xref: /openbmc/linux/drivers/usb/host/ehci-sched.c (revision 7dd65feb)
1 /*
2  * Copyright (c) 2001-2004 by David Brownell
3  * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation; either version 2 of the License, or (at your
8  * option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software Foundation,
17  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19 
20 /* this file is part of ehci-hcd.c */
21 
22 /*-------------------------------------------------------------------------*/
23 
24 /*
25  * EHCI scheduled transaction support:  interrupt, iso, split iso
26  * These are called "periodic" transactions in the EHCI spec.
27  *
28  * Note that for interrupt transfers, the QH/QTD manipulation is shared
29  * with the "asynchronous" transaction support (control/bulk transfers).
30  * The only real difference is in how interrupt transfers are scheduled.
31  *
32  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33  * It keeps track of every ITD (or SITD) that's linked, and holds enough
34  * pre-calculated schedule data to make appending to the queue be quick.
35  */
36 
37 static int ehci_get_frame (struct usb_hcd *hcd);
38 
39 /*-------------------------------------------------------------------------*/
40 
41 /*
42  * periodic_next_shadow - return "next" pointer on shadow list
43  * @periodic: host pointer to qh/itd/sitd
44  * @tag: hardware tag for type of this record
45  */
46 static union ehci_shadow *
47 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
48 		__hc32 tag)
49 {
50 	switch (hc32_to_cpu(ehci, tag)) {
51 	case Q_TYPE_QH:
52 		return &periodic->qh->qh_next;
53 	case Q_TYPE_FSTN:
54 		return &periodic->fstn->fstn_next;
55 	case Q_TYPE_ITD:
56 		return &periodic->itd->itd_next;
57 	// case Q_TYPE_SITD:
58 	default:
59 		return &periodic->sitd->sitd_next;
60 	}
61 }
62 
63 static __hc32 *
64 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
65 		__hc32 tag)
66 {
67 	switch (hc32_to_cpu(ehci, tag)) {
68 	/* our ehci_shadow.qh is actually software part */
69 	case Q_TYPE_QH:
70 		return &periodic->qh->hw->hw_next;
71 	/* others are hw parts */
72 	default:
73 		return periodic->hw_next;
74 	}
75 }
76 
77 /* caller must hold ehci->lock */
78 static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr)
79 {
80 	union ehci_shadow	*prev_p = &ehci->pshadow[frame];
81 	__hc32			*hw_p = &ehci->periodic[frame];
82 	union ehci_shadow	here = *prev_p;
83 
84 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
85 	while (here.ptr && here.ptr != ptr) {
86 		prev_p = periodic_next_shadow(ehci, prev_p,
87 				Q_NEXT_TYPE(ehci, *hw_p));
88 		hw_p = shadow_next_periodic(ehci, &here,
89 				Q_NEXT_TYPE(ehci, *hw_p));
90 		here = *prev_p;
91 	}
92 	/* an interrupt entry (at list end) could have been shared */
93 	if (!here.ptr)
94 		return;
95 
96 	/* update shadow and hardware lists ... the old "next" pointers
97 	 * from ptr may still be in use, the caller updates them.
98 	 */
99 	*prev_p = *periodic_next_shadow(ehci, &here,
100 			Q_NEXT_TYPE(ehci, *hw_p));
101 	*hw_p = *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p));
102 }
103 
104 /* how many of the uframe's 125 usecs are allocated? */
105 static unsigned short
106 periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe)
107 {
108 	__hc32			*hw_p = &ehci->periodic [frame];
109 	union ehci_shadow	*q = &ehci->pshadow [frame];
110 	unsigned		usecs = 0;
111 	struct ehci_qh_hw	*hw;
112 
113 	while (q->ptr) {
114 		switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
115 		case Q_TYPE_QH:
116 			hw = q->qh->hw;
117 			/* is it in the S-mask? */
118 			if (hw->hw_info2 & cpu_to_hc32(ehci, 1 << uframe))
119 				usecs += q->qh->usecs;
120 			/* ... or C-mask? */
121 			if (hw->hw_info2 & cpu_to_hc32(ehci,
122 					1 << (8 + uframe)))
123 				usecs += q->qh->c_usecs;
124 			hw_p = &hw->hw_next;
125 			q = &q->qh->qh_next;
126 			break;
127 		// case Q_TYPE_FSTN:
128 		default:
129 			/* for "save place" FSTNs, count the relevant INTR
130 			 * bandwidth from the previous frame
131 			 */
132 			if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) {
133 				ehci_dbg (ehci, "ignoring FSTN cost ...\n");
134 			}
135 			hw_p = &q->fstn->hw_next;
136 			q = &q->fstn->fstn_next;
137 			break;
138 		case Q_TYPE_ITD:
139 			if (q->itd->hw_transaction[uframe])
140 				usecs += q->itd->stream->usecs;
141 			hw_p = &q->itd->hw_next;
142 			q = &q->itd->itd_next;
143 			break;
144 		case Q_TYPE_SITD:
145 			/* is it in the S-mask?  (count SPLIT, DATA) */
146 			if (q->sitd->hw_uframe & cpu_to_hc32(ehci,
147 					1 << uframe)) {
148 				if (q->sitd->hw_fullspeed_ep &
149 						cpu_to_hc32(ehci, 1<<31))
150 					usecs += q->sitd->stream->usecs;
151 				else	/* worst case for OUT start-split */
152 					usecs += HS_USECS_ISO (188);
153 			}
154 
155 			/* ... C-mask?  (count CSPLIT, DATA) */
156 			if (q->sitd->hw_uframe &
157 					cpu_to_hc32(ehci, 1 << (8 + uframe))) {
158 				/* worst case for IN complete-split */
159 				usecs += q->sitd->stream->c_usecs;
160 			}
161 
162 			hw_p = &q->sitd->hw_next;
163 			q = &q->sitd->sitd_next;
164 			break;
165 		}
166 	}
167 #ifdef	DEBUG
168 	if (usecs > 100)
169 		ehci_err (ehci, "uframe %d sched overrun: %d usecs\n",
170 			frame * 8 + uframe, usecs);
171 #endif
172 	return usecs;
173 }
174 
175 /*-------------------------------------------------------------------------*/
176 
177 static int same_tt (struct usb_device *dev1, struct usb_device *dev2)
178 {
179 	if (!dev1->tt || !dev2->tt)
180 		return 0;
181 	if (dev1->tt != dev2->tt)
182 		return 0;
183 	if (dev1->tt->multi)
184 		return dev1->ttport == dev2->ttport;
185 	else
186 		return 1;
187 }
188 
189 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
190 
191 /* Which uframe does the low/fullspeed transfer start in?
192  *
193  * The parameter is the mask of ssplits in "H-frame" terms
194  * and this returns the transfer start uframe in "B-frame" terms,
195  * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
196  * will cause a transfer in "B-frame" uframe 0.  "B-frames" lag
197  * "H-frames" by 1 uframe.  See the EHCI spec sec 4.5 and figure 4.7.
198  */
199 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
200 {
201 	unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask);
202 	if (!smask) {
203 		ehci_err(ehci, "invalid empty smask!\n");
204 		/* uframe 7 can't have bw so this will indicate failure */
205 		return 7;
206 	}
207 	return ffs(smask) - 1;
208 }
209 
210 static const unsigned char
211 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
212 
213 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
214 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
215 {
216 	int i;
217 	for (i=0; i<7; i++) {
218 		if (max_tt_usecs[i] < tt_usecs[i]) {
219 			tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
220 			tt_usecs[i] = max_tt_usecs[i];
221 		}
222 	}
223 }
224 
225 /* How many of the tt's periodic downstream 1000 usecs are allocated?
226  *
227  * While this measures the bandwidth in terms of usecs/uframe,
228  * the low/fullspeed bus has no notion of uframes, so any particular
229  * low/fullspeed transfer can "carry over" from one uframe to the next,
230  * since the TT just performs downstream transfers in sequence.
231  *
232  * For example two separate 100 usec transfers can start in the same uframe,
233  * and the second one would "carry over" 75 usecs into the next uframe.
234  */
235 static void
236 periodic_tt_usecs (
237 	struct ehci_hcd *ehci,
238 	struct usb_device *dev,
239 	unsigned frame,
240 	unsigned short tt_usecs[8]
241 )
242 {
243 	__hc32			*hw_p = &ehci->periodic [frame];
244 	union ehci_shadow	*q = &ehci->pshadow [frame];
245 	unsigned char		uf;
246 
247 	memset(tt_usecs, 0, 16);
248 
249 	while (q->ptr) {
250 		switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
251 		case Q_TYPE_ITD:
252 			hw_p = &q->itd->hw_next;
253 			q = &q->itd->itd_next;
254 			continue;
255 		case Q_TYPE_QH:
256 			if (same_tt(dev, q->qh->dev)) {
257 				uf = tt_start_uframe(ehci, q->qh->hw->hw_info2);
258 				tt_usecs[uf] += q->qh->tt_usecs;
259 			}
260 			hw_p = &q->qh->hw->hw_next;
261 			q = &q->qh->qh_next;
262 			continue;
263 		case Q_TYPE_SITD:
264 			if (same_tt(dev, q->sitd->urb->dev)) {
265 				uf = tt_start_uframe(ehci, q->sitd->hw_uframe);
266 				tt_usecs[uf] += q->sitd->stream->tt_usecs;
267 			}
268 			hw_p = &q->sitd->hw_next;
269 			q = &q->sitd->sitd_next;
270 			continue;
271 		// case Q_TYPE_FSTN:
272 		default:
273 			ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n",
274 					frame);
275 			hw_p = &q->fstn->hw_next;
276 			q = &q->fstn->fstn_next;
277 		}
278 	}
279 
280 	carryover_tt_bandwidth(tt_usecs);
281 
282 	if (max_tt_usecs[7] < tt_usecs[7])
283 		ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n",
284 			frame, tt_usecs[7] - max_tt_usecs[7]);
285 }
286 
287 /*
288  * Return true if the device's tt's downstream bus is available for a
289  * periodic transfer of the specified length (usecs), starting at the
290  * specified frame/uframe.  Note that (as summarized in section 11.19
291  * of the usb 2.0 spec) TTs can buffer multiple transactions for each
292  * uframe.
293  *
294  * The uframe parameter is when the fullspeed/lowspeed transfer
295  * should be executed in "B-frame" terms, which is the same as the
296  * highspeed ssplit's uframe (which is in "H-frame" terms).  For example
297  * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
298  * See the EHCI spec sec 4.5 and fig 4.7.
299  *
300  * This checks if the full/lowspeed bus, at the specified starting uframe,
301  * has the specified bandwidth available, according to rules listed
302  * in USB 2.0 spec section 11.18.1 fig 11-60.
303  *
304  * This does not check if the transfer would exceed the max ssplit
305  * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
306  * since proper scheduling limits ssplits to less than 16 per uframe.
