xref: /openbmc/linux/drivers/usb/host/ehci-sched.c (revision 545e4006)
1 /*
2  * Copyright (c) 2001-2004 by David Brownell
3  * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation; either version 2 of the License, or (at your
8  * option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software Foundation,
17  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19 
20 /* this file is part of ehci-hcd.c */
21 
22 /*-------------------------------------------------------------------------*/
23 
24 /*
25  * EHCI scheduled transaction support:  interrupt, iso, split iso
26  * These are called "periodic" transactions in the EHCI spec.
27  *
28  * Note that for interrupt transfers, the QH/QTD manipulation is shared
29  * with the "asynchronous" transaction support (control/bulk transfers).
30  * The only real difference is in how interrupt transfers are scheduled.
31  *
32  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33  * It keeps track of every ITD (or SITD) that's linked, and holds enough
34  * pre-calculated schedule data to make appending to the queue be quick.
35  */
36 
37 static int ehci_get_frame (struct usb_hcd *hcd);
38 
39 /*-------------------------------------------------------------------------*/
40 
41 /*
42  * periodic_next_shadow - return "next" pointer on shadow list
43  * @periodic: host pointer to qh/itd/sitd
44  * @tag: hardware tag for type of this record
45  */
46 static union ehci_shadow *
47 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
48 		__hc32 tag)
49 {
50 	switch (hc32_to_cpu(ehci, tag)) {
51 	case Q_TYPE_QH:
52 		return &periodic->qh->qh_next;
53 	case Q_TYPE_FSTN:
54 		return &periodic->fstn->fstn_next;
55 	case Q_TYPE_ITD:
56 		return &periodic->itd->itd_next;
57 	// case Q_TYPE_SITD:
58 	default:
59 		return &periodic->sitd->sitd_next;
60 	}
61 }
62 
63 /* caller must hold ehci->lock */
64 static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr)
65 {
66 	union ehci_shadow	*prev_p = &ehci->pshadow[frame];
67 	__hc32			*hw_p = &ehci->periodic[frame];
68 	union ehci_shadow	here = *prev_p;
69 
70 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
71 	while (here.ptr && here.ptr != ptr) {
72 		prev_p = periodic_next_shadow(ehci, prev_p,
73 				Q_NEXT_TYPE(ehci, *hw_p));
74 		hw_p = here.hw_next;
75 		here = *prev_p;
76 	}
77 	/* an interrupt entry (at list end) could have been shared */
78 	if (!here.ptr)
79 		return;
80 
81 	/* update shadow and hardware lists ... the old "next" pointers
82 	 * from ptr may still be in use, the caller updates them.
83 	 */
84 	*prev_p = *periodic_next_shadow(ehci, &here,
85 			Q_NEXT_TYPE(ehci, *hw_p));
86 	*hw_p = *here.hw_next;
87 }
88 
89 /* how many of the uframe's 125 usecs are allocated? */
90 static unsigned short
91 periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe)
92 {
93 	__hc32			*hw_p = &ehci->periodic [frame];
94 	union ehci_shadow	*q = &ehci->pshadow [frame];
95 	unsigned		usecs = 0;
96 
97 	while (q->ptr) {
98 		switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
99 		case Q_TYPE_QH:
100 			/* is it in the S-mask? */
101 			if (q->qh->hw_info2 & cpu_to_hc32(ehci, 1 << uframe))
102 				usecs += q->qh->usecs;
103 			/* ... or C-mask? */
104 			if (q->qh->hw_info2 & cpu_to_hc32(ehci,
105 					1 << (8 + uframe)))
106 				usecs += q->qh->c_usecs;
107 			hw_p = &q->qh->hw_next;
108 			q = &q->qh->qh_next;
109 			break;
110 		// case Q_TYPE_FSTN:
111 		default:
112 			/* for "save place" FSTNs, count the relevant INTR
113 			 * bandwidth from the previous frame
114 			 */
115 			if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) {
116 				ehci_dbg (ehci, "ignoring FSTN cost ...\n");
117 			}
118 			hw_p = &q->fstn->hw_next;
119 			q = &q->fstn->fstn_next;
120 			break;
121 		case Q_TYPE_ITD:
122 			if (q->itd->hw_transaction[uframe])
123 				usecs += q->itd->stream->usecs;
124 			hw_p = &q->itd->hw_next;
125 			q = &q->itd->itd_next;
126 			break;
127 		case Q_TYPE_SITD:
128 			/* is it in the S-mask?  (count SPLIT, DATA) */
129 			if (q->sitd->hw_uframe & cpu_to_hc32(ehci,
130 					1 << uframe)) {
131 				if (q->sitd->hw_fullspeed_ep &
132 						cpu_to_hc32(ehci, 1<<31))
133 					usecs += q->sitd->stream->usecs;
134 				else	/* worst case for OUT start-split */
135 					usecs += HS_USECS_ISO (188);
136 			}
137 
138 			/* ... C-mask?  (count CSPLIT, DATA) */
139 			if (q->sitd->hw_uframe &
140 					cpu_to_hc32(ehci, 1 << (8 + uframe))) {
141 				/* worst case for IN complete-split */
142 				usecs += q->sitd->stream->c_usecs;
143 			}
144 
145 			hw_p = &q->sitd->hw_next;
146 			q = &q->sitd->sitd_next;
147 			break;
148 		}
149 	}
150 #ifdef	DEBUG
151 	if (usecs > 100)
152 		ehci_err (ehci, "uframe %d sched overrun: %d usecs\n",
153 			frame * 8 + uframe, usecs);
154 #endif
155 	return usecs;
156 }
157 
158 /*-------------------------------------------------------------------------*/
159 
160 static int same_tt (struct usb_device *dev1, struct usb_device *dev2)
161 {
162 	if (!dev1->tt || !dev2->tt)
163 		return 0;
164 	if (dev1->tt != dev2->tt)
165 		return 0;
166 	if (dev1->tt->multi)
167 		return dev1->ttport == dev2->ttport;
168 	else
169 		return 1;
170 }
171 
172 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
173 
174 /* Which uframe does the low/fullspeed transfer start in?
175  *
176  * The parameter is the mask of ssplits in "H-frame" terms
177  * and this returns the transfer start uframe in "B-frame" terms,
178  * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
179  * will cause a transfer in "B-frame" uframe 0.  "B-frames" lag
180  * "H-frames" by 1 uframe.  See the EHCI spec sec 4.5 and figure 4.7.
181  */
182 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
183 {
184 	unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask);
185 	if (!smask) {
186 		ehci_err(ehci, "invalid empty smask!\n");
187 		/* uframe 7 can't have bw so this will indicate failure */
188 		return 7;
189 	}
190 	return ffs(smask) - 1;
191 }
192 
193 static const unsigned char
194 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
195 
196 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
197 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
198 {
199 	int i;
200 	for (i=0; i<7; i++) {
201 		if (max_tt_usecs[i] < tt_usecs[i]) {
202 			tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
203 			tt_usecs[i] = max_tt_usecs[i];
204 		}
205 	}
206 }
207 
208 /* How many of the tt's periodic downstream 1000 usecs are allocated?
209  *
210  * While this measures the bandwidth in terms of usecs/uframe,
211  * the low/fullspeed bus has no notion of uframes, so any particular
212  * low/fullspeed transfer can "carry over" from one uframe to the next,
213  * since the TT just performs downstream transfers in sequence.
214  *
215  * For example two separate 100 usec transfers can start in the same uframe,
216  * and the second one would "carry over" 75 usecs into the next uframe.
217  */
218 static void
219 periodic_tt_usecs (
220 	struct ehci_hcd *ehci,
221 	struct usb_device *dev,
222 	unsigned frame,
223 	unsigned short tt_usecs[8]
224 )
225 {
226 	__hc32			*hw_p = &ehci->periodic [frame];
227 	union ehci_shadow	*q = &ehci->pshadow [frame];
228 	unsigned char		uf;
229 
230 	memset(tt_usecs, 0, 16);
231 
232 	while (q->ptr) {
233 		switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
234 		case Q_TYPE_ITD:
235 			hw_p = &q->itd->hw_next;
236 			q = &q->itd->itd_next;
237 			continue;
238 		case Q_TYPE_QH:
239 			if (same_tt(dev, q->qh->dev)) {
240 				uf = tt_start_uframe(ehci, q->qh->hw_info2);
241 				tt_usecs[uf] += q->qh->tt_usecs;
242 			}
243 			hw_p = &q->qh->hw_next;
244 			q = &q->qh->qh_next;
245 			continue;
246 		case Q_TYPE_SITD:
247 			if (same_tt(dev, q->sitd->urb->dev)) {
248 				uf = tt_start_uframe(ehci, q->sitd->hw_uframe);
249 				tt_usecs[uf] += q->sitd->stream->tt_usecs;
250 			}
251 			hw_p = &q->sitd->hw_next;
252 			q = &q->sitd->sitd_next;
253 			continue;
254 		// case Q_TYPE_FSTN:
255 		default:
256 			ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n",
257 					frame);
258 			hw_p = &q->fstn->hw_next;
259 			q = &q->fstn->fstn_next;
260 		}
261 	}
262 
263 	carryover_tt_bandwidth(tt_usecs);
264 
265 	if (max_tt_usecs[7] < tt_usecs[7])
266 		ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n",
267 			frame, tt_usecs[7] - max_tt_usecs[7]);
268 }
269 
270 /*
271  * Return true if the device's tt's downstream bus is available for a
272  * periodic transfer of the specified length (usecs), starting at the
273  * specified frame/uframe.  Note that (as summarized in section 11.19
274  * of the usb 2.0 spec) TTs can buffer multiple transactions for each
275  * uframe.
276  *
277  * The uframe parameter is when the fullspeed/lowspeed transfer
278  * should be executed in "B-frame" terms, which is the same as the
279  * highspeed ssplit's uframe (which is in "H-frame" terms).  For example
280  * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
281  * See the EHCI spec sec 4.5 and fig 4.7.
282  *
283  * This checks if the full/lowspeed bus, at the specified starting uframe,
284  * has the specified bandwidth available, according to rules listed
285  * in USB 2.0 spec section 11.18.1 fig 11-60.
286  *
287  * This does not check if the transfer would exceed the max ssplit
288  * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
289  * since proper scheduling limits ssplits to less than 16 per uframe.
