1 /* 2 * Copyright (c) 2001-2004 by David Brownell 3 * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License as published by the 7 * Free Software Foundation; either version 2 of the License, or (at your 8 * option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, but 11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software Foundation, 17 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 18 */ 19 20 /* this file is part of ehci-hcd.c */ 21 22 /*-------------------------------------------------------------------------*/ 23 24 /* 25 * EHCI scheduled transaction support: interrupt, iso, split iso 26 * These are called "periodic" transactions in the EHCI spec. 27 * 28 * Note that for interrupt transfers, the QH/QTD manipulation is shared 29 * with the "asynchronous" transaction support (control/bulk transfers). 30 * The only real difference is in how interrupt transfers are scheduled. 31 * 32 * For ISO, we make an "iso_stream" head to serve the same role as a QH. 33 * It keeps track of every ITD (or SITD) that's linked, and holds enough 34 * pre-calculated schedule data to make appending to the queue be quick. 35 */ 36 37 static int ehci_get_frame (struct usb_hcd *hcd); 38 39 /* 40 * periodic_next_shadow - return "next" pointer on shadow list 41 * @periodic: host pointer to qh/itd/sitd 42 * @tag: hardware tag for type of this record 43 */ 44 static union ehci_shadow * 45 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic, 46 __hc32 tag) 47 { 48 switch (hc32_to_cpu(ehci, tag)) { 49 case Q_TYPE_QH: 50 return &periodic->qh->qh_next; 51 case Q_TYPE_FSTN: 52 return &periodic->fstn->fstn_next; 53 case Q_TYPE_ITD: 54 return &periodic->itd->itd_next; 55 // case Q_TYPE_SITD: 56 default: 57 return &periodic->sitd->sitd_next; 58 } 59 } 60 61 static __hc32 * 62 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic, 63 __hc32 tag) 64 { 65 switch (hc32_to_cpu(ehci, tag)) { 66 /* our ehci_shadow.qh is actually software part */ 67 case Q_TYPE_QH: 68 return &periodic->qh->hw->hw_next; 69 /* others are hw parts */ 70 default: 71 return periodic->hw_next; 72 } 73 } 74 75 /* caller must hold ehci->lock */ 76 static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr) 77 { 78 union ehci_shadow *prev_p = &ehci->pshadow[frame]; 79 __hc32 *hw_p = &ehci->periodic[frame]; 80 union ehci_shadow here = *prev_p; 81 82 /* find predecessor of "ptr"; hw and shadow lists are in sync */ 83 while (here.ptr && here.ptr != ptr) { 84 prev_p = periodic_next_shadow(ehci, prev_p, 85 Q_NEXT_TYPE(ehci, *hw_p)); 86 hw_p = shadow_next_periodic(ehci, &here, 87 Q_NEXT_TYPE(ehci, *hw_p)); 88 here = *prev_p; 89 } 90 /* an interrupt entry (at list end) could have been shared */ 91 if (!here.ptr) 92 return; 93 94 /* update shadow and hardware lists ... the old "next" pointers 95 * from ptr may still be in use, the caller updates them. 96 */ 97 *prev_p = *periodic_next_shadow(ehci, &here, 98 Q_NEXT_TYPE(ehci, *hw_p)); 99 100 if (!ehci->use_dummy_qh || 101 *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p)) 102 != EHCI_LIST_END(ehci)) 103 *hw_p = *shadow_next_periodic(ehci, &here, 104 Q_NEXT_TYPE(ehci, *hw_p)); 105 else 106 *hw_p = ehci->dummy->qh_dma; 107 } 108 109 /* how many of the uframe's 125 usecs are allocated? */ 110 static unsigned short 111 periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe) 112 { 113 __hc32 *hw_p = &ehci->periodic [frame]; 114 union ehci_shadow *q = &ehci->pshadow [frame]; 115 unsigned usecs = 0; 116 struct ehci_qh_hw *hw; 117 118 while (q->ptr) { 119 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) { 120 case Q_TYPE_QH: 121 hw = q->qh->hw; 122 /* is it in the S-mask? */ 123 if (hw->hw_info2 & cpu_to_hc32(ehci, 1 << uframe)) 124 usecs += q->qh->usecs; 125 /* ... or C-mask? */ 126 if (hw->hw_info2 & cpu_to_hc32(ehci, 127 1 << (8 + uframe))) 128 usecs += q->qh->c_usecs; 129 hw_p = &hw->hw_next; 130 q = &q->qh->qh_next; 131 break; 132 // case Q_TYPE_FSTN: 133 default: 134 /* for "save place" FSTNs, count the relevant INTR 135 * bandwidth from the previous frame 136 */ 137 if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) { 138 ehci_dbg (ehci, "ignoring FSTN cost ...\n"); 139 } 140 hw_p = &q->fstn->hw_next; 141 q = &q->fstn->fstn_next; 142 break; 143 case Q_TYPE_ITD: 144 if (q->itd->hw_transaction[uframe]) 145 usecs += q->itd->stream->usecs; 146 hw_p = &q->itd->hw_next; 147 q = &q->itd->itd_next; 148 break; 149 case Q_TYPE_SITD: 150 /* is it in the S-mask? (count SPLIT, DATA) */ 151 if (q->sitd->hw_uframe & cpu_to_hc32(ehci, 152 1 << uframe)) { 153 if (q->sitd->hw_fullspeed_ep & 154 cpu_to_hc32(ehci, 1<<31)) 155 usecs += q->sitd->stream->usecs; 156 else /* worst case for OUT start-split */ 157 usecs += HS_USECS_ISO (188); 158 } 159 160 /* ... C-mask? (count CSPLIT, DATA) */ 161 if (q->sitd->hw_uframe & 162 cpu_to_hc32(ehci, 1 << (8 + uframe))) { 163 /* worst case for IN complete-split */ 164 usecs += q->sitd->stream->c_usecs; 165 } 166 167 hw_p = &q->sitd->hw_next; 168 q = &q->sitd->sitd_next; 169 break; 170 } 171 } 172 #ifdef DEBUG 173 if (usecs > ehci->uframe_periodic_max) 174 ehci_err (ehci, "uframe %d sched overrun: %d usecs\n", 175 frame * 8 + uframe, usecs); 176 #endif 177 return usecs; 178 } 179 180 /*-------------------------------------------------------------------------*/ 181 182 static int same_tt (struct usb_device *dev1, struct usb_device *dev2) 183 { 184 if (!dev1->tt || !dev2->tt) 185 return 0; 186 if (dev1->tt != dev2->tt) 187 return 0; 188 if (dev1->tt->multi) 189 return dev1->ttport == dev2->ttport; 190 else 191 return 1; 192 } 193 194 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED 195 196 /* Which uframe does the low/fullspeed transfer start in? 197 * 198 * The parameter is the mask of ssplits in "H-frame" terms 199 * and this returns the transfer start uframe in "B-frame" terms, 200 * which allows both to match, e.g. a ssplit in "H-frame" uframe 0 201 * will cause a transfer in "B-frame" uframe 0. "B-frames" lag 202 * "H-frames" by 1 uframe. See the EHCI spec sec 4.5 and figure 4.7. 203 */ 204 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask) 205 { 206 unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask); 207 if (!smask) { 208 ehci_err(ehci, "invalid empty smask!\n"); 209 /* uframe 7 can't have bw so this will indicate failure */ 210 return 7; 211 } 212 return ffs(smask) - 1; 213 } 214 215 static const unsigned char 216 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 }; 217 218 /* carryover low/fullspeed bandwidth that crosses uframe boundries */ 219 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8]) 220 { 221 int i; 222 for (i=0; i<7; i++) { 223 if (max_tt_usecs[i] < tt_usecs[i]) { 224 tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i]; 225 tt_usecs[i] = max_tt_usecs[i]; 226 } 227 } 228 } 229 230 /* How many of the tt's periodic downstream 1000 usecs are allocated? 231 * 232 * While this measures the bandwidth in terms of usecs/uframe, 233 * the low/fullspeed bus has no notion of uframes, so any particular 234 * low/fullspeed transfer can "carry over" from one uframe to the next, 235 * since the TT just performs downstream transfers in sequence. 236 * 237 * For example two separate 100 usec transfers can start in the same uframe, 238 * and the second one would "carry over" 75 usecs into the next uframe. 239 */ 240 static void 241 periodic_tt_usecs ( 242 struct ehci_hcd *ehci, 243 struct usb_device *dev, 244 unsigned frame, 245 unsigned short tt_usecs[8] 246 ) 247 { 248 __hc32 *hw_p = &ehci->periodic [frame]; 249 union ehci_shadow *q = &ehci->pshadow [frame]; 250 unsigned char uf; 251 252 memset(tt_usecs, 0, 16); 253 254 while (q->ptr) { 255 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) { 256 case Q_TYPE_ITD: 257 hw_p = &q->itd->hw_next; 258 q = &q->itd->itd_next; 259 continue; 260 case Q_TYPE_QH: 261 if (same_tt(dev, q->qh->dev)) { 262 uf = tt_start_uframe(ehci, q->qh->hw->hw_info2); 263 tt_usecs[uf] += q->qh->tt_usecs; 264 } 265 hw_p = &q->qh->hw->hw_next; 266 q = &q->qh->qh_next; 267 continue; 268 case Q_TYPE_SITD: 269 if (same_tt(dev, q->sitd->urb->dev)) { 270 uf = tt_start_uframe(ehci, q->sitd->hw_uframe); 271 tt_usecs[uf] += q->sitd->stream->tt_usecs; 272 } 273 hw_p = &q->sitd->hw_next; 274 q = &q->sitd->sitd_next; 275 continue; 276 // case Q_TYPE_FSTN: 277 default: 278 ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n", 279 frame); 280 hw_p = &q->fstn->hw_next; 281 q = &q->fstn->fstn_next; 282 } 283 } 284 285 carryover_tt_bandwidth(tt_usecs); 286 287 if (max_tt_usecs[7] < tt_usecs[7]) 288 ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n", 289 frame, tt_usecs[7] - max_tt_usecs[7]); 290 } 291 292 /* 293 * Return true if the device's tt's downstream bus is available for a 294 * periodic transfer of the specified length (usecs), starting at the 295 * specified frame/uframe. Note that (as summarized in section 11.19 296 * of the usb 2.0 spec) TTs can buffer multiple transactions for each 297 * uframe. 