307  */
308 static int tt_available (
309 	struct ehci_hcd		*ehci,
310 	unsigned		period,
311 	struct usb_device	*dev,
312 	unsigned		frame,
313 	unsigned		uframe,
314 	u16			usecs
315 )
316 {
317 	if ((period == 0) || (uframe >= 7))	/* error */
318 		return 0;
319 
320 	for (; frame < ehci->periodic_size; frame += period) {
321 		unsigned short tt_usecs[8];
322 
323 		periodic_tt_usecs (ehci, dev, frame, tt_usecs);
324 
325 		ehci_vdbg(ehci, "tt frame %d check %d usecs start uframe %d in"
326 			" schedule %d/%d/%d/%d/%d/%d/%d/%d\n",
327 			frame, usecs, uframe,
328 			tt_usecs[0], tt_usecs[1], tt_usecs[2], tt_usecs[3],
329 			tt_usecs[4], tt_usecs[5], tt_usecs[6], tt_usecs[7]);
330 
331 		if (max_tt_usecs[uframe] <= tt_usecs[uframe]) {
332 			ehci_vdbg(ehci, "frame %d uframe %d fully scheduled\n",
333 				frame, uframe);
334 			return 0;
335 		}
336 
337 		/* special case for isoc transfers larger than 125us:
338 		 * the first and each subsequent fully used uframe
339 		 * must be empty, so as to not illegally delay
340 		 * already scheduled transactions
341 		 */
342 		if (125 < usecs) {
343 			int ufs = (usecs / 125);
344 			int i;
345 			for (i = uframe; i < (uframe + ufs) && i < 8; i++)
346 				if (0 < tt_usecs[i]) {
347 					ehci_vdbg(ehci,
348 						"multi-uframe xfer can't fit "
349 						"in frame %d uframe %d\n",
350 						frame, i);
351 					return 0;
352 				}
353 		}
354 
355 		tt_usecs[uframe] += usecs;
356 
357 		carryover_tt_bandwidth(tt_usecs);
358 
359 		/* fail if the carryover pushed bw past the last uframe's limit */
360 		if (max_tt_usecs[7] < tt_usecs[7]) {
361 			ehci_vdbg(ehci,
362 				"tt unavailable usecs %d frame %d uframe %d\n",
363 				usecs, frame, uframe);
364 			return 0;
365 		}
366 	}
367 
368 	return 1;
369 }
370 
371 #else
372 
373 /* return true iff the device's transaction translator is available
374  * for a periodic transfer starting at the specified frame, using
375  * all the uframes in the mask.
376  */
377 static int tt_no_collision (
378 	struct ehci_hcd		*ehci,
379 	unsigned		period,
380 	struct usb_device	*dev,
381 	unsigned		frame,
382 	u32			uf_mask
383 )
384 {
385 	if (period == 0)	/* error */
386 		return 0;
387 
388 	/* note bandwidth wastage:  split never follows csplit
389 	 * (different dev or endpoint) until the next uframe.
390 	 * calling convention doesn't make that distinction.
391 	 */
392 	for (; frame < ehci->periodic_size; frame += period) {
393 		union ehci_shadow	here;
394 		__hc32			type;
395 		struct ehci_qh_hw	*hw;
396 
397 		here = ehci->pshadow [frame];
398 		type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]);
399 		while (here.ptr) {
400 			switch (hc32_to_cpu(ehci, type)) {
401 			case Q_TYPE_ITD:
402 				type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
403 				here = here.itd->itd_next;
404 				continue;
405 			case Q_TYPE_QH:
406 				hw = here.qh->hw;
407 				if (same_tt (dev, here.qh->dev)) {
408 					u32		mask;
409 
410 					mask = hc32_to_cpu(ehci,
411 							hw->hw_info2);
412 					/* "knows" no gap is needed */
413 					mask |= mask >> 8;
414 					if (mask & uf_mask)
415 						break;
416 				}
417 				type = Q_NEXT_TYPE(ehci, hw->hw_next);
418 				here = here.qh->qh_next;
419 				continue;
420 			case Q_TYPE_SITD:
421 				if (same_tt (dev, here.sitd->urb->dev)) {
422 					u16		mask;
423 
424 					mask = hc32_to_cpu(ehci, here.sitd
425 								->hw_uframe);
426 					/* FIXME assumes no gap for IN! */
427 					mask |= mask >> 8;
428 					if (mask & uf_mask)
429 						break;
430 				}
431 				type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
432 				here = here.sitd->sitd_next;
433 				continue;
434 			// case Q_TYPE_FSTN:
435 			default:
436 				ehci_dbg (ehci,
437 					"periodic frame %d bogus type %d\n",
438 					frame, type);
439 			}
440 
441 			/* collision or error */
442 			return 0;
443 		}
444 	}
445 
446 	/* no collision */
447 	return 1;
448 }
449 
450 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
451 
452 /*-------------------------------------------------------------------------*/
453 
454 static int enable_periodic (struct ehci_hcd *ehci)
455 {
456 	u32	cmd;
457 	int	status;
458 
459 	if (ehci->periodic_sched++)
460 		return 0;
461 
462 	/* did clearing PSE did take effect yet?
463 	 * takes effect only at frame boundaries...
464 	 */
465 	status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
466 					     STS_PSS, 0, 9 * 125);
467 	if (status)
468 		return status;
469 
470 	cmd = ehci_readl(ehci, &ehci->regs->command) | CMD_PSE;
471 	ehci_writel(ehci, cmd, &ehci->regs->command);
472 	/* posted write ... PSS happens later */
473 	ehci_to_hcd(ehci)->state = HC_STATE_RUNNING;
474 
475 	/* make sure ehci_work scans these */
476 	ehci->next_uframe = ehci_readl(ehci, &ehci->regs->frame_index)
477 		% (ehci->periodic_size << 3);
478 	if (unlikely(ehci->broken_periodic))
479 		ehci->last_periodic_enable = ktime_get_real();
480 	return 0;
481 }
482 
483 static int disable_periodic (struct ehci_hcd *ehci)
484 {
485 	u32	cmd;
486 	int	status;
487 
488 	if (--ehci->periodic_sched)
489 		return 0;
490 
491 	if (unlikely(ehci->broken_periodic)) {
492 		/* delay experimentally determined */
493 		ktime_t safe = ktime_add_us(ehci->last_periodic_enable, 1000);
494 		ktime_t now = ktime_get_real();
495 		s64 delay = ktime_us_delta(safe, now);
496 
497 		if (unlikely(delay > 0))
498 			udelay(delay);
499 	}
500 
501 	/* did setting PSE not take effect yet?
502 	 * takes effect only at frame boundaries...
503 	 */
504 	status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
505 					     STS_PSS, STS_PSS, 9 * 125);
506 	if (status)
507 		return status;
508 
509 	cmd = ehci_readl(ehci, &ehci->regs->command) & ~CMD_PSE;
510 	ehci_writel(ehci, cmd, &ehci->regs->command);
511 	/* posted write ... */
512 
513 	ehci->next_uframe = -1;
514 	return 0;
515 }
516 
517 /*-------------------------------------------------------------------------*/
518 
519 /* periodic schedule slots have iso tds (normal or split) first, then a
520  * sparse tree for active interrupt transfers.
521  *
522  * this just links in a qh; caller guarantees uframe masks are set right.
523  * no FSTN support (yet; ehci 0.96+)
524  */
525 static int qh_link_periodic (struct ehci_hcd *ehci, struct ehci_qh *qh)
526 {
527 	unsigned	i;
528 	unsigned	period = qh->period;
529 
530 	dev_dbg (&qh->dev->dev,
531 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
532 		period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
533 			& (QH_CMASK | QH_SMASK),
534 		qh, qh->start, qh->usecs, qh->c_usecs);
535 
536 	/* high bandwidth, or otherwise every microframe */
537 	if (period == 0)
538 		period = 1;
539 
540 	for (i = qh->start; i < ehci->periodic_size; i += period) {
541 		union ehci_shadow	*prev = &ehci->pshadow[i];
542 		__hc32			*hw_p = &ehci->periodic[i];
543 		union ehci_shadow	here = *prev;
544 		__hc32			type = 0;
545 
546 		/* skip the iso nodes at list head */
547 		while (here.ptr) {
548 			type = Q_NEXT_TYPE(ehci, *hw_p);
549 			if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
550 				break;
551 			prev = periodic_next_shadow(ehci, prev, type);
552 			hw_p = shadow_next_periodic(ehci, &here, type);
553 			here = *prev;
554 		}
555 
556 		/* sorting each branch by period (slow-->fast)
557 		 * enables sharing interior tree nodes
558 		 */
559 		while (here.ptr && qh != here.qh) {
560 			if (qh->period > here.qh->period)
561 				break;
562 			prev = &here.qh->qh_next;
563 			hw_p = &here.qh->hw->hw_next;
564 			here = *prev;
565 		}
566 		/* link in this qh, unless some earlier pass did that */
567 		if (qh != here.qh) {
568 			qh->qh_next = here;
569 			if (here.qh)
570 				qh->hw->hw_next = *hw_p;
571 			wmb ();
572 			prev->qh = qh;
573 			*hw_p = QH_NEXT (ehci, qh->qh_dma);
574 		}
575 	}
576 	qh->qh_state = QH_STATE_LINKED;
577 	qh->xacterrs = 0;
578 	qh_get (qh);
579 
580 	/* update per-qh bandwidth for usbfs */
581 	ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period
582 		? ((qh->usecs + qh->c_usecs) / qh->period)
583 		: (qh->usecs * 8);
584 
585 	/* maybe enable periodic schedule processing */
586 	return enable_periodic(ehci);
587 }
588 
589 static int qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
590 {
591 	unsigned	i;
592 	unsigned	period;
593 
594 	// FIXME:
595 	// IF this isn't high speed
596 	//   and this qh is active in the current uframe
597 	//   (and overlay token SplitXstate is false?)
598 	// THEN
599 	//   qh->hw_info1 |= cpu_to_hc32(1 << 7 /* "ignore" */);
600 
601 	/* high bandwidth, or otherwise part of every microframe */
602 	if ((period = qh->period) == 0)
603 		period = 1;
604 
605 	for (i = qh->start; i < ehci->periodic_size; i += period)
606 		periodic_unlink (ehci, i, qh);
607 
608 	/* update per-qh bandwidth for usbfs */
609 	ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period
610 		? ((qh->usecs + qh->c_usecs) / qh->period)
611 		: (qh->usecs * 8);
612 
613 	dev_dbg (&qh->dev->dev,
614 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
615 		qh->period,
616 		hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
617 		qh, qh->start, qh->usecs, qh->c_usecs);
618 
619 	/* qh->qh_next still "live" to HC */
620 	qh->qh_state = QH_STATE_UNLINK;
621 	qh->qh_next.ptr = NULL;
622 	qh_put (qh);
623 
624 	/* maybe turn off periodic schedule */
625 	return disable_periodic(ehci);
626 }
627 
628 static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh)
629 {
630 	unsigned		wait;
631 	struct ehci_qh_hw	*hw = qh->hw;
632 	int			rc;
633 
634 	/* If the QH isn't linked then there's nothing we can do
635 	 * unless we were called during a giveback, in which case
636 	 * qh_completions() has to deal with it.