290  */
291 static int tt_available (
292 	struct ehci_hcd		*ehci,
293 	unsigned		period,
294 	struct usb_device	*dev,
295 	unsigned		frame,
296 	unsigned		uframe,
297 	u16			usecs
298 )
299 {
300 	if ((period == 0) || (uframe >= 7))	/* error */
301 		return 0;
302 
303 	for (; frame < ehci->periodic_size; frame += period) {
304 		unsigned short tt_usecs[8];
305 
306 		periodic_tt_usecs (ehci, dev, frame, tt_usecs);
307 
308 		ehci_vdbg(ehci, "tt frame %d check %d usecs start uframe %d in"
309 			" schedule %d/%d/%d/%d/%d/%d/%d/%d\n",
310 			frame, usecs, uframe,
311 			tt_usecs[0], tt_usecs[1], tt_usecs[2], tt_usecs[3],
312 			tt_usecs[4], tt_usecs[5], tt_usecs[6], tt_usecs[7]);
313 
314 		if (max_tt_usecs[uframe] <= tt_usecs[uframe]) {
315 			ehci_vdbg(ehci, "frame %d uframe %d fully scheduled\n",
316 				frame, uframe);
317 			return 0;
318 		}
319 
320 		/* special case for isoc transfers larger than 125us:
321 		 * the first and each subsequent fully used uframe
322 		 * must be empty, so as to not illegally delay
323 		 * already scheduled transactions
324 		 */
325 		if (125 < usecs) {
326 			int ufs = (usecs / 125) - 1;
327 			int i;
328 			for (i = uframe; i < (uframe + ufs) && i < 8; i++)
329 				if (0 < tt_usecs[i]) {
330 					ehci_vdbg(ehci,
331 						"multi-uframe xfer can't fit "
332 						"in frame %d uframe %d\n",
333 						frame, i);
334 					return 0;
335 				}
336 		}
337 
338 		tt_usecs[uframe] += usecs;
339 
340 		carryover_tt_bandwidth(tt_usecs);
341 
342 		/* fail if the carryover pushed bw past the last uframe's limit */
343 		if (max_tt_usecs[7] < tt_usecs[7]) {
344 			ehci_vdbg(ehci,
345 				"tt unavailable usecs %d frame %d uframe %d\n",
346 				usecs, frame, uframe);
347 			return 0;
348 		}
349 	}
350 
351 	return 1;
352 }
353 
354 #else
355 
356 /* return true iff the device's transaction translator is available
357  * for a periodic transfer starting at the specified frame, using
358  * all the uframes in the mask.
359  */
360 static int tt_no_collision (
361 	struct ehci_hcd		*ehci,
362 	unsigned		period,
363 	struct usb_device	*dev,
364 	unsigned		frame,
365 	u32			uf_mask
366 )
367 {
368 	if (period == 0)	/* error */
369 		return 0;
370 
371 	/* note bandwidth wastage:  split never follows csplit
372 	 * (different dev or endpoint) until the next uframe.
373 	 * calling convention doesn't make that distinction.
374 	 */
375 	for (; frame < ehci->periodic_size; frame += period) {
376 		union ehci_shadow	here;
377 		__hc32			type;
378 
379 		here = ehci->pshadow [frame];
380 		type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]);
381 		while (here.ptr) {
382 			switch (hc32_to_cpu(ehci, type)) {
383 			case Q_TYPE_ITD:
384 				type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
385 				here = here.itd->itd_next;
386 				continue;
387 			case Q_TYPE_QH:
388 				if (same_tt (dev, here.qh->dev)) {
389 					u32		mask;
390 
391 					mask = hc32_to_cpu(ehci,
392 							here.qh->hw_info2);
393 					/* "knows" no gap is needed */
394 					mask |= mask >> 8;
395 					if (mask & uf_mask)
396 						break;
397 				}
398 				type = Q_NEXT_TYPE(ehci, here.qh->hw_next);
399 				here = here.qh->qh_next;
400 				continue;
401 			case Q_TYPE_SITD:
402 				if (same_tt (dev, here.sitd->urb->dev)) {
403 					u16		mask;
404 
405 					mask = hc32_to_cpu(ehci, here.sitd
406 								->hw_uframe);
407 					/* FIXME assumes no gap for IN! */
408 					mask |= mask >> 8;
409 					if (mask & uf_mask)
410 						break;
411 				}
412 				type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
413 				here = here.sitd->sitd_next;
414 				continue;
415 			// case Q_TYPE_FSTN:
416 			default:
417 				ehci_dbg (ehci,
418 					"periodic frame %d bogus type %d\n",
419 					frame, type);
420 			}
421 
422 			/* collision or error */
423 			return 0;
424 		}
425 	}
426 
427 	/* no collision */
428 	return 1;
429 }
430 
431 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
432 
433 /*-------------------------------------------------------------------------*/
434 
435 static int enable_periodic (struct ehci_hcd *ehci)
436 {
437 	u32	cmd;
438 	int	status;
439 
440 	/* did clearing PSE did take effect yet?
441 	 * takes effect only at frame boundaries...
442 	 */
443 	status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
444 					     STS_PSS, 0, 9 * 125);
445 	if (status)
446 		return status;
447 
448 	cmd = ehci_readl(ehci, &ehci->regs->command) | CMD_PSE;
449 	ehci_writel(ehci, cmd, &ehci->regs->command);
450 	/* posted write ... PSS happens later */
451 	ehci_to_hcd(ehci)->state = HC_STATE_RUNNING;
452 
453 	/* make sure ehci_work scans these */
454 	ehci->next_uframe = ehci_readl(ehci, &ehci->regs->frame_index)
455 		% (ehci->periodic_size << 3);
456 	return 0;
457 }
458 
459 static int disable_periodic (struct ehci_hcd *ehci)
460 {
461 	u32	cmd;
462 	int	status;
463 
464 	/* did setting PSE not take effect yet?
465 	 * takes effect only at frame boundaries...
466 	 */
467 	status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
468 					     STS_PSS, STS_PSS, 9 * 125);
469 	if (status)
470 		return status;
471 
472 	cmd = ehci_readl(ehci, &ehci->regs->command) & ~CMD_PSE;
473 	ehci_writel(ehci, cmd, &ehci->regs->command);
474 	/* posted write ... */
475 
476 	ehci->next_uframe = -1;
477 	return 0;
478 }
479 
480 /*-------------------------------------------------------------------------*/
481 
482 /* periodic schedule slots have iso tds (normal or split) first, then a
483  * sparse tree for active interrupt transfers.
484  *
485  * this just links in a qh; caller guarantees uframe masks are set right.
486  * no FSTN support (yet; ehci 0.96+)
487  */
488 static int qh_link_periodic (struct ehci_hcd *ehci, struct ehci_qh *qh)
489 {
490 	unsigned	i;
491 	unsigned	period = qh->period;
492 
493 	dev_dbg (&qh->dev->dev,
494 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
495 		period, hc32_to_cpup(ehci, &qh->hw_info2) & (QH_CMASK | QH_SMASK),
496 		qh, qh->start, qh->usecs, qh->c_usecs);
497 
498 	/* high bandwidth, or otherwise every microframe */
499 	if (period == 0)
500 		period = 1;
501 
502 	for (i = qh->start; i < ehci->periodic_size; i += period) {
503 		union ehci_shadow	*prev = &ehci->pshadow[i];
504 		__hc32			*hw_p = &ehci->periodic[i];
505 		union ehci_shadow	here = *prev;
506 		__hc32			type = 0;
507 
508 		/* skip the iso nodes at list head */
509 		while (here.ptr) {
510 			type = Q_NEXT_TYPE(ehci, *hw_p);
511 			if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
512 				break;
513 			prev = periodic_next_shadow(ehci, prev, type);
514 			hw_p = &here.qh->hw_next;
515 			here = *prev;
516 		}
517 
518 		/* sorting each branch by period (slow-->fast)
519 		 * enables sharing interior tree nodes
520 		 */
521 		while (here.ptr && qh != here.qh) {
522 			if (qh->period > here.qh->period)
523 				break;
524 			prev = &here.qh->qh_next;
525 			hw_p = &here.qh->hw_next;
526 			here = *prev;
527 		}
528 		/* link in this qh, unless some earlier pass did that */
529 		if (qh != here.qh) {
530 			qh->qh_next = here;
531 			if (here.qh)
532 				qh->hw_next = *hw_p;
533 			wmb ();
534 			prev->qh = qh;
535 			*hw_p = QH_NEXT (ehci, qh->qh_dma);
536 		}
537 	}
538 	qh->qh_state = QH_STATE_LINKED;
539 	qh_get (qh);
540 
541 	/* update per-qh bandwidth for usbfs */
542 	ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period
543 		? ((qh->usecs + qh->c_usecs) / qh->period)
544 		: (qh->usecs * 8);
545 
546 	/* maybe enable periodic schedule processing */
547 	if (!ehci->periodic_sched++)
548 		return enable_periodic (ehci);
549 
550 	return 0;
551 }
552 
553 static void qh_unlink_periodic (struct ehci_hcd *ehci, struct ehci_qh *qh)
554 {
555 	unsigned	i;
556 	unsigned	period;
557 
558 	// FIXME:
559 	// IF this isn't high speed
560 	//   and this qh is active in the current uframe
561 	//   (and overlay token SplitXstate is false?)
562 	// THEN
563 	//   qh->hw_info1 |= __constant_cpu_to_hc32(1 << 7 /* "ignore" */);
564 
565 	/* high bandwidth, or otherwise part of every microframe */
566 	if ((period = qh->period) == 0)
567 		period = 1;
568 
569 	for (i = qh->start; i < ehci->periodic_size; i += period)
570 		periodic_unlink (ehci, i, qh);
571 
572 	/* update per-qh bandwidth for usbfs */
573 	ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period
574 		? ((qh->usecs + qh->c_usecs) / qh->period)
575 		: (qh->usecs * 8);
576 
577 	dev_dbg (&qh->dev->dev,
578 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
579 		qh->period,
580 		hc32_to_cpup(ehci, &qh->hw_info2) & (QH_CMASK | QH_SMASK),
581 		qh, qh->start, qh->usecs, qh->c_usecs);
582 
583 	/* qh->qh_next still "live" to HC */
584 	qh->qh_state = QH_STATE_UNLINK;
585 	qh->qh_next.ptr = NULL;
586 	qh_put (qh);
587 
588 	/* maybe turn off periodic schedule */
589 	ehci->periodic_sched--;
590 	if (!ehci->periodic_sched)
591 		(void) disable_periodic (ehci);
592 }
593 
594 static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh)
595 {
596 	unsigned	wait;
597 
598 	qh_unlink_periodic (ehci, qh);
599 
600 	/* simple/paranoid:  always delay, expecting the HC needs to read
601 	 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
602 	 * expect khubd to clean up after any CSPLITs we won't issue.