298 * 299 * The uframe parameter is when the fullspeed/lowspeed transfer 300 * should be executed in "B-frame" terms, which is the same as the 301 * highspeed ssplit's uframe (which is in "H-frame" terms). For example 302 * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0. 303 * See the EHCI spec sec 4.5 and fig 4.7. 304 * 305 * This checks if the full/lowspeed bus, at the specified starting uframe, 306 * has the specified bandwidth available, according to rules listed 307 * in USB 2.0 spec section 11.18.1 fig 11-60. 308 * 309 * This does not check if the transfer would exceed the max ssplit 310 * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4, 311 * since proper scheduling limits ssplits to less than 16 per uframe. 312 */ 313 static int tt_available ( 314 struct ehci_hcd *ehci, 315 unsigned period, 316 struct usb_device *dev, 317 unsigned frame, 318 unsigned uframe, 319 u16 usecs 320 ) 321 { 322 if ((period == 0) || (uframe >= 7)) /* error */ 323 return 0; 324 325 for (; frame < ehci->periodic_size; frame += period) { 326 unsigned short tt_usecs[8]; 327 328 periodic_tt_usecs (ehci, dev, frame, tt_usecs); 329 330 ehci_vdbg(ehci, "tt frame %d check %d usecs start uframe %d in" 331 " schedule %d/%d/%d/%d/%d/%d/%d/%d\n", 332 frame, usecs, uframe, 333 tt_usecs[0], tt_usecs[1], tt_usecs[2], tt_usecs[3], 334 tt_usecs[4], tt_usecs[5], tt_usecs[6], tt_usecs[7]); 335 336 if (max_tt_usecs[uframe] <= tt_usecs[uframe]) { 337 ehci_vdbg(ehci, "frame %d uframe %d fully scheduled\n", 338 frame, uframe); 339 return 0; 340 } 341 342 /* special case for isoc transfers larger than 125us: 343 * the first and each subsequent fully used uframe 344 * must be empty, so as to not illegally delay 345 * already scheduled transactions 346 */ 347 if (125 < usecs) { 348 int ufs = (usecs / 125); 349 int i; 350 for (i = uframe; i < (uframe + ufs) && i < 8; i++) 351 if (0 < tt_usecs[i]) { 352 ehci_vdbg(ehci, 353 "multi-uframe xfer can't fit " 354 "in frame %d uframe %d\n", 355 frame, i); 356 return 0; 357 } 358 } 359 360 tt_usecs[uframe] += usecs; 361 362 carryover_tt_bandwidth(tt_usecs); 363 364 /* fail if the carryover pushed bw past the last uframe's limit */ 365 if (max_tt_usecs[7] < tt_usecs[7]) { 366 ehci_vdbg(ehci, 367 "tt unavailable usecs %d frame %d uframe %d\n", 368 usecs, frame, uframe); 369 return 0; 370 } 371 } 372 373 return 1; 374 } 375 376 #else 377 378 /* return true iff the device's transaction translator is available 379 * for a periodic transfer starting at the specified frame, using 380 * all the uframes in the mask. 381 */ 382 static int tt_no_collision ( 383 struct ehci_hcd *ehci, 384 unsigned period, 385 struct usb_device *dev, 386 unsigned frame, 387 u32 uf_mask 388 ) 389 { 390 if (period == 0) /* error */ 391 return 0; 392 393 /* note bandwidth wastage: split never follows csplit 394 * (different dev or endpoint) until the next uframe. 395 * calling convention doesn't make that distinction. 396 */ 397 for (; frame < ehci->periodic_size; frame += period) { 398 union ehci_shadow here; 399 __hc32 type; 400 struct ehci_qh_hw *hw; 401 402 here = ehci->pshadow [frame]; 403 type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]); 404 while (here.ptr) { 405 switch (hc32_to_cpu(ehci, type)) { 406 case Q_TYPE_ITD: 407 type = Q_NEXT_TYPE(ehci, here.itd->hw_next); 408 here = here.itd->itd_next; 409 continue; 410 case Q_TYPE_QH: 411 hw = here.qh->hw; 412 if (same_tt (dev, here.qh->dev)) { 413 u32 mask; 414 415 mask = hc32_to_cpu(ehci, 416 hw->hw_info2); 417 /* "knows" no gap is needed */ 418 mask |= mask >> 8; 419 if (mask & uf_mask) 420 break; 421 } 422 type = Q_NEXT_TYPE(ehci, hw->hw_next); 423 here = here.qh->qh_next; 424 continue; 425 case Q_TYPE_SITD: 426 if (same_tt (dev, here.sitd->urb->dev)) { 427 u16 mask; 428 429 mask = hc32_to_cpu(ehci, here.sitd 430 ->hw_uframe); 431 /* FIXME assumes no gap for IN! */ 432 mask |= mask >> 8; 433 if (mask & uf_mask) 434 break; 435 } 436 type = Q_NEXT_TYPE(ehci, here.sitd->hw_next); 437 here = here.sitd->sitd_next; 438 continue; 439 // case Q_TYPE_FSTN: 440 default: 441 ehci_dbg (ehci, 442 "periodic frame %d bogus type %d\n", 443 frame, type); 444 } 445 446 /* collision or error */ 447 return 0; 448 } 449 } 450 451 /* no collision */ 452 return 1; 453 } 454 455 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */ 456 457 /*-------------------------------------------------------------------------*/ 458 459 static void enable_periodic(struct ehci_hcd *ehci) 460 { 461 if (ehci->periodic_count++) 462 return; 463 464 /* Stop waiting to turn off the periodic schedule */ 465 ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC); 466 467 /* Don't start the schedule until PSS is 0 */ 468 ehci_poll_PSS(ehci); 469 turn_on_io_watchdog(ehci); 470 } 471 472 static void disable_periodic(struct ehci_hcd *ehci) 473 { 474 if (--ehci->periodic_count) 475 return; 476 477 /* Don't turn off the schedule until PSS is 1 */ 478 ehci_poll_PSS(ehci); 479 } 480 481 /*-------------------------------------------------------------------------*/ 482 483 /* periodic schedule slots have iso tds (normal or split) first, then a 484 * sparse tree for active interrupt transfers. 485 * 486 * this just links in a qh; caller guarantees uframe masks are set right. 487 * no FSTN support (yet; ehci 0.96+) 488 */ 489 static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh) 490 { 491 unsigned i; 492 unsigned period = qh->period; 493 494 dev_dbg (&qh->dev->dev, 495 "link qh%d-%04x/%p start %d [%d/%d us]\n", 496 period, hc32_to_cpup(ehci, &qh->hw->hw_info2) 497 & (QH_CMASK | QH_SMASK), 498 qh, qh->start, qh->usecs, qh->c_usecs); 499 500 /* high bandwidth, or otherwise every microframe */ 501 if (period == 0) 502 period = 1; 503 504 for (i = qh->start; i < ehci->periodic_size; i += period) { 505 union ehci_shadow *prev = &ehci->pshadow[i]; 506 __hc32 *hw_p = &ehci->periodic[i]; 507 union ehci_shadow here = *prev; 508 __hc32 type = 0; 509 510 /* skip the iso nodes at list head */ 511 while (here.ptr) { 512 type = Q_NEXT_TYPE(ehci, *hw_p); 513 if (type == cpu_to_hc32(ehci, Q_TYPE_QH)) 514 break; 515 prev = periodic_next_shadow(ehci, prev, type); 516 hw_p = shadow_next_periodic(ehci, &here, type); 517 here = *prev; 518 } 519 520 /* sorting each branch by period (slow-->fast) 521 * enables sharing interior tree nodes 522 */ 523 while (here.ptr && qh != here.qh) { 524 if (qh->period > here.qh->period) 525 break; 526 prev = &here.qh->qh_next; 527 hw_p = &here.qh->hw->hw_next; 528 here = *prev; 529 } 530 /* link in this qh, unless some earlier pass did that */ 531 if (qh != here.qh) { 532 qh->qh_next = here; 533 if (here.qh) 534 qh->hw->hw_next = *hw_p; 535 wmb (); 536 prev->qh = qh; 537 *hw_p = QH_NEXT (ehci, qh->qh_dma); 538 } 539 } 540 qh->qh_state = QH_STATE_LINKED; 541 qh->xacterrs = 0; 542 qh->exception = 0; 543 544 /* update per-qh bandwidth for usbfs */ 545 ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period 546 ? ((qh->usecs + qh->c_usecs) / qh->period) 547 : (qh->usecs * 8); 548 549 list_add(&qh->intr_node, &ehci->intr_qh_list); 550 551 /* maybe enable periodic schedule processing */ 552 ++ehci->intr_count; 553 enable_periodic(ehci); 554 } 555 556 static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh) 557 { 558 unsigned i; 559 unsigned period; 560 561 /* 562 * If qh is for a low/full-speed device, simply unlinking it 563 * could interfere with an ongoing split transaction. To unlink 564 * it safely would require setting the QH_INACTIVATE bit and 565 * waiting at least one frame, as described in EHCI 4.12.2.5. 566 * 567 * We won't bother with any of this. Instead, we assume that the 568 * only reason for unlinking an interrupt QH while the current URB 569 * is still active is to dequeue all the URBs (flush the whole 570 * endpoint queue). 571 * 572 * If rebalancing the periodic schedule is ever implemented, this 573 * approach will no longer be valid. 