xref: /openbmc/linux/drivers/usb/host/ehci-sched.c (revision 46c73d1d)
1 /*
2  * Copyright (c) 2001-2004 by David Brownell
3  * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation; either version 2 of the License, or (at your
8  * option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software Foundation,
17  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19 
20 /* this file is part of ehci-hcd.c */
21 
22 /*-------------------------------------------------------------------------*/
23 
24 /*
25  * EHCI scheduled transaction support:  interrupt, iso, split iso
26  * These are called "periodic" transactions in the EHCI spec.
27  *
28  * Note that for interrupt transfers, the QH/QTD manipulation is shared
29  * with the "asynchronous" transaction support (control/bulk transfers).
30  * The only real difference is in how interrupt transfers are scheduled.
31  *
32  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33  * It keeps track of every ITD (or SITD) that's linked, and holds enough
34  * pre-calculated schedule data to make appending to the queue be quick.
35  */
36 
37 static int ehci_get_frame (struct usb_hcd *hcd);
38 
39 /*
40  * periodic_next_shadow - return "next" pointer on shadow list
41  * @periodic: host pointer to qh/itd/sitd
42  * @tag: hardware tag for type of this record
43  */
44 static union ehci_shadow *
45 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
46 		__hc32 tag)
47 {
48 	switch (hc32_to_cpu(ehci, tag)) {
49 	case Q_TYPE_QH:
50 		return &periodic->qh->qh_next;
51 	case Q_TYPE_FSTN:
52 		return &periodic->fstn->fstn_next;
53 	case Q_TYPE_ITD:
54 		return &periodic->itd->itd_next;
55 	// case Q_TYPE_SITD:
56 	default:
57 		return &periodic->sitd->sitd_next;
58 	}
59 }
60 
61 static __hc32 *
62 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
63 		__hc32 tag)
64 {
65 	switch (hc32_to_cpu(ehci, tag)) {
66 	/* our ehci_shadow.qh is actually software part */
67 	case Q_TYPE_QH:
68 		return &periodic->qh->hw->hw_next;
69 	/* others are hw parts */
70 	default:
71 		return periodic->hw_next;
72 	}
73 }
74 
75 /* caller must hold ehci->lock */
76 static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr)
77 {
78 	union ehci_shadow	*prev_p = &ehci->pshadow[frame];
79 	__hc32			*hw_p = &ehci->periodic[frame];
80 	union ehci_shadow	here = *prev_p;
81 
82 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
83 	while (here.ptr && here.ptr != ptr) {
84 		prev_p = periodic_next_shadow(ehci, prev_p,
85 				Q_NEXT_TYPE(ehci, *hw_p));
86 		hw_p = shadow_next_periodic(ehci, &here,
87 				Q_NEXT_TYPE(ehci, *hw_p));
88 		here = *prev_p;
89 	}
90 	/* an interrupt entry (at list end) could have been shared */
91 	if (!here.ptr)
92 		return;
93 
94 	/* update shadow and hardware lists ... the old "next" pointers
95 	 * from ptr may still be in use, the caller updates them.
96 	 */
97 	*prev_p = *periodic_next_shadow(ehci, &here,
98 			Q_NEXT_TYPE(ehci, *hw_p));
99 
100 	if (!ehci->use_dummy_qh ||
101 	    *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
102 			!= EHCI_LIST_END(ehci))
103 		*hw_p = *shadow_next_periodic(ehci, &here,
104 				Q_NEXT_TYPE(ehci, *hw_p));
105 	else
106 		*hw_p = ehci->dummy->qh_dma;
107 }
108 
109 /* how many of the uframe's 125 usecs are allocated? */
110 static unsigned short
111 periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe)
112 {
113 	__hc32			*hw_p = &ehci->periodic [frame];
114 	union ehci_shadow	*q = &ehci->pshadow [frame];
115 	unsigned		usecs = 0;
116 	struct ehci_qh_hw	*hw;
117 
118 	while (q->ptr) {
119 		switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
120 		case Q_TYPE_QH:
121 			hw = q->qh->hw;
122 			/* is it in the S-mask? */
123 			if (hw->hw_info2 & cpu_to_hc32(ehci, 1 << uframe))
124 				usecs += q->qh->usecs;
125 			/* ... or C-mask? */
126 			if (hw->hw_info2 & cpu_to_hc32(ehci,
127 					1 << (8 + uframe)))
128 				usecs += q->qh->c_usecs;
129 			hw_p = &hw->hw_next;
130 			q = &q->qh->qh_next;
131 			break;
132 		// case Q_TYPE_FSTN:
133 		default:
134 			/* for "save place" FSTNs, count the relevant INTR
135 			 * bandwidth from the previous frame
136 			 */
137 			if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) {
138 				ehci_dbg (ehci, "ignoring FSTN cost ...\n");
139 			}
140 			hw_p = &q->fstn->hw_next;
141 			q = &q->fstn->fstn_next;
142 			break;
143 		case Q_TYPE_ITD:
144 			if (q->itd->hw_transaction[uframe])
145 				usecs += q->itd->stream->usecs;
146 			hw_p = &q->itd->hw_next;
147 			q = &q->itd->itd_next;
148 			break;
149 		case Q_TYPE_SITD:
150 			/* is it in the S-mask?  (count SPLIT, DATA) */
151 			if (q->sitd->hw_uframe & cpu_to_hc32(ehci,
152 					1 << uframe)) {
153 				if (q->sitd->hw_fullspeed_ep &
154 						cpu_to_hc32(ehci, 1<<31))
155 					usecs += q->sitd->stream->usecs;
156 				else	/* worst case for OUT start-split */
157 					usecs += HS_USECS_ISO (188);
158 			}
159 
160 			/* ... C-mask?  (count CSPLIT, DATA) */
161 			if (q->sitd->hw_uframe &
162 					cpu_to_hc32(ehci, 1 << (8 + uframe))) {
163 				/* worst case for IN complete-split */
164 				usecs += q->sitd->stream->c_usecs;
165 			}
166 
167 			hw_p = &q->sitd->hw_next;
168 			q = &q->sitd->sitd_next;
169 			break;
170 		}
171 	}
172 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
173 	if (usecs > ehci->uframe_periodic_max)
174 		ehci_err (ehci, "uframe %d sched overrun: %d usecs\n",
175 			frame * 8 + uframe, usecs);
176 #endif
177 	return usecs;
178 }
179 
180 /*-------------------------------------------------------------------------*/
181 
182 static int same_tt (struct usb_device *dev1, struct usb_device *dev2)
183 {
184 	if (!dev1->tt || !dev2->tt)
185 		return 0;
186 	if (dev1->tt != dev2->tt)
187 		return 0;
188 	if (dev1->tt->multi)
189 		return dev1->ttport == dev2->ttport;
190 	else
191 		return 1;
192 }
193 
194 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
195 
196 /* Which uframe does the low/fullspeed transfer start in?
197  *
198  * The parameter is the mask of ssplits in "H-frame" terms
199  * and this returns the transfer start uframe in "B-frame" terms,
200  * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
201  * will cause a transfer in "B-frame" uframe 0.  "B-frames" lag
202  * "H-frames" by 1 uframe.  See the EHCI spec sec 4.5 and figure 4.7.
203  */
204 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
205 {
206 	unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask);
207 	if (!smask) {
208 		ehci_err(ehci, "invalid empty smask!\n");
209 		/* uframe 7 can't have bw so this will indicate failure */
210 		return 7;
211 	}
212 	return ffs(smask) - 1;
213 }
214 
215 static const unsigned char
216 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
217 
218 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
219 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
220 {
221 	int i;
222 	for (i=0; i<7; i++) {
223 		if (max_tt_usecs[i] < tt_usecs[i]) {
224 			tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
225 			tt_usecs[i] = max_tt_usecs[i];
226 		}
227 	}
228 }
229 
230 /* How many of the tt's periodic downstream 1000 usecs are allocated?
231  *
232  * While this measures the bandwidth in terms of usecs/uframe,
233  * the low/fullspeed bus has no notion of uframes, so any particular
234  * low/fullspeed transfer can "carry over" from one uframe to the next,
235  * since the TT just performs downstream transfers in sequence.
236  *
237  * For example two separate 100 usec transfers can start in the same uframe,
238  * and the second one would "carry over" 75 usecs into the next uframe.
239  */
240 static void
241 periodic_tt_usecs (
242 	struct ehci_hcd *ehci,
243 	struct usb_device *dev,
244 	unsigned frame,
245 	unsigned short tt_usecs[8]
246 )
247 {
248 	__hc32			*hw_p = &ehci->periodic [frame];
249 	union ehci_shadow	*q = &ehci->pshadow [frame];
250 	unsigned char		uf;
251 
252 	memset(tt_usecs, 0, 16);
253 
254 	while (q->ptr) {
255 		switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
256 		case Q_TYPE_ITD:
257 			hw_p = &q->itd->hw_next;
258 			q = &q->itd->itd_next;
259 			continue;
260 		case Q_TYPE_QH:
261 			if (same_tt(dev, q->qh->dev)) {
262 				uf = tt_start_uframe(ehci, q->qh->hw->hw_info2);
263 				tt_usecs[uf] += q->qh->tt_usecs;
264 			}
265 			hw_p = &q->qh->hw->hw_next;
266 			q = &q->qh->qh_next;
267 			continue;
268 		case Q_TYPE_SITD:
269 			if (same_tt(dev, q->sitd->urb->dev)) {
270 				uf = tt_start_uframe(ehci, q->sitd->hw_uframe);
271 				tt_usecs[uf] += q->sitd->stream->tt_usecs;
272 			}
273 			hw_p = &q->sitd->hw_next;
274 			q = &q->sitd->sitd_next;
275 			continue;
276 		// case Q_TYPE_FSTN:
277 		default:
278 			ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n",
279 					frame);
280 			hw_p = &q->fstn->hw_next;
281 			q = &q->fstn->fstn_next;
282 		}
283 	}
284 
285 	carryover_tt_bandwidth(tt_usecs);
286 
287 	if (max_tt_usecs[7] < tt_usecs[7])
288 		ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n",
289 			frame, tt_usecs[7] - max_tt_usecs[7]);
290 }
291 
292 /*
293  * Return true if the device's tt's downstream bus is available for a
294  * periodic transfer of the specified length (usecs), starting at the
295  * specified frame/uframe.  Note that (as summarized in section 11.19
296  * of the usb 2.0 spec) TTs can buffer multiple transactions for each
297  * uframe.
