xref: /openbmc/linux/drivers/usb/host/ehci-sched.c (revision 05bcf503)
1 /*
2  * Copyright (c) 2001-2004 by David Brownell
3  * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation; either version 2 of the License, or (at your
8  * option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software Foundation,
17  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19 
20 /* this file is part of ehci-hcd.c */
21 
22 /*-------------------------------------------------------------------------*/
23 
24 /*
25  * EHCI scheduled transaction support:  interrupt, iso, split iso
26  * These are called "periodic" transactions in the EHCI spec.
27  *
28  * Note that for interrupt transfers, the QH/QTD manipulation is shared
29  * with the "asynchronous" transaction support (control/bulk transfers).
30  * The only real difference is in how interrupt transfers are scheduled.
31  *
32  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33  * It keeps track of every ITD (or SITD) that's linked, and holds enough
34  * pre-calculated schedule data to make appending to the queue be quick.
35  */
36 
37 static int ehci_get_frame (struct usb_hcd *hcd);
38 
39 #ifdef CONFIG_PCI
40 
41 static unsigned ehci_read_frame_index(struct ehci_hcd *ehci)
42 {
43 	unsigned uf;
44 
45 	/*
46 	 * The MosChip MCS9990 controller updates its microframe counter
47 	 * a little before the frame counter, and occasionally we will read
48 	 * the invalid intermediate value.  Avoid problems by checking the
49 	 * microframe number (the low-order 3 bits); if they are 0 then
50 	 * re-read the register to get the correct value.
51 	 */
52 	uf = ehci_readl(ehci, &ehci->regs->frame_index);
53 	if (unlikely(ehci->frame_index_bug && ((uf & 7) == 0)))
54 		uf = ehci_readl(ehci, &ehci->regs->frame_index);
55 	return uf;
56 }
57 
58 #endif
59 
60 /*-------------------------------------------------------------------------*/
61 
62 /*
63  * periodic_next_shadow - return "next" pointer on shadow list
64  * @periodic: host pointer to qh/itd/sitd
65  * @tag: hardware tag for type of this record
66  */
67 static union ehci_shadow *
68 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
69 		__hc32 tag)
70 {
71 	switch (hc32_to_cpu(ehci, tag)) {
72 	case Q_TYPE_QH:
73 		return &periodic->qh->qh_next;
74 	case Q_TYPE_FSTN:
75 		return &periodic->fstn->fstn_next;
76 	case Q_TYPE_ITD:
77 		return &periodic->itd->itd_next;
78 	// case Q_TYPE_SITD:
79 	default:
80 		return &periodic->sitd->sitd_next;
81 	}
82 }
83 
84 static __hc32 *
85 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
86 		__hc32 tag)
87 {
88 	switch (hc32_to_cpu(ehci, tag)) {
89 	/* our ehci_shadow.qh is actually software part */
90 	case Q_TYPE_QH:
91 		return &periodic->qh->hw->hw_next;
92 	/* others are hw parts */
93 	default:
94 		return periodic->hw_next;
95 	}
96 }
97 
98 /* caller must hold ehci->lock */
99 static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr)
100 {
101 	union ehci_shadow	*prev_p = &ehci->pshadow[frame];
102 	__hc32			*hw_p = &ehci->periodic[frame];
103 	union ehci_shadow	here = *prev_p;
104 
105 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
106 	while (here.ptr && here.ptr != ptr) {
107 		prev_p = periodic_next_shadow(ehci, prev_p,
108 				Q_NEXT_TYPE(ehci, *hw_p));
109 		hw_p = shadow_next_periodic(ehci, &here,
110 				Q_NEXT_TYPE(ehci, *hw_p));
111 		here = *prev_p;
112 	}
113 	/* an interrupt entry (at list end) could have been shared */
114 	if (!here.ptr)
115 		return;
116 
117 	/* update shadow and hardware lists ... the old "next" pointers
118 	 * from ptr may still be in use, the caller updates them.
119 	 */
120 	*prev_p = *periodic_next_shadow(ehci, &here,
121 			Q_NEXT_TYPE(ehci, *hw_p));
122 
123 	if (!ehci->use_dummy_qh ||
124 	    *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
125 			!= EHCI_LIST_END(ehci))
126 		*hw_p = *shadow_next_periodic(ehci, &here,
127 				Q_NEXT_TYPE(ehci, *hw_p));
128 	else
129 		*hw_p = ehci->dummy->qh_dma;
130 }
131 
132 /* how many of the uframe's 125 usecs are allocated? */
133 static unsigned short
134 periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe)
135 {
136 	__hc32			*hw_p = &ehci->periodic [frame];
137 	union ehci_shadow	*q = &ehci->pshadow [frame];
138 	unsigned		usecs = 0;
139 	struct ehci_qh_hw	*hw;
140 
141 	while (q->ptr) {
142 		switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
143 		case Q_TYPE_QH:
144 			hw = q->qh->hw;
145 			/* is it in the S-mask? */
146 			if (hw->hw_info2 & cpu_to_hc32(ehci, 1 << uframe))
147 				usecs += q->qh->usecs;
148 			/* ... or C-mask? */
149 			if (hw->hw_info2 & cpu_to_hc32(ehci,
150 					1 << (8 + uframe)))
151 				usecs += q->qh->c_usecs;
152 			hw_p = &hw->hw_next;
153 			q = &q->qh->qh_next;
154 			break;
155 		// case Q_TYPE_FSTN:
156 		default:
157 			/* for "save place" FSTNs, count the relevant INTR
158 			 * bandwidth from the previous frame
159 			 */
160 			if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) {
161 				ehci_dbg (ehci, "ignoring FSTN cost ...\n");
162 			}
163 			hw_p = &q->fstn->hw_next;
164 			q = &q->fstn->fstn_next;
165 			break;
166 		case Q_TYPE_ITD:
167 			if (q->itd->hw_transaction[uframe])
168 				usecs += q->itd->stream->usecs;
169 			hw_p = &q->itd->hw_next;
170 			q = &q->itd->itd_next;
171 			break;
172 		case Q_TYPE_SITD:
173 			/* is it in the S-mask?  (count SPLIT, DATA) */
174 			if (q->sitd->hw_uframe & cpu_to_hc32(ehci,
175 					1 << uframe)) {
176 				if (q->sitd->hw_fullspeed_ep &
177 						cpu_to_hc32(ehci, 1<<31))
178 					usecs += q->sitd->stream->usecs;
179 				else	/* worst case for OUT start-split */
180 					usecs += HS_USECS_ISO (188);
181 			}
182 
183 			/* ... C-mask?  (count CSPLIT, DATA) */
184 			if (q->sitd->hw_uframe &
185 					cpu_to_hc32(ehci, 1 << (8 + uframe))) {
186 				/* worst case for IN complete-split */
187 				usecs += q->sitd->stream->c_usecs;
188 			}
189 
190 			hw_p = &q->sitd->hw_next;
191 			q = &q->sitd->sitd_next;
192 			break;
193 		}
194 	}
195 #ifdef	DEBUG
196 	if (usecs > ehci->uframe_periodic_max)
197 		ehci_err (ehci, "uframe %d sched overrun: %d usecs\n",
198 			frame * 8 + uframe, usecs);
199 #endif
200 	return usecs;
201 }
202 
203 /*-------------------------------------------------------------------------*/
204 
205 static int same_tt (struct usb_device *dev1, struct usb_device *dev2)
206 {
207 	if (!dev1->tt || !dev2->tt)
208 		return 0;
209 	if (dev1->tt != dev2->tt)
210 		return 0;
211 	if (dev1->tt->multi)
212 		return dev1->ttport == dev2->ttport;
213 	else
214 		return 1;
215 }
216 
217 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
218 
219 /* Which uframe does the low/fullspeed transfer start in?
