xref: /openbmc/linux/drivers/usb/host/ehci-sched.c (revision 7f1005dd)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2001-2004 by David Brownell
4  * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
5  */
6 
7 /* this file is part of ehci-hcd.c */
8 
9 /*-------------------------------------------------------------------------*/
10 
11 /*
12  * EHCI scheduled transaction support:  interrupt, iso, split iso
13  * These are called "periodic" transactions in the EHCI spec.
14  *
15  * Note that for interrupt transfers, the QH/QTD manipulation is shared
16  * with the "asynchronous" transaction support (control/bulk transfers).
17  * The only real difference is in how interrupt transfers are scheduled.
18  *
19  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
20  * It keeps track of every ITD (or SITD) that's linked, and holds enough
21  * pre-calculated schedule data to make appending to the queue be quick.
22  */
23 
24 static int ehci_get_frame(struct usb_hcd *hcd);
25 
26 /*
27  * periodic_next_shadow - return "next" pointer on shadow list
28  * @periodic: host pointer to qh/itd/sitd
29  * @tag: hardware tag for type of this record
30  */
31 static union ehci_shadow *
32 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
33 		__hc32 tag)
34 {
35 	switch (hc32_to_cpu(ehci, tag)) {
36 	case Q_TYPE_QH:
37 		return &periodic->qh->qh_next;
38 	case Q_TYPE_FSTN:
39 		return &periodic->fstn->fstn_next;
40 	case Q_TYPE_ITD:
41 		return &periodic->itd->itd_next;
42 	/* case Q_TYPE_SITD: */
43 	default:
44 		return &periodic->sitd->sitd_next;
45 	}
46 }
47 
48 static __hc32 *
49 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
50 		__hc32 tag)
51 {
52 	switch (hc32_to_cpu(ehci, tag)) {
53 	/* our ehci_shadow.qh is actually software part */
54 	case Q_TYPE_QH:
55 		return &periodic->qh->hw->hw_next;
56 	/* others are hw parts */
57 	default:
58 		return periodic->hw_next;
59 	}
60 }
61 
62 /* caller must hold ehci->lock */
63 static void periodic_unlink(struct ehci_hcd *ehci, unsigned frame, void *ptr)
64 {
65 	union ehci_shadow	*prev_p = &ehci->pshadow[frame];
66 	__hc32			*hw_p = &ehci->periodic[frame];
67 	union ehci_shadow	here = *prev_p;
68 
69 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
70 	while (here.ptr && here.ptr != ptr) {
71 		prev_p = periodic_next_shadow(ehci, prev_p,
72 				Q_NEXT_TYPE(ehci, *hw_p));
73 		hw_p = shadow_next_periodic(ehci, &here,
74 				Q_NEXT_TYPE(ehci, *hw_p));
75 		here = *prev_p;
76 	}
77 	/* an interrupt entry (at list end) could have been shared */
78 	if (!here.ptr)
79 		return;
80 
81 	/* update shadow and hardware lists ... the old "next" pointers
82 	 * from ptr may still be in use, the caller updates them.
83 	 */
84 	*prev_p = *periodic_next_shadow(ehci, &here,
85 			Q_NEXT_TYPE(ehci, *hw_p));
86 
87 	if (!ehci->use_dummy_qh ||
88 	    *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
89 			!= EHCI_LIST_END(ehci))
90 		*hw_p = *shadow_next_periodic(ehci, &here,
91 				Q_NEXT_TYPE(ehci, *hw_p));
92 	else
93 		*hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
94 }
95 
96 /*-------------------------------------------------------------------------*/
97 
98 /* Bandwidth and TT management */
99 
100 /* Find the TT data structure for this device; create it if necessary */
101 static struct ehci_tt *find_tt(struct usb_device *udev)
102 {
103 	struct usb_tt		*utt = udev->tt;
104 	struct ehci_tt		*tt, **tt_index, **ptt;
105 	unsigned		port;
106 	bool			allocated_index = false;
107 
108 	if (!utt)
109 		return NULL;		/* Not below a TT */
110 
111 	/*
112 	 * Find/create our data structure.
113 	 * For hubs with a single TT, we get it directly.
114 	 * For hubs with multiple TTs, there's an extra level of pointers.
115 	 */
116 	tt_index = NULL;
117 	if (utt->multi) {
118 		tt_index = utt->hcpriv;
119 		if (!tt_index) {		/* Create the index array */
120 			tt_index = kcalloc(utt->hub->maxchild,
121 					   sizeof(*tt_index),
122 					   GFP_ATOMIC);
123 			if (!tt_index)
124 				return ERR_PTR(-ENOMEM);
125 			utt->hcpriv = tt_index;
126 			allocated_index = true;
127 		}
128 		port = udev->ttport - 1;
129 		ptt = &tt_index[port];
130 	} else {
131 		port = 0;
132 		ptt = (struct ehci_tt **) &utt->hcpriv;
133 	}
134 
135 	tt = *ptt;
136 	if (!tt) {				/* Create the ehci_tt */
137 		struct ehci_hcd		*ehci =
138 				hcd_to_ehci(bus_to_hcd(udev->bus));
139 
140 		tt = kzalloc(sizeof(*tt), GFP_ATOMIC);
141 		if (!tt) {
142 			if (allocated_index) {
143 				utt->hcpriv = NULL;
144 				kfree(tt_index);
145 			}
146 			return ERR_PTR(-ENOMEM);
147 		}
148 		list_add_tail(&tt->tt_list, &ehci->tt_list);
149 		INIT_LIST_HEAD(&tt->ps_list);
150 		tt->usb_tt = utt;
151 		tt->tt_port = port;
152 		*ptt = tt;
153 	}
154 
155 	return tt;
156 }
157 
158 /* Release the TT above udev, if it's not in use */
159 static void drop_tt(struct usb_device *udev)
160 {
161 	struct usb_tt		*utt = udev->tt;
162 	struct ehci_tt		*tt, **tt_index, **ptt;
163 	int			cnt, i;
164 
165 	if (!utt || !utt->hcpriv)
166 		return;		/* Not below a TT, or never allocated */
167 
168 	cnt = 0;
169 	if (utt->multi) {
170 		tt_index = utt->hcpriv;
171 		ptt = &tt_index[udev->ttport - 1];
172 
173 		/* How many entries are left in tt_index? */
174 		for (i = 0; i < utt->hub->maxchild; ++i)
175 			cnt += !!tt_index[i];
176 	} else {
177 		tt_index = NULL;
178 		ptt = (struct ehci_tt **) &utt->hcpriv;
179 	}
180 
181 	tt = *ptt;
182 	if (!tt || !list_empty(&tt->ps_list))
183 		return;		/* never allocated, or still in use */
184 
185 	list_del(&tt->tt_list);
186 	*ptt = NULL;
187 	kfree(tt);
188 	if (cnt == 1) {
189 		utt->hcpriv = NULL;
190 		kfree(tt_index);
191 	}
192 }
193 
194 static void bandwidth_dbg(struct ehci_hcd *ehci, int sign, char *type,
195 		struct ehci_per_sched *ps)
196 {
197 	dev_dbg(&ps->udev->dev,
198 			"ep %02x: %s %s @ %u+%u (%u.%u+%u) [%u/%u us] mask %04x\n",
199 			ps->ep->desc.bEndpointAddress,
200 			(sign >= 0 ? "reserve" : "release"), type,
201 			(ps->bw_phase << 3) + ps->phase_uf, ps->bw_uperiod,
202 			ps->phase, ps->phase_uf, ps->period,
203 			ps->usecs, ps->c_usecs, ps->cs_mask);
204 }
205 
206 static void reserve_release_intr_bandwidth(struct ehci_hcd *ehci,
207 		struct ehci_qh *qh, int sign)
208 {
209 	unsigned		start_uf;
210 	unsigned		i, j, m;
211 	int			usecs = qh->ps.usecs;
212 	int			c_usecs = qh->ps.c_usecs;
213 	int			tt_usecs = qh->ps.tt_usecs;
214 	struct ehci_tt		*tt;
215 
216 	if (qh->ps.phase == NO_FRAME)	/* Bandwidth wasn't reserved */
217 		return;
218 	start_uf = qh->ps.bw_phase << 3;
219 
220 	bandwidth_dbg(ehci, sign, "intr", &qh->ps);
221 
222 	if (sign < 0) {		/* Release bandwidth */
223 		usecs = -usecs;
224 		c_usecs = -c_usecs;
225 		tt_usecs = -tt_usecs;
226 	}
227 
228 	/* Entire transaction (high speed) or start-split (full/low speed) */
229 	for (i = start_uf + qh->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
230 			i += qh->ps.bw_uperiod)
231 		ehci->bandwidth[i] += usecs;
232 
233 	/* Complete-split (full/low speed) */
234 	if (qh->ps.c_usecs) {
235 		/* NOTE: adjustments needed for FSTN */
236 		for (i = start_uf; i < EHCI_BANDWIDTH_SIZE;
237 				i += qh->ps.bw_uperiod) {
238 			for ((j = 2, m = 1 << (j+8)); j < 8; (++j, m <<= 1)) {
239 				if (qh->ps.cs_mask & m)
240 					ehci->bandwidth[i+j] += c_usecs;
241 			}
242 		}
243 	}
244 
245 	/* FS/LS bus bandwidth */
246 	if (tt_usecs) {
247 		/*
248 		 * find_tt() will not return any error here as we have
249 		 * already called find_tt() before calling this function
250 		 * and checked for any error return. The previous call
251 		 * would have created the data structure.
252 		 */
253 		tt = find_tt(qh->ps.udev);
254 		if (sign > 0)
255 			list_add_tail(&qh->ps.ps_list, &tt->ps_list);
256 		else
257 			list_del(&qh->ps.ps_list);
258 
259 		for (i = start_uf >> 3; i < EHCI_BANDWIDTH_FRAMES;
260 				i += qh->ps.bw_period)
261 			tt->bandwidth[i] += tt_usecs;
262 	}
263 }
264 
265 /*-------------------------------------------------------------------------*/
266 
267 static void compute_tt_budget(u8 budget_table[EHCI_BANDWIDTH_SIZE],
268 		struct ehci_tt *tt)
269 {
270 	struct ehci_per_sched	*ps;
271 	unsigned		uframe, uf, x;
272 	u8			*budget_line;
273 
274 	if (!tt)
275 		return;
276 	memset(budget_table, 0, EHCI_BANDWIDTH_SIZE);
277 
278 	/* Add up the contributions from all the endpoints using this TT */
279 	list_for_each_entry(ps, &tt->ps_list, ps_list) {
280 		for (uframe = ps->bw_phase << 3; uframe < EHCI_BANDWIDTH_SIZE;
281 				uframe += ps->bw_uperiod) {
282 			budget_line = &budget_table[uframe];
283 			x = ps->tt_usecs;
284 
285 			/* propagate the time forward */
286 			for (uf = ps->phase_uf; uf < 8; ++uf) {
287 				x += budget_line[uf];
288 
289 				/* Each microframe lasts 125 us */
290 				if (x <= 125) {
291 					budget_line[uf] = x;
292 					break;
293 				}
294 				budget_line[uf] = 125;
295 				x -= 125;
296 			}
297 		}
298 	}
299 }
300 
301 static int __maybe_unused same_tt(struct usb_device *dev1,
302 		struct usb_device *dev2)
303 {
304 	if (!dev1->tt || !dev2->tt)
305 		return 0;
306 	if (dev1->tt != dev2->tt)
307 		return 0;
308 	if (dev1->tt->multi)
309 		return dev1->ttport == dev2->ttport;
310 	else
311 		return 1;
312 }
313 
314 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
315 
316 static const unsigned char
317 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
318 
319 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
320 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
321 {
322 	int i;
323 
324 	for (i = 0; i < 7; i++) {
325 		if (max_tt_usecs[i] < tt_usecs[i]) {
326 			tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
327 			tt_usecs[i] = max_tt_usecs[i];
328 		}
329 	}
330 }
331 
332 /*
333  * Return true if the device's tt's downstream bus is available for a
334  * periodic transfer of the specified length (usecs), starting at the
335  * specified frame/uframe.  Note that (as summarized in section 11.19
336  * of the usb 2.0 spec) TTs can buffer multiple transactions for each
337  * uframe.
