xref: /openbmc/linux/drivers/usb/host/ehci-sched.c (revision 22a41e9a5044bf3519f05b4a00e99af34bfeb40c)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2001-2004 by David Brownell
4  * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
5  */
6 
7 /* this file is part of ehci-hcd.c */
8 
9 /*-------------------------------------------------------------------------*/
10 
11 /*
12  * EHCI scheduled transaction support:  interrupt, iso, split iso
13  * These are called "periodic" transactions in the EHCI spec.
14  *
15  * Note that for interrupt transfers, the QH/QTD manipulation is shared
16  * with the "asynchronous" transaction support (control/bulk transfers).
17  * The only real difference is in how interrupt transfers are scheduled.
18  *
19  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
20  * It keeps track of every ITD (or SITD) that's linked, and holds enough
21  * pre-calculated schedule data to make appending to the queue be quick.
22  */
23 
24 static int ehci_get_frame(struct usb_hcd *hcd);
25 
26 /*
27  * periodic_next_shadow - return "next" pointer on shadow list
28  * @periodic: host pointer to qh/itd/sitd
29  * @tag: hardware tag for type of this record
30  */
31 static union ehci_shadow *
32 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
33 		__hc32 tag)
34 {
35 	switch (hc32_to_cpu(ehci, tag)) {
36 	case Q_TYPE_QH:
37 		return &periodic->qh->qh_next;
38 	case Q_TYPE_FSTN:
39 		return &periodic->fstn->fstn_next;
40 	case Q_TYPE_ITD:
41 		return &periodic->itd->itd_next;
42 	/* case Q_TYPE_SITD: */
43 	default:
44 		return &periodic->sitd->sitd_next;
45 	}
46 }
47 
48 static __hc32 *
49 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
50 		__hc32 tag)
51 {
52 	switch (hc32_to_cpu(ehci, tag)) {
53 	/* our ehci_shadow.qh is actually software part */
54 	case Q_TYPE_QH:
55 		return &periodic->qh->hw->hw_next;
56 	/* others are hw parts */
57 	default:
58 		return periodic->hw_next;
59 	}
60 }
61 
62 /* caller must hold ehci->lock */
63 static void periodic_unlink(struct ehci_hcd *ehci, unsigned frame, void *ptr)
64 {
65 	union ehci_shadow	*prev_p = &ehci->pshadow[frame];
66 	__hc32			*hw_p = &ehci->periodic[frame];
67 	union ehci_shadow	here = *prev_p;
68 
69 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
70 	while (here.ptr && here.ptr != ptr) {
71 		prev_p = periodic_next_shadow(ehci, prev_p,
72 				Q_NEXT_TYPE(ehci, *hw_p));
73 		hw_p = shadow_next_periodic(ehci, &here,
74 				Q_NEXT_TYPE(ehci, *hw_p));
75 		here = *prev_p;
76 	}
77 	/* an interrupt entry (at list end) could have been shared */
78 	if (!here.ptr)
79 		return;
80 
81 	/* update shadow and hardware lists ... the old "next" pointers
82 	 * from ptr may still be in use, the caller updates them.
83 	 */
84 	*prev_p = *periodic_next_shadow(ehci, &here,
85 			Q_NEXT_TYPE(ehci, *hw_p));
86 
87 	if (!ehci->use_dummy_qh ||
88 	    *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
89 			!= EHCI_LIST_END(ehci))
90 		*hw_p = *shadow_next_periodic(ehci, &here,
91 				Q_NEXT_TYPE(ehci, *hw_p));
92 	else
93 		*hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
94 }
95 
96 /*-------------------------------------------------------------------------*/
97 
98 /* Bandwidth and TT management */
99 
100 /* Find the TT data structure for this device; create it if necessary */
101 static struct ehci_tt *find_tt(struct usb_device *udev)
102 {
103 	struct usb_tt		*utt = udev->tt;
104 	struct ehci_tt		*tt, **tt_index, **ptt;
105 	unsigned		port;
106 	bool			allocated_index = false;
107 
108 	if (!utt)
109 		return NULL;		/* Not below a TT */
110 
111 	/*
112 	 * Find/create our data structure.
113 	 * For hubs with a single TT, we get it directly.
114 	 * For hubs with multiple TTs, there's an extra level of pointers.
115 	 */
116 	tt_index = NULL;
117 	if (utt->multi) {
118 		tt_index = utt->hcpriv;
119 		if (!tt_index) {		/* Create the index array */
120 			tt_index = kcalloc(utt->hub->maxchild,
121 					   sizeof(*tt_index),
122 					   GFP_ATOMIC);
123 			if (!tt_index)
124 				return ERR_PTR(-ENOMEM);
125 			utt->hcpriv = tt_index;
126 			allocated_index = true;
127 		}
128 		port = udev->ttport - 1;
129 		ptt = &tt_index[port];
130 	} else {
131 		port = 0;
132 		ptt = (struct ehci_tt **) &utt->hcpriv;
133 	}
134 
135 	tt = *ptt;
136 	if (!tt) {				/* Create the ehci_tt */
137 		struct ehci_hcd		*ehci =
138 				hcd_to_ehci(bus_to_hcd(udev->bus));
139 
140 		tt = kzalloc(sizeof(*tt), GFP_ATOMIC);
141 		if (!tt) {
142 			if (allocated_index) {
143 				utt->hcpriv = NULL;
144 				kfree(tt_index);
145 			}
146 			return ERR_PTR(-ENOMEM);
147 		}
148 		list_add_tail(&tt->tt_list, &ehci->tt_list);
149 		INIT_LIST_HEAD(&tt->ps_list);
150 		tt->usb_tt = utt;
151 		tt->tt_port = port;
152 		*ptt = tt;
153 	}
154 
155 	return tt;
156 }
157 
158 /* Release the TT above udev, if it's not in use */
159 static void drop_tt(struct usb_device *udev)
160 {
161 	struct usb_tt		*utt = udev->tt;
162 	struct ehci_tt		*tt, **tt_index, **ptt;
163 	int			cnt, i;
164 
165 	if (!utt || !utt->hcpriv)
166 		return;		/* Not below a TT, or never allocated */
167 
168 	cnt = 0;
169 	if (utt->multi) {
170 		tt_index = utt->hcpriv;
171 		ptt = &tt_index[udev->ttport - 1];
172 
173 		/* How many entries are left in tt_index? */
174 		for (i = 0; i < utt->hub->maxchild; ++i)
175 			cnt += !!tt_index[i];
176 	} else {
177 		tt_index = NULL;
178 		ptt = (struct ehci_tt **) &utt->hcpriv;
179 	}
180 
181 	tt = *ptt;
182 	if (!tt || !list_empty(&tt->ps_list))
183 		return;		/* never allocated, or still in use */
184 
185 	list_del(&tt->tt_list);
186 	*ptt = NULL;
187 	kfree(tt);
188 	if (cnt == 1) {
189 		utt->hcpriv = NULL;
190 		kfree(tt_index);
191 	}
192 }
193 
194 static void bandwidth_dbg(struct ehci_hcd *ehci, int sign, char *type,
195 		struct ehci_per_sched *ps)
196 {
197 	dev_dbg(&ps->udev->dev,
198 			"ep %02x: %s %s @ %u+%u (%u.%u+%u) [%u/%u us] mask %04x\n",
199 			ps->ep->desc.bEndpointAddress,
200 			(sign >= 0 ? "reserve" : "release"), type,
201 			(ps->bw_phase << 3) + ps->phase_uf, ps->bw_uperiod,
202 			ps->phase, ps->phase_uf, ps->period,
203 			ps->usecs, ps->c_usecs, ps->cs_mask);
204 }
205 
206 static void reserve_release_intr_bandwidth(struct ehci_hcd *ehci,
207 		struct ehci_qh *qh, int sign)
208 {
209 	unsigned		start_uf;
210 	unsigned		i, j, m;
211 	int			usecs = qh->ps.usecs;
212 	int			c_usecs = qh->ps.c_usecs;
213 	int			tt_usecs = qh->ps.tt_usecs;
214 	struct ehci_tt		*tt;
215 
216 	if (qh->ps.phase == NO_FRAME)	/* Bandwidth wasn't reserved */
217 		return;
218 	start_uf = qh->ps.bw_phase << 3;
219 
220 	bandwidth_dbg(ehci, sign, "intr", &qh->ps);
221 
222 	if (sign < 0) {		/* Release bandwidth */
223 		usecs = -usecs;
224 		c_usecs = -c_usecs;
225 		tt_usecs = -tt_usecs;
226 	}
227 
228 	/* Entire transaction (high speed) or start-split (full/low speed) */
229 	for (i = start_uf + qh->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
230 			i += qh->ps.bw_uperiod)
231 		ehci->bandwidth[i] += usecs;
232 
233 	/* Complete-split (full/low speed) */
234 	if (qh->ps.c_usecs) {
235 		/* NOTE: adjustments needed for FSTN */
236 		for (i = start_uf; i < EHCI_BANDWIDTH_SIZE;
237 				i += qh->ps.bw_uperiod) {
238 			for ((j = 2, m = 1 << (j+8)); j < 8; (++j, m <<= 1)) {
239 				if (qh->ps.cs_mask & m)
240 					ehci->bandwidth[i+j] += c_usecs;
241 			}
242 		}
243 	}
244 
245 	/* FS/LS bus bandwidth */
246 	if (tt_usecs) {
247 		/*
248 		 * find_tt() will not return any error here as we have
249 		 * already called find_tt() before calling this function
250 		 * and checked for any error return. The previous call
251 		 * would have created the data structure.
252 		 */
253 		tt = find_tt(qh->ps.udev);
254 		if (sign > 0)
255 			list_add_tail(&qh->ps.ps_list, &tt->ps_list);
256 		else
257 			list_del(&qh->ps.ps_list);
258 
259 		for (i = start_uf >> 3; i < EHCI_BANDWIDTH_FRAMES;
260 				i += qh->ps.bw_period)
261 			tt->bandwidth[i] += tt_usecs;
262 	}
263 }
264 
265 /*-------------------------------------------------------------------------*/
266 
267 static void compute_tt_budget(u8 budget_table[EHCI_BANDWIDTH_SIZE],
268 		struct ehci_tt *tt)
269 {
270 	struct ehci_per_sched	*ps;
271 	unsigned		uframe, uf, x;
272 	u8			*budget_line;
273 
274 	if (!tt)
275 		return;
276 	memset(budget_table, 0, EHCI_BANDWIDTH_SIZE);
277 
278 	/* Add up the contributions from all the endpoints using this TT */
279 	list_for_each_entry(ps, &tt->ps_list, ps_list) {
280 		for (uframe = ps->bw_phase << 3; uframe < EHCI_BANDWIDTH_SIZE;
281 				uframe += ps->bw_uperiod) {
282 			budget_line = &budget_table[uframe];
283 			x = ps->tt_usecs;
284 
285 			/* propagate the time forward */
286 			for (uf = ps->phase_uf; uf < 8; ++uf) {
287 				x += budget_line[uf];
288 
289 				/* Each microframe lasts 125 us */
290 				if (x <= 125) {
291 					budget_line[uf] = x;
292 					break;
293 				}
294 				budget_line[uf] = 125;
295 				x -= 125;
296 			}
297 		}
298 	}
299 }
300 
301 static int __maybe_unused same_tt(struct usb_device *dev1,
302 		struct usb_device *dev2)
303 {
304 	if (!dev1->tt || !dev2->tt)
305 		return 0;
306 	if (dev1->tt != dev2->tt)
307 		return 0;
308 	if (dev1->tt->multi)
309 		return dev1->ttport == dev2->ttport;
310 	else
311 		return 1;
312 }
313 
314 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
315 
316 static const unsigned char
317 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
318 
319 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
320 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
321 {
322 	int i;
323 
324 	for (i = 0; i < 7; i++) {
325 		if (max_tt_usecs[i] < tt_usecs[i]) {
326 			tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
327 			tt_usecs[i] = max_tt_usecs[i];
328 		}
329 	}
330 }
331 
332 /*
333  * Return true if the device's tt's downstream bus is available for a
334  * periodic transfer of the specified length (usecs), starting at the
335  * specified frame/uframe.  Note that (as summarized in section 11.19
336  * of the usb 2.0 spec) TTs can buffer multiple transactions for each
337  * uframe.
