd_list); 1915 start_free_itds(ehci); 1916 } 1917 1918 return retval; 1919 } 1920 1921 /*-------------------------------------------------------------------------*/ 1922 1923 static int itd_submit(struct ehci_hcd *ehci, struct urb *urb, 1924 gfp_t mem_flags) 1925 { 1926 int status = -EINVAL; 1927 unsigned long flags; 1928 struct ehci_iso_stream *stream; 1929 1930 /* Get iso_stream head */ 1931 stream = iso_stream_find(ehci, urb); 1932 if (unlikely(stream == NULL)) { 1933 ehci_dbg(ehci, "can't get iso stream\n"); 1934 return -ENOMEM; 1935 } 1936 if (unlikely(urb->interval != stream->uperiod)) { 1937 ehci_dbg(ehci, "can't change iso interval %d --> %d\n", 1938 stream->uperiod, urb->interval); 1939 goto done; 1940 } 1941 1942 #ifdef EHCI_URB_TRACE 1943 ehci_dbg(ehci, 1944 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n", 1945 __func__, urb->dev->devpath, urb, 1946 usb_pipeendpoint(urb->pipe), 1947 usb_pipein(urb->pipe) ? "in" : "out", 1948 urb->transfer_buffer_length, 1949 urb->number_of_packets, urb->interval, 1950 stream); 1951 #endif 1952 1953 /* allocate ITDs w/o locking anything */ 1954 status = itd_urb_transaction(stream, ehci, urb, mem_flags); 1955 if (unlikely(status < 0)) { 1956 ehci_dbg(ehci, "can't init itds\n"); 1957 goto done; 1958 } 1959 1960 /* schedule ... need to lock */ 1961 spin_lock_irqsave(&ehci->lock, flags); 1962 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { 1963 status = -ESHUTDOWN; 1964 goto done_not_linked; 1965 } 1966 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); 1967 if (unlikely(status)) 1968 goto done_not_linked; 1969 status = iso_stream_schedule(ehci, urb, stream); 1970 if (likely(status == 0)) { 1971 itd_link_urb(ehci, urb, ehci->periodic_size << 3, stream); 1972 } else if (status > 0) { 1973 status = 0; 1974 ehci_urb_done(ehci, urb, 0); 1975 } else { 1976 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 1977 } 1978 done_not_linked: 1979 spin_unlock_irqrestore(&ehci->lock, flags); 1980 done: 1981 return status; 1982 } 1983 1984 /*-------------------------------------------------------------------------*/ 1985 1986 /* 1987 * "Split ISO TDs" ... used for USB 1.1 devices going through the 1988 * TTs in USB 2.0 hubs. These need microframe scheduling. 1989 */ 1990 1991 static inline void 1992 sitd_sched_init( 1993 struct ehci_hcd *ehci, 1994 struct ehci_iso_sched *iso_sched, 1995 struct ehci_iso_stream *stream, 1996 struct urb *urb 1997 ) 1998 { 1999 unsigned i; 2000 dma_addr_t dma = urb->transfer_dma; 2001 2002 /* how many frames are needed for these transfers */ 2003 iso_sched->span = urb->number_of_packets * stream->ps.period; 2004 2005 /* figure out per-frame sitd fields that we'll need later 2006 * when we fit new sitds into the schedule. 2007 */ 2008 for (i = 0; i < urb->number_of_packets; i++) { 2009 struct ehci_iso_packet *packet = &iso_sched->packet[i]; 2010 unsigned length; 2011 dma_addr_t buf; 2012 u32 trans; 2013 2014 length = urb->iso_frame_desc[i].length & 0x03ff; 2015 buf = dma + urb->iso_frame_desc[i].offset; 2016 2017 trans = SITD_STS_ACTIVE; 2018 if (((i + 1) == urb->number_of_packets) 2019 && !