xref: /openbmc/linux/drivers/usb/host/ehci-sched.c (revision 1ec2780c)
1 /*
2  * Copyright (c) 2001-2004 by David Brownell
3  * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation; either version 2 of the License, or (at your
8  * option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software Foundation,
17  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19 
20 /* this file is part of ehci-hcd.c */
21 
22 /*-------------------------------------------------------------------------*/
23 
24 /*
25  * EHCI scheduled transaction support:  interrupt, iso, split iso
26  * These are called "periodic" transactions in the EHCI spec.
27  *
28  * Note that for interrupt transfers, the QH/QTD manipulation is shared
29  * with the "asynchronous" transaction support (control/bulk transfers).
30  * The only real difference is in how interrupt transfers are scheduled.
31  *
32  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33  * It keeps track of every ITD (or SITD) that's linked, and holds enough
34  * pre-calculated schedule data to make appending to the queue be quick.
35  */
36 
37 static int ehci_get_frame(struct usb_hcd *hcd);
38 
39 /*
40  * periodic_next_shadow - return "next" pointer on shadow list
41  * @periodic: host pointer to qh/itd/sitd
42  * @tag: hardware tag for type of this record
43  */
44 static union ehci_shadow *
45 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
46 		__hc32 tag)
47 {
48 	switch (hc32_to_cpu(ehci, tag)) {
49 	case Q_TYPE_QH:
50 		return &periodic->qh->qh_next;
51 	case Q_TYPE_FSTN:
52 		return &periodic->fstn->fstn_next;
53 	case Q_TYPE_ITD:
54 		return &periodic->itd->itd_next;
55 	/* case Q_TYPE_SITD: */
56 	default:
57 		return &periodic->sitd->sitd_next;
58 	}
59 }
60 
61 static __hc32 *
62 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
63 		__hc32 tag)
64 {
65 	switch (hc32_to_cpu(ehci, tag)) {
66 	/* our ehci_shadow.qh is actually software part */
67 	case Q_TYPE_QH:
68 		return &periodic->qh->hw->hw_next;
69 	/* others are hw parts */
70 	default:
71 		return periodic->hw_next;
72 	}
73 }
74 
75 /* caller must hold ehci->lock */
76 static void periodic_unlink(struct ehci_hcd *ehci, unsigned frame, void *ptr)
77 {
78 	union ehci_shadow	*prev_p = &ehci->pshadow[frame];
79 	__hc32			*hw_p = &ehci->periodic[frame];
80 	union ehci_shadow	here = *prev_p;
81 
82 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
83 	while (here.ptr && here.ptr != ptr) {
84 		prev_p = periodic_next_shadow(ehci, prev_p,
85 				Q_NEXT_TYPE(ehci, *hw_p));
86 		hw_p = shadow_next_periodic(ehci, &here,
87 				Q_NEXT_TYPE(ehci, *hw_p));
88 		here = *prev_p;
89 	}
90 	/* an interrupt entry (at list end) could have been shared */
91 	if (!here.ptr)
92 		return;
93 
94 	/* update shadow and hardware lists ... the old "next" pointers
95 	 * from ptr may still be in use, the caller updates them.
96 	 */
97 	*prev_p = *periodic_next_shadow(ehci, &here,
98 			Q_NEXT_TYPE(ehci, *hw_p));
99 
100 	if (!ehci->use_dummy_qh ||
101 	    *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
102 			!= EHCI_LIST_END(ehci))
103 		*hw_p = *shadow_next_periodic(ehci, &here,
104 				Q_NEXT_TYPE(ehci, *hw_p));
105 	else
106 		*hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
107 }
108 
109 /*-------------------------------------------------------------------------*/
110 
111 /* Bandwidth and TT management */
112 
113 /* Find the TT data structure for this device; create it if necessary */
114 static struct ehci_tt *find_tt(struct usb_device *udev)
115 {
116 	struct usb_tt		*utt = udev->tt;
117 	struct ehci_tt		*tt, **tt_index, **ptt;
118 	unsigned		port;
119 	bool			allocated_index = false;
120 
121 	if (!utt)
122 		return NULL;		/* Not below a TT */
123 
124 	/*
125 	 * Find/create our data structure.
126 	 * For hubs with a single TT, we get it directly.
127 	 * For hubs with multiple TTs, there's an extra level of pointers.
128 	 */
129 	tt_index = NULL;
130 	if (utt->multi) {
131 		tt_index = utt->hcpriv;
132 		if (!tt_index) {		/* Create the index array */
133 			tt_index = kzalloc(utt->hub->maxchild *
134 					sizeof(*tt_index), GFP_ATOMIC);
135 			if (!tt_index)
136 				return ERR_PTR(-ENOMEM);
137 			utt->hcpriv = tt_index;
138 			allocated_index = true;
139 		}
140 		port = udev->ttport - 1;
141 		ptt = &tt_index[port];
142 	} else {
143 		port = 0;
144 		ptt = (struct ehci_tt **) &utt->hcpriv;
145 	}
146 
147 	tt = *ptt;
148 	if (!tt) {				/* Create the ehci_tt */
149 		struct ehci_hcd		*ehci =
150 				hcd_to_ehci(bus_to_hcd(udev->bus));
151 
152 		tt = kzalloc(sizeof(*tt), GFP_ATOMIC);
153 		if (!tt) {
154 			if (allocated_index) {
155 				utt->hcpriv = NULL;
156 				kfree(tt_index);
157 			}
158 			return ERR_PTR(-ENOMEM);
159 		}
160 		list_add_tail(&tt->tt_list, &ehci->tt_list);
161 		INIT_LIST_HEAD(&tt->ps_list);
162 		tt->usb_tt = utt;
163 		tt->tt_port = port;
164 		*ptt = tt;
165 	}
166 
167 	return tt;
168 }
169 
170 /* Release the TT above udev, if it's not in use */
171 static void drop_tt(struct usb_device *udev)
172 {
173 	struct usb_tt		*utt = udev->tt;
174 	struct ehci_tt		*tt, **tt_index, **ptt;
175 	int			cnt, i;
176 
177 	if (!utt || !utt->hcpriv)
178 		return;		/* Not below a TT, or never allocated */
179 
180 	cnt = 0;
181 	if (utt->multi) {
182 		tt_index = utt->hcpriv;
183 		ptt = &tt_index[udev->ttport - 1];
184 
185 		/* How many entries are left in tt_index? */
186 		for (i = 0; i < utt->hub->maxchild; ++i)
187 			cnt += !!tt_index[i];
188 	} else {
189 		tt_index = NULL;
190 		ptt = (struct ehci_tt **) &utt->hcpriv;
191 	}
192 
193 	tt = *ptt;
194 	if (!tt || !list_empty(&tt->ps_list))
195 		return;		/* never allocated, or still in use */
196 
197 	list_del(&tt->tt_list);
198 	*ptt = NULL;
199 	kfree(tt);
200 	if (cnt == 1) {
201 		utt->hcpriv = NULL;
202 		kfree(tt_index);
203 	}
204 }
205 
206 static void bandwidth_dbg(struct ehci_hcd *ehci, int sign, char *type,
207 		struct ehci_per_sched *ps)
208 {
209 	dev_dbg(&ps->udev->dev,
210 			"ep %02x: %s %s @ %u+%u (%u.%u+%u) [%u/%u us] mask %04x\n",
211 			ps->ep->desc.bEndpointAddress,
212 			(sign >= 0 ? "reserve" : "release"), type,
213 			(ps->bw_phase << 3) + ps->phase_uf, ps->bw_uperiod,
214 			ps->phase, ps->phase_uf, ps->period,
215 			ps->usecs, ps->c_usecs, ps->cs_mask);
216 }
217 
218 static void reserve_release_intr_bandwidth(struct ehci_hcd *ehci,
219 		struct ehci_qh *qh, int sign)
220 {
221 	unsigned		start_uf;
222 	unsigned		i, j, m;
223 	int			usecs = qh->ps.usecs;
224 	int			c_usecs = qh->ps.c_usecs;
225 	int			tt_usecs = qh->ps.tt_usecs;
226 	struct ehci_tt		*tt;
227 
228 	if (qh->ps.phase == NO_FRAME)	/* Bandwidth wasn't reserved */
229 		return;
230 	start_uf = qh->ps.bw_phase << 3;
231 
232 	bandwidth_dbg(ehci, sign, "intr", &qh->ps);
233 
234 	if (sign < 0) {		/* Release bandwidth */
235 		usecs = -usecs;
236 		c_usecs = -c_usecs;
237 		tt_usecs = -tt_usecs;
238 	}
239 
240 	/* Entire transaction (high speed) or start-split (full/low speed) */
241 	for (i = start_uf + qh->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
242 			i += qh->ps.bw_uperiod)
243 		ehci->bandwidth[i] += usecs;
244 
245 	/* Complete-split (full/low speed) */
246 	if (qh->ps.c_usecs) {
247 		/* NOTE: adjustments needed for FSTN */
248 		for (i = start_uf; i < EHCI_BANDWIDTH_SIZE;
249 				i += qh->ps.bw_uperiod) {
250 			for ((j = 2, m = 1 << (j+8)); j < 8; (++j, m <<= 1)) {
251 				if (qh->ps.cs_mask & m)
252 					ehci->bandwidth[i+j] += c_usecs;
253 			}
254 		}
255 	}
256 
257 	/* FS/LS bus bandwidth */
258 	if (tt_usecs) {
259 		tt = find_tt(qh->ps.udev);
260 		if (sign > 0)
261 			list_add_tail(&qh->ps.ps_list, &tt->ps_list);
262 		else
263 			list_del(&qh->ps.ps_list);
264 
265 		for (i = start_uf >> 3; i < EHCI_BANDWIDTH_FRAMES;
266 				i += qh->ps.bw_period)
267 			tt->bandwidth[i] += tt_usecs;
268 	}
269 }
270 
271 /*-------------------------------------------------------------------------*/
272 
273 static void compute_tt_budget(u8 budget_table[EHCI_BANDWIDTH_SIZE],
274 		struct ehci_tt *tt)
275 {
276 	struct ehci_per_sched	*ps;
277 	unsigned		uframe, uf, x;
278 	u8			*budget_line;
279 
280 	if (!tt)
281 		return;
282 	memset(budget_table, 0, EHCI_BANDWIDTH_SIZE);
283 
284 	/* Add up the contributions from all the endpoints using this TT */
285 	list_for_each_entry(ps, &tt->ps_list, ps_list) {
286 		for (uframe = ps->bw_phase << 3; uframe < EHCI_BANDWIDTH_SIZE;
287 				uframe += ps->bw_uperiod) {
288 			budget_line = &budget_table[uframe];
289 			x = ps->tt_usecs;
290 
291 			/* propagate the time forward */
292 			for (uf = ps->phase_uf; uf < 8; ++uf) {
293 				x += budget_line[uf];
294 
295 				/* Each microframe lasts 125 us */
296 				if (x <= 125) {
297 					budget_line[uf] = x;
298 					break;
299 				}
300 				budget_line[uf] = 125;
301 				x -= 125;
302 			}
303 		}
304 	}
305 }
306 
307 static int __maybe_unused same_tt(struct usb_device *dev1,
308 		struct usb_device *dev2)
309 {
310 	if (!dev1->tt || !dev2->tt)
311 		return 0;
312 	if (dev1->tt != dev2->tt)
313 		return 0;
314 	if (dev1->tt->multi)
315 		return dev1->ttport == dev2->ttport;
316 	else
317 		return 1;
318 }
319 
320 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
321 
322 /* Which uframe does the low/fullspeed transfer start in?