338  *
339  * The uframe parameter is when the fullspeed/lowspeed transfer
340  * should be executed in "B-frame" terms, which is the same as the
341  * highspeed ssplit's uframe (which is in "H-frame" terms).  For example
342  * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
343  * See the EHCI spec sec 4.5 and fig 4.7.
344  *
345  * This checks if the full/lowspeed bus, at the specified starting uframe,
346  * has the specified bandwidth available, according to rules listed
347  * in USB 2.0 spec section 11.18.1 fig 11-60.
348  *
349  * This does not check if the transfer would exceed the max ssplit
350  * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
351  * since proper scheduling limits ssplits to less than 16 per uframe.
352  */
353 static int tt_available(
354 	struct ehci_hcd		*ehci,
355 	struct ehci_per_sched	*ps,
356 	struct ehci_tt		*tt,
357 	unsigned		frame,
358 	unsigned		uframe
359 )
360 {
361 	unsigned		period = ps->bw_period;
362 	unsigned		usecs = ps->tt_usecs;
363 
364 	if ((period == 0) || (uframe >= 7))	/* error */
365 		return 0;
366 
367 	for (frame &= period - 1; frame < EHCI_BANDWIDTH_FRAMES;
368 			frame += period) {
369 		unsigned	i, uf;
370 		unsigned short	tt_usecs[8];
371 
372 		if (tt->bandwidth[frame] + usecs > 900)
373 			return 0;
374 
375 		uf = frame << 3;
376 		for (i = 0; i < 8; (++i, ++uf))
377 			tt_usecs[i] = ehci->tt_budget[uf];
378 
379 		if (max_tt_usecs[uframe] <= tt_usecs[uframe])
380 			return 0;
381 
382 		/* special case for isoc transfers larger than 125us:
383 		 * the first and each subsequent fully used uframe
384 		 * must be empty, so as to not illegally delay
385 		 * already scheduled transactions
386 		 */
387 		if (usecs > 125) {
388 			int ufs = (usecs / 125);
389 
390 			for (i = uframe; i < (uframe + ufs) && i < 8; i++)
391 				if (tt_usecs[i] > 0)
392 					return 0;
393 		}
394 
395 		tt_usecs[uframe] += usecs;
396 
397 		carryover_tt_bandwidth(tt_usecs);
398 
399 		/* fail if the carryover pushed bw past the last uframe's limit */
400 		if (max_tt_usecs[7] < tt_usecs[7])
401 			return 0;
402 	}
403 
404 	return 1;
405 }
406 
407 #else
408 
409 /* return true iff the device's transaction translator is available
410  * for a periodic transfer starting at the specified frame, using
411  * all the uframes in the mask.
412  */
413 static int tt_no_collision(
414 	struct ehci_hcd		*ehci,
415 	unsigned		period,
416 	struct usb_device	*dev,
417 	unsigned		frame,
418 	u32			uf_mask
419 )
420 {
421 	if (period == 0)	/* error */
422 		return 0;
423 
424 	/* note bandwidth wastage:  split never follows csplit
425 	 * (different dev or endpoint) until the next uframe.
426 	 * calling convention doesn't make that distinction.
427 	 */
428 	for (; frame < ehci->periodic_size; frame += period) {
429 		union ehci_shadow	here;
430 		__hc32			type;
431 		struct ehci_qh_hw	*hw;
432 
433 		here = ehci->pshadow[frame];
434 		type = Q_NEXT_TYPE(ehci, ehci->periodic[frame]);
435 		while (here.ptr) {
436 			switch (hc32_to_cpu(ehci, type)) {
437 			case Q_TYPE_ITD:
438 				type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
439 				here = here.itd->itd_next;
440 				continue;
441 			case Q_TYPE_QH:
442 				hw = here.qh->hw;
443 				if (same_tt(dev, here.qh->ps.udev)) {
444 					u32		mask;
445 
446 					mask = hc32_to_cpu(ehci,
447 							hw->hw_info2);
448 					/* "knows" no gap is needed */
449 					mask |= mask >> 8;
450 					if (mask & uf_mask)
451 						break;
452 				}
453 				type = Q_NEXT_TYPE(ehci, hw->hw_next);
454 				here = here.qh->qh_next;
455 				continue;
456 			case Q_TYPE_SITD:
457 				if (same_tt(dev, here.sitd->urb->dev)) {
458 					u16		mask;
459 
460 					mask = hc32_to_cpu(ehci, here.sitd
461 								->hw_uframe);
462 					/* FIXME assumes no gap for IN! */
463 					mask |= mask >> 8;
464 					if (mask & uf_mask)
465 						break;
466 				}
467 				type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
468 				here = here.sitd->sitd_next;
469 				continue;
470 			/* case Q_TYPE_FSTN: */
471 			default:
472 				ehci_dbg(ehci,
473 					"periodic frame %d bogus type %d\n",
474 					frame, type);
475 			}
476 
477 			/* collision or error */
478 			return 0;
479 		}
480 	}
481 
482 	/* no collision */
483 	return 1;
484 }
485 
486 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
487 
488 /*-------------------------------------------------------------------------*/
489 
490 static void enable_periodic(struct ehci_hcd *ehci)
491 {
492 	if (ehci->periodic_count++)
493 		return;
494 
495 	/* Stop waiting to turn off the periodic schedule */
496 	ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC);
497 
498 	/* Don't start the schedule until PSS is 0 */
499 	ehci_poll_PSS(ehci);
500 	turn_on_io_watchdog(ehci);
501 }
502 
503 static void disable_periodic(struct ehci_hcd *ehci)
504 {
505 	if (--ehci->periodic_count)
506 		return;
507 
508 	/* Don't turn off the schedule until PSS is 1 */
509 	ehci_poll_PSS(ehci);
510 }
511 
512 /*-------------------------------------------------------------------------*/
513 
514 /* periodic schedule slots have iso tds (normal or split) first, then a
515  * sparse tree for active interrupt transfers.
516  *
517  * this just links in a qh; caller guarantees uframe masks are set right.
518  * no FSTN support (yet; ehci 0.96+)
519  */
520 static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
521 {
522 	unsigned	i;
523 	unsigned	period = qh->ps.period;
524 
525 	dev_dbg(&qh->ps.udev->dev,
526 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
527 		period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
528 			& (QH_CMASK | QH_SMASK),
529 		qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
530 
531 	/* high bandwidth, or otherwise every microframe */
532 	if (period == 0)
533 		period = 1;
534 
535 	for (i = qh->ps.phase; i < ehci->periodic_size; i += period) {
536 		union ehci_shadow	*prev = &ehci->pshadow[i];
537 		__hc32			*hw_p = &ehci->periodic[i];
538 		union ehci_shadow	here = *prev;
539 		__hc32			type = 0;
540 
541 		/* skip the iso nodes at list head */
542 		while (here.ptr) {
543 			type = Q_NEXT_TYPE(ehci, *hw_p);
544 			if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
545 				break;
546 			prev = periodic_next_shadow(ehci, prev, type);
547 			hw_p = shadow_next_periodic(ehci, &here, type);
548 			here = *prev;
549 		}
550 
551 		/* sorting each branch by period (slow-->fast)
552 		 * enables sharing interior tree nodes
553 		 */
554 		while (here.ptr && qh != here.qh) {
555 			if (qh->ps.period > here.qh->ps.period)
556 				break;
557 			prev = &here.qh->qh_next;
558 			hw_p = &here.qh->hw->hw_next;
559 			here = *prev;
560 		}
561 		/* link in this qh, unless some earlier pass did that */
562 		if (qh != here.qh) {
563 			qh->qh_next = here;
564 			if (here.qh)
565 				qh->hw->hw_next = *hw_p;
566 			wmb();
567 			prev->qh = qh;
568 			*hw_p = QH_NEXT(ehci, qh->qh_dma);
569 		}
570 	}
571 	qh->qh_state = QH_STATE_LINKED;
572 	qh->xacterrs = 0;
573 	qh->unlink_reason = 0;
574 
575 	/* update per-qh bandwidth for debugfs */
576 	ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->ps.bw_period
577 		? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
578 		: (qh->ps.usecs * 8);
579 
580 	list_add(&qh->intr_node, &ehci->intr_qh_list);
581 
582 	/* maybe enable periodic schedule processing */
583 	++ehci->intr_count;
584 	enable_periodic(ehci);
585 }
586 
587 static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
588 {
589 	unsigned	i;
590 	unsigned	period;
591 
592 	/*
593 	 * If qh is for a low/full-speed device, simply unlinking it
594 	 * could interfere with an ongoing split transaction.  To unlink
595 	 * it safely would require setting the QH_INACTIVATE bit and
596 	 * waiting at least one frame, as described in EHCI 4.12.2.5.
597 	 *
598 	 * We won't bother with any of this.  Instead, we assume that the
599 	 * only reason for unlinking an interrupt QH while the current URB
600 	 * is still active is to dequeue all the URBs (flush the whole
601 	 * endpoint queue).
602 	 *
603 	 * If rebalancing the periodic schedule is ever implemented, this
604 	 * approach will no longer be valid.
605 	 */
606 
607 	/* high bandwidth, or otherwise part of every microframe */
608 	period = qh->ps.period ? : 1;
609 
610 	for (i = qh->ps.phase; i < ehci->periodic_size; i += period)
611 		periodic_unlink(ehci, i, qh);
612 
613 	/* update per-qh bandwidth for debugfs */
614 	ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->ps.bw_period
615 		? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
616 		: (qh->ps.usecs * 8);
617 
618 	dev_dbg(&qh->ps.udev->dev,
619 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
620 		qh->ps.period,
621 		hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
622 		qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
623 
624 	/* qh->qh_next still "live" to HC */
625 	qh->qh_state = QH_STATE_UNLINK;
626 	qh->qh_next.ptr = NULL;
627 
628 	if (ehci->qh_scan_next == qh)
629 		ehci->qh_scan_next = list_entry(qh->intr_node.next,
630 				struct ehci_qh, intr_node);
631 	list_del(&qh->intr_node);
632 }
633 
634 static void cancel_unlink_wait_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
635 {
636 	if (qh->qh_state != QH_STATE_LINKED ||
637 			list_empty(&qh->unlink_node))
638 		return;
639 
640 	list_del_init(&qh->unlink_node);
641 
642 	/*
643 	 * TODO: disable the event of EHCI_HRTIMER_START_UNLINK_INTR for
644 	 * avoiding unnecessary CPU wakeup
645 	 */
646 }
647 
648 static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
649 {
650 	/* If the QH isn't linked then there's nothing we can do. */
651 	if (qh->qh_state != QH_STATE_LINKED)
652 		return;
653 
654 	/* if the qh is waiting for unlink, cancel it now */
655 	cancel_unlink_wait_intr(ehci, qh);
656 
657 	qh_unlink_periodic(ehci, qh);
658 
659 	/* Make sure the unlinks are visible before starting the timer */
660 	wmb();
661 
662 	/*
663 	 * The EHCI spec doesn't say how long it takes the controller to
664 	 * stop accessing an unlinked interrupt QH.  The timer delay is
665 	 * 9 uframes; presumably that will be long enough.