220  *
221  * The parameter is the mask of ssplits in "H-frame" terms
222  * and this returns the transfer start uframe in "B-frame" terms,
223  * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
224  * will cause a transfer in "B-frame" uframe 0.  "B-frames" lag
225  * "H-frames" by 1 uframe.  See the EHCI spec sec 4.5 and figure 4.7.
226  */
227 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
228 {
229 	unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask);
230 	if (!smask) {
231 		ehci_err(ehci, "invalid empty smask!\n");
232 		/* uframe 7 can't have bw so this will indicate failure */
233 		return 7;
234 	}
235 	return ffs(smask) - 1;
236 }
237 
238 static const unsigned char
239 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
240 
241 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
242 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
243 {
244 	int i;
245 	for (i=0; i<7; i++) {
246 		if (max_tt_usecs[i] < tt_usecs[i]) {
247 			tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
248 			tt_usecs[i] = max_tt_usecs[i];
249 		}
250 	}
251 }
252 
253 /* How many of the tt's periodic downstream 1000 usecs are allocated?
254  *
255  * While this measures the bandwidth in terms of usecs/uframe,
256  * the low/fullspeed bus has no notion of uframes, so any particular
257  * low/fullspeed transfer can "carry over" from one uframe to the next,
258  * since the TT just performs downstream transfers in sequence.
259  *
260  * For example two separate 100 usec transfers can start in the same uframe,
261  * and the second one would "carry over" 75 usecs into the next uframe.
262  */
263 static void
264 periodic_tt_usecs (
265 	struct ehci_hcd *ehci,
266 	struct usb_device *dev,
267 	unsigned frame,
268 	unsigned short tt_usecs[8]
269 )
270 {
271 	__hc32			*hw_p = &ehci->periodic [frame];
272 	union ehci_shadow	*q = &ehci->pshadow [frame];
273 	unsigned char		uf;
274 
275 	memset(tt_usecs, 0, 16);
276 
277 	while (q->ptr) {
278 		switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
279 		case Q_TYPE_ITD:
280 			hw_p = &q->itd->hw_next;
281 			q = &q->itd->itd_next;
282 			continue;
283 		case Q_TYPE_QH:
284 			if (same_tt(dev, q->qh->dev)) {
285 				uf = tt_start_uframe(ehci, q->qh->hw->hw_info2);
286 				tt_usecs[uf] += q->qh->tt_usecs;
287 			}
288 			hw_p = &q->qh->hw->hw_next;
289 			q = &q->qh->qh_next;
290 			continue;
291 		case Q_TYPE_SITD:
292 			if (same_tt(dev, q->sitd->urb->dev)) {
293 				uf = tt_start_uframe(ehci, q->sitd->hw_uframe);
294 				tt_usecs[uf] += q->sitd->stream->tt_usecs;
295 			}
296 			hw_p = &q->sitd->hw_next;
297 			q = &q->sitd->sitd_next;
298 			continue;
299 		// case Q_TYPE_FSTN:
300 		default:
301 			ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n",
302 					frame);
303 			hw_p = &q->fstn->hw_next;
304 			q = &q->fstn->fstn_next;
305 		}
306 	}
307 
308 	carryover_tt_bandwidth(tt_usecs);
309 
310 	if (max_tt_usecs[7] < tt_usecs[7])
311 		ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n",
312 			frame, tt_usecs[7] - max_tt_usecs[7]);
313 }
314 
315 /*
316  * Return true if the device's tt's downstream bus is available for a
317  * periodic transfer of the specified length (usecs), starting at the
318  * specified frame/uframe.  Note that (as summarized in section 11.19
319  * of the usb 2.0 spec) TTs can buffer multiple transactions for each
320  * uframe.
321  *
322  * The uframe parameter is when the fullspeed/lowspeed transfer
323  * should be executed in "B-frame" terms, which is the same as the
324  * highspeed ssplit's uframe (which is in "H-frame" terms).  For example
325  * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
326  * See the EHCI spec sec 4.5 and fig 4.7.
327  *
328  * This checks if the full/lowspeed bus, at the specified starting uframe,
329  * has the specified bandwidth available, according to rules listed
330  * in USB 2.0 spec section 11.18.1 fig 11-60.
331  *
332  * This does not check if the transfer would exceed the max ssplit
333  * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
334  * since proper scheduling limits ssplits to less than 16 per uframe.