637 	 */
638 	if (qh->qh_state != QH_STATE_LINKED) {
639 		if (qh->qh_state == QH_STATE_COMPLETING)
640 			qh->needs_rescan = 1;
641 		return;
642 	}
643 
644 	qh_unlink_periodic (ehci, qh);
645 
646 	/* simple/paranoid:  always delay, expecting the HC needs to read
647 	 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
648 	 * expect khubd to clean up after any CSPLITs we won't issue.
649 	 * active high speed queues may need bigger delays...
650 	 */
651 	if (list_empty (&qh->qtd_list)
652 			|| (cpu_to_hc32(ehci, QH_CMASK)
653 					& hw->hw_info2) != 0)
654 		wait = 2;
655 	else
656 		wait = 55;	/* worst case: 3 * 1024 */
657 
658 	udelay (wait);
659 	qh->qh_state = QH_STATE_IDLE;
660 	hw->hw_next = EHCI_LIST_END(ehci);
661 	wmb ();
662 
663 	qh_completions(ehci, qh);
664 
665 	/* reschedule QH iff another request is queued */
666 	if (!list_empty(&qh->qtd_list) &&
667 			HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
668 		rc = qh_schedule(ehci, qh);
669 
670 		/* An error here likely indicates handshake failure
671 		 * or no space left in the schedule.  Neither fault
672 		 * should happen often ...
673 		 *
674 		 * FIXME kill the now-dysfunctional queued urbs
675 		 */
676 		if (rc != 0)
677 			ehci_err(ehci, "can't reschedule qh %p, err %d\n",
678 					qh, rc);
679 	}
680 }
681 
682 /*-------------------------------------------------------------------------*/
683 
684 static int check_period (
685 	struct ehci_hcd *ehci,
686 	unsigned	frame,
687 	unsigned	uframe,
688 	unsigned	period,
689 	unsigned	usecs
690 ) {
691 	int		claimed;
692 
693 	/* complete split running into next frame?
694 	 * given FSTN support, we could sometimes check...
695 	 */
696 	if (uframe >= 8)
697 		return 0;
698 
699 	/*
700 	 * 80% periodic == 100 usec/uframe available
701 	 * convert "usecs we need" to "max already claimed"
702 	 */
703 	usecs = 100 - usecs;
704 
705 	/* we "know" 2 and 4 uframe intervals were rejected; so
706 	 * for period 0, check _every_ microframe in the schedule.
707 	 */
708 	if (unlikely (period == 0)) {
709 		do {
710 			for (uframe = 0; uframe < 7; uframe++) {
711 				claimed = periodic_usecs (ehci, frame, uframe);
712 				if (claimed > usecs)
713 					return 0;
714 			}
715 		} while ((frame += 1) < ehci->periodic_size);
716 
717 	/* just check the specified uframe, at that period */
718 	} else {
719 		do {
720 			claimed = periodic_usecs (ehci, frame, uframe);
721 			if (claimed > usecs)
722 				return 0;
723 		} while ((frame += period) < ehci->periodic_size);
724 	}
725 
726 	// success!
727 	return 1;
728 }
729 
730 static int check_intr_schedule (
731 	struct ehci_hcd		*ehci,
732 	unsigned		frame,
733 	unsigned		uframe,
734 	const struct ehci_qh	*qh,
735 	__hc32			*c_maskp
736 )
737 {
738 	int		retval = -ENOSPC;
739 	u8		mask = 0;
740 
741 	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
742 		goto done;
743 
744 	if (!check_period (ehci, frame, uframe, qh->period, qh->usecs))
745 		goto done;
746 	if (!qh->c_usecs) {
747 		retval = 0;
748 		*c_maskp = 0;
749 		goto done;
750 	}
751 
752 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
753 	if (tt_available (ehci, qh->period, qh->dev, frame, uframe,
754 				qh->tt_usecs)) {
755 		unsigned i;
756 
757 		/* TODO : this may need FSTN for SSPLIT in uframe 5. */
758 		for (i=uframe+1; i<8 && i<uframe+4; i++)
759 			if (!check_period (ehci, frame, i,
760 						qh->period, qh->c_usecs))
761 				goto done;
762 			else
763 				mask |= 1 << i;
764 
765 		retval = 0;
766 
767 		*c_maskp = cpu_to_hc32(ehci, mask << 8);
768 	}
769 #else
770 	/* Make sure this tt's buffer is also available for CSPLITs.
771 	 * We pessimize a bit; probably the typical full speed case
772 	 * doesn't need the second CSPLIT.
773 	 *
774 	 * NOTE:  both SPLIT and CSPLIT could be checked in just
775 	 * one smart pass...
776 	 */
777 	mask = 0x03 << (uframe + qh->gap_uf);
778 	*c_maskp = cpu_to_hc32(ehci, mask << 8);
779 
780 	mask |= 1 << uframe;
781 	if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) {
782 		if (!check_period (ehci, frame, uframe + qh->gap_uf + 1,
783 					qh->period, qh->c_usecs))
784 			goto done;
785 		if (!check_period (ehci, frame, uframe + qh->gap_uf,
786 					qh->period, qh->c_usecs))
787 			goto done;
788 		retval = 0;
789 	}
790 #endif
791 done:
792 	return retval;
793 }
794 
795 /* "first fit" scheduling policy used the first time through,
796  * or when the previous schedule slot can't be re-used.
797  */
798 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
799 {
800 	int		status;
801 	unsigned	uframe;
802 	__hc32		c_mask;
803 	unsigned	frame;		/* 0..(qh->period - 1), or NO_FRAME */
804 	struct ehci_qh_hw	*hw = qh->hw;
805 
806 	qh_refresh(ehci, qh);
807 	hw->hw_next = EHCI_LIST_END(ehci);
808 	frame = qh->start;
809 
810 	/* reuse the previous schedule slots, if we can */
811 	if (frame < qh->period) {
812 		uframe = ffs(hc32_to_cpup(ehci, &hw->hw_info2) & QH_SMASK);
813 		status = check_intr_schedule (ehci, frame, --uframe,
814 				qh, &c_mask);
815 	} else {
816 		uframe = 0;
817 		c_mask = 0;
818 		status = -ENOSPC;
819 	}
820 
821 	/* else scan the schedule to find a group of slots such that all
822 	 * uframes have enough periodic bandwidth available.
823 	 */
824 	if (status) {
825 		/* "normal" case, uframing flexible except with splits */
826 		if (qh->period) {
827 			int		i;
828 
829 			for (i = qh->period; status && i > 0; --i) {
830 				frame = ++ehci->random_frame % qh->period;
831 				for (uframe = 0; uframe < 8; uframe++) {
832 					status = check_intr_schedule (ehci,
833 							frame, uframe, qh,
834 							&c_mask);
835 					if (status == 0)
836 						break;
837 				}
838 			}
839 
840 		/* qh->period == 0 means every uframe */
841 		} else {
842 			frame = 0;
843 			status = check_intr_schedule (ehci, 0, 0, qh, &c_mask);
844 		}
845 		if (status)
846 			goto done;
847 		qh->start = frame;
848 
849 		/* reset S-frame and (maybe) C-frame masks */
850 		hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
851 		hw->hw_info2 |= qh->period
852 			? cpu_to_hc32(ehci, 1 << uframe)
853 			: cpu_to_hc32(ehci, QH_SMASK);
854 		hw->hw_info2 |= c_mask;
855 	} else
856 		ehci_dbg (ehci, "reused qh %p schedule\n", qh);
857 
858 	/* stuff into the periodic schedule */
859 	status = qh_link_periodic (ehci, qh);
860 done:
861 	return status;
862 }
863 
864 static int intr_submit (
865 	struct ehci_hcd		*ehci,
866 	struct urb		*urb,
867 	struct list_head	*qtd_list,
868 	gfp_t			mem_flags
869 ) {
870 	unsigned		epnum;
871 	unsigned long		flags;
872 	struct ehci_qh		*qh;
873 	int			status;
874 	struct list_head	empty;
875 
876 	/* get endpoint and transfer/schedule data */
877 	epnum = urb->ep->desc.bEndpointAddress;
878 
879 	spin_lock_irqsave (&ehci->lock, flags);
880 
881 	if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
882 			&ehci_to_hcd(ehci)->flags))) {
883 		status = -ESHUTDOWN;
884 		goto done_not_linked;
885 	}
886 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
887 	if (unlikely(status))
888 		goto done_not_linked;
889 
890 	/* get qh and force any scheduling errors */
891 	INIT_LIST_HEAD (&empty);
892 	qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
893 	if (qh == NULL) {
894 		status = -ENOMEM;
895 		goto done;
896 	}
897 	if (qh->qh_state == QH_STATE_IDLE) {
898 		if ((status = qh_schedule (ehci, qh)) != 0)
899 			goto done;
900 	}
901 
902 	/* then queue the urb's tds to the qh */
903 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
904 	BUG_ON (qh == NULL);
905 
906 	/* ... update usbfs periodic stats */
907 	ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
908 
909 done:
910 	if (unlikely(status))
911 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
912 done_not_linked:
913 	spin_unlock_irqrestore (&ehci->lock, flags);
914 	if (status)
915 		qtd_list_free (ehci, urb, qtd_list);
916 
917 	return status;
918 }
919 
920 /*-------------------------------------------------------------------------*/
921 
922 /* ehci_iso_stream ops work with both ITD and SITD */
923 
924 static struct ehci_iso_stream *
925 iso_stream_alloc (gfp_t mem_flags)
926 {
927 	struct ehci_iso_stream *stream;
928 
929 	stream = kzalloc(sizeof *stream, mem_flags);
930 	if (likely (stream != NULL)) {
931 		INIT_LIST_HEAD(&stream->td_list);
932 		INIT_LIST_HEAD(&stream->free_list);
933 		stream->next_uframe = -1;
934 		stream->refcount = 1;
935 	}
936 	return stream;
937 }
938 
939 static void
940 iso_stream_init (
941 	struct ehci_hcd		*ehci,
942 	struct ehci_iso_stream	*stream,
943 	struct usb_device	*dev,
944 	int			pipe,
945 	unsigned		interval
946 )
947 {
948 	static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
949 
950 	u32			buf1;
951 	unsigned		epnum, maxp;
952 	int			is_input;
953 	long			bandwidth;
954 
955 	/*
956 	 * this might be a "high bandwidth" highspeed endpoint,
957 	 * as encoded in the ep descriptor's wMaxPacket field
958 	 */
959 	epnum = usb_pipeendpoint (pipe);
960 	is_input = usb_pipein (pipe) ? USB_DIR_IN : 0;
961 	maxp = usb_maxpacket(dev, pipe, !is_input);
962 	if (is_input) {
963 		buf1 = (1 << 11);
964 	} else {
965 		buf1 = 0;
966 	}
967 
968 	/* knows about ITD vs SITD */
969 	if (dev->speed == USB_SPEED_HIGH) {
970 		unsigned multi = hb_mult(maxp);
971 
972 		stream->highspeed = 1;
973 
974 		maxp = max_packet(maxp);
975 		buf1 |= maxp;
976 		maxp *= multi;
977 
978 		stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
979 		stream->buf1 = cpu_to_hc32(ehci, buf1);
980 		stream->buf2 = cpu_to_hc32(ehci, multi);
981 
982 		/* usbfs wants to report the average usecs per frame tied up
983 		 * when transfers on this endpoint are scheduled ...