(urb->transfer_flags & URB_NO_INTERRUPT)) 2020 trans |= SITD_IOC; 2021 trans |= length << 16; 2022 packet->transaction = cpu_to_hc32(ehci, trans); 2023 2024 /* might need to cross a buffer page within a td */ 2025 packet->bufp = buf; 2026 packet->buf1 = (buf + length) & ~0x0fff; 2027 if (packet->buf1 != (buf & ~(u64)0x0fff)) 2028 packet->cross = 1; 2029 2030 /* OUT uses multiple start-splits */ 2031 if (stream->bEndpointAddress & USB_DIR_IN) 2032 continue; 2033 length = (length + 187) / 188; 2034 if (length > 1) /* BEGIN vs ALL */ 2035 length |= 1 << 3; 2036 packet->buf1 |= length; 2037 } 2038 } 2039 2040 static int 2041 sitd_urb_transaction( 2042 struct ehci_iso_stream *stream, 2043 struct ehci_hcd *ehci, 2044 struct urb *urb, 2045 gfp_t mem_flags 2046 ) 2047 { 2048 struct ehci_sitd *sitd; 2049 dma_addr_t sitd_dma; 2050 int i; 2051 struct ehci_iso_sched *iso_sched; 2052 unsigned long flags; 2053 2054 iso_sched = iso_sched_alloc(urb->number_of_packets, mem_flags); 2055 if (iso_sched == NULL) 2056 return -ENOMEM; 2057 2058 sitd_sched_init(ehci, iso_sched, stream, urb); 2059 2060 /* allocate/init sITDs */ 2061 spin_lock_irqsave(&ehci->lock, flags); 2062 for (i = 0; i < urb->number_of_packets; i++) { 2063 2064 /* NOTE: for now, we don't try to handle wraparound cases 2065 * for IN (using sitd->hw_backpointer, like a FSTN), which 2066 * means we never need two sitds for full speed packets. 2067 */ 2068 2069 /* 2070 * Use siTDs from the free list, but not siTDs that may 2071 * still be in use by the hardware. 2072 */ 2073 if (likely(!list_empty(&stream->free_list))) { 2074 sitd = list_first_entry(&stream->free_list, 2075 struct ehci_sitd, sitd_list); 2076 if (sitd->frame == ehci->now_frame) 2077 goto alloc_sitd; 2078 list_del(&sitd->sitd_list); 2079 sitd_dma = sitd->sitd_dma; 2080 } else { 2081 alloc_sitd: 2082 spin_unlock_irqrestore(&ehci->lock, flags); 2083 sitd = dma_pool_zalloc(ehci->sitd_pool, mem_flags, 2084 &sitd_dma); 2085 spin_lock_irqsave(&ehci->lock, flags); 2086 if (!sitd) { 2087 iso_sched_free(stream, iso_sched); 2088 spin_unlock_irqrestore(&ehci->lock, flags); 2089 return -ENOMEM; 2090 } 2091 } 2092 2093 sitd->sitd_dma = sitd_dma; 2094 sitd->frame = NO_FRAME; 2095 list_add(&sitd->sitd_list, &iso_sched->td_list); 2096 } 2097 2098 /* temporarily store schedule info in hcpriv */ 2099 urb->hcpriv = iso_sched; 2100 urb->error_count = 0; 2101 2102 spin_unlock_irqrestore(&ehci->lock, flags); 2103 return 0; 2104 } 2105 2106 /*-------------------------------------------------------------------------*/ 2107 2108 static inline void 2109 sitd_patch( 2110 struct ehci_hcd *ehci, 2111 struct ehci_iso_stream *stream, 2112 struct ehci_sitd *sitd, 2113 struct ehci_iso_sched *iso_sched, 2114 unsigned index 2115 ) 2116 { 2117 struct ehci_iso_packet *uf = &iso_sched->packet[index]; 2118 u64 bufp; 2119 2120 sitd->hw_next = EHCI_LIST_END(ehci); 2121 sitd->hw_fullspeed_ep = stream->address; 2122 sitd->hw_uframe = stream->splits; 2123 sitd->hw_results = uf->transaction; 2124 sitd->hw_backpointer = EHCI_LIST_END(ehci); 2125 2126 bufp = uf->bufp; 2127 sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp); 2128 sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32); 2129 2130 sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1); 2131 if (uf->cross) 2132 bufp += 4096; 2133 sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32); 2134 sitd->index = index; 2135 } 2136 2137 static inline void 2138 sitd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd) 2139 { 2140 /* note: sitd ordering could matter (CSPLIT then SSPLIT) */ 2141 sitd->sitd_next = ehci->pshadow[frame]; 2142 sitd->hw_next = ehci->periodic[frame]; 2143 ehci->pshadow[frame].sitd = sitd; 2144 sitd->frame = frame; 2145 wmb(); 2146 ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD); 