335  */
336 static int tt_available (
337 	struct ehci_hcd		*ehci,
338 	unsigned		period,
339 	struct usb_device	*dev,
340 	unsigned		frame,
341 	unsigned		uframe,
342 	u16			usecs
343 )
344 {
345 	if ((period == 0) || (uframe >= 7))	/* error */
346 		return 0;
347 
348 	for (; frame < ehci->periodic_size; frame += period) {
349 		unsigned short tt_usecs[8];
350 
351 		periodic_tt_usecs (ehci, dev, frame, tt_usecs);
352 
353 		ehci_vdbg(ehci, "tt frame %d check %d usecs start uframe %d in"
354 			" schedule %d/%d/%d/%d/%d/%d/%d/%d\n",
355 			frame, usecs, uframe,
356 			tt_usecs[0], tt_usecs[1], tt_usecs[2], tt_usecs[3],
357 			tt_usecs[4], tt_usecs[5], tt_usecs[6], tt_usecs[7]);
358 
359 		if (max_tt_usecs[uframe] <= tt_usecs[uframe]) {
360 			ehci_vdbg(ehci, "frame %d uframe %d fully scheduled\n",
361 				frame, uframe);
362 			return 0;
363 		}
364 
365 		/* special case for isoc transfers larger than 125us:
366 		 * the first and each subsequent fully used uframe
367 		 * must be empty, so as to not illegally delay
368 		 * already scheduled transactions
369 		 */
370 		if (125 < usecs) {
371 			int ufs = (usecs / 125);
372 			int i;
373 			for (i = uframe; i < (uframe + ufs) && i < 8; i++)
374 				if (0 < tt_usecs[i]) {
375 					ehci_vdbg(ehci,
376 						"multi-uframe xfer can't fit "
377 						"in frame %d uframe %d\n",
378 						frame, i);
379 					return 0;
380 				}
381 		}
382 
383 		tt_usecs[uframe] += usecs;
384 
385 		carryover_tt_bandwidth(tt_usecs);
386 
387 		/* fail if the carryover pushed bw past the last uframe's limit */
388 		if (max_tt_usecs[7] < tt_usecs[7]) {
389 			ehci_vdbg(ehci,
390 				"tt unavailable usecs %d frame %d uframe %d\n",
391 				usecs, frame, uframe);
392 			return 0;
393 		}
394 	}
395 
396 	return 1;
397 }
398 
399 #else
400 
401 /* return true iff the device's transaction translator is available
402  * for a periodic transfer starting at the specified frame, using
403  * all the uframes in the mask.
404  */
405 static int tt_no_collision (
406 	struct ehci_hcd		*ehci,
407 	unsigned		period,
408 	struct usb_device	*dev,
409 	unsigned		frame,
410 	u32			uf_mask
411 )
412 {
413 	if (period == 0)	/* error */
414 		return 0;
415 
416 	/* note bandwidth wastage:  split never follows csplit
417 	 * (different dev or endpoint) until the next uframe.
418 	 * calling convention doesn't make that distinction.
419 	 */
420 	for (; frame < ehci->periodic_size; frame += period) {
421 		union ehci_shadow	here;
422 		__hc32			type;
423 		struct ehci_qh_hw	*hw;
424 
425 		here = ehci->pshadow [frame];
426 		type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]);
427 		while (here.ptr) {
428 			switch (hc32_to_cpu(ehci, type)) {
429 			case Q_TYPE_ITD:
430 				type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
431 				here = here.itd->itd_next;
432 				continue;
433 			case Q_TYPE_QH:
434 				hw = here.qh->hw;
435 				if (same_tt (dev, here.qh->dev)) {
436 					u32		mask;
437 
438 					mask = hc32_to_cpu(ehci,
439 							hw->hw_info2);
440 					/* "knows" no gap is needed */
441 					mask |= mask >> 8;
442 					if (mask & uf_mask)
443 						break;
444 				}
445 				type = Q_NEXT_TYPE(ehci, hw->hw_next);
446 				here = here.qh->qh_next;
447 				continue;
448 			case Q_TYPE_SITD:
449 				if (same_tt (dev, here.sitd->urb->dev)) {
450 					u16		mask;
451 
452 					mask = hc32_to_cpu(ehci, here.sitd
453 								->hw_uframe);
454 					/* FIXME assumes no gap for IN! */
455 					mask |= mask >> 8;
456 					if (mask & uf_mask)
457 						break;
458 				}
459 				type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
460 				here = here.sitd->sitd_next;
461 				continue;
462 			// case Q_TYPE_FSTN:
463 			default:
464 				ehci_dbg (ehci,
465 					"periodic frame %d bogus type %d\n",
466 					frame, type);
467 			}
468 
469 			/* collision or error */
470 			return 0;
471 		}
472 	}
473 
474 	/* no collision */
475 	return 1;
476 }
477 
478 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
479 
480 /*-------------------------------------------------------------------------*/
481 
482 static void enable_periodic(struct ehci_hcd *ehci)
483 {
484 	if (ehci->periodic_count++)
485 		return;
486 
487 	/* Stop waiting to turn off the periodic schedule */
488 	ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC);
489 
490 	/* Don't start the schedule until PSS is 0 */
491 	ehci_poll_PSS(ehci);
492 	turn_on_io_watchdog(ehci);
493 }
494 
495 static void disable_periodic(struct ehci_hcd *ehci)
496 {
497 	if (--ehci->periodic_count)
498 		return;
499 
500 	/* Don't turn off the schedule until PSS is 1 */
501 	ehci_poll_PSS(ehci);
502 }
503 
504 /*-------------------------------------------------------------------------*/
505 
506 /* periodic schedule slots have iso tds (normal or split) first, then a
507  * sparse tree for active interrupt transfers.
508  *
509  * this just links in a qh; caller guarantees uframe masks are set right.