666 	 */
667 	qh->unlink_cycle = ehci->intr_unlink_cycle;
668 
669 	/* New entries go at the end of the intr_unlink list */
670 	list_add_tail(&qh->unlink_node, &ehci->intr_unlink);
671 
672 	if (ehci->intr_unlinking)
673 		;	/* Avoid recursive calls */
674 	else if (ehci->rh_state < EHCI_RH_RUNNING)
675 		ehci_handle_intr_unlinks(ehci);
676 	else if (ehci->intr_unlink.next == &qh->unlink_node) {
677 		ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true);
678 		++ehci->intr_unlink_cycle;
679 	}
680 }
681 
682 /*
683  * It is common only one intr URB is scheduled on one qh, and
684  * given complete() is run in tasklet context, introduce a bit
685  * delay to avoid unlink qh too early.
686  */
687 static void start_unlink_intr_wait(struct ehci_hcd *ehci,
688 				   struct ehci_qh *qh)
689 {
690 	qh->unlink_cycle = ehci->intr_unlink_wait_cycle;
691 
692 	/* New entries go at the end of the intr_unlink_wait list */
693 	list_add_tail(&qh->unlink_node, &ehci->intr_unlink_wait);
694 
695 	if (ehci->rh_state < EHCI_RH_RUNNING)
696 		ehci_handle_start_intr_unlinks(ehci);
697 	else if (ehci->intr_unlink_wait.next == &qh->unlink_node) {
698 		ehci_enable_event(ehci, EHCI_HRTIMER_START_UNLINK_INTR, true);
699 		++ehci->intr_unlink_wait_cycle;
700 	}
701 }
702 
703 static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
704 {
705 	struct ehci_qh_hw	*hw = qh->hw;
706 	int			rc;
707 
708 	qh->qh_state = QH_STATE_IDLE;
709 	hw->hw_next = EHCI_LIST_END(ehci);
710 
711 	if (!list_empty(&qh->qtd_list))
712 		qh_completions(ehci, qh);
713 
714 	/* reschedule QH iff another request is queued */
715 	if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) {
716 		rc = qh_schedule(ehci, qh);
717 		if (rc == 0) {
718 			qh_refresh(ehci, qh);
719 			qh_link_periodic(ehci, qh);
720 		}
721 
722 		/* An error here likely indicates handshake failure
723 		 * or no space left in the schedule.  Neither fault
724 		 * should happen often ...
725 		 *
726 		 * FIXME kill the now-dysfunctional queued urbs
727 		 */
728 		else {
729 			ehci_err(ehci, "can't reschedule qh %p, err %d\n",
730 					qh, rc);
731 		}
732 	}
733 
734 	/* maybe turn off periodic schedule */
735 	--ehci->intr_count;
736 	disable_periodic(ehci);
737 }
738 
739 /*-------------------------------------------------------------------------*/
740 
741 static int check_period(
742 	struct ehci_hcd *ehci,
743 	unsigned	frame,
744 	unsigned	uframe,
745 	unsigned	uperiod,
746 	unsigned	usecs
747 ) {
748 	/* complete split running into next frame?
749 	 * given FSTN support, we could sometimes check...
750 	 */
751 	if (uframe >= 8)
752 		return 0;
753 
754 	/* convert "usecs we need" to "max already claimed" */
755 	usecs = ehci->uframe_periodic_max - usecs;
756 
757 	for (uframe += frame << 3; uframe < EHCI_BANDWIDTH_SIZE;
758 			uframe += uperiod) {
759 		if (ehci->bandwidth[uframe] > usecs)
760 			return 0;
761 	}
762 
763 	/* success! */
764 	return 1;
765 }
766 
767 static int check_intr_schedule(
768 	struct ehci_hcd		*ehci,
769 	unsigned		frame,
770 	unsigned		uframe,
771 	struct ehci_qh		*qh,
772 	unsigned		*c_maskp,
773 	struct ehci_tt		*tt
774 )
775 {
776 	int		retval = -ENOSPC;
777 	u8		mask = 0;
778 
779 	if (qh->ps.c_usecs && uframe >= 6)	/* FSTN territory? */
780 		goto done;
781 
782 	if (!check_period(ehci, frame, uframe, qh->ps.bw_uperiod, qh->ps.usecs))
783 		goto done;
784 	if (!qh->ps.c_usecs) {
785 		retval = 0;
786 		*c_maskp = 0;
787 		goto done;
788 	}
789 
790 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
791 	if (tt_available(ehci, &qh->ps, tt, frame, uframe)) {
792 		unsigned i;
793 
794 		/* TODO : this may need FSTN for SSPLIT in uframe 5. */
795 		for (i = uframe+2; i < 8 && i <= uframe+4; i++)
796 			if (!check_period(ehci, frame, i,
797 					qh->ps.bw_uperiod, qh->ps.c_usecs))
798 				goto done;
799 			else
800 				mask |= 1 << i;
801 
802 		retval = 0;
803 
804 		*c_maskp = mask;
805 	}
806 #else
807 	/* Make sure this tt's buffer is also available for CSPLITs.
808 	 * We pessimize a bit; probably the typical full speed case
809 	 * doesn't need the second CSPLIT.
810 	 *
811 	 * NOTE:  both SPLIT and CSPLIT could be checked in just
812 	 * one smart pass...
813 	 */
814 	mask = 0x03 << (uframe + qh->gap_uf);
815 	*c_maskp = mask;
816 
817 	mask |= 1 << uframe;
818 	if (tt_no_collision(ehci, qh->ps.bw_period, qh->ps.udev, frame, mask)) {
819 		if (!check_period(ehci, frame, uframe + qh->gap_uf + 1,
820 				qh->ps.bw_uperiod, qh->ps.c_usecs))
821 			goto done;
822 		if (!check_period(ehci, frame, uframe + qh->gap_uf,
823 				qh->ps.bw_uperiod, qh->ps.c_usecs))
824 			goto done;
825 		retval = 0;
826 	}
827 #endif
828 done:
829 	return retval;
830 }
831 
832 /* "first fit" scheduling policy used the first time through,
833  * or when the previous schedule slot can't be re-used.
834  */
835 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
836 {
837 	int		status = 0;
838 	unsigned	uframe;
839 	unsigned	c_mask;
840 	struct ehci_qh_hw	*hw = qh->hw;
841 	struct ehci_tt		*tt;
842 
843 	hw->hw_next = EHCI_LIST_END(ehci);
844 
845 	/* reuse the previous schedule slots, if we can */
846 	if (qh->ps.phase != NO_FRAME) {
847 		ehci_dbg(ehci, "reused qh %p schedule\n", qh);
848 		return 0;
849 	}
850 
851 	uframe = 0;
852 	c_mask = 0;
853 	tt = find_tt(qh->ps.udev);
854 	if (IS_ERR(tt)) {
855 		status = PTR_ERR(tt);
856 		goto done;
857 	}
858 	compute_tt_budget(ehci->tt_budget, tt);
859 
860 	/* else scan the schedule to find a group of slots such that all
861 	 * uframes have enough periodic bandwidth available.
862 	 */
863 	/* "normal" case, uframing flexible except with splits */
864 	if (qh->ps.bw_period) {
865 		int		i;
866 		unsigned	frame;
867 
868 		for (i = qh->ps.bw_period; i > 0; --i) {
869 			frame = ++ehci->random_frame & (qh->ps.bw_period - 1);
870 			for (uframe = 0; uframe < 8; uframe++) {
871 				status = check_intr_schedule(ehci,
872 						frame, uframe, qh, &c_mask, tt);
873 				if (status == 0)
874 					goto got_it;
875 			}
876 		}
877 
878 	/* qh->ps.bw_period == 0 means every uframe */
879 	} else {
880 		status = check_intr_schedule(ehci, 0, 0, qh, &c_mask, tt);
881 	}
882 	if (status)
883 		goto done;
884 
885  got_it:
886 	qh->ps.phase = (qh->ps.period ? ehci->random_frame &
887 			(qh->ps.period - 1) : 0);
888 	qh->ps.bw_phase = qh->ps.phase & (qh->ps.bw_period - 1);
889 	qh->ps.phase_uf = uframe;
890 	qh->ps.cs_mask = qh->ps.period ?
891 			(c_mask << 8) | (1 << uframe) :
892 			QH_SMASK;
893 
894 	/* reset S-frame and (maybe) C-frame masks */
895 	hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
896 	hw->hw_info2 |= cpu_to_hc32(ehci, qh->ps.cs_mask);
897 	reserve_release_intr_bandwidth(ehci, qh, 1);
898 
899 done:
900 	return status;
901 }
902 
903 static int intr_submit(
904 	struct ehci_hcd		*ehci,
905 	struct urb		*urb,
906 	struct list_head	*qtd_list,
907 	gfp_t			mem_flags
908 ) {
909 	unsigned		epnum;
910 	unsigned long		flags;
911 	struct ehci_qh		*qh;
912 	int			status;
913 	struct list_head	empty;
914 
915 	/* get endpoint and transfer/schedule data */
916 	epnum = urb->ep->desc.bEndpointAddress;
917 
918 	spin_lock_irqsave(&ehci->lock, flags);
919 
920 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
921 		status = -ESHUTDOWN;
922 		goto done_not_linked;
923 	}
924 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
925 	if (unlikely(status))
926 		goto done_not_linked;
927 
928 	/* get qh and force any scheduling errors */
929 	INIT_LIST_HEAD(&empty);
930 	qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
931 	if (qh == NULL) {
932 		status = -ENOMEM;
933 		goto done;
934 	}
935 	if (qh->qh_state == QH_STATE_IDLE) {
936 		status = qh_schedule(ehci, qh);
937 		if (status)
938 			goto done;
939 	}
940 
941 	/* then queue the urb's tds to the qh */
942 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
943 	BUG_ON(qh == NULL);
944 
945 	/* stuff into the periodic schedule */
946 	if (qh->qh_state == QH_STATE_IDLE) {
947 		qh_refresh(ehci, qh);
948 		qh_link_periodic(ehci, qh);
949 	} else {
950 		/* cancel unlink wait for the qh */
951 		cancel_unlink_wait_intr(ehci, qh);
952 	}
953 
954 	/* ... update usbfs periodic stats */
955 	ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
956 
957 done:
958 	if (unlikely(status))
959 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
960 done_not_linked:
961 	spin_unlock_irqrestore(&ehci->lock, flags);
962 	if (status)
963 		qtd_list_free(ehci, urb, qtd_list);
964 
965 	return status;
966 }
967 
968 static void scan_intr(struct ehci_hcd *ehci)
969 {
970 	struct ehci_qh		*qh;
971 
972 	list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list,
973 			intr_node) {
974 
975 		/* clean any finished work for this qh */
976 		if (!list_empty(&qh->qtd_list)) {
977 			int temp;
978 
979 			/*
980 			 * Unlinks could happen here; completion reporting
981 			 * drops the lock.  That's why ehci->qh_scan_next
982 			 * always holds the next qh to scan; if the next qh
983 			 * gets unlinked then ehci->qh_scan_next is adjusted
984 			 * in qh_unlink_periodic().