298  *
299  * The uframe parameter is when the fullspeed/lowspeed transfer
300  * should be executed in "B-frame" terms, which is the same as the
301  * highspeed ssplit's uframe (which is in "H-frame" terms).  For example
302  * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
303  * See the EHCI spec sec 4.5 and fig 4.7.
304  *
305  * This checks if the full/lowspeed bus, at the specified starting uframe,
306  * has the specified bandwidth available, according to rules listed
307  * in USB 2.0 spec section 11.18.1 fig 11-60.
308  *
309  * This does not check if the transfer would exceed the max ssplit
310  * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
311  * since proper scheduling limits ssplits to less than 16 per uframe.
312  */
313 static int tt_available (
314 	struct ehci_hcd		*ehci,
315 	unsigned		period,
316 	struct usb_device	*dev,
317 	unsigned		frame,
318 	unsigned		uframe,
319 	u16			usecs
320 )
321 {
322 	if ((period == 0) || (uframe >= 7))	/* error */
323 		return 0;
324 
325 	for (; frame < ehci->periodic_size; frame += period) {
326 		unsigned short tt_usecs[8];
327 
328 		periodic_tt_usecs (ehci, dev, frame, tt_usecs);
329 
330 		if (max_tt_usecs[uframe] <= tt_usecs[uframe])
331 			return 0;
332 
333 		/* special case for isoc transfers larger than 125us:
334 		 * the first and each subsequent fully used uframe
335 		 * must be empty, so as to not illegally delay
336 		 * already scheduled transactions
337 		 */
338 		if (125 < usecs) {
339 			int ufs = (usecs / 125);
340 			int i;
341 			for (i = uframe; i < (uframe + ufs) && i < 8; i++)
342 				if (0 < tt_usecs[i])
343 					return 0;
344 		}
345 
346 		tt_usecs[uframe] += usecs;
347 
348 		carryover_tt_bandwidth(tt_usecs);
349 
350 		/* fail if the carryover pushed bw past the last uframe's limit */
351 		if (max_tt_usecs[7] < tt_usecs[7])
352 			return 0;
353 	}
354 
355 	return 1;
356 }
357 
358 #else
359 
360 /* return true iff the device's transaction translator is available
361  * for a periodic transfer starting at the specified frame, using
362  * all the uframes in the mask.
363  */
364 static int tt_no_collision (
365 	struct ehci_hcd		*ehci,
366 	unsigned		period,
367 	struct usb_device	*dev,
368 	unsigned		frame,
369 	u32			uf_mask
370 )
371 {
372 	if (period == 0)	/* error */
373 		return 0;
374 
375 	/* note bandwidth wastage:  split never follows csplit
376 	 * (different dev or endpoint) until the next uframe.
377 	 * calling convention doesn't make that distinction.
378 	 */
379 	for (; frame < ehci->periodic_size; frame += period) {
380 		union ehci_shadow	here;
381 		__hc32			type;
382 		struct ehci_qh_hw	*hw;
383 
384 		here = ehci->pshadow [frame];
385 		type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]);
386 		while (here.ptr) {
387 			switch (hc32_to_cpu(ehci, type)) {
388 			case Q_TYPE_ITD:
389 				type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
390 				here = here.itd->itd_next;
391 				continue;
392 			case Q_TYPE_QH:
393 				hw = here.qh->hw;
394 				if (same_tt (dev, here.qh->dev)) {
395 					u32		mask;
396 
397 					mask = hc32_to_cpu(ehci,
398 							hw->hw_info2);
399 					/* "knows" no gap is needed */
400 					mask |= mask >> 8;
401 					if (mask & uf_mask)
402 						break;
403 				}
404 				type = Q_NEXT_TYPE(ehci, hw->hw_next);
405 				here = here.qh->qh_next;
406 				continue;
407 			case Q_TYPE_SITD:
408 				if (same_tt (dev, here.sitd->urb->dev)) {
409 					u16		mask;
410 
411 					mask = hc32_to_cpu(ehci, here.sitd
412 								->hw_uframe);
413 					/* FIXME assumes no gap for IN! */
414 					mask |= mask >> 8;
415 					if (mask & uf_mask)
416 						break;
417 				}
418 				type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
419 				here = here.sitd->sitd_next;
420 				continue;
421 			// case Q_TYPE_FSTN:
422 			default:
423 				ehci_dbg (ehci,
424 					"periodic frame %d bogus type %d\n",
425 					frame, type);
426 			}
427 
428 			/* collision or error */
429 			return 0;
430 		}
431 	}
432 
433 	/* no collision */
434 	return 1;
435 }
436 
437 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
438 
439 /*-------------------------------------------------------------------------*/
440 
441 static void enable_periodic(struct ehci_hcd *ehci)
442 {
443 	if (ehci->periodic_count++)
444 		return;
445 
446 	/* Stop waiting to turn off the periodic schedule */
447 	ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC);
448 
449 	/* Don't start the schedule until PSS is 0 */
450 	ehci_poll_PSS(ehci);
451 	turn_on_io_watchdog(ehci);
452 }
453 
454 static void disable_periodic(struct ehci_hcd *ehci)
455 {
456 	if (--ehci->periodic_count)
457 		return;
458 
459 	/* Don't turn off the schedule until PSS is 1 */
460 	ehci_poll_PSS(ehci);
461 }
462 
463 /*-------------------------------------------------------------------------*/
464 
465 /* periodic schedule slots have iso tds (normal or split) first, then a
466  * sparse tree for active interrupt transfers.
467  *
468  * this just links in a qh; caller guarantees uframe masks are set right.
469  * no FSTN support (yet; ehci 0.96+)
470  */
471 static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
472 {
473 	unsigned	i;
474 	unsigned	period = qh->period;
475 
476 	dev_dbg (&qh->dev->dev,
477 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
478 		period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
479 			& (QH_CMASK | QH_SMASK),
480 		qh, qh->start, qh->usecs, qh->c_usecs);
481 
482 	/* high bandwidth, or otherwise every microframe */
483 	if (period == 0)
484 		period = 1;
485 
486 	for (i = qh->start; i < ehci->periodic_size; i += period) {
487 		union ehci_shadow	*prev = &ehci->pshadow[i];
488 		__hc32			*hw_p = &ehci->periodic[i];
489 		union ehci_shadow	here = *prev;
490 		__hc32			type = 0;
491 
492 		/* skip the iso nodes at list head */
493 		while (here.ptr) {
494 			type = Q_NEXT_TYPE(ehci, *hw_p);
495 			if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
496 				break;
497 			prev = periodic_next_shadow(ehci, prev, type);
498 			hw_p = shadow_next_periodic(ehci, &here, type);
499 			here = *prev;
500 		}
501 
502 		/* sorting each branch by period (slow-->fast)
503 		 * enables sharing interior tree nodes
504 		 */
505 		while (here.ptr && qh != here.qh) {
506 			if (qh->period > here.qh->period)
507 				break;
508 			prev = &here.qh->qh_next;
509 			hw_p = &here.qh->hw->hw_next;
510 			here = *prev;
511 		}
512 		/* link in this qh, unless some earlier pass did that */
513 		if (qh != here.qh) {
514 			qh->qh_next = here;
515 			if (here.qh)
516 				qh->hw->hw_next = *hw_p;
517 			wmb ();
518 			prev->qh = qh;
519 			*hw_p = QH_NEXT (ehci, qh->qh_dma);
520 		}
521 	}
522 	qh->qh_state = QH_STATE_LINKED;
523 	qh->xacterrs = 0;
524 	qh->exception = 0;
525 
526 	/* update per-qh bandwidth for usbfs */
527 	ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period
528 		? ((qh->usecs + qh->c_usecs) / qh->period)
529 		: (qh->usecs * 8);
530 
531 	list_add(&qh->intr_node, &ehci->intr_qh_list);
532 
533 	/* maybe enable periodic schedule processing */
534 	++ehci->intr_count;
535 	enable_periodic(ehci);
536 }
537 
538 static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
539 {
540 	unsigned	i;
541 	unsigned	period;
542 
543 	/*
544 	 * If qh is for a low/full-speed device, simply unlinking it
545 	 * could interfere with an ongoing split transaction.  To unlink
546 	 * it safely would require setting the QH_INACTIVATE bit and
547 	 * waiting at least one frame, as described in EHCI 4.12.2.5.
548 	 *
549 	 * We won't bother with any of this.  Instead, we assume that the
550 	 * only reason for unlinking an interrupt QH while the current URB
551 	 * is still active is to dequeue all the URBs (flush the whole
552 	 * endpoint queue).
553 	 *
554 	 * If rebalancing the periodic schedule is ever implemented, this
555 	 * approach will no longer be valid.
556 	 */
557 
558 	/* high bandwidth, or otherwise part of every microframe */
559 	if ((period = qh->period) == 0)
560 		period = 1;
561 
562 	for (i = qh->start; i < ehci->periodic_size; i += period)
563 		periodic_unlink (ehci, i, qh);
564 
565 	/* update per-qh bandwidth for usbfs */
566 	ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period
567 		? ((qh->usecs + qh->c_usecs) / qh->period)
568 		: (qh->usecs * 8);
569 
570 	dev_dbg (&qh->dev->dev,
571 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
572 		qh->period,
573 		hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
574 		qh, qh->start, qh->usecs, qh->c_usecs);
575 
576 	/* qh->qh_next still "live" to HC */
577 	qh->qh_state = QH_STATE_UNLINK;
578 	qh->qh_next.ptr = NULL;
579 
580 	if (ehci->qh_scan_next == qh)
581 		ehci->qh_scan_next = list_entry(qh->intr_node.next,
582 				struct ehci_qh, intr_node);
583 	list_del(&qh->intr_node);
584 }
585 
586 static void cancel_unlink_wait_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
587 {
588 	if (qh->qh_state != QH_STATE_LINKED ||
589 			list_empty(&qh->unlink_node))
590 		return;
591 
592 	list_del_init(&qh->unlink_node);
593 
594 	/*
595 	 * TODO: disable the event of EHCI_HRTIMER_START_UNLINK_INTR for
596 	 * avoiding unnecessary CPU wakeup
597 	 */
598 }
599 
600 static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
601 {
602 	/* If the QH isn't linked then there's nothing we can do. */
603 	if (qh->qh_state != QH_STATE_LINKED)
604 		return;
605 
606 	/* if the qh is waiting for unlink, cancel it now */
607 	cancel_unlink_wait_intr(ehci, qh);
608 
609 	qh_unlink_periodic (ehci, qh);
610 
611 	/* Make sure the unlinks are visible before starting the timer */
612 	wmb();
613 
614 	/*
615 	 * The EHCI spec doesn't say how long it takes the controller to
616 	 * stop accessing an unlinked interrupt QH.  The timer delay is
617 	 * 9 uframes; presumably that will be long enough.