323  *
324  * The parameter is the mask of ssplits in "H-frame" terms
325  * and this returns the transfer start uframe in "B-frame" terms,
326  * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
327  * will cause a transfer in "B-frame" uframe 0.  "B-frames" lag
328  * "H-frames" by 1 uframe.  See the EHCI spec sec 4.5 and figure 4.7.
329  */
330 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
331 {
332 	unsigned char smask = hc32_to_cpu(ehci, mask) & QH_SMASK;
333 	if (!smask) {
334 		ehci_err(ehci, "invalid empty smask!\n");
335 		/* uframe 7 can't have bw so this will indicate failure */
336 		return 7;
337 	}
338 	return ffs(smask) - 1;
339 }
340 
341 static const unsigned char
342 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
343 
344 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
345 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
346 {
347 	int i;
348 	for (i = 0; i < 7; i++) {
349 		if (max_tt_usecs[i] < tt_usecs[i]) {
350 			tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
351 			tt_usecs[i] = max_tt_usecs[i];
352 		}
353 	}
354 }
355 
356 /*
357  * Return true if the device's tt's downstream bus is available for a
358  * periodic transfer of the specified length (usecs), starting at the
359  * specified frame/uframe.  Note that (as summarized in section 11.19
360  * of the usb 2.0 spec) TTs can buffer multiple transactions for each
361  * uframe.
362  *
363  * The uframe parameter is when the fullspeed/lowspeed transfer
364  * should be executed in "B-frame" terms, which is the same as the
365  * highspeed ssplit's uframe (which is in "H-frame" terms).  For example
366  * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
367  * See the EHCI spec sec 4.5 and fig 4.7.
368  *
369  * This checks if the full/lowspeed bus, at the specified starting uframe,
370  * has the specified bandwidth available, according to rules listed
371  * in USB 2.0 spec section 11.18.1 fig 11-60.
372  *
373  * This does not check if the transfer would exceed the max ssplit
374  * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
375  * since proper scheduling limits ssplits to less than 16 per uframe.
376  */
377 static int tt_available(
378 	struct ehci_hcd		*ehci,
379 	struct ehci_per_sched	*ps,
380 	struct ehci_tt		*tt,
381 	unsigned		frame,
382 	unsigned		uframe
383 )
384 {
385 	unsigned		period = ps->bw_period;
386 	unsigned		usecs = ps->tt_usecs;
387 
388 	if ((period == 0) || (uframe >= 7))	/* error */
389 		return 0;
390 
391 	for (frame &= period - 1; frame < EHCI_BANDWIDTH_FRAMES;
392 			frame += period) {
393 		unsigned	i, uf;
394 		unsigned short	tt_usecs[8];
395 
396 		if (tt->bandwidth[frame] + usecs > 900)
397 			return 0;
398 
399 		uf = frame << 3;
400 		for (i = 0; i < 8; (++i, ++uf))
401 			tt_usecs[i] = ehci->tt_budget[uf];
402 
403 		if (max_tt_usecs[uframe] <= tt_usecs[uframe])
404 			return 0;
405 
406 		/* special case for isoc transfers larger than 125us:
407 		 * the first and each subsequent fully used uframe
408 		 * must be empty, so as to not illegally delay
409 		 * already scheduled transactions
410 		 */
411 		if (usecs > 125) {
412 			int ufs = (usecs / 125);
413 
414 			for (i = uframe; i < (uframe + ufs) && i < 8; i++)
415 				if (tt_usecs[i] > 0)
416 					return 0;
417 		}
418 
419 		tt_usecs[uframe] += usecs;
420 
421 		carryover_tt_bandwidth(tt_usecs);
422 
423 		/* fail if the carryover pushed bw past the last uframe's limit */
424 		if (max_tt_usecs[7] < tt_usecs[7])
425 			return 0;
426 	}
427 
428 	return 1;
429 }
430 
431 #else
432 
433 /* return true iff the device's transaction translator is available
434  * for a periodic transfer starting at the specified frame, using
435  * all the uframes in the mask.
436  */
437 static int tt_no_collision(
438 	struct ehci_hcd		*ehci,
439 	unsigned		period,
440 	struct usb_device	*dev,
441 	unsigned		frame,
442 	u32			uf_mask
443 )
444 {
445 	if (period == 0)	/* error */
446 		return 0;
447 
448 	/* note bandwidth wastage:  split never follows csplit
449 	 * (different dev or endpoint) until the next uframe.
450 	 * calling convention doesn't make that distinction.
451 	 */
452 	for (; frame < ehci->periodic_size; frame += period) {
453 		union ehci_shadow	here;
454 		__hc32			type;
455 		struct ehci_qh_hw	*hw;
456 
457 		here = ehci->pshadow[frame];
458 		type = Q_NEXT_TYPE(ehci, ehci->periodic[frame]);
459 		while (here.ptr) {
460 			switch (hc32_to_cpu(ehci, type)) {
461 			case Q_TYPE_ITD:
462 				type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
463 				here = here.itd->itd_next;
464 				continue;
465 			case Q_TYPE_QH:
466 				hw = here.qh->hw;
467 				if (same_tt(dev, here.qh->ps.udev)) {
468 					u32		mask;
469 
470 					mask = hc32_to_cpu(ehci,
471 							hw->hw_info2);
472 					/* "knows" no gap is needed */
473 					mask |= mask >> 8;
474 					if (mask & uf_mask)
475 						break;
476 				}
477 				type = Q_NEXT_TYPE(ehci, hw->hw_next);
478 				here = here.qh->qh_next;
479 				continue;
480 			case Q_TYPE_SITD:
481 				if (same_tt(dev, here.sitd->urb->dev)) {
482 					u16		mask;
483 
484 					mask = hc32_to_cpu(ehci, here.sitd
485 								->hw_uframe);
486 					/* FIXME assumes no gap for IN! */
487 					mask |= mask >> 8;
488 					if (mask & uf_mask)
489 						break;
490 				}
491 				type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
492 				here = here.sitd->sitd_next;
493 				continue;
494 			/* case Q_TYPE_FSTN: */
495 			default:
496 				ehci_dbg(ehci,
497 					"periodic frame %d bogus type %d\n",
498 					frame, type);
499 			}
500 
501 			/* collision or error */
502 			return 0;
503 		}
504 	}
505 
506 	/* no collision */
507 	return 1;
508 }
509 
510 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
511 
512 /*-------------------------------------------------------------------------*/
513 
514 static void enable_periodic(struct ehci_hcd *ehci)
515 {
516 	if (ehci->periodic_count++)
517 		return;
518 
519 	/* Stop waiting to turn off the periodic schedule */
520 	ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC);
521 
522 	/* Don't start the schedule until PSS is 0 */
523 	ehci_poll_PSS(ehci);
524 	turn_on_io_watchdog(ehci);
525 }
526 
527 static void disable_periodic(struct ehci_hcd *ehci)
528 {
529 	if (--ehci->periodic_count)
530 		return;
531 
532 	/* Don't turn off the schedule until PSS is 1 */
533 	ehci_poll_PSS(ehci);
534 }
535 
536 /*-------------------------------------------------------------------------*/
537 
538 /* periodic schedule slots have iso tds (normal or split) first, then a
539  * sparse tree for active interrupt transfers.
540  *
541  * this just links in a qh; caller guarantees uframe masks are set right.
542  * no FSTN support (yet; ehci 0.96+)
543  */
544 static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
545 {
546 	unsigned	i;
547 	unsigned	period = qh->ps.period;
548 
549 	dev_dbg(&qh->ps.udev->dev,
550 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
551 		period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
552 			& (QH_CMASK | QH_SMASK),
553 		qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
554 
555 	/* high bandwidth, or otherwise every microframe */
556 	if (period == 0)
557 		period = 1;
558 
559 	for (i = qh->ps.phase; i < ehci->periodic_size; i += period) {
560 		union ehci_shadow	*prev = &ehci->pshadow[i];
561 		__hc32			*hw_p = &ehci->periodic[i];
562 		union ehci_shadow	here = *prev;
563 		__hc32			type = 0;
564 
565 		/* skip the iso nodes at list head */
566 		while (here.ptr) {
567 			type = Q_NEXT_TYPE(ehci, *hw_p);
568 			if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
569 				break;
570 			prev = periodic_next_shadow(ehci, prev, type);
571 			hw_p = shadow_next_periodic(ehci, &here, type);
572 			here = *prev;
573 		}
574 
575 		/* sorting each branch by period (slow-->fast)
576 		 * enables sharing interior tree nodes
577 		 */
578 		while (here.ptr && qh != here.qh) {
579 			if (qh->ps.period > here.qh->ps.period)
580 				break;
581 			prev = &here.qh->qh_next;
582 			hw_p = &here.qh->hw->hw_next;
583 			here = *prev;
584 		}
585 		/* link in this qh, unless some earlier pass did that */
586 		if (qh != here.qh) {
587 			qh->qh_next = here;
588 			if (here.qh)
589 				qh->hw->hw_next = *hw_p;
590 			wmb();
591 			prev->qh = qh;
592 			*hw_p = QH_NEXT(ehci, qh->qh_dma);
593 		}
594 	}
595 	qh->qh_state = QH_STATE_LINKED;
596 	qh->xacterrs = 0;
597 	qh->unlink_reason = 0;
598 
599 	/* update per-qh bandwidth for debugfs */
600 	ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->ps.bw_period
601 		? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
602 		: (qh->ps.usecs * 8);
603 
604 	list_add(&qh->intr_node, &ehci->intr_qh_list);
605 
606 	/* maybe enable periodic schedule processing */
607 	++ehci->intr_count;
608 	enable_periodic(ehci);
609 }
610 
611 static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
612 {
613 	unsigned	i;
614 	unsigned	period;
615 
616 	/*
617 	 * If qh is for a low/full-speed device, simply unlinking it
618 	 * could interfere with an ongoing split transaction.  To unlink
619 	 * it safely would require setting the QH_INACTIVATE bit and
620 	 * waiting at least one frame, as described in EHCI 4.12.2.5.
621 	 *
622 	 * We won't bother with any of this.  Instead, we assume that the
623 	 * only reason for unlinking an interrupt QH while the current URB
624 	 * is still active is to dequeue all the URBs (flush the whole
625 	 * endpoint queue).
626 	 *
627 	 * If rebalancing the periodic schedule is ever implemented, this
628 	 * approach will no longer be valid.
629 	 */
630 
631 	/* high bandwidth, or otherwise part of every microframe */
632 	period = qh->ps.period ? : 1;
633 
634 	for (i = qh->ps.phase; i < ehci->periodic_size; i += period)
635 		periodic_unlink(ehci, i, qh);
636 
637 	/* update per-qh bandwidth for debugfs */
638 	ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->ps.bw_period
639 		? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
640 		: (qh->ps.usecs * 8);
641 
642 	dev_dbg(&qh->ps.udev->dev,
643 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
644 		qh->ps.period,
645 		hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
646 		qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
647 
648 	/* qh->qh_next still "live" to HC */
649 	qh->qh_state = QH_STATE_UNLINK;
650 	qh->qh_next.ptr = NULL;
651 
652 	if (ehci->qh_scan_next == qh)
653 		ehci->qh_scan_next = list_entry(qh->intr_node.next,
654 				struct ehci_qh, intr_node);
655 	list_del(&qh->intr_node);
656 }
657 
658 static void cancel_unlink_wait_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
659 {
660 	if (qh->qh_state != QH_STATE_LINKED ||
661 			list_empty(&qh->unlink_node))
662 		return;
663 
664 	list_del_init(&qh->unlink_node);
665 
666 	/*
667 	 * TODO: disable the event of EHCI_HRTIMER_START_UNLINK_INTR for
668 	 * avoiding unnecessary CPU wakeup
669 	 */
670 }
671 
672 static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
673 {
674 	/* If the QH isn't linked then there's nothing we can do. */
675 	if (qh->qh_state != QH_STATE_LINKED)
676 		return;
677 
678 	/* if the qh is waiting for unlink, cancel it now */
679 	cancel_unlink_wait_intr(ehci, qh);
680 
681 	qh_unlink_periodic(ehci, qh);
682 
683 	/* Make sure the unlinks are visible before starting the timer */
684 	wmb();
685 
686 	/*
687 	 * The EHCI spec doesn't say how long it takes the controller to
688 	 * stop accessing an unlinked interrupt QH.  The timer delay is
689 	 * 9 uframes; presumably that will be long enough.