574 */ 575 576 /* high bandwidth, or otherwise part of every microframe */ 577 if ((period = qh->period) == 0) 578 period = 1; 579 580 for (i = qh->start; i < ehci->periodic_size; i += period) 581 periodic_unlink (ehci, i, qh); 582 583 /* update per-qh bandwidth for usbfs */ 584 ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period 585 ? ((qh->usecs + qh->c_usecs) / qh->period) 586 : (qh->usecs * 8); 587 588 dev_dbg (&qh->dev->dev, 589 "unlink qh%d-%04x/%p start %d [%d/%d us]\n", 590 qh->period, 591 hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK), 592 qh, qh->start, qh->usecs, qh->c_usecs); 593 594 /* qh->qh_next still "live" to HC */ 595 qh->qh_state = QH_STATE_UNLINK; 596 qh->qh_next.ptr = NULL; 597 598 if (ehci->qh_scan_next == qh) 599 ehci->qh_scan_next = list_entry(qh->intr_node.next, 600 struct ehci_qh, intr_node); 601 list_del(&qh->intr_node); 602 } 603 604 static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh) 605 { 606 /* If the QH isn't linked then there's nothing we can do. */ 607 if (qh->qh_state != QH_STATE_LINKED) 608 return; 609 610 qh_unlink_periodic (ehci, qh); 611 612 /* Make sure the unlinks are visible before starting the timer */ 613 wmb(); 614 615 /* 616 * The EHCI spec doesn't say how long it takes the controller to 617 * stop accessing an unlinked interrupt QH. The timer delay is 618 * 9 uframes; presumably that will be long enough. 619 */ 620 qh->unlink_cycle = ehci->intr_unlink_cycle; 621 622 /* New entries go at the end of the intr_unlink list */ 623 list_add_tail(&qh->unlink_node, &ehci->intr_unlink); 624 625 if (ehci->intr_unlinking) 626 ; /* Avoid recursive calls */ 627 else if (ehci->rh_state < EHCI_RH_RUNNING) 628 ehci_handle_intr_unlinks(ehci); 629 else if (ehci->intr_unlink.next == &qh->unlink_node) { 630 ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true); 631 ++ehci->intr_unlink_cycle; 632 } 633 } 634 635 static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh) 636 { 637 struct ehci_qh_hw *hw = qh->hw; 638 int rc; 639 640 qh->qh_state = QH_STATE_IDLE; 641 hw->hw_next = EHCI_LIST_END(ehci); 642 643 if (!list_empty(&qh->qtd_list)) 644 qh_completions(ehci, qh); 645 646 /* reschedule QH iff another request is queued */ 647 if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) { 648 rc = qh_schedule(ehci, qh); 649 if (rc == 0) { 650 qh_refresh(ehci, qh); 651 qh_link_periodic(ehci, qh); 652 } 653 654 /* An error here likely indicates handshake failure 655 * or no space left in the schedule. Neither fault 656 * should happen often ... 657 * 658 * FIXME kill the now-dysfunctional queued urbs 659 */ 660 else { 661 ehci_err(ehci, "can't reschedule qh %p, err %d\n", 662 qh, rc); 663 } 664 } 665 666 /* maybe turn off periodic schedule */ 667 --ehci->intr_count; 668 disable_periodic(ehci); 669 } 670 671 /*-------------------------------------------------------------------------*/ 672 673 static int check_period ( 674 struct ehci_hcd *ehci, 675 unsigned frame, 676 unsigned uframe, 677 unsigned period, 678 unsigned usecs 679 ) { 680 int claimed; 681 682 /* complete split running into next frame? 683 * given FSTN support, we could sometimes check... 684 */ 685 if (uframe >= 8) 686 return 0; 687 688 /* convert "usecs we need" to "max already claimed" */ 689 usecs = ehci->uframe_periodic_max - usecs; 690 691 /* we "know" 2 and 4 uframe intervals were rejected; so 692 * for period 0, check _every_ microframe in the schedule. 693 */ 694 if (unlikely (period == 0)) { 695 do { 696 for (uframe = 0; uframe < 7; uframe++) { 697 claimed = periodic_usecs (ehci, frame, uframe); 698 if (claimed > usecs) 699 return 0; 700 } 701 } while ((frame += 1) < ehci->periodic_size); 702 703 /* just check the specified uframe, at that period */ 704 } else { 705 do { 706 claimed = periodic_usecs (ehci, frame, uframe); 707 if (claimed > usecs) 708 return 0; 709 } while ((frame += period) < ehci->periodic_size); 710 } 711 712 // success! 713 return 1; 714 } 715 716 static int check_intr_schedule ( 717 struct ehci_hcd *ehci, 718 unsigned frame, 719 unsigned uframe, 720 const struct ehci_qh *qh, 721 __hc32 *c_maskp 722 ) 723 { 724 int retval = -ENOSPC; 725 u8 mask = 0; 726 727 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */ 728 goto done; 729 730 if (!check_period (ehci, frame, uframe, qh->period, qh->usecs)) 731 goto done; 732 if (!qh->c_usecs) { 733 retval = 0; 734 *c_maskp = 0; 735 goto done; 736 } 737 738 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED 739 if (tt_available (ehci, qh->period, qh->dev, frame, uframe, 740 qh->tt_usecs)) { 741 unsigned i; 742 743 /* TODO : this may need FSTN for SSPLIT in uframe 5. */ 744 for (i=uframe+1; i<8 && i<uframe+4; i++) 745 if (!check_period (ehci, frame, i, 746 qh->period, qh->c_usecs)) 747 goto done; 748 else 749 mask |= 1 << i; 750 751 retval = 0; 752 753 *c_maskp = cpu_to_hc32(ehci, mask << 8); 754 } 755 #else 756 /* Make sure this tt's buffer is also available for CSPLITs. 757 * We pessimize a bit; probably the typical full speed case 758 * doesn't need the second CSPLIT. 759 * 760 * NOTE: both SPLIT and CSPLIT could be checked in just 761 * one smart pass... 762 */ 763 mask = 0x03 << (uframe + qh->gap_uf); 764 *c_maskp = cpu_to_hc32(ehci, mask << 8); 765 766 mask |= 1 << uframe; 767 if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) { 768 if (!check_period (ehci, frame, uframe + qh->gap_uf + 1, 769 qh->period, qh->c_usecs)) 770 goto done; 771 if (!check_period (ehci, frame, uframe + qh->gap_uf, 772 qh->period, qh->c_usecs)) 773 goto done; 774 retval = 0; 775 } 776 #endif 777 done: 778 return retval; 779 } 780 781 /* "first fit" scheduling policy used the first time through, 782 * or when the previous schedule slot can't be re-used. 783 */ 784 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh) 785 { 786 int status; 787 unsigned uframe; 788 __hc32 c_mask; 789 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */ 790 struct ehci_qh_hw *hw = qh->hw; 791 792 hw->hw_next = EHCI_LIST_END(ehci); 793 frame = qh->start; 794 795 /* reuse the previous schedule slots, if we can */ 796 if (frame < qh->period) { 797 uframe = ffs(hc32_to_cpup(ehci, &hw->hw_info2) & QH_SMASK); 798 status = check_intr_schedule (ehci, frame, --uframe, 799 qh, &c_mask); 800 } else { 801 uframe = 0; 802 c_mask = 0; 803 status = -ENOSPC; 804 } 805 806 /* else scan the schedule to find a group of slots such that all 807 * uframes have enough periodic bandwidth available. 808 */ 809 if (status) { 810 /* "normal" case, uframing flexible except with splits */ 811 if (qh->period) { 812 int i; 813 814 for (i = qh->period; status && i > 0; --i) { 815 frame = ++ehci->random_frame % qh->period; 816 for (uframe = 0; uframe < 8; uframe++) { 817 status = check_intr_schedule (ehci, 818 frame, uframe, qh, 819 &c_mask); 820 if (status == 0) 821 break; 822 } 823 } 824 825 /* qh->period == 0 means every uframe */ 826 } else { 827 frame = 0; 828 status = check_intr_schedule (ehci, 0, 0, qh, &c_mask); 829 } 830 if (status) 831 goto done; 832 qh->start = frame; 833 834 /* reset S-frame and (maybe) C-frame masks */ 835 hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK)); 836 hw->hw_info2 |= qh->period 837 ? cpu_to_hc32(ehci, 1 << uframe) 838 : cpu_to_hc32(ehci, QH_SMASK); 839 hw->hw_info2 |= c_mask; 840 } else 841 ehci_dbg (ehci, "reused qh %p schedule\n", qh); 842 843 done: 844 return status; 845 } 846 847 static int intr_submit ( 848 struct ehci_hcd *ehci, 849 struct urb *urb, 850 struct list_head *qtd_list, 851 gfp_t mem_flags 852 ) { 853 unsigned epnum; 854 unsigned long flags; 855 struct ehci_qh *qh; 856 int status; 857 struct list_head empty; 858 859 /* get endpoint and transfer/schedule data */ 860 epnum = urb->ep->desc.bEndpointAddress; 861 862 spin_lock_irqsave (&ehci->lock, flags); 863 864 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { 865 status = -ESHUTDOWN; 866 goto done_not_linked; 867 } 868 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); 869 if (unlikely(status)) 870 goto done_not_linked; 871 872 /* get qh and force any scheduling errors */ 873 INIT_LIST_HEAD (&empty); 874 qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv); 875 if (qh == NULL) { 876 status = -ENOMEM; 877 goto done; 878 } 879 if (qh->qh_state == QH_STATE_IDLE) { 880 if ((status = qh_schedule (ehci, qh)) != 0) 881 goto done; 882 } 883 884 /* then queue the urb's tds to the qh */ 885 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv); 886 BUG_ON (qh == NULL); 887 888 /* stuff into the periodic schedule */ 889 if (qh->qh_state == QH_STATE_IDLE) { 890 qh_refresh(ehci, qh); 891 qh_link_periodic(ehci, qh); 892 } 893 894 /* ... update usbfs periodic stats */ 895 ehci_to_hcd(ehci)->self.bandwidth_int_reqs++; 896 897 done: 898 if (unlikely(status)) 899 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 900 done_not_linked: 901 spin_unlock_irqrestore (&ehci->lock, flags); 902 if (status) 903 qtd_list_free (ehci, urb, qtd_list); 904 905 return status; 906 } 907 908 static void scan_intr(struct ehci_hcd *ehci) 909 { 910 struct ehci_qh *qh; 911 912 list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list, 913 intr_node) { 914 915 /* clean any finished work for this qh */ 916 if (!list_empty(&qh->qtd_list)) { 917 int temp; 918 919 /* 920 * Unlinks could happen here; completion reporting 921 * drops the lock. That's why ehci->qh_scan_next 922 * always holds the next qh to scan; if the next qh 923 * gets unlinked then ehci->qh_scan_next is adjusted 924 * in qh_unlink_periodic(). 