618 	 */
619 	qh->unlink_cycle = ehci->intr_unlink_cycle;
620 
621 	/* New entries go at the end of the intr_unlink list */
622 	list_add_tail(&qh->unlink_node, &ehci->intr_unlink);
623 
624 	if (ehci->intr_unlinking)
625 		;	/* Avoid recursive calls */
626 	else if (ehci->rh_state < EHCI_RH_RUNNING)
627 		ehci_handle_intr_unlinks(ehci);
628 	else if (ehci->intr_unlink.next == &qh->unlink_node) {
629 		ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true);
630 		++ehci->intr_unlink_cycle;
631 	}
632 }
633 
634 /*
635  * It is common only one intr URB is scheduled on one qh, and
636  * given complete() is run in tasklet context, introduce a bit
637  * delay to avoid unlink qh too early.
638  */
639 static void start_unlink_intr_wait(struct ehci_hcd *ehci,
640 				   struct ehci_qh *qh)
641 {
642 	qh->unlink_cycle = ehci->intr_unlink_wait_cycle;
643 
644 	/* New entries go at the end of the intr_unlink_wait list */
645 	list_add_tail(&qh->unlink_node, &ehci->intr_unlink_wait);
646 
647 	if (ehci->rh_state < EHCI_RH_RUNNING)
648 		ehci_handle_start_intr_unlinks(ehci);
649 	else if (ehci->intr_unlink_wait.next == &qh->unlink_node) {
650 		ehci_enable_event(ehci, EHCI_HRTIMER_START_UNLINK_INTR, true);
651 		++ehci->intr_unlink_wait_cycle;
652 	}
653 }
654 
655 static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
656 {
657 	struct ehci_qh_hw	*hw = qh->hw;
658 	int			rc;
659 
660 	qh->qh_state = QH_STATE_IDLE;
661 	hw->hw_next = EHCI_LIST_END(ehci);
662 
663 	if (!list_empty(&qh->qtd_list))
664 		qh_completions(ehci, qh);
665 
666 	/* reschedule QH iff another request is queued */
667 	if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) {
668 		rc = qh_schedule(ehci, qh);
669 		if (rc == 0) {
670 			qh_refresh(ehci, qh);
671 			qh_link_periodic(ehci, qh);
672 		}
673 
674 		/* An error here likely indicates handshake failure
675 		 * or no space left in the schedule.  Neither fault
676 		 * should happen often ...
677 		 *
678 		 * FIXME kill the now-dysfunctional queued urbs
679 		 */
680 		else {
681 			ehci_err(ehci, "can't reschedule qh %p, err %d\n",
682 					qh, rc);
683 		}
684 	}
685 
686 	/* maybe turn off periodic schedule */
687 	--ehci->intr_count;
688 	disable_periodic(ehci);
689 }
690 
691 /*-------------------------------------------------------------------------*/
692 
693 static int check_period (
694 	struct ehci_hcd *ehci,
695 	unsigned	frame,
696 	unsigned	uframe,
697 	unsigned	period,
698 	unsigned	usecs
699 ) {
700 	int		claimed;
701 
702 	/* complete split running into next frame?
703 	 * given FSTN support, we could sometimes check...
704 	 */
705 	if (uframe >= 8)
706 		return 0;
707 
708 	/* convert "usecs we need" to "max already claimed" */
709 	usecs = ehci->uframe_periodic_max - usecs;
710 
711 	/* we "know" 2 and 4 uframe intervals were rejected; so
712 	 * for period 0, check _every_ microframe in the schedule.
713 	 */
714 	if (unlikely (period == 0)) {
715 		do {
716 			for (uframe = 0; uframe < 7; uframe++) {
717 				claimed = periodic_usecs (ehci, frame, uframe);
718 				if (claimed > usecs)
719 					return 0;
720 			}
721 		} while ((frame += 1) < ehci->periodic_size);
722 
723 	/* just check the specified uframe, at that period */
724 	} else {
725 		do {
726 			claimed = periodic_usecs (ehci, frame, uframe);
727 			if (claimed > usecs)
728 				return 0;
729 		} while ((frame += period) < ehci->periodic_size);
730 	}
731 
732 	// success!
733 	return 1;
734 }
735 
736 static int check_intr_schedule (
737 	struct ehci_hcd		*ehci,
738 	unsigned		frame,
739 	unsigned		uframe,
740 	const struct ehci_qh	*qh,
741 	__hc32			*c_maskp
742 )
743 {
744 	int		retval = -ENOSPC;
745 	u8		mask = 0;
746 
747 	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
748 		goto done;
749 
750 	if (!check_period (ehci, frame, uframe, qh->period, qh->usecs))
751 		goto done;
752 	if (!qh->c_usecs) {
753 		retval = 0;
754 		*c_maskp = 0;
755 		goto done;
756 	}
757 
758 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
759 	if (tt_available (ehci, qh->period, qh->dev, frame, uframe,
760 				qh->tt_usecs)) {
761 		unsigned i;
762 
763 		/* TODO : this may need FSTN for SSPLIT in uframe 5. */
764 		for (i=uframe+1; i<8 && i<uframe+4; i++)
765 			if (!check_period (ehci, frame, i,
766 						qh->period, qh->c_usecs))
767 				goto done;
768 			else
769 				mask |= 1 << i;
770 
771 		retval = 0;
772 
773 		*c_maskp = cpu_to_hc32(ehci, mask << 8);
774 	}
775 #else
776 	/* Make sure this tt's buffer is also available for CSPLITs.
777 	 * We pessimize a bit; probably the typical full speed case
778 	 * doesn't need the second CSPLIT.
779 	 *
780 	 * NOTE:  both SPLIT and CSPLIT could be checked in just
781 	 * one smart pass...
782 	 */
783 	mask = 0x03 << (uframe + qh->gap_uf);
784 	*c_maskp = cpu_to_hc32(ehci, mask << 8);
785 
786 	mask |= 1 << uframe;
787 	if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) {
788 		if (!check_period (ehci, frame, uframe + qh->gap_uf + 1,
789 					qh->period, qh->c_usecs))
790 			goto done;
791 		if (!check_period (ehci, frame, uframe + qh->gap_uf,
792 					qh->period, qh->c_usecs))
793 			goto done;
794 		retval = 0;
795 	}
796 #endif
797 done:
798 	return retval;
799 }
800 
801 /* "first fit" scheduling policy used the first time through,
802  * or when the previous schedule slot can't be re-used.
803  */
804 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
805 {
806 	int		status;
807 	unsigned	uframe;
808 	__hc32		c_mask;
809 	unsigned	frame;		/* 0..(qh->period - 1), or NO_FRAME */
810 	struct ehci_qh_hw	*hw = qh->hw;
811 
812 	hw->hw_next = EHCI_LIST_END(ehci);
813 	frame = qh->start;
814 
815 	/* reuse the previous schedule slots, if we can */
816 	if (frame < qh->period) {
817 		uframe = ffs(hc32_to_cpup(ehci, &hw->hw_info2) & QH_SMASK);
818 		status = check_intr_schedule (ehci, frame, --uframe,
819 				qh, &c_mask);
820 	} else {
821 		uframe = 0;
822 		c_mask = 0;
823 		status = -ENOSPC;
824 	}
825 
826 	/* else scan the schedule to find a group of slots such that all
827 	 * uframes have enough periodic bandwidth available.
828 	 */
829 	if (status) {
830 		/* "normal" case, uframing flexible except with splits */
831 		if (qh->period) {
832 			int		i;
833 
834 			for (i = qh->period; status && i > 0; --i) {
835 				frame = ++ehci->random_frame % qh->period;
836 				for (uframe = 0; uframe < 8; uframe++) {
837 					status = check_intr_schedule (ehci,
838 							frame, uframe, qh,
839 							&c_mask);
840 					if (status == 0)
841 						break;
842 				}
843 			}
844 
845 		/* qh->period == 0 means every uframe */
846 		} else {
847 			frame = 0;
848 			status = check_intr_schedule (ehci, 0, 0, qh, &c_mask);
849 		}
850 		if (status)
851 			goto done;
852 		qh->start = frame;
853 
854 		/* reset S-frame and (maybe) C-frame masks */
855 		hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
856 		hw->hw_info2 |= qh->period
857 			? cpu_to_hc32(ehci, 1 << uframe)
858 			: cpu_to_hc32(ehci, QH_SMASK);
859 		hw->hw_info2 |= c_mask;
860 	} else
861 		ehci_dbg (ehci, "reused qh %p schedule\n", qh);
862 
863 done:
864 	return status;
865 }
866 
867 static int intr_submit (
868 	struct ehci_hcd		*ehci,
869 	struct urb		*urb,
870 	struct list_head	*qtd_list,
871 	gfp_t			mem_flags
872 ) {
873 	unsigned		epnum;
874 	unsigned long		flags;
875 	struct ehci_qh		*qh;
876 	int			status;
877 	struct list_head	empty;
878 
879 	/* get endpoint and transfer/schedule data */
880 	epnum = urb->ep->desc.bEndpointAddress;
881 
882 	spin_lock_irqsave (&ehci->lock, flags);
883 
884 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
885 		status = -ESHUTDOWN;
886 		goto done_not_linked;
887 	}
888 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
889 	if (unlikely(status))
890 		goto done_not_linked;
891 
892 	/* get qh and force any scheduling errors */
893 	INIT_LIST_HEAD (&empty);
894 	qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
895 	if (qh == NULL) {
896 		status = -ENOMEM;
897 		goto done;
898 	}
899 	if (qh->qh_state == QH_STATE_IDLE) {
900 		if ((status = qh_schedule (ehci, qh)) != 0)
901 			goto done;
902 	}
903 
904 	/* then queue the urb's tds to the qh */
905 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
906 	BUG_ON (qh == NULL);
907 
908 	/* stuff into the periodic schedule */
909 	if (qh->qh_state == QH_STATE_IDLE) {
910 		qh_refresh(ehci, qh);
911 		qh_link_periodic(ehci, qh);
912 	} else {
913 		/* cancel unlink wait for the qh */
914 		cancel_unlink_wait_intr(ehci, qh);
915 	}
916 
917 	/* ... update usbfs periodic stats */
918 	ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
919 
920 done:
921 	if (unlikely(status))
922 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
923 done_not_linked:
924 	spin_unlock_irqrestore (&ehci->lock, flags);
925 	if (status)
926 		qtd_list_free (ehci, urb, qtd_list);
927 
928 	return status;
929 }
930 
931 static void scan_intr(struct ehci_hcd *ehci)
932 {
933 	struct ehci_qh		*qh;
934 
935 	list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list,
936 			intr_node) {
937 
938 		/* clean any finished work for this qh */
939 		if (!list_empty(&qh->qtd_list)) {
940 			int temp;
941 
942 			/*
943 			 * Unlinks could happen here; completion reporting
944 			 * drops the lock.  That's why ehci->qh_scan_next
945 			 * always holds the next qh to scan; if the next qh
946 			 * gets unlinked then ehci->qh_scan_next is adjusted
947 			 * in qh_unlink_periodic().