690 	 */
691 	qh->unlink_cycle = ehci->intr_unlink_cycle;
692 
693 	/* New entries go at the end of the intr_unlink list */
694 	list_add_tail(&qh->unlink_node, &ehci->intr_unlink);
695 
696 	if (ehci->intr_unlinking)
697 		;	/* Avoid recursive calls */
698 	else if (ehci->rh_state < EHCI_RH_RUNNING)
699 		ehci_handle_intr_unlinks(ehci);
700 	else if (ehci->intr_unlink.next == &qh->unlink_node) {
701 		ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true);
702 		++ehci->intr_unlink_cycle;
703 	}
704 }
705 
706 /*
707  * It is common only one intr URB is scheduled on one qh, and
708  * given complete() is run in tasklet context, introduce a bit
709  * delay to avoid unlink qh too early.
710  */
711 static void start_unlink_intr_wait(struct ehci_hcd *ehci,
712 				   struct ehci_qh *qh)
713 {
714 	qh->unlink_cycle = ehci->intr_unlink_wait_cycle;
715 
716 	/* New entries go at the end of the intr_unlink_wait list */
717 	list_add_tail(&qh->unlink_node, &ehci->intr_unlink_wait);
718 
719 	if (ehci->rh_state < EHCI_RH_RUNNING)
720 		ehci_handle_start_intr_unlinks(ehci);
721 	else if (ehci->intr_unlink_wait.next == &qh->unlink_node) {
722 		ehci_enable_event(ehci, EHCI_HRTIMER_START_UNLINK_INTR, true);
723 		++ehci->intr_unlink_wait_cycle;
724 	}
725 }
726 
727 static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
728 {
729 	struct ehci_qh_hw	*hw = qh->hw;
730 	int			rc;
731 
732 	qh->qh_state = QH_STATE_IDLE;
733 	hw->hw_next = EHCI_LIST_END(ehci);
734 
735 	if (!list_empty(&qh->qtd_list))
736 		qh_completions(ehci, qh);
737 
738 	/* reschedule QH iff another request is queued */
739 	if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) {
740 		rc = qh_schedule(ehci, qh);
741 		if (rc == 0) {
742 			qh_refresh(ehci, qh);
743 			qh_link_periodic(ehci, qh);
744 		}
745 
746 		/* An error here likely indicates handshake failure
747 		 * or no space left in the schedule.  Neither fault
748 		 * should happen often ...
749 		 *
750 		 * FIXME kill the now-dysfunctional queued urbs
751 		 */
752 		else {
753 			ehci_err(ehci, "can't reschedule qh %p, err %d\n",
754 					qh, rc);
755 		}
756 	}
757 
758 	/* maybe turn off periodic schedule */
759 	--ehci->intr_count;
760 	disable_periodic(ehci);
761 }
762 
763 /*-------------------------------------------------------------------------*/
764 
765 static int check_period(
766 	struct ehci_hcd *ehci,
767 	unsigned	frame,
768 	unsigned	uframe,
769 	unsigned	uperiod,
770 	unsigned	usecs
771 ) {
772 	/* complete split running into next frame?
773 	 * given FSTN support, we could sometimes check...
774 	 */
775 	if (uframe >= 8)
776 		return 0;
777 
778 	/* convert "usecs we need" to "max already claimed" */
779 	usecs = ehci->uframe_periodic_max - usecs;
780 
781 	for (uframe += frame << 3; uframe < EHCI_BANDWIDTH_SIZE;
782 			uframe += uperiod) {
783 		if (ehci->bandwidth[uframe] > usecs)
784 			return 0;
785 	}
786 
787 	/* success! */
788 	return 1;
789 }
790 
791 static int check_intr_schedule(
792 	struct ehci_hcd		*ehci,
793 	unsigned		frame,
794 	unsigned		uframe,
795 	struct ehci_qh		*qh,
796 	unsigned		*c_maskp,
797 	struct ehci_tt		*tt
798 )
799 {
800 	int		retval = -ENOSPC;
801 	u8		mask = 0;
802 
803 	if (qh->ps.c_usecs && uframe >= 6)	/* FSTN territory? */
804 		goto done;
805 
806 	if (!check_period(ehci, frame, uframe, qh->ps.bw_uperiod, qh->ps.usecs))
807 		goto done;
808 	if (!qh->ps.c_usecs) {
809 		retval = 0;
810 		*c_maskp = 0;
811 		goto done;
812 	}
813 
814 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
815 	if (tt_available(ehci, &qh->ps, tt, frame, uframe)) {
816 		unsigned i;
817 
818 		/* TODO : this may need FSTN for SSPLIT in uframe 5. */
819 		for (i = uframe+2; i < 8 && i <= uframe+4; i++)
820 			if (!check_period(ehci, frame, i,
821 					qh->ps.bw_uperiod, qh->ps.c_usecs))
822 				goto done;
823 			else
824 				mask |= 1 << i;
825 
826 		retval = 0;
827 
828 		*c_maskp = mask;
829 	}
830 #else
831 	/* Make sure this tt's buffer is also available for CSPLITs.
832 	 * We pessimize a bit; probably the typical full speed case
833 	 * doesn't need the second CSPLIT.
834 	 *
835 	 * NOTE:  both SPLIT and CSPLIT could be checked in just
836 	 * one smart pass...
837 	 */
838 	mask = 0x03 << (uframe + qh->gap_uf);
839 	*c_maskp = mask;
840 
841 	mask |= 1 << uframe;
842 	if (tt_no_collision(ehci, qh->ps.bw_period, qh->ps.udev, frame, mask)) {
843 		if (!check_period(ehci, frame, uframe + qh->gap_uf + 1,
844 				qh->ps.bw_uperiod, qh->ps.c_usecs))
845 			goto done;
846 		if (!check_period(ehci, frame, uframe + qh->gap_uf,
847 				qh->ps.bw_uperiod, qh->ps.c_usecs))
848 			goto done;
849 		retval = 0;
850 	}
851 #endif
852 done:
853 	return retval;
854 }
855 
856 /* "first fit" scheduling policy used the first time through,
857  * or when the previous schedule slot can't be re-used.
858  */
859 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
860 {
861 	int		status = 0;
862 	unsigned	uframe;
863 	unsigned	c_mask;
864 	struct ehci_qh_hw	*hw = qh->hw;
865 	struct ehci_tt		*tt;
866 
867 	hw->hw_next = EHCI_LIST_END(ehci);
868 
869 	/* reuse the previous schedule slots, if we can */
870 	if (qh->ps.phase != NO_FRAME) {
871 		ehci_dbg(ehci, "reused qh %p schedule\n", qh);
872 		return 0;
873 	}
874 
875 	uframe = 0;
876 	c_mask = 0;
877 	tt = find_tt(qh->ps.udev);
878 	if (IS_ERR(tt)) {
879 		status = PTR_ERR(tt);
880 		goto done;
881 	}
882 	compute_tt_budget(ehci->tt_budget, tt);
883 
884 	/* else scan the schedule to find a group of slots such that all
885 	 * uframes have enough periodic bandwidth available.
886 	 */
887 	/* "normal" case, uframing flexible except with splits */
888 	if (qh->ps.bw_period) {
889 		int		i;
890 		unsigned	frame;
891 
892 		for (i = qh->ps.bw_period; i > 0; --i) {
893 			frame = ++ehci->random_frame & (qh->ps.bw_period - 1);
894 			for (uframe = 0; uframe < 8; uframe++) {
895 				status = check_intr_schedule(ehci,
896 						frame, uframe, qh, &c_mask, tt);
897 				if (status == 0)
898 					goto got_it;
899 			}
900 		}
901 
902 	/* qh->ps.bw_period == 0 means every uframe */
903 	} else {
904 		status = check_intr_schedule(ehci, 0, 0, qh, &c_mask, tt);
905 	}
906 	if (status)
907 		goto done;
908 
909  got_it:
910 	qh->ps.phase = (qh->ps.period ? ehci->random_frame &
911 			(qh->ps.period - 1) : 0);
912 	qh->ps.bw_phase = qh->ps.phase & (qh->ps.bw_period - 1);
913 	qh->ps.phase_uf = uframe;
914 	qh->ps.cs_mask = qh->ps.period ?
915 			(c_mask << 8) | (1 << uframe) :
916 			QH_SMASK;
917 
918 	/* reset S-frame and (maybe) C-frame masks */
919 	hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
920 	hw->hw_info2 |= cpu_to_hc32(ehci, qh->ps.cs_mask);
921 	reserve_release_intr_bandwidth(ehci, qh, 1);
922 
923 done:
924 	return status;
925 }
926 
927 static int intr_submit(
928 	struct ehci_hcd		*ehci,
929 	struct urb		*urb,
930 	struct list_head	*qtd_list,
931 	gfp_t			mem_flags
932 ) {
933 	unsigned		epnum;
934 	unsigned long		flags;
935 	struct ehci_qh		*qh;
936 	int			status;
937 	struct list_head	empty;
938 
939 	/* get endpoint and transfer/schedule data */
940 	epnum = urb->ep->desc.bEndpointAddress;
941 
942 	spin_lock_irqsave(&ehci->lock, flags);
943 
944 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
945 		status = -ESHUTDOWN;
946 		goto done_not_linked;
947 	}
948 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
949 	if (unlikely(status))
950 		goto done_not_linked;
951 
952 	/* get qh and force any scheduling errors */
953 	INIT_LIST_HEAD(&empty);
954 	qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
955 	if (qh == NULL) {
956 		status = -ENOMEM;
957 		goto done;
958 	}
959 	if (qh->qh_state == QH_STATE_IDLE) {
960 		status = qh_schedule(ehci, qh);
961 		if (status)
962 			goto done;
963 	}
964 
965 	/* then queue the urb's tds to the qh */
966 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
967 	BUG_ON(qh == NULL);
968 
969 	/* stuff into the periodic schedule */
970 	if (qh->qh_state == QH_STATE_IDLE) {
971 		qh_refresh(ehci, qh);
972 		qh_link_periodic(ehci, qh);
973 	} else {
974 		/* cancel unlink wait for the qh */
975 		cancel_unlink_wait_intr(ehci, qh);
976 	}
977 
978 	/* ... update usbfs periodic stats */
979 	ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
980 
981 done:
982 	if (unlikely(status))
983 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
984 done_not_linked:
985 	spin_unlock_irqrestore(&ehci->lock, flags);
986 	if (status)
987 		qtd_list_free(ehci, urb, qtd_list);
988 
989 	return status;
990 }
991 
992 static void scan_intr(struct ehci_hcd *ehci)
993 {
994 	struct ehci_qh		*qh;
995 
996 	list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list,
997 			intr_node) {
998 
999 		/* clean any finished work for this qh */
1000 		if (!list_empty(&qh->qtd_list)) {
1001 			int temp;
1002 
1003 			/*
1004 			 * Unlinks could happen here; completion reporting
1005 			 * drops the lock.  That's why ehci->qh_scan_next
1006 			 * always holds the next qh to scan; if the next qh
1007 			 * gets unlinked then ehci->qh_scan_next is adjusted
1008 			 * in qh_unlink_periodic().