985 			 */
986 			temp = qh_completions(ehci, qh);
987 			if (unlikely(temp))
988 				start_unlink_intr(ehci, qh);
989 			else if (unlikely(list_empty(&qh->qtd_list) &&
990 					qh->qh_state == QH_STATE_LINKED))
991 				start_unlink_intr_wait(ehci, qh);
992 		}
993 	}
994 }
995 
996 /*-------------------------------------------------------------------------*/
997 
998 /* ehci_iso_stream ops work with both ITD and SITD */
999 
1000 static struct ehci_iso_stream *
1001 iso_stream_alloc(gfp_t mem_flags)
1002 {
1003 	struct ehci_iso_stream *stream;
1004 
1005 	stream = kzalloc(sizeof(*stream), mem_flags);
1006 	if (likely(stream != NULL)) {
1007 		INIT_LIST_HEAD(&stream->td_list);
1008 		INIT_LIST_HEAD(&stream->free_list);
1009 		stream->next_uframe = NO_FRAME;
1010 		stream->ps.phase = NO_FRAME;
1011 	}
1012 	return stream;
1013 }
1014 
1015 static void
1016 iso_stream_init(
1017 	struct ehci_hcd		*ehci,
1018 	struct ehci_iso_stream	*stream,
1019 	struct urb		*urb
1020 )
1021 {
1022 	static const u8 smask_out[] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
1023 
1024 	struct usb_device	*dev = urb->dev;
1025 	u32			buf1;
1026 	unsigned		epnum, maxp;
1027 	int			is_input;
1028 	unsigned		tmp;
1029 
1030 	/*
1031 	 * this might be a "high bandwidth" highspeed endpoint,
1032 	 * as encoded in the ep descriptor's wMaxPacket field
1033 	 */
1034 	epnum = usb_pipeendpoint(urb->pipe);
1035 	is_input = usb_pipein(urb->pipe) ? USB_DIR_IN : 0;
1036 	maxp = usb_endpoint_maxp(&urb->ep->desc);
1037 	buf1 = is_input ? 1 << 11 : 0;
1038 
1039 	/* knows about ITD vs SITD */
1040 	if (dev->speed == USB_SPEED_HIGH) {
1041 		unsigned multi = usb_endpoint_maxp_mult(&urb->ep->desc);
1042 
1043 		stream->highspeed = 1;
1044 
1045 		buf1 |= maxp;
1046 		maxp *= multi;
1047 
1048 		stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
1049 		stream->buf1 = cpu_to_hc32(ehci, buf1);
1050 		stream->buf2 = cpu_to_hc32(ehci, multi);
1051 
1052 		/* usbfs wants to report the average usecs per frame tied up
1053 		 * when transfers on this endpoint are scheduled ...
1054 		 */
1055 		stream->ps.usecs = HS_USECS_ISO(maxp);
1056 
1057 		/* period for bandwidth allocation */
1058 		tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
1059 				1 << (urb->ep->desc.bInterval - 1));
1060 
1061 		/* Allow urb->interval to override */
1062 		stream->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
1063 
1064 		stream->uperiod = urb->interval;
1065 		stream->ps.period = urb->interval >> 3;
1066 		stream->bandwidth = stream->ps.usecs * 8 /
1067 				stream->ps.bw_uperiod;
1068 
1069 	} else {
1070 		u32		addr;
1071 		int		think_time;
1072 		int		hs_transfers;
1073 
1074 		addr = dev->ttport << 24;
1075 		if (!ehci_is_TDI(ehci)
1076 				|| (dev->tt->hub !=
1077 					ehci_to_hcd(ehci)->self.root_hub))
1078 			addr |= dev->tt->hub->devnum << 16;
1079 		addr |= epnum << 8;
1080 		addr |= dev->devnum;
1081 		stream->ps.usecs = HS_USECS_ISO(maxp);
1082 		think_time = dev->tt->think_time;
1083 		stream->ps.tt_usecs = NS_TO_US(think_time + usb_calc_bus_time(
1084 				dev->speed, is_input, 1, maxp));
1085 		hs_transfers = max(1u, (maxp + 187) / 188);
1086 		if (is_input) {
1087 			u32	tmp;
1088 
1089 			addr |= 1 << 31;
1090 			stream->ps.c_usecs = stream->ps.usecs;
1091 			stream->ps.usecs = HS_USECS_ISO(1);
1092 			stream->ps.cs_mask = 1;
1093 
1094 			/* c-mask as specified in USB 2.0 11.18.4 3.c */
1095 			tmp = (1 << (hs_transfers + 2)) - 1;
1096 			stream->ps.cs_mask |= tmp << (8 + 2);
1097 		} else
1098 			stream->ps.cs_mask = smask_out[hs_transfers - 1];
1099 
1100 		/* period for bandwidth allocation */
1101 		tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
1102 				1 << (urb->ep->desc.bInterval - 1));
1103 
1104 		/* Allow urb->interval to override */
1105 		stream->ps.bw_period = min_t(unsigned, tmp, urb->interval);
1106 		stream->ps.bw_uperiod = stream->ps.bw_period << 3;
1107 
1108 		stream->ps.period = urb->interval;
1109 		stream->uperiod = urb->interval << 3;
1110 		stream->bandwidth = (stream->ps.usecs + stream->ps.c_usecs) /
1111 				stream->ps.bw_period;
1112 
1113 		/* stream->splits gets created from cs_mask later */
1114 		stream->address = cpu_to_hc32(ehci, addr);
1115 	}
1116 
1117 	stream->ps.udev = dev;
1118 	stream->ps.ep = urb->ep;
1119 
1120 	stream->bEndpointAddress = is_input | epnum;
1121 	stream->maxp = maxp;
1122 }
1123 
1124 static struct ehci_iso_stream *
1125 iso_stream_find(struct ehci_hcd *ehci, struct urb *urb)
1126 {
1127 	unsigned		epnum;
1128 	struct ehci_iso_stream	*stream;
1129 	struct usb_host_endpoint *ep;
1130 	unsigned long		flags;
1131 
1132 	epnum = usb_pipeendpoint (urb->pipe);
1133 	if (usb_pipein(urb->pipe))
1134 		ep = urb->dev->ep_in[epnum];
1135 	else
1136 		ep = urb->dev->ep_out[epnum];
1137 
1138 	spin_lock_irqsave(&ehci->lock, flags);
1139 	stream = ep->hcpriv;
1140 
1141 	if (unlikely(stream == NULL)) {
1142 		stream = iso_stream_alloc(GFP_ATOMIC);
1143 		if (likely(stream != NULL)) {
1144 			ep->hcpriv = stream;
1145 			iso_stream_init(ehci, stream, urb);
1146 		}
1147 
1148 	/* if dev->ep [epnum] is a QH, hw is set */
1149 	} else if (unlikely(stream->hw != NULL)) {
1150 		ehci_dbg(ehci, "dev %s ep%d%s, not iso??\n",
1151 			urb->dev->devpath, epnum,
1152 			usb_pipein(urb->pipe) ? "in" : "out");
1153 		stream = NULL;
1154 	}
1155 
1156 	spin_unlock_irqrestore(&ehci->lock, flags);
1157 	return stream;
1158 }
1159 
1160 /*-------------------------------------------------------------------------*/
1161 
1162 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1163 
1164 static struct ehci_iso_sched *
1165 iso_sched_alloc(unsigned packets, gfp_t mem_flags)
1166 {
1167 	struct ehci_iso_sched	*iso_sched;
1168 
1169 	iso_sched = kzalloc(struct_size(iso_sched, packet, packets), mem_flags);
1170 	if (likely(iso_sched != NULL))
1171 		INIT_LIST_HEAD(&iso_sched->td_list);
1172 
1173 	return iso_sched;
1174 }
1175 
1176 static inline void
1177 itd_sched_init(
1178 	struct ehci_hcd		*ehci,
1179 	struct ehci_iso_sched	*iso_sched,
1180 	struct ehci_iso_stream	*stream,
1181 	struct urb		*urb
1182 )
1183 {
1184 	unsigned	i;
1185 	dma_addr_t	dma = urb->transfer_dma;
1186 
1187 	/* how many uframes are needed for these transfers */
1188 	iso_sched->span = urb->number_of_packets * stream->uperiod;
1189 
1190 	/* figure out per-uframe itd fields that we'll need later
1191 	 * when we fit new itds into the schedule.
1192 	 */
1193 	for (i = 0; i < urb->number_of_packets; i++) {
1194 		struct ehci_iso_packet	*uframe = &iso_sched->packet[i];
1195 		unsigned		length;
1196 		dma_addr_t		buf;
1197 		u32			trans;
1198 
1199 		length = urb->iso_frame_desc[i].length;
1200 		buf = dma + urb->iso_frame_desc[i].offset;
1201 
1202 		trans = EHCI_ISOC_ACTIVE;
1203 		trans |= buf & 0x0fff;
1204 		if (unlikely(((i + 1) == urb->number_of_packets))
1205 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1206 			trans |= EHCI_ITD_IOC;
1207 		trans |= length << 16;
1208 		uframe->transaction = cpu_to_hc32(ehci, trans);
1209 
1210 		/* might need to cross a buffer page within a uframe */
1211 		uframe->bufp = (buf & ~(u64)0x0fff);
1212 		buf += length;
1213 		if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
1214 			uframe->cross = 1;
1215 	}
1216 }
1217 
1218 static void
1219 iso_sched_free(
1220 	struct ehci_iso_stream	*stream,
1221 	struct ehci_iso_sched	*iso_sched
1222 )
1223 {
1224 	if (!iso_sched)
1225 		return;
1226 	/* caller must hold ehci->lock! */
1227 	list_splice(&iso_sched->td_list, &stream->free_list);
1228 	kfree(iso_sched);
1229 }
1230 
1231 static int
1232 itd_urb_transaction(
1233 	struct ehci_iso_stream	*stream,
1234 	struct ehci_hcd		*ehci,
1235 	struct urb		*urb,
1236 	gfp_t			mem_flags
1237 )
1238 {
1239 	struct ehci_itd		*itd;
1240 	dma_addr_t		itd_dma;
1241 	int			i;
1242 	unsigned		num_itds;
1243 	struct ehci_iso_sched	*sched;
1244 	unsigned long		flags;
1245 
1246 	sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
1247 	if (unlikely(sched == NULL))
1248 		return -ENOMEM;
1249 
1250 	itd_sched_init(ehci, sched, stream, urb);
1251 
1252 	if (urb->interval < 8)
1253 		num_itds = 1 + (sched->span + 7) / 8;
1254 	else
1255 		num_itds = urb->number_of_packets;
1256 
1257 	/* allocate/init ITDs */
1258 	spin_lock_irqsave(&ehci->lock, flags);
1259 	for (i = 0; i < num_itds; i++) {
1260 
1261 		/*
1262 		 * Use iTDs from the free list, but not iTDs that may
1263 		 * still be in use by the hardware.