510  * no FSTN support (yet; ehci 0.96+)
511  */
512 static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
513 {
514 	unsigned	i;
515 	unsigned	period = qh->period;
516 
517 	dev_dbg (&qh->dev->dev,
518 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
519 		period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
520 			& (QH_CMASK | QH_SMASK),
521 		qh, qh->start, qh->usecs, qh->c_usecs);
522 
523 	/* high bandwidth, or otherwise every microframe */
524 	if (period == 0)
525 		period = 1;
526 
527 	for (i = qh->start; i < ehci->periodic_size; i += period) {
528 		union ehci_shadow	*prev = &ehci->pshadow[i];
529 		__hc32			*hw_p = &ehci->periodic[i];
530 		union ehci_shadow	here = *prev;
531 		__hc32			type = 0;
532 
533 		/* skip the iso nodes at list head */
534 		while (here.ptr) {
535 			type = Q_NEXT_TYPE(ehci, *hw_p);
536 			if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
537 				break;
538 			prev = periodic_next_shadow(ehci, prev, type);
539 			hw_p = shadow_next_periodic(ehci, &here, type);
540 			here = *prev;
541 		}
542 
543 		/* sorting each branch by period (slow-->fast)
544 		 * enables sharing interior tree nodes
545 		 */
546 		while (here.ptr && qh != here.qh) {
547 			if (qh->period > here.qh->period)
548 				break;
549 			prev = &here.qh->qh_next;
550 			hw_p = &here.qh->hw->hw_next;
551 			here = *prev;
552 		}
553 		/* link in this qh, unless some earlier pass did that */
554 		if (qh != here.qh) {
555 			qh->qh_next = here;
556 			if (here.qh)
557 				qh->hw->hw_next = *hw_p;
558 			wmb ();
559 			prev->qh = qh;
560 			*hw_p = QH_NEXT (ehci, qh->qh_dma);
561 		}
562 	}
563 	qh->qh_state = QH_STATE_LINKED;
564 	qh->xacterrs = 0;
565 
566 	/* update per-qh bandwidth for usbfs */
567 	ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period
568 		? ((qh->usecs + qh->c_usecs) / qh->period)
569 		: (qh->usecs * 8);
570 
571 	list_add(&qh->intr_node, &ehci->intr_qh_list);
572 
573 	/* maybe enable periodic schedule processing */
574 	++ehci->intr_count;
575 	enable_periodic(ehci);
576 }
577 
578 static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
579 {
580 	unsigned	i;
581 	unsigned	period;
582 
583 	/*
584 	 * If qh is for a low/full-speed device, simply unlinking it
585 	 * could interfere with an ongoing split transaction.  To unlink
586 	 * it safely would require setting the QH_INACTIVATE bit and
587 	 * waiting at least one frame, as described in EHCI 4.12.2.5.
588 	 *
589 	 * We won't bother with any of this.  Instead, we assume that the
590 	 * only reason for unlinking an interrupt QH while the current URB
591 	 * is still active is to dequeue all the URBs (flush the whole
592 	 * endpoint queue).
593 	 *
594 	 * If rebalancing the periodic schedule is ever implemented, this
595 	 * approach will no longer be valid.
596 	 */
597 
598 	/* high bandwidth, or otherwise part of every microframe */
599 	if ((period = qh->period) == 0)
600 		period = 1;
601 
602 	for (i = qh->start; i < ehci->periodic_size; i += period)
603 		periodic_unlink (ehci, i, qh);
604 
605 	/* update per-qh bandwidth for usbfs */
606 	ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period
607 		? ((qh->usecs + qh->c_usecs) / qh->period)
608 		: (qh->usecs * 8);
609 
610 	dev_dbg (&qh->dev->dev,
611 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
612 		qh->period,
613 		hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
614 		qh, qh->start, qh->usecs, qh->c_usecs);
615 
616 	/* qh->qh_next still "live" to HC */
617 	qh->qh_state = QH_STATE_UNLINK;
618 	qh->qh_next.ptr = NULL;
619 
620 	if (ehci->qh_scan_next == qh)
621 		ehci->qh_scan_next = list_entry(qh->intr_node.next,
622 				struct ehci_qh, intr_node);
623 	list_del(&qh->intr_node);
624 }
625 
626 static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
627 {
628 	/* If the QH isn't linked then there's nothing we can do
629 	 * unless we were called during a giveback, in which case
630 	 * qh_completions() has to deal with it.
631 	 */
632 	if (qh->qh_state != QH_STATE_LINKED) {
633 		if (qh->qh_state == QH_STATE_COMPLETING)
634 			qh->needs_rescan = 1;
635 		return;
636 	}
637 
638 	qh_unlink_periodic (ehci, qh);
639 
640 	/* Make sure the unlinks are visible before starting the timer */
641 	wmb();
642 
643 	/*
644 	 * The EHCI spec doesn't say how long it takes the controller to
645 	 * stop accessing an unlinked interrupt QH.  The timer delay is
646 	 * 9 uframes; presumably that will be long enough.
647 	 */
648 	qh->unlink_cycle = ehci->intr_unlink_cycle;
649 
650 	/* New entries go at the end of the intr_unlink list */
651 	if (ehci->intr_unlink)
652 		ehci->intr_unlink_last->unlink_next = qh;
653 	else
654 		ehci->intr_unlink = qh;
655 	ehci->intr_unlink_last = qh;
656 
657 	if (ehci->intr_unlinking)
658 		;	/* Avoid recursive calls */
659 	else if (ehci->rh_state < EHCI_RH_RUNNING)
660 		ehci_handle_intr_unlinks(ehci);
661 	else if (ehci->intr_unlink == qh) {
662 		ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true);
663 		++ehci->intr_unlink_cycle;
664 	}
665 }
666 
667 static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
668 {
669 	struct ehci_qh_hw	*hw = qh->hw;
670 	int			rc;
671 
672 	qh->qh_state = QH_STATE_IDLE;
673 	hw->hw_next = EHCI_LIST_END(ehci);
674 
675 	qh_completions(ehci, qh);
676 
677 	/* reschedule QH iff another request is queued */
678 	if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) {
679 		rc = qh_schedule(ehci, qh);
680 
681 		/* An error here likely indicates handshake failure
682 		 * or no space left in the schedule.  Neither fault
683 		 * should happen often ...
684 		 *
685 		 * FIXME kill the now-dysfunctional queued urbs
686 		 */
687 		if (rc != 0)
688 			ehci_err(ehci, "can't reschedule qh %p, err %d\n",
689 					qh, rc);
690 	}
691 
692 	/* maybe turn off periodic schedule */
693 	--ehci->intr_count;
694 	disable_periodic(ehci);
695 }
696 
697 /*-------------------------------------------------------------------------*/
698 
699 static int check_period (
700 	struct ehci_hcd *ehci,
701 	unsigned	frame,
702 	unsigned	uframe,
703 	unsigned	period,
704 	unsigned	usecs
705 ) {
706 	int		claimed;
707 
708 	/* complete split running into next frame?
709 	 * given FSTN support, we could sometimes check...
710 	 */
711 	if (uframe >= 8)
712 		return 0;
713 
714 	/* convert "usecs we need" to "max already claimed" */
715 	usecs = ehci->uframe_periodic_max - usecs;
716 
717 	/* we "know" 2 and 4 uframe intervals were rejected; so
718 	 * for period 0, check _every_ microframe in the schedule.