1009 			 */
1010 			temp = qh_completions(ehci, qh);
1011 			if (unlikely(temp))
1012 				start_unlink_intr(ehci, qh);
1013 			else if (unlikely(list_empty(&qh->qtd_list) &&
1014 					qh->qh_state == QH_STATE_LINKED))
1015 				start_unlink_intr_wait(ehci, qh);
1016 		}
1017 	}
1018 }
1019 
1020 /*-------------------------------------------------------------------------*/
1021 
1022 /* ehci_iso_stream ops work with both ITD and SITD */
1023 
1024 static struct ehci_iso_stream *
1025 iso_stream_alloc(gfp_t mem_flags)
1026 {
1027 	struct ehci_iso_stream *stream;
1028 
1029 	stream = kzalloc(sizeof *stream, mem_flags);
1030 	if (likely(stream != NULL)) {
1031 		INIT_LIST_HEAD(&stream->td_list);
1032 		INIT_LIST_HEAD(&stream->free_list);
1033 		stream->next_uframe = NO_FRAME;
1034 		stream->ps.phase = NO_FRAME;
1035 	}
1036 	return stream;
1037 }
1038 
1039 static void
1040 iso_stream_init(
1041 	struct ehci_hcd		*ehci,
1042 	struct ehci_iso_stream	*stream,
1043 	struct urb		*urb
1044 )
1045 {
1046 	static const u8 smask_out[] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
1047 
1048 	struct usb_device	*dev = urb->dev;
1049 	u32			buf1;
1050 	unsigned		epnum, maxp;
1051 	int			is_input;
1052 	unsigned		tmp;
1053 
1054 	/*
1055 	 * this might be a "high bandwidth" highspeed endpoint,
1056 	 * as encoded in the ep descriptor's wMaxPacket field
1057 	 */
1058 	epnum = usb_pipeendpoint(urb->pipe);
1059 	is_input = usb_pipein(urb->pipe) ? USB_DIR_IN : 0;
1060 	maxp = usb_endpoint_maxp(&urb->ep->desc);
1061 	if (is_input) {
1062 		buf1 = (1 << 11);
1063 	} else {
1064 		buf1 = 0;
1065 	}
1066 
1067 	/* knows about ITD vs SITD */
1068 	if (dev->speed == USB_SPEED_HIGH) {
1069 		unsigned multi = hb_mult(maxp);
1070 
1071 		stream->highspeed = 1;
1072 
1073 		maxp = max_packet(maxp);
1074 		buf1 |= maxp;
1075 		maxp *= multi;
1076 
1077 		stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
1078 		stream->buf1 = cpu_to_hc32(ehci, buf1);
1079 		stream->buf2 = cpu_to_hc32(ehci, multi);
1080 
1081 		/* usbfs wants to report the average usecs per frame tied up
1082 		 * when transfers on this endpoint are scheduled ...
1083 		 */
1084 		stream->ps.usecs = HS_USECS_ISO(maxp);
1085 
1086 		/* period for bandwidth allocation */
1087 		tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
1088 				1 << (urb->ep->desc.bInterval - 1));
1089 
1090 		/* Allow urb->interval to override */
1091 		stream->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
1092 
1093 		stream->uperiod = urb->interval;
1094 		stream->ps.period = urb->interval >> 3;
1095 		stream->bandwidth = stream->ps.usecs * 8 /
1096 				stream->ps.bw_uperiod;
1097 
1098 	} else {
1099 		u32		addr;
1100 		int		think_time;
1101 		int		hs_transfers;
1102 
1103 		addr = dev->ttport << 24;
1104 		if (!ehci_is_TDI(ehci)
1105 				|| (dev->tt->hub !=
1106 					ehci_to_hcd(ehci)->self.root_hub))
1107 			addr |= dev->tt->hub->devnum << 16;
1108 		addr |= epnum << 8;
1109 		addr |= dev->devnum;
1110 		stream->ps.usecs = HS_USECS_ISO(maxp);
1111 		think_time = dev->tt ? dev->tt->think_time : 0;
1112 		stream->ps.tt_usecs = NS_TO_US(think_time + usb_calc_bus_time(
1113 				dev->speed, is_input, 1, maxp));
1114 		hs_transfers = max(1u, (maxp + 187) / 188);
1115 		if (is_input) {
1116 			u32	tmp;
1117 
1118 			addr |= 1 << 31;
1119 			stream->ps.c_usecs = stream->ps.usecs;
1120 			stream->ps.usecs = HS_USECS_ISO(1);
1121 			stream->ps.cs_mask = 1;
1122 
1123 			/* c-mask as specified in USB 2.0 11.18.4 3.c */
1124 			tmp = (1 << (hs_transfers + 2)) - 1;
1125 			stream->ps.cs_mask |= tmp << (8 + 2);
1126 		} else
1127 			stream->ps.cs_mask = smask_out[hs_transfers - 1];
1128 
1129 		/* period for bandwidth allocation */
1130 		tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
1131 				1 << (urb->ep->desc.bInterval - 1));
1132 
1133 		/* Allow urb->interval to override */
1134 		stream->ps.bw_period = min_t(unsigned, tmp, urb->interval);
1135 		stream->ps.bw_uperiod = stream->ps.bw_period << 3;
1136 
1137 		stream->ps.period = urb->interval;
1138 		stream->uperiod = urb->interval << 3;
1139 		stream->bandwidth = (stream->ps.usecs + stream->ps.c_usecs) /
1140 				stream->ps.bw_period;
1141 
1142 		/* stream->splits gets created from cs_mask later */
1143 		stream->address = cpu_to_hc32(ehci, addr);
1144 	}
1145 
1146 	stream->ps.udev = dev;
1147 	stream->ps.ep = urb->ep;
1148 
1149 	stream->bEndpointAddress = is_input | epnum;
1150 	stream->maxp = maxp;
1151 }
1152 
1153 static struct ehci_iso_stream *
1154 iso_stream_find(struct ehci_hcd *ehci, struct urb *urb)
1155 {
1156 	unsigned		epnum;
1157 	struct ehci_iso_stream	*stream;
1158 	struct usb_host_endpoint *ep;
1159 	unsigned long		flags;
1160 
1161 	epnum = usb_pipeendpoint (urb->pipe);
1162 	if (usb_pipein(urb->pipe))
1163 		ep = urb->dev->ep_in[epnum];
1164 	else
1165 		ep = urb->dev->ep_out[epnum];
1166 
1167 	spin_lock_irqsave(&ehci->lock, flags);
1168 	stream = ep->hcpriv;
1169 
1170 	if (unlikely(stream == NULL)) {
1171 		stream = iso_stream_alloc(GFP_ATOMIC);
1172 		if (likely(stream != NULL)) {
1173 			ep->hcpriv = stream;
1174 			iso_stream_init(ehci, stream, urb);
1175 		}
1176 
1177 	/* if dev->ep [epnum] is a QH, hw is set */
1178 	} else if (unlikely(stream->hw != NULL)) {
1179 		ehci_dbg(ehci, "dev %s ep%d%s, not iso??\n",
1180 			urb->dev->devpath, epnum,
1181 			usb_pipein(urb->pipe) ? "in" : "out");
1182 		stream = NULL;
1183 	}
1184 
1185 	spin_unlock_irqrestore(&ehci->lock, flags);
1186 	return stream;
1187 }
1188 
1189 /*-------------------------------------------------------------------------*/
1190 
1191 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1192 
1193 static struct ehci_iso_sched *
1194 iso_sched_alloc(unsigned packets, gfp_t mem_flags)
1195 {
1196 	struct ehci_iso_sched	*iso_sched;
1197 	int			size = sizeof *iso_sched;
1198 
1199 	size += packets * sizeof(struct ehci_iso_packet);
1200 	iso_sched = kzalloc(size, mem_flags);
1201 	if (likely(iso_sched != NULL))
1202 		INIT_LIST_HEAD(&iso_sched->td_list);
1203 
1204 	return iso_sched;
1205 }
1206 
1207 static inline void
1208 itd_sched_init(
1209 	struct ehci_hcd		*ehci,
1210 	struct ehci_iso_sched	*iso_sched,
1211 	struct ehci_iso_stream	*stream,
1212 	struct urb		*urb
1213 )
1214 {
1215 	unsigned	i;
1216 	dma_addr_t	dma = urb->transfer_dma;
1217 
1218 	/* how many uframes are needed for these transfers */
1219 	iso_sched->span = urb->number_of_packets * stream->uperiod;
1220 
1221 	/* figure out per-uframe itd fields that we'll need later
1222 	 * when we fit new itds into the schedule.
1223 	 */
1224 	for (i = 0; i < urb->number_of_packets; i++) {
1225 		struct ehci_iso_packet	*uframe = &iso_sched->packet[i];
1226 		unsigned		length;
1227 		dma_addr_t		buf;
1228 		u32			trans;
1229 
1230 		length = urb->iso_frame_desc[i].length;
1231 		buf = dma + urb->iso_frame_desc[i].offset;
1232 
1233 		trans = EHCI_ISOC_ACTIVE;
1234 		trans |= buf & 0x0fff;
1235 		if (unlikely(((i + 1) == urb->number_of_packets))
1236 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1237 			trans |= EHCI_ITD_IOC;
1238 		trans |= length << 16;
1239 		uframe->transaction = cpu_to_hc32(ehci, trans);
1240 
1241 		/* might need to cross a buffer page within a uframe */
1242 		uframe->bufp = (buf & ~(u64)0x0fff);
1243 		buf += length;
1244 		if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
1245 			uframe->cross = 1;
1246 	}
1247 }
1248 
1249 static void
1250 iso_sched_free(
1251 	struct ehci_iso_stream	*stream,
1252 	struct ehci_iso_sched	*iso_sched
1253 )
1254 {
1255 	if (!iso_sched)
1256 		return;
1257 	/* caller must hold ehci->lock! */
1258 	list_splice(&iso_sched->td_list, &stream->free_list);
1259 	kfree(iso_sched);
1260 }
1261 
1262 static int
1263 itd_urb_transaction(
1264 	struct ehci_iso_stream	*stream,
1265 	struct ehci_hcd		*ehci,
1266 	struct urb		*urb,
1267 	gfp_t			mem_flags
1268 )
1269 {
1270 	struct ehci_itd		*itd;
1271 	dma_addr_t		itd_dma;
1272 	int			i;
1273 	unsigned		num_itds;
1274 	struct ehci_iso_sched	*sched;
1275 	unsigned long		flags;
1276 
1277 	sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
1278 	if (unlikely(sched == NULL))
1279 		return -ENOMEM;
1280 
1281 	itd_sched_init(ehci, sched, stream, urb);
1282 
1283 	if (urb->interval < 8)
1284 		num_itds = 1 + (sched->span + 7) / 8;
1285 	else
1286 		num_itds = urb->number_of_packets;
1287 
1288 	/* allocate/init ITDs */
1289 	spin_lock_irqsave(&ehci->lock, flags);
1290 	for (i = 0; i < num_itds; i++) {
1291 
1292 		/*
1293 		 * Use iTDs from the free list, but not iTDs that may
1294 		 * still be in use by the hardware.
