xref: /openbmc/linux/drivers/usb/host/ehci-sched.c (revision 78c99ba1)
1 /*
2  * Copyright (c) 2001-2004 by David Brownell
3  * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation; either version 2 of the License, or (at your
8  * option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software Foundation,
17  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19 
20 /* this file is part of ehci-hcd.c */
21 
22 /*-------------------------------------------------------------------------*/
23 
24 /*
25  * EHCI scheduled transaction support:  interrupt, iso, split iso
26  * These are called "periodic" transactions in the EHCI spec.
27  *
28  * Note that for interrupt transfers, the QH/QTD manipulation is shared
29  * with the "asynchronous" transaction support (control/bulk transfers).
30  * The only real difference is in how interrupt transfers are scheduled.
31  *
32  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33  * It keeps track of every ITD (or SITD) that's linked, and holds enough
34  * pre-calculated schedule data to make appending to the queue be quick.
35  */
36 
37 static int ehci_get_frame (struct usb_hcd *hcd);
38 
39 /*-------------------------------------------------------------------------*/
40 
41 /*
42  * periodic_next_shadow - return "next" pointer on shadow list
43  * @periodic: host pointer to qh/itd/sitd
44  * @tag: hardware tag for type of this record
45  */
46 static union ehci_shadow *
47 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
48 		__hc32 tag)
49 {
50 	switch (hc32_to_cpu(ehci, tag)) {
51 	case Q_TYPE_QH:
52 		return &periodic->qh->qh_next;
53 	case Q_TYPE_FSTN:
54 		return &periodic->fstn->fstn_next;
55 	case Q_TYPE_ITD:
56 		return &periodic->itd->itd_next;
57 	// case Q_TYPE_SITD:
58 	default:
59 		return &periodic->sitd->sitd_next;
60 	}
61 }
62 
63 /* caller must hold ehci->lock */
64 static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr)
65 {
66 	union ehci_shadow	*prev_p = &ehci->pshadow[frame];
67 	__hc32			*hw_p = &ehci->periodic[frame];
68 	union ehci_shadow	here = *prev_p;
69 
70 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
71 	while (here.ptr && here.ptr != ptr) {
72 		prev_p = periodic_next_shadow(ehci, prev_p,
73 				Q_NEXT_TYPE(ehci, *hw_p));
74 		hw_p = here.hw_next;
75 		here = *prev_p;
76 	}
77 	/* an interrupt entry (at list end) could have been shared */
78 	if (!here.ptr)
79 		return;
80 
81 	/* update shadow and hardware lists ... the old "next" pointers
82 	 * from ptr may still be in use, the caller updates them.
83 	 */
84 	*prev_p = *periodic_next_shadow(ehci, &here,
85 			Q_NEXT_TYPE(ehci, *hw_p));
86 	*hw_p = *here.hw_next;
87 }
88 
89 /* how many of the uframe's 125 usecs are allocated? */
90 static unsigned short
91 periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe)
92 {
93 	__hc32			*hw_p = &ehci->periodic [frame];
94 	union ehci_shadow	*q = &ehci->pshadow [frame];
95 	unsigned		usecs = 0;
96 
97 	while (q->ptr) {
98 		switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
99 		case Q_TYPE_QH:
100 			/* is it in the S-mask? */
101 			if (q->qh->hw_info2 & cpu_to_hc32(ehci, 1 << uframe))
102 				usecs += q->qh->usecs;
103 			/* ... or C-mask? */
104 			if (q->qh->hw_info2 & cpu_to_hc32(ehci,
105 					1 << (8 + uframe)))
106 				usecs += q->qh->c_usecs;
107 			hw_p = &q->qh->hw_next;
108 			q = &q->qh->qh_next;
109 			break;
110 		// case Q_TYPE_FSTN:
111 		default:
112 			/* for "save place" FSTNs, count the relevant INTR
113 			 * bandwidth from the previous frame
114 			 */
115 			if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) {
116 				ehci_dbg (ehci, "ignoring FSTN cost ...\n");
117 			}
118 			hw_p = &q->fstn->hw_next;
119 			q = &q->fstn->fstn_next;
120 			break;
121 		case Q_TYPE_ITD:
122 			if (q->itd->hw_transaction[uframe])
123 				usecs += q->itd->stream->usecs;
124 			hw_p = &q->itd->hw_next;
125 			q = &q->itd->itd_next;
126 			break;
127 		case Q_TYPE_SITD:
128 			/* is it in the S-mask?  (count SPLIT, DATA) */
129 			if (q->sitd->hw_uframe & cpu_to_hc32(ehci,
130 					1 << uframe)) {
131 				if (q->sitd->hw_fullspeed_ep &
132 						cpu_to_hc32(ehci, 1<<31))
133 					usecs += q->sitd->stream->usecs;
134 				else	/* worst case for OUT start-split */
135 					usecs += HS_USECS_ISO (188);
136 			}
137 
138 			/* ... C-mask?  (count CSPLIT, DATA) */
139 			if (q->sitd->hw_uframe &
140 					cpu_to_hc32(ehci, 1 << (8 + uframe))) {
141 				/* worst case for IN complete-split */
142 				usecs += q->sitd->stream->c_usecs;
143 			}
144 
145 			hw_p = &q->sitd->hw_next;
146 			q = &q->sitd->sitd_next;
147 			break;
148 		}
149 	}
150 #ifdef	DEBUG
151 	if (usecs > 100)
152 		ehci_err (ehci, "uframe %d sched overrun: %d usecs\n",
153 			frame * 8 + uframe, usecs);
154 #endif
155 	return usecs;
156 }
157 
158 /*-------------------------------------------------------------------------*/
159 
160 static int same_tt (struct usb_device *dev1, struct usb_device *dev2)
161 {
162 	if (!dev1->tt || !dev2->tt)
163 		return 0;
164 	if (dev1->tt != dev2->tt)
165 		return 0;
166 	if (dev1->tt->multi)
167 		return dev1->ttport == dev2->ttport;
168 	else
169 		return 1;
170 }
171 
172 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
173 
174 /* Which uframe does the low/fullspeed transfer start in?
175  *
176  * The parameter is the mask of ssplits in "H-frame" terms
177  * and this returns the transfer start uframe in "B-frame" terms,
178  * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
179  * will cause a transfer in "B-frame" uframe 0.  "B-frames" lag
180  * "H-frames" by 1 uframe.  See the EHCI spec sec 4.5 and figure 4.7.
181  */
182 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
183 {
184 	unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask);
185 	if (!smask) {
186 		ehci_err(ehci, "invalid empty smask!\n");
187 		/* uframe 7 can't have bw so this will indicate failure */
188 		return 7;
189 	}
190 	return ffs(smask) - 1;
191 }
192 
193 static const unsigned char
194 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
195 
196 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
197 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
198 {
199 	int i;
200 	for (i=0; i<7; i++) {
201 		if (max_tt_usecs[i] < tt_usecs[i]) {
202 			tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
203 			tt_usecs[i] = max_tt_usecs[i];
204 		}
205 	}
206 }
207 
208 /* How many of the tt's periodic downstream 1000 usecs are allocated?
209  *
210  * While this measures the bandwidth in terms of usecs/uframe,
211  * the low/fullspeed bus has no notion of uframes, so any particular
212  * low/fullspeed transfer can "carry over" from one uframe to the next,
213  * since the TT just performs downstream transfers in sequence.
214  *
215  * For example two separate 100 usec transfers can start in the same uframe,
216  * and the second one would "carry over" 75 usecs into the next uframe.
217  */
218 static void
219 periodic_tt_usecs (
220 	struct ehci_hcd *ehci,
221 	struct usb_device *dev,
222 	unsigned frame,
223 	unsigned short tt_usecs[8]
224 )
225 {
226 	__hc32			*hw_p = &ehci->periodic [frame];
227 	union ehci_shadow	*q = &ehci->pshadow [frame];
228 	unsigned char		uf;
229 
230 	memset(tt_usecs, 0, 16);
231 
232 	while (q->ptr) {
233 		switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
234 		case Q_TYPE_ITD:
235 			hw_p = &q->itd->hw_next;
236 			q = &q->itd->itd_next;
237 			continue;
238 		case Q_TYPE_QH:
239 			if (same_tt(dev, q->qh->dev)) {
240 				uf = tt_start_uframe(ehci, q->qh->hw_info2);
241 				tt_usecs[uf] += q->qh->tt_usecs;
242 			}
243 			hw_p = &q->qh->hw_next;
244 			q = &q->qh->qh_next;
245 			continue;
246 		case Q_TYPE_SITD:
247 			if (same_tt(dev, q->sitd->urb->dev)) {
248 				uf = tt_start_uframe(ehci, q->sitd->hw_uframe);
249 				tt_usecs[uf] += q->sitd->stream->tt_usecs;
250 			}
251 			hw_p = &q->sitd->hw_next;
252 			q = &q->sitd->sitd_next;
253 			continue;
254 		// case Q_TYPE_FSTN:
255 		default:
256 			ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n",
257 					frame);
258 			hw_p = &q->fstn->hw_next;
259 			q = &q->fstn->fstn_next;
260 		}
261 	}
262 
263 	carryover_tt_bandwidth(tt_usecs);
264 
265 	if (max_tt_usecs[7] < tt_usecs[7])
266 		ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n",
267 			frame, tt_usecs[7] - max_tt_usecs[7]);
268 }
269 
270 /*
271  * Return true if the device's tt's downstream bus is available for a
272  * periodic transfer of the specified length (usecs), starting at the
273  * specified frame/uframe.  Note that (as summarized in section 11.19
274  * of the usb 2.0 spec) TTs can buffer multiple transactions for each
275  * uframe.
276  *
277  * The uframe parameter is when the fullspeed/lowspeed transfer
278  * should be executed in "B-frame" terms, which is the same as the
279  * highspeed ssplit's uframe (which is in "H-frame" terms).  For example
280  * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
281  * See the EHCI spec sec 4.5 and fig 4.7.
282  *
283  * This checks if the full/lowspeed bus, at the specified starting uframe,
284  * has the specified bandwidth available, according to rules listed
285  * in USB 2.0 spec section 11.18.1 fig 11-60.
286  *
287  * This does not check if the transfer would exceed the max ssplit
288  * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
289  * since proper scheduling limits ssplits to less than 16 per uframe.