719 	 */
720 	if (unlikely (period == 0)) {
721 		do {
722 			for (uframe = 0; uframe < 7; uframe++) {
723 				claimed = periodic_usecs (ehci, frame, uframe);
724 				if (claimed > usecs)
725 					return 0;
726 			}
727 		} while ((frame += 1) < ehci->periodic_size);
728 
729 	/* just check the specified uframe, at that period */
730 	} else {
731 		do {
732 			claimed = periodic_usecs (ehci, frame, uframe);
733 			if (claimed > usecs)
734 				return 0;
735 		} while ((frame += period) < ehci->periodic_size);
736 	}
737 
738 	// success!
739 	return 1;
740 }
741 
742 static int check_intr_schedule (
743 	struct ehci_hcd		*ehci,
744 	unsigned		frame,
745 	unsigned		uframe,
746 	const struct ehci_qh	*qh,
747 	__hc32			*c_maskp
748 )
749 {
750 	int		retval = -ENOSPC;
751 	u8		mask = 0;
752 
753 	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
754 		goto done;
755 
756 	if (!check_period (ehci, frame, uframe, qh->period, qh->usecs))
757 		goto done;
758 	if (!qh->c_usecs) {
759 		retval = 0;
760 		*c_maskp = 0;
761 		goto done;
762 	}
763 
764 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
765 	if (tt_available (ehci, qh->period, qh->dev, frame, uframe,
766 				qh->tt_usecs)) {
767 		unsigned i;
768 
769 		/* TODO : this may need FSTN for SSPLIT in uframe 5. */
770 		for (i=uframe+1; i<8 && i<uframe+4; i++)
771 			if (!check_period (ehci, frame, i,
772 						qh->period, qh->c_usecs))
773 				goto done;
774 			else
775 				mask |= 1 << i;
776 
777 		retval = 0;
778 
779 		*c_maskp = cpu_to_hc32(ehci, mask << 8);
780 	}
781 #else
782 	/* Make sure this tt's buffer is also available for CSPLITs.
783 	 * We pessimize a bit; probably the typical full speed case
784 	 * doesn't need the second CSPLIT.
785 	 *
786 	 * NOTE:  both SPLIT and CSPLIT could be checked in just
787 	 * one smart pass...
788 	 */
789 	mask = 0x03 << (uframe + qh->gap_uf);
790 	*c_maskp = cpu_to_hc32(ehci, mask << 8);
791 
792 	mask |= 1 << uframe;
793 	if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) {
794 		if (!check_period (ehci, frame, uframe + qh->gap_uf + 1,
795 					qh->period, qh->c_usecs))
796 			goto done;
797 		if (!check_period (ehci, frame, uframe + qh->gap_uf,
798 					qh->period, qh->c_usecs))
799 			goto done;
800 		retval = 0;
801 	}
802 #endif
803 done:
804 	return retval;
805 }
806 
807 /* "first fit" scheduling policy used the first time through,
808  * or when the previous schedule slot can't be re-used.
809  */
810 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
811 {
812 	int		status;
813 	unsigned	uframe;
814 	__hc32		c_mask;
815 	unsigned	frame;		/* 0..(qh->period - 1), or NO_FRAME */
816 	struct ehci_qh_hw	*hw = qh->hw;
817 
818 	qh_refresh(ehci, qh);
819 	hw->hw_next = EHCI_LIST_END(ehci);
820 	frame = qh->start;
821 
822 	/* reuse the previous schedule slots, if we can */
823 	if (frame < qh->period) {
824 		uframe = ffs(hc32_to_cpup(ehci, &hw->hw_info2) & QH_SMASK);
825 		status = check_intr_schedule (ehci, frame, --uframe,
826 				qh, &c_mask);
827 	} else {
828 		uframe = 0;
829 		c_mask = 0;
830 		status = -ENOSPC;
831 	}
832 
833 	/* else scan the schedule to find a group of slots such that all
834 	 * uframes have enough periodic bandwidth available.
835 	 */
836 	if (status) {
837 		/* "normal" case, uframing flexible except with splits */
838 		if (qh->period) {
839 			int		i;
840 
841 			for (i = qh->period; status && i > 0; --i) {
842 				frame = ++ehci->random_frame % qh->period;
843 				for (uframe = 0; uframe < 8; uframe++) {
844 					status = check_intr_schedule (ehci,
845 							frame, uframe, qh,
846 							&c_mask);
847 					if (status == 0)
848 						break;
849 				}
850 			}
851 
852 		/* qh->period == 0 means every uframe */
853 		} else {
854 			frame = 0;
855 			status = check_intr_schedule (ehci, 0, 0, qh, &c_mask);
856 		}
857 		if (status)
858 			goto done;
859 		qh->start = frame;
860 
861 		/* reset S-frame and (maybe) C-frame masks */
862 		hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
863 		hw->hw_info2 |= qh->period
864 			? cpu_to_hc32(ehci, 1 << uframe)
865 			: cpu_to_hc32(ehci, QH_SMASK);
866 		hw->hw_info2 |= c_mask;
867 	} else
868 		ehci_dbg (ehci, "reused qh %p schedule\n", qh);
869 
870 	/* stuff into the periodic schedule */
871 	qh_link_periodic(ehci, qh);
872 done:
873 	return status;
874 }
875 
876 static int intr_submit (
877 	struct ehci_hcd		*ehci,
878 	struct urb		*urb,
879 	struct list_head	*qtd_list,
880 	gfp_t			mem_flags
881 ) {
882 	unsigned		epnum;
883 	unsigned long		flags;
884 	struct ehci_qh		*qh;
885 	int			status;
886 	struct list_head	empty;
887 
888 	/* get endpoint and transfer/schedule data */
889 	epnum = urb->ep->desc.bEndpointAddress;
890 
891 	spin_lock_irqsave (&ehci->lock, flags);
892 
893 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
894 		status = -ESHUTDOWN;
895 		goto done_not_linked;
896 	}
897 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
898 	if (unlikely(status))
899 		goto done_not_linked;
900 
901 	/* get qh and force any scheduling errors */
902 	INIT_LIST_HEAD (&empty);
903 	qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
904 	if (qh == NULL) {
905 		status = -ENOMEM;
906 		goto done;
907 	}
908 	if (qh->qh_state == QH_STATE_IDLE) {
909 		if ((status = qh_schedule (ehci, qh)) != 0)
910 			goto done;
911 	}
912 
913 	/* then queue the urb's tds to the qh */
914 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
915 	BUG_ON (qh == NULL);
916 
917 	/* ... update usbfs periodic stats */
918 	ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
919 
920 done:
921 	if (unlikely(status))
922 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
923 done_not_linked:
924 	spin_unlock_irqrestore (&ehci->lock, flags);
925 	if (status)
926 		qtd_list_free (ehci, urb, qtd_list);
927 
928 	return status;
929 }
930 
931 static void scan_intr(struct ehci_hcd *ehci)
932 {
933 	struct ehci_qh		*qh;
934 
935 	list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list,
936 			intr_node) {
937  rescan:
938 		/* clean any finished work for this qh */
939 		if (!list_empty(&qh->qtd_list)) {
940 			int temp;
941 
942 			/*
943 			 * Unlinks could happen here; completion reporting
944 			 * drops the lock.  That's why ehci->qh_scan_next
945 			 * always holds the next qh to scan; if the next qh
946 			 * gets unlinked then ehci->qh_scan_next is adjusted
947 			 * in qh_unlink_periodic().