948 			 */
949 			temp = qh_completions(ehci, qh);
950 			if (unlikely(temp))
951 				start_unlink_intr(ehci, qh);
952 			else if (unlikely(list_empty(&qh->qtd_list) &&
953 					qh->qh_state == QH_STATE_LINKED))
954 				start_unlink_intr_wait(ehci, qh);
955 		}
956 	}
957 }
958 
959 /*-------------------------------------------------------------------------*/
960 
961 /* ehci_iso_stream ops work with both ITD and SITD */
962 
963 static struct ehci_iso_stream *
964 iso_stream_alloc (gfp_t mem_flags)
965 {
966 	struct ehci_iso_stream *stream;
967 
968 	stream = kzalloc(sizeof *stream, mem_flags);
969 	if (likely (stream != NULL)) {
970 		INIT_LIST_HEAD(&stream->td_list);
971 		INIT_LIST_HEAD(&stream->free_list);
972 		stream->next_uframe = -1;
973 	}
974 	return stream;
975 }
976 
977 static void
978 iso_stream_init (
979 	struct ehci_hcd		*ehci,
980 	struct ehci_iso_stream	*stream,
981 	struct usb_device	*dev,
982 	int			pipe,
983 	unsigned		interval
984 )
985 {
986 	static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
987 
988 	u32			buf1;
989 	unsigned		epnum, maxp;
990 	int			is_input;
991 	long			bandwidth;
992 
993 	/*
994 	 * this might be a "high bandwidth" highspeed endpoint,
995 	 * as encoded in the ep descriptor's wMaxPacket field
996 	 */
997 	epnum = usb_pipeendpoint (pipe);
998 	is_input = usb_pipein (pipe) ? USB_DIR_IN : 0;
999 	maxp = usb_maxpacket(dev, pipe, !is_input);
1000 	if (is_input) {
1001 		buf1 = (1 << 11);
1002 	} else {
1003 		buf1 = 0;
1004 	}
1005 
1006 	/* knows about ITD vs SITD */
1007 	if (dev->speed == USB_SPEED_HIGH) {
1008 		unsigned multi = hb_mult(maxp);
1009 
1010 		stream->highspeed = 1;
1011 
1012 		maxp = max_packet(maxp);
1013 		buf1 |= maxp;
1014 		maxp *= multi;
1015 
1016 		stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
1017 		stream->buf1 = cpu_to_hc32(ehci, buf1);
1018 		stream->buf2 = cpu_to_hc32(ehci, multi);
1019 
1020 		/* usbfs wants to report the average usecs per frame tied up
1021 		 * when transfers on this endpoint are scheduled ...
1022 		 */
1023 		stream->usecs = HS_USECS_ISO (maxp);
1024 		bandwidth = stream->usecs * 8;
1025 		bandwidth /= interval;
1026 
1027 	} else {
1028 		u32		addr;
1029 		int		think_time;
1030 		int		hs_transfers;
1031 
1032 		addr = dev->ttport << 24;
1033 		if (!ehci_is_TDI(ehci)
1034 				|| (dev->tt->hub !=
1035 					ehci_to_hcd(ehci)->self.root_hub))
1036 			addr |= dev->tt->hub->devnum << 16;
1037 		addr |= epnum << 8;
1038 		addr |= dev->devnum;
1039 		stream->usecs = HS_USECS_ISO (maxp);
1040 		think_time = dev->tt ? dev->tt->think_time : 0;
1041 		stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time (
1042 				dev->speed, is_input, 1, maxp));
1043 		hs_transfers = max (1u, (maxp + 187) / 188);
1044 		if (is_input) {
1045 			u32	tmp;
1046 
1047 			addr |= 1 << 31;
1048 			stream->c_usecs = stream->usecs;
1049 			stream->usecs = HS_USECS_ISO (1);
1050 			stream->raw_mask = 1;
1051 
1052 			/* c-mask as specified in USB 2.0 11.18.4 3.c */
1053 			tmp = (1 << (hs_transfers + 2)) - 1;
1054 			stream->raw_mask |= tmp << (8 + 2);
1055 		} else
1056 			stream->raw_mask = smask_out [hs_transfers - 1];
1057 		bandwidth = stream->usecs + stream->c_usecs;
1058 		bandwidth /= interval << 3;
1059 
1060 		/* stream->splits gets created from raw_mask later */
1061 		stream->address = cpu_to_hc32(ehci, addr);
1062 	}
1063 	stream->bandwidth = bandwidth;
1064 
1065 	stream->udev = dev;
1066 
1067 	stream->bEndpointAddress = is_input | epnum;
1068 	stream->interval = interval;
1069 	stream->maxp = maxp;
1070 }
1071 
1072 static struct ehci_iso_stream *
1073 iso_stream_find (struct ehci_hcd *ehci, struct urb *urb)
1074 {
1075 	unsigned		epnum;
1076 	struct ehci_iso_stream	*stream;
1077 	struct usb_host_endpoint *ep;
1078 	unsigned long		flags;
1079 
1080 	epnum = usb_pipeendpoint (urb->pipe);
1081 	if (usb_pipein(urb->pipe))
1082 		ep = urb->dev->ep_in[epnum];
1083 	else
1084 		ep = urb->dev->ep_out[epnum];
1085 
1086 	spin_lock_irqsave (&ehci->lock, flags);
1087 	stream = ep->hcpriv;
1088 
1089 	if (unlikely (stream == NULL)) {
1090 		stream = iso_stream_alloc(GFP_ATOMIC);
1091 		if (likely (stream != NULL)) {
1092 			ep->hcpriv = stream;
1093 			stream->ep = ep;
1094 			iso_stream_init(ehci, stream, urb->dev, urb->pipe,
1095 					urb->interval);
1096 		}
1097 
1098 	/* if dev->ep [epnum] is a QH, hw is set */
1099 	} else if (unlikely (stream->hw != NULL)) {
1100 		ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n",
1101 			urb->dev->devpath, epnum,
1102 			usb_pipein(urb->pipe) ? "in" : "out");
1103 		stream = NULL;
1104 	}
1105 
1106 	spin_unlock_irqrestore (&ehci->lock, flags);
1107 	return stream;
1108 }
1109 
1110 /*-------------------------------------------------------------------------*/
1111 
1112 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1113 
1114 static struct ehci_iso_sched *
1115 iso_sched_alloc (unsigned packets, gfp_t mem_flags)
1116 {
1117 	struct ehci_iso_sched	*iso_sched;
1118 	int			size = sizeof *iso_sched;
1119 
1120 	size += packets * sizeof (struct ehci_iso_packet);
1121 	iso_sched = kzalloc(size, mem_flags);
1122 	if (likely (iso_sched != NULL)) {
1123 		INIT_LIST_HEAD (&iso_sched->td_list);
1124 	}
1125 	return iso_sched;
1126 }
1127 
1128 static inline void
1129 itd_sched_init(
1130 	struct ehci_hcd		*ehci,
1131 	struct ehci_iso_sched	*iso_sched,
1132 	struct ehci_iso_stream	*stream,
1133 	struct urb		*urb
1134 )
1135 {
1136 	unsigned	i;
1137 	dma_addr_t	dma = urb->transfer_dma;
1138 
1139 	/* how many uframes are needed for these transfers */
1140 	iso_sched->span = urb->number_of_packets * stream->interval;
1141 
1142 	/* figure out per-uframe itd fields that we'll need later
1143 	 * when we fit new itds into the schedule.
1144 	 */
1145 	for (i = 0; i < urb->number_of_packets; i++) {
1146 		struct ehci_iso_packet	*uframe = &iso_sched->packet [i];
1147 		unsigned		length;
1148 		dma_addr_t		buf;
1149 		u32			trans;
1150 
1151 		length = urb->iso_frame_desc [i].length;
1152 		buf = dma + urb->iso_frame_desc [i].offset;
1153 
1154 		trans = EHCI_ISOC_ACTIVE;
1155 		trans |= buf & 0x0fff;
1156 		if (unlikely (((i + 1) == urb->number_of_packets))
1157 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1158 			trans |= EHCI_ITD_IOC;
1159 		trans |= length << 16;
1160 		uframe->transaction = cpu_to_hc32(ehci, trans);
1161 
1162 		/* might need to cross a buffer page within a uframe */
1163 		uframe->bufp = (buf & ~(u64)0x0fff);
1164 		buf += length;
1165 		if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff))))
1166 			uframe->cross = 1;
1167 	}
1168 }
1169 
1170 static void
1171 iso_sched_free (
1172 	struct ehci_iso_stream	*stream,
1173 	struct ehci_iso_sched	*iso_sched
1174 )
1175 {
1176 	if (!iso_sched)
1177 		return;
1178 	// caller must hold ehci->lock!
1179 	list_splice (&iso_sched->td_list, &stream->free_list);
1180 	kfree (iso_sched);
1181 }
1182 
1183 static int
1184 itd_urb_transaction (
1185 	struct ehci_iso_stream	*stream,
1186 	struct ehci_hcd		*ehci,
1187 	struct urb		*urb,
1188 	gfp_t			mem_flags
1189 )
1190 {
1191 	struct ehci_itd		*itd;
1192 	dma_addr_t		itd_dma;
1193 	int			i;
1194 	unsigned		num_itds;
1195 	struct ehci_iso_sched	*sched;
1196 	unsigned long		flags;
1197 
1198 	sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1199 	if (unlikely (sched == NULL))
1200 		return -ENOMEM;
1201 
1202 	itd_sched_init(ehci, sched, stream, urb);
1203 
1204 	if (urb->interval < 8)
1205 		num_itds = 1 + (sched->span + 7) / 8;
1206 	else
1207 		num_itds = urb->number_of_packets;
1208 
1209 	/* allocate/init ITDs */
1210 	spin_lock_irqsave (&ehci->lock, flags);
1211 	for (i = 0; i < num_itds; i++) {
1212 
1213 		/*
1214 		 * Use iTDs from the free list, but not iTDs that may
1215 		 * still be in use by the hardware.