1264 		 */
1265 		if (likely(!list_empty(&stream->free_list))) {
1266 			itd = list_first_entry(&stream->free_list,
1267 					struct ehci_itd, itd_list);
1268 			if (itd->frame == ehci->now_frame)
1269 				goto alloc_itd;
1270 			list_del(&itd->itd_list);
1271 			itd_dma = itd->itd_dma;
1272 		} else {
1273  alloc_itd:
1274 			spin_unlock_irqrestore(&ehci->lock, flags);
1275 			itd = dma_pool_alloc(ehci->itd_pool, mem_flags,
1276 					&itd_dma);
1277 			spin_lock_irqsave(&ehci->lock, flags);
1278 			if (!itd) {
1279 				iso_sched_free(stream, sched);
1280 				spin_unlock_irqrestore(&ehci->lock, flags);
1281 				return -ENOMEM;
1282 			}
1283 		}
1284 
1285 		memset(itd, 0, sizeof(*itd));
1286 		itd->itd_dma = itd_dma;
1287 		itd->frame = NO_FRAME;
1288 		list_add(&itd->itd_list, &sched->td_list);
1289 	}
1290 	spin_unlock_irqrestore(&ehci->lock, flags);
1291 
1292 	/* temporarily store schedule info in hcpriv */
1293 	urb->hcpriv = sched;
1294 	urb->error_count = 0;
1295 	return 0;
1296 }
1297 
1298 /*-------------------------------------------------------------------------*/
1299 
1300 static void reserve_release_iso_bandwidth(struct ehci_hcd *ehci,
1301 		struct ehci_iso_stream *stream, int sign)
1302 {
1303 	unsigned		uframe;
1304 	unsigned		i, j;
1305 	unsigned		s_mask, c_mask, m;
1306 	int			usecs = stream->ps.usecs;
1307 	int			c_usecs = stream->ps.c_usecs;
1308 	int			tt_usecs = stream->ps.tt_usecs;
1309 	struct ehci_tt		*tt;
1310 
1311 	if (stream->ps.phase == NO_FRAME)	/* Bandwidth wasn't reserved */
1312 		return;
1313 	uframe = stream->ps.bw_phase << 3;
1314 
1315 	bandwidth_dbg(ehci, sign, "iso", &stream->ps);
1316 
1317 	if (sign < 0) {		/* Release bandwidth */
1318 		usecs = -usecs;
1319 		c_usecs = -c_usecs;
1320 		tt_usecs = -tt_usecs;
1321 	}
1322 
1323 	if (!stream->splits) {		/* High speed */
1324 		for (i = uframe + stream->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
1325 				i += stream->ps.bw_uperiod)
1326 			ehci->bandwidth[i] += usecs;
1327 
1328 	} else {			/* Full speed */
1329 		s_mask = stream->ps.cs_mask;
1330 		c_mask = s_mask >> 8;
1331 
1332 		/* NOTE: adjustment needed for frame overflow */
1333 		for (i = uframe; i < EHCI_BANDWIDTH_SIZE;
1334 				i += stream->ps.bw_uperiod) {
1335 			for ((j = stream->ps.phase_uf, m = 1 << j); j < 8;
1336 					(++j, m <<= 1)) {
1337 				if (s_mask & m)
1338 					ehci->bandwidth[i+j] += usecs;
1339 				else if (c_mask & m)
1340 					ehci->bandwidth[i+j] += c_usecs;
1341 			}
1342 		}
1343 
1344 		/*
1345 		 * find_tt() will not return any error here as we have
1346 		 * already called find_tt() before calling this function
1347 		 * and checked for any error return. The previous call
1348 		 * would have created the data structure.
1349 		 */
1350 		tt = find_tt(stream->ps.udev);
1351 		if (sign > 0)
1352 			list_add_tail(&stream->ps.ps_list, &tt->ps_list);
1353 		else
1354 			list_del(&stream->ps.ps_list);
1355 
1356 		for (i = uframe >> 3; i < EHCI_BANDWIDTH_FRAMES;
1357 				i += stream->ps.bw_period)
1358 			tt->bandwidth[i] += tt_usecs;
1359 	}
1360 }
1361 
1362 static inline int
1363 itd_slot_ok(
1364 	struct ehci_hcd		*ehci,
1365 	struct ehci_iso_stream	*stream,
1366 	unsigned		uframe
1367 )
1368 {
1369 	unsigned		usecs;
1370 
1371 	/* convert "usecs we need" to "max already claimed" */
1372 	usecs = ehci->uframe_periodic_max - stream->ps.usecs;
1373 
1374 	for (uframe &= stream->ps.bw_uperiod - 1; uframe < EHCI_BANDWIDTH_SIZE;
1375 			uframe += stream->ps.bw_uperiod) {
1376 		if (ehci->bandwidth[uframe] > usecs)
1377 			return 0;
1378 	}
1379 	return 1;
1380 }
1381 
1382 static inline int
1383 sitd_slot_ok(
1384 	struct ehci_hcd		*ehci,
1385 	struct ehci_iso_stream	*stream,
1386 	unsigned		uframe,
1387 	struct ehci_iso_sched	*sched,
1388 	struct ehci_tt		*tt
1389 )
1390 {
1391 	unsigned		mask, tmp;
1392 	unsigned		frame, uf;
1393 
1394 	mask = stream->ps.cs_mask << (uframe & 7);
1395 
1396 	/* for OUT, don't wrap SSPLIT into H-microframe 7 */
1397 	if (((stream->ps.cs_mask & 0xff) << (uframe & 7)) >= (1 << 7))
1398 		return 0;
1399 
1400 	/* for IN, don't wrap CSPLIT into the next frame */
1401 	if (mask & ~0xffff)
1402 		return 0;
1403 
1404 	/* check bandwidth */
1405 	uframe &= stream->ps.bw_uperiod - 1;
1406 	frame = uframe >> 3;
1407 
1408 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1409 	/* The tt's fullspeed bus bandwidth must be available.
1410 	 * tt_available scheduling guarantees 10+% for control/bulk.
1411 	 */
1412 	uf = uframe & 7;
1413 	if (!tt_available(ehci, &stream->ps, tt, frame, uf))
1414 		return 0;
1415 #else
1416 	/* tt must be idle for start(s), any gap, and csplit.
1417 	 * assume scheduling slop leaves 10+% for control/bulk.
1418 	 */
1419 	if (!tt_no_collision(ehci, stream->ps.bw_period,
1420 			stream->ps.udev, frame, mask))
1421 		return 0;
1422 #endif
1423 
1424 	do {
1425 		unsigned	max_used;
1426 		unsigned	i;
1427 
1428 		/* check starts (OUT uses more than one) */
1429 		uf = uframe;
1430 		max_used = ehci->uframe_periodic_max - stream->ps.usecs;
1431 		for (tmp = stream->ps.cs_mask & 0xff; tmp; tmp >>= 1, uf++) {
1432 			if (ehci->bandwidth[uf] > max_used)
1433 				return 0;
1434 		}
1435 
1436 		/* for IN, check CSPLIT */
1437 		if (stream->ps.c_usecs) {
1438 			max_used = ehci->uframe_periodic_max -
1439 					stream->ps.c_usecs;
1440 			uf = uframe & ~7;
1441 			tmp = 1 << (2+8);
1442 			for (i = (uframe & 7) + 2; i < 8; (++i, tmp <<= 1)) {
1443 				if ((stream->ps.cs_mask & tmp) == 0)
1444 					continue;
1445 				if (ehci->bandwidth[uf+i] > max_used)
1446 					return 0;
1447 			}
1448 		}
1449 
1450 		uframe += stream->ps.bw_uperiod;
1451 	} while (uframe < EHCI_BANDWIDTH_SIZE);
1452 
1453 	stream->ps.cs_mask <<= uframe & 7;
1454 	stream->splits = cpu_to_hc32(ehci, stream->ps.cs_mask);
1455 	return 1;
1456 }
1457 
1458 /*
1459  * This scheduler plans almost as far into the future as it has actual
1460  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
1461  * "as small as possible" to be cache-friendlier.)  That limits the size
1462  * transfers you can stream reliably; avoid more than 64 msec per urb.
1463  * Also avoid queue depths of less than ehci's worst irq latency (affected
1464  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1465  * and other factors); or more than about 230 msec total (for portability,
1466  * given EHCI_TUNE_FLS and the slop).  Or, write a smarter scheduler!
1467  */
1468 
1469 static int
1470 iso_stream_schedule(
1471 	struct ehci_hcd		*ehci,
1472 	struct urb		*urb,
1473 	struct ehci_iso_stream	*stream
1474 )
1475 {
1476 	u32			now, base, next, start, period, span, now2;
1477 	u32			wrap = 0, skip = 0;
1478 	int			status = 0;
1479 	unsigned		mod = ehci->periodic_size << 3;
1480 	struct ehci_iso_sched	*sched = urb->hcpriv;
1481 	bool			empty = list_empty(&stream->td_list);
1482 	bool			new_stream = false;
1483 
1484 	period = stream->uperiod;
1485 	span = sched->span;
1486 	if (!stream->highspeed)
1487 		span <<= 3;
1488 
1489 	/* Start a new isochronous stream? */
1490 	if (unlikely(empty && !hcd_periodic_completion_in_progress(
1491 			ehci_to_hcd(ehci), urb->ep))) {
1492 
1493 		/* Schedule the endpoint */
1494 		if (stream->ps.phase == NO_FRAME) {
1495 			int		done = 0;
1496 			struct ehci_tt	*tt = find_tt(stream->ps.udev);
1497 
1498 			if (IS_ERR(tt)) {
1499 				status = PTR_ERR(tt);
1500 				goto fail;
1501 			}
1502 			compute_tt_budget(ehci->tt_budget, tt);
1503 
1504 			start = ((-(++ehci->random_frame)) << 3) & (period - 1);
1505 
1506 			/* find a uframe slot with enough bandwidth.
1507 			 * Early uframes are more precious because full-speed
1508 			 * iso IN transfers can't use late uframes,
1509 			 * and therefore they should be allocated last.
1510 			 */
1511 			next = start;
1512 			start += period;
1513 			do {
1514 				start--;
1515 				/* check schedule: enough space? */
1516 				if (stream->highspeed) {
1517 					if (itd_slot_ok(ehci, stream, start))
1518 						done = 1;
1519 				} else {
1520 					if ((start % 8) >= 6)
1521 						continue;
1522 					if (sitd_slot_ok(ehci, stream, start,
1523 							sched, tt))
1524 						done = 1;
1525 				}
1526 			} while (start > next && !done);
1527 
1528 			/* no room in the schedule */
1529 			if (!done) {
1530 				ehci_dbg(ehci, "iso sched full %p", urb);
1531 				status = -ENOSPC;
1532 				goto fail;
1533 			}
1534 			stream->ps.phase = (start >> 3) &
1535 					(stream->ps.period - 1);
1536 			stream->ps.bw_phase = stream->ps.phase &
1537 					(stream->ps.bw_period - 1);
1538 			stream->ps.phase_uf = start & 7;
1539 			reserve_release_iso_bandwidth(ehci, stream, 1);
1540 		}
1541 
1542 		/* New stream is already scheduled; use the upcoming slot */
1543 		else {
1544 			start = (stream->ps.phase << 3) + stream->ps.phase_uf;
1545 		}
1546 
1547 		stream->next_uframe = start;
1548 		new_stream = true;
1549 	}
1550 
1551 	now = ehci_read_frame_index(ehci) & (mod - 1);
1552 
1553 	/* Take the isochronous scheduling threshold into account */
1554 	if (ehci->i_thresh)
1555 		next = now + ehci->i_thresh;	/* uframe cache */
1556 	else
1557 		next = (now + 2 + 7) & ~0x07;	/* full frame cache */
1558 
1559 	/* If needed, initialize last_iso_frame so that this URB will be seen */
1560 	if (ehci->isoc_count == 0)
1561 		ehci->last_iso_frame = now >> 3;
1562 
1563 	/*
1564 	 * Use ehci->last_iso_frame as the base.  There can't be any
1565 	 * TDs scheduled for earlier than that.