948 			 */
949 			temp = qh_completions(ehci, qh);
950 			if (unlikely(qh->needs_rescan ||
951 					(list_empty(&qh->qtd_list) &&
952 						qh->qh_state == QH_STATE_LINKED)))
953 				start_unlink_intr(ehci, qh);
954 			else if (temp != 0)
955 				goto rescan;
956 		}
957 	}
958 }
959 
960 /*-------------------------------------------------------------------------*/
961 
962 /* ehci_iso_stream ops work with both ITD and SITD */
963 
964 static struct ehci_iso_stream *
965 iso_stream_alloc (gfp_t mem_flags)
966 {
967 	struct ehci_iso_stream *stream;
968 
969 	stream = kzalloc(sizeof *stream, mem_flags);
970 	if (likely (stream != NULL)) {
971 		INIT_LIST_HEAD(&stream->td_list);
972 		INIT_LIST_HEAD(&stream->free_list);
973 		stream->next_uframe = -1;
974 	}
975 	return stream;
976 }
977 
978 static void
979 iso_stream_init (
980 	struct ehci_hcd		*ehci,
981 	struct ehci_iso_stream	*stream,
982 	struct usb_device	*dev,
983 	int			pipe,
984 	unsigned		interval
985 )
986 {
987 	static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
988 
989 	u32			buf1;
990 	unsigned		epnum, maxp;
991 	int			is_input;
992 	long			bandwidth;
993 
994 	/*
995 	 * this might be a "high bandwidth" highspeed endpoint,
996 	 * as encoded in the ep descriptor's wMaxPacket field
997 	 */
998 	epnum = usb_pipeendpoint (pipe);
999 	is_input = usb_pipein (pipe) ? USB_DIR_IN : 0;
1000 	maxp = usb_maxpacket(dev, pipe, !is_input);
1001 	if (is_input) {
1002 		buf1 = (1 << 11);
1003 	} else {
1004 		buf1 = 0;
1005 	}
1006 
1007 	/* knows about ITD vs SITD */
1008 	if (dev->speed == USB_SPEED_HIGH) {
1009 		unsigned multi = hb_mult(maxp);
1010 
1011 		stream->highspeed = 1;
1012 
1013 		maxp = max_packet(maxp);
1014 		buf1 |= maxp;
1015 		maxp *= multi;
1016 
1017 		stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
1018 		stream->buf1 = cpu_to_hc32(ehci, buf1);
1019 		stream->buf2 = cpu_to_hc32(ehci, multi);
1020 
1021 		/* usbfs wants to report the average usecs per frame tied up
1022 		 * when transfers on this endpoint are scheduled ...
1023 		 */
1024 		stream->usecs = HS_USECS_ISO (maxp);
1025 		bandwidth = stream->usecs * 8;
1026 		bandwidth /= interval;
1027 
1028 	} else {
1029 		u32		addr;
1030 		int		think_time;
1031 		int		hs_transfers;
1032 
1033 		addr = dev->ttport << 24;
1034 		if (!ehci_is_TDI(ehci)
1035 				|| (dev->tt->hub !=
1036 					ehci_to_hcd(ehci)->self.root_hub))
1037 			addr |= dev->tt->hub->devnum << 16;
1038 		addr |= epnum << 8;
1039 		addr |= dev->devnum;
1040 		stream->usecs = HS_USECS_ISO (maxp);
1041 		think_time = dev->tt ? dev->tt->think_time : 0;
1042 		stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time (
1043 				dev->speed, is_input, 1, maxp));
1044 		hs_transfers = max (1u, (maxp + 187) / 188);
1045 		if (is_input) {
1046 			u32	tmp;
1047 
1048 			addr |= 1 << 31;
1049 			stream->c_usecs = stream->usecs;
1050 			stream->usecs = HS_USECS_ISO (1);
1051 			stream->raw_mask = 1;
1052 
1053 			/* c-mask as specified in USB 2.0 11.18.4 3.c */
1054 			tmp = (1 << (hs_transfers + 2)) - 1;
1055 			stream->raw_mask |= tmp << (8 + 2);
1056 		} else
1057 			stream->raw_mask = smask_out [hs_transfers - 1];
1058 		bandwidth = stream->usecs + stream->c_usecs;
1059 		bandwidth /= interval << 3;
1060 
1061 		/* stream->splits gets created from raw_mask later */
1062 		stream->address = cpu_to_hc32(ehci, addr);
1063 	}
1064 	stream->bandwidth = bandwidth;
1065 
1066 	stream->udev = dev;
1067 
1068 	stream->bEndpointAddress = is_input | epnum;
1069 	stream->interval = interval;
1070 	stream->maxp = maxp;
1071 }
1072 
1073 static struct ehci_iso_stream *
1074 iso_stream_find (struct ehci_hcd *ehci, struct urb *urb)
1075 {
1076 	unsigned		epnum;
1077 	struct ehci_iso_stream	*stream;
1078 	struct usb_host_endpoint *ep;
1079 	unsigned long		flags;
1080 
1081 	epnum = usb_pipeendpoint (urb->pipe);
1082 	if (usb_pipein(urb->pipe))