925 */ 926 temp = qh_completions(ehci, qh); 927 if (unlikely(temp || (list_empty(&qh->qtd_list) && 928 qh->qh_state == QH_STATE_LINKED))) 929 start_unlink_intr(ehci, qh); 930 } 931 } 932 } 933 934 /*-------------------------------------------------------------------------*/ 935 936 /* ehci_iso_stream ops work with both ITD and SITD */ 937 938 static struct ehci_iso_stream * 939 iso_stream_alloc (gfp_t mem_flags) 940 { 941 struct ehci_iso_stream *stream; 942 943 stream = kzalloc(sizeof *stream, mem_flags); 944 if (likely (stream != NULL)) { 945 INIT_LIST_HEAD(&stream->td_list); 946 INIT_LIST_HEAD(&stream->free_list); 947 stream->next_uframe = -1; 948 } 949 return stream; 950 } 951 952 static void 953 iso_stream_init ( 954 struct ehci_hcd *ehci, 955 struct ehci_iso_stream *stream, 956 struct usb_device *dev, 957 int pipe, 958 unsigned interval 959 ) 960 { 961 static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f }; 962 963 u32 buf1; 964 unsigned epnum, maxp; 965 int is_input; 966 long bandwidth; 967 968 /* 969 * this might be a "high bandwidth" highspeed endpoint, 970 * as encoded in the ep descriptor's wMaxPacket field 971 */ 972 epnum = usb_pipeendpoint (pipe); 973 is_input = usb_pipein (pipe) ? USB_DIR_IN : 0; 974 maxp = usb_maxpacket(dev, pipe, !is_input); 975 if (is_input) { 976 buf1 = (1 << 11); 977 } else { 978 buf1 = 0; 979 } 980 981 /* knows about ITD vs SITD */ 982 if (dev->speed == USB_SPEED_HIGH) { 983 unsigned multi = hb_mult(maxp); 984 985 stream->highspeed = 1; 986 987 maxp = max_packet(maxp); 988 buf1 |= maxp; 989 maxp *= multi; 990 991 stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum); 992 stream->buf1 = cpu_to_hc32(ehci, buf1); 993 stream->buf2 = cpu_to_hc32(ehci, multi); 994 995 /* usbfs wants to report the average usecs per frame tied up 996 * when transfers on this endpoint are scheduled ... 997 */ 998 stream->usecs = HS_USECS_ISO (maxp); 999 bandwidth = stream->usecs * 8; 1000 bandwidth /= interval; 1001 1002 } else { 1003 u32 addr; 1004 int think_time; 1005 int hs_transfers; 1006 1007 addr = dev->ttport << 24; 1008 if (!ehci_is_TDI(ehci) 1009 || (dev->tt->hub != 1010 ehci_to_hcd(ehci)->self.root_hub)) 1011 addr |= dev->tt->hub->devnum << 16; 1012 addr |= epnum << 8; 1013 addr |= dev->devnum; 1014 stream->usecs = HS_USECS_ISO (maxp); 1015 think_time = dev->tt ? dev->tt->think_time : 0; 1016 stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time ( 1017 dev->speed, is_input, 1, maxp)); 1018 hs_transfers = max (1u, (maxp + 187) / 188); 1019 if (is_input) { 1020 u32 tmp; 1021 1022 addr |= 1 << 31; 1023 stream->c_usecs = stream->usecs; 1024 stream->usecs = HS_USECS_ISO (1); 1025 stream->raw_mask = 1; 1026 1027 /* c-mask as specified in USB 2.0 11.18.4 3.c */ 1028 tmp = (1 << (hs_transfers + 2)) - 1; 1029 stream->raw_mask |= tmp << (8 + 2); 1030 } else 1031 stream->raw_mask = smask_out [hs_transfers - 1]; 1032 bandwidth = stream->usecs + stream->c_usecs; 1033 bandwidth /= interval << 3; 1034 1035 /* stream->splits gets created from raw_mask later */ 1036 stream->address = cpu_to_hc32(ehci, addr); 1037 } 1038 stream->bandwidth = bandwidth; 1039 1040 stream->udev = dev; 1041 1042 stream->bEndpointAddress = is_input | epnum; 1043 stream->interval = interval; 1044 stream->maxp = maxp; 1045 } 1046 1047 static struct ehci_iso_stream * 1048 iso_stream_find (struct ehci_hcd *ehci, struct urb *urb) 1049 { 1050 unsigned epnum; 1051 struct ehci_iso_stream *stream; 1052 struct usb_host_endpoint *ep; 1053 unsigned long flags; 1054 1055 epnum = usb_pipeendpoint (urb->pipe); 1056 if (usb_pipein(urb->pipe)) 1057 ep = urb->dev->ep_in[epnum]; 1058 else 1059 ep = urb->dev->ep_out[epnum]; 1060 1061 spin_lock_irqsave (&ehci->lock, flags); 1062 stream = ep->hcpriv; 1063 1064 if (unlikely (stream == NULL)) { 1065 stream = iso_stream_alloc(GFP_ATOMIC); 1066 if (likely (stream != NULL)) { 1067 ep->hcpriv = stream; 1068 stream->ep = ep; 1069 iso_stream_init(ehci, stream, urb->dev, urb->pipe, 1070 urb->interval); 1071 } 1072 1073 /* if dev->ep [epnum] is a QH, hw is set */ 1074 } else if (unlikely (stream->hw != NULL)) { 1075 ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n", 1076 urb->dev->devpath, epnum, 1077 usb_pipein(urb->pipe) ? "in" : "out"); 1078 stream = NULL; 1079 } 1080 1081 spin_unlock_irqrestore (&ehci->lock, flags); 1082 return stream; 1083 } 1084 1085 /*-------------------------------------------------------------------------*/ 1086 1087 /* ehci_iso_sched ops can be ITD-only or SITD-only */ 1088 1089 static struct ehci_iso_sched * 1090 iso_sched_alloc (unsigned packets, gfp_t mem_flags) 1091 { 1092 struct ehci_iso_sched *iso_sched; 1093 int size = sizeof *iso_sched; 1094 1095 size += packets * sizeof (struct ehci_iso_packet); 1096 iso_sched = kzalloc(size, mem_flags); 1097 if (likely (iso_sched != NULL)) { 1098 INIT_LIST_HEAD (&iso_sched->td_list); 1099 } 1100 return iso_sched; 1101 } 1102 1103 static inline void 1104 itd_sched_init( 1105 struct ehci_hcd *ehci, 1106 struct ehci_iso_sched *iso_sched, 1107 struct ehci_iso_stream *stream, 1108 struct urb *urb 1109 ) 1110 { 1111 unsigned i; 1112 dma_addr_t dma = urb->transfer_dma; 1113 1114 /* how many uframes are needed for these transfers */ 1115 iso_sched->span = urb->number_of_packets * stream->interval; 1116 1117 /* figure out per-uframe itd fields that we'll need later 1118 * when we fit new itds into the schedule. 1119 */ 1120 for (i = 0; i < urb->number_of_packets; i++) { 1121 struct ehci_iso_packet *uframe = &iso_sched->packet [i]; 1122 unsigned length; 1123 dma_addr_t buf; 1124 u32 trans; 1125 1126 length = urb->iso_frame_desc [i].length; 1127 buf = dma + urb->iso_frame_desc [i].offset; 1128 1129 trans = EHCI_ISOC_ACTIVE; 1130 trans |= buf & 0x0fff; 1131 if (unlikely (((i + 1) == urb->number_of_packets)) 1132 && !(urb->transfer_flags & URB_NO_INTERRUPT)) 1133 trans |= EHCI_ITD_IOC; 1134 trans |= length << 16; 1135 uframe->transaction = cpu_to_hc32(ehci, trans); 1136 1137 /* might need to cross a buffer page within a uframe */ 1138 uframe->bufp = (buf & ~(u64)0x0fff); 1139 buf += length; 1140 if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff)))) 1141 uframe->cross = 1; 1142 } 1143 } 1144 1145 static void 1146 iso_sched_free ( 1147 struct ehci_iso_stream *stream, 1148 struct ehci_iso_sched *iso_sched 1149 ) 1150 { 1151 if (!iso_sched) 1152 return; 1153 // caller must hold ehci->lock! 1154 list_splice (&iso_sched->td_list, &stream->free_list); 1155 kfree (iso_sched); 1156 } 1157 1158 static int 1159 itd_urb_transaction ( 1160 struct ehci_iso_stream *stream, 1161 struct ehci_hcd *ehci, 1162 struct urb *urb, 1163 gfp_t mem_flags 1164 ) 1165 { 1166 struct ehci_itd *itd; 1167 dma_addr_t itd_dma; 1168 int i; 1169 unsigned num_itds; 1170 struct ehci_iso_sched *sched; 1171 unsigned long flags; 1172 1173 sched = iso_sched_alloc (urb->number_of_packets, mem_flags); 1174 if (unlikely (sched == NULL)) 1175 return -ENOMEM; 1176 1177 itd_sched_init(ehci, sched, stream, urb); 1178 1179 if (urb->interval < 8) 1180 num_itds = 1 + (sched->span + 7) / 8; 1181 else 1182 num_itds = urb->number_of_packets; 1183 1184 /* allocate/init ITDs */ 1185 spin_lock_irqsave (&ehci->lock, flags); 1186 for (i = 0; i < num_itds; i++) { 1187 1188 /* 1189 * Use iTDs from the free list, but not iTDs that may 1190 * still be in use by the hardware. 