338  *
339  * The uframe parameter is when the fullspeed/lowspeed transfer
340  * should be executed in "B-frame" terms, which is the same as the
341  * highspeed ssplit's uframe (which is in "H-frame" terms).  For example
342  * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
343  * See the EHCI spec sec 4.5 and fig 4.7.
344  *
345  * This checks if the full/lowspeed bus, at the specified starting uframe,
346  * has the specified bandwidth available, according to rules listed
347  * in USB 2.0 spec section 11.18.1 fig 11-60.
348  *
349  * This does not check if the transfer would exceed the max ssplit
350  * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
351  * since proper scheduling limits ssplits to less than 16 per uframe.
352  */
353 static int tt_available(
354 	struct ehci_hcd		*ehci,
355 	struct ehci_per_sched	*ps,
356 	struct ehci_tt		*tt,
357 	unsigned		frame,
358 	unsigned		uframe
359 )
360 {
361 	unsigned		period = ps->bw_period;
362 	unsigned		usecs = ps->tt_usecs;
363 
364 	if ((period == 0) || (uframe >= 7))	/* error */
365 		return 0;
366 
367 	for (frame &= period - 1; frame < EHCI_BANDWIDTH_FRAMES;
368 			frame += period) {
369 		unsigned	i, uf;
370 		unsigned short	tt_usecs[8];
371 
372 		if (tt->bandwidth[frame] + usecs > 900)
373 			return 0;
374 
375 		uf = frame << 3;
376 		for (i = 0; i < 8; (++i, ++uf))
377 			tt_usecs[i] = ehci->tt_budget[uf];
378 
379 		if (max_tt_usecs[uframe] <= tt_usecs[uframe])
380 			return 0;
381 
382 		/* special case for isoc transfers larger than 125us:
383 		 * the first and each subsequent fully used uframe
384 		 * must be empty, so as to not illegally delay
385 		 * already scheduled transactions
386 		 */
387 		if (usecs > 125) {
388 			int ufs = (usecs / 125);
389 
390 			for (i = uframe; i < (uframe + ufs) && i < 8; i++)
391 				if (tt_usecs[i] > 0)
392 					return 0;
393 		}
394 
395 		tt_usecs[uframe] += usecs;
396 
397 		carryover_tt_bandwidth(tt_usecs);
398 
399 		/* fail if the carryover pushed bw past the last uframe's limit */
400 		if (max_tt_usecs[7] < tt_usecs[7])
401 			return 0;
402 	}
403 
404 	return 1;
405 }
406 
407 #else
408 
409 /* return true iff the device's transaction translator is available
410  * for a periodic transfer starting at the specified frame, using
411  * all the uframes in the mask.
412  */
413 static int tt_no_collision(
414 	struct ehci_hcd		*ehci,
415 	unsigned		period,
416 	struct usb_device	*dev,
417 	unsigned		frame,
418 	u32			uf_mask
419 )
420 {
421 	if (period == 0)	/* error */
422 		return 0;
423 
424 	/* note bandwidth wastage:  split never follows csplit
425 	 * (different dev or endpoint) until the next uframe.
426 	 * calling convention doesn't make that distinction.
427 	 */
428 	for (; frame < ehci->periodic_size; frame += period) {
429 		union ehci_shadow	here;
430 		__hc32			type;
431 		struct ehci_qh_hw	*hw;
432 
433 		here = ehci->pshadow[frame];
434 		type = Q_NEXT_TYPE(ehci, ehci->periodic[frame]);
435 		while (here.ptr) {
436 			switch (hc32_to_cpu(ehci, type)) {
437 			case Q_TYPE_ITD:
438 				type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
439 				here = here.itd->itd_next;
440 				continue;
441 			case Q_TYPE_QH:
442 				hw = here.qh->hw;
443 				if (same_tt(dev, here.qh->ps.udev)) {
444 					u32		mask;
445 
446 					mask = hc32_to_cpu(ehci,
447 							hw->hw_info2);
448 					/* "knows" no gap is needed */
449 					mask |= mask >> 8;
450 					if (mask & uf_mask)
451 						break;
452 				}
453 				type = Q_NEXT_TYPE(ehci, hw->hw_next);
454 				here = here.qh->qh_next;
455 				continue;
456 			case Q_TYPE_SITD:
457 				if (same_tt(dev, here.sitd->urb->dev)) {
458 					u16		mask;
459 
460 					mask = hc32_to_cpu(ehci, here.sitd
461 								->hw_uframe);
462 					/* FIXME assumes no gap for IN! */
463 					mask |= mask >> 8;
464 					if (mask & uf_mask)
465 						break;
466 				}
467 				type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
468 				here = here.sitd->sitd_next;
469 				continue;
470 			/* case Q_TYPE_FSTN: */
471 			default:
472 				ehci_dbg(ehci,
473 					"periodic frame %d bogus type %d\n",
474 					frame, type);
475 			}
476 
477 			/* collision or error */
478 			return 0;
479 		}
480 	}
481 
482 	/* no collision */
483 	return 1;
484 }
485 
486 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
487 
488 /*-------------------------------------------------------------------------*/
489 
490 static void enable_periodic(struct ehci_hcd *ehci)
491 {
492 	if (ehci->periodic_count++)
493 		goto out;
494 
495 	/* Stop waiting to turn off the periodic schedule */
496 	ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC);
497 
498 	/* Don't start the schedule until PSS is 0 */
499 	ehci_poll_PSS(ehci);
500 out:
501 	turn_on_io_watchdog(ehci);
502 }
503 
504 static void disable_periodic(struct ehci_hcd *ehci)
505 {
506 	if (--ehci->periodic_count)
507 		return;
508 
509 	/* Don't turn off the schedule until PSS is 1 */
510 	ehci_poll_PSS(ehci);
511 }
512 
513 /*-------------------------------------------------------------------------*/
514 
515 /* periodic schedule slots have iso tds (normal or split) first, then a
516  * sparse tree for active interrupt transfers.
517  *
518  * this just links in a qh; caller guarantees uframe masks are set right.
519  * no FSTN support (yet; ehci 0.96+)
520  */
521 static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
522 {
523 	unsigned	i;
524 	unsigned	period = qh->ps.period;
525 
526 	dev_dbg(&qh->ps.udev->dev,
527 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
528 		period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
529 			& (QH_CMASK | QH_SMASK),
530 		qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
531 
532 	/* high bandwidth, or otherwise every microframe */
533 	if (period == 0)
534 		period = 1;
535 
536 	for (i = qh->ps.phase; i < ehci->periodic_size; i += period) {
537 		union ehci_shadow	*prev = &ehci->pshadow[i];
538 		__hc32			*hw_p = &ehci->periodic[i];
539 		union ehci_shadow	here = *prev;
540 		__hc32			type = 0;
541 
542 		/* skip the iso nodes at list head */
543 		while (here.ptr) {
544 			type = Q_NEXT_TYPE(ehci, *hw_p);
545 			if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
546 				break;
547 			prev = periodic_next_shadow(ehci, prev, type);
548 			hw_p = shadow_next_periodic(ehci, &here, type);
549 			here = *prev;
550 		}
551 
552 		/* sorting each branch by period (slow-->fast)
553 		 * enables sharing interior tree nodes
554 		 */
555 		while (here.ptr && qh != here.qh) {
556 			if (qh->ps.period > here.qh->ps.period)
557 				break;
558 			prev = &here.qh->qh_next;
559 			hw_p = &here.qh->hw->hw_next;
560 			here = *prev;
561 		}
562 		/* link in this qh, unless some earlier pass did that */
563 		if (qh != here.qh) {
564 			qh->qh_next = here;
565 			if (here.qh)
566 				qh->hw->hw_next = *hw_p;
567 			wmb();
568 			prev->qh = qh;
569 			*hw_p = QH_NEXT(ehci, qh->qh_dma);
570 		}
571 	}
572 	qh->qh_state = QH_STATE_LINKED;
573 	qh->xacterrs = 0;
574 	qh->unlink_reason = 0;
575 
576 	/* update per-qh bandwidth for debugfs */
577 	ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->ps.bw_period
578 		? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
579 		: (qh->ps.usecs * 8);
580 
581 	list_add(&qh->intr_node, &ehci->intr_qh_list);
582 
583 	/* maybe enable periodic schedule processing */
584 	++ehci->intr_count;
585 	enable_periodic(ehci);
586 }
587 
588 static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
589 {
590 	unsigned	i;
591 	unsigned	period;
592 
593 	/*
594 	 * If qh is for a low/full-speed device, simply unlinking it
595 	 * could interfere with an ongoing split transaction.  To unlink
596 	 * it safely would require setting the QH_INACTIVATE bit and
597 	 * waiting at least one frame, as described in EHCI 4.12.2.5.
598 	 *
599 	 * We won't bother with any of this.  Instead, we assume that the
600 	 * only reason for unlinking an interrupt QH while the current URB
601 	 * is still active is to dequeue all the URBs (flush the whole
602 	 * endpoint queue).
603 	 *
604 	 * If rebalancing the periodic schedule is ever implemented, this
605 	 * approach will no longer be valid.
606 	 */
607 
608 	/* high bandwidth, or otherwise part of every microframe */
609 	period = qh->ps.period ? : 1;
610 
611 	for (i = qh->ps.phase; i < ehci->periodic_size; i += period)
612 		periodic_unlink(ehci, i, qh);
613 
614 	/* update per-qh bandwidth for debugfs */
615 	ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->ps.bw_period
616 		? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
617 		: (qh->ps.usecs * 8);
618 
619 	dev_dbg(&qh->ps.udev->dev,
620 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
621 		qh->ps.period,
622 		hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
623 		qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
624 
625 	/* qh->qh_next still "live" to HC */
626 	qh->qh_state = QH_STATE_UNLINK;
627 	qh->qh_next.ptr = NULL;
628 
629 	if (ehci->qh_scan_next == qh)
630 		ehci->qh_scan_next = list_entry(qh->intr_node.next,
631 				struct ehci_qh, intr_node);
632 	list_del(&qh->intr_node);
633 }
634 
635 static void cancel_unlink_wait_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
636 {
637 	if (qh->qh_state != QH_STATE_LINKED ||
638 			list_empty(&qh->unlink_node))
639 		return;
640 
641 	list_del_init(&qh->unlink_node);
642 
643 	/*
644 	 * TODO: disable the event of EHCI_HRTIMER_START_UNLINK_INTR for
645 	 * avoiding unnecessary CPU wakeup
646 	 */
647 }
648 
649 static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
650 {
651 	/* If the QH isn't linked then there's nothing we can do. */
652 	if (qh->qh_state != QH_STATE_LINKED)
653 		return;
654 
655 	/* if the qh is waiting for unlink, cancel it now */
656 	cancel_unlink_wait_intr(ehci, qh);
657 
658 	qh_unlink_periodic(ehci, qh);
659 
660 	/* Make sure the unlinks are visible before starting the timer */
661 	wmb();
662 
663 	/*
664 	 * The EHCI spec doesn't say how long it takes the controller to
665 	 * stop accessing an unlinked interrupt QH.  The timer delay is
666 	 * 9 uframes; presumably that will be long enough.