1083 		ep = urb->dev->ep_in[epnum];
1084 	else
1085 		ep = urb->dev->ep_out[epnum];
1086 
1087 	spin_lock_irqsave (&ehci->lock, flags);
1088 	stream = ep->hcpriv;
1089 
1090 	if (unlikely (stream == NULL)) {
1091 		stream = iso_stream_alloc(GFP_ATOMIC);
1092 		if (likely (stream != NULL)) {
1093 			ep->hcpriv = stream;
1094 			stream->ep = ep;
1095 			iso_stream_init(ehci, stream, urb->dev, urb->pipe,
1096 					urb->interval);
1097 		}
1098 
1099 	/* if dev->ep [epnum] is a QH, hw is set */
1100 	} else if (unlikely (stream->hw != NULL)) {
1101 		ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n",
1102 			urb->dev->devpath, epnum,
1103 			usb_pipein(urb->pipe) ? "in" : "out");
1104 		stream = NULL;
1105 	}
1106 
1107 	spin_unlock_irqrestore (&ehci->lock, flags);
1108 	return stream;
1109 }
1110 
1111 /*-------------------------------------------------------------------------*/
1112 
1113 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1114 
1115 static struct ehci_iso_sched *
1116 iso_sched_alloc (unsigned packets, gfp_t mem_flags)
1117 {
1118 	struct ehci_iso_sched	*iso_sched;
1119 	int			size = sizeof *iso_sched;
1120 
1121 	size += packets * sizeof (struct ehci_iso_packet);
1122 	iso_sched = kzalloc(size, mem_flags);
1123 	if (likely (iso_sched != NULL)) {
1124 		INIT_LIST_HEAD (&iso_sched->td_list);
1125 	}
1126 	return iso_sched;
1127 }
1128 
1129 static inline void
1130 itd_sched_init(
1131 	struct ehci_hcd		*ehci,
1132 	struct ehci_iso_sched	*iso_sched,
1133 	struct ehci_iso_stream	*stream,
1134 	struct urb		*urb
1135 )
1136 {
1137 	unsigned	i;
1138 	dma_addr_t	dma = urb->transfer_dma;
1139 
1140 	/* how many uframes are needed for these transfers */
1141 	iso_sched->span = urb->number_of_packets * stream->interval;
1142 
1143 	/* figure out per-uframe itd fields that we'll need later
1144 	 * when we fit new itds into the schedule.
1145 	 */
1146 	for (i = 0; i < urb->number_of_packets; i++) {
1147 		struct ehci_iso_packet	*uframe = &iso_sched->packet [i];
1148 		unsigned		length;
1149 		dma_addr_t		buf;
1150 		u32			trans;
1151 
1152 		length = urb->iso_frame_desc [i].length;
1153 		buf = dma + urb->iso_frame_desc [i].offset;
1154 
1155 		trans = EHCI_ISOC_ACTIVE;
1156 		trans |= buf & 0x0fff;
1157 		if (unlikely (((i + 1) == urb->number_of_packets))
1158 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1159 			trans |= EHCI_ITD_IOC;
1160 		trans |= length << 16;
1161 		uframe->transaction = cpu_to_hc32(ehci, trans);
1162 
1163 		/* might need to cross a buffer page within a uframe */
1164 		uframe->bufp = (buf & ~(u64)0x0fff);
1165 		buf += length;
1166 		if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff))))
1167 			uframe->cross = 1;
1168 	}
1169 }
1170 
1171 static void
1172 iso_sched_free (
1173 	struct ehci_iso_stream	*stream,
1174 	struct ehci_iso_sched	*iso_sched
1175 )
1176 {
1177 	if (!iso_sched)
1178 		return;
1179 	// caller must hold ehci->lock!
1180 	list_splice (&iso_sched->td_list, &stream->free_list);
1181 	kfree (iso_sched);
1182 }
1183 
1184 static int
1185 itd_urb_transaction (
1186 	struct ehci_iso_stream	*stream,
1187 	struct ehci_hcd		*ehci,
1188 	struct urb		*urb,
1189 	gfp_t			mem_flags
1190 )
1191 {
1192 	struct ehci_itd		*itd;
1193 	dma_addr_t		itd_dma;
1194 	int			i;
1195 	unsigned		num_itds;
1196 	struct ehci_iso_sched	*sched;
1197 	unsigned long		flags;
1198 
1199 	sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1200 	if (unlikely (sched == NULL))
1201 		return -ENOMEM;
1202 
1203 	itd_sched_init(ehci, sched, stream, urb);
1204 
1205 	if (urb->interval < 8)
1206 		num_itds = 1 + (sched->span + 7) / 8;
1207 	else
1208 		num_itds = urb->number_of_packets;
1209 
1210 	/* allocate/init ITDs */
1211 	spin_lock_irqsave (&ehci->lock, flags);
1212 	for (i = 0; i < num_itds; i++) {
1213 
1214 		/*
1215 		 * Use iTDs from the free list, but not iTDs that may
1216 		 * still be in use by the hardware.