1191 */ 1192 if (likely(!list_empty(&stream->free_list))) { 1193 itd = list_first_entry(&stream->free_list, 1194 struct ehci_itd, itd_list); 1195 if (itd->frame == ehci->now_frame) 1196 goto alloc_itd; 1197 list_del (&itd->itd_list); 1198 itd_dma = itd->itd_dma; 1199 } else { 1200 alloc_itd: 1201 spin_unlock_irqrestore (&ehci->lock, flags); 1202 itd = dma_pool_alloc (ehci->itd_pool, mem_flags, 1203 &itd_dma); 1204 spin_lock_irqsave (&ehci->lock, flags); 1205 if (!itd) { 1206 iso_sched_free(stream, sched); 1207 spin_unlock_irqrestore(&ehci->lock, flags); 1208 return -ENOMEM; 1209 } 1210 } 1211 1212 memset (itd, 0, sizeof *itd); 1213 itd->itd_dma = itd_dma; 1214 itd->frame = 9999; /* an invalid value */ 1215 list_add (&itd->itd_list, &sched->td_list); 1216 } 1217 spin_unlock_irqrestore (&ehci->lock, flags); 1218 1219 /* temporarily store schedule info in hcpriv */ 1220 urb->hcpriv = sched; 1221 urb->error_count = 0; 1222 return 0; 1223 } 1224 1225 /*-------------------------------------------------------------------------*/ 1226 1227 static inline int 1228 itd_slot_ok ( 1229 struct ehci_hcd *ehci, 1230 u32 mod, 1231 u32 uframe, 1232 u8 usecs, 1233 u32 period 1234 ) 1235 { 1236 uframe %= period; 1237 do { 1238 /* can't commit more than uframe_periodic_max usec */ 1239 if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7) 1240 > (ehci->uframe_periodic_max - usecs)) 1241 return 0; 1242 1243 /* we know urb->interval is 2^N uframes */ 1244 uframe += period; 1245 } while (uframe < mod); 1246 return 1; 1247 } 1248 1249 static inline int 1250 sitd_slot_ok ( 1251 struct ehci_hcd *ehci, 1252 u32 mod, 1253 struct ehci_iso_stream *stream, 1254 u32 uframe, 1255 struct ehci_iso_sched *sched, 1256 u32 period_uframes 1257 ) 1258 { 1259 u32 mask, tmp; 1260 u32 frame, uf; 1261 1262 mask = stream->raw_mask << (uframe & 7); 1263 1264 /* for IN, don't wrap CSPLIT into the next frame */ 1265 if (mask & ~0xffff) 1266 return 0; 1267 1268 /* check bandwidth */ 1269 uframe %= period_uframes; 1270 frame = uframe >> 3; 1271 1272 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED 1273 /* The tt's fullspeed bus bandwidth must be available. 1274 * tt_available scheduling guarantees 10+% for control/bulk. 1275 */ 1276 uf = uframe & 7; 1277 if (!tt_available(ehci, period_uframes >> 3, 1278 stream->udev, frame, uf, stream->tt_usecs)) 1279 return 0; 1280 #else 1281 /* tt must be idle for start(s), any gap, and csplit. 1282 * assume scheduling slop leaves 10+% for control/bulk. 1283 */ 1284 if (!tt_no_collision(ehci, period_uframes >> 3, 1285 stream->udev, frame, mask)) 1286 return 0; 1287 #endif 1288 1289 /* this multi-pass logic is simple, but performance may 1290 * suffer when the schedule data isn't cached. 1291 */ 1292 do { 1293 u32 max_used; 1294 1295 frame = uframe >> 3; 1296 uf = uframe & 7; 1297 1298 /* check starts (OUT uses more than one) */ 1299 max_used = ehci->uframe_periodic_max - stream->usecs; 1300 for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) { 1301 if (periodic_usecs (ehci, frame, uf) > max_used) 1302 return 0; 1303 } 1304 1305 /* for IN, check CSPLIT */ 1306 if (stream->c_usecs) { 1307 uf = uframe & 7; 1308 max_used = ehci->uframe_periodic_max - stream->c_usecs; 1309 do { 1310 tmp = 1 << uf; 1311 tmp <<= 8; 1312 if ((stream->raw_mask & tmp) == 0) 1313 continue; 1314 if (periodic_usecs (ehci, frame, uf) 1315 > max_used) 1316 return 0; 1317 } while (++uf < 8); 1318 } 1319 1320 /* we know urb->interval is 2^N uframes */ 1321 uframe += period_uframes; 1322 } while (uframe < mod); 1323 1324 stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7)); 1325 return 1; 1326 } 1327 1328 /* 1329 * This scheduler plans almost as far into the future as it has actual 1330 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to 1331 * "as small as possible" to be cache-friendlier.) That limits the size 1332 * transfers you can stream reliably; avoid more than 64 msec per urb. 1333 * Also avoid queue depths of less than ehci's worst irq latency (affected 1334 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter, 1335 * and other factors); or more than about 230 msec total (for portability, 1336 * given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler! 1337 */ 1338 1339 #define SCHEDULING_DELAY 40 /* microframes */ 1340 1341 static int 1342 iso_stream_schedule ( 1343 struct ehci_hcd *ehci, 1344 struct urb *urb, 1345 struct ehci_iso_stream *stream 1346 ) 1347 { 1348 u32 now, base, next, start, period, span; 1349 int status; 1350 unsigned mod = ehci->periodic_size << 3; 1351 struct ehci_iso_sched *sched = urb->hcpriv; 1352 1353 period = urb->interval; 1354 span = sched->span; 1355 if (!stream->highspeed) { 1356 period <<= 3; 1357 span <<= 3; 1358 } 1359 1360 now = ehci_read_frame_index(ehci) & (mod - 1); 1361 1362 /* Typical case: reuse current schedule, stream is still active. 1363 * Hopefully there are no gaps from the host falling behind 1364 * (irq delays etc). If there are, the behavior depends on 1365 * whether URB_ISO_ASAP is set. 1366 */ 1367 if (likely (!list_empty (&stream->td_list))) { 1368 1369 /* Take the isochronous scheduling threshold into account */ 1370 if (ehci->i_thresh) 1371 next = now + ehci->i_thresh; /* uframe cache */ 1372 else 1373 next = (now + 2 + 7) & ~0x07; /* full frame cache */ 1374 1375 /* 1376 * Use ehci->last_iso_frame as the base. There can't be any 1377 * TDs scheduled for earlier than that. 1378 */ 1379 base = ehci->last_iso_frame << 3; 1380 next = (next - base) & (mod - 1); 1381 start = (stream->next_uframe - base) & (mod - 1); 1382 1383 /* Is the schedule already full? */ 1384 if (unlikely(start < period)) { 1385 ehci_dbg(ehci, "iso sched full %p (%u-%u < %u mod %u)\n", 1386 urb, stream->next_uframe, base, 1387 period, mod); 1388 status = -ENOSPC; 1389 goto fail; 1390 } 1391 1392 /* Behind the scheduling threshold? */ 1393 if (unlikely(start < next)) { 1394 1395 /* USB_ISO_ASAP: Round up to the first available slot */ 1396 if (urb->transfer_flags & URB_ISO_ASAP) 1397 start += (next - start + period - 1) & -period; 1398 1399 /* 1400 * Not ASAP: Use the next slot in the stream. If 1401 * the entire URB falls before the threshold, fail. 1402 */ 1403 else if (start + span - period < next) { 1404 ehci_dbg(ehci, "iso urb late %p (%u+%u < %u)\n", 1405 urb, start + base, 1406 span - period, next + base); 1407 status = -EXDEV; 1408 goto fail; 1409 } 1410 } 1411 1412 start += base; 1413 } 1414 1415 /* need to schedule; when's the next (u)frame we could start? 1416 * this is bigger than ehci->i_thresh allows; scheduling itself 1417 * isn't free, the delay should handle reasonably slow cpus. it 1418 * can also help high bandwidth if the dma and irq loads don't 1419 * jump until after the queue is primed. 1420 */ 1421 else { 1422 int done = 0; 1423 1424 base = now & ~0x07; 1425 start = base + SCHEDULING_DELAY; 1426 1427 /* find a uframe slot with enough bandwidth. 1428 * Early uframes are more precious because full-speed 1429 * iso IN transfers can't use late uframes, 1430 * and therefore they should be allocated last. 1431 */ 1432 next = start; 1433 start += period; 1434 do { 1435 start--; 1436 /* check schedule: enough space? */ 1437 if (stream->highspeed) { 1438 if (itd_slot_ok(ehci, mod, start, 1439 stream->usecs, period)) 1440 done = 1; 1441 } else { 1442 if ((start % 8) >= 6) 1443 continue; 1444 if (sitd_slot_ok(ehci, mod, stream, 1445 start, sched, period)) 1446 done = 1; 1447 } 1448 } while (start > next && !done); 1449 1450 /* no room in the schedule */ 1451 if (!done) { 1452 ehci_dbg(ehci, "iso sched full %p", urb); 1453 status = -ENOSPC; 1454 goto fail; 1455 } 1456 } 1457 1458 /* Tried to schedule too far into the future? */ 1459 if (unlikely(start - base + span - period >= mod)) { 1460 ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n", 1461 urb, start - base, span - period, mod); 1462 status = -EFBIG; 1463 goto fail; 1464 } 1465 1466 stream->next_uframe = start & (mod - 1); 1467 1468 /* report high speed start in uframes; full speed, in frames */ 1469 urb->start_frame = stream->next_uframe; 1470 if (!stream->highspeed) 1471 urb->start_frame >>= 3; 1472 1473 /* Make sure scan_isoc() sees these */ 1474 if (ehci->isoc_count == 0) 1475 ehci->last_iso_frame = now >> 3; 1476 return 0; 1477 1478 fail: 1479 iso_sched_free(stream, sched); 1480 urb->hcpriv = NULL; 1481 return status; 1482 } 1483 1484 /*-------------------------------------------------------------------------*/ 1485 1486 static inline void 1487 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream, 1488 struct ehci_itd *itd) 1489 { 1490 int i; 1491 1492 /* it's been recently zeroed */ 1493 itd->hw_next = EHCI_LIST_END(ehci); 1494 itd->hw_bufp [0] = stream->buf0; 1495 itd->hw_bufp [1] = stream->buf1; 1496 itd->hw_bufp [2] = stream->buf2; 1497 1498 for (i = 0; i < 8; i++) 1499 itd->index[i] = -1; 1500 1501 /* All other fields are filled when scheduling */ 1502 } 1503 1504 static inline void 1505 itd_patch( 1506 struct ehci_hcd *ehci, 1507 struct ehci_itd *itd, 1508 struct ehci_iso_sched *iso_sched, 1509 unsigned index, 1510 u16 uframe 1511 ) 1512 { 1513 struct ehci_iso_packet *uf = &iso_sched->packet [index]; 1514 unsigned pg = itd->pg; 1515 1516 // BUG_ON (pg == 6 && uf->cross); 1517 1518 uframe &= 0x07; 1519 itd->index [uframe] = index; 1520 1521 itd->hw_transaction[uframe] = uf->transaction; 1522 itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12); 1523 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0); 1524 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32)); 1525 1526 /* iso_frame_desc[].offset must be strictly increasing */ 1527 if (unlikely (uf->cross)) { 1528 u64 bufp = uf->bufp + 4096; 1529 1530 itd->pg = ++pg; 1531 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0); 1532 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32)); 1533 } 1534 } 1535 1536 static inline void 1537 itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd) 1538 { 1539 union ehci_shadow *prev = &ehci->pshadow[frame]; 1540 __hc32 *hw_p = &ehci->periodic[frame]; 1541 union ehci_shadow here = *prev; 1542 __hc32 type = 0; 1543 1544 /* skip any iso nodes which might belong to previous microframes */ 1545 while (here.ptr) { 1546 type = Q_NEXT_TYPE(ehci, *hw_p); 1547 if (type == cpu_to_hc32(ehci, Q_TYPE_QH)) 1548 break; 1549 prev = periodic_next_shadow(ehci, prev, type); 1550 hw_p = shadow_next_periodic(ehci, &here, type); 1551 here = *prev; 1552 } 1553 1554 itd->itd_next = here; 1555 itd->hw_next = *hw_p; 1556 prev->itd = itd; 1557 itd->frame = frame; 1558 wmb (); 1559 *hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD); 1560 } 1561 1562 /* fit urb's itds into the selected schedule slot; activate as needed */ 1563 static void itd_link_urb( 1564 struct ehci_hcd *ehci, 1565 struct urb *urb, 1566 unsigned mod, 1567 struct ehci_iso_stream *stream 1568 ) 1569 { 1570 int packet; 1571 unsigned next_uframe, uframe, frame; 1572 struct ehci_iso_sched *iso_sched = urb->hcpriv; 1573 struct ehci_itd *itd; 1574 1575 next_uframe = stream->next_uframe & (mod - 1); 1576 1577 if (unlikely (list_empty(&stream->td_list))) { 1578 ehci_to_hcd(ehci)->self.bandwidth_allocated 1579 += stream->bandwidth; 1580 ehci_vdbg (ehci, 1581 "schedule devp %s ep%d%s-iso period %d start %d.%d\n", 1582 urb->dev->devpath, stream->bEndpointAddress & 0x0f, 1583 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out", 1584 urb->interval, 1585 next_uframe >> 3, next_uframe & 0x7); 1586 } 1587 1588 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { 1589 if (ehci->amd_pll_fix == 1) 1590 usb_amd_quirk_pll_disable(); 1591 } 1592 1593 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++; 1594 1595 /* fill iTDs uframe by uframe */ 1596 for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) { 1597 if (itd == NULL) { 1598 /* ASSERT: we have all necessary itds */ 1599 // BUG_ON (list_empty (&iso_sched->td_list)); 1600 1601 /* ASSERT: no itds for this endpoint in this uframe */ 1602 1603 itd = list_entry (iso_sched->td_list.next, 1604 struct ehci_itd, itd_list); 1605 list_move_tail (&itd->itd_list, &stream->td_list); 1606 itd->stream = stream; 1607 itd->urb = urb; 1608 itd_init (ehci, stream, itd); 1609 } 1610 1611 uframe = next_uframe & 0x07; 1612 frame = next_uframe >> 3; 1613 1614 itd_patch(ehci, itd, iso_sched, packet, uframe); 1615 1616 next_uframe += stream->interval; 1617 next_uframe &= mod - 1; 1618 packet++; 1619 1620 /* link completed itds into the schedule */ 1621 if (((next_uframe >> 3) != frame) 1622 || packet == urb->number_of_packets) { 1623 itd_link(ehci, frame & (ehci->periodic_size - 1), itd); 1624 itd = NULL; 1625 } 1626 } 1627 stream->next_uframe = next_uframe; 1628 1629 /* don't need that schedule data any more */ 1630 iso_sched_free (stream, iso_sched); 1631 urb->hcpriv = stream; 1632 1633 ++ehci->isoc_count; 1634 enable_periodic(ehci); 1635 } 1636 1637 #define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR) 1638 1639 /* Process and recycle a completed ITD. Return true iff its urb completed, 1640 * and hence its completion callback probably added things to the hardware 1641 * schedule. 1642 * 1643 * Note that we carefully avoid recycling this descriptor until after any 1644 * completion callback runs, so that it won't be reused quickly. That is, 1645 * assuming (a) no more than two urbs per frame on this endpoint, and also 1646 * (b) only this endpoint's completions submit URBs. It seems some silicon 1647 * corrupts things if you reuse completed descriptors very quickly... 1648 */ 1649 static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd) 1650 { 1651 struct urb *urb = itd->urb; 1652 struct usb_iso_packet_descriptor *desc; 1653 u32 t; 1654 unsigned uframe; 1655 int urb_index = -1; 1656 struct ehci_iso_stream *stream = itd->stream; 1657 struct usb_device *dev; 1658 bool retval = false; 1659 1660 /* for each uframe with a packet */ 1661 for (uframe = 0; uframe < 8; uframe++) { 1662 if (likely (itd->index[uframe] == -1)) 1663 continue; 1664 urb_index = itd->index[uframe]; 1665 desc = &urb->iso_frame_desc [urb_index]; 1666 1667 t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]); 1668 itd->hw_transaction [uframe] = 0; 1669 1670 /* report transfer status */ 1671 if (unlikely (t & ISO_ERRS)) { 1672 urb->error_count++; 1673 if (t & EHCI_ISOC_BUF_ERR) 1674 desc->status = usb_pipein (urb->pipe) 1675 ? -ENOSR /* hc couldn't read */ 1676 : -ECOMM; /* hc couldn't write */ 1677 else if (t & EHCI_ISOC_BABBLE) 1678 desc->status = -EOVERFLOW; 1679 else /* (t & EHCI_ISOC_XACTERR) */ 1680 desc->status = -EPROTO; 1681 1682 /* HC need not update length with this error */ 1683 if (!(t & EHCI_ISOC_BABBLE)) { 1684 desc->actual_length = EHCI_ITD_LENGTH(t); 1685 urb->actual_length += desc->actual_length; 1686 } 1687 } else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) { 1688 desc->status = 0; 1689 desc->actual_length = EHCI_ITD_LENGTH(t); 1690 urb->actual_length += desc->actual_length; 1691 } else { 1692 /* URB was too late */ 1693 urb->error_count++; 1694 } 1695 } 1696 1697 /* handle completion now? */ 1698 if (likely ((urb_index + 1) != urb->number_of_packets)) 1699 goto done; 1700 1701 /* ASSERT: it's really the last itd for this urb 1702 list_for_each_entry (itd, &stream->td_list, itd_list) 1703 BUG_ON (itd->urb == urb); 1704 */ 1705 1706 /* give urb back to the driver; completion often (re)submits */ 1707 dev = urb->dev; 1708 ehci_urb_done(ehci, urb, 0); 1709 retval = true; 1710 urb = NULL; 1711 1712 --ehci->isoc_count; 1713 disable_periodic(ehci); 1714 1715 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--; 1716 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { 1717 if (ehci->amd_pll_fix == 1) 1718 usb_amd_quirk_pll_enable(); 1719 } 1720 1721 if (unlikely(list_is_singular(&stream->td_list))) { 1722 ehci_to_hcd(ehci)->self.bandwidth_allocated 1723 -= stream->bandwidth; 1724 ehci_vdbg (ehci, 1725 "deschedule devp %s ep%d%s-iso\n", 1726 dev->devpath, stream->bEndpointAddress & 0x0f, 1727 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out"); 1728 } 1729 1730 done: 1731 itd->urb = NULL; 1732 1733 /* Add to the end of the free list for later reuse */ 1734 list_move_tail(&itd->itd_list, &stream->free_list); 1735 1736 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */ 1737 if (list_empty(&stream->td_list)) { 1738 list_splice_tail_init(&stream->free_list, 1739 &ehci->cached_itd_list); 1740 start_free_itds(ehci); 1741 } 1742 1743 return retval; 1744 } 1745 1746 /*-------------------------------------------------------------------------*/ 1747 1748 static int itd_submit (struct ehci_hcd *ehci, struct urb *urb, 1749 gfp_t mem_flags) 1750 { 1751 int status = -EINVAL; 1752 unsigned long flags; 1753 struct ehci_iso_stream *stream; 1754 1755 /* Get iso_stream head */ 1756 stream = iso_stream_find (ehci, urb); 1757 if (unlikely (stream == NULL)) { 1758 ehci_dbg (ehci, "can't get iso stream\n"); 1759 return -ENOMEM; 1760 } 1761 if (unlikely (urb->interval != stream->interval)) { 1762 ehci_dbg (ehci, "can't change iso interval %d --> %d\n", 1763 