2147 } 2148 2149 /* fit urb's sitds into the selected schedule slot; activate as needed */ 2150 static void sitd_link_urb( 2151 struct ehci_hcd *ehci, 2152 struct urb *urb, 2153 unsigned mod, 2154 struct ehci_iso_stream *stream 2155 ) 2156 { 2157 int packet; 2158 unsigned next_uframe; 2159 struct ehci_iso_sched *sched = urb->hcpriv; 2160 struct ehci_sitd *sitd; 2161 2162 next_uframe = stream->next_uframe; 2163 2164 if (list_empty(&stream->td_list)) 2165 /* usbfs ignores TT bandwidth */ 2166 ehci_to_hcd(ehci)->self.bandwidth_allocated 2167 += stream->bandwidth; 2168 2169 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { 2170 if (ehci->amd_pll_fix == 1) 2171 usb_amd_quirk_pll_disable(); 2172 } 2173 2174 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++; 2175 2176 /* fill sITDs frame by frame */ 2177 for (packet = sched->first_packet, sitd = NULL; 2178 packet < urb->number_of_packets; 2179 packet++) { 2180 2181 /* ASSERT: we have all necessary sitds */ 2182 BUG_ON(list_empty(&sched->td_list)); 2183 2184 /* ASSERT: no itds for this endpoint in this frame */ 2185 2186 sitd = list_entry(sched->td_list.next, 2187 struct ehci_sitd, sitd_list); 2188 list_move_tail(&sitd->sitd_list, &stream->td_list); 2189 sitd->stream = stream; 2190 sitd->urb = urb; 2191 2192 sitd_patch(ehci, stream, sitd, sched, packet); 2193 sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1), 2194 sitd); 2195 2196 next_uframe += stream->uperiod; 2197 } 2198 stream->next_uframe = next_uframe & (mod - 1); 2199 2200 /* don't need that schedule data any more */ 2201 iso_sched_free(stream, sched); 2202 urb->hcpriv = stream; 2203 2204 ++ehci->isoc_count; 2205 enable_periodic(ehci); 2206 } 2207 2208 /*-------------------------------------------------------------------------*/ 2209 2210 #define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \ 2211 | SITD_STS_XACT | SITD_STS_MMF) 2212 2213 /* Process and recycle a completed SITD. Return true iff its urb completed, 2214 * and hence its completion callback probably added things to the hardware 2215 * schedule. 2216 * 2217 * Note that we carefully avoid recycling this descriptor until after any 2218 * completion callback runs, so that it won't be reused quickly. That is, 2219 * assuming (a) no more than two urbs per frame on this endpoint, and also 2220 * (b) only this endpoint's completions submit URBs. It seems some silicon 2221 * corrupts things if you reuse completed descriptors very quickly... 2222 */ 2223 static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd) 2224 { 2225 struct urb *urb = sitd->urb; 2226 struct usb_iso_packet_descriptor *desc; 2227 u32 t; 2228 int urb_index; 2229 struct ehci_iso_stream *stream = sitd->stream; 2230 struct usb_device *dev; 2231 bool retval = false; 2232 2233 urb_index = sitd->index; 2234 desc = &urb->iso_frame_desc[urb_index]; 2235 t = hc32_to_cpup(ehci, &sitd->hw_results); 2236 2237 /* report transfer status */ 2238 if (unlikely(t & SITD_ERRS)) { 2239 urb->error_count++; 2240 if (t & SITD_STS_DBE) 2241 desc->status = usb_pipein(urb->pipe) 2242 ? -ENOSR /* hc couldn't read */ 2243 : -ECOMM; /* hc couldn't write */ 2244 else if (t & SITD_STS_BABBLE) 2245 desc->status = -EOVERFLOW; 2246 else /* XACT, MMF, etc */ 2247 desc->status = -EPROTO; 2248 } else if (unlikely(t & SITD_STS_ACTIVE)) { 2249 /* URB was too late */ 2250 urb->error_count++; 2251 } else { 2252 desc->status = 0; 2253 desc->actual_length = desc->length - SITD_LENGTH(t); 2254 