1216 		 */
1217 		if (likely(!list_empty(&stream->free_list))) {
1218 			itd = list_first_entry(&stream->free_list,
1219 					struct ehci_itd, itd_list);
1220 			if (itd->frame == ehci->now_frame)
1221 				goto alloc_itd;
1222 			list_del (&itd->itd_list);
1223 			itd_dma = itd->itd_dma;
1224 		} else {
1225  alloc_itd:
1226 			spin_unlock_irqrestore (&ehci->lock, flags);
1227 			itd = dma_pool_alloc (ehci->itd_pool, mem_flags,
1228 					&itd_dma);
1229 			spin_lock_irqsave (&ehci->lock, flags);
1230 			if (!itd) {
1231 				iso_sched_free(stream, sched);
1232 				spin_unlock_irqrestore(&ehci->lock, flags);
1233 				return -ENOMEM;
1234 			}
1235 		}
1236 
1237 		memset (itd, 0, sizeof *itd);
1238 		itd->itd_dma = itd_dma;
1239 		itd->frame = 9999;		/* an invalid value */
1240 		list_add (&itd->itd_list, &sched->td_list);
1241 	}
1242 	spin_unlock_irqrestore (&ehci->lock, flags);
1243 
1244 	/* temporarily store schedule info in hcpriv */
1245 	urb->hcpriv = sched;
1246 	urb->error_count = 0;
1247 	return 0;
1248 }
1249 
1250 /*-------------------------------------------------------------------------*/
1251 
1252 static inline int
1253 itd_slot_ok (
1254 	struct ehci_hcd		*ehci,
1255 	u32			mod,
1256 	u32			uframe,
1257 	u8			usecs,
1258 	u32			period
1259 )
1260 {
1261 	uframe %= period;
1262 	do {
1263 		/* can't commit more than uframe_periodic_max usec */
1264 		if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7)
1265 				> (ehci->uframe_periodic_max - usecs))
1266 			return 0;
1267 
1268 		/* we know urb->interval is 2^N uframes */
1269 		uframe += period;
1270 	} while (uframe < mod);
1271 	return 1;
1272 }
1273 
1274 static inline int
1275 sitd_slot_ok (
1276 	struct ehci_hcd		*ehci,
1277 	u32			mod,
1278 	struct ehci_iso_stream	*stream,
1279 	u32			uframe,
1280 	struct ehci_iso_sched	*sched,
1281 	u32			period_uframes
1282 )
1283 {
1284 	u32			mask, tmp;
1285 	u32			frame, uf;
1286 
1287 	mask = stream->raw_mask << (uframe & 7);
1288 
1289 	/* for IN, don't wrap CSPLIT into the next frame */
1290 	if (mask & ~0xffff)
1291 		return 0;
1292 
1293 	/* check bandwidth */
1294 	uframe %= period_uframes;
1295 	frame = uframe >> 3;
1296 
1297 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1298 	/* The tt's fullspeed bus bandwidth must be available.
1299 	 * tt_available scheduling guarantees 10+% for control/bulk.
1300 	 */
1301 	uf = uframe & 7;
1302 	if (!tt_available(ehci, period_uframes >> 3,
1303 			stream->udev, frame, uf, stream->tt_usecs))
1304 		return 0;
1305 #else
1306 	/* tt must be idle for start(s), any gap, and csplit.
1307 	 * assume scheduling slop leaves 10+% for control/bulk.
1308 	 */
1309 	if (!tt_no_collision(ehci, period_uframes >> 3,
1310 			stream->udev, frame, mask))
1311 		return 0;
1312 #endif
1313 
1314 	/* this multi-pass logic is simple, but performance may
1315 	 * suffer when the schedule data isn't cached.
1316 	 */
1317 	do {
1318 		u32		max_used;
1319 
1320 		frame = uframe >> 3;
1321 		uf = uframe & 7;
1322 
1323 		/* check starts (OUT uses more than one) */
1324 		max_used = ehci->uframe_periodic_max - stream->usecs;
1325 		for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) {
1326 			if (periodic_usecs (ehci, frame, uf) > max_used)
1327 				return 0;
1328 		}
1329 
1330 		/* for IN, check CSPLIT */
1331 		if (stream->c_usecs) {
1332 			uf = uframe & 7;
1333 			max_used = ehci->uframe_periodic_max - stream->c_usecs;
1334 			do {
1335 				tmp = 1 << uf;
1336 				tmp <<= 8;
1337 				if ((stream->raw_mask & tmp) == 0)
1338 					continue;
1339 				if (periodic_usecs (ehci, frame, uf)
1340 						> max_used)
1341 					return 0;
1342 			} while (++uf < 8);
1343 		}
1344 
1345 		/* we know urb->interval is 2^N uframes */
1346 		uframe += period_uframes;
1347 	} while (uframe < mod);
1348 
1349 	stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7));
1350 	return 1;
1351 }
1352 
1353 /*
1354  * This scheduler plans almost as far into the future as it has actual
1355  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
1356  * "as small as possible" to be cache-friendlier.)  That limits the size
1357  * transfers you can stream reliably; avoid more than 64 msec per urb.
1358  * Also avoid queue depths of less than ehci's worst irq latency (affected
1359  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1360  * and other factors); or more than about 230 msec total (for portability,
1361  * given EHCI_TUNE_FLS and the slop).  Or, write a smarter scheduler!
1362  */
1363 
1364 #define SCHEDULING_DELAY	40	/* microframes */
1365 
1366 static int
1367 iso_stream_schedule (
1368 	struct ehci_hcd		*ehci,
1369 	struct urb		*urb,
1370 	struct ehci_iso_stream	*stream
1371 )
1372 {
1373 	u32			now, base, next, start, period, span, now2;
1374 	u32			wrap = 0, skip = 0;
1375 	int			status = 0;
1376 	unsigned		mod = ehci->periodic_size << 3;
1377 	struct ehci_iso_sched	*sched = urb->hcpriv;
1378 	bool			empty = list_empty(&stream->td_list);
1379 
1380 	period = urb->interval;
1381 	span = sched->span;
1382 	if (!stream->highspeed) {
1383 		period <<= 3;
1384 		span <<= 3;
1385 	}
1386 
1387 	now = ehci_read_frame_index(ehci) & (mod - 1);
1388 
1389 	/* Take the isochronous scheduling threshold into account */
1390 	if (ehci->i_thresh)
1391 		next = now + ehci->i_thresh;	/* uframe cache */
1392 	else
1393 		next = (now + 2 + 7) & ~0x07;	/* full frame cache */
1394 
1395 	/*
1396 	 * Use ehci->last_iso_frame as the base.  There can't be any
1397 	 * TDs scheduled for earlier than that.
1398 	 */
1399 	base = ehci->last_iso_frame << 3;
1400 	next = (next - base) & (mod - 1);
1401 
1402 	/*
1403 	 * Need to schedule; when's the next (u)frame we could start?
1404 	 * This is bigger than ehci->i_thresh allows; scheduling itself
1405 	 * isn't free, the delay should handle reasonably slow cpus.  It
1406 	 * can also help high bandwidth if the dma and irq loads don't
1407 	 * jump until after the queue is primed.
1408 	 */
1409 	if (unlikely(empty && !hcd_periodic_completion_in_progress(
1410 			ehci_to_hcd(ehci), urb->ep))) {
1411 		int done = 0;
1412 
1413 		start = (now & ~0x07) + SCHEDULING_DELAY;
1414 
1415 		/* find a uframe slot with enough bandwidth.
1416 		 * Early uframes are more precious because full-speed
1417 		 * iso IN transfers can't use late uframes,
1418 		 * and therefore they should be allocated last.
1419 		 */
1420 		next = start;
1421 		start += period;
1422 		do {
1423 			start--;
1424 			/* check schedule: enough space? */
1425 			if (stream->highspeed) {
1426 				if (itd_slot_ok(ehci, mod, start,
1427 						stream->usecs, period))
1428 					done = 1;
1429 			} else {
1430 				if ((start % 8) >= 6)
1431 					continue;
1432 				if (sitd_slot_ok(ehci, mod, stream,
1433 						start, sched, period))
1434 					done = 1;
1435 			}
1436 		} while (start > next && !done);
1437 
1438 		/* no room in the schedule */
1439 		if (!done) {
1440 			ehci_dbg(ehci, "iso sched full %p", urb);
1441 			status = -ENOSPC;
1442 			goto fail;
1443 		}
1444 
1445 		start = (start - base) & (mod - 1);
1446 		goto use_start;
1447 	}
1448 
1449 	/*
1450 	 * Typical case: reuse current schedule, stream is still active.
1451 	 * Hopefully there are no gaps from the host falling behind
1452 	 * (irq delays etc).  If there are, the behavior depends on
1453 	 * whether URB_ISO_ASAP is set.