984 		 */
985 		stream->usecs = HS_USECS_ISO (maxp);
986 		bandwidth = stream->usecs * 8;
987 		bandwidth /= interval;
988 
989 	} else {
990 		u32		addr;
991 		int		think_time;
992 		int		hs_transfers;
993 
994 		addr = dev->ttport << 24;
995 		if (!ehci_is_TDI(ehci)
996 				|| (dev->tt->hub !=
997 					ehci_to_hcd(ehci)->self.root_hub))
998 			addr |= dev->tt->hub->devnum << 16;
999 		addr |= epnum << 8;
1000 		addr |= dev->devnum;
1001 		stream->usecs = HS_USECS_ISO (maxp);
1002 		think_time = dev->tt ? dev->tt->think_time : 0;
1003 		stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time (
1004 				dev->speed, is_input, 1, maxp));
1005 		hs_transfers = max (1u, (maxp + 187) / 188);
1006 		if (is_input) {
1007 			u32	tmp;
1008 
1009 			addr |= 1 << 31;
1010 			stream->c_usecs = stream->usecs;
1011 			stream->usecs = HS_USECS_ISO (1);
1012 			stream->raw_mask = 1;
1013 
1014 			/* c-mask as specified in USB 2.0 11.18.4 3.c */
1015 			tmp = (1 << (hs_transfers + 2)) - 1;
1016 			stream->raw_mask |= tmp << (8 + 2);
1017 		} else
1018 			stream->raw_mask = smask_out [hs_transfers - 1];
1019 		bandwidth = stream->usecs + stream->c_usecs;
1020 		bandwidth /= interval << 3;
1021 
1022 		/* stream->splits gets created from raw_mask later */
1023 		stream->address = cpu_to_hc32(ehci, addr);
1024 	}
1025 	stream->bandwidth = bandwidth;
1026 
1027 	stream->udev = dev;
1028 
1029 	stream->bEndpointAddress = is_input | epnum;
1030 	stream->interval = interval;
1031 	stream->maxp = maxp;
1032 }
1033 
1034 static void
1035 iso_stream_put(struct ehci_hcd *ehci, struct ehci_iso_stream *stream)
1036 {
1037 	stream->refcount--;
1038 
1039 	/* free whenever just a dev->ep reference remains.
1040 	 * not like a QH -- no persistent state (toggle, halt)
1041 	 */
1042 	if (stream->refcount == 1) {
1043 		int		is_in;
1044 
1045 		// BUG_ON (!list_empty(&stream->td_list));
1046 
1047 		while (!list_empty (&stream->free_list)) {
1048 			struct list_head	*entry;
1049 
1050 			entry = stream->free_list.next;
1051 			list_del (entry);
1052 
1053 			/* knows about ITD vs SITD */
1054 			if (stream->highspeed) {
1055 				struct ehci_itd		*itd;
1056 
1057 				itd = list_entry (entry, struct ehci_itd,
1058 						itd_list);
1059 				dma_pool_free (ehci->itd_pool, itd,
1060 						itd->itd_dma);
1061 			} else {
1062 				struct ehci_sitd	*sitd;
1063 
1064 				sitd = list_entry (entry, struct ehci_sitd,
1065 						sitd_list);
1066 				dma_pool_free (ehci->sitd_pool, sitd,
1067 						sitd->sitd_dma);
1068 			}
1069 		}
1070 
1071 		is_in = (stream->bEndpointAddress & USB_DIR_IN) ? 0x10 : 0;
1072 		stream->bEndpointAddress &= 0x0f;
1073 		if (stream->ep)
1074 			stream->ep->hcpriv = NULL;
1075 
1076 		if (stream->rescheduled) {
1077 			ehci_info (ehci, "ep%d%s-iso rescheduled "
1078 				"%lu times in %lu seconds\n",
1079 				stream->bEndpointAddress, is_in ? "in" : "out",
1080 				stream->rescheduled,
1081 				((jiffies - stream->start)/HZ)
1082 				);
1083 		}
1084 
1085 		kfree(stream);
1086 	}
1087 }
1088 
1089 static inline struct ehci_iso_stream *
1090 iso_stream_get (struct ehci_iso_stream *stream)
1091 {
1092 	if (likely (stream != NULL))
1093 		stream->refcount++;
1094 	return stream;
1095 }
1096 
1097 static struct ehci_iso_stream *
1098 iso_stream_find (struct ehci_hcd *ehci, struct urb *urb)
1099 {
1100 	unsigned		epnum;
1101 	struct ehci_iso_stream	*stream;
1102 	struct usb_host_endpoint *ep;
1103 	unsigned long		flags;
1104 
1105 	epnum = usb_pipeendpoint (urb->pipe);
1106 	if (usb_pipein(urb->pipe))
1107 		ep = urb->dev->ep_in[epnum];
1108 	else
1109 		ep = urb->dev->ep_out[epnum];
1110 
1111 	spin_lock_irqsave (&ehci->lock, flags);
1112 	stream = ep->hcpriv;
1113 
1114 	if (unlikely (stream == NULL)) {
1115 		stream = iso_stream_alloc(GFP_ATOMIC);
1116 		if (likely (stream != NULL)) {
1117 			/* dev->ep owns the initial refcount */
1118 			ep->hcpriv = stream;
1119 			stream->ep = ep;
1120 			iso_stream_init(ehci, stream, urb->dev, urb->pipe,
1121 					urb->interval);
1122 		}
1123 
1124 	/* if dev->ep [epnum] is a QH, info1.maxpacket is nonzero */
1125 	} else if (unlikely (stream->hw_info1 != 0)) {
1126 		ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n",
1127 			urb->dev->devpath, epnum,
1128 			usb_pipein(urb->pipe) ? "in" : "out");
1129 		stream = NULL;
1130 	}
1131 
1132 	/* caller guarantees an eventual matching iso_stream_put */
1133 	stream = iso_stream_get (stream);
1134 
1135 	spin_unlock_irqrestore (&ehci->lock, flags);
1136 	return stream;
1137 }
1138 
1139 /*-------------------------------------------------------------------------*/
1140 
1141 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1142 
1143 static struct ehci_iso_sched *
1144 iso_sched_alloc (unsigned packets, gfp_t mem_flags)
1145 {
1146 	struct ehci_iso_sched	*iso_sched;
1147 	int			size = sizeof *iso_sched;
1148 
1149 	size += packets * sizeof (struct ehci_iso_packet);
1150 	iso_sched = kzalloc(size, mem_flags);
1151 	if (likely (iso_sched != NULL)) {
1152 		INIT_LIST_HEAD (&iso_sched->td_list);
1153 	}
1154 	return iso_sched;
1155 }
1156 
1157 static inline void
1158 itd_sched_init(
1159 	struct ehci_hcd		*ehci,
1160 	struct ehci_iso_sched	*iso_sched,
1161 	struct ehci_iso_stream	*stream,
1162 	struct urb		*urb
1163 )
1164 {
1165 	unsigned	i;
1166 	dma_addr_t	dma = urb->transfer_dma;
1167 
1168 	/* how many uframes are needed for these transfers */
1169 	iso_sched->span = urb->number_of_packets * stream->interval;
1170 
1171 	/* figure out per-uframe itd fields that we'll need later
1172 	 * when we fit new itds into the schedule.
1173 	 */
1174 	for (i = 0; i < urb->number_of_packets; i++) {
1175 		struct ehci_iso_packet	*uframe = &iso_sched->packet [i];
1176 		unsigned		length;
1177 		dma_addr_t		buf;
1178 		u32			trans;
1179 
1180 		length = urb->iso_frame_desc [i].length;
1181 		buf = dma + urb->iso_frame_desc [i].offset;
1182 
1183 		trans = EHCI_ISOC_ACTIVE;
1184 		trans |= buf & 0x0fff;
1185 		if (unlikely (((i + 1) == urb->number_of_packets))
1186 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1187 			trans |= EHCI_ITD_IOC;
1188 		trans |= length << 16;
1189 		uframe->transaction = cpu_to_hc32(ehci, trans);
1190 
1191 		/* might need to cross a buffer page within a uframe */
1192 		uframe->bufp = (buf & ~(u64)0x0fff);
1193 		buf += length;
1194 		if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff))))
1195 			uframe->cross = 1;
1196 	}
1197 }
1198 
1199 static void
1200 iso_sched_free (
1201 	struct ehci_iso_stream	*stream,
1202 	struct ehci_iso_sched	*iso_sched
1203 )
1204 {
1205 	if (!iso_sched)
1206 		return;
1207 	// caller must hold ehci->lock!
1208 	list_splice (&iso_sched->td_list, &stream->free_list);
1209 	kfree (iso_sched);
1210 }
1211 
1212 static int
1213 itd_urb_transaction (
1214 	struct ehci_iso_stream	*stream,
1215 	struct ehci_hcd		*ehci,
1216 	struct urb		*urb,
1217 	gfp_t			mem_flags
1218 )
1219 {
1220 	struct ehci_itd		*itd;
1221 	dma_addr_t		itd_dma;
1222 	int			i;
1223 	unsigned		num_itds;
1224 	struct ehci_iso_sched	*sched;
1225 	unsigned long		flags;
1226 
1227 	sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1228 	if (unlikely (sched == NULL))
1229 		return -ENOMEM;
1230 
1231 	itd_sched_init(ehci, sched, stream, urb);
1232 
1233 	if (urb->interval < 8)
1234 		num_itds = 1 + (sched->span + 7) / 8;
1235 	else
1236 		num_itds = urb->number_of_packets;
1237 
1238 	/* allocate/init ITDs */
1239 	spin_lock_irqsave (&ehci->lock, flags);
1240 	for (i = 0; i < num_itds; i++) {
1241 
1242 		/* free_list.next might be cache-hot ... but maybe
1243 		 * the HC caches it too. avoid that issue for now.