667 	 */
668 	qh->unlink_cycle = ehci->intr_unlink_cycle;
669 
670 	/* New entries go at the end of the intr_unlink list */
671 	list_add_tail(&qh->unlink_node, &ehci->intr_unlink);
672 
673 	if (ehci->intr_unlinking)
674 		;	/* Avoid recursive calls */
675 	else if (ehci->rh_state < EHCI_RH_RUNNING)
676 		ehci_handle_intr_unlinks(ehci);
677 	else if (ehci->intr_unlink.next == &qh->unlink_node) {
678 		ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true);
679 		++ehci->intr_unlink_cycle;
680 	}
681 }
682 
683 /*
684  * It is common only one intr URB is scheduled on one qh, and
685  * given complete() is run in tasklet context, introduce a bit
686  * delay to avoid unlink qh too early.
687  */
688 static void start_unlink_intr_wait(struct ehci_hcd *ehci,
689 				   struct ehci_qh *qh)
690 {
691 	qh->unlink_cycle = ehci->intr_unlink_wait_cycle;
692 
693 	/* New entries go at the end of the intr_unlink_wait list */
694 	list_add_tail(&qh->unlink_node, &ehci->intr_unlink_wait);
695 
696 	if (ehci->rh_state < EHCI_RH_RUNNING)
697 		ehci_handle_start_intr_unlinks(ehci);
698 	else if (ehci->intr_unlink_wait.next == &qh->unlink_node) {
699 		ehci_enable_event(ehci, EHCI_HRTIMER_START_UNLINK_INTR, true);
700 		++ehci->intr_unlink_wait_cycle;
701 	}
702 }
703 
704 static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
705 {
706 	struct ehci_qh_hw	*hw = qh->hw;
707 	int			rc;
708 
709 	qh->qh_state = QH_STATE_IDLE;
710 	hw->hw_next = EHCI_LIST_END(ehci);
711 
712 	if (!list_empty(&qh->qtd_list))
713 		qh_completions(ehci, qh);
714 
715 	/* reschedule QH iff another request is queued */
716 	if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) {
717 		rc = qh_schedule(ehci, qh);
718 		if (rc == 0) {
719 			qh_refresh(ehci, qh);
720 			qh_link_periodic(ehci, qh);
721 		}
722 
723 		/* An error here likely indicates handshake failure
724 		 * or no space left in the schedule.  Neither fault
725 		 * should happen often ...
726 		 *
727 		 * FIXME kill the now-dysfunctional queued urbs
728 		 */
729 		else {
730 			ehci_err(ehci, "can't reschedule qh %p, err %d\n",
731 					qh, rc);
732 		}
733 	}
734 
735 	/* maybe turn off periodic schedule */
736 	--ehci->intr_count;
737 	disable_periodic(ehci);
738 }
739 
740 /*-------------------------------------------------------------------------*/
741 
742 static int check_period(
743 	struct ehci_hcd *ehci,
744 	unsigned	frame,
745 	unsigned	uframe,
746 	unsigned	uperiod,
747 	unsigned	usecs
748 ) {
749 	/* complete split running into next frame?
750 	 * given FSTN support, we could sometimes check...
751 	 */
752 	if (uframe >= 8)
753 		return 0;
754 
755 	/* convert "usecs we need" to "max already claimed" */
756 	usecs = ehci->uframe_periodic_max - usecs;
757 
758 	for (uframe += frame << 3; uframe < EHCI_BANDWIDTH_SIZE;
759 			uframe += uperiod) {
760 		if (ehci->bandwidth[uframe] > usecs)
761 			return 0;
762 	}
763 
764 	/* success! */
765 	return 1;
766 }
767 
768 static int check_intr_schedule(
769 	struct ehci_hcd		*ehci,
770 	unsigned		frame,
771 	unsigned		uframe,
772 	struct ehci_qh		*qh,
773 	unsigned		*c_maskp,
774 	struct ehci_tt		*tt
775 )
776 {
777 	int		retval = -ENOSPC;
778 	u8		mask = 0;
779 
780 	if (qh->ps.c_usecs && uframe >= 6)	/* FSTN territory? */
781 		goto done;
782 
783 	if (!check_period(ehci, frame, uframe, qh->ps.bw_uperiod, qh->ps.usecs))
784 		goto done;
785 	if (!qh->ps.c_usecs) {
786 		retval = 0;
787 		*c_maskp = 0;
788 		goto done;
789 	}
790 
791 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
792 	if (tt_available(ehci, &qh->ps, tt, frame, uframe)) {
793 		unsigned i;
794 
795 		/* TODO : this may need FSTN for SSPLIT in uframe 5. */
796 		for (i = uframe+2; i < 8 && i <= uframe+4; i++)
797 			if (!check_period(ehci, frame, i,
798 					qh->ps.bw_uperiod, qh->ps.c_usecs))
799 				goto done;
800 			else
801 				mask |= 1 << i;
802 
803 		retval = 0;
804 
805 		*c_maskp = mask;
806 	}
807 #else
808 	/* Make sure this tt's buffer is also available for CSPLITs.
809 	 * We pessimize a bit; probably the typical full speed case
810 	 * doesn't need the second CSPLIT.
811 	 *
812 	 * NOTE:  both SPLIT and CSPLIT could be checked in just
813 	 * one smart pass...
814 	 */
815 	mask = 0x03 << (uframe + qh->gap_uf);
816 	*c_maskp = mask;
817 
818 	mask |= 1 << uframe;
819 	if (tt_no_collision(ehci, qh->ps.bw_period, qh->ps.udev, frame, mask)) {
820 		if (!check_period(ehci, frame, uframe + qh->gap_uf + 1,
821 				qh->ps.bw_uperiod, qh->ps.c_usecs))
822 			goto done;
823 		if (!check_period(ehci, frame, uframe + qh->gap_uf,
824 				qh->ps.bw_uperiod, qh->ps.c_usecs))
825 			goto done;
826 		retval = 0;
827 	}
828 #endif
829 done:
830 	return retval;
831 }
832 
833 /* "first fit" scheduling policy used the first time through,
834  * or when the previous schedule slot can't be re-used.
835  */
836 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
837 {
838 	int		status = 0;
839 	unsigned	uframe;
840 	unsigned	c_mask;
841 	struct ehci_qh_hw	*hw = qh->hw;
842 	struct ehci_tt		*tt;
843 
844 	hw->hw_next = EHCI_LIST_END(ehci);
845 
846 	/* reuse the previous schedule slots, if we can */
847 	if (qh->ps.phase != NO_FRAME) {
848 		ehci_dbg(ehci, "reused qh %p schedule\n", qh);
849 		return 0;
850 	}
851 
852 	uframe = 0;
853 	c_mask = 0;
854 	tt = find_tt(qh->ps.udev);
855 	if (IS_ERR(tt)) {
856 		status = PTR_ERR(tt);
857 		goto done;
858 	}
859 	compute_tt_budget(ehci->tt_budget, tt);
860 
861 	/* else scan the schedule to find a group of slots such that all
862 	 * uframes have enough periodic bandwidth available.
863 	 */
864 	/* "normal" case, uframing flexible except with splits */
865 	if (qh->ps.bw_period) {
866 		int		i;
867 		unsigned	frame;
868 
869 		for (i = qh->ps.bw_period; i > 0; --i) {
870 			frame = ++ehci->random_frame & (qh->ps.bw_period - 1);
871 			for (uframe = 0; uframe < 8; uframe++) {
872 				status = check_intr_schedule(ehci,
873 						frame, uframe, qh, &c_mask, tt);
874 				if (status == 0)
875 					goto got_it;
876 			}
877 		}
878 
879 	/* qh->ps.bw_period == 0 means every uframe */
880 	} else {
881 		status = check_intr_schedule(ehci, 0, 0, qh, &c_mask, tt);
882 	}
883 	if (status)
884 		goto done;
885 
886  got_it:
887 	qh->ps.phase = (qh->ps.period ? ehci->random_frame &
888 			(qh->ps.period - 1) : 0);
889 	qh->ps.bw_phase = qh->ps.phase & (qh->ps.bw_period - 1);
890 	qh->ps.phase_uf = uframe;
891 	qh->ps.cs_mask = qh->ps.period ?
892 			(c_mask << 8) | (1 << uframe) :
893 			QH_SMASK;
894 
895 	/* reset S-frame and (maybe) C-frame masks */
896 	hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
897 	hw->hw_info2 |= cpu_to_hc32(ehci, qh->ps.cs_mask);
898 	reserve_release_intr_bandwidth(ehci, qh, 1);
899 
900 done:
901 	return status;
902 }
903 
904 static int intr_submit(
905 	struct ehci_hcd		*ehci,
906 	struct urb		*urb,
907 	struct list_head	*qtd_list,
908 	gfp_t			mem_flags
909 ) {
910 	unsigned		epnum;
911 	unsigned long		flags;
912 	struct ehci_qh		*qh;
913 	int			status;
914 	struct list_head	empty;
915 
916 	/* get endpoint and transfer/schedule data */
917 	epnum = urb->ep->desc.bEndpointAddress;
918 
919 	spin_lock_irqsave(&ehci->lock, flags);
920 
921 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
922 		status = -ESHUTDOWN;
923 		goto done_not_linked;
924 	}
925 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
926 	if (unlikely(status))
927 		goto done_not_linked;
928 
929 	/* get qh and force any scheduling errors */
930 	INIT_LIST_HEAD(&empty);
931 	qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
932 	if (qh == NULL) {
933 		status = -ENOMEM;
934 		goto done;
935 	}
936 	if (qh->qh_state == QH_STATE_IDLE) {
937 		status = qh_schedule(ehci, qh);
938 		if (status)
939 			goto done;
940 	}
941 
942 	/* then queue the urb's tds to the qh */
943 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
944 	BUG_ON(qh == NULL);
945 
946 	/* stuff into the periodic schedule */
947 	if (qh->qh_state == QH_STATE_IDLE) {
948 		qh_refresh(ehci, qh);
949 		qh_link_periodic(ehci, qh);
950 	} else {
951 		/* cancel unlink wait for the qh */
952 		cancel_unlink_wait_intr(ehci, qh);
953 	}
954 
955 	/* ... update usbfs periodic stats */
956 	ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
957 
958 done:
959 	if (unlikely(status))
960 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
961 done_not_linked:
962 	spin_unlock_irqrestore(&ehci->lock, flags);
963 	if (status)
964 		qtd_list_free(ehci, urb, qtd_list);
965 
966 	return status;
967 }
968 
969 static void scan_intr(struct ehci_hcd *ehci)
970 {
971 	struct ehci_qh		*qh;
972 
973 	list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list,
974 			intr_node) {
975 
976 		/* clean any finished work for this qh */
977 		if (!list_empty(&qh->qtd_list)) {
978 			int temp;
979 
980 			/*
981 			 * Unlinks could happen here; completion reporting
982 			 * drops the lock.  That's why ehci->qh_scan_next
983 			 * always holds the next qh to scan; if the next qh
984 			 * gets unlinked then ehci->qh_scan_next is adjusted
985 			 * in qh_unlink_periodic().