290  */
291 static int tt_available (
292 	struct ehci_hcd		*ehci,
293 	unsigned		period,
294 	struct usb_device	*dev,
295 	unsigned		frame,
296 	unsigned		uframe,
297 	u16			usecs
298 )
299 {
300 	if ((period == 0) || (uframe >= 7))	/* error */
301 		return 0;
302 
303 	for (; frame < ehci->periodic_size; frame += period) {
304 		unsigned short tt_usecs[8];
305 
306 		periodic_tt_usecs (ehci, dev, frame, tt_usecs);
307 
308 		ehci_vdbg(ehci, "tt frame %d check %d usecs start uframe %d in"
309 			" schedule %d/%d/%d/%d/%d/%d/%d/%d\n",
310 			frame, usecs, uframe,
311 			tt_usecs[0], tt_usecs[1], tt_usecs[2], tt_usecs[3],
312 			tt_usecs[4], tt_usecs[5], tt_usecs[6], tt_usecs[7]);
313 
314 		if (max_tt_usecs[uframe] <= tt_usecs[uframe]) {
315 			ehci_vdbg(ehci, "frame %d uframe %d fully scheduled\n",
316 				frame, uframe);
317 			return 0;
318 		}
319 
320 		/* special case for isoc transfers larger than 125us:
321 		 * the first and each subsequent fully used uframe
322 		 * must be empty, so as to not illegally delay
323 		 * already scheduled transactions
324 		 */
325 		if (125 < usecs) {
326 			int ufs = (usecs / 125);
327 			int i;
328 			for (i = uframe; i < (uframe + ufs) && i < 8; i++)
329 				if (0 < tt_usecs[i]) {
330 					ehci_vdbg(ehci,
331 						"multi-uframe xfer can't fit "
332 						"in frame %d uframe %d\n",
333 						frame, i);
334 					return 0;
335 				}
336 		}
337 
338 		tt_usecs[uframe] += usecs;
339 
340 		carryover_tt_bandwidth(tt_usecs);
341 
342 		/* fail if the carryover pushed bw past the last uframe's limit */
343 		if (max_tt_usecs[7] < tt_usecs[7]) {
344 			ehci_vdbg(ehci,
345 				"tt unavailable usecs %d frame %d uframe %d\n",
346 				usecs, frame, uframe);
347 			return 0;
348 		}
349 	}
350 
351 	return 1;
352 }
353 
354 #else
355 
356 /* return true iff the device's transaction translator is available
357  * for a periodic transfer starting at the specified frame, using
358  * all the uframes in the mask.
359  */
360 static int tt_no_collision (
361 	struct ehci_hcd		*ehci,
362 	unsigned		period,
363 	struct usb_device	*dev,
364 	unsigned		frame,
365 	u32			uf_mask
366 )
367 {
368 	if (period == 0)	/* error */
369 		return 0;
370 
371 	/* note bandwidth wastage:  split never follows csplit
372 	 * (different dev or endpoint) until the next uframe.
373 	 * calling convention doesn't make that distinction.
374 	 */
375 	for (; frame < ehci->periodic_size; frame += period) {
376 		union ehci_shadow	here;
377 		__hc32			type;
378 
379 		here = ehci->pshadow [frame];
380 		type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]);
381 		while (here.ptr) {
382 			switch (hc32_to_cpu(ehci, type)) {
383 			case Q_TYPE_ITD:
384 				type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
385 				here = here.itd->itd_next;
386 				continue;
387 			case Q_TYPE_QH:
388 				if (same_tt (dev, here.qh->dev)) {
389 					u32		mask;
390 
391 					mask = hc32_to_cpu(ehci,
392 							here.qh->hw_info2);
393 					/* "knows" no gap is needed */
394 					mask |= mask >> 8;
395 					if (mask & uf_mask)
396 						break;
397 				}
398 				type = Q_NEXT_TYPE(ehci, here.qh->hw_next);
399 				here = here.qh->qh_next;
400 				continue;
401 			case Q_TYPE_SITD:
402 				if (same_tt (dev, here.sitd->urb->dev)) {
403 					u16		mask;
404 
405 					mask = hc32_to_cpu(ehci, here.sitd
406 								->hw_uframe);
407 					/* FIXME assumes no gap for IN! */
408 					mask |= mask >> 8;
409 					if (mask & uf_mask)
410 						break;
411 				}
412 				type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
413 				here = here.sitd->sitd_next;
414 				continue;
415 			// case Q_TYPE_FSTN:
416 			default:
417 				ehci_dbg (ehci,
418 					"periodic frame %d bogus type %d\n",
419 					frame, type);
420 			}
421 
422 			/* collision or error */
423 			return 0;
424 		}
425 	}
426 
427 	/* no collision */
428 	return 1;
429 }
430 
431 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
432 
433 /*-------------------------------------------------------------------------*/
434 
435 static int enable_periodic (struct ehci_hcd *ehci)
436 {
437 	u32	cmd;
438 	int	status;
439 
440 	if (ehci->periodic_sched++)
441 		return 0;
442 
443 	/* did clearing PSE did take effect yet?
444 	 * takes effect only at frame boundaries...
445 	 */
446 	status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
447 					     STS_PSS, 0, 9 * 125);
448 	if (status)
449 		return status;
450 
451 	cmd = ehci_readl(ehci, &ehci->regs->command) | CMD_PSE;
452 	ehci_writel(ehci, cmd, &ehci->regs->command);
453 	/* posted write ... PSS happens later */
454 	ehci_to_hcd(ehci)->state = HC_STATE_RUNNING;
455 
456 	/* make sure ehci_work scans these */
457 	ehci->next_uframe = ehci_readl(ehci, &ehci->regs->frame_index)
458 		% (ehci->periodic_size << 3);
459 	return 0;
460 }
461 
462 static int disable_periodic (struct ehci_hcd *ehci)
463 {
464 	u32	cmd;
465 	int	status;
466 
467 	if (--ehci->periodic_sched)
468 		return 0;
469 
470 	/* did setting PSE not take effect yet?
471 	 * takes effect only at frame boundaries...
472 	 */
473 	status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
474 					     STS_PSS, STS_PSS, 9 * 125);
475 	if (status)
476 		return status;
477 
478 	cmd = ehci_readl(ehci, &ehci->regs->command) & ~CMD_PSE;
479 	ehci_writel(ehci, cmd, &ehci->regs->command);
480 	/* posted write ... */
481 
482 	ehci->next_uframe = -1;
483 	return 0;
484 }
485 
486 /*-------------------------------------------------------------------------*/
487 
488 /* periodic schedule slots have iso tds (normal or split) first, then a
489  * sparse tree for active interrupt transfers.
490  *
491  * this just links in a qh; caller guarantees uframe masks are set right.
492  * no FSTN support (yet; ehci 0.96+)
493  */
494 static int qh_link_periodic (struct ehci_hcd *ehci, struct ehci_qh *qh)
495 {
496 	unsigned	i;
497 	unsigned	period = qh->period;
498 
499 	dev_dbg (&qh->dev->dev,
500 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
501 		period, hc32_to_cpup(ehci, &qh->hw_info2) & (QH_CMASK | QH_SMASK),
502 		qh, qh->start, qh->usecs, qh->c_usecs);
503 
504 	/* high bandwidth, or otherwise every microframe */
505 	if (period == 0)
506 		period = 1;
507 
508 	for (i = qh->start; i < ehci->periodic_size; i += period) {
509 		union ehci_shadow	*prev = &ehci->pshadow[i];
510 		__hc32			*hw_p = &ehci->periodic[i];
511 		union ehci_shadow	here = *prev;
512 		__hc32			type = 0;
513 
514 		/* skip the iso nodes at list head */
515 		while (here.ptr) {
516 			type = Q_NEXT_TYPE(ehci, *hw_p);
517 			if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
518 				break;
519 			prev = periodic_next_shadow(ehci, prev, type);
520 			hw_p = &here.qh->hw_next;
521 			here = *prev;
522 		}
523 
524 		/* sorting each branch by period (slow-->fast)
525 		 * enables sharing interior tree nodes
526 		 */
527 		while (here.ptr && qh != here.qh) {
528 			if (qh->period > here.qh->period)
529 				break;
530 			prev = &here.qh->qh_next;
531 			hw_p = &here.qh->hw_next;
532 			here = *prev;
533 		}
534 		/* link in this qh, unless some earlier pass did that */
535 		if (qh != here.qh) {
536 			qh->qh_next = here;
537 			if (here.qh)
538 				qh->hw_next = *hw_p;
539 			wmb ();
540 			prev->qh = qh;
541 			*hw_p = QH_NEXT (ehci, qh->qh_dma);
542 		}
543 	}
544 	qh->qh_state = QH_STATE_LINKED;
545 	qh_get (qh);
546 
547 	/* update per-qh bandwidth for usbfs */
548 	ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period
549 		? ((qh->usecs + qh->c_usecs) / qh->period)
550 		: (qh->usecs * 8);
551 
552 	/* maybe enable periodic schedule processing */
553 	return enable_periodic(ehci);
554 }
555 
556 static int qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
557 {
558 	unsigned	i;
559 	unsigned	period;
560 
561 	// FIXME:
562 	// IF this isn't high speed
563 	//   and this qh is active in the current uframe
564 	//   (and overlay token SplitXstate is false?)
565 	// THEN
566 	//   qh->hw_info1 |= cpu_to_hc32(1 << 7 /* "ignore" */);
567 
568 	/* high bandwidth, or otherwise part of every microframe */
569 	if ((period = qh->period) == 0)
570 		period = 1;
571 
572 	for (i = qh->start; i < ehci->periodic_size; i += period)
573 		periodic_unlink (ehci, i, qh);
574 
575 	/* update per-qh bandwidth for usbfs */
576 	ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period
577 		? ((qh->usecs + qh->c_usecs) / qh->period)
578 		: (qh->usecs * 8);
579 
580 	dev_dbg (&qh->dev->dev,
581 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
582 		qh->period,
583 		hc32_to_cpup(ehci, &qh->hw_info2) & (QH_CMASK | QH_SMASK),
584 		qh, qh->start, qh->usecs, qh->c_usecs);
585 
586 	/* qh->qh_next still "live" to HC */
587 	qh->qh_state = QH_STATE_UNLINK;
588 	qh->qh_next.ptr = NULL;
589 	qh_put (qh);
590 
591 	/* maybe turn off periodic schedule */
592 	return disable_periodic(ehci);
593 }
594 
595 static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh)
596 {
597 	unsigned	wait;
598 
599 	qh_unlink_periodic (ehci, qh);
600 
601 	/* simple/paranoid:  always delay, expecting the HC needs to read
602 	 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
603 	 * expect khubd to clean up after any CSPLITs we won't issue.