1295 		 */
1296 		if (likely(!list_empty(&stream->free_list))) {
1297 			itd = list_first_entry(&stream->free_list,
1298 					struct ehci_itd, itd_list);
1299 			if (itd->frame == ehci->now_frame)
1300 				goto alloc_itd;
1301 			list_del(&itd->itd_list);
1302 			itd_dma = itd->itd_dma;
1303 		} else {
1304  alloc_itd:
1305 			spin_unlock_irqrestore(&ehci->lock, flags);
1306 			itd = dma_pool_alloc(ehci->itd_pool, mem_flags,
1307 					&itd_dma);
1308 			spin_lock_irqsave(&ehci->lock, flags);
1309 			if (!itd) {
1310 				iso_sched_free(stream, sched);
1311 				spin_unlock_irqrestore(&ehci->lock, flags);
1312 				return -ENOMEM;
1313 			}
1314 		}
1315 
1316 		memset(itd, 0, sizeof *itd);
1317 		itd->itd_dma = itd_dma;
1318 		itd->frame = NO_FRAME;
1319 		list_add(&itd->itd_list, &sched->td_list);
1320 	}
1321 	spin_unlock_irqrestore(&ehci->lock, flags);
1322 
1323 	/* temporarily store schedule info in hcpriv */
1324 	urb->hcpriv = sched;
1325 	urb->error_count = 0;
1326 	return 0;
1327 }
1328 
1329 /*-------------------------------------------------------------------------*/
1330 
1331 static void reserve_release_iso_bandwidth(struct ehci_hcd *ehci,
1332 		struct ehci_iso_stream *stream, int sign)
1333 {
1334 	unsigned		uframe;
1335 	unsigned		i, j;
1336 	unsigned		s_mask, c_mask, m;
1337 	int			usecs = stream->ps.usecs;
1338 	int			c_usecs = stream->ps.c_usecs;
1339 	int			tt_usecs = stream->ps.tt_usecs;
1340 	struct ehci_tt		*tt;
1341 
1342 	if (stream->ps.phase == NO_FRAME)	/* Bandwidth wasn't reserved */
1343 		return;
1344 	uframe = stream->ps.bw_phase << 3;
1345 
1346 	bandwidth_dbg(ehci, sign, "iso", &stream->ps);
1347 
1348 	if (sign < 0) {		/* Release bandwidth */
1349 		usecs = -usecs;
1350 		c_usecs = -c_usecs;
1351 		tt_usecs = -tt_usecs;
1352 	}
1353 
1354 	if (!stream->splits) {		/* High speed */
1355 		for (i = uframe + stream->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
1356 				i += stream->ps.bw_uperiod)
1357 			ehci->bandwidth[i] += usecs;
1358 
1359 	} else {			/* Full speed */
1360 		s_mask = stream->ps.cs_mask;
1361 		c_mask = s_mask >> 8;
1362 
1363 		/* NOTE: adjustment needed for frame overflow */
1364 		for (i = uframe; i < EHCI_BANDWIDTH_SIZE;
1365 				i += stream->ps.bw_uperiod) {
1366 			for ((j = stream->ps.phase_uf, m = 1 << j); j < 8;
1367 					(++j, m <<= 1)) {
1368 				if (s_mask & m)
1369 					ehci->bandwidth[i+j] += usecs;
1370 				else if (c_mask & m)
1371 					ehci->bandwidth[i+j] += c_usecs;
1372 			}
1373 		}
1374 
1375 		tt = find_tt(stream->ps.udev);
1376 		if (sign > 0)
1377 			list_add_tail(&stream->ps.ps_list, &tt->ps_list);
1378 		else
1379 			list_del(&stream->ps.ps_list);
1380 
1381 		for (i = uframe >> 3; i < EHCI_BANDWIDTH_FRAMES;
1382 				i += stream->ps.bw_period)
1383 			tt->bandwidth[i] += tt_usecs;
1384 	}
1385 }
1386 
1387 static inline int
1388 itd_slot_ok(
1389 	struct ehci_hcd		*ehci,
1390 	struct ehci_iso_stream	*stream,
1391 	unsigned		uframe
1392 )
1393 {
1394 	unsigned		usecs;
1395 
1396 	/* convert "usecs we need" to "max already claimed" */
1397 	usecs = ehci->uframe_periodic_max - stream->ps.usecs;
1398 
1399 	for (uframe &= stream->ps.bw_uperiod - 1; uframe < EHCI_BANDWIDTH_SIZE;
1400 			uframe += stream->ps.bw_uperiod) {
1401 		if (ehci->bandwidth[uframe] > usecs)
1402 			return 0;
1403 	}
1404 	return 1;
1405 }
1406 
1407 static inline int
1408 sitd_slot_ok(
1409 	struct ehci_hcd		*ehci,
1410 	struct ehci_iso_stream	*stream,
1411 	unsigned		uframe,
1412 	struct ehci_iso_sched	*sched,
1413 	struct ehci_tt		*tt
1414 )
1415 {
1416 	unsigned		mask, tmp;
1417 	unsigned		frame, uf;
1418 
1419 	mask = stream->ps.cs_mask << (uframe & 7);
1420 
1421 	/* for OUT, don't wrap SSPLIT into H-microframe 7 */
1422 	if (((stream->ps.cs_mask & 0xff) << (uframe & 7)) >= (1 << 7))
1423 		return 0;
1424 
1425 	/* for IN, don't wrap CSPLIT into the next frame */
1426 	if (mask & ~0xffff)
1427 		return 0;
1428 
1429 	/* check bandwidth */
1430 	uframe &= stream->ps.bw_uperiod - 1;
1431 	frame = uframe >> 3;
1432 
1433 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1434 	/* The tt's fullspeed bus bandwidth must be available.
1435 	 * tt_available scheduling guarantees 10+% for control/bulk.
1436 	 */
1437 	uf = uframe & 7;
1438 	if (!tt_available(ehci, &stream->ps, tt, frame, uf))
1439 		return 0;
1440 #else
1441 	/* tt must be idle for start(s), any gap, and csplit.
1442 	 * assume scheduling slop leaves 10+% for control/bulk.
1443 	 */
1444 	if (!tt_no_collision(ehci, stream->ps.bw_period,
1445 			stream->ps.udev, frame, mask))
1446 		return 0;
1447 #endif
1448 
1449 	do {
1450 		unsigned	max_used;
1451 		unsigned	i;
1452 
1453 		/* check starts (OUT uses more than one) */
1454 		uf = uframe;
1455 		max_used = ehci->uframe_periodic_max - stream->ps.usecs;
1456 		for (tmp = stream->ps.cs_mask & 0xff; tmp; tmp >>= 1, uf++) {
1457 			if (ehci->bandwidth[uf] > max_used)
1458 				return 0;
1459 		}
1460 
1461 		/* for IN, check CSPLIT */
1462 		if (stream->ps.c_usecs) {
1463 			max_used = ehci->uframe_periodic_max -
1464 					stream->ps.c_usecs;
1465 			uf = uframe & ~7;
1466 			tmp = 1 << (2+8);
1467 			for (i = (uframe & 7) + 2; i < 8; (++i, tmp <<= 1)) {
1468 				if ((stream->ps.cs_mask & tmp) == 0)
1469 					continue;
1470 				if (ehci->bandwidth[uf+i] > max_used)
1471 					return 0;
1472 			}
1473 		}
1474 
1475 		uframe += stream->ps.bw_uperiod;
1476 	} while (uframe < EHCI_BANDWIDTH_SIZE);
1477 
1478 	stream->ps.cs_mask <<= uframe & 7;
1479 	stream->splits = cpu_to_hc32(ehci, stream->ps.cs_mask);
1480 	return 1;
1481 }
1482 
1483 /*
1484  * This scheduler plans almost as far into the future as it has actual
1485  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
1486  * "as small as possible" to be cache-friendlier.)  That limits the size
1487  * transfers you can stream reliably; avoid more than 64 msec per urb.
1488  * Also avoid queue depths of less than ehci's worst irq latency (affected
1489  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1490  * and other factors); or more than about 230 msec total (for portability,
1491  * given EHCI_TUNE_FLS and the slop).  Or, write a smarter scheduler!
1492  */
1493 
1494 static int
1495 iso_stream_schedule(
1496 	struct ehci_hcd		*ehci,
1497 	struct urb		*urb,
1498 	struct ehci_iso_stream	*stream
1499 )
1500 {
1501 	u32			now, base, next, start, period, span, now2;
1502 	u32			wrap = 0, skip = 0;
1503 	int			status = 0;
1504 	unsigned		mod = ehci->periodic_size << 3;
1505 	struct ehci_iso_sched	*sched = urb->hcpriv;
1506 	bool			empty = list_empty(&stream->td_list);
1507 	bool			new_stream = false;
1508 
1509 	period = stream->uperiod;
1510 	span = sched->span;
1511 	if (!stream->highspeed)
1512 		span <<= 3;
1513 
1514 	/* Start a new isochronous stream? */
1515 	if (unlikely(empty && !hcd_periodic_completion_in_progress(
1516 			ehci_to_hcd(ehci), urb->ep))) {
1517 
1518 		/* Schedule the endpoint */
1519 		if (stream->ps.phase == NO_FRAME) {
1520 			int		done = 0;
1521 			struct ehci_tt	*tt = find_tt(stream->ps.udev);
1522 
1523 			if (IS_ERR(tt)) {
1524 				status = PTR_ERR(tt);
1525 				goto fail;
1526 			}
1527 			compute_tt_budget(ehci->tt_budget, tt);
1528 
1529 			start = ((-(++ehci->random_frame)) << 3) & (period - 1);
1530 
1531 			/* find a uframe slot with enough bandwidth.
1532 			 * Early uframes are more precious because full-speed
1533 			 * iso IN transfers can't use late uframes,
1534 			 * and therefore they should be allocated last.
1535 			 */
1536 			next = start;
1537 			start += period;
1538 			do {
1539 				start--;
1540 				/* check schedule: enough space? */
1541 				if (stream->highspeed) {
1542 					if (itd_slot_ok(ehci, stream, start))
1543 						done = 1;
1544 				} else {
1545 					if ((start % 8) >= 6)
1546 						continue;
1547 					if (sitd_slot_ok(ehci, stream, start,
1548 							sched, tt))
1549 						done = 1;
1550 				}
1551 			} while (start > next && !done);
1552 
1553 			/* no room in the schedule */
1554 			if (!done) {
1555 				ehci_dbg(ehci, "iso sched full %p", urb);
1556 				status = -ENOSPC;
1557 				goto fail;
1558 			}
1559 			stream->ps.phase = (start >> 3) &
1560 					(stream->ps.period - 1);
1561 			stream->ps.bw_phase = stream->ps.phase &
1562 					(stream->ps.bw_period - 1);
1563 			stream->ps.phase_uf = start & 7;
1564 			reserve_release_iso_bandwidth(ehci, stream, 1);
1565 		}
1566 
1567 		/* New stream is already scheduled; use the upcoming slot */
1568 		else {
1569 			start = (stream->ps.phase << 3) + stream->ps.phase_uf;
1570 		}
1571 
1572 		stream->next_uframe = start;
1573 		new_stream = true;
1574 	}
1575 
1576 	now = ehci_read_frame_index(ehci) & (mod - 1);
1577 
1578 	/* Take the isochronous scheduling threshold into account */
1579 	if (ehci->i_thresh)
1580 		next = now + ehci->i_thresh;	/* uframe cache */
1581 	else
1582 		next = (now + 2 + 7) & ~0x07;	/* full frame cache */
1583 
1584 	/* If needed, initialize last_iso_frame so that this URB will be seen */
1585 	if (ehci->isoc_count == 0)
1586 		ehci->last_iso_frame = now >> 3;
1587 
1588 	/*
1589 	 * Use ehci->last_iso_frame as the base.  There can't be any
1590 	 * TDs scheduled for earlier than that.