603 	 * active high speed queues may need bigger delays...
604 	 */
605 	if (list_empty (&qh->qtd_list)
606 			|| (cpu_to_hc32(ehci, QH_CMASK)
607 					& qh->hw_info2) != 0)
608 		wait = 2;
609 	else
610 		wait = 55;	/* worst case: 3 * 1024 */
611 
612 	udelay (wait);
613 	qh->qh_state = QH_STATE_IDLE;
614 	qh->hw_next = EHCI_LIST_END(ehci);
615 	wmb ();
616 }
617 
618 /*-------------------------------------------------------------------------*/
619 
620 static int check_period (
621 	struct ehci_hcd *ehci,
622 	unsigned	frame,
623 	unsigned	uframe,
624 	unsigned	period,
625 	unsigned	usecs
626 ) {
627 	int		claimed;
628 
629 	/* complete split running into next frame?
630 	 * given FSTN support, we could sometimes check...
631 	 */
632 	if (uframe >= 8)
633 		return 0;
634 
635 	/*
636 	 * 80% periodic == 100 usec/uframe available
637 	 * convert "usecs we need" to "max already claimed"
638 	 */
639 	usecs = 100 - usecs;
640 
641 	/* we "know" 2 and 4 uframe intervals were rejected; so
642 	 * for period 0, check _every_ microframe in the schedule.
643 	 */
644 	if (unlikely (period == 0)) {
645 		do {
646 			for (uframe = 0; uframe < 7; uframe++) {
647 				claimed = periodic_usecs (ehci, frame, uframe);
648 				if (claimed > usecs)
649 					return 0;
650 			}
651 		} while ((frame += 1) < ehci->periodic_size);
652 
653 	/* just check the specified uframe, at that period */
654 	} else {
655 		do {
656 			claimed = periodic_usecs (ehci, frame, uframe);
657 			if (claimed > usecs)
658 				return 0;
659 		} while ((frame += period) < ehci->periodic_size);
660 	}
661 
662 	// success!
663 	return 1;
664 }
665 
666 static int check_intr_schedule (
667 	struct ehci_hcd		*ehci,
668 	unsigned		frame,
669 	unsigned		uframe,
670 	const struct ehci_qh	*qh,
671 	__hc32			*c_maskp
672 )
673 {
674 	int		retval = -ENOSPC;
675 	u8		mask = 0;
676 
677 	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
678 		goto done;
679 
680 	if (!check_period (ehci, frame, uframe, qh->period, qh->usecs))
681 		goto done;
682 	if (!qh->c_usecs) {
683 		retval = 0;
684 		*c_maskp = 0;
685 		goto done;
686 	}
687 
688 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
689 	if (tt_available (ehci, qh->period, qh->dev, frame, uframe,
690 				qh->tt_usecs)) {
691 		unsigned i;
692 
693 		/* TODO : this may need FSTN for SSPLIT in uframe 5. */
694 		for (i=uframe+1; i<8 && i<uframe+4; i++)
695 			if (!check_period (ehci, frame, i,
696 						qh->period, qh->c_usecs))
697 				goto done;
698 			else
699 				mask |= 1 << i;
700 
701 		retval = 0;
702 
703 		*c_maskp = cpu_to_hc32(ehci, mask << 8);
704 	}
705 #else
706 	/* Make sure this tt's buffer is also available for CSPLITs.
707 	 * We pessimize a bit; probably the typical full speed case
708 	 * doesn't need the second CSPLIT.
709 	 *
710 	 * NOTE:  both SPLIT and CSPLIT could be checked in just
711 	 * one smart pass...
712 	 */
713 	mask = 0x03 << (uframe + qh->gap_uf);
714 	*c_maskp = cpu_to_hc32(ehci, mask << 8);
715 
716 	mask |= 1 << uframe;
717 	if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) {
718 		if (!check_period (ehci, frame, uframe + qh->gap_uf + 1,
719 					qh->period, qh->c_usecs))
720 			goto done;
721 		if (!check_period (ehci, frame, uframe + qh->gap_uf,
722 					qh->period, qh->c_usecs))
723 			goto done;
724 		retval = 0;
725 	}
726 #endif
727 done:
728 	return retval;
729 }
730 
731 /* "first fit" scheduling policy used the first time through,
732  * or when the previous schedule slot can't be re-used.
733  */
734 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
735 {
736 	int		status;
737 	unsigned	uframe;
738 	__hc32		c_mask;
739 	unsigned	frame;		/* 0..(qh->period - 1), or NO_FRAME */
740 
741 	qh_refresh(ehci, qh);
742 	qh->hw_next = EHCI_LIST_END(ehci);
743 	frame = qh->start;
744 
745 	/* reuse the previous schedule slots, if we can */
746 	if (frame < qh->period) {
747 		uframe = ffs(hc32_to_cpup(ehci, &qh->hw_info2) & QH_SMASK);
748 		status = check_intr_schedule (ehci, frame, --uframe,
749 				qh, &c_mask);
750 	} else {
751 		uframe = 0;
752 		c_mask = 0;
753 		status = -ENOSPC;
754 	}
755 
756 	/* else scan the schedule to find a group of slots such that all
757 	 * uframes have enough periodic bandwidth available.
758 	 */
759 	if (status) {
760 		/* "normal" case, uframing flexible except with splits */
761 		if (qh->period) {
762 			frame = qh->period - 1;
763 			do {
764 				for (uframe = 0; uframe < 8; uframe++) {
765 					status = check_intr_schedule (ehci,
766 							frame, uframe, qh,
767 							&c_mask);
768 					if (status == 0)
769 						break;
770 				}
771 			} while (status && frame--);
772 
773 		/* qh->period == 0 means every uframe */
774 		} else {
775 			frame = 0;
776 			status = check_intr_schedule (ehci, 0, 0, qh, &c_mask);
777 		}
778 		if (status)
779 			goto done;
780 		qh->start = frame;
781 
782 		/* reset S-frame and (maybe) C-frame masks */
783 		qh->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
784 		qh->hw_info2 |= qh->period
785 			? cpu_to_hc32(ehci, 1 << uframe)
786 			: cpu_to_hc32(ehci, QH_SMASK);
787 		qh->hw_info2 |= c_mask;
788 	} else
789 		ehci_dbg (ehci, "reused qh %p schedule\n", qh);
790 
791 	/* stuff into the periodic schedule */
792 	status = qh_link_periodic (ehci, qh);
793 done:
794 	return status;
795 }
796 
797 static int intr_submit (
798 	struct ehci_hcd		*ehci,
799 	struct urb		*urb,
800 	struct list_head	*qtd_list,
801 	gfp_t			mem_flags
802 ) {
803 	unsigned		epnum;
804 	unsigned long		flags;
805 	struct ehci_qh		*qh;
806 	int			status;
807 	struct list_head	empty;
808 
809 	/* get endpoint and transfer/schedule data */
810 	epnum = urb->ep->desc.bEndpointAddress;
811 
812 	spin_lock_irqsave (&ehci->lock, flags);
813 
814 	if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
815 			&ehci_to_hcd(ehci)->flags))) {
816 		status = -ESHUTDOWN;
817 		goto done_not_linked;
818 	}
819 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
820 	if (unlikely(status))
821 		goto done_not_linked;
822 
823 	/* get qh and force any scheduling errors */
824 	INIT_LIST_HEAD (&empty);
825 	qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
826 	if (qh == NULL) {
827 		status = -ENOMEM;
828 		goto done;
829 	}
830 	if (qh->qh_state == QH_STATE_IDLE) {
831 		if ((status = qh_schedule (ehci, qh)) != 0)
832 			goto done;
833 	}
834 
835 	/* then queue the urb's tds to the qh */
836 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
837 	BUG_ON (qh == NULL);
838 
839 	/* ... update usbfs periodic stats */
840 	ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
841 
842 done:
843 	if (unlikely(status))
844 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
845 done_not_linked:
846 	spin_unlock_irqrestore (&ehci->lock, flags);
847 	if (status)
848 		qtd_list_free (ehci, urb, qtd_list);
849 
850 	return status;
851 }
852 
853 /*-------------------------------------------------------------------------*/
854 
855 /* ehci_iso_stream ops work with both ITD and SITD */
856 
857 static struct ehci_iso_stream *
858 iso_stream_alloc (gfp_t mem_flags)
859 {
860 	struct ehci_iso_stream *stream;
861 
862 	stream = kzalloc(sizeof *stream, mem_flags);
863 	if (likely (stream != NULL)) {
864 		INIT_LIST_HEAD(&stream->td_list);
865 		INIT_LIST_HEAD(&stream->free_list);
866 		stream->next_uframe = -1;
867 		stream->refcount = 1;
868 	}
869 	return stream;
870 }
871 
872 static void
873 iso_stream_init (
874 	struct ehci_hcd		*ehci,
875 	struct ehci_iso_stream	*stream,
876 	struct usb_device	*dev,
877 	int			pipe,
878 	unsigned		interval
879 )
880 {
881 	static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
882 
883 	u32			buf1;
884 	unsigned		epnum, maxp;
885 	int			is_input;
886 	long			bandwidth;
887 
888 	/*
889 	 * this might be a "high bandwidth" highspeed endpoint,
890 	 * as encoded in the ep descriptor's wMaxPacket field
891 	 */
892 	epnum = usb_pipeendpoint (pipe);
893 	is_input = usb_pipein (pipe) ? USB_DIR_IN : 0;
894 	maxp = usb_maxpacket(dev, pipe, !is_input);
895 	if (is_input) {
896 		buf1 = (1 << 11);
897 	} else {
898 		buf1 = 0;
899 	}
900 
901 	/* knows about ITD vs SITD */
902 	if (dev->speed == USB_SPEED_HIGH) {
903 		unsigned multi = hb_mult(maxp);
904 
905 		stream->highspeed = 1;
906 
907 		maxp = max_packet(maxp);
908 		buf1 |= maxp;
909 		maxp *= multi;
910 
911 		stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
912 		stream->buf1 = cpu_to_hc32(ehci, buf1);
913 		stream->buf2 = cpu_to_hc32(ehci, multi);
914 
915 		/* usbfs wants to report the average usecs per frame tied up
916 		 * when transfers on this endpoint are scheduled ...