604 	 * active high speed queues may need bigger delays...
605 	 */
606 	if (list_empty (&qh->qtd_list)
607 			|| (cpu_to_hc32(ehci, QH_CMASK)
608 					& qh->hw_info2) != 0)
609 		wait = 2;
610 	else
611 		wait = 55;	/* worst case: 3 * 1024 */
612 
613 	udelay (wait);
614 	qh->qh_state = QH_STATE_IDLE;
615 	qh->hw_next = EHCI_LIST_END(ehci);
616 	wmb ();
617 }
618 
619 /*-------------------------------------------------------------------------*/
620 
621 static int check_period (
622 	struct ehci_hcd *ehci,
623 	unsigned	frame,
624 	unsigned	uframe,
625 	unsigned	period,
626 	unsigned	usecs
627 ) {
628 	int		claimed;
629 
630 	/* complete split running into next frame?
631 	 * given FSTN support, we could sometimes check...
632 	 */
633 	if (uframe >= 8)
634 		return 0;
635 
636 	/*
637 	 * 80% periodic == 100 usec/uframe available
638 	 * convert "usecs we need" to "max already claimed"
639 	 */
640 	usecs = 100 - usecs;
641 
642 	/* we "know" 2 and 4 uframe intervals were rejected; so
643 	 * for period 0, check _every_ microframe in the schedule.
644 	 */
645 	if (unlikely (period == 0)) {
646 		do {
647 			for (uframe = 0; uframe < 7; uframe++) {
648 				claimed = periodic_usecs (ehci, frame, uframe);
649 				if (claimed > usecs)
650 					return 0;
651 			}
652 		} while ((frame += 1) < ehci->periodic_size);
653 
654 	/* just check the specified uframe, at that period */
655 	} else {
656 		do {
657 			claimed = periodic_usecs (ehci, frame, uframe);
658 			if (claimed > usecs)
659 				return 0;
660 		} while ((frame += period) < ehci->periodic_size);
661 	}
662 
663 	// success!
664 	return 1;
665 }
666 
667 static int check_intr_schedule (
668 	struct ehci_hcd		*ehci,
669 	unsigned		frame,
670 	unsigned		uframe,
671 	const struct ehci_qh	*qh,
672 	__hc32			*c_maskp
673 )
674 {
675 	int		retval = -ENOSPC;
676 	u8		mask = 0;
677 
678 	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
679 		goto done;
680 
681 	if (!check_period (ehci, frame, uframe, qh->period, qh->usecs))
682 		goto done;
683 	if (!qh->c_usecs) {
684 		retval = 0;
685 		*c_maskp = 0;
686 		goto done;
687 	}
688 
689 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
690 	if (tt_available (ehci, qh->period, qh->dev, frame, uframe,
691 				qh->tt_usecs)) {
692 		unsigned i;
693 
694 		/* TODO : this may need FSTN for SSPLIT in uframe 5. */
695 		for (i=uframe+1; i<8 && i<uframe+4; i++)
696 			if (!check_period (ehci, frame, i,
697 						qh->period, qh->c_usecs))
698 				goto done;
699 			else
700 				mask |= 1 << i;
701 
702 		retval = 0;
703 
704 		*c_maskp = cpu_to_hc32(ehci, mask << 8);
705 	}
706 #else
707 	/* Make sure this tt's buffer is also available for CSPLITs.
708 	 * We pessimize a bit; probably the typical full speed case
709 	 * doesn't need the second CSPLIT.
710 	 *
711 	 * NOTE:  both SPLIT and CSPLIT could be checked in just
712 	 * one smart pass...
713 	 */
714 	mask = 0x03 << (uframe + qh->gap_uf);
715 	*c_maskp = cpu_to_hc32(ehci, mask << 8);
716 
717 	mask |= 1 << uframe;
718 	if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) {
719 		if (!check_period (ehci, frame, uframe + qh->gap_uf + 1,
720 					qh->period, qh->c_usecs))
721 			goto done;
722 		if (!check_period (ehci, frame, uframe + qh->gap_uf,
723 					qh->period, qh->c_usecs))
724 			goto done;
725 		retval = 0;
726 	}
727 #endif
728 done:
729 	return retval;
730 }
731 
732 /* "first fit" scheduling policy used the first time through,
733  * or when the previous schedule slot can't be re-used.
734  */
735 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
736 {
737 	int		status;
738 	unsigned	uframe;
739 	__hc32		c_mask;
740 	unsigned	frame;		/* 0..(qh->period - 1), or NO_FRAME */
741 
742 	qh_refresh(ehci, qh);
743 	qh->hw_next = EHCI_LIST_END(ehci);
744 	frame = qh->start;
745 
746 	/* reuse the previous schedule slots, if we can */
747 	if (frame < qh->period) {
748 		uframe = ffs(hc32_to_cpup(ehci, &qh->hw_info2) & QH_SMASK);
749 		status = check_intr_schedule (ehci, frame, --uframe,
750 				qh, &c_mask);
751 	} else {
752 		uframe = 0;
753 		c_mask = 0;
754 		status = -ENOSPC;
755 	}
756 
757 	/* else scan the schedule to find a group of slots such that all
758 	 * uframes have enough periodic bandwidth available.
759 	 */
760 	if (status) {
761 		/* "normal" case, uframing flexible except with splits */
762 		if (qh->period) {
763 			frame = qh->period - 1;
764 			do {
765 				for (uframe = 0; uframe < 8; uframe++) {
766 					status = check_intr_schedule (ehci,
767 							frame, uframe, qh,
768 							&c_mask);
769 					if (status == 0)
770 						break;
771 				}
772 			} while (status && frame--);
773 
774 		/* qh->period == 0 means every uframe */
775 		} else {
776 			frame = 0;
777 			status = check_intr_schedule (ehci, 0, 0, qh, &c_mask);
778 		}
779 		if (status)
780 			goto done;
781 		qh->start = frame;
782 
783 		/* reset S-frame and (maybe) C-frame masks */
784 		qh->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
785 		qh->hw_info2 |= qh->period
786 			? cpu_to_hc32(ehci, 1 << uframe)
787 			: cpu_to_hc32(ehci, QH_SMASK);
788 		qh->hw_info2 |= c_mask;
789 	} else
790 		ehci_dbg (ehci, "reused qh %p schedule\n", qh);
791 
792 	/* stuff into the periodic schedule */
793 	status = qh_link_periodic (ehci, qh);
794 done:
795 	return status;
796 }
797 
798 static int intr_submit (
799 	struct ehci_hcd		*ehci,
800 	struct urb		*urb,
801 	struct list_head	*qtd_list,
802 	gfp_t			mem_flags
803 ) {
804 	unsigned		epnum;
805 	unsigned long		flags;
806 	struct ehci_qh		*qh;
807 	int			status;
808 	struct list_head	empty;
809 
810 	/* get endpoint and transfer/schedule data */
811 	epnum = urb->ep->desc.bEndpointAddress;
812 
813 	spin_lock_irqsave (&ehci->lock, flags);
814 
815 	if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
816 			&ehci_to_hcd(ehci)->flags))) {
817 		status = -ESHUTDOWN;
818 		goto done_not_linked;
819 	}
820 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
821 	if (unlikely(status))
822 		goto done_not_linked;
823 
824 	/* get qh and force any scheduling errors */
825 	INIT_LIST_HEAD (&empty);
826 	qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
827 	if (qh == NULL) {
828 		status = -ENOMEM;
829 		goto done;
830 	}
831 	if (qh->qh_state == QH_STATE_IDLE) {
832 		if ((status = qh_schedule (ehci, qh)) != 0)
833 			goto done;
834 	}
835 
836 	/* then queue the urb's tds to the qh */
837 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
838 	BUG_ON (qh == NULL);
839 
840 	/* ... update usbfs periodic stats */
841 	ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
842 
843 done:
844 	if (unlikely(status))
845 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
846 done_not_linked:
847 	spin_unlock_irqrestore (&ehci->lock, flags);
848 	if (status)
849 		qtd_list_free (ehci, urb, qtd_list);
850 
851 	return status;
852 }
853 
854 /*-------------------------------------------------------------------------*/
855 
856 /* ehci_iso_stream ops work with both ITD and SITD */
857 
858 static struct ehci_iso_stream *
859 iso_stream_alloc (gfp_t mem_flags)
860 {
861 	struct ehci_iso_stream *stream;
862 
863 	stream = kzalloc(sizeof *stream, mem_flags);
864 	if (likely (stream != NULL)) {
865 		INIT_LIST_HEAD(&stream->td_list);
866 		INIT_LIST_HEAD(&stream->free_list);
867 		stream->next_uframe = -1;
868 		stream->refcount = 1;
869 	}
870 	return stream;
871 }
872 
873 static void
874 iso_stream_init (
875 	struct ehci_hcd		*ehci,
876 	struct ehci_iso_stream	*stream,
877 	struct usb_device	*dev,
878 	int			pipe,
879 	unsigned		interval
880 )
881 {
882 	static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
883 
884 	u32			buf1;
885 	unsigned		epnum, maxp;
886 	int			is_input;
887 	long			bandwidth;
888 
889 	/*
890 	 * this might be a "high bandwidth" highspeed endpoint,
891 	 * as encoded in the ep descriptor's wMaxPacket field
892 	 */
893 	epnum = usb_pipeendpoint (pipe);
894 	is_input = usb_pipein (pipe) ? USB_DIR_IN : 0;
895 	maxp = usb_maxpacket(dev, pipe, !is_input);
896 	if (is_input) {
897 		buf1 = (1 << 11);
898 	} else {
899 		buf1 = 0;
900 	}
901 
902 	/* knows about ITD vs SITD */
903 	if (dev->speed == USB_SPEED_HIGH) {
904 		unsigned multi = hb_mult(maxp);
905 
906 		stream->highspeed = 1;
907 
908 		maxp = max_packet(maxp);
909 		buf1 |= maxp;
910 		maxp *= multi;
911 
912 		stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
913 		stream->buf1 = cpu_to_hc32(ehci, buf1);
914 		stream->buf2 = cpu_to_hc32(ehci, multi);
915 
916 		/* usbfs wants to report the average usecs per frame tied up
917 		 * when transfers on this endpoint are scheduled ...