1244 		 */
1245 
1246 		/* prefer previously-allocated itds */
1247 		if (likely (!list_empty(&stream->free_list))) {
1248 			itd = list_entry (stream->free_list.prev,
1249 					struct ehci_itd, itd_list);
1250 			list_del (&itd->itd_list);
1251 			itd_dma = itd->itd_dma;
1252 		} else {
1253 			spin_unlock_irqrestore (&ehci->lock, flags);
1254 			itd = dma_pool_alloc (ehci->itd_pool, mem_flags,
1255 					&itd_dma);
1256 			spin_lock_irqsave (&ehci->lock, flags);
1257 			if (!itd) {
1258 				iso_sched_free(stream, sched);
1259 				spin_unlock_irqrestore(&ehci->lock, flags);
1260 				return -ENOMEM;
1261 			}
1262 		}
1263 
1264 		memset (itd, 0, sizeof *itd);
1265 		itd->itd_dma = itd_dma;
1266 		list_add (&itd->itd_list, &sched->td_list);
1267 	}
1268 	spin_unlock_irqrestore (&ehci->lock, flags);
1269 
1270 	/* temporarily store schedule info in hcpriv */
1271 	urb->hcpriv = sched;
1272 	urb->error_count = 0;
1273 	return 0;
1274 }
1275 
1276 /*-------------------------------------------------------------------------*/
1277 
1278 static inline int
1279 itd_slot_ok (
1280 	struct ehci_hcd		*ehci,
1281 	u32			mod,
1282 	u32			uframe,
1283 	u8			usecs,
1284 	u32			period
1285 )
1286 {
1287 	uframe %= period;
1288 	do {
1289 		/* can't commit more than 80% periodic == 100 usec */
1290 		if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7)
1291 				> (100 - usecs))
1292 			return 0;
1293 
1294 		/* we know urb->interval is 2^N uframes */
1295 		uframe += period;
1296 	} while (uframe < mod);
1297 	return 1;
1298 }
1299 
1300 static inline int
1301 sitd_slot_ok (
1302 	struct ehci_hcd		*ehci,
1303 	u32			mod,
1304 	struct ehci_iso_stream	*stream,
1305 	u32			uframe,
1306 	struct ehci_iso_sched	*sched,
1307 	u32			period_uframes
1308 )
1309 {
1310 	u32			mask, tmp;
1311 	u32			frame, uf;
1312 
1313 	mask = stream->raw_mask << (uframe & 7);
1314 
1315 	/* for IN, don't wrap CSPLIT into the next frame */
1316 	if (mask & ~0xffff)
1317 		return 0;
1318 
1319 	/* this multi-pass logic is simple, but performance may
1320 	 * suffer when the schedule data isn't cached.
1321 	 */
1322 
1323 	/* check bandwidth */
1324 	uframe %= period_uframes;
1325 	do {
1326 		u32		max_used;
1327 
1328 		frame = uframe >> 3;
1329 		uf = uframe & 7;
1330 
1331 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1332 		/* The tt's fullspeed bus bandwidth must be available.
1333 		 * tt_available scheduling guarantees 10+% for control/bulk.
1334 		 */
1335 		if (!tt_available (ehci, period_uframes << 3,
1336 				stream->udev, frame, uf, stream->tt_usecs))
1337 			return 0;
1338 #else
1339 		/* tt must be idle for start(s), any gap, and csplit.
1340 		 * assume scheduling slop leaves 10+% for control/bulk.
1341 		 */
1342 		if (!tt_no_collision (ehci, period_uframes << 3,
1343 				stream->udev, frame, mask))
1344 			return 0;
1345 #endif
1346 
1347 		/* check starts (OUT uses more than one) */
1348 		max_used = 100 - stream->usecs;
1349 		for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) {
1350 			if (periodic_usecs (ehci, frame, uf) > max_used)
1351 				return 0;
1352 		}
1353 
1354 		/* for IN, check CSPLIT */
1355 		if (stream->c_usecs) {
1356 			uf = uframe & 7;
1357 			max_used = 100 - stream->c_usecs;
1358 			do {
1359 				tmp = 1 << uf;
1360 				tmp <<= 8;
1361 				if ((stream->raw_mask & tmp) == 0)
1362 					continue;
1363 				if (periodic_usecs (ehci, frame, uf)
1364 						> max_used)
1365 					return 0;
1366 			} while (++uf < 8);
1367 		}
1368 
1369 		/* we know urb->interval is 2^N uframes */
1370 		uframe += period_uframes;
1371 	} while (uframe < mod);
1372 
1373 	stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7));
1374 	return 1;
1375 }
1376 
1377 /*
1378  * This scheduler plans almost as far into the future as it has actual
1379  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
1380  * "as small as possible" to be cache-friendlier.)  That limits the size
1381  * transfers you can stream reliably; avoid more than 64 msec per urb.
1382  * Also avoid queue depths of less than ehci's worst irq latency (affected
1383  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1384  * and other factors); or more than about 230 msec total (for portability,
1385  * given EHCI_TUNE_FLS and the slop).  Or, write a smarter scheduler!
1386  */
1387 
1388 #define SCHEDULE_SLOP	80	/* microframes */
1389 
1390 static int
1391 iso_stream_schedule (
1392 	struct ehci_hcd		*ehci,
1393 	struct urb		*urb,
1394 	struct ehci_iso_stream	*stream
1395 )
1396 {
1397 	u32			now, next, start, period;
1398 	int			status;
1399 	unsigned		mod = ehci->periodic_size << 3;
1400 	struct ehci_iso_sched	*sched = urb->hcpriv;
1401 	struct pci_dev		*pdev;
1402 
1403 	if (sched->span > (mod - SCHEDULE_SLOP)) {
1404 		ehci_dbg (ehci, "iso request %p too long\n", urb);
1405 		status = -EFBIG;
1406 		goto fail;
1407 	}
1408 
1409 	if ((stream->depth + sched->span) > mod) {
1410 		ehci_dbg (ehci, "request %p would overflow (%d+%d>%d)\n",
1411 			urb, stream->depth, sched->span, mod);
1412 		status = -EFBIG;
1413 		goto fail;
1414 	}
1415 
1416 	period = urb->interval;
1417 	if (!stream->highspeed)
1418 		period <<= 3;
1419 
1420 	now = ehci_readl(ehci, &ehci->regs->frame_index) % mod;
1421 
1422 	/* Typical case: reuse current schedule, stream is still active.
1423 	 * Hopefully there are no gaps from the host falling behind
1424 	 * (irq delays etc), but if there are we'll take the next
1425 	 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
1426 	 */
1427 	if (likely (!list_empty (&stream->td_list))) {
1428 		pdev = to_pci_dev(ehci_to_hcd(ehci)->self.controller);
1429 		start = stream->next_uframe;
1430 
1431 		/* For high speed devices, allow scheduling within the
1432 		 * isochronous scheduling threshold.  For full speed devices,
1433 		 * don't. (Work around for Intel ICH9 bug.)
1434 		 */
1435 		if (!stream->highspeed &&
1436 				pdev->vendor == PCI_VENDOR_ID_INTEL)
1437 			next = now + ehci->i_thresh;
1438 		else
1439 			next = now;
1440 
1441 		/* Fell behind (by up to twice the slop amount)? */
1442 		if (((start - next) & (mod - 1)) >=
1443 				mod - 2 * SCHEDULE_SLOP)
1444 			start += period * DIV_ROUND_UP(
1445 					(next - start) & (mod - 1),
1446 					period);
1447 
1448 		/* Tried to schedule too far into the future? */
1449 		if (unlikely(((start - now) & (mod - 1)) + sched->span
1450 					>= mod - 2 * SCHEDULE_SLOP)) {
1451 			status = -EFBIG;
1452 			goto fail;
1453 		}
1454 		stream->next_uframe = start;
1455 		goto ready;
1456 	}
1457 
1458 	/* need to schedule; when's the next (u)frame we could start?
1459 	 * this is bigger than ehci->i_thresh allows; scheduling itself
1460 	 * isn't free, the slop should handle reasonably slow cpus.  it
1461 	 * can also help high bandwidth if the dma and irq loads don't
1462 	 * jump until after the queue is primed.