917 		 */
918 		stream->usecs = HS_USECS_ISO (maxp);
919 		bandwidth = stream->usecs * 8;
920 		bandwidth /= 1 << (interval - 1);
921 
922 	} else {
923 		u32		addr;
924 		int		think_time;
925 		int		hs_transfers;
926 
927 		addr = dev->ttport << 24;
928 		if (!ehci_is_TDI(ehci)
929 				|| (dev->tt->hub !=
930 					ehci_to_hcd(ehci)->self.root_hub))
931 			addr |= dev->tt->hub->devnum << 16;
932 		addr |= epnum << 8;
933 		addr |= dev->devnum;
934 		stream->usecs = HS_USECS_ISO (maxp);
935 		think_time = dev->tt ? dev->tt->think_time : 0;
936 		stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time (
937 				dev->speed, is_input, 1, maxp));
938 		hs_transfers = max (1u, (maxp + 187) / 188);
939 		if (is_input) {
940 			u32	tmp;
941 
942 			addr |= 1 << 31;
943 			stream->c_usecs = stream->usecs;
944 			stream->usecs = HS_USECS_ISO (1);
945 			stream->raw_mask = 1;
946 
947 			/* c-mask as specified in USB 2.0 11.18.4 3.c */
948 			tmp = (1 << (hs_transfers + 2)) - 1;
949 			stream->raw_mask |= tmp << (8 + 2);
950 		} else
951 			stream->raw_mask = smask_out [hs_transfers - 1];
952 		bandwidth = stream->usecs + stream->c_usecs;
953 		bandwidth /= 1 << (interval + 2);
954 
955 		/* stream->splits gets created from raw_mask later */
956 		stream->address = cpu_to_hc32(ehci, addr);
957 	}
958 	stream->bandwidth = bandwidth;
959 
960 	stream->udev = dev;
961 
962 	stream->bEndpointAddress = is_input | epnum;
963 	stream->interval = interval;
964 	stream->maxp = maxp;
965 }
966 
967 static void
968 iso_stream_put(struct ehci_hcd *ehci, struct ehci_iso_stream *stream)
969 {
970 	stream->refcount--;
971 
972 	/* free whenever just a dev->ep reference remains.
973 	 * not like a QH -- no persistent state (toggle, halt)
974 	 */
975 	if (stream->refcount == 1) {
976 		int		is_in;
977 
978 		// BUG_ON (!list_empty(&stream->td_list));
979 
980 		while (!list_empty (&stream->free_list)) {
981 			struct list_head	*entry;
982 
983 			entry = stream->free_list.next;
984 			list_del (entry);
985 
986 			/* knows about ITD vs SITD */
987 			if (stream->highspeed) {
988 				struct ehci_itd		*itd;
989 
990 				itd = list_entry (entry, struct ehci_itd,
991 						itd_list);
992 				dma_pool_free (ehci->itd_pool, itd,
993 						itd->itd_dma);
994 			} else {
995 				struct ehci_sitd	*sitd;
996 
997 				sitd = list_entry (entry, struct ehci_sitd,
998 						sitd_list);
999 				dma_pool_free (ehci->sitd_pool, sitd,
1000 						sitd->sitd_dma);
1001 			}
1002 		}
1003 
1004 		is_in = (stream->bEndpointAddress & USB_DIR_IN) ? 0x10 : 0;
1005 		stream->bEndpointAddress &= 0x0f;
1006 		stream->ep->hcpriv = NULL;
1007 
1008 		if (stream->rescheduled) {
1009 			ehci_info (ehci, "ep%d%s-iso rescheduled "
1010 				"%lu times in %lu seconds\n",
1011 				stream->bEndpointAddress, is_in ? "in" : "out",
1012 				stream->rescheduled,
1013 				((jiffies - stream->start)/HZ)
1014 				);
1015 		}
1016 
1017 		kfree(stream);
1018 	}
1019 }
1020 
1021 static inline struct ehci_iso_stream *
1022 iso_stream_get (struct ehci_iso_stream *stream)
1023 {
1024 	if (likely (stream != NULL))
1025 		stream->refcount++;
1026 	return stream;
1027 }
1028 
1029 static struct ehci_iso_stream *
1030 iso_stream_find (struct ehci_hcd *ehci, struct urb *urb)
1031 {
1032 	unsigned		epnum;
1033 	struct ehci_iso_stream	*stream;
1034 	struct usb_host_endpoint *ep;
1035 	unsigned long		flags;
1036 
1037 	epnum = usb_pipeendpoint (urb->pipe);
1038 	if (usb_pipein(urb->pipe))
1039 		ep = urb->dev->ep_in[epnum];
1040 	else
1041 		ep = urb->dev->ep_out[epnum];
1042 
1043 	spin_lock_irqsave (&ehci->lock, flags);
1044 	stream = ep->hcpriv;
1045 
1046 	if (unlikely (stream == NULL)) {
1047 		stream = iso_stream_alloc(GFP_ATOMIC);
1048 		if (likely (stream != NULL)) {
1049 			/* dev->ep owns the initial refcount */
1050 			ep->hcpriv = stream;
1051 			stream->ep = ep;
1052 			iso_stream_init(ehci, stream, urb->dev, urb->pipe,
1053 					urb->interval);
1054 		}
1055 
1056 	/* if dev->ep [epnum] is a QH, info1.maxpacket is nonzero */
1057 	} else if (unlikely (stream->hw_info1 != 0)) {
1058 		ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n",
1059 			urb->dev->devpath, epnum,
1060 			usb_pipein(urb->pipe) ? "in" : "out");
1061 		stream = NULL;
1062 	}
1063 
1064 	/* caller guarantees an eventual matching iso_stream_put */
1065 	stream = iso_stream_get (stream);
1066 
1067 	spin_unlock_irqrestore (&ehci->lock, flags);
1068 	return stream;
1069 }
1070 
1071 /*-------------------------------------------------------------------------*/
1072 
1073 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1074 
1075 static struct ehci_iso_sched *
1076 iso_sched_alloc (unsigned packets, gfp_t mem_flags)
1077 {
1078 	struct ehci_iso_sched	*iso_sched;
1079 	int			size = sizeof *iso_sched;
1080 
1081 	size += packets * sizeof (struct ehci_iso_packet);
1082 	iso_sched = kzalloc(size, mem_flags);
1083 	if (likely (iso_sched != NULL)) {
1084 		INIT_LIST_HEAD (&iso_sched->td_list);
1085 	}
1086 	return iso_sched;
1087 }
1088 
1089 static inline void
1090 itd_sched_init(
1091 	struct ehci_hcd		*ehci,
1092 	struct ehci_iso_sched	*iso_sched,
1093 	struct ehci_iso_stream	*stream,
1094 	struct urb		*urb
1095 )
1096 {
1097 	unsigned	i;
1098 	dma_addr_t	dma = urb->transfer_dma;
1099 
1100 	/* how many uframes are needed for these transfers */
1101 	iso_sched->span = urb->number_of_packets * stream->interval;
1102 
1103 	/* figure out per-uframe itd fields that we'll need later
1104 	 * when we fit new itds into the schedule.
1105 	 */
1106 	for (i = 0; i < urb->number_of_packets; i++) {
1107 		struct ehci_iso_packet	*uframe = &iso_sched->packet [i];
1108 		unsigned		length;
1109 		dma_addr_t		buf;
1110 		u32			trans;
1111 
1112 		length = urb->iso_frame_desc [i].length;
1113 		buf = dma + urb->iso_frame_desc [i].offset;
1114 
1115 		trans = EHCI_ISOC_ACTIVE;
1116 		trans |= buf & 0x0fff;
1117 		if (unlikely (((i + 1) == urb->number_of_packets))
1118 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1119 			trans |= EHCI_ITD_IOC;
1120 		trans |= length << 16;
1121 		uframe->transaction = cpu_to_hc32(ehci, trans);
1122 
1123 		/* might need to cross a buffer page within a uframe */
1124 		uframe->bufp = (buf & ~(u64)0x0fff);
1125 		buf += length;
1126 		if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff))))
1127 			uframe->cross = 1;
1128 	}
1129 }
1130 
1131 static void
1132 iso_sched_free (
1133 	struct ehci_iso_stream	*stream,
1134 	struct ehci_iso_sched	*iso_sched
1135 )
1136 {
1137 	if (!iso_sched)
1138 		return;
1139 	// caller must hold ehci->lock!
1140 	list_splice (&iso_sched->td_list, &stream->free_list);
1141 	kfree (iso_sched);
1142 }
1143 
1144 static int
1145 itd_urb_transaction (
1146 	struct ehci_iso_stream	*stream,
1147 	struct ehci_hcd		*ehci,
1148 	struct urb		*urb,
1149 	gfp_t			mem_flags
1150 )
1151 {
1152 	struct ehci_itd		*itd;
1153 	dma_addr_t		itd_dma;
1154 	int			i;
1155 	unsigned		num_itds;
1156 	struct ehci_iso_sched	*sched;
1157 	unsigned long		flags;
1158 
1159 	sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1160 	if (unlikely (sched == NULL))
1161 		return -ENOMEM;
1162 
1163 	itd_sched_init(ehci, sched, stream, urb);
1164 
1165 	if (urb->interval < 8)
1166 		num_itds = 1 + (sched->span + 7) / 8;
1167 	else
1168 		num_itds = urb->number_of_packets;
1169 
1170 	/* allocate/init ITDs */
1171 	spin_lock_irqsave (&ehci->lock, flags);
1172 	for (i = 0; i < num_itds; i++) {
1173 
1174 		/* free_list.next might be cache-hot ... but maybe
1175 		 * the HC caches it too. avoid that issue for now.