918 		 */
919 		stream->usecs = HS_USECS_ISO (maxp);
920 		bandwidth = stream->usecs * 8;
921 		bandwidth /= interval;
922 
923 	} else {
924 		u32		addr;
925 		int		think_time;
926 		int		hs_transfers;
927 
928 		addr = dev->ttport << 24;
929 		if (!ehci_is_TDI(ehci)
930 				|| (dev->tt->hub !=
931 					ehci_to_hcd(ehci)->self.root_hub))
932 			addr |= dev->tt->hub->devnum << 16;
933 		addr |= epnum << 8;
934 		addr |= dev->devnum;
935 		stream->usecs = HS_USECS_ISO (maxp);
936 		think_time = dev->tt ? dev->tt->think_time : 0;
937 		stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time (
938 				dev->speed, is_input, 1, maxp));
939 		hs_transfers = max (1u, (maxp + 187) / 188);
940 		if (is_input) {
941 			u32	tmp;
942 
943 			addr |= 1 << 31;
944 			stream->c_usecs = stream->usecs;
945 			stream->usecs = HS_USECS_ISO (1);
946 			stream->raw_mask = 1;
947 
948 			/* c-mask as specified in USB 2.0 11.18.4 3.c */
949 			tmp = (1 << (hs_transfers + 2)) - 1;
950 			stream->raw_mask |= tmp << (8 + 2);
951 		} else
952 			stream->raw_mask = smask_out [hs_transfers - 1];
953 		bandwidth = stream->usecs + stream->c_usecs;
954 		bandwidth /= interval << 3;
955 
956 		/* stream->splits gets created from raw_mask later */
957 		stream->address = cpu_to_hc32(ehci, addr);
958 	}
959 	stream->bandwidth = bandwidth;
960 
961 	stream->udev = dev;
962 
963 	stream->bEndpointAddress = is_input | epnum;
964 	stream->interval = interval;
965 	stream->maxp = maxp;
966 }
967 
968 static void
969 iso_stream_put(struct ehci_hcd *ehci, struct ehci_iso_stream *stream)
970 {
971 	stream->refcount--;
972 
973 	/* free whenever just a dev->ep reference remains.
974 	 * not like a QH -- no persistent state (toggle, halt)
975 	 */
976 	if (stream->refcount == 1) {
977 		int		is_in;
978 
979 		// BUG_ON (!list_empty(&stream->td_list));
980 
981 		while (!list_empty (&stream->free_list)) {
982 			struct list_head	*entry;
983 
984 			entry = stream->free_list.next;
985 			list_del (entry);
986 
987 			/* knows about ITD vs SITD */
988 			if (stream->highspeed) {
989 				struct ehci_itd		*itd;
990 
991 				itd = list_entry (entry, struct ehci_itd,
992 						itd_list);
993 				dma_pool_free (ehci->itd_pool, itd,
994 						itd->itd_dma);
995 			} else {
996 				struct ehci_sitd	*sitd;
997 
998 				sitd = list_entry (entry, struct ehci_sitd,
999 						sitd_list);
1000 				dma_pool_free (ehci->sitd_pool, sitd,
1001 						sitd->sitd_dma);
1002 			}
1003 		}
1004 
1005 		is_in = (stream->bEndpointAddress & USB_DIR_IN) ? 0x10 : 0;
1006 		stream->bEndpointAddress &= 0x0f;
1007 		if (stream->ep)
1008 			stream->ep->hcpriv = NULL;
1009 
1010 		if (stream->rescheduled) {
1011 			ehci_info (ehci, "ep%d%s-iso rescheduled "
1012 				"%lu times in %lu seconds\n",
1013 				stream->bEndpointAddress, is_in ? "in" : "out",
1014 				stream->rescheduled,
1015 				((jiffies - stream->start)/HZ)
1016 				);
1017 		}
1018 
1019 		kfree(stream);
1020 	}
1021 }
1022 
1023 static inline struct ehci_iso_stream *
1024 iso_stream_get (struct ehci_iso_stream *stream)
1025 {
1026 	if (likely (stream != NULL))
1027 		stream->refcount++;
1028 	return stream;
1029 }
1030 
1031 static struct ehci_iso_stream *
1032 iso_stream_find (struct ehci_hcd *ehci, struct urb *urb)
1033 {
1034 	unsigned		epnum;
1035 	struct ehci_iso_stream	*stream;
1036 	struct usb_host_endpoint *ep;
1037 	unsigned long		flags;
1038 
1039 	epnum = usb_pipeendpoint (urb->pipe);
1040 	if (usb_pipein(urb->pipe))
1041 		ep = urb->dev->ep_in[epnum];
1042 	else
1043 		ep = urb->dev->ep_out[epnum];
1044 
1045 	spin_lock_irqsave (&ehci->lock, flags);
1046 	stream = ep->hcpriv;
1047 
1048 	if (unlikely (stream == NULL)) {
1049 		stream = iso_stream_alloc(GFP_ATOMIC);
1050 		if (likely (stream != NULL)) {
1051 			/* dev->ep owns the initial refcount */
1052 			ep->hcpriv = stream;
1053 			stream->ep = ep;
1054 			iso_stream_init(ehci, stream, urb->dev, urb->pipe,
1055 					urb->interval);
1056 		}
1057 
1058 	/* if dev->ep [epnum] is a QH, info1.maxpacket is nonzero */
1059 	} else if (unlikely (stream->hw_info1 != 0)) {
1060 		ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n",
1061 			urb->dev->devpath, epnum,
1062 			usb_pipein(urb->pipe) ? "in" : "out");
1063 		stream = NULL;
1064 	}
1065 
1066 	/* caller guarantees an eventual matching iso_stream_put */
1067 	stream = iso_stream_get (stream);
1068 
1069 	spin_unlock_irqrestore (&ehci->lock, flags);
1070 	return stream;
1071 }
1072 
1073 /*-------------------------------------------------------------------------*/
1074 
1075 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1076 
1077 static struct ehci_iso_sched *
1078 iso_sched_alloc (unsigned packets, gfp_t mem_flags)
1079 {
1080 	struct ehci_iso_sched	*iso_sched;
1081 	int			size = sizeof *iso_sched;
1082 
1083 	size += packets * sizeof (struct ehci_iso_packet);
1084 	iso_sched = kzalloc(size, mem_flags);
1085 	if (likely (iso_sched != NULL)) {
1086 		INIT_LIST_HEAD (&iso_sched->td_list);
1087 	}
1088 	return iso_sched;
1089 }
1090 
1091 static inline void
1092 itd_sched_init(
1093 	struct ehci_hcd		*ehci,
1094 	struct ehci_iso_sched	*iso_sched,
1095 	struct ehci_iso_stream	*stream,
1096 	struct urb		*urb
1097 )
1098 {
1099 	unsigned	i;
1100 	dma_addr_t	dma = urb->transfer_dma;
1101 
1102 	/* how many uframes are needed for these transfers */
1103 	iso_sched->span = urb->number_of_packets * stream->interval;
1104 
1105 	/* figure out per-uframe itd fields that we'll need later
1106 	 * when we fit new itds into the schedule.
1107 	 */
1108 	for (i = 0; i < urb->number_of_packets; i++) {
1109 		struct ehci_iso_packet	*uframe = &iso_sched->packet [i];
1110 		unsigned		length;
1111 		dma_addr_t		buf;
1112 		u32			trans;
1113 
1114 		length = urb->iso_frame_desc [i].length;
1115 		buf = dma + urb->iso_frame_desc [i].offset;
1116 
1117 		trans = EHCI_ISOC_ACTIVE;
1118 		trans |= buf & 0x0fff;
1119 		if (unlikely (((i + 1) == urb->number_of_packets))
1120 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1121 			trans |= EHCI_ITD_IOC;
1122 		trans |= length << 16;
1123 		uframe->transaction = cpu_to_hc32(ehci, trans);
1124 
1125 		/* might need to cross a buffer page within a uframe */
1126 		uframe->bufp = (buf & ~(u64)0x0fff);
1127 		buf += length;
1128 		if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff))))
1129 			uframe->cross = 1;
1130 	}
1131 }
1132 
1133 static void
1134 iso_sched_free (
1135 	struct ehci_iso_stream	*stream,
1136 	struct ehci_iso_sched	*iso_sched
1137 )
1138 {
1139 	if (!iso_sched)
1140 		return;
1141 	// caller must hold ehci->lock!
1142 	list_splice (&iso_sched->td_list, &stream->free_list);
1143 	kfree (iso_sched);
1144 }
1145 
1146 static int
1147 itd_urb_transaction (
1148 	struct ehci_iso_stream	*stream,
1149 	struct ehci_hcd		*ehci,
1150 	struct urb		*urb,
1151 	gfp_t			mem_flags
1152 )
1153 {
1154 	struct ehci_itd		*itd;
1155 	dma_addr_t		itd_dma;
1156 	int			i;
1157 	unsigned		num_itds;
1158 	struct ehci_iso_sched	*sched;
1159 	unsigned long		flags;
1160 
1161 	sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1162 	if (unlikely (sched == NULL))
1163 		return -ENOMEM;
1164 
1165 	itd_sched_init(ehci, sched, stream, urb);
1166 
1167 	if (urb->interval < 8)
1168 		num_itds = 1 + (sched->span + 7) / 8;
1169 	else
1170 		num_itds = urb->number_of_packets;
1171 
1172 	/* allocate/init ITDs */
1173 	spin_lock_irqsave (&ehci->lock, flags);
1174 	for (i = 0; i < num_itds; i++) {
1175 
1176 		/* free_list.next might be cache-hot ... but maybe
1177 		 * the HC caches it too. avoid that issue for now.