urb->actual_length += desc->actual_length; 2255 } 2256 2257 /* handle completion now? */ 2258 if ((urb_index + 1) != urb->number_of_packets) 2259 goto done; 2260 2261 /* 2262 * ASSERT: it's really the last sitd for this urb 2263 * list_for_each_entry (sitd, &stream->td_list, sitd_list) 2264 * BUG_ON(sitd->urb == urb); 2265 */ 2266 2267 /* give urb back to the driver; completion often (re)submits */ 2268 dev = urb->dev; 2269 ehci_urb_done(ehci, urb, 0); 2270 retval = true; 2271 urb = NULL; 2272 2273 --ehci->isoc_count; 2274 disable_periodic(ehci); 2275 2276 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--; 2277 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { 2278 if (ehci->amd_pll_fix == 1) 2279 usb_amd_quirk_pll_enable(); 2280 } 2281 2282 if (list_is_singular(&stream->td_list)) 2283 ehci_to_hcd(ehci)->self.bandwidth_allocated 2284 -= stream->bandwidth; 2285 2286 done: 2287 sitd->urb = NULL; 2288 2289 /* Add to the end of the free list for later reuse */ 2290 list_move_tail(&sitd->sitd_list, &stream->free_list); 2291 2292 /* Recycle the siTDs when the pipeline is empty (ep no longer in use) */ 2293 if (list_empty(&stream->td_list)) { 2294 list_splice_tail_init(&stream->free_list, 2295 &ehci->cached_sitd_list); 2296 start_free_itds(ehci); 2297 } 2298 2299 return retval; 2300 } 2301 2302 2303 static int sitd_submit(struct ehci_hcd *ehci, struct urb *urb, 2304 gfp_t mem_flags) 2305 { 2306 int status = -EINVAL; 2307 unsigned long flags; 2308 struct ehci_iso_stream *stream; 2309 2310 /* Get iso_stream head */ 2311 stream = iso_stream_find(ehci, urb); 2312 if (stream == NULL) { 2313 ehci_dbg(ehci, "can't get iso stream\n"); 2314 return -ENOMEM; 2315 } 2316 if (urb->interval != stream->ps.period) { 2317 ehci_dbg(ehci, "can't change iso interval %d --> %d\n", 2318 stream->ps.period, urb->interval); 2319 goto done; 2320 } 2321 2322 #ifdef EHCI_URB_TRACE 2323 ehci_dbg(ehci, 2324 "submit %p dev%s ep%d%s-iso len %d\n", 2325 urb, urb->dev->devpath, 2326 usb_pipeendpoint(urb->pipe), 2327 usb_pipein(urb->pipe) ? "in" : "out", 2328 urb->transfer_buffer_length); 2329 #endif 2330 2331 /* allocate SITDs */ 2332 status = sitd_urb_transaction(stream, ehci, urb, mem_flags); 2333 if (status < 0) { 2334 ehci_dbg(ehci, "can't init sitds\n"); 2335 goto done; 2336 } 2337 2338 /* schedule ... need to lock */ 2339 spin_lock_irqsave(&ehci->lock, flags); 2340 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { 2341 status = -ESHUTDOWN; 2342 goto done_not_linked; 2343 } 2344 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); 2345 if (unlikely(status)) 2346 goto done_not_linked; 2347 status = iso_stream_schedule(ehci, urb, stream); 2348 if (likely(status == 0)) { 2349 sitd_link_urb(ehci, urb, ehci->periodic_size << 3, stream); 2350 } else if (status > 0) { 2351 status = 0; 2352 ehci_urb_done(ehci, urb, 0); 2353 } else { 2354 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 2355 } 2356 done_not_linked: 2357 spin_unlock_irqrestore(&ehci->lock, flags); 2358 done: 2359 return status; 2360 } 2361 2362 /*-------------------------------------------------------------------------*/ 2363 2364 static void scan_isoc(struct ehci_hcd *ehci) 2365 { 2366 unsigned uf, now_frame, frame; 2367 unsigned fmask = ehci->periodic_size - 1; 2368 bool modified, live; 2369 union ehci_shadow q, *q_p; 2370 __hc32 type, *hw_p; 2371 2372 /* 2373 * When running, scan from last scan point up to "now" 2374 * else clean up by scanning everything that's left. 2375 * Touches as few pages as possible: cache-friendly. 