1176 		 */
1177 
1178 		/* prefer previously-allocated itds */
1179 		if (likely (!list_empty(&stream->free_list))) {
1180 			itd = list_entry (stream->free_list.prev,
1181 					struct ehci_itd, itd_list);
1182 			list_del (&itd->itd_list);
1183 			itd_dma = itd->itd_dma;
1184 		} else {
1185 			spin_unlock_irqrestore (&ehci->lock, flags);
1186 			itd = dma_pool_alloc (ehci->itd_pool, mem_flags,
1187 					&itd_dma);
1188 			spin_lock_irqsave (&ehci->lock, flags);
1189 			if (!itd) {
1190 				iso_sched_free(stream, sched);
1191 				spin_unlock_irqrestore(&ehci->lock, flags);
1192 				return -ENOMEM;
1193 			}
1194 		}
1195 
1196 		memset (itd, 0, sizeof *itd);
1197 		itd->itd_dma = itd_dma;
1198 		list_add (&itd->itd_list, &sched->td_list);
1199 	}
1200 	spin_unlock_irqrestore (&ehci->lock, flags);
1201 
1202 	/* temporarily store schedule info in hcpriv */
1203 	urb->hcpriv = sched;
1204 	urb->error_count = 0;
1205 	return 0;
1206 }
1207 
1208 /*-------------------------------------------------------------------------*/
1209 
1210 static inline int
1211 itd_slot_ok (
1212 	struct ehci_hcd		*ehci,
1213 	u32			mod,
1214 	u32			uframe,
1215 	u8			usecs,
1216 	u32			period
1217 )
1218 {
1219 	uframe %= period;
1220 	do {
1221 		/* can't commit more than 80% periodic == 100 usec */
1222 		if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7)
1223 				> (100 - usecs))
1224 			return 0;
1225 
1226 		/* we know urb->interval is 2^N uframes */
1227 		uframe += period;
1228 	} while (uframe < mod);
1229 	return 1;
1230 }
1231 
1232 static inline int
1233 sitd_slot_ok (
1234 	struct ehci_hcd		*ehci,
1235 	u32			mod,
1236 	struct ehci_iso_stream	*stream,
1237 	u32			uframe,
1238 	struct ehci_iso_sched	*sched,
1239 	u32			period_uframes
1240 )
1241 {
1242 	u32			mask, tmp;
1243 	u32			frame, uf;
1244 
1245 	mask = stream->raw_mask << (uframe & 7);
1246 
1247 	/* for IN, don't wrap CSPLIT into the next frame */
1248 	if (mask & ~0xffff)
1249 		return 0;
1250 
1251 	/* this multi-pass logic is simple, but performance may
1252 	 * suffer when the schedule data isn't cached.
1253 	 */
1254 
1255 	/* check bandwidth */
1256 	uframe %= period_uframes;
1257 	do {
1258 		u32		max_used;
1259 
1260 		frame = uframe >> 3;
1261 		uf = uframe & 7;
1262 
1263 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1264 		/* The tt's fullspeed bus bandwidth must be available.
1265 		 * tt_available scheduling guarantees 10+% for control/bulk.
1266 		 */
1267 		if (!tt_available (ehci, period_uframes << 3,
1268 				stream->udev, frame, uf, stream->tt_usecs))
1269 			return 0;
1270 #else
1271 		/* tt must be idle for start(s), any gap, and csplit.
1272 		 * assume scheduling slop leaves 10+% for control/bulk.
1273 		 */
1274 		if (!tt_no_collision (ehci, period_uframes << 3,
1275 				stream->udev, frame, mask))
1276 			return 0;
1277 #endif
1278 
1279 		/* check starts (OUT uses more than one) */
1280 		max_used = 100 - stream->usecs;
1281 		for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) {
1282 			if (periodic_usecs (ehci, frame, uf) > max_used)
1283 				return 0;
1284 		}
1285 
1286 		/* for IN, check CSPLIT */
1287 		if (stream->c_usecs) {
1288 			uf = uframe & 7;
1289 			max_used = 100 - stream->c_usecs;
1290 			do {
1291 				tmp = 1 << uf;
1292 				tmp <<= 8;
1293 				if ((stream->raw_mask & tmp) == 0)
1294 					continue;
1295 				if (periodic_usecs (ehci, frame, uf)
1296 						> max_used)
1297 					return 0;
1298 			} while (++uf < 8);
1299 		}
1300 
1301 		/* we know urb->interval is 2^N uframes */
1302 		uframe += period_uframes;
1303 	} while (uframe < mod);
1304 
1305 	stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7));
1306 	return 1;
1307 }
1308 
1309 /*
1310  * This scheduler plans almost as far into the future as it has actual
1311  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
1312  * "as small as possible" to be cache-friendlier.)  That limits the size
1313  * transfers you can stream reliably; avoid more than 64 msec per urb.
1314  * Also avoid queue depths of less than ehci's worst irq latency (affected
1315  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1316  * and other factors); or more than about 230 msec total (for portability,
1317  * given EHCI_TUNE_FLS and the slop).  Or, write a smarter scheduler!
1318  */
1319 
1320 #define SCHEDULE_SLOP	10	/* frames */
1321 
1322 static int
1323 iso_stream_schedule (
1324 	struct ehci_hcd		*ehci,
1325 	struct urb		*urb,
1326 	struct ehci_iso_stream	*stream
1327 )
1328 {
1329 	u32			now, start, max, period;
1330 	int			status;
1331 	unsigned		mod = ehci->periodic_size << 3;
1332 	struct ehci_iso_sched	*sched = urb->hcpriv;
1333 
1334 	if (sched->span > (mod - 8 * SCHEDULE_SLOP)) {
1335 		ehci_dbg (ehci, "iso request %p too long\n", urb);
1336 		status = -EFBIG;
1337 		goto fail;
1338 	}
1339 
1340 	if ((stream->depth + sched->span) > mod) {
1341 		ehci_dbg (ehci, "request %p would overflow (%d+%d>%d)\n",
1342 			urb, stream->depth, sched->span, mod);
1343 		status = -EFBIG;
1344 		goto fail;
1345 	}
1346 
1347 	now = ehci_readl(ehci, &ehci->regs->frame_index) % mod;
1348 
1349 	/* when's the last uframe this urb could start? */
1350 	max = now + mod;
1351 
1352 	/* Typical case: reuse current schedule, stream is still active.
1353 	 * Hopefully there are no gaps from the host falling behind
1354 	 * (irq delays etc), but if there are we'll take the next
1355 	 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
1356 	 */
1357 	if (likely (!list_empty (&stream->td_list))) {
1358 		start = stream->next_uframe;
1359 		if (start < now)
1360 			start += mod;
1361 
1362 		/* Fell behind (by up to twice the slop amount)? */
1363 		if (start >= max - 2 * 8 * SCHEDULE_SLOP)
1364 			start += stream->interval * DIV_ROUND_UP(
1365 					max - start, stream->interval) - mod;
1366 
1367 		/* Tried to schedule too far into the future? */
1368 		if (unlikely((start + sched->span) >= max)) {
1369 			status = -EFBIG;
1370 			goto fail;
1371 		}
1372 		goto ready;
1373 	}
1374 
1375 	/* need to schedule; when's the next (u)frame we could start?
1376 	 * this is bigger than ehci->i_thresh allows; scheduling itself
1377 	 * isn't free, the slop should handle reasonably slow cpus.  it
1378 	 * can also help high bandwidth if the dma and irq loads don't
1379 	 * jump until after the queue is primed.