1463 	 */
1464 	start = SCHEDULE_SLOP + (now & ~0x07);
1465 	start %= mod;
1466 	stream->next_uframe = start;
1467 
1468 	/* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
1469 
1470 	/* find a uframe slot with enough bandwidth */
1471 	for (; start < (stream->next_uframe + period); start++) {
1472 		int		enough_space;
1473 
1474 		/* check schedule: enough space? */
1475 		if (stream->highspeed)
1476 			enough_space = itd_slot_ok (ehci, mod, start,
1477 					stream->usecs, period);
1478 		else {
1479 			if ((start % 8) >= 6)
1480 				continue;
1481 			enough_space = sitd_slot_ok (ehci, mod, stream,
1482 					start, sched, period);
1483 		}
1484 
1485 		/* schedule it here if there's enough bandwidth */
1486 		if (enough_space) {
1487 			stream->next_uframe = start % mod;
1488 			goto ready;
1489 		}
1490 	}
1491 
1492 	/* no room in the schedule */
1493 	ehci_dbg (ehci, "iso %ssched full %p (now %d max %d)\n",
1494 		list_empty (&stream->td_list) ? "" : "re",
1495 		urb, now, now + mod);
1496 	status = -ENOSPC;
1497 
1498 fail:
1499 	iso_sched_free (stream, sched);
1500 	urb->hcpriv = NULL;
1501 	return status;
1502 
1503 ready:
1504 	/* report high speed start in uframes; full speed, in frames */
1505 	urb->start_frame = stream->next_uframe;
1506 	if (!stream->highspeed)
1507 		urb->start_frame >>= 3;
1508 	return 0;
1509 }
1510 
1511 /*-------------------------------------------------------------------------*/
1512 
1513 static inline void
1514 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1515 		struct ehci_itd *itd)
1516 {
1517 	int i;
1518 
1519 	/* it's been recently zeroed */
1520 	itd->hw_next = EHCI_LIST_END(ehci);
1521 	itd->hw_bufp [0] = stream->buf0;
1522 	itd->hw_bufp [1] = stream->buf1;
1523 	itd->hw_bufp [2] = stream->buf2;
1524 
1525 	for (i = 0; i < 8; i++)
1526 		itd->index[i] = -1;
1527 
1528 	/* All other fields are filled when scheduling */
1529 }
1530 
1531 static inline void
1532 itd_patch(
1533 	struct ehci_hcd		*ehci,
1534 	struct ehci_itd		*itd,
1535 	struct ehci_iso_sched	*iso_sched,
1536 	unsigned		index,
1537 	u16			uframe
1538 )
1539 {
1540 	struct ehci_iso_packet	*uf = &iso_sched->packet [index];
1541 	unsigned		pg = itd->pg;
1542 
1543 	// BUG_ON (pg == 6 && uf->cross);
1544 
1545 	uframe &= 0x07;
1546 	itd->index [uframe] = index;
1547 
1548 	itd->hw_transaction[uframe] = uf->transaction;
1549 	itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1550 	itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1551 	itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1552 
1553 	/* iso_frame_desc[].offset must be strictly increasing */
1554 	if (unlikely (uf->cross)) {
1555 		u64	bufp = uf->bufp + 4096;
1556 
1557 		itd->pg = ++pg;
1558 		itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1559 		itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1560 	}
1561 }
1562 
1563 static inline void
1564 itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1565 {
1566 	/* always prepend ITD/SITD ... only QH tree is order-sensitive */
1567 	itd->itd_next = ehci->pshadow [frame];
1568 	itd->hw_next = ehci->periodic [frame];
1569 	ehci->pshadow [frame].itd = itd;
1570 	itd->frame = frame;
1571 	wmb ();
1572 	ehci->periodic[frame] = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1573 }
1574 
1575 /* fit urb's itds into the selected schedule slot; activate as needed */
1576 static int
1577 itd_link_urb (
1578 	struct ehci_hcd		*ehci,
1579 	struct urb		*urb,
1580 	unsigned		mod,
1581 	struct ehci_iso_stream	*stream
1582 )
1583 {
1584 	int			packet;
1585 	unsigned		next_uframe, uframe, frame;
1586 	struct ehci_iso_sched	*iso_sched = urb->hcpriv;
1587 	struct ehci_itd		*itd;
1588 
1589 	next_uframe = stream->next_uframe % mod;
1590 
1591 	if (unlikely (list_empty(&stream->td_list))) {
1592 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1593 				+= stream->bandwidth;
1594 		ehci_vdbg (ehci,
1595 			"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
1596 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1597 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1598 			urb->interval,
1599 			next_uframe >> 3, next_uframe & 0x7);
1600 		stream->start = jiffies;
1601 	}
1602 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1603 
1604 	/* fill iTDs uframe by uframe */
1605 	for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) {
1606 		if (itd == NULL) {
1607 			/* ASSERT:  we have all necessary itds */
1608 			// BUG_ON (list_empty (&iso_sched->td_list));
1609 
1610 			/* ASSERT:  no itds for this endpoint in this uframe */
1611 
1612 			itd = list_entry (iso_sched->td_list.next,
1613 					struct ehci_itd, itd_list);
1614 			list_move_tail (&itd->itd_list, &stream->td_list);
1615 			itd->stream = iso_stream_get (stream);
1616 			itd->urb = urb;
1617 			itd_init (ehci, stream, itd);
1618 		}
1619 
1620 		uframe = next_uframe & 0x07;
1621 		frame = next_uframe >> 3;
1622 
1623 		itd_patch(ehci, itd, iso_sched, packet, uframe);
1624 
1625 		next_uframe += stream->interval;
1626 		stream->depth += stream->interval;
1627 		next_uframe %= mod;
1628 		packet++;
1629 
1630 		/* link completed itds into the schedule */
1631 		if (((next_uframe >> 3) != frame)
1632 				|| packet == urb->number_of_packets) {
1633 			itd_link (ehci, frame % ehci->periodic_size, itd);
1634 			itd = NULL;
1635 		}
1636 	}
1637 	stream->next_uframe = next_uframe;
1638 
1639 	/* don't need that schedule data any more */
1640 	iso_sched_free (stream, iso_sched);
1641 	urb->hcpriv = NULL;
1642 
1643 	timer_action (ehci, TIMER_IO_WATCHDOG);
1644 	return enable_periodic(ehci);
1645 }
1646 
1647 #define	ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1648 
1649 /* Process and recycle a completed ITD.  Return true iff its urb completed,
1650  * and hence its completion callback probably added things to the hardware
1651  * schedule.
1652  *
1653  * Note that we carefully avoid recycling this descriptor until after any
1654  * completion callback runs, so that it won't be reused quickly.  That is,
1655  * assuming (a) no more than two urbs per frame on this endpoint, and also
1656  * (b) only this endpoint's completions submit URBs.  It seems some silicon
1657  * corrupts things if you reuse completed descriptors very quickly...
1658  */
1659 static unsigned
1660 itd_complete (
1661 	struct ehci_hcd	*ehci,
1662 	struct ehci_itd	*itd
1663 ) {
1664 	struct urb				*urb = itd->urb;
1665 	struct usb_iso_packet_descriptor	*desc;
1666 	u32					t;
1667 	unsigned				uframe;
1668 	int					urb_index = -1;
1669 	struct ehci_iso_stream			*stream = itd->stream;
1670 	struct usb_device			*dev;
1671 	unsigned				retval = false;
1672 
1673 	/* for each uframe with a packet */
1674 	for (uframe = 0; uframe < 8; uframe++) {
1675 		if (likely (itd->index[uframe] == -1))
1676 			continue;
1677 		urb_index = itd->index[uframe];
1678 		desc = &urb->iso_frame_desc [urb_index];
1679 
1680 		t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]);
1681 		itd->hw_transaction [uframe] = 0;
1682 		stream->depth -= stream->interval;
1683 
1684 		/* report transfer status */
1685 		if (unlikely (t & ISO_ERRS)) {
1686 			urb->error_count++;
1687 			if (t & EHCI_ISOC_BUF_ERR)
1688 				desc->status = usb_pipein (urb->pipe)
1689 					? -ENOSR  /* hc couldn't read */
1690 					: -ECOMM; /* hc couldn't write */
1691 			else if (t & EHCI_ISOC_BABBLE)
1692 				desc->status = -EOVERFLOW;
1693 			else /* (t & EHCI_ISOC_XACTERR) */
1694 				desc->status = -EPROTO;
1695 
1696 			/* HC need not update length with this error */
1697 			if (!(t & EHCI_ISOC_BABBLE)) {
1698 				desc->actual_length = EHCI_ITD_LENGTH(t);
1699 				urb->actual_length += desc->actual_length;
1700 			}
1701 		} else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) {
1702 			desc->status = 0;
1703 			desc->actual_length = EHCI_ITD_LENGTH(t);
1704 			urb->actual_length += desc->actual_length;
1705 		} else {
1706 			/* URB was too late */
1707 			desc->status = -EXDEV;
1708 		}
1709 	}
1710 
1711 	/* handle completion now? */
1712 	if (likely ((urb_index + 1) != urb->number_of_packets))
1713 		goto done;
1714 
1715 	/* ASSERT: it's really the last itd for this urb
1716 	list_for_each_entry (itd, &stream->td_list, itd_list)
1717 		BUG_ON (itd->urb == urb);
1718 	 */
1719 
1720 	/* give urb back to the driver; completion often (re)submits */
1721 	dev = urb->dev;
1722 	ehci_urb_done(ehci, urb, 0);
1723 	retval = true;
1724 	urb = NULL;
1725 	(void) disable_periodic(ehci);
1726 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1727 
1728 	if (unlikely(list_is_singular(&stream->td_list))) {
1729 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1730 				-= stream->bandwidth;
1731 		ehci_vdbg (ehci,
1732 			"deschedule devp %s ep%d%s-iso\n",
1733 			dev->devpath, stream->bEndpointAddress & 0x0f,
1734 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
1735 	}
1736 	iso_stream_put (ehci, stream);
1737 
1738 done:
1739 	itd->urb = NULL;
1740 	if (ehci->clock_frame != itd->frame || itd->index[7] != -1) {
1741 		/* OK to recycle this ITD now. */
1742 		itd->stream = NULL;
1743 		list_move(&itd->itd_list, &stream->free_list);
1744 		iso_stream_put(ehci, stream);
1745 	} else {
1746 		/* HW might remember this ITD, so we can't recycle it yet.
1747 		 * Move it to a safe place until a new frame starts.
1748 		 */
1749 		list_move(&itd->itd_list, &ehci->cached_itd_list);
1750 		if (stream->refcount == 2) {
1751 			/* If iso_stream_put() were called here, stream
1752 			 * would be freed.  Instead, just prevent reuse.
1753 			 */
1754 			stream->ep->hcpriv = NULL;
1755 			stream->ep = NULL;
1756 		}
1757 	}
1758 	return retval;
1759 }
1760 
1761 /*-------------------------------------------------------------------------*/
1762 
1763 static int itd_submit (struct ehci_hcd *ehci, struct urb *urb,
1764 	gfp_t mem_flags)
1765 {
1766 	int			status = -EINVAL;
1767 	unsigned long		flags;
1768 	struct ehci_iso_stream	*stream;
1769 
1770 	/* Get iso_stream head */
1771 	stream = iso_stream_find (ehci, urb);
1772 	if (unlikely (stream == NULL)) {
1773 		ehci_dbg (ehci, "can't get iso stream\n");
1774 		return -ENOMEM;
1775 	}
1776 	if (unlikely (urb->interval != stream->interval)) {
1777 		ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
1778 			stream->interval, urb->interval);
1779 		goto done;
1780 	}
1781 
1782 #ifdef EHCI_URB_TRACE
1783 	ehci_dbg (ehci,
1784 		"%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1785 		__func__, urb->dev->devpath, urb,
1786 		usb_pipeendpoint (urb->pipe),
1787 		usb_pipein (urb->pipe) ? "in" : "out",
1788 		urb->transfer_buffer_length,
1789 		urb->number_of_packets, urb->interval,
1790 		stream);
1791 #endif
1792 
1793 	/* allocate ITDs w/o locking anything */
1794 	status = itd_urb_transaction (stream, ehci, urb, mem_flags);
1795 	if (unlikely (status < 0)) {
1796 		ehci_dbg (ehci, "can't init itds\n");
1797 		goto done;
1798 	}
1799 
1800 	/* schedule ... need to lock */
1801 	spin_lock_irqsave (&ehci->lock, flags);
1802 	if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
1803 			       &ehci_to_hcd(ehci)->flags))) {
1804 		status = -ESHUTDOWN;
1805 		goto done_not_linked;
1806 	}
1807 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1808 	if (unlikely(status))
1809 		goto done_not_linked;
1810 	status = iso_stream_schedule(ehci, urb, stream);
1811 	if (likely (status == 0))
1812 		itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
1813 	else
1814 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1815 done_not_linked:
1816 	spin_unlock_irqrestore (&ehci->lock, flags);
1817 
1818 done:
1819 	if (unlikely (status < 0))
1820 		iso_stream_put (ehci, stream);
1821 	return status;
1822 }
1823 
1824 /*-------------------------------------------------------------------------*/
1825 
1826 /*
1827  * "Split ISO TDs" ... used for USB 1.1 devices going through the
1828  * TTs in USB 2.0 hubs.  These need microframe scheduling.