1566 	 */
1567 	base = ehci->last_iso_frame << 3;
1568 	next = (next - base) & (mod - 1);
1569 	start = (stream->next_uframe - base) & (mod - 1);
1570 
1571 	if (unlikely(new_stream))
1572 		goto do_ASAP;
1573 
1574 	/*
1575 	 * Typical case: reuse current schedule, stream may still be active.
1576 	 * Hopefully there are no gaps from the host falling behind
1577 	 * (irq delays etc).  If there are, the behavior depends on
1578 	 * whether URB_ISO_ASAP is set.
1579 	 */
1580 	now2 = (now - base) & (mod - 1);
1581 
1582 	/* Is the schedule about to wrap around? */
1583 	if (unlikely(!empty && start < period)) {
1584 		ehci_dbg(ehci, "request %p would overflow (%u-%u < %u mod %u)\n",
1585 				urb, stream->next_uframe, base, period, mod);
1586 		status = -EFBIG;
1587 		goto fail;
1588 	}
1589 
1590 	/* Is the next packet scheduled after the base time? */
1591 	if (likely(!empty || start <= now2 + period)) {
1592 
1593 		/* URB_ISO_ASAP: make sure that start >= next */
1594 		if (unlikely(start < next &&
1595 				(urb->transfer_flags & URB_ISO_ASAP)))
1596 			goto do_ASAP;
1597 
1598 		/* Otherwise use start, if it's not in the past */
1599 		if (likely(start >= now2))
1600 			goto use_start;
1601 
1602 	/* Otherwise we got an underrun while the queue was empty */
1603 	} else {
1604 		if (urb->transfer_flags & URB_ISO_ASAP)
1605 			goto do_ASAP;
1606 		wrap = mod;
1607 		now2 += mod;
1608 	}
1609 
1610 	/* How many uframes and packets do we need to skip? */
1611 	skip = (now2 - start + period - 1) & -period;
1612 	if (skip >= span) {		/* Entirely in the past? */
1613 		ehci_dbg(ehci, "iso underrun %p (%u+%u < %u) [%u]\n",
1614 				urb, start + base, span - period, now2 + base,
1615 				base);
1616 
1617 		/* Try to keep the last TD intact for scanning later */
1618 		skip = span - period;
1619 
1620 		/* Will it come before the current scan position? */
1621 		if (empty) {
1622 			skip = span;	/* Skip the entire URB */
1623 			status = 1;	/* and give it back immediately */
1624 			iso_sched_free(stream, sched);
1625 			sched = NULL;
1626 		}
1627 	}
1628 	urb->error_count = skip / period;
1629 	if (sched)
1630 		sched->first_packet = urb->error_count;
1631 	goto use_start;
1632 
1633  do_ASAP:
1634 	/* Use the first slot after "next" */
1635 	start = next + ((start - next) & (period - 1));
1636 
1637  use_start:
1638 	/* Tried to schedule too far into the future? */
1639 	if (unlikely(start + span - period >= mod + wrap)) {
1640 		ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n",
1641 				urb, start, span - period, mod + wrap);
1642 		status = -EFBIG;
1643 		goto fail;
1644 	}
1645 
1646 	start += base;
1647 	stream->next_uframe = (start + skip) & (mod - 1);
1648 
1649 	/* report high speed start in uframes; full speed, in frames */
1650 	urb->start_frame = start & (mod - 1);
1651 	if (!stream->highspeed)
1652 		urb->start_frame >>= 3;
1653 	return status;
1654 
1655  fail:
1656 	iso_sched_free(stream, sched);
1657 	urb->hcpriv = NULL;
1658 	return status;
1659 }
1660 
1661 /*-------------------------------------------------------------------------*/
1662 
1663 static inline void
1664 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1665 		struct ehci_itd *itd)
1666 {
1667 	int i;
1668 
1669 	/* it's been recently zeroed */
1670 	itd->hw_next = EHCI_LIST_END(ehci);
1671 	itd->hw_bufp[0] = stream->buf0;
1672 	itd->hw_bufp[1] = stream->buf1;
1673 	itd->hw_bufp[2] = stream->buf2;
1674 
1675 	for (i = 0; i < 8; i++)
1676 		itd->index[i] = -1;
1677 
1678 	/* All other fields are filled when scheduling */
1679 }
1680 
1681 static inline void
1682 itd_patch(
1683 	struct ehci_hcd		*ehci,
1684 	struct ehci_itd		*itd,
1685 	struct ehci_iso_sched	*iso_sched,
1686 	unsigned		index,
1687 	u16			uframe
1688 )
1689 {
1690 	struct ehci_iso_packet	*uf = &iso_sched->packet[index];
1691 	unsigned		pg = itd->pg;
1692 
1693 	/* BUG_ON(pg == 6 && uf->cross); */
1694 
1695 	uframe &= 0x07;
1696 	itd->index[uframe] = index;
1697 
1698 	itd->hw_transaction[uframe] = uf->transaction;
1699 	itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1700 	itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1701 	itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1702 
1703 	/* iso_frame_desc[].offset must be strictly increasing */
1704 	if (unlikely(uf->cross)) {
1705 		u64	bufp = uf->bufp + 4096;
1706 
1707 		itd->pg = ++pg;
1708 		itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1709 		itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1710 	}
1711 }
1712 
1713 static inline void
1714 itd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1715 {
1716 	union ehci_shadow	*prev = &ehci->pshadow[frame];
1717 	__hc32			*hw_p = &ehci->periodic[frame];
1718 	union ehci_shadow	here = *prev;
1719 	__hc32			type = 0;
1720 
1721 	/* skip any iso nodes which might belong to previous microframes */
1722 	while (here.ptr) {
1723 		type = Q_NEXT_TYPE(ehci, *hw_p);
1724 		if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1725 			break;
1726 		prev = periodic_next_shadow(ehci, prev, type);
1727 		hw_p = shadow_next_periodic(ehci, &here, type);
1728 		here = *prev;
1729 	}
1730 
1731 	itd->itd_next = here;
1732 	itd->hw_next = *hw_p;
1733 	prev->itd = itd;
1734 	itd->frame = frame;
1735 	wmb();
1736 	*hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1737 }
1738 
1739 /* fit urb's itds into the selected schedule slot; activate as needed */
1740 static void itd_link_urb(
1741 	struct ehci_hcd		*ehci,
1742 	struct urb		*urb,
1743 	unsigned		mod,
1744 	struct ehci_iso_stream	*stream
1745 )
1746 {
1747 	int			packet;
1748 	unsigned		next_uframe, uframe, frame;
1749 	struct ehci_iso_sched	*iso_sched = urb->hcpriv;
1750 	struct ehci_itd		*itd;
1751 
1752 	next_uframe = stream->next_uframe & (mod - 1);
1753 
1754 	if (unlikely(list_empty(&stream->td_list)))
1755 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1756 				+= stream->bandwidth;
1757 
1758 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1759 		if (ehci->amd_pll_fix == 1)
1760 			usb_amd_quirk_pll_disable();
1761 	}
1762 
1763 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1764 
1765 	/* fill iTDs uframe by uframe */
1766 	for (packet = iso_sched->first_packet, itd = NULL;
1767 			packet < urb->number_of_packets;) {
1768 		if (itd == NULL) {
1769 			/* ASSERT:  we have all necessary itds */
1770 			/* BUG_ON(list_empty(&iso_sched->td_list)); */
1771 
1772 			/* ASSERT:  no itds for this endpoint in this uframe */
1773 
1774 			itd = list_entry(iso_sched->td_list.next,
1775 					struct ehci_itd, itd_list);
1776 			list_move_tail(&itd->itd_list, &stream->td_list);
1777 			itd->stream = stream;
1778 			itd->urb = urb;
1779 			itd_init(ehci, stream, itd);
1780 		}
1781 
1782 		uframe = next_uframe & 0x07;
1783 		frame = next_uframe >> 3;
1784 
1785 		itd_patch(ehci, itd, iso_sched, packet, uframe);
1786 
1787 		next_uframe += stream->uperiod;
1788 		next_uframe &= mod - 1;
1789 		packet++;
1790 
1791 		/* link completed itds into the schedule */
1792 		if (((next_uframe >> 3) != frame)
1793 				|| packet == urb->number_of_packets) {
1794 			itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1795 			itd = NULL;
1796 		}
1797 	}
1798 	stream->next_uframe = next_uframe;
1799 
1800 	/* don't need that schedule data any more */
1801 	iso_sched_free(stream, iso_sched);
1802 	urb->hcpriv = stream;
1803 
1804 	++ehci->isoc_count;
1805 	enable_periodic(ehci);
1806 }
1807 
1808 #define	ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1809 
1810 /* Process and recycle a completed ITD.  Return true iff its urb completed,
1811  * and hence its completion callback probably added things to the hardware
1812  * schedule.
1813  *
1814  * Note that we carefully avoid recycling this descriptor until after any
1815  * completion callback runs, so that it won't be reused quickly.  That is,
1816  * assuming (a) no more than two urbs per frame on this endpoint, and also
1817  * (b) only this endpoint's completions submit URBs.  It seems some silicon
1818  * corrupts things if you reuse completed descriptors very quickly...