986 			 */
987 			temp = qh_completions(ehci, qh);
988 			if (unlikely(temp))
989 				start_unlink_intr(ehci, qh);
990 			else if (unlikely(list_empty(&qh->qtd_list) &&
991 					qh->qh_state == QH_STATE_LINKED))
992 				start_unlink_intr_wait(ehci, qh);
993 		}
994 	}
995 }
996 
997 /*-------------------------------------------------------------------------*/
998 
999 /* ehci_iso_stream ops work with both ITD and SITD */
1000 
1001 static struct ehci_iso_stream *
1002 iso_stream_alloc(gfp_t mem_flags)
1003 {
1004 	struct ehci_iso_stream *stream;
1005 
1006 	stream = kzalloc(sizeof(*stream), mem_flags);
1007 	if (likely(stream != NULL)) {
1008 		INIT_LIST_HEAD(&stream->td_list);
1009 		INIT_LIST_HEAD(&stream->free_list);
1010 		stream->next_uframe = NO_FRAME;
1011 		stream->ps.phase = NO_FRAME;
1012 	}
1013 	return stream;
1014 }
1015 
1016 static void
1017 iso_stream_init(
1018 	struct ehci_hcd		*ehci,
1019 	struct ehci_iso_stream	*stream,
1020 	struct urb		*urb
1021 )
1022 {
1023 	static const u8 smask_out[] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
1024 
1025 	struct usb_device	*dev = urb->dev;
1026 	u32			buf1;
1027 	unsigned		epnum, maxp;
1028 	int			is_input;
1029 	unsigned		tmp;
1030 
1031 	/*
1032 	 * this might be a "high bandwidth" highspeed endpoint,
1033 	 * as encoded in the ep descriptor's wMaxPacket field
1034 	 */
1035 	epnum = usb_pipeendpoint(urb->pipe);
1036 	is_input = usb_pipein(urb->pipe) ? USB_DIR_IN : 0;
1037 	maxp = usb_endpoint_maxp(&urb->ep->desc);
1038 	buf1 = is_input ? 1 << 11 : 0;
1039 
1040 	/* knows about ITD vs SITD */
1041 	if (dev->speed == USB_SPEED_HIGH) {
1042 		unsigned multi = usb_endpoint_maxp_mult(&urb->ep->desc);
1043 
1044 		stream->highspeed = 1;
1045 
1046 		buf1 |= maxp;
1047 		maxp *= multi;
1048 
1049 		stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
1050 		stream->buf1 = cpu_to_hc32(ehci, buf1);
1051 		stream->buf2 = cpu_to_hc32(ehci, multi);
1052 
1053 		/* usbfs wants to report the average usecs per frame tied up
1054 		 * when transfers on this endpoint are scheduled ...
1055 		 */
1056 		stream->ps.usecs = HS_USECS_ISO(maxp);
1057 
1058 		/* period for bandwidth allocation */
1059 		tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
1060 				1 << (urb->ep->desc.bInterval - 1));
1061 
1062 		/* Allow urb->interval to override */
1063 		stream->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
1064 
1065 		stream->uperiod = urb->interval;
1066 		stream->ps.period = urb->interval >> 3;
1067 		stream->bandwidth = stream->ps.usecs * 8 /
1068 				stream->ps.bw_uperiod;
1069 
1070 	} else {
1071 		u32		addr;
1072 		int		think_time;
1073 		int		hs_transfers;
1074 
1075 		addr = dev->ttport << 24;
1076 		if (!ehci_is_TDI(ehci)
1077 				|| (dev->tt->hub !=
1078 					ehci_to_hcd(ehci)->self.root_hub))
1079 			addr |= dev->tt->hub->devnum << 16;
1080 		addr |= epnum << 8;
1081 		addr |= dev->devnum;
1082 		stream->ps.usecs = HS_USECS_ISO(maxp);
1083 		think_time = dev->tt->think_time;
1084 		stream->ps.tt_usecs = NS_TO_US(think_time + usb_calc_bus_time(
1085 				dev->speed, is_input, 1, maxp));
1086 		hs_transfers = max(1u, (maxp + 187) / 188);
1087 		if (is_input) {
1088 			u32	tmp;
1089 
1090 			addr |= 1 << 31;
1091 			stream->ps.c_usecs = stream->ps.usecs;
1092 			stream->ps.usecs = HS_USECS_ISO(1);
1093 			stream->ps.cs_mask = 1;
1094 
1095 			/* c-mask as specified in USB 2.0 11.18.4 3.c */
1096 			tmp = (1 << (hs_transfers + 2)) - 1;
1097 			stream->ps.cs_mask |= tmp << (8 + 2);
1098 		} else
1099 			stream->ps.cs_mask = smask_out[hs_transfers - 1];
1100 
1101 		/* period for bandwidth allocation */
1102 		tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
1103 				1 << (urb->ep->desc.bInterval - 1));
1104 
1105 		/* Allow urb->interval to override */
1106 		stream->ps.bw_period = min_t(unsigned, tmp, urb->interval);
1107 		stream->ps.bw_uperiod = stream->ps.bw_period << 3;
1108 
1109 		stream->ps.period = urb->interval;
1110 		stream->uperiod = urb->interval << 3;
1111 		stream->bandwidth = (stream->ps.usecs + stream->ps.c_usecs) /
1112 				stream->ps.bw_period;
1113 
1114 		/* stream->splits gets created from cs_mask later */
1115 		stream->address = cpu_to_hc32(ehci, addr);
1116 	}
1117 
1118 	stream->ps.udev = dev;
1119 	stream->ps.ep = urb->ep;
1120 
1121 	stream->bEndpointAddress = is_input | epnum;
1122 	stream->maxp = maxp;
1123 }
1124 
1125 static struct ehci_iso_stream *
1126 iso_stream_find(struct ehci_hcd *ehci, struct urb *urb)
1127 {
1128 	unsigned		epnum;
1129 	struct ehci_iso_stream	*stream;
1130 	struct usb_host_endpoint *ep;
1131 	unsigned long		flags;
1132 
1133 	epnum = usb_pipeendpoint (urb->pipe);
1134 	if (usb_pipein(urb->pipe))
1135 		ep = urb->dev->ep_in[epnum];
1136 	else
1137 		ep = urb->dev->ep_out[epnum];
1138 
1139 	spin_lock_irqsave(&ehci->lock, flags);
1140 	stream = ep->hcpriv;
1141 
1142 	if (unlikely(stream == NULL)) {
1143 		stream = iso_stream_alloc(GFP_ATOMIC);
1144 		if (likely(stream != NULL)) {
1145 			ep->hcpriv = stream;
1146 			iso_stream_init(ehci, stream, urb);
1147 		}
1148 
1149 	/* if dev->ep [epnum] is a QH, hw is set */
1150 	} else if (unlikely(stream->hw != NULL)) {
1151 		ehci_dbg(ehci, "dev %s ep%d%s, not iso??\n",
1152 			urb->dev->devpath, epnum,
1153 			usb_pipein(urb->pipe) ? "in" : "out");
1154 		stream = NULL;
1155 	}
1156 
1157 	spin_unlock_irqrestore(&ehci->lock, flags);
1158 	return stream;
1159 }
1160 
1161 /*-------------------------------------------------------------------------*/
1162 
1163 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1164 
1165 static struct ehci_iso_sched *
1166 iso_sched_alloc(unsigned packets, gfp_t mem_flags)
1167 {
1168 	struct ehci_iso_sched	*iso_sched;
1169 
1170 	iso_sched = kzalloc(struct_size(iso_sched, packet, packets), mem_flags);
1171 	if (likely(iso_sched != NULL))
1172 		INIT_LIST_HEAD(&iso_sched->td_list);
1173 
1174 	return iso_sched;
1175 }
1176 
1177 static inline void
1178 itd_sched_init(
1179 	struct ehci_hcd		*ehci,
1180 	struct ehci_iso_sched	*iso_sched,
1181 	struct ehci_iso_stream	*stream,
1182 	struct urb		*urb
1183 )
1184 {
1185 	unsigned	i;
1186 	dma_addr_t	dma = urb->transfer_dma;
1187 
1188 	/* how many uframes are needed for these transfers */
1189 	iso_sched->span = urb->number_of_packets * stream->uperiod;
1190 
1191 	/* figure out per-uframe itd fields that we'll need later
1192 	 * when we fit new itds into the schedule.
1193 	 */
1194 	for (i = 0; i < urb->number_of_packets; i++) {
1195 		struct ehci_iso_packet	*uframe = &iso_sched->packet[i];
1196 		unsigned		length;
1197 		dma_addr_t		buf;
1198 		u32			trans;
1199 
1200 		length = urb->iso_frame_desc[i].length;
1201 		buf = dma + urb->iso_frame_desc[i].offset;
1202 
1203 		trans = EHCI_ISOC_ACTIVE;
1204 		trans |= buf & 0x0fff;
1205 		if (unlikely(((i + 1) == urb->number_of_packets))
1206 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1207 			trans |= EHCI_ITD_IOC;
1208 		trans |= length << 16;
1209 		uframe->transaction = cpu_to_hc32(ehci, trans);
1210 
1211 		/* might need to cross a buffer page within a uframe */
1212 		uframe->bufp = (buf & ~(u64)0x0fff);
1213 		buf += length;
1214 		if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
1215 			uframe->cross = 1;
1216 	}
1217 }
1218 
1219 static void
1220 iso_sched_free(
1221 	struct ehci_iso_stream	*stream,
1222 	struct ehci_iso_sched	*iso_sched
1223 )
1224 {
1225 	if (!iso_sched)
1226 		return;
1227 	/* caller must hold ehci->lock! */
1228 	list_splice(&iso_sched->td_list, &stream->free_list);
1229 	kfree(iso_sched);
1230 }
1231 
1232 static int
1233 itd_urb_transaction(
1234 	struct ehci_iso_stream	*stream,
1235 	struct ehci_hcd		*ehci,
1236 	struct urb		*urb,
1237 	gfp_t			mem_flags
1238 )
1239 {
1240 	struct ehci_itd		*itd;
1241 	dma_addr_t		itd_dma;
1242 	int			i;
1243 	unsigned		num_itds;
1244 	struct ehci_iso_sched	*sched;
1245 	unsigned long		flags;
1246 
1247 	sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
1248 	if (unlikely(sched == NULL))
1249 		return -ENOMEM;
1250 
1251 	itd_sched_init(ehci, sched, stream, urb);
1252 
1253 	if (urb->interval < 8)
1254 		num_itds = 1 + (sched->span + 7) / 8;
1255 	else
1256 		num_itds = urb->number_of_packets;
1257 
1258 	/* allocate/init ITDs */
1259 	spin_lock_irqsave(&ehci->lock, flags);
1260 	for (i = 0; i < num_itds; i++) {
1261 
1262 		/*
1263 		 * Use iTDs from the free list, but not iTDs that may
1264 		 * still be in use by the hardware.