2376 */ 2377 if (ehci->rh_state >= EHCI_RH_RUNNING) { 2378 uf = ehci_read_frame_index(ehci); 2379 now_frame = (uf >> 3) & fmask; 2380 live = true; 2381 } else { 2382 now_frame = (ehci->last_iso_frame - 1) & fmask; 2383 live = false; 2384 } 2385 ehci->now_frame = now_frame; 2386 2387 frame = ehci->last_iso_frame; 2388 2389 restart: 2390 /* Scan each element in frame's queue for completions */ 2391 q_p = &ehci->pshadow[frame]; 2392 hw_p = &ehci->periodic[frame]; 2393 q.ptr = q_p->ptr; 2394 type = Q_NEXT_TYPE(ehci, *hw_p); 2395 modified = false; 2396 2397 while (q.ptr != NULL) { 2398 switch (hc32_to_cpu(ehci, type)) { 2399 case Q_TYPE_ITD: 2400 /* 2401 * If this ITD is still active, leave it for 2402 * later processing ... check the next entry. 2403 * No need to check for activity unless the 2404 * frame is current. 2405 */ 2406 if (frame == now_frame && live) { 2407 rmb(); 2408 for (uf = 0; uf < 8; uf++) { 2409 if (q.itd->hw_transaction[uf] & 2410 ITD_ACTIVE(ehci)) 2411 break; 2412 } 2413 if (uf < 8) { 2414 q_p = &q.itd->itd_next; 2415 hw_p = &q.itd->hw_next; 2416 type = Q_NEXT_TYPE(ehci, 2417 q.itd->hw_next); 2418 q = *q_p; 2419 break; 2420 } 2421 } 2422 2423 /* 2424 * Take finished ITDs out of the schedule 2425 * and process them: recycle, maybe report 2426 * URB completion. HC won't cache the 2427 * pointer for much longer, if at all. 2428 */ 2429 *q_p = q.itd->itd_next; 2430 if (!ehci->use_dummy_qh || 2431 q.itd->hw_next != EHCI_LIST_END(ehci)) 2432 *hw_p = q.itd->hw_next; 2433 else 2434 *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma); 2435 type = Q_NEXT_TYPE(ehci, q.itd->hw_next); 2436 wmb(); 2437 modified = itd_complete(ehci, q.itd); 2438 q = *q_p; 2439 break; 2440 case Q_TYPE_SITD: 2441 /* 2442 * If this SITD is still active, leave it for 2443 * later processing ... check the next entry. 2444 * No need to check for activity unless the 2445 * frame is current. 2446 */ 2447 if (((frame == now_frame) || 2448 (((frame + 1) & fmask) == now_frame)) 2449 && live 2450 && (q.sitd->hw_results & SITD_ACTIVE(ehci))) { 2451 2452 q_p = &q.sitd->sitd_next; 2453 hw_p = &q.sitd->hw_next; 2454 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next); 2455 q = *q_p; 2456 break; 2457 } 2458 2459 /* 2460 * Take finished SITDs out of the schedule 2461 * and process them: recycle, maybe report 2462 * URB completion. 2463 */ 2464 *q_p = q.sitd->sitd_next; 2465 if (!ehci->use_dummy_qh || 2466 q.sitd->hw_next != EHCI_LIST_END(ehci)) 2467 *hw_p = q.sitd->hw_next; 2468 else 2469 *hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma); 2470 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next); 2471 wmb(); 2472 modified = sitd_complete(ehci, q.sitd); 2473 q = *q_p; 2474 break; 2475 default: 2476 ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n", 2477 type, frame, q.ptr); 2478 /* BUG(); */ 2479 /* FALL THROUGH */ 2480 case Q_TYPE_QH: 2481 case Q_TYPE_FSTN: 2482 /* End of the iTDs and siTDs */ 2483 q.ptr = NULL; 2484 break; 2485 } 2486 2487 /* Assume completion callbacks modify the queue */ 2488 if (unlikely(modified && ehci->isoc_count > 0)) 2489 goto restart; 2490 } 2491 2492 /* Stop when we have reached the current frame */ 2493 if (frame == now_frame) 2494 return; 2495 2496 /* The last frame may still have active siTDs */ 2497 ehci->last_iso_frame = frame; 2498 frame = (frame + 1) & fmask; 2499 2500 goto restart; 2501 } 2502