stream->interval, urb->interval); 1764 goto done; 1765 } 1766 1767 #ifdef EHCI_URB_TRACE 1768 ehci_dbg (ehci, 1769 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n", 1770 __func__, urb->dev->devpath, urb, 1771 usb_pipeendpoint (urb->pipe), 1772 usb_pipein (urb->pipe) ? "in" : "out", 1773 urb->transfer_buffer_length, 1774 urb->number_of_packets, urb->interval, 1775 stream); 1776 #endif 1777 1778 /* allocate ITDs w/o locking anything */ 1779 status = itd_urb_transaction (stream, ehci, urb, mem_flags); 1780 if (unlikely (status < 0)) { 1781 ehci_dbg (ehci, "can't init itds\n"); 1782 goto done; 1783 } 1784 1785 /* schedule ... need to lock */ 1786 spin_lock_irqsave (&ehci->lock, flags); 1787 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { 1788 status = -ESHUTDOWN; 1789 goto done_not_linked; 1790 } 1791 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); 1792 if (unlikely(status)) 1793 goto done_not_linked; 1794 status = iso_stream_schedule(ehci, urb, stream); 1795 if (likely (status == 0)) 1796 itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream); 1797 else 1798 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 1799 done_not_linked: 1800 spin_unlock_irqrestore (&ehci->lock, flags); 1801 done: 1802 return status; 1803 } 1804 1805 /*-------------------------------------------------------------------------*/ 1806 1807 /* 1808 * "Split ISO TDs" ... used for USB 1.1 devices going through the 1809 * TTs in USB 2.0 hubs. These need microframe scheduling. 1810 */ 1811 1812 static inline void 1813 sitd_sched_init( 1814 struct ehci_hcd *ehci, 1815 struct ehci_iso_sched *iso_sched, 1816 struct ehci_iso_stream *stream, 1817 struct urb *urb 1818 ) 1819 { 1820 unsigned i; 1821 dma_addr_t dma = urb->transfer_dma; 1822 1823 /* how many frames are needed for these transfers */ 1824 iso_sched->span = urb->number_of_packets * stream->interval; 1825 1826 /* figure out per-frame sitd fields that we'll need later 1827 * when we fit new sitds into the schedule. 1828 */ 1829 for (i = 0; i < urb->number_of_packets; i++) { 1830 struct ehci_iso_packet *packet = &iso_sched->packet [i]; 1831 unsigned length; 1832 dma_addr_t buf; 1833 u32 trans; 1834 1835 length = urb->iso_frame_desc [i].length & 0x03ff; 1836 buf = dma + urb->iso_frame_desc [i].offset; 1837 1838 trans = SITD_STS_ACTIVE; 1839 if (((i + 1) == urb->number_of_packets) 1840 && !(urb->transfer_flags & URB_NO_INTERRUPT)) 1841 trans |= SITD_IOC; 1842 trans |= length << 16; 1843 packet->transaction = cpu_to_hc32(ehci, trans); 1844 1845 /* might need to cross a buffer page within a td */ 1846 packet->bufp = buf; 1847 packet->buf1 = (buf + length) & ~0x0fff; 1848 if (packet->buf1 != (buf & ~(u64)0x0fff)) 1849 packet->cross = 1; 1850 1851 /* OUT uses multiple start-splits */ 1852 if (stream->bEndpointAddress & USB_DIR_IN) 1853 continue; 1854 length = (length + 187) / 188; 1855 if (length > 1) /* BEGIN vs ALL */ 1856 length |= 1 << 3; 1857 packet->buf1 |= length; 1858 } 1859 } 1860 1861 static int 1862 sitd_urb_transaction ( 1863 struct ehci_iso_stream *stream, 1864 struct ehci_hcd *ehci, 1865 struct urb *urb, 1866 gfp_t mem_flags 1867 ) 1868 { 1869 struct ehci_sitd *sitd; 1870 dma_addr_t sitd_dma; 1871 int i; 1872 struct ehci_iso_sched *iso_sched; 1873 unsigned long flags; 1874 1875 iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags); 1876 if (iso_sched == NULL) 1877 return -ENOMEM; 1878 1879 sitd_sched_init(ehci, iso_sched, stream, urb); 1880 1881 /* allocate/init sITDs */ 1882 spin_lock_irqsave (&ehci->lock, flags); 1883 for (i = 0; i < urb->number_of_packets; i++) { 1884 1885 /* NOTE: for now, we don't try to handle wraparound cases 1886 * for IN (using sitd->hw_backpointer, like a FSTN), which 1887 * means we never need two sitds for full speed packets. 1888 */ 1889 1890 /* 1891 * Use siTDs from the free list, but not siTDs that may 1892 * still be in use by the hardware. 1893 */ 1894 if (likely(!list_empty(&stream->free_list))) { 1895 sitd = list_first_entry(&stream->free_list, 1896 struct ehci_sitd, sitd_list); 1897 if (sitd->frame == ehci->now_frame) 1898 goto alloc_sitd; 1899 list_del (&sitd->sitd_list); 1900 sitd_dma = sitd->sitd_dma; 1901 } else { 1902 alloc_sitd: 1903 spin_unlock_irqrestore (&ehci->lock, flags); 1904 sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags, 1905 &sitd_dma); 1906 spin_lock_irqsave (&ehci->lock, flags); 1907 if (!sitd) { 1908 iso_sched_free(stream, iso_sched); 1909 spin_unlock_irqrestore(&ehci->lock, flags); 1910 return -ENOMEM; 1911 } 1912 } 1913 1914 memset (sitd, 0, sizeof *sitd); 1915 sitd->sitd_dma = sitd_dma; 1916 sitd->frame = 9999; /* an invalid value */ 1917 list_add (&sitd->sitd_list, &iso_sched->td_list); 1918 } 1919 1920 /* temporarily store schedule info in hcpriv */ 1921 urb->hcpriv = iso_sched; 1922 urb->error_count = 0; 1923 1924 spin_unlock_irqrestore (&ehci->lock, flags); 1925 return 0; 1926 } 1927 1928 /*-------------------------------------------------------------------------*/ 1929 1930 static inline void 1931 sitd_patch( 1932 struct ehci_hcd *ehci, 1933 struct ehci_iso_stream *stream, 1934 struct ehci_sitd *sitd, 1935 struct ehci_iso_sched *iso_sched, 1936 unsigned index 1937 ) 1938 { 1939 struct ehci_iso_packet *uf = &iso_sched->packet [index]; 1940 u64 bufp = uf->bufp; 1941 1942 sitd->hw_next = EHCI_LIST_END(ehci); 1943 sitd->hw_fullspeed_ep = stream->address; 1944 sitd->hw_uframe = stream->splits; 1945 sitd->hw_results = uf->transaction; 1946 sitd->hw_backpointer = EHCI_LIST_END(ehci); 1947 1948 bufp = uf->bufp; 1949 sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp); 1950 sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32); 1951 1952 sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1); 1953 if (uf->cross) 1954 bufp += 4096; 1955 sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32); 1956 sitd->index = index; 1957 } 1958 1959 static inline void 1960 sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd) 1961 { 1962 /* note: sitd ordering could matter (CSPLIT then SSPLIT) */ 1963 sitd->sitd_next = ehci->pshadow [frame]; 1964 sitd->hw_next = ehci->periodic [frame]; 1965 ehci->pshadow [frame].sitd = sitd; 1966 sitd->frame = frame; 1967 wmb (); 1968 ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD); 1969 } 1970 1971 /* fit urb's sitds into the selected schedule slot; activate as needed */ 1972 static void sitd_link_urb( 1973 struct ehci_hcd *ehci, 1974 struct urb *urb, 1975 unsigned mod, 1976 struct ehci_iso_stream *stream 1977 ) 1978 { 1979 int packet; 1980 unsigned next_uframe; 1981 struct ehci_iso_sched *sched = urb->hcpriv; 1982 struct ehci_sitd *sitd; 1983 1984 next_uframe = stream->next_uframe; 1985 1986 if (list_empty(&stream->td_list)) { 1987 /* usbfs ignores TT bandwidth */ 1988 ehci_to_hcd(ehci)->self.bandwidth_allocated 1989 += stream->bandwidth; 1990 ehci_vdbg (ehci, 1991 "sched devp %s ep%d%s-iso [%d] %dms/%04x\n", 1992 urb->dev->devpath, stream->bEndpointAddress & 0x0f, 1993 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out", 1994 (next_uframe >> 3) & (ehci->periodic_size - 1), 1995 stream->interval, hc32_to_cpu(ehci, stream->splits)); 1996 } 1997 1998 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { 1999 if (ehci->amd_pll_fix == 1) 2000 usb_amd_quirk_pll_disable(); 2001 } 2002 2003 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++; 2004 2005 /* fill sITDs frame by frame */ 2006 for (packet = 0, sitd = NULL; 2007 packet < urb->number_of_packets; 2008 packet++) { 2009 2010 /* ASSERT: we have all necessary sitds */ 2011 BUG_ON (list_empty (&sched->td_list)); 2012 2013 /* ASSERT: no itds for this endpoint in this frame */ 2014 2015 sitd = list_entry (sched->td_list.next, 2016 struct ehci_sitd, sitd_list); 2017 list_move_tail (&sitd->sitd_list, &stream->td_list); 2018 sitd->stream = stream; 2019 sitd->urb = urb; 2020 2021 sitd_patch(ehci, stream, sitd, sched, packet); 2022 sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1), 2023 sitd); 2024 2025 next_uframe += stream->interval << 3; 2026 } 2027 stream->next_uframe = next_uframe & (mod - 1); 2028 2029 /* don't need that schedule data any more */ 2030 iso_sched_free (stream, sched); 2031 urb->hcpriv = stream; 2032 2033 ++ehci->isoc_count; 2034 enable_periodic(ehci); 2035 } 2036 2037 /*-------------------------------------------------------------------------*/ 2038 2039 #define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \ 2040 | SITD_STS_XACT | SITD_STS_MMF) 2041 2042 /* Process and recycle a completed SITD. Return true iff its urb completed, 2043 * and hence its completion callback probably added things to the hardware 2044 * schedule. 