1265 		 */
1266 		if (likely(!list_empty(&stream->free_list))) {
1267 			itd = list_first_entry(&stream->free_list,
1268 					struct ehci_itd, itd_list);
1269 			if (itd->frame == ehci->now_frame)
1270 				goto alloc_itd;
1271 			list_del(&itd->itd_list);
1272 			itd_dma = itd->itd_dma;
1273 		} else {
1274  alloc_itd:
1275 			spin_unlock_irqrestore(&ehci->lock, flags);
1276 			itd = dma_pool_alloc(ehci->itd_pool, mem_flags,
1277 					&itd_dma);
1278 			spin_lock_irqsave(&ehci->lock, flags);
1279 			if (!itd) {
1280 				iso_sched_free(stream, sched);
1281 				spin_unlock_irqrestore(&ehci->lock, flags);
1282 				return -ENOMEM;
1283 			}
1284 		}
1285 
1286 		memset(itd, 0, sizeof(*itd));
1287 		itd->itd_dma = itd_dma;
1288 		itd->frame = NO_FRAME;
1289 		list_add(&itd->itd_list, &sched->td_list);
1290 	}
1291 	spin_unlock_irqrestore(&ehci->lock, flags);
1292 
1293 	/* temporarily store schedule info in hcpriv */
1294 	urb->hcpriv = sched;
1295 	urb->error_count = 0;
1296 	return 0;
1297 }
1298 
1299 /*-------------------------------------------------------------------------*/
1300 
1301 static void reserve_release_iso_bandwidth(struct ehci_hcd *ehci,
1302 		struct ehci_iso_stream *stream, int sign)
1303 {
1304 	unsigned		uframe;
1305 	unsigned		i, j;
1306 	unsigned		s_mask, c_mask, m;
1307 	int			usecs = stream->ps.usecs;
1308 	int			c_usecs = stream->ps.c_usecs;
1309 	int			tt_usecs = stream->ps.tt_usecs;
1310 	struct ehci_tt		*tt;
1311 
1312 	if (stream->ps.phase == NO_FRAME)	/* Bandwidth wasn't reserved */
1313 		return;
1314 	uframe = stream->ps.bw_phase << 3;
1315 
1316 	bandwidth_dbg(ehci, sign, "iso", &stream->ps);
1317 
1318 	if (sign < 0) {		/* Release bandwidth */
1319 		usecs = -usecs;
1320 		c_usecs = -c_usecs;
1321 		tt_usecs = -tt_usecs;
1322 	}
1323 
1324 	if (!stream->splits) {		/* High speed */
1325 		for (i = uframe + stream->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
1326 				i += stream->ps.bw_uperiod)
1327 			ehci->bandwidth[i] += usecs;
1328 
1329 	} else {			/* Full speed */
1330 		s_mask = stream->ps.cs_mask;
1331 		c_mask = s_mask >> 8;
1332 
1333 		/* NOTE: adjustment needed for frame overflow */
1334 		for (i = uframe; i < EHCI_BANDWIDTH_SIZE;
1335 				i += stream->ps.bw_uperiod) {
1336 			for ((j = stream->ps.phase_uf, m = 1 << j); j < 8;
1337 					(++j, m <<= 1)) {
1338 				if (s_mask & m)
1339 					ehci->bandwidth[i+j] += usecs;
1340 				else if (c_mask & m)
1341 					ehci->bandwidth[i+j] += c_usecs;
1342 			}
1343 		}
1344 
1345 		/*
1346 		 * find_tt() will not return any error here as we have
1347 		 * already called find_tt() before calling this function
1348 		 * and checked for any error return. The previous call
1349 		 * would have created the data structure.
1350 		 */
1351 		tt = find_tt(stream->ps.udev);
1352 		if (sign > 0)
1353 			list_add_tail(&stream->ps.ps_list, &tt->ps_list);
1354 		else
1355 			list_del(&stream->ps.ps_list);
1356 
1357 		for (i = uframe >> 3; i < EHCI_BANDWIDTH_FRAMES;
1358 				i += stream->ps.bw_period)
1359 			tt->bandwidth[i] += tt_usecs;
1360 	}
1361 }
1362 
1363 static inline int
1364 itd_slot_ok(
1365 	struct ehci_hcd		*ehci,
1366 	struct ehci_iso_stream	*stream,
1367 	unsigned		uframe
1368 )
1369 {
1370 	unsigned		usecs;
1371 
1372 	/* convert "usecs we need" to "max already claimed" */
1373 	usecs = ehci->uframe_periodic_max - stream->ps.usecs;
1374 
1375 	for (uframe &= stream->ps.bw_uperiod - 1; uframe < EHCI_BANDWIDTH_SIZE;
1376 			uframe += stream->ps.bw_uperiod) {
1377 		if (ehci->bandwidth[uframe] > usecs)
1378 			return 0;
1379 	}
1380 	return 1;
1381 }
1382 
1383 static inline int
1384 sitd_slot_ok(
1385 	struct ehci_hcd		*ehci,
1386 	struct ehci_iso_stream	*stream,
1387 	unsigned		uframe,
1388 	struct ehci_iso_sched	*sched,
1389 	struct ehci_tt		*tt
1390 )
1391 {
1392 	unsigned		mask, tmp;
1393 	unsigned		frame, uf;
1394 
1395 	mask = stream->ps.cs_mask << (uframe & 7);
1396 
1397 	/* for OUT, don't wrap SSPLIT into H-microframe 7 */
1398 	if (((stream->ps.cs_mask & 0xff) << (uframe & 7)) >= (1 << 7))
1399 		return 0;
1400 
1401 	/* for IN, don't wrap CSPLIT into the next frame */
1402 	if (mask & ~0xffff)
1403 		return 0;
1404 
1405 	/* check bandwidth */
1406 	uframe &= stream->ps.bw_uperiod - 1;
1407 	frame = uframe >> 3;
1408 
1409 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1410 	/* The tt's fullspeed bus bandwidth must be available.
1411 	 * tt_available scheduling guarantees 10+% for control/bulk.
1412 	 */
1413 	uf = uframe & 7;
1414 	if (!tt_available(ehci, &stream->ps, tt, frame, uf))
1415 		return 0;
1416 #else
1417 	/* tt must be idle for start(s), any gap, and csplit.
1418 	 * assume scheduling slop leaves 10+% for control/bulk.
1419 	 */
1420 	if (!tt_no_collision(ehci, stream->ps.bw_period,
1421 			stream->ps.udev, frame, mask))
1422 		return 0;
1423 #endif
1424 
1425 	do {
1426 		unsigned	max_used;
1427 		unsigned	i;
1428 
1429 		/* check starts (OUT uses more than one) */
1430 		uf = uframe;
1431 		max_used = ehci->uframe_periodic_max - stream->ps.usecs;
1432 		for (tmp = stream->ps.cs_mask & 0xff; tmp; tmp >>= 1, uf++) {
1433 			if (ehci->bandwidth[uf] > max_used)
1434 				return 0;
1435 		}
1436 
1437 		/* for IN, check CSPLIT */
1438 		if (stream->ps.c_usecs) {
1439 			max_used = ehci->uframe_periodic_max -
1440 					stream->ps.c_usecs;
1441 			uf = uframe & ~7;
1442 			tmp = 1 << (2+8);
1443 			for (i = (uframe & 7) + 2; i < 8; (++i, tmp <<= 1)) {
1444 				if ((stream->ps.cs_mask & tmp) == 0)
1445 					continue;
1446 				if (ehci->bandwidth[uf+i] > max_used)
1447 					return 0;
1448 			}
1449 		}
1450 
1451 		uframe += stream->ps.bw_uperiod;
1452 	} while (uframe < EHCI_BANDWIDTH_SIZE);
1453 
1454 	stream->ps.cs_mask <<= uframe & 7;
1455 	stream->splits = cpu_to_hc32(ehci, stream->ps.cs_mask);
1456 	return 1;
1457 }
1458 
1459 /*
1460  * This scheduler plans almost as far into the future as it has actual
1461  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
1462  * "as small as possible" to be cache-friendlier.)  That limits the size
1463  * transfers you can stream reliably; avoid more than 64 msec per urb.
1464  * Also avoid queue depths of less than ehci's worst irq latency (affected
1465  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1466  * and other factors); or more than about 230 msec total (for portability,
1467  * given EHCI_TUNE_FLS and the slop).  Or, write a smarter scheduler!
1468  */
1469 
1470 static int
1471 iso_stream_schedule(
1472 	struct ehci_hcd		*ehci,
1473 	struct urb		*urb,
1474 	struct ehci_iso_stream	*stream
1475 )
1476 {
1477 	u32			now, base, next, start, period, span, now2;
1478 	u32			wrap = 0, skip = 0;
1479 	int			status = 0;
1480 	unsigned		mod = ehci->periodic_size << 3;
1481 	struct ehci_iso_sched	*sched = urb->hcpriv;
1482 	bool			empty = list_empty(&stream->td_list);
1483 	bool			new_stream = false;
1484 
1485 	period = stream->uperiod;
1486 	span = sched->span;
1487 	if (!stream->highspeed)
1488 		span <<= 3;
1489 
1490 	/* Start a new isochronous stream? */
1491 	if (unlikely(empty && !hcd_periodic_completion_in_progress(
1492 			ehci_to_hcd(ehci), urb->ep))) {
1493 
1494 		/* Schedule the endpoint */
1495 		if (stream->ps.phase == NO_FRAME) {
1496 			int		done = 0;
1497 			struct ehci_tt	*tt = find_tt(stream->ps.udev);
1498 
1499 			if (IS_ERR(tt)) {
1500 				status = PTR_ERR(tt);
1501 				goto fail;
1502 			}
1503 			compute_tt_budget(ehci->tt_budget, tt);
1504 
1505 			start = ((-(++ehci->random_frame)) << 3) & (period - 1);
1506 
1507 			/* find a uframe slot with enough bandwidth.
1508 			 * Early uframes are more precious because full-speed
1509 			 * iso IN transfers can't use late uframes,
1510 			 * and therefore they should be allocated last.
1511 			 */
1512 			next = start;
1513 			start += period;
1514 			do {
1515 				start--;
1516 				/* check schedule: enough space? */
1517 				if (stream->highspeed) {
1518 					if (itd_slot_ok(ehci, stream, start))
1519 						done = 1;
1520 				} else {
1521 					if ((start % 8) >= 6)
1522 						continue;
1523 					if (sitd_slot_ok(ehci, stream, start,
1524 							sched, tt))
1525 						done = 1;
1526 				}
1527 			} while (start > next && !done);
1528 
1529 			/* no room in the schedule */
1530 			if (!done) {
1531 				ehci_dbg(ehci, "iso sched full %p", urb);
1532 				status = -ENOSPC;
1533 				goto fail;
1534 			}
1535 			stream->ps.phase = (start >> 3) &
1536 					(stream->ps.period - 1);
1537 			stream->ps.bw_phase = stream->ps.phase &
1538 					(stream->ps.bw_period - 1);
1539 			stream->ps.phase_uf = start & 7;
1540 			reserve_release_iso_bandwidth(ehci, stream, 1);
1541 		}
1542 
1543 		/* New stream is already scheduled; use the upcoming slot */
1544 		else {
1545 			start = (stream->ps.phase << 3) + stream->ps.phase_uf;
1546 		}
1547 
1548 		stream->next_uframe = start;
1549 		new_stream = true;
1550 	}
1551 
1552 	now = ehci_read_frame_index(ehci) & (mod - 1);
1553 
1554 	/* Take the isochronous scheduling threshold into account */
1555 	if (ehci->i_thresh)
1556 		next = now + ehci->i_thresh;	/* uframe cache */
1557 	else
1558 		next = (now + 2 + 7) & ~0x07;	/* full frame cache */
1559 
1560 	/* If needed, initialize last_iso_frame so that this URB will be seen */
1561 	if (ehci->isoc_count == 0)
1562 		ehci->last_iso_frame = now >> 3;
1563 
1564 	/*
1565 	 * Use ehci->last_iso_frame as the base.  There can't be any
1566 	 * TDs scheduled for earlier than that.