1819  */
1820 static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd)
1821 {
1822 	struct urb				*urb = itd->urb;
1823 	struct usb_iso_packet_descriptor	*desc;
1824 	u32					t;
1825 	unsigned				uframe;
1826 	int					urb_index = -1;
1827 	struct ehci_iso_stream			*stream = itd->stream;
1828 	bool					retval = false;
1829 
1830 	/* for each uframe with a packet */
1831 	for (uframe = 0; uframe < 8; uframe++) {
1832 		if (likely(itd->index[uframe] == -1))
1833 			continue;
1834 		urb_index = itd->index[uframe];
1835 		desc = &urb->iso_frame_desc[urb_index];
1836 
1837 		t = hc32_to_cpup(ehci, &itd->hw_transaction[uframe]);
1838 		itd->hw_transaction[uframe] = 0;
1839 
1840 		/* report transfer status */
1841 		if (unlikely(t & ISO_ERRS)) {
1842 			urb->error_count++;
1843 			if (t & EHCI_ISOC_BUF_ERR)
1844 				desc->status = usb_pipein(urb->pipe)
1845 					? -ENOSR  /* hc couldn't read */
1846 					: -ECOMM; /* hc couldn't write */
1847 			else if (t & EHCI_ISOC_BABBLE)
1848 				desc->status = -EOVERFLOW;
1849 			else /* (t & EHCI_ISOC_XACTERR) */
1850 				desc->status = -EPROTO;
1851 
1852 			/* HC need not update length with this error */
1853 			if (!(t & EHCI_ISOC_BABBLE)) {
1854 				desc->actual_length = EHCI_ITD_LENGTH(t);
1855 				urb->actual_length += desc->actual_length;
1856 			}
1857 		} else if (likely((t & EHCI_ISOC_ACTIVE) == 0)) {
1858 			desc->status = 0;
1859 			desc->actual_length = EHCI_ITD_LENGTH(t);
1860 			urb->actual_length += desc->actual_length;
1861 		} else {
1862 			/* URB was too late */
1863 			urb->error_count++;
1864 		}
1865 	}
1866 
1867 	/* handle completion now? */
1868 	if (likely((urb_index + 1) != urb->number_of_packets))
1869 		goto done;
1870 
1871 	/*
1872 	 * ASSERT: it's really the last itd for this urb
1873 	 * list_for_each_entry (itd, &stream->td_list, itd_list)
1874 	 *	 BUG_ON(itd->urb == urb);
1875 	 */
1876 
1877 	/* give urb back to the driver; completion often (re)submits */
1878 	ehci_urb_done(ehci, urb, 0);
1879 	retval = true;
1880 	urb = NULL;
1881 
1882 	--ehci->isoc_count;
1883 	disable_periodic(ehci);
1884 
1885 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1886 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1887 		if (ehci->amd_pll_fix == 1)
1888 			usb_amd_quirk_pll_enable();
1889 	}
1890 
1891 	if (unlikely(list_is_singular(&stream->td_list)))
1892 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1893 				-= stream->bandwidth;
1894 
1895 done:
1896 	itd->urb = NULL;
1897 
1898 	/* Add to the end of the free list for later reuse */
1899 	list_move_tail(&itd->itd_list, &stream->free_list);
1900 
1901 	/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
1902 	if (list_empty(&stream->td_list)) {
1903 		list_splice_tail_init(&stream->free_list,
1904 				&ehci->cached_itd_list);
1905 		start_free_itds(ehci);
1906 	}
1907 
1908 	return retval;
1909 }
1910 
1911 /*-------------------------------------------------------------------------*/
1912 
1913 static int itd_submit(struct ehci_hcd *ehci, struct urb *urb,
1914 	gfp_t mem_flags)
1915 {
1916 	int			status = -EINVAL;
1917 	unsigned long		flags;
1918 	struct ehci_iso_stream	*stream;
1919 
1920 	/* Get iso_stream head */
1921 	stream = iso_stream_find(ehci, urb);
1922 	if (unlikely(stream == NULL)) {
1923 		ehci_dbg(ehci, "can't get iso stream\n");
1924 		return -ENOMEM;
1925 	}
1926 	if (unlikely(urb->interval != stream->uperiod)) {
1927 		ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
1928 			stream->uperiod, urb->interval);
1929 		goto done;
1930 	}
1931 
1932 #ifdef EHCI_URB_TRACE
1933 	ehci_dbg(ehci,
1934 		"%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1935 		__func__, urb->dev->devpath, urb,
1936 		usb_pipeendpoint(urb->pipe),
1937 		usb_pipein(urb->pipe) ? "in" : "out",
1938 		urb->transfer_buffer_length,
1939 		urb->number_of_packets, urb->interval,
1940 		stream);
1941 #endif
1942 
1943 	/* allocate ITDs w/o locking anything */
1944 	status = itd_urb_transaction(stream, ehci, urb, mem_flags);
1945 	if (unlikely(status < 0)) {
1946 		ehci_dbg(ehci, "can't init itds\n");
1947 		goto done;
1948 	}
1949 
1950 	/* schedule ... need to lock */
1951 	spin_lock_irqsave(&ehci->lock, flags);
1952 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1953 		status = -ESHUTDOWN;
1954 		goto done_not_linked;
1955 	}
1956 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1957 	if (unlikely(status))
1958 		goto done_not_linked;
1959 	status = iso_stream_schedule(ehci, urb, stream);
1960 	if (likely(status == 0)) {
1961 		itd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
1962 	} else if (status > 0) {
1963 		status = 0;
1964 		ehci_urb_done(ehci, urb, 0);
1965 	} else {
1966 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1967 	}
1968  done_not_linked:
1969 	spin_unlock_irqrestore(&ehci->lock, flags);
1970  done:
1971 	return status;
1972 }
1973 
1974 /*-------------------------------------------------------------------------*/
1975 
1976 /*
1977  * "Split ISO TDs" ... used for USB 1.1 devices going through the
1978  * TTs in USB 2.0 hubs.  These need microframe scheduling.
1979  */
1980 
1981 static inline void
1982 sitd_sched_init(
1983 	struct ehci_hcd		*ehci,
1984 	struct ehci_iso_sched	*iso_sched,
1985 	struct ehci_iso_stream	*stream,
1986 	struct urb		*urb
1987 )
1988 {
1989 	unsigned	i;
1990 	dma_addr_t	dma = urb->transfer_dma;
1991 
1992 	/* how many frames are needed for these transfers */
1993 	iso_sched->span = urb->number_of_packets * stream->ps.period;
1994 
1995 	/* figure out per-frame sitd fields that we'll need later
1996 	 * when we fit new sitds into the schedule.
1997 	 */
1998 	for (i = 0; i < urb->number_of_packets; i++) {
1999 		struct ehci_iso_packet	*packet = &iso_sched->packet[i];
2000 		unsigned		length;
2001 		dma_addr_t		buf;
2002 		u32			trans;
2003 
2004 		length = urb->iso_frame_desc[i].length & 0x03ff;
2005 		buf = dma + urb->iso_frame_desc[i].offset;
2006 
2007 		trans = SITD_STS_ACTIVE;
2008 		if (((i + 1) == urb->number_of_packets)
2009 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
2010 			trans |= SITD_IOC;
2011 		trans |= length << 16;
2012 		packet->transaction = cpu_to_hc32(ehci, trans);
2013 
2014 		/* might need to cross a buffer page within a td */
2015 		packet->bufp = buf;
2016 		packet->buf1 = (buf + length) & ~0x0fff;
2017 		if (packet->buf1 != (buf & ~(u64)0x0fff))
2018 			packet->cross = 1;
2019 
2020 		/* OUT uses multiple start-splits */
2021 		if (stream->bEndpointAddress & USB_DIR_IN)
2022 			continue;
2023 		length = (length + 187) / 188;
2024 		if (length > 1) /* BEGIN vs ALL */
2025 			length |= 1 << 3;
2026 		packet->buf1 |= length;
2027 	}
2028 }
2029 
2030 static int
2031 sitd_urb_transaction(
2032 	struct ehci_iso_stream	*stream,
2033 	struct ehci_hcd		*ehci,
2034 	struct urb		*urb,
2035 	gfp_t			mem_flags
2036 )
2037 {
2038 	struct ehci_sitd	*sitd;
2039 	dma_addr_t		sitd_dma;
2040 	int			i;
2041 	struct ehci_iso_sched	*iso_sched;
2042 	unsigned long		flags;
2043 
2044 	iso_sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
2045 	if (iso_sched == NULL)
2046 		return -ENOMEM;
2047 
2048 	sitd_sched_init(ehci, iso_sched, stream, urb);
2049 
2050 	/* allocate/init sITDs */
2051 	spin_lock_irqsave(&ehci->lock, flags);
2052 	for (i = 0; i < urb->number_of_packets; i++) {
2053 
2054 		/* NOTE:  for now, we don't try to handle wraparound cases
2055 		 * for IN (using sitd->hw_backpointer, like a FSTN), which
2056 		 * means we never need two sitds for full speed packets.
2057 		 */
2058 
2059 		/*
2060 		 * Use siTDs from the free list, but not siTDs that may
2061 		 * still be in use by the hardware.
2062 		 */
2063 		if (likely(!list_empty(&stream->free_list))) {
2064 			sitd = list_first_entry(&stream->free_list,
2065 					 struct ehci_sitd, sitd_list);
2066 			if (sitd->frame == ehci->now_frame)
2067 				goto alloc_sitd;
2068 			list_del(&sitd->sitd_list);
2069 			sitd_dma = sitd->sitd_dma;
2070 		} else {
2071  alloc_sitd:
2072 			spin_unlock_irqrestore(&ehci->lock, flags);
2073 			sitd = dma_pool_alloc(ehci->sitd_pool, mem_flags,
2074 					&sitd_dma);
2075 			spin_lock_irqsave(&ehci->lock, flags);
2076 			if (!sitd) {
2077 				iso_sched_free(stream, iso_sched);
2078 				spin_unlock_irqrestore(&ehci->lock, flags);
2079 				return -ENOMEM;
2080 			}
2081 		}
2082 
2083 		memset(sitd, 0, sizeof(*sitd));
2084 		sitd->sitd_dma = sitd_dma;
2085 		sitd->frame = NO_FRAME;
2086 		list_add(&sitd->sitd_list, &iso_sched->td_list);
2087 	}
2088 
2089 	/* temporarily store schedule info in hcpriv */
2090 	urb->hcpriv = iso_sched;
2091 	urb->error_count = 0;
2092 
2093 	spin_unlock_irqrestore(&ehci->lock, flags);
2094 	return 0;
2095 }
2096 
2097 /*-------------------------------------------------------------------------*/
2098 
2099 static inline void
2100 sitd_patch(
2101 	struct ehci_hcd		*ehci,
2102 	struct ehci_iso_stream	*stream,
2103 	struct ehci_sitd	*sitd,
2104 	struct ehci_iso_sched	*iso_sched,
2105 	unsigned		index
2106 )
2107 {
2108 	struct ehci_iso_packet	*uf = &iso_sched->packet[index];
2109 	u64			bufp;
2110 
2111 	sitd->hw_next = EHCI_LIST_END(ehci);
2112 	sitd->hw_fullspeed_ep = stream->address;
2113 	sitd->hw_uframe = stream->splits;
2114 	sitd->hw_results = uf->transaction;
2115 	sitd->hw_backpointer = EHCI_LIST_END(ehci);
2116 
2117 	bufp = uf->bufp;
2118 	sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
2119 	sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
2120 
2121 	sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
2122 	if (uf->cross)
2123 		bufp += 4096;
2124 	sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
2125 	sitd->index = index;
2126 }
2127 
2128 static inline void
2129 sitd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
2130 {
2131 	/* note: sitd ordering could matter (CSPLIT then SSPLIT) */
2132 	sitd->sitd_next = ehci->pshadow[frame];
2133 	sitd->hw_next = ehci->periodic[frame];
2134 	ehci->pshadow[frame].sitd = sitd;
2135 	sitd->frame = frame;
2136 	wmb();
2137 	ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
2138 }
2139 
2140 /* fit urb's sitds into the selected schedule slot; activate as needed */
2141 static void sitd_link_urb(
2142 	struct ehci_hcd		*ehci,
2143 	struct urb		*urb,
2144 	unsigned		mod,
2145 	struct ehci_iso_stream	*stream
2146 )
2147 {
2148 	int			packet;
2149 	unsigned		next_uframe;
2150 	struct ehci_iso_sched	*sched = urb->hcpriv;
2151 	struct ehci_sitd	*sitd;
2152 
2153 	next_uframe = stream->next_uframe;
2154 
2155 	if (list_empty(&stream->td_list))
2156 		/* usbfs ignores TT bandwidth */
2157 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2158 				+= stream->bandwidth;
2159 
2160 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2161 		if (ehci->amd_pll_fix == 1)
2162 			usb_amd_quirk_pll_disable();
2163 	}
2164 
2165 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2166 
2167 	/* fill sITDs frame by frame */
2168 	for (packet = sched->first_packet, sitd = NULL;
2169 			packet < urb->number_of_packets;
2170 			packet++) {
2171 
2172 		/* ASSERT:  we have all necessary sitds */
2173 		BUG_ON(list_empty(&sched->td_list));
2174 
2175 		/* ASSERT:  no itds for this endpoint in this frame */
2176 
2177 		sitd = list_entry(sched->td_list.next,
2178 				struct ehci_sitd, sitd_list);
2179 		list_move_tail(&sitd->sitd_list, &stream->td_list);
2180 		sitd->stream = stream;
2181 		sitd->urb = urb;
2182 
2183 		sitd_patch(ehci, stream, sitd, sched, packet);
2184 		sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2185 				sitd);
2186 
2187 		next_uframe += stream->uperiod;
2188 	}
2189 	stream->next_uframe = next_uframe & (mod - 1);
2190 
2191 	/* don't need that schedule data any more */
2192 	iso_sched_free(stream, sched);
2193 	urb->hcpriv = stream;
2194 
2195 	++ehci->isoc_count;
2196 	enable_periodic(ehci);
2197 }
2198 
2199 /*-------------------------------------------------------------------------*/
2200 
2201 #define	SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2202 				| SITD_STS_XACT | SITD_STS_MMF)
2203 
2204 /* Process and recycle a completed SITD.  Return true iff its urb completed,
2205  * and hence its completion callback probably added things to the hardware
2206  * schedule.