1454 	 */
1455 	start = (stream->next_uframe - base) & (mod - 1);
1456 	now2 = (now - base) & (mod - 1);
1457 
1458 	/* Is the schedule already full? */
1459 	if (unlikely(!empty && start < period)) {
1460 		ehci_dbg(ehci, "iso sched full %p (%u-%u < %u mod %u)\n",
1461 				urb, stream->next_uframe, base, period, mod);
1462 		status = -ENOSPC;
1463 		goto fail;
1464 	}
1465 
1466 	/* Is the next packet scheduled after the base time? */
1467 	if (likely(!empty || start <= now2 + period)) {
1468 
1469 		/* URB_ISO_ASAP: make sure that start >= next */
1470 		if (unlikely(start < next &&
1471 				(urb->transfer_flags & URB_ISO_ASAP)))
1472 			goto do_ASAP;
1473 
1474 		/* Otherwise use start, if it's not in the past */
1475 		if (likely(start >= now2))
1476 			goto use_start;
1477 
1478 	/* Otherwise we got an underrun while the queue was empty */
1479 	} else {
1480 		if (urb->transfer_flags & URB_ISO_ASAP)
1481 			goto do_ASAP;
1482 		wrap = mod;
1483 		now2 += mod;
1484 	}
1485 
1486 	/* How many uframes and packets do we need to skip? */
1487 	skip = (now2 - start + period - 1) & -period;
1488 	if (skip >= span) {		/* Entirely in the past? */
1489 		ehci_dbg(ehci, "iso underrun %p (%u+%u < %u) [%u]\n",
1490 				urb, start + base, span - period, now2 + base,
1491 				base);
1492 
1493 		/* Try to keep the last TD intact for scanning later */
1494 		skip = span - period;
1495 
1496 		/* Will it come before the current scan position? */
1497 		if (empty) {
1498 			skip = span;	/* Skip the entire URB */
1499 			status = 1;	/* and give it back immediately */
1500 			iso_sched_free(stream, sched);
1501 			sched = NULL;
1502 		}
1503 	}
1504 	urb->error_count = skip / period;
1505 	if (sched)
1506 		sched->first_packet = urb->error_count;
1507 	goto use_start;
1508 
1509  do_ASAP:
1510 	/* Use the first slot after "next" */
1511 	start = next + ((start - next) & (period - 1));
1512 
1513  use_start:
1514 	/* Tried to schedule too far into the future? */
1515 	if (unlikely(start + span - period >= mod + wrap)) {
1516 		ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n",
1517 				urb, start, span - period, mod + wrap);
1518 		status = -EFBIG;
1519 		goto fail;
1520 	}
1521 
1522 	start += base;
1523 	stream->next_uframe = (start + skip) & (mod - 1);
1524 
1525 	/* report high speed start in uframes; full speed, in frames */
1526 	urb->start_frame = start & (mod - 1);
1527 	if (!stream->highspeed)
1528 		urb->start_frame >>= 3;
1529 
1530 	/* Make sure scan_isoc() sees these */
1531 	if (ehci->isoc_count == 0)
1532 		ehci->last_iso_frame = now >> 3;
1533 	return status;
1534 
1535  fail:
1536 	iso_sched_free(stream, sched);
1537 	urb->hcpriv = NULL;
1538 	return status;
1539 }
1540 
1541 /*-------------------------------------------------------------------------*/
1542 
1543 static inline void
1544 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1545 		struct ehci_itd *itd)
1546 {
1547 	int i;
1548 
1549 	/* it's been recently zeroed */
1550 	itd->hw_next = EHCI_LIST_END(ehci);
1551 	itd->hw_bufp [0] = stream->buf0;
1552 	itd->hw_bufp [1] = stream->buf1;
1553 	itd->hw_bufp [2] = stream->buf2;
1554 
1555 	for (i = 0; i < 8; i++)
1556 		itd->index[i] = -1;
1557 
1558 	/* All other fields are filled when scheduling */
1559 }
1560 
1561 static inline void
1562 itd_patch(
1563 	struct ehci_hcd		*ehci,
1564 	struct ehci_itd		*itd,
1565 	struct ehci_iso_sched	*iso_sched,
1566 	unsigned		index,
1567 	u16			uframe
1568 )
1569 {
1570 	struct ehci_iso_packet	*uf = &iso_sched->packet [index];
1571 	unsigned		pg = itd->pg;
1572 
1573 	// BUG_ON (pg == 6 && uf->cross);
1574 
1575 	uframe &= 0x07;
1576 	itd->index [uframe] = index;
1577 
1578 	itd->hw_transaction[uframe] = uf->transaction;
1579 	itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1580 	itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1581 	itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1582 
1583 	/* iso_frame_desc[].offset must be strictly increasing */
1584 	if (unlikely (uf->cross)) {
1585 		u64	bufp = uf->bufp + 4096;
1586 
1587 		itd->pg = ++pg;
1588 		itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1589 		itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1590 	}
1591 }
1592 
1593 static inline void
1594 itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1595 {
1596 	union ehci_shadow	*prev = &ehci->pshadow[frame];
1597 	__hc32			*hw_p = &ehci->periodic[frame];
1598 	union ehci_shadow	here = *prev;
1599 	__hc32			type = 0;
1600 
1601 	/* skip any iso nodes which might belong to previous microframes */
1602 	while (here.ptr) {
1603 		type = Q_NEXT_TYPE(ehci, *hw_p);
1604 		if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1605 			break;
1606 		prev = periodic_next_shadow(ehci, prev, type);
1607 		hw_p = shadow_next_periodic(ehci, &here, type);
1608 		here = *prev;
1609 	}
1610 
1611 	itd->itd_next = here;
1612 	itd->hw_next = *hw_p;
1613 	prev->itd = itd;
1614 	itd->frame = frame;
1615 	wmb ();
1616 	*hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1617 }
1618 
1619 /* fit urb's itds into the selected schedule slot; activate as needed */
1620 static void itd_link_urb(
1621 	struct ehci_hcd		*ehci,
1622 	struct urb		*urb,
1623 	unsigned		mod,
1624 	struct ehci_iso_stream	*stream
1625 )
1626 {
1627 	int			packet;
1628 	unsigned		next_uframe, uframe, frame;
1629 	struct ehci_iso_sched	*iso_sched = urb->hcpriv;
1630 	struct ehci_itd		*itd;
1631 
1632 	next_uframe = stream->next_uframe & (mod - 1);
1633 
1634 	if (unlikely (list_empty(&stream->td_list)))
1635 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1636 				+= stream->bandwidth;
1637 
1638 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1639 		if (ehci->amd_pll_fix == 1)
1640 			usb_amd_quirk_pll_disable();
1641 	}
1642 
1643 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1644 
1645 	/* fill iTDs uframe by uframe */
1646 	for (packet = iso_sched->first_packet, itd = NULL;
1647 			packet < urb->number_of_packets;) {
1648 		if (itd == NULL) {
1649 			/* ASSERT:  we have all necessary itds */
1650 			// BUG_ON (list_empty (&iso_sched->td_list));
1651 
1652 			/* ASSERT:  no itds for this endpoint in this uframe */
1653 
1654 			itd = list_entry (iso_sched->td_list.next,
1655 					struct ehci_itd, itd_list);
1656 			list_move_tail (&itd->itd_list, &stream->td_list);
1657 			itd->stream = stream;
1658 			itd->urb = urb;
1659 			itd_init (ehci, stream, itd);
1660 		}
1661 
1662 		uframe = next_uframe & 0x07;
1663 		frame = next_uframe >> 3;
1664 
1665 		itd_patch(ehci, itd, iso_sched, packet, uframe);
1666 
1667 		next_uframe += stream->interval;
1668 		next_uframe &= mod - 1;
1669 		packet++;
1670 
1671 		/* link completed itds into the schedule */
1672 		if (((next_uframe >> 3) != frame)
1673 				|| packet == urb->number_of_packets) {
1674 			itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1675 			itd = NULL;
1676 		}
1677 	}
1678 	stream->next_uframe = next_uframe;
1679 
1680 	/* don't need that schedule data any more */
1681 	iso_sched_free (stream, iso_sched);
1682 	urb->hcpriv = stream;
1683 
1684 	++ehci->isoc_count;
1685 	enable_periodic(ehci);
1686 }
1687 
1688 #define	ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1689 
1690 /* Process and recycle a completed ITD.  Return true iff its urb completed,
1691  * and hence its completion callback probably added things to the hardware
1692  * schedule.
1693  *
1694  * Note that we carefully avoid recycling this descriptor until after any
1695  * completion callback runs, so that it won't be reused quickly.  That is,
1696  * assuming (a) no more than two urbs per frame on this endpoint, and also
1697  * (b) only this endpoint's completions submit URBs.  It seems some silicon
1698  * corrupts things if you reuse completed descriptors very quickly...
1699  */
1700 static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd)
1701 {
1702 	struct urb				*urb = itd->urb;
1703 	struct usb_iso_packet_descriptor	*desc;
1704 	u32					t;
1705 	unsigned				uframe;
1706 	int					urb_index = -1;
1707 	struct ehci_iso_stream			*stream = itd->stream;
1708 	struct usb_device			*dev;
1709 	bool					retval = false;
1710 
1711 	/* for each uframe with a packet */
1712 	for (uframe = 0; uframe < 8; uframe++) {
1713 		if (likely (itd->index[uframe] == -1))
1714 			continue;
1715 		urb_index = itd->index[uframe];
1716 		desc = &urb->iso_frame_desc [urb_index];
1717 
1718 		t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]);
1719 		itd->hw_transaction [uframe] = 0;
1720 
1721 		/* report transfer status */
1722 		if (unlikely (t & ISO_ERRS)) {
1723 			urb->error_count++;
1724 			if (t & EHCI_ISOC_BUF_ERR)
1725 				desc->status = usb_pipein (urb->pipe)
1726 					? -ENOSR  /* hc couldn't read */
1727 					: -ECOMM; /* hc couldn't write */
1728 			else if (t & EHCI_ISOC_BABBLE)
1729 				desc->status = -EOVERFLOW;
1730 			else /* (t & EHCI_ISOC_XACTERR) */
1731 				desc->status = -EPROTO;
1732 
1733 			/* HC need not update length with this error */
1734 			if (!(t & EHCI_ISOC_BABBLE)) {
1735 				desc->actual_length = EHCI_ITD_LENGTH(t);
1736 				urb->actual_length += desc->actual_length;
1737 			}
1738 		} else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) {
1739 			desc->status = 0;
1740 			desc->actual_length = EHCI_ITD_LENGTH(t);
1741 			urb->actual_length += desc->actual_length;
1742 		} else {
1743 			/* URB was too late */
1744 			urb->error_count++;
1745 		}
1746 	}
1747 
1748 	/* handle completion now? */
1749 	if (likely ((urb_index + 1) != urb->number_of_packets))
1750 		goto done;
1751 
1752 	/* ASSERT: it's really the last itd for this urb
1753 	list_for_each_entry (itd, &stream->td_list, itd_list)
1754 		BUG_ON (itd->urb == urb);
1755 	 */
1756 
1757 	/* give urb back to the driver; completion often (re)submits */
1758 	dev = urb->dev;
1759 	ehci_urb_done(ehci, urb, 0);
1760 	retval = true;
1761 	urb = NULL;
1762 
1763 	--ehci->isoc_count;
1764 	disable_periodic(ehci);
1765 
1766 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1767 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1768 		if (ehci->amd_pll_fix == 1)
1769 			usb_amd_quirk_pll_enable();
1770 	}
1771 
1772 	if (unlikely(list_is_singular(&stream->td_list)))
1773 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1774 				-= stream->bandwidth;
1775 
1776 done:
1777 	itd->urb = NULL;
1778 
1779 	/* Add to the end of the free list for later reuse */
1780 	list_move_tail(&itd->itd_list, &stream->free_list);
1781 
1782 	/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
1783 	if (list_empty(&stream->td_list)) {
1784 		list_splice_tail_init(&stream->free_list,
1785 				&ehci->cached_itd_list);
1786 		start_free_itds(ehci);
1787 	}
1788 
1789 	return retval;
1790 }
1791 
1792 /*-------------------------------------------------------------------------*/
1793 
1794 static int itd_submit (struct ehci_hcd *ehci, struct urb *urb,
1795 	gfp_t mem_flags)
1796 {
1797 	int			status = -EINVAL;
1798 	unsigned long		flags;
1799 	struct ehci_iso_stream	*stream;
1800 
1801 	/* Get iso_stream head */
1802 	stream = iso_stream_find (ehci, urb);
1803 	if (unlikely (stream == NULL)) {
1804 		ehci_dbg (ehci, "can't get iso stream\n");
1805 		return -ENOMEM;
1806 	}
1807 	if (unlikely (urb->interval != stream->interval)) {
1808 		ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
1809 			stream->interval, urb->interval);
1810 		goto done;
1811 	}
1812 
1813 #ifdef EHCI_URB_TRACE
1814 	ehci_dbg (ehci,
1815 		"%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1816 		__func__, urb->dev->devpath, urb,
1817 		usb_pipeendpoint (urb->pipe),
1818 		usb_pipein (urb->pipe) ? "in" : "out",
1819 		urb->transfer_buffer_length,
1820 		urb->number_of_packets, urb->interval,
1821 		stream);
1822 #endif
1823 
1824 	/* allocate ITDs w/o locking anything */
1825 	status = itd_urb_transaction (stream, ehci, urb, mem_flags);
1826 	if (unlikely (status < 0)) {
1827 		ehci_dbg (ehci, "can't init itds\n");
1828 		goto done;
1829 	}
1830 
1831 	/* schedule ... need to lock */
1832 	spin_lock_irqsave (&ehci->lock, flags);
1833 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1834 		status = -ESHUTDOWN;
1835 		goto done_not_linked;
1836 	}
1837 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1838 	if (unlikely(status))
1839 		goto done_not_linked;
1840 	status = iso_stream_schedule(ehci, urb, stream);
1841 	if (likely(status == 0)) {
1842 		itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
1843 	} else if (status > 0) {
1844 		status = 0;
1845 		ehci_urb_done(ehci, urb, 0);
1846 	} else {
1847 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1848 	}
1849  done_not_linked:
1850 	spin_unlock_irqrestore (&ehci->lock, flags);
1851  done:
1852 	return status;
1853 }
1854 
1855 /*-------------------------------------------------------------------------*/
1856 
1857 /*
1858  * "Split ISO TDs" ... used for USB 1.1 devices going through the
1859  * TTs in USB 2.0 hubs.  These need microframe scheduling.