1591 	 */
1592 	base = ehci->last_iso_frame << 3;
1593 	next = (next - base) & (mod - 1);
1594 	start = (stream->next_uframe - base) & (mod - 1);
1595 
1596 	if (unlikely(new_stream))
1597 		goto do_ASAP;
1598 
1599 	/*
1600 	 * Typical case: reuse current schedule, stream may still be active.
1601 	 * Hopefully there are no gaps from the host falling behind
1602 	 * (irq delays etc).  If there are, the behavior depends on
1603 	 * whether URB_ISO_ASAP is set.
1604 	 */
1605 	now2 = (now - base) & (mod - 1);
1606 
1607 	/* Is the schedule about to wrap around? */
1608 	if (unlikely(!empty && start < period)) {
1609 		ehci_dbg(ehci, "request %p would overflow (%u-%u < %u mod %u)\n",
1610 				urb, stream->next_uframe, base, period, mod);
1611 		status = -EFBIG;
1612 		goto fail;
1613 	}
1614 
1615 	/* Is the next packet scheduled after the base time? */
1616 	if (likely(!empty || start <= now2 + period)) {
1617 
1618 		/* URB_ISO_ASAP: make sure that start >= next */
1619 		if (unlikely(start < next &&
1620 				(urb->transfer_flags & URB_ISO_ASAP)))
1621 			goto do_ASAP;
1622 
1623 		/* Otherwise use start, if it's not in the past */
1624 		if (likely(start >= now2))
1625 			goto use_start;
1626 
1627 	/* Otherwise we got an underrun while the queue was empty */
1628 	} else {
1629 		if (urb->transfer_flags & URB_ISO_ASAP)
1630 			goto do_ASAP;
1631 		wrap = mod;
1632 		now2 += mod;
1633 	}
1634 
1635 	/* How many uframes and packets do we need to skip? */
1636 	skip = (now2 - start + period - 1) & -period;
1637 	if (skip >= span) {		/* Entirely in the past? */
1638 		ehci_dbg(ehci, "iso underrun %p (%u+%u < %u) [%u]\n",
1639 				urb, start + base, span - period, now2 + base,
1640 				base);
1641 
1642 		/* Try to keep the last TD intact for scanning later */
1643 		skip = span - period;
1644 
1645 		/* Will it come before the current scan position? */
1646 		if (empty) {
1647 			skip = span;	/* Skip the entire URB */
1648 			status = 1;	/* and give it back immediately */
1649 			iso_sched_free(stream, sched);
1650 			sched = NULL;
1651 		}
1652 	}
1653 	urb->error_count = skip / period;
1654 	if (sched)
1655 		sched->first_packet = urb->error_count;
1656 	goto use_start;
1657 
1658  do_ASAP:
1659 	/* Use the first slot after "next" */
1660 	start = next + ((start - next) & (period - 1));
1661 
1662  use_start:
1663 	/* Tried to schedule too far into the future? */
1664 	if (unlikely(start + span - period >= mod + wrap)) {
1665 		ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n",
1666 				urb, start, span - period, mod + wrap);
1667 		status = -EFBIG;
1668 		goto fail;
1669 	}
1670 
1671 	start += base;
1672 	stream->next_uframe = (start + skip) & (mod - 1);
1673 
1674 	/* report high speed start in uframes; full speed, in frames */
1675 	urb->start_frame = start & (mod - 1);
1676 	if (!stream->highspeed)
1677 		urb->start_frame >>= 3;
1678 	return status;
1679 
1680  fail:
1681 	iso_sched_free(stream, sched);
1682 	urb->hcpriv = NULL;
1683 	return status;
1684 }
1685 
1686 /*-------------------------------------------------------------------------*/
1687 
1688 static inline void
1689 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1690 		struct ehci_itd *itd)
1691 {
1692 	int i;
1693 
1694 	/* it's been recently zeroed */
1695 	itd->hw_next = EHCI_LIST_END(ehci);
1696 	itd->hw_bufp[0] = stream->buf0;
1697 	itd->hw_bufp[1] = stream->buf1;
1698 	itd->hw_bufp[2] = stream->buf2;
1699 
1700 	for (i = 0; i < 8; i++)
1701 		itd->index[i] = -1;
1702 
1703 	/* All other fields are filled when scheduling */
1704 }
1705 
1706 static inline void
1707 itd_patch(
1708 	struct ehci_hcd		*ehci,
1709 	struct ehci_itd		*itd,
1710 	struct ehci_iso_sched	*iso_sched,
1711 	unsigned		index,
1712 	u16			uframe
1713 )
1714 {
1715 	struct ehci_iso_packet	*uf = &iso_sched->packet[index];
1716 	unsigned		pg = itd->pg;
1717 
1718 	/* BUG_ON(pg == 6 && uf->cross); */
1719 
1720 	uframe &= 0x07;
1721 	itd->index[uframe] = index;
1722 
1723 	itd->hw_transaction[uframe] = uf->transaction;
1724 	itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1725 	itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1726 	itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1727 
1728 	/* iso_frame_desc[].offset must be strictly increasing */
1729 	if (unlikely(uf->cross)) {
1730 		u64	bufp = uf->bufp + 4096;
1731 
1732 		itd->pg = ++pg;
1733 		itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1734 		itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1735 	}
1736 }
1737 
1738 static inline void
1739 itd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1740 {
1741 	union ehci_shadow	*prev = &ehci->pshadow[frame];
1742 	__hc32			*hw_p = &ehci->periodic[frame];
1743 	union ehci_shadow	here = *prev;
1744 	__hc32			type = 0;
1745 
1746 	/* skip any iso nodes which might belong to previous microframes */
1747 	while (here.ptr) {
1748 		type = Q_NEXT_TYPE(ehci, *hw_p);
1749 		if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1750 			break;
1751 		prev = periodic_next_shadow(ehci, prev, type);
1752 		hw_p = shadow_next_periodic(ehci, &here, type);
1753 		here = *prev;
1754 	}
1755 
1756 	itd->itd_next = here;
1757 	itd->hw_next = *hw_p;
1758 	prev->itd = itd;
1759 	itd->frame = frame;
1760 	wmb();
1761 	*hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1762 }
1763 
1764 /* fit urb's itds into the selected schedule slot; activate as needed */
1765 static void itd_link_urb(
1766 	struct ehci_hcd		*ehci,
1767 	struct urb		*urb,
1768 	unsigned		mod,
1769 	struct ehci_iso_stream	*stream
1770 )
1771 {
1772 	int			packet;
1773 	unsigned		next_uframe, uframe, frame;
1774 	struct ehci_iso_sched	*iso_sched = urb->hcpriv;
1775 	struct ehci_itd		*itd;
1776 
1777 	next_uframe = stream->next_uframe & (mod - 1);
1778 
1779 	if (unlikely(list_empty(&stream->td_list)))
1780 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1781 				+= stream->bandwidth;
1782 
1783 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1784 		if (ehci->amd_pll_fix == 1)
1785 			usb_amd_quirk_pll_disable();
1786 	}
1787 
1788 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1789 
1790 	/* fill iTDs uframe by uframe */
1791 	for (packet = iso_sched->first_packet, itd = NULL;
1792 			packet < urb->number_of_packets;) {
1793 		if (itd == NULL) {
1794 			/* ASSERT:  we have all necessary itds */
1795 			/* BUG_ON(list_empty(&iso_sched->td_list)); */
1796 
1797 			/* ASSERT:  no itds for this endpoint in this uframe */
1798 
1799 			itd = list_entry(iso_sched->td_list.next,
1800 					struct ehci_itd, itd_list);
1801 			list_move_tail(&itd->itd_list, &stream->td_list);
1802 			itd->stream = stream;
1803 			itd->urb = urb;
1804 			itd_init(ehci, stream, itd);
1805 		}
1806 
1807 		uframe = next_uframe & 0x07;
1808 		frame = next_uframe >> 3;
1809 
1810 		itd_patch(ehci, itd, iso_sched, packet, uframe);
1811 
1812 		next_uframe += stream->uperiod;
1813 		next_uframe &= mod - 1;
1814 		packet++;
1815 
1816 		/* link completed itds into the schedule */
1817 		if (((next_uframe >> 3) != frame)
1818 				|| packet == urb->number_of_packets) {
1819 			itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1820 			itd = NULL;
1821 		}
1822 	}
1823 	stream->next_uframe = next_uframe;
1824 
1825 	/* don't need that schedule data any more */
1826 	iso_sched_free(stream, iso_sched);
1827 	urb->hcpriv = stream;
1828 
1829 	++ehci->isoc_count;
1830 	enable_periodic(ehci);
1831 }
1832 
1833 #define	ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1834 
1835 /* Process and recycle a completed ITD.  Return true iff its urb completed,
1836  * and hence its completion callback probably added things to the hardware
1837  * schedule.
1838  *
1839  * Note that we carefully avoid recycling this descriptor until after any
1840  * completion callback runs, so that it won't be reused quickly.  That is,
1841  * assuming (a) no more than two urbs per frame on this endpoint, and also
1842  * (b) only this endpoint's completions submit URBs.  It seems some silicon
1843  * corrupts things if you reuse completed descriptors very quickly...