1178 		 */
1179 
1180 		/* prefer previously-allocated itds */
1181 		if (likely (!list_empty(&stream->free_list))) {
1182 			itd = list_entry (stream->free_list.prev,
1183 					struct ehci_itd, itd_list);
1184 			list_del (&itd->itd_list);
1185 			itd_dma = itd->itd_dma;
1186 		} else {
1187 			spin_unlock_irqrestore (&ehci->lock, flags);
1188 			itd = dma_pool_alloc (ehci->itd_pool, mem_flags,
1189 					&itd_dma);
1190 			spin_lock_irqsave (&ehci->lock, flags);
1191 			if (!itd) {
1192 				iso_sched_free(stream, sched);
1193 				spin_unlock_irqrestore(&ehci->lock, flags);
1194 				return -ENOMEM;
1195 			}
1196 		}
1197 
1198 		memset (itd, 0, sizeof *itd);
1199 		itd->itd_dma = itd_dma;
1200 		list_add (&itd->itd_list, &sched->td_list);
1201 	}
1202 	spin_unlock_irqrestore (&ehci->lock, flags);
1203 
1204 	/* temporarily store schedule info in hcpriv */
1205 	urb->hcpriv = sched;
1206 	urb->error_count = 0;
1207 	return 0;
1208 }
1209 
1210 /*-------------------------------------------------------------------------*/
1211 
1212 static inline int
1213 itd_slot_ok (
1214 	struct ehci_hcd		*ehci,
1215 	u32			mod,
1216 	u32			uframe,
1217 	u8			usecs,
1218 	u32			period
1219 )
1220 {
1221 	uframe %= period;
1222 	do {
1223 		/* can't commit more than 80% periodic == 100 usec */
1224 		if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7)
1225 				> (100 - usecs))
1226 			return 0;
1227 
1228 		/* we know urb->interval is 2^N uframes */
1229 		uframe += period;
1230 	} while (uframe < mod);
1231 	return 1;
1232 }
1233 
1234 static inline int
1235 sitd_slot_ok (
1236 	struct ehci_hcd		*ehci,
1237 	u32			mod,
1238 	struct ehci_iso_stream	*stream,
1239 	u32			uframe,
1240 	struct ehci_iso_sched	*sched,
1241 	u32			period_uframes
1242 )
1243 {
1244 	u32			mask, tmp;
1245 	u32			frame, uf;
1246 
1247 	mask = stream->raw_mask << (uframe & 7);
1248 
1249 	/* for IN, don't wrap CSPLIT into the next frame */
1250 	if (mask & ~0xffff)
1251 		return 0;
1252 
1253 	/* this multi-pass logic is simple, but performance may
1254 	 * suffer when the schedule data isn't cached.
1255 	 */
1256 
1257 	/* check bandwidth */
1258 	uframe %= period_uframes;
1259 	do {
1260 		u32		max_used;
1261 
1262 		frame = uframe >> 3;
1263 		uf = uframe & 7;
1264 
1265 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1266 		/* The tt's fullspeed bus bandwidth must be available.
1267 		 * tt_available scheduling guarantees 10+% for control/bulk.
1268 		 */
1269 		if (!tt_available (ehci, period_uframes << 3,
1270 				stream->udev, frame, uf, stream->tt_usecs))
1271 			return 0;
1272 #else
1273 		/* tt must be idle for start(s), any gap, and csplit.
1274 		 * assume scheduling slop leaves 10+% for control/bulk.
1275 		 */
1276 		if (!tt_no_collision (ehci, period_uframes << 3,
1277 				stream->udev, frame, mask))
1278 			return 0;
1279 #endif
1280 
1281 		/* check starts (OUT uses more than one) */
1282 		max_used = 100 - stream->usecs;
1283 		for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) {
1284 			if (periodic_usecs (ehci, frame, uf) > max_used)
1285 				return 0;
1286 		}
1287 
1288 		/* for IN, check CSPLIT */
1289 		if (stream->c_usecs) {
1290 			uf = uframe & 7;
1291 			max_used = 100 - stream->c_usecs;
1292 			do {
1293 				tmp = 1 << uf;
1294 				tmp <<= 8;
1295 				if ((stream->raw_mask & tmp) == 0)
1296 					continue;
1297 				if (periodic_usecs (ehci, frame, uf)
1298 						> max_used)
1299 					return 0;
1300 			} while (++uf < 8);
1301 		}
1302 
1303 		/* we know urb->interval is 2^N uframes */
1304 		uframe += period_uframes;
1305 	} while (uframe < mod);
1306 
1307 	stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7));
1308 	return 1;
1309 }
1310 
1311 /*
1312  * This scheduler plans almost as far into the future as it has actual
1313  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
1314  * "as small as possible" to be cache-friendlier.)  That limits the size
1315  * transfers you can stream reliably; avoid more than 64 msec per urb.
1316  * Also avoid queue depths of less than ehci's worst irq latency (affected
1317  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1318  * and other factors); or more than about 230 msec total (for portability,
1319  * given EHCI_TUNE_FLS and the slop).  Or, write a smarter scheduler!
1320  */
1321 
1322 #define SCHEDULE_SLOP	10	/* frames */
1323 
1324 static int
1325 iso_stream_schedule (
1326 	struct ehci_hcd		*ehci,
1327 	struct urb		*urb,
1328 	struct ehci_iso_stream	*stream
1329 )
1330 {
1331 	u32			now, start, max, period;
1332 	int			status;
1333 	unsigned		mod = ehci->periodic_size << 3;
1334 	struct ehci_iso_sched	*sched = urb->hcpriv;
1335 
1336 	if (sched->span > (mod - 8 * SCHEDULE_SLOP)) {
1337 		ehci_dbg (ehci, "iso request %p too long\n", urb);
1338 		status = -EFBIG;
1339 		goto fail;
1340 	}
1341 
1342 	if ((stream->depth + sched->span) > mod) {
1343 		ehci_dbg (ehci, "request %p would overflow (%d+%d>%d)\n",
1344 			urb, stream->depth, sched->span, mod);
1345 		status = -EFBIG;
1346 		goto fail;
1347 	}
1348 
1349 	now = ehci_readl(ehci, &ehci->regs->frame_index) % mod;
1350 
1351 	/* when's the last uframe this urb could start? */
1352 	max = now + mod;
1353 
1354 	/* Typical case: reuse current schedule, stream is still active.
1355 	 * Hopefully there are no gaps from the host falling behind
1356 	 * (irq delays etc), but if there are we'll take the next
1357 	 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
1358 	 */
1359 	if (likely (!list_empty (&stream->td_list))) {
1360 		start = stream->next_uframe;
1361 		if (start < now)
1362 			start += mod;
1363 
1364 		/* Fell behind (by up to twice the slop amount)? */
1365 		if (start >= max - 2 * 8 * SCHEDULE_SLOP)
1366 			start += stream->interval * DIV_ROUND_UP(
1367 					max - start, stream->interval) - mod;
1368 
1369 		/* Tried to schedule too far into the future? */
1370 		if (unlikely((start + sched->span) >= max)) {
1371 			status = -EFBIG;
1372 			goto fail;
1373 		}
1374 		goto ready;
1375 	}
1376 
1377 	/* need to schedule; when's the next (u)frame we could start?
1378 	 * this is bigger than ehci->i_thresh allows; scheduling itself
1379 	 * isn't free, the slop should handle reasonably slow cpus.  it
1380 	 * can also help high bandwidth if the dma and irq loads don't
1381 	 * jump until after the queue is primed.
1382 	 */
1383 	start = SCHEDULE_SLOP * 8 + (now & ~0x07);
1384 	start %= mod;
1385 	stream->next_uframe = start;
1386 
1387 	/* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
1388 
1389 	period = urb->interval;
1390 	if (!stream->highspeed)
1391 		period <<= 3;
1392 
1393 	/* find a uframe slot with enough bandwidth */
1394 	for (; start < (stream->next_uframe + period); start++) {
1395 		int		enough_space;
1396 
1397 		/* check schedule: enough space? */
1398 		if (stream->highspeed)
1399 			enough_space = itd_slot_ok (ehci, mod, start,
1400 					stream->usecs, period);
1401 		else {
1402 			if ((start % 8) >= 6)
1403 				continue;
1404 			enough_space = sitd_slot_ok (ehci, mod, stream,
1405 					start, sched, period);
1406 		}
1407 
1408 		/* schedule it here if there's enough bandwidth */
1409 		if (enough_space) {
1410 			stream->next_uframe = start % mod;
1411 			goto ready;
1412 		}
1413 	}
1414 
1415 	/* no room in the schedule */
1416 	ehci_dbg (ehci, "iso %ssched full %p (now %d max %d)\n",
1417 		list_empty (&stream->td_list) ? "" : "re",
1418 		urb, now, max);
1419 	status = -ENOSPC;
1420 
1421 fail:
1422 	iso_sched_free (stream, sched);
1423 	urb->hcpriv = NULL;
1424 	return status;
1425 
1426 ready:
1427 	/* report high speed start in uframes; full speed, in frames */
1428 	urb->start_frame = stream->next_uframe;
1429 	if (!stream->highspeed)
1430 		urb->start_frame >>= 3;
1431 	return 0;
1432 }
1433 
1434 /*-------------------------------------------------------------------------*/
1435 
1436 static inline void
1437 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1438 		struct ehci_itd *itd)
1439 {
1440 	int i;
1441 
1442 	/* it's been recently zeroed */
1443 	itd->hw_next = EHCI_LIST_END(ehci);
1444 	itd->hw_bufp [0] = stream->buf0;
1445 	itd->hw_bufp [1] = stream->buf1;
1446 	itd->hw_bufp [2] = stream->buf2;
1447 
1448 	for (i = 0; i < 8; i++)
1449 		itd->index[i] = -1;
1450 
1451 	/* All other fields are filled when scheduling */
1452 }
1453 
1454 static inline void
1455 itd_patch(
1456 	struct ehci_hcd		*ehci,
1457 	struct ehci_itd		*itd,
1458 	struct ehci_iso_sched	*iso_sched,
1459 	unsigned		index,
1460 	u16			uframe
1461 )
1462 {
1463 	struct ehci_iso_packet	*uf = &iso_sched->packet [index];
1464 	unsigned		pg = itd->pg;
1465 
1466 	// BUG_ON (pg == 6 && uf->cross);
1467 
1468 	uframe &= 0x07;
1469 	itd->index [uframe] = index;
1470 
1471 	itd->hw_transaction[uframe] = uf->transaction;
1472 	itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1473 	itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1474 	itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1475 
1476 	/* iso_frame_desc[].offset must be strictly increasing */
1477 	if (unlikely (uf->cross)) {
1478 		u64	bufp = uf->bufp + 4096;
1479 
1480 		itd->pg = ++pg;
1481 		itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1482 		itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1483 	}
1484 }
1485 
1486 static inline void
1487 itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1488 {
1489 	/* always prepend ITD/SITD ... only QH tree is order-sensitive */
1490 	itd->itd_next = ehci->pshadow [frame];
1491 	itd->hw_next = ehci->periodic [frame];
1492 	ehci->pshadow [frame].itd = itd;
1493 	itd->frame = frame;
1494 	wmb ();
1495 	ehci->periodic[frame] = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1496 }
1497 
1498 /* fit urb's itds into the selected schedule slot; activate as needed */
1499 static int
1500 itd_link_urb (
1501 	struct ehci_hcd		*ehci,
1502 	struct urb		*urb,
1503 	unsigned		mod,
1504 	struct ehci_iso_stream	*stream
1505 )
1506 {
1507 	int			packet;
1508 	unsigned		next_uframe, uframe, frame;
1509 	struct ehci_iso_sched	*iso_sched = urb->hcpriv;
1510 	struct ehci_itd		*itd;
1511 
1512 	next_uframe = stream->next_uframe % mod;
1513 
1514 	if (unlikely (list_empty(&stream->td_list))) {
1515 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1516 				+= stream->bandwidth;
1517 		ehci_vdbg (ehci,
1518 			"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
1519 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1520 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1521 			urb->interval,
1522 			next_uframe >> 3, next_uframe & 0x7);
1523 		stream->start = jiffies;
1524 	}
1525 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1526 
1527 	/* fill iTDs uframe by uframe */
1528 	for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) {
1529 		if (itd == NULL) {
1530 			/* ASSERT:  we have all necessary itds */
1531 			// BUG_ON (list_empty (&iso_sched->td_list));
1532 
1533 			/* ASSERT:  no itds for this endpoint in this uframe */
1534 
1535 			itd = list_entry (iso_sched->td_list.next,
1536 					struct ehci_itd, itd_list);
1537 			list_move_tail (&itd->itd_list, &stream->td_list);
1538 			itd->stream = iso_stream_get (stream);
1539 			itd->urb = urb;
1540 			itd_init (ehci, stream, itd);
1541 		}
1542 
1543 		uframe = next_uframe & 0x07;
1544 		frame = next_uframe >> 3;
1545 
1546 		itd_patch(ehci, itd, iso_sched, packet, uframe);
1547 
1548 		next_uframe += stream->interval;
1549 		stream->depth += stream->interval;
1550 		next_uframe %= mod;
1551 		packet++;
1552 
1553 		/* link completed itds into the schedule */
1554 		if (((next_uframe >> 3) != frame)
1555 				|| packet == urb->number_of_packets) {
1556 			itd_link (ehci, frame % ehci->periodic_size, itd);
1557 			itd = NULL;
1558 		}
1559 	}
1560 	stream->next_uframe = next_uframe;
1561 
1562 	/* don't need that schedule data any more */
1563 	iso_sched_free (stream, iso_sched);
1564 	urb->hcpriv = NULL;
1565 
1566 	timer_action (ehci, TIMER_IO_WATCHDOG);
1567 	return enable_periodic(ehci);
1568 }
1569 
1570 #define	ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1571 
1572 /* Process and recycle a completed ITD.  Return true iff its urb completed,
1573  * and hence its completion callback probably added things to the hardware
1574  * schedule.