1860  */
1861 
1862 static inline void
1863 sitd_sched_init(
1864 	struct ehci_hcd		*ehci,
1865 	struct ehci_iso_sched	*iso_sched,
1866 	struct ehci_iso_stream	*stream,
1867 	struct urb		*urb
1868 )
1869 {
1870 	unsigned	i;
1871 	dma_addr_t	dma = urb->transfer_dma;
1872 
1873 	/* how many frames are needed for these transfers */
1874 	iso_sched->span = urb->number_of_packets * stream->interval;
1875 
1876 	/* figure out per-frame sitd fields that we'll need later
1877 	 * when we fit new sitds into the schedule.
1878 	 */
1879 	for (i = 0; i < urb->number_of_packets; i++) {
1880 		struct ehci_iso_packet	*packet = &iso_sched->packet [i];
1881 		unsigned		length;
1882 		dma_addr_t		buf;
1883 		u32			trans;
1884 
1885 		length = urb->iso_frame_desc [i].length & 0x03ff;
1886 		buf = dma + urb->iso_frame_desc [i].offset;
1887 
1888 		trans = SITD_STS_ACTIVE;
1889 		if (((i + 1) == urb->number_of_packets)
1890 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1891 			trans |= SITD_IOC;
1892 		trans |= length << 16;
1893 		packet->transaction = cpu_to_hc32(ehci, trans);
1894 
1895 		/* might need to cross a buffer page within a td */
1896 		packet->bufp = buf;
1897 		packet->buf1 = (buf + length) & ~0x0fff;
1898 		if (packet->buf1 != (buf & ~(u64)0x0fff))
1899 			packet->cross = 1;
1900 
1901 		/* OUT uses multiple start-splits */
1902 		if (stream->bEndpointAddress & USB_DIR_IN)
1903 			continue;
1904 		length = (length + 187) / 188;
1905 		if (length > 1) /* BEGIN vs ALL */
1906 			length |= 1 << 3;
1907 		packet->buf1 |= length;
1908 	}
1909 }
1910 
1911 static int
1912 sitd_urb_transaction (
1913 	struct ehci_iso_stream	*stream,
1914 	struct ehci_hcd		*ehci,
1915 	struct urb		*urb,
1916 	gfp_t			mem_flags
1917 )
1918 {
1919 	struct ehci_sitd	*sitd;
1920 	dma_addr_t		sitd_dma;
1921 	int			i;
1922 	struct ehci_iso_sched	*iso_sched;
1923 	unsigned long		flags;
1924 
1925 	iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1926 	if (iso_sched == NULL)
1927 		return -ENOMEM;
1928 
1929 	sitd_sched_init(ehci, iso_sched, stream, urb);
1930 
1931 	/* allocate/init sITDs */
1932 	spin_lock_irqsave (&ehci->lock, flags);
1933 	for (i = 0; i < urb->number_of_packets; i++) {
1934 
1935 		/* NOTE:  for now, we don't try to handle wraparound cases
1936 		 * for IN (using sitd->hw_backpointer, like a FSTN), which
1937 		 * means we never need two sitds for full speed packets.
1938 		 */
1939 
1940 		/*
1941 		 * Use siTDs from the free list, but not siTDs that may
1942 		 * still be in use by the hardware.
1943 		 */
1944 		if (likely(!list_empty(&stream->free_list))) {
1945 			sitd = list_first_entry(&stream->free_list,
1946 					 struct ehci_sitd, sitd_list);
1947 			if (sitd->frame == ehci->now_frame)
1948 				goto alloc_sitd;
1949 			list_del (&sitd->sitd_list);
1950 			sitd_dma = sitd->sitd_dma;
1951 		} else {
1952  alloc_sitd:
1953 			spin_unlock_irqrestore (&ehci->lock, flags);
1954 			sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags,
1955 					&sitd_dma);
1956 			spin_lock_irqsave (&ehci->lock, flags);
1957 			if (!sitd) {
1958 				iso_sched_free(stream, iso_sched);
1959 				spin_unlock_irqrestore(&ehci->lock, flags);
1960 				return -ENOMEM;
1961 			}
1962 		}
1963 
1964 		memset (sitd, 0, sizeof *sitd);
1965 		sitd->sitd_dma = sitd_dma;
1966 		sitd->frame = 9999;		/* an invalid value */
1967 		list_add (&sitd->sitd_list, &iso_sched->td_list);
1968 	}
1969 
1970 	/* temporarily store schedule info in hcpriv */
1971 	urb->hcpriv = iso_sched;
1972 	urb->error_count = 0;
1973 
1974 	spin_unlock_irqrestore (&ehci->lock, flags);
1975 	return 0;
1976 }
1977 
1978 /*-------------------------------------------------------------------------*/
1979 
1980 static inline void
1981 sitd_patch(
1982 	struct ehci_hcd		*ehci,
1983 	struct ehci_iso_stream	*stream,
1984 	struct ehci_sitd	*sitd,
1985 	struct ehci_iso_sched	*iso_sched,
1986 	unsigned		index
1987 )
1988 {
1989 	struct ehci_iso_packet	*uf = &iso_sched->packet [index];
1990 	u64			bufp = uf->bufp;
1991 
1992 	sitd->hw_next = EHCI_LIST_END(ehci);
1993 	sitd->hw_fullspeed_ep = stream->address;
1994 	sitd->hw_uframe = stream->splits;
1995 	sitd->hw_results = uf->transaction;
1996 	sitd->hw_backpointer = EHCI_LIST_END(ehci);
1997 
1998 	bufp = uf->bufp;
1999 	sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
2000 	sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
2001 
2002 	sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
2003 	if (uf->cross)
2004 		bufp += 4096;
2005 	sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
2006 	sitd->index = index;
2007 }
2008 
2009 static inline void
2010 sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
2011 {
2012 	/* note: sitd ordering could matter (CSPLIT then SSPLIT) */
2013 	sitd->sitd_next = ehci->pshadow [frame];
2014 	sitd->hw_next = ehci->periodic [frame];
2015 	ehci->pshadow [frame].sitd = sitd;
2016 	sitd->frame = frame;
2017 	wmb ();
2018 	ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
2019 }
2020 
2021 /* fit urb's sitds into the selected schedule slot; activate as needed */
2022 static void sitd_link_urb(
2023 	struct ehci_hcd		*ehci,
2024 	struct urb		*urb,
2025 	unsigned		mod,
2026 	struct ehci_iso_stream	*stream
2027 )
2028 {
2029 	int			packet;
2030 	unsigned		next_uframe;
2031 	struct ehci_iso_sched	*sched = urb->hcpriv;
2032 	struct ehci_sitd	*sitd;
2033 
2034 	next_uframe = stream->next_uframe;
2035 
2036 	if (list_empty(&stream->td_list))
2037 		/* usbfs ignores TT bandwidth */
2038 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2039 				+= stream->bandwidth;
2040 
2041 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2042 		if (ehci->amd_pll_fix == 1)
2043 			usb_amd_quirk_pll_disable();
2044 	}
2045 
2046 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2047 
2048 	/* fill sITDs frame by frame */
2049 	for (packet = sched->first_packet, sitd = NULL;
2050 			packet < urb->number_of_packets;
2051 			packet++) {
2052 
2053 		/* ASSERT:  we have all necessary sitds */
2054 		BUG_ON (list_empty (&sched->td_list));
2055 
2056 		/* ASSERT:  no itds for this endpoint in this frame */
2057 
2058 		sitd = list_entry (sched->td_list.next,
2059 				struct ehci_sitd, sitd_list);
2060 		list_move_tail (&sitd->sitd_list, &stream->td_list);
2061 		sitd->stream = stream;
2062 		sitd->urb = urb;
2063 
2064 		sitd_patch(ehci, stream, sitd, sched, packet);
2065 		sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2066 				sitd);
2067 
2068 		next_uframe += stream->interval << 3;
2069 	}
2070 	stream->next_uframe = next_uframe & (mod - 1);
2071 
2072 	/* don't need that schedule data any more */
2073 	iso_sched_free (stream, sched);
2074 	urb->hcpriv = stream;
2075 
2076 	++ehci->isoc_count;
2077 	enable_periodic(ehci);
2078 }
2079 
2080 /*-------------------------------------------------------------------------*/
2081 
2082 #define	SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2083 				| SITD_STS_XACT | SITD_STS_MMF)
2084 
2085 /* Process and recycle a completed SITD.  Return true iff its urb completed,
2086  * and hence its completion callback probably added things to the hardware
2087  * schedule.