1380 	 */
1381 	start = SCHEDULE_SLOP * 8 + (now & ~0x07);
1382 	start %= mod;
1383 	stream->next_uframe = start;
1384 
1385 	/* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
1386 
1387 	period = urb->interval;
1388 	if (!stream->highspeed)
1389 		period <<= 3;
1390 
1391 	/* find a uframe slot with enough bandwidth */
1392 	for (; start < (stream->next_uframe + period); start++) {
1393 		int		enough_space;
1394 
1395 		/* check schedule: enough space? */
1396 		if (stream->highspeed)
1397 			enough_space = itd_slot_ok (ehci, mod, start,
1398 					stream->usecs, period);
1399 		else {
1400 			if ((start % 8) >= 6)
1401 				continue;
1402 			enough_space = sitd_slot_ok (ehci, mod, stream,
1403 					start, sched, period);
1404 		}
1405 
1406 		/* schedule it here if there's enough bandwidth */
1407 		if (enough_space) {
1408 			stream->next_uframe = start % mod;
1409 			goto ready;
1410 		}
1411 	}
1412 
1413 	/* no room in the schedule */
1414 	ehci_dbg (ehci, "iso %ssched full %p (now %d max %d)\n",
1415 		list_empty (&stream->td_list) ? "" : "re",
1416 		urb, now, max);
1417 	status = -ENOSPC;
1418 
1419 fail:
1420 	iso_sched_free (stream, sched);
1421 	urb->hcpriv = NULL;
1422 	return status;
1423 
1424 ready:
1425 	/* report high speed start in uframes; full speed, in frames */
1426 	urb->start_frame = stream->next_uframe;
1427 	if (!stream->highspeed)
1428 		urb->start_frame >>= 3;
1429 	return 0;
1430 }
1431 
1432 /*-------------------------------------------------------------------------*/
1433 
1434 static inline void
1435 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1436 		struct ehci_itd *itd)
1437 {
1438 	int i;
1439 
1440 	/* it's been recently zeroed */
1441 	itd->hw_next = EHCI_LIST_END(ehci);
1442 	itd->hw_bufp [0] = stream->buf0;
1443 	itd->hw_bufp [1] = stream->buf1;
1444 	itd->hw_bufp [2] = stream->buf2;
1445 
1446 	for (i = 0; i < 8; i++)
1447 		itd->index[i] = -1;
1448 
1449 	/* All other fields are filled when scheduling */
1450 }
1451 
1452 static inline void
1453 itd_patch(
1454 	struct ehci_hcd		*ehci,
1455 	struct ehci_itd		*itd,
1456 	struct ehci_iso_sched	*iso_sched,
1457 	unsigned		index,
1458 	u16			uframe
1459 )
1460 {
1461 	struct ehci_iso_packet	*uf = &iso_sched->packet [index];
1462 	unsigned		pg = itd->pg;
1463 
1464 	// BUG_ON (pg == 6 && uf->cross);
1465 
1466 	uframe &= 0x07;
1467 	itd->index [uframe] = index;
1468 
1469 	itd->hw_transaction[uframe] = uf->transaction;
1470 	itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1471 	itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1472 	itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1473 
1474 	/* iso_frame_desc[].offset must be strictly increasing */
1475 	if (unlikely (uf->cross)) {
1476 		u64	bufp = uf->bufp + 4096;
1477 
1478 		itd->pg = ++pg;
1479 		itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1480 		itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1481 	}
1482 }
1483 
1484 static inline void
1485 itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1486 {
1487 	/* always prepend ITD/SITD ... only QH tree is order-sensitive */
1488 	itd->itd_next = ehci->pshadow [frame];
1489 	itd->hw_next = ehci->periodic [frame];
1490 	ehci->pshadow [frame].itd = itd;
1491 	itd->frame = frame;
1492 	wmb ();
1493 	ehci->periodic[frame] = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1494 }
1495 
1496 /* fit urb's itds into the selected schedule slot; activate as needed */
1497 static int
1498 itd_link_urb (
1499 	struct ehci_hcd		*ehci,
1500 	struct urb		*urb,
1501 	unsigned		mod,
1502 	struct ehci_iso_stream	*stream
1503 )
1504 {
1505 	int			packet;
1506 	unsigned		next_uframe, uframe, frame;
1507 	struct ehci_iso_sched	*iso_sched = urb->hcpriv;
1508 	struct ehci_itd		*itd;
1509 
1510 	next_uframe = stream->next_uframe % mod;
1511 
1512 	if (unlikely (list_empty(&stream->td_list))) {
1513 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1514 				+= stream->bandwidth;
1515 		ehci_vdbg (ehci,
1516 			"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
1517 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1518 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1519 			urb->interval,
1520 			next_uframe >> 3, next_uframe & 0x7);
1521 		stream->start = jiffies;
1522 	}
1523 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1524 
1525 	/* fill iTDs uframe by uframe */
1526 	for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) {
1527 		if (itd == NULL) {
1528 			/* ASSERT:  we have all necessary itds */
1529 			// BUG_ON (list_empty (&iso_sched->td_list));
1530 
1531 			/* ASSERT:  no itds for this endpoint in this uframe */
1532 
1533 			itd = list_entry (iso_sched->td_list.next,
1534 					struct ehci_itd, itd_list);
1535 			list_move_tail (&itd->itd_list, &stream->td_list);
1536 			itd->stream = iso_stream_get (stream);
1537 			itd->urb = usb_get_urb (urb);
1538 			itd_init (ehci, stream, itd);
1539 		}
1540 
1541 		uframe = next_uframe & 0x07;
1542 		frame = next_uframe >> 3;
1543 
1544 		itd_patch(ehci, itd, iso_sched, packet, uframe);
1545 
1546 		next_uframe += stream->interval;
1547 		stream->depth += stream->interval;
1548 		next_uframe %= mod;
1549 		packet++;
1550 
1551 		/* link completed itds into the schedule */
1552 		if (((next_uframe >> 3) != frame)
1553 				|| packet == urb->number_of_packets) {
1554 			itd_link (ehci, frame % ehci->periodic_size, itd);
1555 			itd = NULL;
1556 		}
1557 	}
1558 	stream->next_uframe = next_uframe;
1559 
1560 	/* don't need that schedule data any more */
1561 	iso_sched_free (stream, iso_sched);
1562 	urb->hcpriv = NULL;
1563 
1564 	timer_action (ehci, TIMER_IO_WATCHDOG);
1565 	if (unlikely (!ehci->periodic_sched++))
1566 		return enable_periodic (ehci);
1567 	return 0;
1568 }
1569 
1570 #define	ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1571 
1572 /* Process and recycle a completed ITD.  Return true iff its urb completed,
1573  * and hence its completion callback probably added things to the hardware
1574  * schedule.
1575  *
1576  * Note that we carefully avoid recycling this descriptor until after any
1577  * completion callback runs, so that it won't be reused quickly.  That is,
1578  * assuming (a) no more than two urbs per frame on this endpoint, and also
1579  * (b) only this endpoint's completions submit URBs.  It seems some silicon
1580  * corrupts things if you reuse completed descriptors very quickly...
1581  */
1582 static unsigned
1583 itd_complete (
1584 	struct ehci_hcd	*ehci,
1585 	struct ehci_itd	*itd
1586 ) {
1587 	struct urb				*urb = itd->urb;
1588 	struct usb_iso_packet_descriptor	*desc;
1589 	u32					t;
1590 	unsigned				uframe;
1591 	int					urb_index = -1;
1592 	struct ehci_iso_stream			*stream = itd->stream;
1593 	struct usb_device			*dev;
1594 	unsigned				retval = false;
1595 
1596 	/* for each uframe with a packet */
1597 	for (uframe = 0; uframe < 8; uframe++) {
1598 		if (likely (itd->index[uframe] == -1))
1599 			continue;
1600 		urb_index = itd->index[uframe];
1601 		desc = &urb->iso_frame_desc [urb_index];
1602 
1603 		t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]);
1604 		itd->hw_transaction [uframe] = 0;
1605 		stream->depth -= stream->interval;
1606 
1607 		/* report transfer status */
1608 		if (unlikely (t & ISO_ERRS)) {
1609 			urb->error_count++;
1610 			if (t & EHCI_ISOC_BUF_ERR)
1611 				desc->status = usb_pipein (urb->pipe)
1612 					? -ENOSR  /* hc couldn't read */
1613 					: -ECOMM; /* hc couldn't write */
1614 			else if (t & EHCI_ISOC_BABBLE)
1615 				desc->status = -EOVERFLOW;
1616 			else /* (t & EHCI_ISOC_XACTERR) */
1617 				desc->status = -EPROTO;
1618 
1619 			/* HC need not update length with this error */
1620 			if (!(t & EHCI_ISOC_BABBLE))
1621 				desc->actual_length = EHCI_ITD_LENGTH (t);
1622 		} else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) {
1623 			desc->status = 0;
1624 			desc->actual_length = EHCI_ITD_LENGTH (t);
1625 		} else {
1626 			/* URB was too late */
1627 			desc->status = -EXDEV;
1628 		}
1629 	}
1630 
1631 	/* handle completion now? */
1632 	if (likely ((urb_index + 1) != urb->number_of_packets))
1633 		goto done;
1634 
1635 	/* ASSERT: it's really the last itd for this urb
1636 	list_for_each_entry (itd, &stream->td_list, itd_list)
1637 		BUG_ON (itd->urb == urb);
1638 	 */
1639 
1640 	/* give urb back to the driver; completion often (re)submits */
1641 	dev = urb->dev;
1642 	ehci_urb_done(ehci, urb, 0);
1643 	retval = true;
1644 	urb = NULL;
1645 	ehci->periodic_sched--;
1646 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1647 
1648 	if (unlikely (list_empty (&stream->td_list))) {
1649 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1650 				-= stream->bandwidth;
1651 		ehci_vdbg (ehci,
1652 			"deschedule devp %s ep%d%s-iso\n",
1653 			dev->devpath, stream->bEndpointAddress & 0x0f,
1654 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
1655 	}
1656 	iso_stream_put (ehci, stream);
1657 	/* OK to recycle this ITD now that its completion callback ran. */
1658 done:
1659 	usb_put_urb(urb);
1660 	itd->urb = NULL;
1661 	itd->stream = NULL;
1662 	list_move(&itd->itd_list, &stream->free_list);
1663 	iso_stream_put(ehci, stream);
1664 
1665 	return retval;
1666 }
1667 
1668 /*-------------------------------------------------------------------------*/
1669 
1670 static int itd_submit (struct ehci_hcd *ehci, struct urb *urb,
1671 	gfp_t mem_flags)
1672 {
1673 	int			status = -EINVAL;
1674 	unsigned long		flags;
1675 	struct ehci_iso_stream	*stream;
1676 
1677 	/* Get iso_stream head */
1678 	stream = iso_stream_find (ehci, urb);
1679 	if (unlikely (stream == NULL)) {
1680 		ehci_dbg (ehci, "can't get iso stream\n");
1681 		return -ENOMEM;
1682 	}
1683 	if (unlikely (urb->interval != stream->interval)) {
1684 		ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
1685 			stream->interval, urb->interval);
1686 		goto done;
1687 	}
1688 
1689 #ifdef EHCI_URB_TRACE
1690 	ehci_dbg (ehci,
1691 		"%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1692 		__func__, urb->dev->devpath, urb,
1693 		usb_pipeendpoint (urb->pipe),
1694 		usb_pipein (urb->pipe) ? "in" : "out",
1695 		urb->transfer_buffer_length,
1696 		urb->number_of_packets, urb->interval,
1697 		stream);
1698 #endif
1699 
1700 	/* allocate ITDs w/o locking anything */
1701 	status = itd_urb_transaction (stream, ehci, urb, mem_flags);
1702 	if (unlikely (status < 0)) {
1703 		ehci_dbg (ehci, "can't init itds\n");
1704 		goto done;
1705 	}
1706 
1707 	/* schedule ... need to lock */
1708 	spin_lock_irqsave (&ehci->lock, flags);
1709 	if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
1710 			       &ehci_to_hcd(ehci)->flags))) {
1711 		status = -ESHUTDOWN;
1712 		goto done_not_linked;
1713 	}
1714 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1715 	if (unlikely(status))
1716 		goto done_not_linked;
1717 	status = iso_stream_schedule(ehci, urb, stream);
1718 	if (likely (status == 0))
1719 		itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
1720 	else
1721 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1722 done_not_linked:
1723 	spin_unlock_irqrestore (&ehci->lock, flags);
1724 
1725 done:
1726 	if (unlikely (status < 0))
1727 		iso_stream_put (ehci, stream);
1728 	return status;
1729 }
1730 
1731 /*-------------------------------------------------------------------------*/
1732 
1733 /*
1734  * "Split ISO TDs" ... used for USB 1.1 devices going through the
1735  * TTs in USB 2.0 hubs.  These need microframe scheduling.
1736  */
1737 
1738 static inline void
1739 sitd_sched_init(
1740 	struct ehci_hcd		*ehci,
1741 	struct ehci_iso_sched	*iso_sched,
1742 	struct ehci_iso_stream	*stream,
1743 	struct urb		*urb
1744 )
1745 {
1746 	unsigned	i;
1747 	dma_addr_t	dma = urb->transfer_dma;
1748 
1749 	/* how many frames are needed for these transfers */
1750 	iso_sched->span = urb->number_of_packets * stream->interval;
1751 
1752 	/* figure out per-frame sitd fields that we'll need later
1753 	 * when we fit new sitds into the schedule.