1575  *
1576  * Note that we carefully avoid recycling this descriptor until after any
1577  * completion callback runs, so that it won't be reused quickly.  That is,
1578  * assuming (a) no more than two urbs per frame on this endpoint, and also
1579  * (b) only this endpoint's completions submit URBs.  It seems some silicon
1580  * corrupts things if you reuse completed descriptors very quickly...
1581  */
1582 static unsigned
1583 itd_complete (
1584 	struct ehci_hcd	*ehci,
1585 	struct ehci_itd	*itd
1586 ) {
1587 	struct urb				*urb = itd->urb;
1588 	struct usb_iso_packet_descriptor	*desc;
1589 	u32					t;
1590 	unsigned				uframe;
1591 	int					urb_index = -1;
1592 	struct ehci_iso_stream			*stream = itd->stream;
1593 	struct usb_device			*dev;
1594 	unsigned				retval = false;
1595 
1596 	/* for each uframe with a packet */
1597 	for (uframe = 0; uframe < 8; uframe++) {
1598 		if (likely (itd->index[uframe] == -1))
1599 			continue;
1600 		urb_index = itd->index[uframe];
1601 		desc = &urb->iso_frame_desc [urb_index];
1602 
1603 		t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]);
1604 		itd->hw_transaction [uframe] = 0;
1605 		stream->depth -= stream->interval;
1606 
1607 		/* report transfer status */
1608 		if (unlikely (t & ISO_ERRS)) {
1609 			urb->error_count++;
1610 			if (t & EHCI_ISOC_BUF_ERR)
1611 				desc->status = usb_pipein (urb->pipe)
1612 					? -ENOSR  /* hc couldn't read */
1613 					: -ECOMM; /* hc couldn't write */
1614 			else if (t & EHCI_ISOC_BABBLE)
1615 				desc->status = -EOVERFLOW;
1616 			else /* (t & EHCI_ISOC_XACTERR) */
1617 				desc->status = -EPROTO;
1618 
1619 			/* HC need not update length with this error */
1620 			if (!(t & EHCI_ISOC_BABBLE))
1621 				desc->actual_length = EHCI_ITD_LENGTH (t);
1622 		} else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) {
1623 			desc->status = 0;
1624 			desc->actual_length = EHCI_ITD_LENGTH (t);
1625 		} else {
1626 			/* URB was too late */
1627 			desc->status = -EXDEV;
1628 		}
1629 	}
1630 
1631 	/* handle completion now? */
1632 	if (likely ((urb_index + 1) != urb->number_of_packets))
1633 		goto done;
1634 
1635 	/* ASSERT: it's really the last itd for this urb
1636 	list_for_each_entry (itd, &stream->td_list, itd_list)
1637 		BUG_ON (itd->urb == urb);
1638 	 */
1639 
1640 	/* give urb back to the driver; completion often (re)submits */
1641 	dev = urb->dev;
1642 	ehci_urb_done(ehci, urb, 0);
1643 	retval = true;
1644 	urb = NULL;
1645 	(void) disable_periodic(ehci);
1646 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1647 
1648 	if (unlikely(list_is_singular(&stream->td_list))) {
1649 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1650 				-= stream->bandwidth;
1651 		ehci_vdbg (ehci,
1652 			"deschedule devp %s ep%d%s-iso\n",
1653 			dev->devpath, stream->bEndpointAddress & 0x0f,
1654 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
1655 	}
1656 	iso_stream_put (ehci, stream);
1657 
1658 done:
1659 	itd->urb = NULL;
1660 	if (ehci->clock_frame != itd->frame || itd->index[7] != -1) {
1661 		/* OK to recycle this ITD now. */
1662 		itd->stream = NULL;
1663 		list_move(&itd->itd_list, &stream->free_list);
1664 		iso_stream_put(ehci, stream);
1665 	} else {
1666 		/* HW might remember this ITD, so we can't recycle it yet.
1667 		 * Move it to a safe place until a new frame starts.
1668 		 */
1669 		list_move(&itd->itd_list, &ehci->cached_itd_list);
1670 		if (stream->refcount == 2) {
1671 			/* If iso_stream_put() were called here, stream
1672 			 * would be freed.  Instead, just prevent reuse.
1673 			 */
1674 			stream->ep->hcpriv = NULL;
1675 			stream->ep = NULL;
1676 		}
1677 	}
1678 	return retval;
1679 }
1680 
1681 /*-------------------------------------------------------------------------*/
1682 
1683 static int itd_submit (struct ehci_hcd *ehci, struct urb *urb,
1684 	gfp_t mem_flags)
1685 {
1686 	int			status = -EINVAL;
1687 	unsigned long		flags;
1688 	struct ehci_iso_stream	*stream;
1689 
1690 	/* Get iso_stream head */
1691 	stream = iso_stream_find (ehci, urb);
1692 	if (unlikely (stream == NULL)) {
1693 		ehci_dbg (ehci, "can't get iso stream\n");
1694 		return -ENOMEM;
1695 	}
1696 	if (unlikely (urb->interval != stream->interval)) {
1697 		ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
1698 			stream->interval, urb->interval);
1699 		goto done;
1700 	}
1701 
1702 #ifdef EHCI_URB_TRACE
1703 	ehci_dbg (ehci,
1704 		"%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1705 		__func__, urb->dev->devpath, urb,
1706 		usb_pipeendpoint (urb->pipe),
1707 		usb_pipein (urb->pipe) ? "in" : "out",
1708 		urb->transfer_buffer_length,
1709 		urb->number_of_packets, urb->interval,
1710 		stream);
1711 #endif
1712 
1713 	/* allocate ITDs w/o locking anything */
1714 	status = itd_urb_transaction (stream, ehci, urb, mem_flags);
1715 	if (unlikely (status < 0)) {
1716 		ehci_dbg (ehci, "can't init itds\n");
1717 		goto done;
1718 	}
1719 
1720 	/* schedule ... need to lock */
1721 	spin_lock_irqsave (&ehci->lock, flags);
1722 	if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
1723 			       &ehci_to_hcd(ehci)->flags))) {
1724 		status = -ESHUTDOWN;
1725 		goto done_not_linked;
1726 	}
1727 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1728 	if (unlikely(status))
1729 		goto done_not_linked;
1730 	status = iso_stream_schedule(ehci, urb, stream);
1731 	if (likely (status == 0))
1732 		itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
1733 	else
1734 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1735 done_not_linked:
1736 	spin_unlock_irqrestore (&ehci->lock, flags);
1737 
1738 done:
1739 	if (unlikely (status < 0))
1740 		iso_stream_put (ehci, stream);
1741 	return status;
1742 }
1743 
1744 /*-------------------------------------------------------------------------*/
1745 
1746 /*
1747  * "Split ISO TDs" ... used for USB 1.1 devices going through the
1748  * TTs in USB 2.0 hubs.  These need microframe scheduling.
1749  */
1750 
1751 static inline void
1752 sitd_sched_init(
1753 	struct ehci_hcd		*ehci,
1754 	struct ehci_iso_sched	*iso_sched,
1755 	struct ehci_iso_stream	*stream,
1756 	struct urb		*urb
1757 )
1758 {
1759 	unsigned	i;
1760 	dma_addr_t	dma = urb->transfer_dma;
1761 
1762 	/* how many frames are needed for these transfers */
1763 	iso_sched->span = urb->number_of_packets * stream->interval;
1764 
1765 	/* figure out per-frame sitd fields that we'll need later
1766 	 * when we fit new sitds into the schedule.