1844  */
1845 static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd)
1846 {
1847 	struct urb				*urb = itd->urb;
1848 	struct usb_iso_packet_descriptor	*desc;
1849 	u32					t;
1850 	unsigned				uframe;
1851 	int					urb_index = -1;
1852 	struct ehci_iso_stream			*stream = itd->stream;
1853 	struct usb_device			*dev;
1854 	bool					retval = false;
1855 
1856 	/* for each uframe with a packet */
1857 	for (uframe = 0; uframe < 8; uframe++) {
1858 		if (likely(itd->index[uframe] == -1))
1859 			continue;
1860 		urb_index = itd->index[uframe];
1861 		desc = &urb->iso_frame_desc[urb_index];
1862 
1863 		t = hc32_to_cpup(ehci, &itd->hw_transaction[uframe]);
1864 		itd->hw_transaction[uframe] = 0;
1865 
1866 		/* report transfer status */
1867 		if (unlikely(t & ISO_ERRS)) {
1868 			urb->error_count++;
1869 			if (t & EHCI_ISOC_BUF_ERR)
1870 				desc->status = usb_pipein(urb->pipe)
1871 					? -ENOSR  /* hc couldn't read */
1872 					: -ECOMM; /* hc couldn't write */
1873 			else if (t & EHCI_ISOC_BABBLE)
1874 				desc->status = -EOVERFLOW;
1875 			else /* (t & EHCI_ISOC_XACTERR) */
1876 				desc->status = -EPROTO;
1877 
1878 			/* HC need not update length with this error */
1879 			if (!(t & EHCI_ISOC_BABBLE)) {
1880 				desc->actual_length = EHCI_ITD_LENGTH(t);
1881 				urb->actual_length += desc->actual_length;
1882 			}
1883 		} else if (likely((t & EHCI_ISOC_ACTIVE) == 0)) {
1884 			desc->status = 0;
1885 			desc->actual_length = EHCI_ITD_LENGTH(t);
1886 			urb->actual_length += desc->actual_length;
1887 		} else {
1888 			/* URB was too late */
1889 			urb->error_count++;
1890 		}
1891 	}
1892 
1893 	/* handle completion now? */
1894 	if (likely((urb_index + 1) != urb->number_of_packets))
1895 		goto done;
1896 
1897 	/*
1898 	 * ASSERT: it's really the last itd for this urb
1899 	 * list_for_each_entry (itd, &stream->td_list, itd_list)
1900 	 *	 BUG_ON(itd->urb == urb);
1901 	 */
1902 
1903 	/* give urb back to the driver; completion often (re)submits */
1904 	dev = urb->dev;
1905 	ehci_urb_done(ehci, urb, 0);
1906 	retval = true;
1907 	urb = NULL;
1908 
1909 	--ehci->isoc_count;
1910 	disable_periodic(ehci);
1911 
1912 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1913 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1914 		if (ehci->amd_pll_fix == 1)
1915 			usb_amd_quirk_pll_enable();
1916 	}
1917 
1918 	if (unlikely(list_is_singular(&stream->td_list)))
1919 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1920 				-= stream->bandwidth;
1921 
1922 done:
1923 	itd->urb = NULL;
1924 
1925 	/* Add to the end of the free list for later reuse */
1926 	list_move_tail(&itd->itd_list, &stream->free_list);
1927 
1928 	/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
1929 	if (list_empty(&stream->td_list)) {
1930 		list_splice_tail_init(&stream->free_list,
1931 				&ehci->cached_itd_list);
1932 		start_free_itds(ehci);
1933 	}
1934 
1935 	return retval;
1936 }
1937 
1938 /*-------------------------------------------------------------------------*/
1939 
1940 static int itd_submit(struct ehci_hcd *ehci, struct urb *urb,
1941 	gfp_t mem_flags)
1942 {
1943 	int			status = -EINVAL;
1944 	unsigned long		flags;
1945 	struct ehci_iso_stream	*stream;
1946 
1947 	/* Get iso_stream head */
1948 	stream = iso_stream_find(ehci, urb);
1949 	if (unlikely(stream == NULL)) {
1950 		ehci_dbg(ehci, "can't get iso stream\n");
1951 		return -ENOMEM;
1952 	}
1953 	if (unlikely(urb->interval != stream->uperiod)) {
1954 		ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
1955 			stream->uperiod, urb->interval);
1956 		goto done;
1957 	}
1958 
1959 #ifdef EHCI_URB_TRACE
1960 	ehci_dbg(ehci,
1961 		"%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1962 		__func__, urb->dev->devpath, urb,
1963 		usb_pipeendpoint(urb->pipe),
1964 		usb_pipein(urb->pipe) ? "in" : "out",
1965 		urb->transfer_buffer_length,
1966 		urb->number_of_packets, urb->interval,
1967 		stream);
1968 #endif
1969 
1970 	/* allocate ITDs w/o locking anything */
1971 	status = itd_urb_transaction(stream, ehci, urb, mem_flags);
1972 	if (unlikely(status < 0)) {
1973 		ehci_dbg(ehci, "can't init itds\n");
1974 		goto done;
1975 	}
1976 
1977 	/* schedule ... need to lock */
1978 	spin_lock_irqsave(&ehci->lock, flags);
1979 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1980 		status = -ESHUTDOWN;
1981 		goto done_not_linked;
1982 	}
1983 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1984 	if (unlikely(status))
1985 		goto done_not_linked;
1986 	status = iso_stream_schedule(ehci, urb, stream);
1987 	if (likely(status == 0)) {
1988 		itd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
1989 	} else if (status > 0) {
1990 		status = 0;
1991 		ehci_urb_done(ehci, urb, 0);
1992 	} else {
1993 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1994 	}
1995  done_not_linked:
1996 	spin_unlock_irqrestore(&ehci->lock, flags);
1997  done:
1998 	return status;
1999 }
2000 
2001 /*-------------------------------------------------------------------------*/
2002 
2003 /*
2004  * "Split ISO TDs" ... used for USB 1.1 devices going through the
2005  * TTs in USB 2.0 hubs.  These need microframe scheduling.
2006  */
2007 
2008 static inline void
2009 sitd_sched_init(
2010 	struct ehci_hcd		*ehci,
2011 	struct ehci_iso_sched	*iso_sched,
2012 	struct ehci_iso_stream	*stream,
2013 	struct urb		*urb
2014 )
2015 {
2016 	unsigned	i;
2017 	dma_addr_t	dma = urb->transfer_dma;
2018 
2019 	/* how many frames are needed for these transfers */
2020 	iso_sched->span = urb->number_of_packets * stream->ps.period;
2021 
2022 	/* figure out per-frame sitd fields that we'll need later
2023 	 * when we fit new sitds into the schedule.
2024 	 */
2025 	for (i = 0; i < urb->number_of_packets; i++) {
2026 		struct ehci_iso_packet	*packet = &iso_sched->packet[i];
2027 		unsigned		length;
2028 		dma_addr_t		buf;
2029 		u32			trans;
2030 
2031 		length = urb->iso_frame_desc[i].length & 0x03ff;
2032 		buf = dma + urb->iso_frame_desc[i].offset;
2033 
2034 		trans = SITD_STS_ACTIVE;
2035 		if (((i + 1) == urb->number_of_packets)
2036 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
2037 			trans |= SITD_IOC;
2038 		trans |= length << 16;
2039 		packet->transaction = cpu_to_hc32(ehci, trans);
2040 
2041 		/* might need to cross a buffer page within a td */
2042 		packet->bufp = buf;
2043 		packet->buf1 = (buf + length) & ~0x0fff;
2044 		if (packet->buf1 != (buf & ~(u64)0x0fff))
2045 			packet->cross = 1;
2046 
2047 		/* OUT uses multiple start-splits */
2048 		if (stream->bEndpointAddress & USB_DIR_IN)
2049 			continue;
2050 		length = (length + 187) / 188;
2051 		if (length > 1) /* BEGIN vs ALL */
2052 			length |= 1 << 3;
2053 		packet->buf1 |= length;
2054 	}
2055 }
2056 
2057 static int
2058 sitd_urb_transaction(
2059 	struct ehci_iso_stream	*stream,
2060 	struct ehci_hcd		*ehci,
2061 	struct urb		*urb,
2062 	gfp_t			mem_flags
2063 )
2064 {
2065 	struct ehci_sitd	*sitd;
2066 	dma_addr_t		sitd_dma;
2067 	int			i;
2068 	struct ehci_iso_sched	*iso_sched;
2069 	unsigned long		flags;
2070 
2071 	iso_sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
2072 	if (iso_sched == NULL)
2073 		return -ENOMEM;
2074 
2075 	sitd_sched_init(ehci, iso_sched, stream, urb);
2076 
2077 	/* allocate/init sITDs */
2078 	spin_lock_irqsave(&ehci->lock, flags);
2079 	for (i = 0; i < urb->number_of_packets; i++) {
2080 
2081 		/* NOTE:  for now, we don't try to handle wraparound cases
2082 		 * for IN (using sitd->hw_backpointer, like a FSTN), which
2083 		 * means we never need two sitds for full speed packets.
2084 		 */
2085 
2086 		/*
2087 		 * Use siTDs from the free list, but not siTDs that may
2088 		 * still be in use by the hardware.
2089 		 */
2090 		if (likely(!list_empty(&stream->free_list))) {
2091 			sitd = list_first_entry(&stream->free_list,
2092 					 struct ehci_sitd, sitd_list);
2093 			if (sitd->frame == ehci->now_frame)
2094 				goto alloc_sitd;
2095 			list_del(&sitd->sitd_list);
2096 			sitd_dma = sitd->sitd_dma;
2097 		} else {
2098  alloc_sitd:
2099 			spin_unlock_irqrestore(&ehci->lock, flags);
2100 			sitd = dma_pool_alloc(ehci->sitd_pool, mem_flags,
2101 					&sitd_dma);
2102 			spin_lock_irqsave(&ehci->lock, flags);
2103 			if (!sitd) {
2104 				iso_sched_free(stream, iso_sched);
2105 				spin_unlock_irqrestore(&ehci->lock, flags);
2106 				return -ENOMEM;
2107 			}
2108 		}
2109 
2110 		memset(sitd, 0, sizeof *sitd);
2111 		sitd->sitd_dma = sitd_dma;
2112 		sitd->frame = NO_FRAME;
2113 		list_add(&sitd->sitd_list, &iso_sched->td_list);
2114 	}
2115 
2116 	/* temporarily store schedule info in hcpriv */
2117 	urb->hcpriv = iso_sched;
2118 	urb->error_count = 0;
2119 
2120 	spin_unlock_irqrestore(&ehci->lock, flags);
2121 	return 0;
2122 }
2123 
2124 /*-------------------------------------------------------------------------*/
2125 
2126 static inline void
2127 sitd_patch(
2128 	struct ehci_hcd		*ehci,
2129 	struct ehci_iso_stream	*stream,
2130 	struct ehci_sitd	*sitd,
2131 	struct ehci_iso_sched	*iso_sched,
2132 	unsigned		index
2133 )
2134 {
2135 	struct ehci_iso_packet	*uf = &iso_sched->packet[index];
2136 	u64			bufp;
2137 
2138 	sitd->hw_next = EHCI_LIST_END(ehci);
2139 	sitd->hw_fullspeed_ep = stream->address;
2140 	sitd->hw_uframe = stream->splits;
2141 	sitd->hw_results = uf->transaction;
2142 	sitd->hw_backpointer = EHCI_LIST_END(ehci);
2143 
2144 	bufp = uf->bufp;
2145 	sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
2146 	sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
2147 
2148 	sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
2149 	if (uf->cross)
2150 		bufp += 4096;
2151 	sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
2152 	sitd->index = index;
2153 }
2154 
2155 static inline void
2156 sitd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
2157 {
2158 	/* note: sitd ordering could matter (CSPLIT then SSPLIT) */
2159 	sitd->sitd_next = ehci->pshadow[frame];
2160 	sitd->hw_next = ehci->periodic[frame];
2161 	ehci->pshadow[frame].sitd = sitd;
2162 	sitd->frame = frame;
2163 	wmb();
2164 	ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
2165 }
2166 
2167 /* fit urb's sitds into the selected schedule slot; activate as needed */
2168 static void sitd_link_urb(
2169 	struct ehci_hcd		*ehci,
2170 	struct urb		*urb,
2171 	unsigned		mod,
2172 	struct ehci_iso_stream	*stream
2173 )
2174 {
2175 	int			packet;
2176 	unsigned		next_uframe;
2177 	struct ehci_iso_sched	*sched = urb->hcpriv;
2178 	struct ehci_sitd	*sitd;
2179 
2180 	next_uframe = stream->next_uframe;
2181 
2182 	if (list_empty(&stream->td_list))
2183 		/* usbfs ignores TT bandwidth */
2184 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2185 				+= stream->bandwidth;
2186 
2187 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2188 		if (ehci->amd_pll_fix == 1)
2189 			usb_amd_quirk_pll_disable();
2190 	}
2191 
2192 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2193 
2194 	/* fill sITDs frame by frame */
2195 	for (packet = sched->first_packet, sitd = NULL;
2196 			packet < urb->number_of_packets;
2197 			packet++) {
2198 
2199 		/* ASSERT:  we have all necessary sitds */
2200 		BUG_ON(list_empty(&sched->td_list));
2201 
2202 		/* ASSERT:  no itds for this endpoint in this frame */
2203 
2204 		sitd = list_entry(sched->td_list.next,
2205 				struct ehci_sitd, sitd_list);
2206 		list_move_tail(&sitd->sitd_list, &stream->td_list);
2207 		sitd->stream = stream;
2208 		sitd->urb = urb;
2209 
2210 		sitd_patch(ehci, stream, sitd, sched, packet);
2211 		sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2212 				sitd);
2213 
2214 		next_uframe += stream->uperiod;
2215 	}
2216 	stream->next_uframe = next_uframe & (mod - 1);
2217 
2218 	/* don't need that schedule data any more */
2219 	iso_sched_free(stream, sched);
2220 	urb->hcpriv = stream;
2221 
2222 	++ehci->isoc_count;
2223 	enable_periodic(ehci);
2224 }
2225 
2226 /*-------------------------------------------------------------------------*/
2227 
2228 #define	SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2229 				| SITD_STS_XACT | SITD_STS_MMF)
2230 
2231 /* Process and recycle a completed SITD.  Return true iff its urb completed,
2232  * and hence its completion callback probably added things to the hardware
2233  * schedule.