1829  */
1830 
1831 static inline void
1832 sitd_sched_init(
1833 	struct ehci_hcd		*ehci,
1834 	struct ehci_iso_sched	*iso_sched,
1835 	struct ehci_iso_stream	*stream,
1836 	struct urb		*urb
1837 )
1838 {
1839 	unsigned	i;
1840 	dma_addr_t	dma = urb->transfer_dma;
1841 
1842 	/* how many frames are needed for these transfers */
1843 	iso_sched->span = urb->number_of_packets * stream->interval;
1844 
1845 	/* figure out per-frame sitd fields that we'll need later
1846 	 * when we fit new sitds into the schedule.
1847 	 */
1848 	for (i = 0; i < urb->number_of_packets; i++) {
1849 		struct ehci_iso_packet	*packet = &iso_sched->packet [i];
1850 		unsigned		length;
1851 		dma_addr_t		buf;
1852 		u32			trans;
1853 
1854 		length = urb->iso_frame_desc [i].length & 0x03ff;
1855 		buf = dma + urb->iso_frame_desc [i].offset;
1856 
1857 		trans = SITD_STS_ACTIVE;
1858 		if (((i + 1) == urb->number_of_packets)
1859 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1860 			trans |= SITD_IOC;
1861 		trans |= length << 16;
1862 		packet->transaction = cpu_to_hc32(ehci, trans);
1863 
1864 		/* might need to cross a buffer page within a td */
1865 		packet->bufp = buf;
1866 		packet->buf1 = (buf + length) & ~0x0fff;
1867 		if (packet->buf1 != (buf & ~(u64)0x0fff))
1868 			packet->cross = 1;
1869 
1870 		/* OUT uses multiple start-splits */
1871 		if (stream->bEndpointAddress & USB_DIR_IN)
1872 			continue;
1873 		length = (length + 187) / 188;
1874 		if (length > 1) /* BEGIN vs ALL */
1875 			length |= 1 << 3;
1876 		packet->buf1 |= length;
1877 	}
1878 }
1879 
1880 static int
1881 sitd_urb_transaction (
1882 	struct ehci_iso_stream	*stream,
1883 	struct ehci_hcd		*ehci,
1884 	struct urb		*urb,
1885 	gfp_t			mem_flags
1886 )
1887 {
1888 	struct ehci_sitd	*sitd;
1889 	dma_addr_t		sitd_dma;
1890 	int			i;
1891 	struct ehci_iso_sched	*iso_sched;
1892 	unsigned long		flags;
1893 
1894 	iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1895 	if (iso_sched == NULL)
1896 		return -ENOMEM;
1897 
1898 	sitd_sched_init(ehci, iso_sched, stream, urb);
1899 
1900 	/* allocate/init sITDs */
1901 	spin_lock_irqsave (&ehci->lock, flags);
1902 	for (i = 0; i < urb->number_of_packets; i++) {
1903 
1904 		/* NOTE:  for now, we don't try to handle wraparound cases
1905 		 * for IN (using sitd->hw_backpointer, like a FSTN), which
1906 		 * means we never need two sitds for full speed packets.
1907 		 */
1908 
1909 		/* free_list.next might be cache-hot ... but maybe
1910 		 * the HC caches it too. avoid that issue for now.
1911 		 */
1912 
1913 		/* prefer previously-allocated sitds */
1914 		if (!list_empty(&stream->free_list)) {
1915 			sitd = list_entry (stream->free_list.prev,
1916 					 struct ehci_sitd, sitd_list);
1917 			list_del (&sitd->sitd_list);
1918 			sitd_dma = sitd->sitd_dma;
1919 		} else {
1920 			spin_unlock_irqrestore (&ehci->lock, flags);
1921 			sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags,
1922 					&sitd_dma);
1923 			spin_lock_irqsave (&ehci->lock, flags);
1924 			if (!sitd) {
1925 				iso_sched_free(stream, iso_sched);
1926 				spin_unlock_irqrestore(&ehci->lock, flags);
1927 				return -ENOMEM;
1928 			}
1929 		}
1930 
1931 		memset (sitd, 0, sizeof *sitd);
1932 		sitd->sitd_dma = sitd_dma;
1933 		list_add (&sitd->sitd_list, &iso_sched->td_list);
1934 	}
1935 
1936 	/* temporarily store schedule info in hcpriv */
1937 	urb->hcpriv = iso_sched;
1938 	urb->error_count = 0;
1939 
1940 	spin_unlock_irqrestore (&ehci->lock, flags);
1941 	return 0;
1942 }
1943 
1944 /*-------------------------------------------------------------------------*/
1945 
1946 static inline void
1947 sitd_patch(
1948 	struct ehci_hcd		*ehci,
1949 	struct ehci_iso_stream	*stream,
1950 	struct ehci_sitd	*sitd,
1951 	struct ehci_iso_sched	*iso_sched,
1952 	unsigned		index
1953 )
1954 {
1955 	struct ehci_iso_packet	*uf = &iso_sched->packet [index];
1956 	u64			bufp = uf->bufp;
1957 
1958 	sitd->hw_next = EHCI_LIST_END(ehci);
1959 	sitd->hw_fullspeed_ep = stream->address;
1960 	sitd->hw_uframe = stream->splits;
1961 	sitd->hw_results = uf->transaction;
1962 	sitd->hw_backpointer = EHCI_LIST_END(ehci);
1963 
1964 	bufp = uf->bufp;
1965 	sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
1966 	sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
1967 
1968 	sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
1969 	if (uf->cross)
1970 		bufp += 4096;
1971 	sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
1972 	sitd->index = index;
1973 }
1974 
1975 static inline void
1976 sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
1977 {
1978 	/* note: sitd ordering could matter (CSPLIT then SSPLIT) */
1979 	sitd->sitd_next = ehci->pshadow [frame];
1980 	sitd->hw_next = ehci->periodic [frame];
1981 	ehci->pshadow [frame].sitd = sitd;
1982 	sitd->frame = frame;
1983 	wmb ();
1984 	ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
1985 }
1986 
1987 /* fit urb's sitds into the selected schedule slot; activate as needed */
1988 static int
1989 sitd_link_urb (
1990 	struct ehci_hcd		*ehci,
1991 	struct urb		*urb,
1992 	unsigned		mod,
1993 	struct ehci_iso_stream	*stream
1994 )
1995 {
1996 	int			packet;
1997 	unsigned		next_uframe;
1998 	struct ehci_iso_sched	*sched = urb->hcpriv;
1999 	struct ehci_sitd	*sitd;
2000 
2001 	next_uframe = stream->next_uframe;
2002 
2003 	if (list_empty(&stream->td_list)) {
2004 		/* usbfs ignores TT bandwidth */
2005 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2006 				+= stream->bandwidth;
2007 		ehci_vdbg (ehci,
2008 			"sched devp %s ep%d%s-iso [%d] %dms/%04x\n",
2009 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
2010 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
2011 			(next_uframe >> 3) % ehci->periodic_size,
2012 			stream->interval, hc32_to_cpu(ehci, stream->splits));
2013 		stream->start = jiffies;
2014 	}
2015 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2016 
2017 	/* fill sITDs frame by frame */
2018 	for (packet = 0, sitd = NULL;
2019 			packet < urb->number_of_packets;
2020 			packet++) {
2021 
2022 		/* ASSERT:  we have all necessary sitds */
2023 		BUG_ON (list_empty (&sched->td_list));
2024 
2025 		/* ASSERT:  no itds for this endpoint in this frame */
2026 
2027 		sitd = list_entry (sched->td_list.next,
2028 				struct ehci_sitd, sitd_list);
2029 		list_move_tail (&sitd->sitd_list, &stream->td_list);
2030 		sitd->stream = iso_stream_get (stream);
2031 		sitd->urb = urb;
2032 
2033 		sitd_patch(ehci, stream, sitd, sched, packet);
2034 		sitd_link (ehci, (next_uframe >> 3) % ehci->periodic_size,
2035 				sitd);
2036 
2037 		next_uframe += stream->interval << 3;
2038 		stream->depth += stream->interval << 3;
2039 	}
2040 	stream->next_uframe = next_uframe % mod;
2041 
2042 	/* don't need that schedule data any more */
2043 	iso_sched_free (stream, sched);
2044 	urb->hcpriv = NULL;
2045 
2046 	timer_action (ehci, TIMER_IO_WATCHDOG);
2047 	return enable_periodic(ehci);
2048 }
2049 
2050 /*-------------------------------------------------------------------------*/
2051 
2052 #define	SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2053 				| SITD_STS_XACT | SITD_STS_MMF)
2054 
2055 /* Process and recycle a completed SITD.  Return true iff its urb completed,
2056  * and hence its completion callback probably added things to the hardware
2057  * schedule.
2058  *
2059  * Note that we carefully avoid recycling this descriptor until after any
2060  * completion callback runs, so that it won't be reused quickly.  That is,
2061  * assuming (a) no more than two urbs per frame on this endpoint, and also
2062  * (b) only this endpoint's completions submit URBs.  It seems some silicon
2063  * corrupts things if you reuse completed descriptors very quickly...