1767 	 */
1768 	for (i = 0; i < urb->number_of_packets; i++) {
1769 		struct ehci_iso_packet	*packet = &iso_sched->packet [i];
1770 		unsigned		length;
1771 		dma_addr_t		buf;
1772 		u32			trans;
1773 
1774 		length = urb->iso_frame_desc [i].length & 0x03ff;
1775 		buf = dma + urb->iso_frame_desc [i].offset;
1776 
1777 		trans = SITD_STS_ACTIVE;
1778 		if (((i + 1) == urb->number_of_packets)
1779 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1780 			trans |= SITD_IOC;
1781 		trans |= length << 16;
1782 		packet->transaction = cpu_to_hc32(ehci, trans);
1783 
1784 		/* might need to cross a buffer page within a td */
1785 		packet->bufp = buf;
1786 		packet->buf1 = (buf + length) & ~0x0fff;
1787 		if (packet->buf1 != (buf & ~(u64)0x0fff))
1788 			packet->cross = 1;
1789 
1790 		/* OUT uses multiple start-splits */
1791 		if (stream->bEndpointAddress & USB_DIR_IN)
1792 			continue;
1793 		length = (length + 187) / 188;
1794 		if (length > 1) /* BEGIN vs ALL */
1795 			length |= 1 << 3;
1796 		packet->buf1 |= length;
1797 	}
1798 }
1799 
1800 static int
1801 sitd_urb_transaction (
1802 	struct ehci_iso_stream	*stream,
1803 	struct ehci_hcd		*ehci,
1804 	struct urb		*urb,
1805 	gfp_t			mem_flags
1806 )
1807 {
1808 	struct ehci_sitd	*sitd;
1809 	dma_addr_t		sitd_dma;
1810 	int			i;
1811 	struct ehci_iso_sched	*iso_sched;
1812 	unsigned long		flags;
1813 
1814 	iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1815 	if (iso_sched == NULL)
1816 		return -ENOMEM;
1817 
1818 	sitd_sched_init(ehci, iso_sched, stream, urb);
1819 
1820 	/* allocate/init sITDs */
1821 	spin_lock_irqsave (&ehci->lock, flags);
1822 	for (i = 0; i < urb->number_of_packets; i++) {
1823 
1824 		/* NOTE:  for now, we don't try to handle wraparound cases
1825 		 * for IN (using sitd->hw_backpointer, like a FSTN), which
1826 		 * means we never need two sitds for full speed packets.
1827 		 */
1828 
1829 		/* free_list.next might be cache-hot ... but maybe
1830 		 * the HC caches it too. avoid that issue for now.
1831 		 */
1832 
1833 		/* prefer previously-allocated sitds */
1834 		if (!list_empty(&stream->free_list)) {
1835 			sitd = list_entry (stream->free_list.prev,
1836 					 struct ehci_sitd, sitd_list);
1837 			list_del (&sitd->sitd_list);
1838 			sitd_dma = sitd->sitd_dma;
1839 		} else {
1840 			spin_unlock_irqrestore (&ehci->lock, flags);
1841 			sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags,
1842 					&sitd_dma);
1843 			spin_lock_irqsave (&ehci->lock, flags);
1844 			if (!sitd) {
1845 				iso_sched_free(stream, iso_sched);
1846 				spin_unlock_irqrestore(&ehci->lock, flags);
1847 				return -ENOMEM;
1848 			}
1849 		}
1850 
1851 		memset (sitd, 0, sizeof *sitd);
1852 		sitd->sitd_dma = sitd_dma;
1853 		list_add (&sitd->sitd_list, &iso_sched->td_list);
1854 	}
1855 
1856 	/* temporarily store schedule info in hcpriv */
1857 	urb->hcpriv = iso_sched;
1858 	urb->error_count = 0;
1859 
1860 	spin_unlock_irqrestore (&ehci->lock, flags);
1861 	return 0;
1862 }
1863 
1864 /*-------------------------------------------------------------------------*/
1865 
1866 static inline void
1867 sitd_patch(
1868 	struct ehci_hcd		*ehci,
1869 	struct ehci_iso_stream	*stream,
1870 	struct ehci_sitd	*sitd,
1871 	struct ehci_iso_sched	*iso_sched,
1872 	unsigned		index
1873 )
1874 {
1875 	struct ehci_iso_packet	*uf = &iso_sched->packet [index];
1876 	u64			bufp = uf->bufp;
1877 
1878 	sitd->hw_next = EHCI_LIST_END(ehci);
1879 	sitd->hw_fullspeed_ep = stream->address;
1880 	sitd->hw_uframe = stream->splits;
1881 	sitd->hw_results = uf->transaction;
1882 	sitd->hw_backpointer = EHCI_LIST_END(ehci);
1883 
1884 	bufp = uf->bufp;
1885 	sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
1886 	sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
1887 
1888 	sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
1889 	if (uf->cross)
1890 		bufp += 4096;
1891 	sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
1892 	sitd->index = index;
1893 }
1894 
1895 static inline void
1896 sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
1897 {
1898 	/* note: sitd ordering could matter (CSPLIT then SSPLIT) */
1899 	sitd->sitd_next = ehci->pshadow [frame];
1900 	sitd->hw_next = ehci->periodic [frame];
1901 	ehci->pshadow [frame].sitd = sitd;
1902 	sitd->frame = frame;
1903 	wmb ();
1904 	ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
1905 }
1906 
1907 /* fit urb's sitds into the selected schedule slot; activate as needed */
1908 static int
1909 sitd_link_urb (
1910 	struct ehci_hcd		*ehci,
1911 	struct urb		*urb,
1912 	unsigned		mod,
1913 	struct ehci_iso_stream	*stream
1914 )
1915 {
1916 	int			packet;
1917 	unsigned		next_uframe;
1918 	struct ehci_iso_sched	*sched = urb->hcpriv;
1919 	struct ehci_sitd	*sitd;
1920 
1921 	next_uframe = stream->next_uframe;
1922 
1923 	if (list_empty(&stream->td_list)) {
1924 		/* usbfs ignores TT bandwidth */
1925 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1926 				+= stream->bandwidth;
1927 		ehci_vdbg (ehci,
1928 			"sched devp %s ep%d%s-iso [%d] %dms/%04x\n",
1929 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1930 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1931 			(next_uframe >> 3) % ehci->periodic_size,
1932 			stream->interval, hc32_to_cpu(ehci, stream->splits));
1933 		stream->start = jiffies;
1934 	}
1935 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1936 
1937 	/* fill sITDs frame by frame */
1938 	for (packet = 0, sitd = NULL;
1939 			packet < urb->number_of_packets;
1940 			packet++) {
1941 
1942 		/* ASSERT:  we have all necessary sitds */
1943 		BUG_ON (list_empty (&sched->td_list));
1944 
1945 		/* ASSERT:  no itds for this endpoint in this frame */
1946 
1947 		sitd = list_entry (sched->td_list.next,
1948 				struct ehci_sitd, sitd_list);
1949 		list_move_tail (&sitd->sitd_list, &stream->td_list);
1950 		sitd->stream = iso_stream_get (stream);
1951 		sitd->urb = urb;
1952 
1953 		sitd_patch(ehci, stream, sitd, sched, packet);
1954 		sitd_link (ehci, (next_uframe >> 3) % ehci->periodic_size,
1955 				sitd);
1956 
1957 		next_uframe += stream->interval << 3;
1958 		stream->depth += stream->interval << 3;
1959 	}
1960 	stream->next_uframe = next_uframe % mod;
1961 
1962 	/* don't need that schedule data any more */
1963 	iso_sched_free (stream, sched);
1964 	urb->hcpriv = NULL;
1965 
1966 	timer_action (ehci, TIMER_IO_WATCHDOG);
1967 	return enable_periodic(ehci);
1968 }
1969 
1970 /*-------------------------------------------------------------------------*/
1971 
1972 #define	SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
1973 				| SITD_STS_XACT | SITD_STS_MMF)
1974 
1975 /* Process and recycle a completed SITD.  Return true iff its urb completed,
1976  * and hence its completion callback probably added things to the hardware
1977  * schedule.
1978  *
1979  * Note that we carefully avoid recycling this descriptor until after any
1980  * completion callback runs, so that it won't be reused quickly.  That is,
1981  * assuming (a) no more than two urbs per frame on this endpoint, and also
1982  * (b) only this endpoint's completions submit URBs.  It seems some silicon
1983  * corrupts things if you reuse completed descriptors very quickly...