2234  *
2235  * Note that we carefully avoid recycling this descriptor until after any
2236  * completion callback runs, so that it won't be reused quickly.  That is,
2237  * assuming (a) no more than two urbs per frame on this endpoint, and also
2238  * (b) only this endpoint's completions submit URBs.  It seems some silicon
2239  * corrupts things if you reuse completed descriptors very quickly...
2240  */
2241 static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd)
2242 {
2243 	struct urb				*urb = sitd->urb;
2244 	struct usb_iso_packet_descriptor	*desc;
2245 	u32					t;
2246 	int					urb_index;
2247 	struct ehci_iso_stream			*stream = sitd->stream;
2248 	struct usb_device			*dev;
2249 	bool					retval = false;
2250 
2251 	urb_index = sitd->index;
2252 	desc = &urb->iso_frame_desc[urb_index];
2253 	t = hc32_to_cpup(ehci, &sitd->hw_results);
2254 
2255 	/* report transfer status */
2256 	if (unlikely(t & SITD_ERRS)) {
2257 		urb->error_count++;
2258 		if (t & SITD_STS_DBE)
2259 			desc->status = usb_pipein(urb->pipe)
2260 				? -ENOSR  /* hc couldn't read */
2261 				: -ECOMM; /* hc couldn't write */
2262 		else if (t & SITD_STS_BABBLE)
2263 			desc->status = -EOVERFLOW;
2264 		else /* XACT, MMF, etc */
2265 			desc->status = -EPROTO;
2266 	} else if (unlikely(t & SITD_STS_ACTIVE)) {
2267 		/* URB was too late */
2268 		urb->error_count++;
2269 	} else {
2270 		desc->status = 0;
2271 		desc->actual_length = desc->length - SITD_LENGTH(t);
2272 		urb->actual_length += desc->actual_length;
2273 	}
2274 
2275 	/* handle completion now? */
2276 	if ((urb_index + 1) != urb->number_of_packets)
2277 		goto done;
2278 
2279 	/*
2280 	 * ASSERT: it's really the last sitd for this urb
2281 	 * list_for_each_entry (sitd, &stream->td_list, sitd_list)
2282 	 *	 BUG_ON(sitd->urb == urb);
2283 	 */
2284 
2285 	/* give urb back to the driver; completion often (re)submits */
2286 	dev = urb->dev;
2287 	ehci_urb_done(ehci, urb, 0);
2288 	retval = true;
2289 	urb = NULL;
2290 
2291 	--ehci->isoc_count;
2292 	disable_periodic(ehci);
2293 
2294 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2295 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2296 		if (ehci->amd_pll_fix == 1)
2297 			usb_amd_quirk_pll_enable();
2298 	}
2299 
2300 	if (list_is_singular(&stream->td_list))
2301 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2302 				-= stream->bandwidth;
2303 
2304 done:
2305 	sitd->urb = NULL;
2306 
2307 	/* Add to the end of the free list for later reuse */
2308 	list_move_tail(&sitd->sitd_list, &stream->free_list);
2309 
2310 	/* Recycle the siTDs when the pipeline is empty (ep no longer in use) */
2311 	if (list_empty(&stream->td_list)) {
2312 		list_splice_tail_init(&stream->free_list,
2313 				&ehci->cached_sitd_list);
2314 		start_free_itds(ehci);
2315 	}
2316 
2317 	return retval;
2318 }
2319 
2320 
2321 static int sitd_submit(struct ehci_hcd *ehci, struct urb *urb,
2322 	gfp_t mem_flags)
2323 {
2324 	int			status = -EINVAL;
2325 	unsigned long		flags;
2326 	struct ehci_iso_stream	*stream;
2327 
2328 	/* Get iso_stream head */
2329 	stream = iso_stream_find(ehci, urb);
2330 	if (stream == NULL) {
2331 		ehci_dbg(ehci, "can't get iso stream\n");
2332 		return -ENOMEM;
2333 	}
2334 	if (urb->interval != stream->ps.period) {
2335 		ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
2336 			stream->ps.period, urb->interval);
2337 		goto done;
2338 	}
2339 
2340 #ifdef EHCI_URB_TRACE
2341 	ehci_dbg(ehci,
2342 		"submit %p dev%s ep%d%s-iso len %d\n",
2343 		urb, urb->dev->devpath,
2344 		usb_pipeendpoint(urb->pipe),
2345 		usb_pipein(urb->pipe) ? "in" : "out",
2346 		urb->transfer_buffer_length);
2347 #endif
2348 
2349 	/* allocate SITDs */
2350 	status = sitd_urb_transaction(stream, ehci, urb, mem_flags);
2351 	if (status < 0) {
2352 		ehci_dbg(ehci, "can't init sitds\n");
2353 		goto done;
2354 	}
2355 
2356 	/* schedule ... need to lock */
2357 	spin_lock_irqsave(&ehci->lock, flags);
2358 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2359 		status = -ESHUTDOWN;
2360 		goto done_not_linked;
2361 	}
2362 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2363 	if (unlikely(status))
2364 		goto done_not_linked;
2365 	status = iso_stream_schedule(ehci, urb, stream);
2366 	if (likely(status == 0)) {
2367 		sitd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
2368 	} else if (status > 0) {
2369 		status = 0;
2370 		ehci_urb_done(ehci, urb, 0);
2371 	} else {
2372 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2373 	}
2374  done_not_linked:
2375 	spin_unlock_irqrestore(&ehci->lock, flags);
2376  done:
2377 	return status;
2378 }
2379 
2380 /*-------------------------------------------------------------------------*/
2381 
2382 static void scan_isoc(struct ehci_hcd *ehci)
2383 {
2384 	unsigned		uf, now_frame, frame;
2385 	unsigned		fmask = ehci->periodic_size - 1;
2386 	bool			modified, live;
2387 	union ehci_shadow	q, *q_p;
2388 	__hc32			type, *hw_p;
2389 
2390 	/*
2391 	 * When running, scan from last scan point up to "now"
2392 	 * else clean up by scanning everything that's left.
2393 	 * Touches as few pages as possible:  cache-friendly.
2394 	 */
2395 	if (ehci->rh_state >= EHCI_RH_RUNNING) {
2396 		uf = ehci_read_frame_index(ehci);
2397 		now_frame = (uf >> 3) & fmask;
2398 		live = true;
2399 	} else  {
2400 		now_frame = (ehci->last_iso_frame - 1) & fmask;
2401 		live = false;
2402 	}
2403 	ehci->now_frame = now_frame;
2404 
2405 	frame = ehci->last_iso_frame;
2406 
2407 restart:
2408 	/* Scan each element in frame's queue for completions */
2409 	q_p = &ehci->pshadow[frame];
2410 	hw_p = &ehci->periodic[frame];
2411 	q.ptr = q_p->ptr;
2412 	type = Q_NEXT_TYPE(ehci, *hw_p);
2413 	modified = false;
2414 
2415 	while (q.ptr != NULL) {
2416 		switch (hc32_to_cpu(ehci, type)) {
2417 		case Q_TYPE_ITD:
2418 			/*
2419 			 * If this ITD is still active, leave it for
2420 			 * later processing ... check the next entry.
2421 			 * No need to check for activity unless the
2422 			 * frame is current.
2423 			 */
2424 			if (frame == now_frame && live) {
2425 				rmb();
2426 				for (uf = 0; uf < 8; uf++) {
2427 					if (q.itd->hw_transaction[uf] &
2428 							ITD_ACTIVE(ehci))
2429 						break;
2430 				}
2431 				if (uf < 8) {
2432 					q_p = &q.itd->itd_next;
2433 					hw_p = &q.itd->hw_next;
2434 					type = Q_NEXT_TYPE(ehci,
2435 							q.itd->hw_next);
2436 					q = *q_p;
2437 					break;
2438 				}
2439 			}
2440 
2441 			/*
2442 			 * Take finished ITDs out of the schedule
2443 			 * and process them:  recycle, maybe report
2444 			 * URB completion.  HC won't cache the
2445 			 * pointer for much longer, if at all.
2446 			 */
2447 			*q_p = q.itd->itd_next;
2448 			if (!ehci->use_dummy_qh ||
2449 					q.itd->hw_next != EHCI_LIST_END(ehci))
2450 				*hw_p = q.itd->hw_next;
2451 			else
2452 				*hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
2453 			type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2454 			wmb();
2455 			modified = itd_complete(ehci, q.itd);
2456 			q = *q_p;
2457 			break;
2458 		case Q_TYPE_SITD:
2459 			/*
2460 			 * If this SITD is still active, leave it for
2461 			 * later processing ... check the next entry.
2462 			 * No need to check for activity unless the
2463 			 * frame is current.
2464 			 */
2465 			if (((frame == now_frame) ||
2466 					(((frame + 1) & fmask) == now_frame))
2467 				&& live
2468 				&& (q.sitd->hw_results & SITD_ACTIVE(ehci))) {
2469 
2470 				q_p = &q.sitd->sitd_next;
2471 				hw_p = &q.sitd->hw_next;
2472 				type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2473 				q = *q_p;
2474 				break;
2475 			}
2476 
2477 			/*
2478 			 * Take finished SITDs out of the schedule
2479 			 * and process them:  recycle, maybe report
2480 			 * URB completion.
2481 			 */
2482 			*q_p = q.sitd->sitd_next;
2483 			if (!ehci->use_dummy_qh ||
2484 					q.sitd->hw_next != EHCI_LIST_END(ehci))
2485 				*hw_p = q.sitd->hw_next;
2486 			else
2487 				*hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
2488 			type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2489 			wmb();
2490 			modified = sitd_complete(ehci, q.sitd);
2491 			q = *q_p;
2492 			break;
2493 		default:
2494 			ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n",
2495 					type, frame, q.ptr);
2496 			/* BUG(); */
2497 			/* FALL THROUGH */
2498 		case Q_TYPE_QH:
2499 		case Q_TYPE_FSTN:
2500 			/* End of the iTDs and siTDs */
2501 			q.ptr = NULL;
2502 			break;
2503 		}
2504 
2505 		/* Assume completion callbacks modify the queue */
2506 		if (unlikely(modified && ehci->isoc_count > 0))
2507 			goto restart;
2508 	}
2509 
2510 	/* Stop when we have reached the current frame */
2511 	if (frame == now_frame)
2512 		return;
2513 
2514 	/* The last frame may still have active siTDs */
2515 	ehci->last_iso_frame = frame;
2516 	frame = (frame + 1) & fmask;
2517 
2518 	goto restart;
2519 }
2520