2045 * 2046 * Note that we carefully avoid recycling this descriptor until after any 2047 * completion callback runs, so that it won't be reused quickly. That is, 2048 * assuming (a) no more than two urbs per frame on this endpoint, and also 2049 * (b) only this endpoint's completions submit URBs. It seems some silicon 2050 * corrupts things if you reuse completed descriptors very quickly... 2051 */ 2052 static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd) 2053 { 2054 struct urb *urb = sitd->urb; 2055 struct usb_iso_packet_descriptor *desc; 2056 u32 t; 2057 int urb_index = -1; 2058 struct ehci_iso_stream *stream = sitd->stream; 2059 struct usb_device *dev; 2060 bool retval = false; 2061 2062 urb_index = sitd->index; 2063 desc = &urb->iso_frame_desc [urb_index]; 2064 t = hc32_to_cpup(ehci, &sitd->hw_results); 2065 2066 /* report transfer status */ 2067 if (unlikely(t & SITD_ERRS)) { 2068 urb->error_count++; 2069 if (t & SITD_STS_DBE) 2070 desc->status = usb_pipein (urb->pipe) 2071 ? -ENOSR /* hc couldn't read */ 2072 : -ECOMM; /* hc couldn't write */ 2073 else if (t & SITD_STS_BABBLE) 2074 desc->status = -EOVERFLOW; 2075 else /* XACT, MMF, etc */ 2076 desc->status = -EPROTO; 2077 } else if (unlikely(t & SITD_STS_ACTIVE)) { 2078 /* URB was too late */ 2079 urb->error_count++; 2080 } else { 2081 desc->status = 0; 2082 desc->actual_length = desc->length - SITD_LENGTH(t); 2083 urb->actual_length += desc->actual_length; 2084 } 2085 2086 /* handle completion now? */ 2087 if ((urb_index + 1) != urb->number_of_packets) 2088 goto done; 2089 2090 /* ASSERT: it's really the last sitd for this urb 2091 list_for_each_entry (sitd, &stream->td_list, sitd_list) 2092 BUG_ON (sitd->urb == urb); 2093 */ 2094 2095 /* give urb back to the driver; completion often (re)submits */ 2096 dev = urb->dev; 2097 ehci_urb_done(ehci, urb, 0); 2098 retval = true; 2099 urb = NULL; 2100 2101 --ehci->isoc_count; 2102 disable_periodic(ehci); 2103 2104 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--; 2105 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) { 2106 if (ehci->amd_pll_fix == 1) 2107 usb_amd_quirk_pll_enable(); 2108 } 2109 2110 if (list_is_singular(&stream->td_list)) { 2111 ehci_to_hcd(ehci)->self.bandwidth_allocated 2112 -= stream->bandwidth; 2113 ehci_vdbg (ehci, 2114 "deschedule devp %s ep%d%s-iso\n", 2115 dev->devpath, stream->bEndpointAddress & 0x0f, 2116 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out"); 2117 } 2118 2119 done: 2120 sitd->urb = NULL; 2121 2122 /* Add to the end of the free list for later reuse */ 2123 list_move_tail(&sitd->sitd_list, &stream->free_list); 2124 2125 /* Recycle the siTDs when the pipeline is empty (ep no longer in use) */ 2126 if (list_empty(&stream->td_list)) { 2127 list_splice_tail_init(&stream->free_list, 2128 &ehci->cached_sitd_list); 2129 start_free_itds(ehci); 2130 } 2131 2132 return retval; 2133 } 2134 2135 2136 static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb, 2137 gfp_t mem_flags) 2138 { 2139 int status = -EINVAL; 2140 unsigned long flags; 2141 struct ehci_iso_stream *stream; 2142 2143 /* Get iso_stream head */ 2144 stream = iso_stream_find (ehci, urb); 2145 if (stream == NULL) { 2146 ehci_dbg (ehci, "can't get iso stream\n"); 2147 return -ENOMEM; 2148 } 2149 if (urb->interval != stream->interval) { 2150 ehci_dbg (ehci, "can't change iso interval %d --> %d\n", 2151 stream->interval, urb->interval); 2152 goto done; 2153 } 2154 2155 #ifdef EHCI_URB_TRACE 2156 ehci_dbg (ehci, 2157 "submit %p dev%s ep%d%s-iso len %d\n", 2158 urb, urb->dev->devpath, 2159 usb_pipeendpoint (urb->pipe), 2160 usb_pipein (urb->pipe) ? "in" : "out", 2161 urb->transfer_buffer_length); 2162 #endif 2163 2164 /* allocate SITDs */ 2165 status = sitd_urb_transaction (stream, ehci, urb, mem_flags); 2166 if (status < 0) { 2167 ehci_dbg (ehci, "can't init sitds\n"); 2168 goto done; 2169 } 2170 2171 /* schedule ... need to lock */ 2172 spin_lock_irqsave (&ehci->lock, flags); 2173 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { 2174 status = -ESHUTDOWN; 2175 goto done_not_linked; 2176 } 2177 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); 2178 if (unlikely(status)) 2179 goto done_not_linked; 2180 status = iso_stream_schedule(ehci, urb, stream); 2181 if (status == 0) 2182 sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream); 2183 else 2184 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 2185 done_not_linked: 2186 spin_unlock_irqrestore (&ehci->lock, flags); 2187 done: 2188 return status; 2189 } 2190 2191 /*-------------------------------------------------------------------------*/ 2192 2193 static void scan_isoc(struct ehci_hcd *ehci) 2194 { 2195 unsigned uf, now_frame, frame; 2196 unsigned fmask = ehci->periodic_size - 1; 2197 bool modified, live; 2198 2199 /* 2200 * When running, scan from last scan point up to "now" 2201 * else clean up by scanning everything that's left. 2202 * Touches as few pages as possible: cache-friendly. 2203 */ 2204 if (ehci->rh_state >= EHCI_RH_RUNNING) { 2205 uf = ehci_read_frame_index(ehci); 2206 now_frame = (uf >> 3) & fmask; 2207 live = true; 2208 } else { 2209 now_frame = (ehci->last_iso_frame - 1) & fmask; 2210 live = false; 2211 } 2212 ehci->now_frame = now_frame; 2213 2214 frame = ehci->last_iso_frame; 2215 for (;;) { 2216 union ehci_shadow q, *q_p; 2217 __hc32 type, *hw_p; 2218 2219 restart: 2220 /* scan each element in frame's queue for completions */ 2221 q_p = &ehci->pshadow [frame]; 2222 hw_p = &ehci->periodic [frame]; 2223 q.ptr = q_p->ptr; 2224 type = Q_NEXT_TYPE(ehci, *hw_p); 2225 modified = false; 2226 2227 while (q.ptr != NULL) { 2228 switch (hc32_to_cpu(ehci, type)) { 2229 case Q_TYPE_ITD: 2230 /* If this ITD is still active, leave it for 2231 * later processing ... check the next entry. 2232 * No need to check for activity unless the 2233 * frame is current. 2234 */ 2235 if (frame == now_frame && live) { 2236 rmb(); 2237 for (uf = 0; uf < 8; uf++) { 2238 if (q.itd->hw_transaction[uf] & 2239 ITD_ACTIVE(ehci)) 2240 break; 2241 } 2242 if (uf < 8) { 2243 q_p = &q.itd->itd_next; 2244 hw_p = &q.itd->hw_next; 2245 type = Q_NEXT_TYPE(ehci, 2246 q.itd->hw_next); 2247 q = *q_p; 2248 break; 2249 } 2250 } 2251 2252 /* Take finished ITDs out of the schedule 2253 * and process them: recycle, maybe report 2254 * URB completion. HC won't cache the 2255 * pointer for much longer, if at all. 2256 */ 2257 *q_p = q.itd->itd_next; 2258 if (!ehci->use_dummy_qh || 2259 q.itd->hw_next != EHCI_LIST_END(ehci)) 2260 *hw_p = q.itd->hw_next; 2261 else 2262 *hw_p = ehci->dummy->qh_dma; 2263 type = Q_NEXT_TYPE(ehci, q.itd->hw_next); 2264 wmb(); 2265 modified = itd_complete (ehci, q.itd); 2266 q = *q_p; 2267 break; 2268 case Q_TYPE_SITD: 2269 /* If this SITD is still active, leave it for 2270 * later processing ... check the next entry. 2271 * No need to check for activity unless the 2272 * frame is current. 2273 */ 2274 if (((frame == now_frame) || 2275 (((frame + 1) & fmask) == now_frame)) 2276 && live 2277 && (q.sitd->hw_results & 2278 SITD_ACTIVE(ehci))) { 2279 2280 q_p = &q.sitd->sitd_next; 2281 hw_p = &q.sitd->hw_next; 2282 type = Q_NEXT_TYPE(ehci, 2283 q.sitd->hw_next); 2284 q = *q_p; 2285 break; 2286 } 2287 2288 /* Take finished SITDs out of the schedule 2289 * and process them: recycle, maybe report 2290 * URB completion. 2291 */ 2292 *q_p = q.sitd->sitd_next; 2293 if (!ehci->use_dummy_qh || 2294 q.sitd->hw_next != EHCI_LIST_END(ehci)) 2295 *hw_p = q.sitd->hw_next; 2296 else 2297 *hw_p = ehci->dummy->qh_dma; 2298 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next); 2299 wmb(); 2300 modified = sitd_complete (ehci, q.sitd); 2301 q = *q_p; 2302 break; 2303 default: 2304 ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n", 2305 type, frame, q.ptr); 2306 // BUG (); 2307 /* FALL THROUGH */ 2308 case Q_TYPE_QH: 2309 case Q_TYPE_FSTN: 2310 /* End of the iTDs and siTDs */ 2311 q.ptr = NULL; 2312 break; 2313 } 2314 2315 /* assume completion callbacks modify the queue */ 2316 if (unlikely(modified && ehci->isoc_count > 0)) 2317 goto restart; 2318 } 2319 2320 /* Stop when we have reached the current frame */ 2321 if (frame == now_frame) 2322 break; 2323 2324 /* The last frame may still have active siTDs */ 2325 ehci->last_iso_frame = frame; 2326 frame = (frame + 1) & fmask; 2327 } 2328 } 2329