1984  */
1985 static unsigned
1986 sitd_complete (
1987 	struct ehci_hcd		*ehci,
1988 	struct ehci_sitd	*sitd
1989 ) {
1990 	struct urb				*urb = sitd->urb;
1991 	struct usb_iso_packet_descriptor	*desc;
1992 	u32					t;
1993 	int					urb_index = -1;
1994 	struct ehci_iso_stream			*stream = sitd->stream;
1995 	struct usb_device			*dev;
1996 	unsigned				retval = false;
1997 
1998 	urb_index = sitd->index;
1999 	desc = &urb->iso_frame_desc [urb_index];
2000 	t = hc32_to_cpup(ehci, &sitd->hw_results);
2001 
2002 	/* report transfer status */
2003 	if (t & SITD_ERRS) {
2004 		urb->error_count++;
2005 		if (t & SITD_STS_DBE)
2006 			desc->status = usb_pipein (urb->pipe)
2007 				? -ENOSR  /* hc couldn't read */
2008 				: -ECOMM; /* hc couldn't write */
2009 		else if (t & SITD_STS_BABBLE)
2010 			desc->status = -EOVERFLOW;
2011 		else /* XACT, MMF, etc */
2012 			desc->status = -EPROTO;
2013 	} else {
2014 		desc->status = 0;
2015 		desc->actual_length = desc->length - SITD_LENGTH (t);
2016 	}
2017 	stream->depth -= stream->interval << 3;
2018 
2019 	/* handle completion now? */
2020 	if ((urb_index + 1) != urb->number_of_packets)
2021 		goto done;
2022 
2023 	/* ASSERT: it's really the last sitd for this urb
2024 	list_for_each_entry (sitd, &stream->td_list, sitd_list)
2025 		BUG_ON (sitd->urb == urb);
2026 	 */
2027 
2028 	/* give urb back to the driver; completion often (re)submits */
2029 	dev = urb->dev;
2030 	ehci_urb_done(ehci, urb, 0);
2031 	retval = true;
2032 	urb = NULL;
2033 	(void) disable_periodic(ehci);
2034 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2035 
2036 	if (list_is_singular(&stream->td_list)) {
2037 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2038 				-= stream->bandwidth;
2039 		ehci_vdbg (ehci,
2040 			"deschedule devp %s ep%d%s-iso\n",
2041 			dev->devpath, stream->bEndpointAddress & 0x0f,
2042 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
2043 	}
2044 	iso_stream_put (ehci, stream);
2045 	/* OK to recycle this SITD now that its completion callback ran. */
2046 done:
2047 	sitd->urb = NULL;
2048 	sitd->stream = NULL;
2049 	list_move(&sitd->sitd_list, &stream->free_list);
2050 	iso_stream_put(ehci, stream);
2051 
2052 	return retval;
2053 }
2054 
2055 
2056 static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb,
2057 	gfp_t mem_flags)
2058 {
2059 	int			status = -EINVAL;
2060 	unsigned long		flags;
2061 	struct ehci_iso_stream	*stream;
2062 
2063 	/* Get iso_stream head */
2064 	stream = iso_stream_find (ehci, urb);
2065 	if (stream == NULL) {
2066 		ehci_dbg (ehci, "can't get iso stream\n");
2067 		return -ENOMEM;
2068 	}
2069 	if (urb->interval != stream->interval) {
2070 		ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
2071 			stream->interval, urb->interval);
2072 		goto done;
2073 	}
2074 
2075 #ifdef EHCI_URB_TRACE
2076 	ehci_dbg (ehci,
2077 		"submit %p dev%s ep%d%s-iso len %d\n",
2078 		urb, urb->dev->devpath,
2079 		usb_pipeendpoint (urb->pipe),
2080 		usb_pipein (urb->pipe) ? "in" : "out",
2081 		urb->transfer_buffer_length);
2082 #endif
2083 
2084 	/* allocate SITDs */
2085 	status = sitd_urb_transaction (stream, ehci, urb, mem_flags);
2086 	if (status < 0) {
2087 		ehci_dbg (ehci, "can't init sitds\n");
2088 		goto done;
2089 	}
2090 
2091 	/* schedule ... need to lock */
2092 	spin_lock_irqsave (&ehci->lock, flags);
2093 	if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
2094 			       &ehci_to_hcd(ehci)->flags))) {
2095 		status = -ESHUTDOWN;
2096 		goto done_not_linked;
2097 	}
2098 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2099 	if (unlikely(status))
2100 		goto done_not_linked;
2101 	status = iso_stream_schedule(ehci, urb, stream);
2102 	if (status == 0)
2103 		sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
2104 	else
2105 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2106 done_not_linked:
2107 	spin_unlock_irqrestore (&ehci->lock, flags);
2108 
2109 done:
2110 	if (status < 0)
2111 		iso_stream_put (ehci, stream);
2112 	return status;
2113 }
2114 
2115 /*-------------------------------------------------------------------------*/
2116 
2117 static void free_cached_itd_list(struct ehci_hcd *ehci)
2118 {
2119 	struct ehci_itd *itd, *n;
2120 
2121 	list_for_each_entry_safe(itd, n, &ehci->cached_itd_list, itd_list) {
2122 		struct ehci_iso_stream	*stream = itd->stream;
2123 		itd->stream = NULL;
2124 		list_move(&itd->itd_list, &stream->free_list);
2125 		iso_stream_put(ehci, stream);
2126 	}
2127 }
2128 
2129 /*-------------------------------------------------------------------------*/
2130 
2131 static void
2132 scan_periodic (struct ehci_hcd *ehci)
2133 {
2134 	unsigned	now_uframe, frame, clock, clock_frame, mod;
2135 	unsigned	modified;
2136 
2137 	mod = ehci->periodic_size << 3;
2138 
2139 	/*
2140 	 * When running, scan from last scan point up to "now"
2141 	 * else clean up by scanning everything that's left.
2142 	 * Touches as few pages as possible:  cache-friendly.
2143 	 */
2144 	now_uframe = ehci->next_uframe;
2145 	if (HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
2146 		clock = ehci_readl(ehci, &ehci->regs->frame_index);
2147 		clock_frame = (clock >> 3) % ehci->periodic_size;
2148 	} else  {
2149 		clock = now_uframe + mod - 1;
2150 		clock_frame = -1;
2151 	}
2152 	if (ehci->clock_frame != clock_frame) {
2153 		free_cached_itd_list(ehci);
2154 		ehci->clock_frame = clock_frame;
2155 	}
2156 	clock %= mod;
2157 	clock_frame = clock >> 3;
2158 
2159 	for (;;) {
2160 		union ehci_shadow	q, *q_p;
2161 		__hc32			type, *hw_p;
2162 		unsigned		incomplete = false;
2163 
2164 		frame = now_uframe >> 3;
2165 
2166 restart:
2167 		/* scan each element in frame's queue for completions */
2168 		q_p = &ehci->pshadow [frame];
2169 		hw_p = &ehci->periodic [frame];
2170 		q.ptr = q_p->ptr;
2171 		type = Q_NEXT_TYPE(ehci, *hw_p);
2172 		modified = 0;
2173 
2174 		while (q.ptr != NULL) {
2175 			unsigned		uf;
2176 			union ehci_shadow	temp;
2177 			int			live;
2178 
2179 			live = HC_IS_RUNNING (ehci_to_hcd(ehci)->state);
2180 			switch (hc32_to_cpu(ehci, type)) {
2181 			case Q_TYPE_QH:
2182 				/* handle any completions */
2183 				temp.qh = qh_get (q.qh);
2184 				type = Q_NEXT_TYPE(ehci, q.qh->hw_next);
2185 				q = q.qh->qh_next;
2186 				modified = qh_completions (ehci, temp.qh);
2187 				if (unlikely (list_empty (&temp.qh->qtd_list)))
2188 					intr_deschedule (ehci, temp.qh);
2189 				qh_put (temp.qh);
2190 				break;
2191 			case Q_TYPE_FSTN:
2192 				/* for "save place" FSTNs, look at QH entries
2193 				 * in the previous frame for completions.
2194 				 */
2195 				if (q.fstn->hw_prev != EHCI_LIST_END(ehci)) {
2196 					dbg ("ignoring completions from FSTNs");
2197 				}
2198 				type = Q_NEXT_TYPE(ehci, q.fstn->hw_next);
2199 				q = q.fstn->fstn_next;
2200 				break;
2201 			case Q_TYPE_ITD:
2202 				/* If this ITD is still active, leave it for
2203 				 * later processing ... check the next entry.
2204 				 * No need to check for activity unless the
2205 				 * frame is current.
2206 				 */
2207 				if (frame == clock_frame && live) {
2208 					rmb();
2209 					for (uf = 0; uf < 8; uf++) {
2210 						if (q.itd->hw_transaction[uf] &
2211 							    ITD_ACTIVE(ehci))
2212 							break;
2213 					}
2214 					if (uf < 8) {
2215 						incomplete = true;
2216 						q_p = &q.itd->itd_next;
2217 						hw_p = &q.itd->hw_next;
2218 						type = Q_NEXT_TYPE(ehci,
2219 							q.itd->hw_next);
2220 						q = *q_p;
2221 						break;
2222 					}
2223 				}
2224 
2225 				/* Take finished ITDs out of the schedule
2226 				 * and process them:  recycle, maybe report
2227 				 * URB completion.  HC won't cache the
2228 				 * pointer for much longer, if at all.
2229 				 */
2230 				*q_p = q.itd->itd_next;
2231 				*hw_p = q.itd->hw_next;
2232 				type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2233 				wmb();
2234 				modified = itd_complete (ehci, q.itd);
2235 				q = *q_p;
2236 				break;
2237 			case Q_TYPE_SITD:
2238 				/* If this SITD is still active, leave it for
2239 				 * later processing ... check the next entry.
2240 				 * No need to check for activity unless the
2241 				 * frame is current.
2242 				 */
2243 				if (frame == clock_frame && live &&
2244 						(q.sitd->hw_results &
2245 							SITD_ACTIVE(ehci))) {
2246 					incomplete = true;
2247 					q_p = &q.sitd->sitd_next;
2248 					hw_p = &q.sitd->hw_next;
2249 					type = Q_NEXT_TYPE(ehci,
2250 							q.sitd->hw_next);
2251 					q = *q_p;
2252 					break;
2253 				}
2254 
2255 				/* Take finished SITDs out of the schedule
2256 				 * and process them:  recycle, maybe report
2257 				 * URB completion.
2258 				 */
2259 				*q_p = q.sitd->sitd_next;
2260 				*hw_p = q.sitd->hw_next;
2261 				type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2262 				wmb();
2263 				modified = sitd_complete (ehci, q.sitd);
2264 				q = *q_p;
2265 				break;
2266 			default:
2267 				dbg ("corrupt type %d frame %d shadow %p",
2268 					type, frame, q.ptr);
2269 				// BUG ();
2270 				q.ptr = NULL;
2271 			}
2272 
2273 			/* assume completion callbacks modify the queue */
2274 			if (unlikely (modified)) {
2275 				if (likely(ehci->periodic_sched > 0))
2276 					goto restart;
2277 				/* short-circuit this scan */
2278 				now_uframe = clock;
2279 				break;
2280 			}
2281 		}
2282 
2283 		/* If we can tell we caught up to the hardware, stop now.
2284 		 * We can't advance our scan without collecting the ISO
2285 		 * transfers that are still pending in this frame.
2286 		 */
2287 		if (incomplete && HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
2288 			ehci->next_uframe = now_uframe;
2289 			break;
2290 		}
2291 
2292 		// FIXME:  this assumes we won't get lapped when
2293 		// latencies climb; that should be rare, but...
2294 		// detect it, and just go all the way around.
2295 		// FLR might help detect this case, so long as latencies
2296 		// don't exceed periodic_size msec (default 1.024 sec).
2297 
2298 		// FIXME:  likewise assumes HC doesn't halt mid-scan
2299 
2300 		if (now_uframe == clock) {
2301 			unsigned	now;
2302 
2303 			if (!HC_IS_RUNNING (ehci_to_hcd(ehci)->state)
2304 					|| ehci->periodic_sched == 0)
2305 				break;
2306 			ehci->next_uframe = now_uframe;
2307 			now = ehci_readl(ehci, &ehci->regs->frame_index) % mod;
2308 			if (now_uframe == now)
2309 				break;
2310 
2311 			/* rescan the rest of this frame, then ... */
2312 			clock = now;
2313 			clock_frame = clock >> 3;
2314 			if (ehci->clock_frame != clock_frame) {
2315 				free_cached_itd_list(ehci);
2316 				ehci->clock_frame = clock_frame;
2317 			}
2318 		} else {
2319 			now_uframe++;
2320 			now_uframe %= mod;
2321 		}
2322 	}
2323 }
2324