1567 	 */
1568 	base = ehci->last_iso_frame << 3;
1569 	next = (next - base) & (mod - 1);
1570 	start = (stream->next_uframe - base) & (mod - 1);
1571 
1572 	if (unlikely(new_stream))
1573 		goto do_ASAP;
1574 
1575 	/*
1576 	 * Typical case: reuse current schedule, stream may still be active.
1577 	 * Hopefully there are no gaps from the host falling behind
1578 	 * (irq delays etc).  If there are, the behavior depends on
1579 	 * whether URB_ISO_ASAP is set.
1580 	 */
1581 	now2 = (now - base) & (mod - 1);
1582 
1583 	/* Is the schedule about to wrap around? */
1584 	if (unlikely(!empty && start < period)) {
1585 		ehci_dbg(ehci, "request %p would overflow (%u-%u < %u mod %u)\n",
1586 				urb, stream->next_uframe, base, period, mod);
1587 		status = -EFBIG;
1588 		goto fail;
1589 	}
1590 
1591 	/* Is the next packet scheduled after the base time? */
1592 	if (likely(!empty || start <= now2 + period)) {
1593 
1594 		/* URB_ISO_ASAP: make sure that start >= next */
1595 		if (unlikely(start < next &&
1596 				(urb->transfer_flags & URB_ISO_ASAP)))
1597 			goto do_ASAP;
1598 
1599 		/* Otherwise use start, if it's not in the past */
1600 		if (likely(start >= now2))
1601 			goto use_start;
1602 
1603 	/* Otherwise we got an underrun while the queue was empty */
1604 	} else {
1605 		if (urb->transfer_flags & URB_ISO_ASAP)
1606 			goto do_ASAP;
1607 		wrap = mod;
1608 		now2 += mod;
1609 	}
1610 
1611 	/* How many uframes and packets do we need to skip? */
1612 	skip = (now2 - start + period - 1) & -period;
1613 	if (skip >= span) {		/* Entirely in the past? */
1614 		ehci_dbg(ehci, "iso underrun %p (%u+%u < %u) [%u]\n",
1615 				urb, start + base, span - period, now2 + base,
1616 				base);
1617 
1618 		/* Try to keep the last TD intact for scanning later */
1619 		skip = span - period;
1620 
1621 		/* Will it come before the current scan position? */
1622 		if (empty) {
1623 			skip = span;	/* Skip the entire URB */
1624 			status = 1;	/* and give it back immediately */
1625 			iso_sched_free(stream, sched);
1626 			sched = NULL;
1627 		}
1628 	}
1629 	urb->error_count = skip / period;
1630 	if (sched)
1631 		sched->first_packet = urb->error_count;
1632 	goto use_start;
1633 
1634  do_ASAP:
1635 	/* Use the first slot after "next" */
1636 	start = next + ((start - next) & (period - 1));
1637 
1638  use_start:
1639 	/* Tried to schedule too far into the future? */
1640 	if (unlikely(start + span - period >= mod + wrap)) {
1641 		ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n",
1642 				urb, start, span - period, mod + wrap);
1643 		status = -EFBIG;
1644 		goto fail;
1645 	}
1646 
1647 	start += base;
1648 	stream->next_uframe = (start + skip) & (mod - 1);
1649 
1650 	/* report high speed start in uframes; full speed, in frames */
1651 	urb->start_frame = start & (mod - 1);
1652 	if (!stream->highspeed)
1653 		urb->start_frame >>= 3;
1654 	return status;
1655 
1656  fail:
1657 	iso_sched_free(stream, sched);
1658 	urb->hcpriv = NULL;
1659 	return status;
1660 }
1661 
1662 /*-------------------------------------------------------------------------*/
1663 
1664 static inline void
1665 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1666 		struct ehci_itd *itd)
1667 {
1668 	int i;
1669 
1670 	/* it's been recently zeroed */
1671 	itd->hw_next = EHCI_LIST_END(ehci);
1672 	itd->hw_bufp[0] = stream->buf0;
1673 	itd->hw_bufp[1] = stream->buf1;
1674 	itd->hw_bufp[2] = stream->buf2;
1675 
1676 	for (i = 0; i < 8; i++)
1677 		itd->index[i] = -1;
1678 
1679 	/* All other fields are filled when scheduling */
1680 }
1681 
1682 static inline void
1683 itd_patch(
1684 	struct ehci_hcd		*ehci,
1685 	struct ehci_itd		*itd,
1686 	struct ehci_iso_sched	*iso_sched,
1687 	unsigned		index,
1688 	u16			uframe
1689 )
1690 {
1691 	struct ehci_iso_packet	*uf = &iso_sched->packet[index];
1692 	unsigned		pg = itd->pg;
1693 
1694 	/* BUG_ON(pg == 6 && uf->cross); */
1695 
1696 	uframe &= 0x07;
1697 	itd->index[uframe] = index;
1698 
1699 	itd->hw_transaction[uframe] = uf->transaction;
1700 	itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1701 	itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1702 	itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1703 
1704 	/* iso_frame_desc[].offset must be strictly increasing */
1705 	if (unlikely(uf->cross)) {
1706 		u64	bufp = uf->bufp + 4096;
1707 
1708 		itd->pg = ++pg;
1709 		itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1710 		itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1711 	}
1712 }
1713 
1714 static inline void
1715 itd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1716 {
1717 	union ehci_shadow	*prev = &ehci->pshadow[frame];
1718 	__hc32			*hw_p = &ehci->periodic[frame];
1719 	union ehci_shadow	here = *prev;
1720 	__hc32			type = 0;
1721 
1722 	/* skip any iso nodes which might belong to previous microframes */
1723 	while (here.ptr) {
1724 		type = Q_NEXT_TYPE(ehci, *hw_p);
1725 		if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1726 			break;
1727 		prev = periodic_next_shadow(ehci, prev, type);
1728 		hw_p = shadow_next_periodic(ehci, &here, type);
1729 		here = *prev;
1730 	}
1731 
1732 	itd->itd_next = here;
1733 	itd->hw_next = *hw_p;
1734 	prev->itd = itd;
1735 	itd->frame = frame;
1736 	wmb();
1737 	*hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1738 }
1739 
1740 /* fit urb's itds into the selected schedule slot; activate as needed */
1741 static void itd_link_urb(
1742 	struct ehci_hcd		*ehci,
1743 	struct urb		*urb,
1744 	unsigned		mod,
1745 	struct ehci_iso_stream	*stream
1746 )
1747 {
1748 	int			packet;
1749 	unsigned		next_uframe, uframe, frame;
1750 	struct ehci_iso_sched	*iso_sched = urb->hcpriv;
1751 	struct ehci_itd		*itd;
1752 
1753 	next_uframe = stream->next_uframe & (mod - 1);
1754 
1755 	if (unlikely(list_empty(&stream->td_list)))
1756 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1757 				+= stream->bandwidth;
1758 
1759 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1760 		if (ehci->amd_pll_fix == 1)
1761 			usb_amd_quirk_pll_disable();
1762 	}
1763 
1764 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1765 
1766 	/* fill iTDs uframe by uframe */
1767 	for (packet = iso_sched->first_packet, itd = NULL;
1768 			packet < urb->number_of_packets;) {
1769 		if (itd == NULL) {
1770 			/* ASSERT:  we have all necessary itds */
1771 			/* BUG_ON(list_empty(&iso_sched->td_list)); */
1772 
1773 			/* ASSERT:  no itds for this endpoint in this uframe */
1774 
1775 			itd = list_entry(iso_sched->td_list.next,
1776 					struct ehci_itd, itd_list);
1777 			list_move_tail(&itd->itd_list, &stream->td_list);
1778 			itd->stream = stream;
1779 			itd->urb = urb;
1780 			itd_init(ehci, stream, itd);
1781 		}
1782 
1783 		uframe = next_uframe & 0x07;
1784 		frame = next_uframe >> 3;
1785 
1786 		itd_patch(ehci, itd, iso_sched, packet, uframe);
1787 
1788 		next_uframe += stream->uperiod;
1789 		next_uframe &= mod - 1;
1790 		packet++;
1791 
1792 		/* link completed itds into the schedule */
1793 		if (((next_uframe >> 3) != frame)
1794 				|| packet == urb->number_of_packets) {
1795 			itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1796 			itd = NULL;
1797 		}
1798 	}
1799 	stream->next_uframe = next_uframe;
1800 
1801 	/* don't need that schedule data any more */
1802 	iso_sched_free(stream, iso_sched);
1803 	urb->hcpriv = stream;
1804 
1805 	++ehci->isoc_count;
1806 	enable_periodic(ehci);
1807 }
1808 
1809 #define	ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1810 
1811 /* Process and recycle a completed ITD.  Return true iff its urb completed,
1812  * and hence its completion callback probably added things to the hardware
1813  * schedule.
1814  *
1815  * Note that we carefully avoid recycling this descriptor until after any
1816  * completion callback runs, so that it won't be reused quickly.  That is,
1817  * assuming (a) no more than two urbs per frame on this endpoint, and also
1818  * (b) only this endpoint's completions submit URBs.  It seems some silicon
1819  * corrupts things if you reuse completed descriptors very quickly...