2207  *
2208  * Note that we carefully avoid recycling this descriptor until after any
2209  * completion callback runs, so that it won't be reused quickly.  That is,
2210  * assuming (a) no more than two urbs per frame on this endpoint, and also
2211  * (b) only this endpoint's completions submit URBs.  It seems some silicon
2212  * corrupts things if you reuse completed descriptors very quickly...
2213  */
2214 static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd)
2215 {
2216 	struct urb				*urb = sitd->urb;
2217 	struct usb_iso_packet_descriptor	*desc;
2218 	u32					t;
2219 	int					urb_index;
2220 	struct ehci_iso_stream			*stream = sitd->stream;
2221 	bool					retval = false;
2222 
2223 	urb_index = sitd->index;
2224 	desc = &urb->iso_frame_desc[urb_index];
2225 	t = hc32_to_cpup(ehci, &sitd->hw_results);
2226 
2227 	/* report transfer status */
2228 	if (unlikely(t & SITD_ERRS)) {
2229 		urb->error_count++;
2230 		if (t & SITD_STS_DBE)
2231 			desc->status = usb_pipein(urb->pipe)
2232 				? -ENOSR  /* hc couldn't read */
2233 				: -ECOMM; /* hc couldn't write */
2234 		else if (t & SITD_STS_BABBLE)
2235 			desc->status = -EOVERFLOW;
2236 		else /* XACT, MMF, etc */
2237 			desc->status = -EPROTO;
2238 	} else if (unlikely(t & SITD_STS_ACTIVE)) {
2239 		/* URB was too late */
2240 		urb->error_count++;
2241 	} else {
2242 		desc->status = 0;
2243 		desc->actual_length = desc->length - SITD_LENGTH(t);
2244 		urb->actual_length += desc->actual_length;
2245 	}
2246 
2247 	/* handle completion now? */
2248 	if ((urb_index + 1) != urb->number_of_packets)
2249 		goto done;
2250 
2251 	/*
2252 	 * ASSERT: it's really the last sitd for this urb
2253 	 * list_for_each_entry (sitd, &stream->td_list, sitd_list)
2254 	 *	 BUG_ON(sitd->urb == urb);
2255 	 */
2256 
2257 	/* give urb back to the driver; completion often (re)submits */
2258 	ehci_urb_done(ehci, urb, 0);
2259 	retval = true;
2260 	urb = NULL;
2261 
2262 	--ehci->isoc_count;
2263 	disable_periodic(ehci);
2264 
2265 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2266 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2267 		if (ehci->amd_pll_fix == 1)
2268 			usb_amd_quirk_pll_enable();
2269 	}
2270 
2271 	if (list_is_singular(&stream->td_list))
2272 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2273 				-= stream->bandwidth;
2274 
2275 done:
2276 	sitd->urb = NULL;
2277 
2278 	/* Add to the end of the free list for later reuse */
2279 	list_move_tail(&sitd->sitd_list, &stream->free_list);
2280 
2281 	/* Recycle the siTDs when the pipeline is empty (ep no longer in use) */
2282 	if (list_empty(&stream->td_list)) {
2283 		list_splice_tail_init(&stream->free_list,
2284 				&ehci->cached_sitd_list);
2285 		start_free_itds(ehci);
2286 	}
2287 
2288 	return retval;
2289 }
2290 
2291 
2292 static int sitd_submit(struct ehci_hcd *ehci, struct urb *urb,
2293 	gfp_t mem_flags)
2294 {
2295 	int			status = -EINVAL;
2296 	unsigned long		flags;
2297 	struct ehci_iso_stream	*stream;
2298 
2299 	/* Get iso_stream head */
2300 	stream = iso_stream_find(ehci, urb);
2301 	if (stream == NULL) {
2302 		ehci_dbg(ehci, "can't get iso stream\n");
2303 		return -ENOMEM;
2304 	}
2305 	if (urb->interval != stream->ps.period) {
2306 		ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
2307 			stream->ps.period, urb->interval);
2308 		goto done;
2309 	}
2310 
2311 #ifdef EHCI_URB_TRACE
2312 	ehci_dbg(ehci,
2313 		"submit %p dev%s ep%d%s-iso len %d\n",
2314 		urb, urb->dev->devpath,
2315 		usb_pipeendpoint(urb->pipe),
2316 		usb_pipein(urb->pipe) ? "in" : "out",
2317 		urb->transfer_buffer_length);
2318 #endif
2319 
2320 	/* allocate SITDs */
2321 	status = sitd_urb_transaction(stream, ehci, urb, mem_flags);
2322 	if (status < 0) {
2323 		ehci_dbg(ehci, "can't init sitds\n");
2324 		goto done;
2325 	}
2326 
2327 	/* schedule ... need to lock */
2328 	spin_lock_irqsave(&ehci->lock, flags);
2329 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2330 		status = -ESHUTDOWN;
2331 		goto done_not_linked;
2332 	}
2333 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2334 	if (unlikely(status))
2335 		goto done_not_linked;
2336 	status = iso_stream_schedule(ehci, urb, stream);
2337 	if (likely(status == 0)) {
2338 		sitd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
2339 	} else if (status > 0) {
2340 		status = 0;
2341 		ehci_urb_done(ehci, urb, 0);
2342 	} else {
2343 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2344 	}
2345  done_not_linked:
2346 	spin_unlock_irqrestore(&ehci->lock, flags);
2347  done:
2348 	return status;
2349 }
2350 
2351 /*-------------------------------------------------------------------------*/
2352 
2353 static void scan_isoc(struct ehci_hcd *ehci)
2354 {
2355 	unsigned		uf, now_frame, frame;
2356 	unsigned		fmask = ehci->periodic_size - 1;
2357 	bool			modified, live;
2358 	union ehci_shadow	q, *q_p;
2359 	__hc32			type, *hw_p;
2360 
2361 	/*
2362 	 * When running, scan from last scan point up to "now"
2363 	 * else clean up by scanning everything that's left.
2364 	 * Touches as few pages as possible:  cache-friendly.
2365 	 */
2366 	if (ehci->rh_state >= EHCI_RH_RUNNING) {
2367 		uf = ehci_read_frame_index(ehci);
2368 		now_frame = (uf >> 3) & fmask;
2369 		live = true;
2370 	} else  {
2371 		now_frame = (ehci->last_iso_frame - 1) & fmask;
2372 		live = false;
2373 	}
2374 	ehci->now_frame = now_frame;
2375 
2376 	frame = ehci->last_iso_frame;
2377 
2378 restart:
2379 	/* Scan each element in frame's queue for completions */
2380 	q_p = &ehci->pshadow[frame];
2381 	hw_p = &ehci->periodic[frame];
2382 	q.ptr = q_p->ptr;
2383 	type = Q_NEXT_TYPE(ehci, *hw_p);
2384 	modified = false;
2385 
2386 	while (q.ptr != NULL) {
2387 		switch (hc32_to_cpu(ehci, type)) {
2388 		case Q_TYPE_ITD:
2389 			/*
2390 			 * If this ITD is still active, leave it for
2391 			 * later processing ... check the next entry.
2392 			 * No need to check for activity unless the
2393 			 * frame is current.
2394 			 */
2395 			if (frame == now_frame && live) {
2396 				rmb();
2397 				for (uf = 0; uf < 8; uf++) {
2398 					if (q.itd->hw_transaction[uf] &
2399 							ITD_ACTIVE(ehci))
2400 						break;
2401 				}
2402 				if (uf < 8) {
2403 					q_p = &q.itd->itd_next;
2404 					hw_p = &q.itd->hw_next;
2405 					type = Q_NEXT_TYPE(ehci,
2406 							q.itd->hw_next);
2407 					q = *q_p;
2408 					break;
2409 				}
2410 			}
2411 
2412 			/*
2413 			 * Take finished ITDs out of the schedule
2414 			 * and process them:  recycle, maybe report
2415 			 * URB completion.  HC won't cache the
2416 			 * pointer for much longer, if at all.
2417 			 */
2418 			*q_p = q.itd->itd_next;
2419 			if (!ehci->use_dummy_qh ||
2420 					q.itd->hw_next != EHCI_LIST_END(ehci))
2421 				*hw_p = q.itd->hw_next;
2422 			else
2423 				*hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
2424 			type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2425 			wmb();
2426 			modified = itd_complete(ehci, q.itd);
2427 			q = *q_p;
2428 			break;
2429 		case Q_TYPE_SITD:
2430 			/*
2431 			 * If this SITD is still active, leave it for
2432 			 * later processing ... check the next entry.
2433 			 * No need to check for activity unless the
2434 			 * frame is current.
2435 			 */
2436 			if (((frame == now_frame) ||
2437 					(((frame + 1) & fmask) == now_frame))
2438 				&& live
2439 				&& (q.sitd->hw_results & SITD_ACTIVE(ehci))) {
2440 
2441 				q_p = &q.sitd->sitd_next;
2442 				hw_p = &q.sitd->hw_next;
2443 				type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2444 				q = *q_p;
2445 				break;
2446 			}
2447 
2448 			/*
2449 			 * Take finished SITDs out of the schedule
2450 			 * and process them:  recycle, maybe report
2451 			 * URB completion.
2452 			 */
2453 			*q_p = q.sitd->sitd_next;
2454 			if (!ehci->use_dummy_qh ||
2455 					q.sitd->hw_next != EHCI_LIST_END(ehci))
2456 				*hw_p = q.sitd->hw_next;
2457 			else
2458 				*hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
2459 			type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2460 			wmb();
2461 			modified = sitd_complete(ehci, q.sitd);
2462 			q = *q_p;
2463 			break;
2464 		default:
2465 			ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n",
2466 					type, frame, q.ptr);
2467 			/* BUG(); */
2468 			fallthrough;
2469 		case Q_TYPE_QH:
2470 		case Q_TYPE_FSTN:
2471 			/* End of the iTDs and siTDs */
2472 			q.ptr = NULL;
2473 			break;
2474 		}
2475 
2476 		/* Assume completion callbacks modify the queue */
2477 		if (unlikely(modified && ehci->isoc_count > 0))
2478 			goto restart;
2479 	}
2480 
2481 	/* Stop when we have reached the current frame */
2482 	if (frame == now_frame)
2483 		return;
2484 
2485 	/* The last frame may still have active siTDs */
2486 	ehci->last_iso_frame = frame;
2487 	frame = (frame + 1) & fmask;
2488 
2489 	goto restart;
2490 }
2491