1754 	 */
1755 	for (i = 0; i < urb->number_of_packets; i++) {
1756 		struct ehci_iso_packet	*packet = &iso_sched->packet [i];
1757 		unsigned		length;
1758 		dma_addr_t		buf;
1759 		u32			trans;
1760 
1761 		length = urb->iso_frame_desc [i].length & 0x03ff;
1762 		buf = dma + urb->iso_frame_desc [i].offset;
1763 
1764 		trans = SITD_STS_ACTIVE;
1765 		if (((i + 1) == urb->number_of_packets)
1766 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1767 			trans |= SITD_IOC;
1768 		trans |= length << 16;
1769 		packet->transaction = cpu_to_hc32(ehci, trans);
1770 
1771 		/* might need to cross a buffer page within a td */
1772 		packet->bufp = buf;
1773 		packet->buf1 = (buf + length) & ~0x0fff;
1774 		if (packet->buf1 != (buf & ~(u64)0x0fff))
1775 			packet->cross = 1;
1776 
1777 		/* OUT uses multiple start-splits */
1778 		if (stream->bEndpointAddress & USB_DIR_IN)
1779 			continue;
1780 		length = (length + 187) / 188;
1781 		if (length > 1) /* BEGIN vs ALL */
1782 			length |= 1 << 3;
1783 		packet->buf1 |= length;
1784 	}
1785 }
1786 
1787 static int
1788 sitd_urb_transaction (
1789 	struct ehci_iso_stream	*stream,
1790 	struct ehci_hcd		*ehci,
1791 	struct urb		*urb,
1792 	gfp_t			mem_flags
1793 )
1794 {
1795 	struct ehci_sitd	*sitd;
1796 	dma_addr_t		sitd_dma;
1797 	int			i;
1798 	struct ehci_iso_sched	*iso_sched;
1799 	unsigned long		flags;
1800 
1801 	iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1802 	if (iso_sched == NULL)
1803 		return -ENOMEM;
1804 
1805 	sitd_sched_init(ehci, iso_sched, stream, urb);
1806 
1807 	/* allocate/init sITDs */
1808 	spin_lock_irqsave (&ehci->lock, flags);
1809 	for (i = 0; i < urb->number_of_packets; i++) {
1810 
1811 		/* NOTE:  for now, we don't try to handle wraparound cases
1812 		 * for IN (using sitd->hw_backpointer, like a FSTN), which
1813 		 * means we never need two sitds for full speed packets.
1814 		 */
1815 
1816 		/* free_list.next might be cache-hot ... but maybe
1817 		 * the HC caches it too. avoid that issue for now.
1818 		 */
1819 
1820 		/* prefer previously-allocated sitds */
1821 		if (!list_empty(&stream->free_list)) {
1822 			sitd = list_entry (stream->free_list.prev,
1823 					 struct ehci_sitd, sitd_list);
1824 			list_del (&sitd->sitd_list);
1825 			sitd_dma = sitd->sitd_dma;
1826 		} else {
1827 			spin_unlock_irqrestore (&ehci->lock, flags);
1828 			sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags,
1829 					&sitd_dma);
1830 			spin_lock_irqsave (&ehci->lock, flags);
1831 			if (!sitd) {
1832 				iso_sched_free(stream, iso_sched);
1833 				spin_unlock_irqrestore(&ehci->lock, flags);
1834 				return -ENOMEM;
1835 			}
1836 		}
1837 
1838 		memset (sitd, 0, sizeof *sitd);
1839 		sitd->sitd_dma = sitd_dma;
1840 		list_add (&sitd->sitd_list, &iso_sched->td_list);
1841 	}
1842 
1843 	/* temporarily store schedule info in hcpriv */
1844 	urb->hcpriv = iso_sched;
1845 	urb->error_count = 0;
1846 
1847 	spin_unlock_irqrestore (&ehci->lock, flags);
1848 	return 0;
1849 }
1850 
1851 /*-------------------------------------------------------------------------*/
1852 
1853 static inline void
1854 sitd_patch(
1855 	struct ehci_hcd		*ehci,
1856 	struct ehci_iso_stream	*stream,
1857 	struct ehci_sitd	*sitd,
1858 	struct ehci_iso_sched	*iso_sched,
1859 	unsigned		index
1860 )
1861 {
1862 	struct ehci_iso_packet	*uf = &iso_sched->packet [index];
1863 	u64			bufp = uf->bufp;
1864 
1865 	sitd->hw_next = EHCI_LIST_END(ehci);
1866 	sitd->hw_fullspeed_ep = stream->address;
1867 	sitd->hw_uframe = stream->splits;
1868 	sitd->hw_results = uf->transaction;
1869 	sitd->hw_backpointer = EHCI_LIST_END(ehci);
1870 
1871 	bufp = uf->bufp;
1872 	sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
1873 	sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
1874 
1875 	sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
1876 	if (uf->cross)
1877 		bufp += 4096;
1878 	sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
1879 	sitd->index = index;
1880 }
1881 
1882 static inline void
1883 sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
1884 {
1885 	/* note: sitd ordering could matter (CSPLIT then SSPLIT) */
1886 	sitd->sitd_next = ehci->pshadow [frame];
1887 	sitd->hw_next = ehci->periodic [frame];
1888 	ehci->pshadow [frame].sitd = sitd;
1889 	sitd->frame = frame;
1890 	wmb ();
1891 	ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
1892 }
1893 
1894 /* fit urb's sitds into the selected schedule slot; activate as needed */
1895 static int
1896 sitd_link_urb (
1897 	struct ehci_hcd		*ehci,
1898 	struct urb		*urb,
1899 	unsigned		mod,
1900 	struct ehci_iso_stream	*stream
1901 )
1902 {
1903 	int			packet;
1904 	unsigned		next_uframe;
1905 	struct ehci_iso_sched	*sched = urb->hcpriv;
1906 	struct ehci_sitd	*sitd;
1907 
1908 	next_uframe = stream->next_uframe;
1909 
1910 	if (list_empty(&stream->td_list)) {
1911 		/* usbfs ignores TT bandwidth */
1912 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1913 				+= stream->bandwidth;
1914 		ehci_vdbg (ehci,
1915 			"sched devp %s ep%d%s-iso [%d] %dms/%04x\n",
1916 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1917 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1918 			(next_uframe >> 3) % ehci->periodic_size,
1919 			stream->interval, hc32_to_cpu(ehci, stream->splits));
1920 		stream->start = jiffies;
1921 	}
1922 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1923 
1924 	/* fill sITDs frame by frame */
1925 	for (packet = 0, sitd = NULL;
1926 			packet < urb->number_of_packets;
1927 			packet++) {
1928 
1929 		/* ASSERT:  we have all necessary sitds */
1930 		BUG_ON (list_empty (&sched->td_list));
1931 
1932 		/* ASSERT:  no itds for this endpoint in this frame */
1933 
1934 		sitd = list_entry (sched->td_list.next,
1935 				struct ehci_sitd, sitd_list);
1936 		list_move_tail (&sitd->sitd_list, &stream->td_list);
1937 		sitd->stream = iso_stream_get (stream);
1938 		sitd->urb = usb_get_urb (urb);
1939 
1940 		sitd_patch(ehci, stream, sitd, sched, packet);
1941 		sitd_link (ehci, (next_uframe >> 3) % ehci->periodic_size,
1942 				sitd);
1943 
1944 		next_uframe += stream->interval << 3;
1945 		stream->depth += stream->interval << 3;
1946 	}
1947 	stream->next_uframe = next_uframe % mod;
1948 
1949 	/* don't need that schedule data any more */
1950 	iso_sched_free (stream, sched);
1951 	urb->hcpriv = NULL;
1952 
1953 	timer_action (ehci, TIMER_IO_WATCHDOG);
1954 	if (!ehci->periodic_sched++)
1955 		return enable_periodic (ehci);
1956 	return 0;
1957 }
1958 
1959 /*-------------------------------------------------------------------------*/
1960 
1961 #define	SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
1962 				| SITD_STS_XACT | SITD_STS_MMF)
1963 
1964 /* Process and recycle a completed SITD.  Return true iff its urb completed,
1965  * and hence its completion callback probably added things to the hardware
1966  * schedule.
1967  *
1968  * Note that we carefully avoid recycling this descriptor until after any
1969  * completion callback runs, so that it won't be reused quickly.  That is,
1970  * assuming (a) no more than two urbs per frame on this endpoint, and also
1971  * (b) only this endpoint's completions submit URBs.  It seems some silicon
1972  * corrupts things if you reuse completed descriptors very quickly...