2088  *
2089  * Note that we carefully avoid recycling this descriptor until after any
2090  * completion callback runs, so that it won't be reused quickly.  That is,
2091  * assuming (a) no more than two urbs per frame on this endpoint, and also
2092  * (b) only this endpoint's completions submit URBs.  It seems some silicon
2093  * corrupts things if you reuse completed descriptors very quickly...
2094  */
2095 static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd)
2096 {
2097 	struct urb				*urb = sitd->urb;
2098 	struct usb_iso_packet_descriptor	*desc;
2099 	u32					t;
2100 	int					urb_index = -1;
2101 	struct ehci_iso_stream			*stream = sitd->stream;
2102 	struct usb_device			*dev;
2103 	bool					retval = false;
2104 
2105 	urb_index = sitd->index;
2106 	desc = &urb->iso_frame_desc [urb_index];
2107 	t = hc32_to_cpup(ehci, &sitd->hw_results);
2108 
2109 	/* report transfer status */
2110 	if (unlikely(t & SITD_ERRS)) {
2111 		urb->error_count++;
2112 		if (t & SITD_STS_DBE)
2113 			desc->status = usb_pipein (urb->pipe)
2114 				? -ENOSR  /* hc couldn't read */
2115 				: -ECOMM; /* hc couldn't write */
2116 		else if (t & SITD_STS_BABBLE)
2117 			desc->status = -EOVERFLOW;
2118 		else /* XACT, MMF, etc */
2119 			desc->status = -EPROTO;
2120 	} else if (unlikely(t & SITD_STS_ACTIVE)) {
2121 		/* URB was too late */
2122 		urb->error_count++;
2123 	} else {
2124 		desc->status = 0;
2125 		desc->actual_length = desc->length - SITD_LENGTH(t);
2126 		urb->actual_length += desc->actual_length;
2127 	}
2128 
2129 	/* handle completion now? */
2130 	if ((urb_index + 1) != urb->number_of_packets)
2131 		goto done;
2132 
2133 	/* ASSERT: it's really the last sitd for this urb
2134 	list_for_each_entry (sitd, &stream->td_list, sitd_list)
2135 		BUG_ON (sitd->urb == urb);
2136 	 */
2137 
2138 	/* give urb back to the driver; completion often (re)submits */
2139 	dev = urb->dev;
2140 	ehci_urb_done(ehci, urb, 0);
2141 	retval = true;
2142 	urb = NULL;
2143 
2144 	--ehci->isoc_count;
2145 	disable_periodic(ehci);
2146 
2147 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2148 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2149 		if (ehci->amd_pll_fix == 1)
2150 			usb_amd_quirk_pll_enable();
2151 	}
2152 
2153 	if (list_is_singular(&stream->td_list))
2154 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2155 				-= stream->bandwidth;
2156 
2157 done:
2158 	sitd->urb = NULL;
2159 
2160 	/* Add to the end of the free list for later reuse */
2161 	list_move_tail(&sitd->sitd_list, &stream->free_list);
2162 
2163 	/* Recycle the siTDs when the pipeline is empty (ep no longer in use) */
2164 	if (list_empty(&stream->td_list)) {
2165 		list_splice_tail_init(&stream->free_list,
2166 				&ehci->cached_sitd_list);
2167 		start_free_itds(ehci);
2168 	}
2169 
2170 	return retval;
2171 }
2172 
2173 
2174 static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb,
2175 	gfp_t mem_flags)
2176 {
2177 	int			status = -EINVAL;
2178 	unsigned long		flags;
2179 	struct ehci_iso_stream	*stream;
2180 
2181 	/* Get iso_stream head */
2182 	stream = iso_stream_find (ehci, urb);
2183 	if (stream == NULL) {
2184 		ehci_dbg (ehci, "can't get iso stream\n");
2185 		return -ENOMEM;
2186 	}
2187 	if (urb->interval != stream->interval) {
2188 		ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
2189 			stream->interval, urb->interval);
2190 		goto done;
2191 	}
2192 
2193 #ifdef EHCI_URB_TRACE
2194 	ehci_dbg (ehci,
2195 		"submit %p dev%s ep%d%s-iso len %d\n",
2196 		urb, urb->dev->devpath,
2197 		usb_pipeendpoint (urb->pipe),
2198 		usb_pipein (urb->pipe) ? "in" : "out",
2199 		urb->transfer_buffer_length);
2200 #endif
2201 
2202 	/* allocate SITDs */
2203 	status = sitd_urb_transaction (stream, ehci, urb, mem_flags);
2204 	if (status < 0) {
2205 		ehci_dbg (ehci, "can't init sitds\n");
2206 		goto done;
2207 	}
2208 
2209 	/* schedule ... need to lock */
2210 	spin_lock_irqsave (&ehci->lock, flags);
2211 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2212 		status = -ESHUTDOWN;
2213 		goto done_not_linked;
2214 	}
2215 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2216 	if (unlikely(status))
2217 		goto done_not_linked;
2218 	status = iso_stream_schedule(ehci, urb, stream);
2219 	if (likely(status == 0)) {
2220 		sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
2221 	} else if (status > 0) {
2222 		status = 0;
2223 		ehci_urb_done(ehci, urb, 0);
2224 	} else {
2225 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2226 	}
2227  done_not_linked:
2228 	spin_unlock_irqrestore (&ehci->lock, flags);
2229  done:
2230 	return status;
2231 }
2232 
2233 /*-------------------------------------------------------------------------*/
2234 
2235 static void scan_isoc(struct ehci_hcd *ehci)
2236 {
2237 	unsigned	uf, now_frame, frame;
2238 	unsigned	fmask = ehci->periodic_size - 1;
2239 	bool		modified, live;
2240 
2241 	/*
2242 	 * When running, scan from last scan point up to "now"
2243 	 * else clean up by scanning everything that's left.
2244 	 * Touches as few pages as possible:  cache-friendly.
2245 	 */
2246 	if (ehci->rh_state >= EHCI_RH_RUNNING) {
2247 		uf = ehci_read_frame_index(ehci);
2248 		now_frame = (uf >> 3) & fmask;
2249 		live = true;
2250 	} else  {
2251 		now_frame = (ehci->last_iso_frame - 1) & fmask;
2252 		live = false;
2253 	}
2254 	ehci->now_frame = now_frame;
2255 
2256 	frame = ehci->last_iso_frame;
2257 	for (;;) {
2258 		union ehci_shadow	q, *q_p;
2259 		__hc32			type, *hw_p;
2260 
2261 restart:
2262 		/* scan each element in frame's queue for completions */
2263 		q_p = &ehci->pshadow [frame];
2264 		hw_p = &ehci->periodic [frame];
2265 		q.ptr = q_p->ptr;
2266 		type = Q_NEXT_TYPE(ehci, *hw_p);
2267 		modified = false;
2268 
2269 		while (q.ptr != NULL) {
2270 			switch (hc32_to_cpu(ehci, type)) {
2271 			case Q_TYPE_ITD:
2272 				/* If this ITD is still active, leave it for
2273 				 * later processing ... check the next entry.
2274 				 * No need to check for activity unless the
2275 				 * frame is current.
2276 				 */
2277 				if (frame == now_frame && live) {
2278 					rmb();
2279 					for (uf = 0; uf < 8; uf++) {
2280 						if (q.itd->hw_transaction[uf] &
2281 							    ITD_ACTIVE(ehci))
2282 							break;
2283 					}
2284 					if (uf < 8) {
2285 						q_p = &q.itd->itd_next;
2286 						hw_p = &q.itd->hw_next;
2287 						type = Q_NEXT_TYPE(ehci,
2288 							q.itd->hw_next);
2289 						q = *q_p;
2290 						break;
2291 					}
2292 				}
2293 
2294 				/* Take finished ITDs out of the schedule
2295 				 * and process them:  recycle, maybe report
2296 				 * URB completion.  HC won't cache the
2297 				 * pointer for much longer, if at all.
2298 				 */
2299 				*q_p = q.itd->itd_next;
2300 				if (!ehci->use_dummy_qh ||
2301 				    q.itd->hw_next != EHCI_LIST_END(ehci))
2302 					*hw_p = q.itd->hw_next;
2303 				else
2304 					*hw_p = ehci->dummy->qh_dma;
2305 				type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2306 				wmb();
2307 				modified = itd_complete (ehci, q.itd);
2308 				q = *q_p;
2309 				break;
2310 			case Q_TYPE_SITD:
2311 				/* If this SITD is still active, leave it for
2312 				 * later processing ... check the next entry.
2313 				 * No need to check for activity unless the
2314 				 * frame is current.
2315 				 */
2316 				if (((frame == now_frame) ||
2317 				     (((frame + 1) & fmask) == now_frame))
2318 				    && live
2319 				    && (q.sitd->hw_results &
2320 					SITD_ACTIVE(ehci))) {
2321 
2322 					q_p = &q.sitd->sitd_next;
2323 					hw_p = &q.sitd->hw_next;
2324 					type = Q_NEXT_TYPE(ehci,
2325 							q.sitd->hw_next);
2326 					q = *q_p;
2327 					break;
2328 				}
2329 
2330 				/* Take finished SITDs out of the schedule
2331 				 * and process them:  recycle, maybe report
2332 				 * URB completion.
2333 				 */
2334 				*q_p = q.sitd->sitd_next;
2335 				if (!ehci->use_dummy_qh ||
2336 				    q.sitd->hw_next != EHCI_LIST_END(ehci))
2337 					*hw_p = q.sitd->hw_next;
2338 				else
2339 					*hw_p = ehci->dummy->qh_dma;
2340 				type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2341 				wmb();
2342 				modified = sitd_complete (ehci, q.sitd);
2343 				q = *q_p;
2344 				break;
2345 			default:
2346 				ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n",
2347 					type, frame, q.ptr);
2348 				// BUG ();
2349 				/* FALL THROUGH */
2350 			case Q_TYPE_QH:
2351 			case Q_TYPE_FSTN:
2352 				/* End of the iTDs and siTDs */
2353 				q.ptr = NULL;
2354 				break;
2355 			}
2356 
2357 			/* assume completion callbacks modify the queue */
2358 			if (unlikely(modified && ehci->isoc_count > 0))
2359 				goto restart;
2360 		}
2361 
2362 		/* Stop when we have reached the current frame */
2363 		if (frame == now_frame)
2364 			break;
2365 
2366 		/* The last frame may still have active siTDs */
2367 		ehci->last_iso_frame = frame;
2368 		frame = (frame + 1) & fmask;
2369 	}
2370 }
2371