1820  */
1821 static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd)
1822 {
1823 	struct urb				*urb = itd->urb;
1824 	struct usb_iso_packet_descriptor	*desc;
1825 	u32					t;
1826 	unsigned				uframe;
1827 	int					urb_index = -1;
1828 	struct ehci_iso_stream			*stream = itd->stream;
1829 	bool					retval = false;
1830 
1831 	/* for each uframe with a packet */
1832 	for (uframe = 0; uframe < 8; uframe++) {
1833 		if (likely(itd->index[uframe] == -1))
1834 			continue;
1835 		urb_index = itd->index[uframe];
1836 		desc = &urb->iso_frame_desc[urb_index];
1837 
1838 		t = hc32_to_cpup(ehci, &itd->hw_transaction[uframe]);
1839 		itd->hw_transaction[uframe] = 0;
1840 
1841 		/* report transfer status */
1842 		if (unlikely(t & ISO_ERRS)) {
1843 			urb->error_count++;
1844 			if (t & EHCI_ISOC_BUF_ERR)
1845 				desc->status = usb_pipein(urb->pipe)
1846 					? -ENOSR  /* hc couldn't read */
1847 					: -ECOMM; /* hc couldn't write */
1848 			else if (t & EHCI_ISOC_BABBLE)
1849 				desc->status = -EOVERFLOW;
1850 			else /* (t & EHCI_ISOC_XACTERR) */
1851 				desc->status = -EPROTO;
1852 
1853 			/* HC need not update length with this error */
1854 			if (!(t & EHCI_ISOC_BABBLE)) {
1855 				desc->actual_length = EHCI_ITD_LENGTH(t);
1856 				urb->actual_length += desc->actual_length;
1857 			}
1858 		} else if (likely((t & EHCI_ISOC_ACTIVE) == 0)) {
1859 			desc->status = 0;
1860 			desc->actual_length = EHCI_ITD_LENGTH(t);
1861 			urb->actual_length += desc->actual_length;
1862 		} else {
1863 			/* URB was too late */
1864 			urb->error_count++;
1865 		}
1866 	}
1867 
1868 	/* handle completion now? */
1869 	if (likely((urb_index + 1) != urb->number_of_packets))
1870 		goto done;
1871 
1872 	/*
1873 	 * ASSERT: it's really the last itd for this urb
1874 	 * list_for_each_entry (itd, &stream->td_list, itd_list)
1875 	 *	 BUG_ON(itd->urb == urb);
1876 	 */
1877 
1878 	/* give urb back to the driver; completion often (re)submits */
1879 	ehci_urb_done(ehci, urb, 0);
1880 	retval = true;
1881 	urb = NULL;
1882 
1883 	--ehci->isoc_count;
1884 	disable_periodic(ehci);
1885 
1886 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1887 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1888 		if (ehci->amd_pll_fix == 1)
1889 			usb_amd_quirk_pll_enable();
1890 	}
1891 
1892 	if (unlikely(list_is_singular(&stream->td_list)))
1893 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1894 				-= stream->bandwidth;
1895 
1896 done:
1897 	itd->urb = NULL;
1898 
1899 	/* Add to the end of the free list for later reuse */
1900 	list_move_tail(&itd->itd_list, &stream->free_list);
1901 
1902 	/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
1903 	if (list_empty(&stream->td_list)) {
1904 		list_splice_tail_init(&stream->free_list,
1905 				&ehci->cached_itd_list);
1906 		start_free_itds(ehci);
1907 	}
1908 
1909 	return retval;
1910 }
1911 
1912 /*-------------------------------------------------------------------------*/
1913 
1914 static int itd_submit(struct ehci_hcd *ehci, struct urb *urb,
1915 	gfp_t mem_flags)
1916 {
1917 	int			status = -EINVAL;
1918 	unsigned long		flags;
1919 	struct ehci_iso_stream	*stream;
1920 
1921 	/* Get iso_stream head */
1922 	stream = iso_stream_find(ehci, urb);
1923 	if (unlikely(stream == NULL)) {
1924 		ehci_dbg(ehci, "can't get iso stream\n");
1925 		return -ENOMEM;
1926 	}
1927 	if (unlikely(urb->interval != stream->uperiod)) {
1928 		ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
1929 			stream->uperiod, urb->interval);
1930 		goto done;
1931 	}
1932 
1933 #ifdef EHCI_URB_TRACE
1934 	ehci_dbg(ehci,
1935 		"%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1936 		__func__, urb->dev->devpath, urb,
1937 		usb_pipeendpoint(urb->pipe),
1938 		usb_pipein(urb->pipe) ? "in" : "out",
1939 		urb->transfer_buffer_length,
1940 		urb->number_of_packets, urb->interval,
1941 		stream);
1942 #endif
1943 
1944 	/* allocate ITDs w/o locking anything */
1945 	status = itd_urb_transaction(stream, ehci, urb, mem_flags);
1946 	if (unlikely(status < 0)) {
1947 		ehci_dbg(ehci, "can't init itds\n");
1948 		goto done;
1949 	}
1950 
1951 	/* schedule ... need to lock */
1952 	spin_lock_irqsave(&ehci->lock, flags);
1953 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1954 		status = -ESHUTDOWN;
1955 		goto done_not_linked;
1956 	}
1957 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1958 	if (unlikely(status))
1959 		goto done_not_linked;
1960 	status = iso_stream_schedule(ehci, urb, stream);
1961 	if (likely(status == 0)) {
1962 		itd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
1963 	} else if (status > 0) {
1964 		status = 0;
1965 		ehci_urb_done(ehci, urb, 0);
1966 	} else {
1967 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1968 	}
1969  done_not_linked:
1970 	spin_unlock_irqrestore(&ehci->lock, flags);
1971  done:
1972 	return status;
1973 }
1974 
1975 /*-------------------------------------------------------------------------*/
1976 
1977 /*
1978  * "Split ISO TDs" ... used for USB 1.1 devices going through the
1979  * TTs in USB 2.0 hubs.  These need microframe scheduling.
1980  */
1981 
1982 static inline void
1983 sitd_sched_init(
1984 	struct ehci_hcd		*ehci,
1985 	struct ehci_iso_sched	*iso_sched,
1986 	struct ehci_iso_stream	*stream,
1987 	struct urb		*urb
1988 )
1989 {
1990 	unsigned	i;
1991 	dma_addr_t	dma = urb->transfer_dma;
1992 
1993 	/* how many frames are needed for these transfers */
1994 	iso_sched->span = urb->number_of_packets * stream->ps.period;
1995 
1996 	/* figure out per-frame sitd fields that we'll need later
1997 	 * when we fit new sitds into the schedule.
1998 	 */
1999 	for (i = 0; i < urb->number_of_packets; i++) {
2000 		struct ehci_iso_packet	*packet = &iso_sched->packet[i];
2001 		unsigned		length;
2002 		dma_addr_t		buf;
2003 		u32			trans;
2004 
2005 		length = urb->iso_frame_desc[i].length & 0x03ff;
2006 		buf = dma + urb->iso_frame_desc[i].offset;
2007 
2008 		trans = SITD_STS_ACTIVE;
2009 		if (((i + 1) == urb->number_of_packets)
2010 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
2011 			trans |= SITD_IOC;
2012 		trans |= length << 16;
2013 		packet->transaction = cpu_to_hc32(ehci, trans);
2014 
2015 		/* might need to cross a buffer page within a td */
2016 		packet->bufp = buf;
2017 		packet->buf1 = (buf + length) & ~0x0fff;
2018 		if (packet->buf1 != (buf & ~(u64)0x0fff))
2019 			packet->cross = 1;
2020 
2021 		/* OUT uses multiple start-splits */
2022 		if (stream->bEndpointAddress & USB_DIR_IN)
2023 			continue;
2024 		length = (length + 187) / 188;
2025 		if (length > 1) /* BEGIN vs ALL */
2026 			length |= 1 << 3;
2027 		packet->buf1 |= length;
2028 	}
2029 }
2030 
2031 static int
2032 sitd_urb_transaction(
2033 	struct ehci_iso_stream	*stream,
2034 	struct ehci_hcd		*ehci,
2035 	struct urb		*urb,
2036 	gfp_t			mem_flags
2037 )
2038 {
2039 	struct ehci_sitd	*sitd;
2040 	dma_addr_t		sitd_dma;
2041 	int			i;
2042 	struct ehci_iso_sched	*iso_sched;
2043 	unsigned long		flags;
2044 
2045 	iso_sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
2046 	if (iso_sched == NULL)
2047 		return -ENOMEM;
2048 
2049 	sitd_sched_init(ehci, iso_sched, stream, urb);
2050 
2051 	/* allocate/init sITDs */
2052 	spin_lock_irqsave(&ehci->lock, flags);
2053 	for (i = 0; i < urb->number_of_packets; i++) {
2054 
2055 		/* NOTE:  for now, we don't try to handle wraparound cases
2056 		 * for IN (using sitd->hw_backpointer, like a FSTN), which
2057 		 * means we never need two sitds for full speed packets.
2058 		 */
2059 
2060 		/*
2061 		 * Use siTDs from the free list, but not siTDs that may
2062 		 * still be in use by the hardware.
2063 		 */
2064 		if (likely(!list_empty(&stream->free_list))) {
2065 			sitd = list_first_entry(&stream->free_list,
2066 					 struct ehci_sitd, sitd_list);
2067 			if (sitd->frame == ehci->now_frame)
2068 				goto alloc_sitd;
2069 			list_del(&sitd->sitd_list);
2070 			sitd_dma = sitd->sitd_dma;
2071 		} else {
2072  alloc_sitd:
2073 			spin_unlock_irqrestore(&ehci->lock, flags);
2074 			sitd = dma_pool_alloc(ehci->sitd_pool, mem_flags,
2075 					&sitd_dma);
2076 			spin_lock_irqsave(&ehci->lock, flags);
2077 			if (!sitd) {
2078 				iso_sched_free(stream, iso_sched);
2079 				spin_unlock_irqrestore(&ehci->lock, flags);
2080 				return -ENOMEM;
2081 			}
2082 		}
2083 
2084 		memset(sitd, 0, sizeof(*sitd));
2085 		sitd->sitd_dma = sitd_dma;
2086 		sitd->frame = NO_FRAME;
2087 		list_add(&sitd->sitd_list, &iso_sched->td_list);
2088 	}
2089 
2090 	/* temporarily store schedule info in hcpriv */
2091 	urb->hcpriv = iso_sched;
2092 	urb->error_count = 0;
2093 
2094 	spin_unlock_irqrestore(&ehci->lock, flags);
2095 	return 0;
2096 }
2097 
2098 /*-------------------------------------------------------------------------*/
2099 
2100 static inline void
2101 sitd_patch(
2102 	struct ehci_hcd		*ehci,
2103 	struct ehci_iso_stream	*stream,
2104 	struct ehci_sitd	*sitd,
2105 	struct ehci_iso_sched	*iso_sched,
2106 	unsigned		index
2107 )
2108 {
2109 	struct ehci_iso_packet	*uf = &iso_sched->packet[index];
2110 	u64			bufp;
2111 
2112 	sitd->hw_next = EHCI_LIST_END(ehci);
2113 	sitd->hw_fullspeed_ep = stream->address;
2114 	sitd->hw_uframe = stream->splits;
2115 	sitd->hw_results = uf->transaction;
2116 	sitd->hw_backpointer = EHCI_LIST_END(ehci);
2117 
2118 	bufp = uf->bufp;
2119 	sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
2120 	sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
2121 
2122 	sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
2123 	if (uf->cross)
2124 		bufp += 4096;
2125 	sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
2126 	sitd->index = index;
2127 }
2128 
2129 static inline void
2130 sitd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
2131 {
2132 	/* note: sitd ordering could matter (CSPLIT then SSPLIT) */
2133 	sitd->sitd_next = ehci->pshadow[frame];
2134 	sitd->hw_next = ehci->periodic[frame];
2135 	ehci->pshadow[frame].sitd = sitd;
2136 	sitd->frame = frame;
2137 	wmb();
2138 	ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
2139 }
2140 
2141 /* fit urb's sitds into the selected schedule slot; activate as needed */
2142 static void sitd_link_urb(
2143 	struct ehci_hcd		*ehci,
2144 	struct urb		*urb,
2145 	unsigned		mod,
2146 	struct ehci_iso_stream	*stream
2147 )
2148 {
2149 	int			packet;
2150 	unsigned		next_uframe;
2151 	struct ehci_iso_sched	*sched = urb->hcpriv;
2152 	struct ehci_sitd	*sitd;
2153 
2154 	next_uframe = stream->next_uframe;
2155 
2156 	if (list_empty(&stream->td_list))
2157 		/* usbfs ignores TT bandwidth */
2158 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2159 				+= stream->bandwidth;
2160 
2161 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2162 		if (ehci->amd_pll_fix == 1)
2163 			usb_amd_quirk_pll_disable();
2164 	}
2165 
2166 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2167 
2168 	/* fill sITDs frame by frame */
2169 	for (packet = sched->first_packet, sitd = NULL;
2170 			packet < urb->number_of_packets;
2171 			packet++) {
2172 
2173 		/* ASSERT:  we have all necessary sitds */
2174 		BUG_ON(list_empty(&sched->td_list));
2175 
2176 		/* ASSERT:  no itds for this endpoint in this frame */
2177 
2178 		sitd = list_entry(sched->td_list.next,
2179 				struct ehci_sitd, sitd_list);
2180 		list_move_tail(&sitd->sitd_list, &stream->td_list);
2181 		sitd->stream = stream;
2182 		sitd->urb = urb;
2183 
2184 		sitd_patch(ehci, stream, sitd, sched, packet);
2185 		sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2186 				sitd);
2187 
2188 		next_uframe += stream->uperiod;
2189 	}
2190 	stream->next_uframe = next_uframe & (mod - 1);
2191 
2192 	/* don't need that schedule data any more */
2193 	iso_sched_free(stream, sched);
2194 	urb->hcpriv = stream;
2195 
2196 	++ehci->isoc_count;
2197 	enable_periodic(ehci);
2198 }
2199 
2200 /*-------------------------------------------------------------------------*/
2201 
2202 #define	SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2203 				| SITD_STS_XACT | SITD_STS_MMF)
2204 
2205 /* Process and recycle a completed SITD.  Return true iff its urb completed,
2206  * and hence its completion callback probably added things to the hardware
2207  * schedule.