1973  */
1974 static unsigned
1975 sitd_complete (
1976 	struct ehci_hcd		*ehci,
1977 	struct ehci_sitd	*sitd
1978 ) {
1979 	struct urb				*urb = sitd->urb;
1980 	struct usb_iso_packet_descriptor	*desc;
1981 	u32					t;
1982 	int					urb_index = -1;
1983 	struct ehci_iso_stream			*stream = sitd->stream;
1984 	struct usb_device			*dev;
1985 	unsigned				retval = false;
1986 
1987 	urb_index = sitd->index;
1988 	desc = &urb->iso_frame_desc [urb_index];
1989 	t = hc32_to_cpup(ehci, &sitd->hw_results);
1990 
1991 	/* report transfer status */
1992 	if (t & SITD_ERRS) {
1993 		urb->error_count++;
1994 		if (t & SITD_STS_DBE)
1995 			desc->status = usb_pipein (urb->pipe)
1996 				? -ENOSR  /* hc couldn't read */
1997 				: -ECOMM; /* hc couldn't write */
1998 		else if (t & SITD_STS_BABBLE)
1999 			desc->status = -EOVERFLOW;
2000 		else /* XACT, MMF, etc */
2001 			desc->status = -EPROTO;
2002 	} else {
2003 		desc->status = 0;
2004 		desc->actual_length = desc->length - SITD_LENGTH (t);
2005 	}
2006 	stream->depth -= stream->interval << 3;
2007 
2008 	/* handle completion now? */
2009 	if ((urb_index + 1) != urb->number_of_packets)
2010 		goto done;
2011 
2012 	/* ASSERT: it's really the last sitd for this urb
2013 	list_for_each_entry (sitd, &stream->td_list, sitd_list)
2014 		BUG_ON (sitd->urb == urb);
2015 	 */
2016 
2017 	/* give urb back to the driver; completion often (re)submits */
2018 	dev = urb->dev;
2019 	ehci_urb_done(ehci, urb, 0);
2020 	retval = true;
2021 	urb = NULL;
2022 	ehci->periodic_sched--;
2023 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2024 
2025 	if (list_empty (&stream->td_list)) {
2026 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2027 				-= stream->bandwidth;
2028 		ehci_vdbg (ehci,
2029 			"deschedule devp %s ep%d%s-iso\n",
2030 			dev->devpath, stream->bEndpointAddress & 0x0f,
2031 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
2032 	}
2033 	iso_stream_put (ehci, stream);
2034 	/* OK to recycle this SITD now that its completion callback ran. */
2035 done:
2036 	usb_put_urb(urb);
2037 	sitd->urb = NULL;
2038 	sitd->stream = NULL;
2039 	list_move(&sitd->sitd_list, &stream->free_list);
2040 	iso_stream_put(ehci, stream);
2041 
2042 	return retval;
2043 }
2044 
2045 
2046 static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb,
2047 	gfp_t mem_flags)
2048 {
2049 	int			status = -EINVAL;
2050 	unsigned long		flags;
2051 	struct ehci_iso_stream	*stream;
2052 
2053 	/* Get iso_stream head */
2054 	stream = iso_stream_find (ehci, urb);
2055 	if (stream == NULL) {
2056 		ehci_dbg (ehci, "can't get iso stream\n");
2057 		return -ENOMEM;
2058 	}
2059 	if (urb->interval != stream->interval) {
2060 		ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
2061 			stream->interval, urb->interval);
2062 		goto done;
2063 	}
2064 
2065 #ifdef EHCI_URB_TRACE
2066 	ehci_dbg (ehci,
2067 		"submit %p dev%s ep%d%s-iso len %d\n",
2068 		urb, urb->dev->devpath,
2069 		usb_pipeendpoint (urb->pipe),
2070 		usb_pipein (urb->pipe) ? "in" : "out",
2071 		urb->transfer_buffer_length);
2072 #endif
2073 
2074 	/* allocate SITDs */
2075 	status = sitd_urb_transaction (stream, ehci, urb, mem_flags);
2076 	if (status < 0) {
2077 		ehci_dbg (ehci, "can't init sitds\n");
2078 		goto done;
2079 	}
2080 
2081 	/* schedule ... need to lock */
2082 	spin_lock_irqsave (&ehci->lock, flags);
2083 	if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
2084 			       &ehci_to_hcd(ehci)->flags))) {
2085 		status = -ESHUTDOWN;
2086 		goto done_not_linked;
2087 	}
2088 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2089 	if (unlikely(status))
2090 		goto done_not_linked;
2091 	status = iso_stream_schedule(ehci, urb, stream);
2092 	if (status == 0)
2093 		sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
2094 	else
2095 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2096 done_not_linked:
2097 	spin_unlock_irqrestore (&ehci->lock, flags);
2098 
2099 done:
2100 	if (status < 0)
2101 		iso_stream_put (ehci, stream);
2102 	return status;
2103 }
2104 
2105 /*-------------------------------------------------------------------------*/
2106 
2107 static void
2108 scan_periodic (struct ehci_hcd *ehci)
2109 {
2110 	unsigned	now_uframe, frame, clock, clock_frame, mod;
2111 	unsigned	modified;
2112 
2113 	mod = ehci->periodic_size << 3;
2114 
2115 	/*
2116 	 * When running, scan from last scan point up to "now"
2117 	 * else clean up by scanning everything that's left.
2118 	 * Touches as few pages as possible:  cache-friendly.
2119 	 */
2120 	now_uframe = ehci->next_uframe;
2121 	if (HC_IS_RUNNING (ehci_to_hcd(ehci)->state))
2122 		clock = ehci_readl(ehci, &ehci->regs->frame_index);
2123 	else
2124 		clock = now_uframe + mod - 1;
2125 	clock %= mod;
2126 	clock_frame = clock >> 3;
2127 
2128 	for (;;) {
2129 		union ehci_shadow	q, *q_p;
2130 		__hc32			type, *hw_p;
2131 		unsigned		incomplete = false;
2132 
2133 		frame = now_uframe >> 3;
2134 
2135 restart:
2136 		/* scan each element in frame's queue for completions */
2137 		q_p = &ehci->pshadow [frame];
2138 		hw_p = &ehci->periodic [frame];
2139 		q.ptr = q_p->ptr;
2140 		type = Q_NEXT_TYPE(ehci, *hw_p);
2141 		modified = 0;
2142 
2143 		while (q.ptr != NULL) {
2144 			unsigned		uf;
2145 			union ehci_shadow	temp;
2146 			int			live;
2147 
2148 			live = HC_IS_RUNNING (ehci_to_hcd(ehci)->state);
2149 			switch (hc32_to_cpu(ehci, type)) {
2150 			case Q_TYPE_QH:
2151 				/* handle any completions */
2152 				temp.qh = qh_get (q.qh);
2153 				type = Q_NEXT_TYPE(ehci, q.qh->hw_next);
2154 				q = q.qh->qh_next;
2155 				modified = qh_completions (ehci, temp.qh);
2156 				if (unlikely (list_empty (&temp.qh->qtd_list)))
2157 					intr_deschedule (ehci, temp.qh);
2158 				qh_put (temp.qh);
2159 				break;
2160 			case Q_TYPE_FSTN:
2161 				/* for "save place" FSTNs, look at QH entries
2162 				 * in the previous frame for completions.
2163 				 */
2164 				if (q.fstn->hw_prev != EHCI_LIST_END(ehci)) {
2165 					dbg ("ignoring completions from FSTNs");
2166 				}
2167 				type = Q_NEXT_TYPE(ehci, q.fstn->hw_next);
2168 				q = q.fstn->fstn_next;
2169 				break;
2170 			case Q_TYPE_ITD:
2171 				/* If this ITD is still active, leave it for
2172 				 * later processing ... check the next entry.
2173 				 * No need to check for activity unless the
2174 				 * frame is current.
2175 				 */
2176 				if (frame == clock_frame && live) {
2177 					rmb();
2178 					for (uf = 0; uf < 8; uf++) {
2179 						if (q.itd->hw_transaction[uf] &
2180 							    ITD_ACTIVE(ehci))
2181 							break;
2182 					}
2183 					if (uf < 8) {
2184 						incomplete = true;
2185 						q_p = &q.itd->itd_next;
2186 						hw_p = &q.itd->hw_next;
2187 						type = Q_NEXT_TYPE(ehci,
2188 							q.itd->hw_next);
2189 						q = *q_p;
2190 						break;
2191 					}
2192 				}
2193 
2194 				/* Take finished ITDs out of the schedule
2195 				 * and process them:  recycle, maybe report
2196 				 * URB completion.  HC won't cache the
2197 				 * pointer for much longer, if at all.
2198 				 */
2199 				*q_p = q.itd->itd_next;
2200 				*hw_p = q.itd->hw_next;
2201 				type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2202 				wmb();
2203 				modified = itd_complete (ehci, q.itd);
2204 				q = *q_p;
2205 				break;
2206 			case Q_TYPE_SITD:
2207 				/* If this SITD is still active, leave it for
2208 				 * later processing ... check the next entry.
2209 				 * No need to check for activity unless the
2210 				 * frame is current.
2211 				 */
2212 				if (frame == clock_frame && live &&
2213 						(q.sitd->hw_results &
2214 							SITD_ACTIVE(ehci))) {
2215 					incomplete = true;
2216 					q_p = &q.sitd->sitd_next;
2217 					hw_p = &q.sitd->hw_next;
2218 					type = Q_NEXT_TYPE(ehci,
2219 							q.sitd->hw_next);
2220 					q = *q_p;
2221 					break;
2222 				}
2223 
2224 				/* Take finished SITDs out of the schedule
2225 				 * and process them:  recycle, maybe report
2226 				 * URB completion.
2227 				 */
2228 				*q_p = q.sitd->sitd_next;
2229 				*hw_p = q.sitd->hw_next;
2230 				type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2231 				wmb();
2232 				modified = sitd_complete (ehci, q.sitd);
2233 				q = *q_p;
2234 				break;
2235 			default:
2236 				dbg ("corrupt type %d frame %d shadow %p",
2237 					type, frame, q.ptr);
2238 				// BUG ();
2239 				q.ptr = NULL;
2240 			}
2241 
2242 			/* assume completion callbacks modify the queue */
2243 			if (unlikely (modified)) {
2244 				if (likely(ehci->periodic_sched > 0))
2245 					goto restart;
2246 				/* maybe we can short-circuit this scan! */
2247 				disable_periodic(ehci);
2248 				now_uframe = clock;
2249 				break;
2250 			}
2251 		}
2252 
2253 		/* If we can tell we caught up to the hardware, stop now.
2254 		 * We can't advance our scan without collecting the ISO
2255 		 * transfers that are still pending in this frame.
2256 		 */
2257 		if (incomplete && HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
2258 			ehci->next_uframe = now_uframe;
2259 			break;
2260 		}
2261 
2262 		// FIXME:  this assumes we won't get lapped when
2263 		// latencies climb; that should be rare, but...
2264 		// detect it, and just go all the way around.
2265 		// FLR might help detect this case, so long as latencies
2266 		// don't exceed periodic_size msec (default 1.024 sec).
2267 
2268 		// FIXME:  likewise assumes HC doesn't halt mid-scan
2269 
2270 		if (now_uframe == clock) {
2271 			unsigned	now;
2272 
2273 			if (!HC_IS_RUNNING (ehci_to_hcd(ehci)->state)
2274 					|| ehci->periodic_sched == 0)
2275 				break;
2276 			ehci->next_uframe = now_uframe;
2277 			now = ehci_readl(ehci, &ehci->regs->frame_index) % mod;
2278 			if (now_uframe == now)
2279 				break;
2280 
2281 			/* rescan the rest of this frame, then ... */
2282 			clock = now;
2283 			clock_frame = clock >> 3;
2284 		} else {
2285 			now_uframe++;
2286 			now_uframe %= mod;
2287 		}
2288 	}
2289 }
2290