2064  */
2065 static unsigned
2066 sitd_complete (
2067 	struct ehci_hcd		*ehci,
2068 	struct ehci_sitd	*sitd
2069 ) {
2070 	struct urb				*urb = sitd->urb;
2071 	struct usb_iso_packet_descriptor	*desc;
2072 	u32					t;
2073 	int					urb_index = -1;
2074 	struct ehci_iso_stream			*stream = sitd->stream;
2075 	struct usb_device			*dev;
2076 	unsigned				retval = false;
2077 
2078 	urb_index = sitd->index;
2079 	desc = &urb->iso_frame_desc [urb_index];
2080 	t = hc32_to_cpup(ehci, &sitd->hw_results);
2081 
2082 	/* report transfer status */
2083 	if (t & SITD_ERRS) {
2084 		urb->error_count++;
2085 		if (t & SITD_STS_DBE)
2086 			desc->status = usb_pipein (urb->pipe)
2087 				? -ENOSR  /* hc couldn't read */
2088 				: -ECOMM; /* hc couldn't write */
2089 		else if (t & SITD_STS_BABBLE)
2090 			desc->status = -EOVERFLOW;
2091 		else /* XACT, MMF, etc */
2092 			desc->status = -EPROTO;
2093 	} else {
2094 		desc->status = 0;
2095 		desc->actual_length = desc->length - SITD_LENGTH(t);
2096 		urb->actual_length += desc->actual_length;
2097 	}
2098 	stream->depth -= stream->interval << 3;
2099 
2100 	/* handle completion now? */
2101 	if ((urb_index + 1) != urb->number_of_packets)
2102 		goto done;
2103 
2104 	/* ASSERT: it's really the last sitd for this urb
2105 	list_for_each_entry (sitd, &stream->td_list, sitd_list)
2106 		BUG_ON (sitd->urb == urb);
2107 	 */
2108 
2109 	/* give urb back to the driver; completion often (re)submits */
2110 	dev = urb->dev;
2111 	ehci_urb_done(ehci, urb, 0);
2112 	retval = true;
2113 	urb = NULL;
2114 	(void) disable_periodic(ehci);
2115 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2116 
2117 	if (list_is_singular(&stream->td_list)) {
2118 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2119 				-= stream->bandwidth;
2120 		ehci_vdbg (ehci,
2121 			"deschedule devp %s ep%d%s-iso\n",
2122 			dev->devpath, stream->bEndpointAddress & 0x0f,
2123 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
2124 	}
2125 	iso_stream_put (ehci, stream);
2126 	/* OK to recycle this SITD now that its completion callback ran. */
2127 done:
2128 	sitd->urb = NULL;
2129 	sitd->stream = NULL;
2130 	list_move(&sitd->sitd_list, &stream->free_list);
2131 	iso_stream_put(ehci, stream);
2132 
2133 	return retval;
2134 }
2135 
2136 
2137 static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb,
2138 	gfp_t mem_flags)
2139 {
2140 	int			status = -EINVAL;
2141 	unsigned long		flags;
2142 	struct ehci_iso_stream	*stream;
2143 
2144 	/* Get iso_stream head */
2145 	stream = iso_stream_find (ehci, urb);
2146 	if (stream == NULL) {
2147 		ehci_dbg (ehci, "can't get iso stream\n");
2148 		return -ENOMEM;
2149 	}
2150 	if (urb->interval != stream->interval) {
2151 		ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
2152 			stream->interval, urb->interval);
2153 		goto done;
2154 	}
2155 
2156 #ifdef EHCI_URB_TRACE
2157 	ehci_dbg (ehci,
2158 		"submit %p dev%s ep%d%s-iso len %d\n",
2159 		urb, urb->dev->devpath,
2160 		usb_pipeendpoint (urb->pipe),
2161 		usb_pipein (urb->pipe) ? "in" : "out",
2162 		urb->transfer_buffer_length);
2163 #endif
2164 
2165 	/* allocate SITDs */
2166 	status = sitd_urb_transaction (stream, ehci, urb, mem_flags);
2167 	if (status < 0) {
2168 		ehci_dbg (ehci, "can't init sitds\n");
2169 		goto done;
2170 	}
2171 
2172 	/* schedule ... need to lock */
2173 	spin_lock_irqsave (&ehci->lock, flags);
2174 	if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
2175 			       &ehci_to_hcd(ehci)->flags))) {
2176 		status = -ESHUTDOWN;
2177 		goto done_not_linked;
2178 	}
2179 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2180 	if (unlikely(status))
2181 		goto done_not_linked;
2182 	status = iso_stream_schedule(ehci, urb, stream);
2183 	if (status == 0)
2184 		sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
2185 	else
2186 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2187 done_not_linked:
2188 	spin_unlock_irqrestore (&ehci->lock, flags);
2189 
2190 done:
2191 	if (status < 0)
2192 		iso_stream_put (ehci, stream);
2193 	return status;
2194 }
2195 
2196 /*-------------------------------------------------------------------------*/
2197 
2198 static void free_cached_itd_list(struct ehci_hcd *ehci)
2199 {
2200 	struct ehci_itd *itd, *n;
2201 
2202 	list_for_each_entry_safe(itd, n, &ehci->cached_itd_list, itd_list) {
2203 		struct ehci_iso_stream	*stream = itd->stream;
2204 		itd->stream = NULL;
2205 		list_move(&itd->itd_list, &stream->free_list);
2206 		iso_stream_put(ehci, stream);
2207 	}
2208 }
2209 
2210 /*-------------------------------------------------------------------------*/
2211 
2212 static void
2213 scan_periodic (struct ehci_hcd *ehci)
2214 {
2215 	unsigned	now_uframe, frame, clock, clock_frame, mod;
2216 	unsigned	modified;
2217 
2218 	mod = ehci->periodic_size << 3;
2219 
2220 	/*
2221 	 * When running, scan from last scan point up to "now"
2222 	 * else clean up by scanning everything that's left.
2223 	 * Touches as few pages as possible:  cache-friendly.
2224 	 */
2225 	now_uframe = ehci->next_uframe;
2226 	if (HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
2227 		clock = ehci_readl(ehci, &ehci->regs->frame_index);
2228 		clock_frame = (clock >> 3) % ehci->periodic_size;
2229 	} else  {
2230 		clock = now_uframe + mod - 1;
2231 		clock_frame = -1;
2232 	}
2233 	if (ehci->clock_frame != clock_frame) {
2234 		free_cached_itd_list(ehci);
2235 		ehci->clock_frame = clock_frame;
2236 	}
2237 	clock %= mod;
2238 	clock_frame = clock >> 3;
2239 
2240 	for (;;) {
2241 		union ehci_shadow	q, *q_p;
2242 		__hc32			type, *hw_p;
2243 		unsigned		incomplete = false;
2244 
2245 		frame = now_uframe >> 3;
2246 
2247 restart:
2248 		/* scan each element in frame's queue for completions */
2249 		q_p = &ehci->pshadow [frame];
2250 		hw_p = &ehci->periodic [frame];
2251 		q.ptr = q_p->ptr;
2252 		type = Q_NEXT_TYPE(ehci, *hw_p);
2253 		modified = 0;
2254 
2255 		while (q.ptr != NULL) {
2256 			unsigned		uf;
2257 			union ehci_shadow	temp;
2258 			int			live;
2259 
2260 			live = HC_IS_RUNNING (ehci_to_hcd(ehci)->state);
2261 			switch (hc32_to_cpu(ehci, type)) {
2262 			case Q_TYPE_QH:
2263 				/* handle any completions */
2264 				temp.qh = qh_get (q.qh);
2265 				type = Q_NEXT_TYPE(ehci, q.qh->hw->hw_next);
2266 				q = q.qh->qh_next;
2267 				modified = qh_completions (ehci, temp.qh);
2268 				if (unlikely(list_empty(&temp.qh->qtd_list) ||
2269 						temp.qh->needs_rescan))
2270 					intr_deschedule (ehci, temp.qh);
2271 				qh_put (temp.qh);
2272 				break;
2273 			case Q_TYPE_FSTN:
2274 				/* for "save place" FSTNs, look at QH entries
2275 				 * in the previous frame for completions.
2276 				 */
2277 				if (q.fstn->hw_prev != EHCI_LIST_END(ehci)) {
2278 					dbg ("ignoring completions from FSTNs");
2279 				}
2280 				type = Q_NEXT_TYPE(ehci, q.fstn->hw_next);
2281 				q = q.fstn->fstn_next;
2282 				break;
2283 			case Q_TYPE_ITD:
2284 				/* If this ITD is still active, leave it for
2285 				 * later processing ... check the next entry.
2286 				 * No need to check for activity unless the
2287 				 * frame is current.
2288 				 */
2289 				if (frame == clock_frame && live) {
2290 					rmb();
2291 					for (uf = 0; uf < 8; uf++) {
2292 						if (q.itd->hw_transaction[uf] &
2293 							    ITD_ACTIVE(ehci))
2294 							break;
2295 					}
2296 					if (uf < 8) {
2297 						incomplete = true;
2298 						q_p = &q.itd->itd_next;
2299 						hw_p = &q.itd->hw_next;
2300 						type = Q_NEXT_TYPE(ehci,
2301 							q.itd->hw_next);
2302 						q = *q_p;
2303 						break;
2304 					}
2305 				}
2306 
2307 				/* Take finished ITDs out of the schedule
2308 				 * and process them:  recycle, maybe report
2309 				 * URB completion.  HC won't cache the
2310 				 * pointer for much longer, if at all.
2311 				 */
2312 				*q_p = q.itd->itd_next;
2313 				*hw_p = q.itd->hw_next;
2314 				type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2315 				wmb();
2316 				modified = itd_complete (ehci, q.itd);
2317 				q = *q_p;
2318 				break;
2319 			case Q_TYPE_SITD:
2320 				/* If this SITD is still active, leave it for
2321 				 * later processing ... check the next entry.
2322 				 * No need to check for activity unless the
2323 				 * frame is current.
2324 				 */
2325 				if (frame == clock_frame && live &&
2326 						(q.sitd->hw_results &
2327 							SITD_ACTIVE(ehci))) {
2328 					incomplete = true;
2329 					q_p = &q.sitd->sitd_next;
2330 					hw_p = &q.sitd->hw_next;
2331 					type = Q_NEXT_TYPE(ehci,
2332 							q.sitd->hw_next);
2333 					q = *q_p;
2334 					break;
2335 				}
2336 
2337 				/* Take finished SITDs out of the schedule
2338 				 * and process them:  recycle, maybe report
2339 				 * URB completion.
2340 				 */
2341 				*q_p = q.sitd->sitd_next;
2342 				*hw_p = q.sitd->hw_next;
2343 				type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2344 				wmb();
2345 				modified = sitd_complete (ehci, q.sitd);
2346 				q = *q_p;
2347 				break;
2348 			default:
2349 				dbg ("corrupt type %d frame %d shadow %p",
2350 					type, frame, q.ptr);
2351 				// BUG ();
2352 				q.ptr = NULL;
2353 			}
2354 
2355 			/* assume completion callbacks modify the queue */
2356 			if (unlikely (modified)) {
2357 				if (likely(ehci->periodic_sched > 0))
2358 					goto restart;
2359 				/* short-circuit this scan */
2360 				now_uframe = clock;
2361 				break;
2362 			}
2363 		}
2364 
2365 		/* If we can tell we caught up to the hardware, stop now.
2366 		 * We can't advance our scan without collecting the ISO
2367 		 * transfers that are still pending in this frame.
2368 		 */
2369 		if (incomplete && HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
2370 			ehci->next_uframe = now_uframe;
2371 			break;
2372 		}
2373 
2374 		// FIXME:  this assumes we won't get lapped when
2375 		// latencies climb; that should be rare, but...
2376 		// detect it, and just go all the way around.
2377 		// FLR might help detect this case, so long as latencies
2378 		// don't exceed periodic_size msec (default 1.024 sec).
2379 
2380 		// FIXME:  likewise assumes HC doesn't halt mid-scan
2381 
2382 		if (now_uframe == clock) {
2383 			unsigned	now;
2384 
2385 			if (!HC_IS_RUNNING (ehci_to_hcd(ehci)->state)
2386 					|| ehci->periodic_sched == 0)
2387 				break;
2388 			ehci->next_uframe = now_uframe;
2389 			now = ehci_readl(ehci, &ehci->regs->frame_index) % mod;
2390 			if (now_uframe == now)
2391 				break;
2392 
2393 			/* rescan the rest of this frame, then ... */
2394 			clock = now;
2395 			clock_frame = clock >> 3;
2396 			if (ehci->clock_frame != clock_frame) {
2397 				free_cached_itd_list(ehci);
2398 				ehci->clock_frame = clock_frame;
2399 			}
2400 		} else {
2401 			now_uframe++;
2402 			now_uframe %= mod;
2403 		}
2404 	}
2405 }
2406