2208  *
2209  * Note that we carefully avoid recycling this descriptor until after any
2210  * completion callback runs, so that it won't be reused quickly.  That is,
2211  * assuming (a) no more than two urbs per frame on this endpoint, and also
2212  * (b) only this endpoint's completions submit URBs.  It seems some silicon
2213  * corrupts things if you reuse completed descriptors very quickly...
2214  */
2215 static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd)
2216 {
2217 	struct urb				*urb = sitd->urb;
2218 	struct usb_iso_packet_descriptor	*desc;
2219 	u32					t;
2220 	int					urb_index;
2221 	struct ehci_iso_stream			*stream = sitd->stream;
2222 	bool					retval = false;
2223 
2224 	urb_index = sitd->index;
2225 	desc = &urb->iso_frame_desc[urb_index];
2226 	t = hc32_to_cpup(ehci, &sitd->hw_results);
2227 
2228 	/* report transfer status */
2229 	if (unlikely(t & SITD_ERRS)) {
2230 		urb->error_count++;
2231 		if (t & SITD_STS_DBE)
2232 			desc->status = usb_pipein(urb->pipe)
2233 				? -ENOSR  /* hc couldn't read */
2234 				: -ECOMM; /* hc couldn't write */
2235 		else if (t & SITD_STS_BABBLE)
2236 			desc->status = -EOVERFLOW;
2237 		else /* XACT, MMF, etc */
2238 			desc->status = -EPROTO;
2239 	} else if (unlikely(t & SITD_STS_ACTIVE)) {
2240 		/* URB was too late */
2241 		urb->error_count++;
2242 	} else {
2243 		desc->status = 0;
2244 		desc->actual_length = desc->length - SITD_LENGTH(t);
2245 		urb->actual_length += desc->actual_length;
2246 	}
2247 
2248 	/* handle completion now? */
2249 	if ((urb_index + 1) != urb->number_of_packets)
2250 		goto done;
2251 
2252 	/*
2253 	 * ASSERT: it's really the last sitd for this urb
2254 	 * list_for_each_entry (sitd, &stream->td_list, sitd_list)
2255 	 *	 BUG_ON(sitd->urb == urb);
2256 	 */
2257 
2258 	/* give urb back to the driver; completion often (re)submits */
2259 	ehci_urb_done(ehci, urb, 0);
2260 	retval = true;
2261 	urb = NULL;
2262 
2263 	--ehci->isoc_count;
2264 	disable_periodic(ehci);
2265 
2266 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2267 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2268 		if (ehci->amd_pll_fix == 1)
2269 			usb_amd_quirk_pll_enable();
2270 	}
2271 
2272 	if (list_is_singular(&stream->td_list))
2273 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2274 				-= stream->bandwidth;
2275 
2276 done:
2277 	sitd->urb = NULL;
2278 
2279 	/* Add to the end of the free list for later reuse */
2280 	list_move_tail(&sitd->sitd_list, &stream->free_list);
2281 
2282 	/* Recycle the siTDs when the pipeline is empty (ep no longer in use) */
2283 	if (list_empty(&stream->td_list)) {
2284 		list_splice_tail_init(&stream->free_list,
2285 				&ehci->cached_sitd_list);
2286 		start_free_itds(ehci);
2287 	}
2288 
2289 	return retval;
2290 }
2291 
2292 
2293 static int sitd_submit(struct ehci_hcd *ehci, struct urb *urb,
2294 	gfp_t mem_flags)
2295 {
2296 	int			status = -EINVAL;
2297 	unsigned long		flags;
2298 	struct ehci_iso_stream	*stream;
2299 
2300 	/* Get iso_stream head */
2301 	stream = iso_stream_find(ehci, urb);
2302 	if (stream == NULL) {
2303 		ehci_dbg(ehci, "can't get iso stream\n");
2304 		return -ENOMEM;
2305 	}
2306 	if (urb->interval != stream->ps.period) {
2307 		ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
2308 			stream->ps.period, urb->interval);
2309 		goto done;
2310 	}
2311 
2312 #ifdef EHCI_URB_TRACE
2313 	ehci_dbg(ehci,
2314 		"submit %p dev%s ep%d%s-iso len %d\n",
2315 		urb, urb->dev->devpath,
2316 		usb_pipeendpoint(urb->pipe),
2317 		usb_pipein(urb->pipe) ? "in" : "out",
2318 		urb->transfer_buffer_length);
2319 #endif
2320 
2321 	/* allocate SITDs */
2322 	status = sitd_urb_transaction(stream, ehci, urb, mem_flags);
2323 	if (status < 0) {
2324 		ehci_dbg(ehci, "can't init sitds\n");
2325 		goto done;
2326 	}
2327 
2328 	/* schedule ... need to lock */
2329 	spin_lock_irqsave(&ehci->lock, flags);
2330 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2331 		status = -ESHUTDOWN;
2332 		goto done_not_linked;
2333 	}
2334 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2335 	if (unlikely(status))
2336 		goto done_not_linked;
2337 	status = iso_stream_schedule(ehci, urb, stream);
2338 	if (likely(status == 0)) {
2339 		sitd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
2340 	} else if (status > 0) {
2341 		status = 0;
2342 		ehci_urb_done(ehci, urb, 0);
2343 	} else {
2344 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2345 	}
2346  done_not_linked:
2347 	spin_unlock_irqrestore(&ehci->lock, flags);
2348  done:
2349 	return status;
2350 }
2351 
2352 /*-------------------------------------------------------------------------*/
2353 
2354 static void scan_isoc(struct ehci_hcd *ehci)
2355 {
2356 	unsigned		uf, now_frame, frame;
2357 	unsigned		fmask = ehci->periodic_size - 1;
2358 	bool			modified, live;
2359 	union ehci_shadow	q, *q_p;
2360 	__hc32			type, *hw_p;
2361 
2362 	/*
2363 	 * When running, scan from last scan point up to "now"
2364 	 * else clean up by scanning everything that's left.
2365 	 * Touches as few pages as possible:  cache-friendly.
2366 	 */
2367 	if (ehci->rh_state >= EHCI_RH_RUNNING) {
2368 		uf = ehci_read_frame_index(ehci);
2369 		now_frame = (uf >> 3) & fmask;
2370 		live = true;
2371 	} else  {
2372 		now_frame = (ehci->last_iso_frame - 1) & fmask;
2373 		live = false;
2374 	}
2375 	ehci->now_frame = now_frame;
2376 
2377 	frame = ehci->last_iso_frame;
2378 
2379 restart:
2380 	/* Scan each element in frame's queue for completions */
2381 	q_p = &ehci->pshadow[frame];
2382 	hw_p = &ehci->periodic[frame];
2383 	q.ptr = q_p->ptr;
2384 	type = Q_NEXT_TYPE(ehci, *hw_p);
2385 	modified = false;
2386 
2387 	while (q.ptr != NULL) {
2388 		switch (hc32_to_cpu(ehci, type)) {
2389 		case Q_TYPE_ITD:
2390 			/*
2391 			 * If this ITD is still active, leave it for
2392 			 * later processing ... check the next entry.
2393 			 * No need to check for activity unless the
2394 			 * frame is current.
2395 			 */
2396 			if (frame == now_frame && live) {
2397 				rmb();
2398 				for (uf = 0; uf < 8; uf++) {
2399 					if (q.itd->hw_transaction[uf] &
2400 							ITD_ACTIVE(ehci))
2401 						break;
2402 				}
2403 				if (uf < 8) {
2404 					q_p = &q.itd->itd_next;
2405 					hw_p = &q.itd->hw_next;
2406 					type = Q_NEXT_TYPE(ehci,
2407 							q.itd->hw_next);
2408 					q = *q_p;
2409 					break;
2410 				}
2411 			}
2412 
2413 			/*
2414 			 * Take finished ITDs out of the schedule
2415 			 * and process them:  recycle, maybe report
2416 			 * URB completion.  HC won't cache the
2417 			 * pointer for much longer, if at all.
2418 			 */
2419 			*q_p = q.itd->itd_next;
2420 			if (!ehci->use_dummy_qh ||
2421 					q.itd->hw_next != EHCI_LIST_END(ehci))
2422 				*hw_p = q.itd->hw_next;
2423 			else
2424 				*hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
2425 			type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2426 			wmb();
2427 			modified = itd_complete(ehci, q.itd);
2428 			q = *q_p;
2429 			break;
2430 		case Q_TYPE_SITD:
2431 			/*
2432 			 * If this SITD is still active, leave it for
2433 			 * later processing ... check the next entry.
2434 			 * No need to check for activity unless the
2435 			 * frame is current.
2436 			 */
2437 			if (((frame == now_frame) ||
2438 					(((frame + 1) & fmask) == now_frame))
2439 				&& live
2440 				&& (q.sitd->hw_results & SITD_ACTIVE(ehci))) {
2441 
2442 				q_p = &q.sitd->sitd_next;
2443 				hw_p = &q.sitd->hw_next;
2444 				type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2445 				q = *q_p;
2446 				break;
2447 			}
2448 
2449 			/*
2450 			 * Take finished SITDs out of the schedule
2451 			 * and process them:  recycle, maybe report
2452 			 * URB completion.
2453 			 */
2454 			*q_p = q.sitd->sitd_next;
2455 			if (!ehci->use_dummy_qh ||
2456 					q.sitd->hw_next != EHCI_LIST_END(ehci))
2457 				*hw_p = q.sitd->hw_next;
2458 			else
2459 				*hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
2460 			type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2461 			wmb();
2462 			modified = sitd_complete(ehci, q.sitd);
2463 			q = *q_p;
2464 			break;
2465 		default:
2466 			ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n",
2467 					type, frame, q.ptr);
2468 			/* BUG(); */
2469 			fallthrough;
2470 		case Q_TYPE_QH:
2471 		case Q_TYPE_FSTN:
2472 			/* End of the iTDs and siTDs */
2473 			q.ptr = NULL;
2474 			break;
2475 		}
2476 
2477 		/* Assume completion callbacks modify the queue */
2478 		if (unlikely(modified && ehci->isoc_count > 0))
2479 			goto restart;
2480 	}
2481 
2482 	/* Stop when we have reached the current frame */
2483 	if (frame == now_frame)
2484 		return;
2485 
2486 	/* The last frame may still have active siTDs */
2487 	ehci->last_iso_frame = frame;
2488 	frame = (frame + 1) & fmask;
2489 
2490 	goto restart;
2491 }
2492