1217 		 */
1218 		if (likely(!list_empty(&stream->free_list))) {
1219 			itd = list_first_entry(&stream->free_list,
1220 					struct ehci_itd, itd_list);
1221 			if (itd->frame == ehci->now_frame)
1222 				goto alloc_itd;
1223 			list_del (&itd->itd_list);
1224 			itd_dma = itd->itd_dma;
1225 		} else {
1226  alloc_itd:
1227 			spin_unlock_irqrestore (&ehci->lock, flags);
1228 			itd = dma_pool_alloc (ehci->itd_pool, mem_flags,
1229 					&itd_dma);
1230 			spin_lock_irqsave (&ehci->lock, flags);
1231 			if (!itd) {
1232 				iso_sched_free(stream, sched);
1233 				spin_unlock_irqrestore(&ehci->lock, flags);
1234 				return -ENOMEM;
1235 			}
1236 		}
1237 
1238 		memset (itd, 0, sizeof *itd);
1239 		itd->itd_dma = itd_dma;
1240 		list_add (&itd->itd_list, &sched->td_list);
1241 	}
1242 	spin_unlock_irqrestore (&ehci->lock, flags);
1243 
1244 	/* temporarily store schedule info in hcpriv */
1245 	urb->hcpriv = sched;
1246 	urb->error_count = 0;
1247 	return 0;
1248 }
1249 
1250 /*-------------------------------------------------------------------------*/
1251 
1252 static inline int
1253 itd_slot_ok (
1254 	struct ehci_hcd		*ehci,
1255 	u32			mod,
1256 	u32			uframe,
1257 	u8			usecs,
1258 	u32			period
1259 )
1260 {
1261 	uframe %= period;
1262 	do {
1263 		/* can't commit more than uframe_periodic_max usec */
1264 		if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7)
1265 				> (ehci->uframe_periodic_max - usecs))
1266 			return 0;
1267 
1268 		/* we know urb->interval is 2^N uframes */
1269 		uframe += period;
1270 	} while (uframe < mod);
1271 	return 1;
1272 }
1273 
1274 static inline int
1275 sitd_slot_ok (
1276 	struct ehci_hcd		*ehci,
1277 	u32			mod,
1278 	struct ehci_iso_stream	*stream,
1279 	u32			uframe,
1280 	struct ehci_iso_sched	*sched,
1281 	u32			period_uframes
1282 )
1283 {
1284 	u32			mask, tmp;
1285 	u32			frame, uf;
1286 
1287 	mask = stream->raw_mask << (uframe & 7);
1288 
1289 	/* for IN, don't wrap CSPLIT into the next frame */
1290 	if (mask & ~0xffff)
1291 		return 0;
1292 
1293 	/* check bandwidth */
1294 	uframe %= period_uframes;
1295 	frame = uframe >> 3;
1296 
1297 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1298 	/* The tt's fullspeed bus bandwidth must be available.
1299 	 * tt_available scheduling guarantees 10+% for control/bulk.
1300 	 */
1301 	uf = uframe & 7;
1302 	if (!tt_available(ehci, period_uframes >> 3,
1303 			stream->udev, frame, uf, stream->tt_usecs))
1304 		return 0;
1305 #else
1306 	/* tt must be idle for start(s), any gap, and csplit.
1307 	 * assume scheduling slop leaves 10+% for control/bulk.
1308 	 */
1309 	if (!tt_no_collision(ehci, period_uframes >> 3,
1310 			stream->udev, frame, mask))
1311 		return 0;
1312 #endif
1313 
1314 	/* this multi-pass logic is simple, but performance may
1315 	 * suffer when the schedule data isn't cached.
1316 	 */
1317 	do {
1318 		u32		max_used;
1319 
1320 		frame = uframe >> 3;
1321 		uf = uframe & 7;
1322 
1323 		/* check starts (OUT uses more than one) */
1324 		max_used = ehci->uframe_periodic_max - stream->usecs;
1325 		for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) {
1326 			if (periodic_usecs (ehci, frame, uf) > max_used)
1327 				return 0;
1328 		}
1329 
1330 		/* for IN, check CSPLIT */
1331 		if (stream->c_usecs) {
1332 			uf = uframe & 7;
1333 			max_used = ehci->uframe_periodic_max - stream->c_usecs;
1334 			do {
1335 				tmp = 1 << uf;
1336 				tmp <<= 8;
1337 				if ((stream->raw_mask & tmp) == 0)
1338 					continue;
1339 				if (periodic_usecs (ehci, frame, uf)
1340 						> max_used)
1341 					return 0;
1342 			} while (++uf < 8);
1343 		}
1344 
1345 		/* we know urb->interval is 2^N uframes */
1346 		uframe += period_uframes;
1347 	} while (uframe < mod);
1348 
1349 	stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7));
1350 	return 1;
1351 }
1352 
1353 /*
1354  * This scheduler plans almost as far into the future as it has actual
1355  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
1356  * "as small as possible" to be cache-friendlier.)  That limits the size
1357  * transfers you can stream reliably; avoid more than 64 msec per urb.
1358  * Also avoid queue depths of less than ehci's worst irq latency (affected
1359  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1360  * and other factors); or more than about 230 msec total (for portability,
1361  * given EHCI_TUNE_FLS and the slop).  Or, write a smarter scheduler!
1362  */
1363 
1364 #define SCHEDULE_SLOP	80	/* microframes */
1365 
1366 static int
1367 iso_stream_schedule (
1368 	struct ehci_hcd		*ehci,
1369 	struct urb		*urb,
1370 	struct ehci_iso_stream	*stream
1371 )
1372 {
1373 	u32			now, next, start, period, span;
1374 	int			status;
1375 	unsigned		mod = ehci->periodic_size << 3;
1376 	struct ehci_iso_sched	*sched = urb->hcpriv;
1377 
1378 	period = urb->interval;
1379 	span = sched->span;
1380 	if (!stream->highspeed) {
1381 		period <<= 3;
1382 		span <<= 3;
1383 	}
1384 
1385 	if (span > mod - SCHEDULE_SLOP) {
1386 		ehci_dbg (ehci, "iso request %p too long\n", urb);
1387 		status = -EFBIG;
1388 		goto fail;
1389 	}
1390 
1391 	now = ehci_read_frame_index(ehci) & (mod - 1);
1392 
1393 	/* Typical case: reuse current schedule, stream is still active.
1394 	 * Hopefully there are no gaps from the host falling behind
1395 	 * (irq delays etc), but if there are we'll take the next
1396 	 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
1397 	 */
1398 	if (likely (!list_empty (&stream->td_list))) {
1399 		u32	excess;
1400 
1401 		/* For high speed devices, allow scheduling within the
1402 		 * isochronous scheduling threshold.  For full speed devices
1403 		 * and Intel PCI-based controllers, don't (work around for
1404 		 * Intel ICH9 bug).
1405 		 */
1406 		if (!stream->highspeed && ehci->fs_i_thresh)
1407 			next = now + ehci->i_thresh;
1408 		else
1409 			next = now;
1410 
1411 		/* Fell behind (by up to twice the slop amount)?
1412 		 * We decide based on the time of the last currently-scheduled
1413 		 * slot, not the time of the next available slot.
1414 		 */
1415 		excess = (stream->next_uframe - period - next) & (mod - 1);
1416 		if (excess >= mod - 2 * SCHEDULE_SLOP)
1417 			start = next + excess - mod + period *
1418 					DIV_ROUND_UP(mod - excess, period);
1419 		else
1420 			start = next + excess + period;
1421 		if (start - now >= mod) {
1422 			ehci_dbg(ehci, "request %p would overflow (%d+%d >= %d)\n",
1423 					urb, start - now - period, period,
1424 					mod);
1425 			status = -EFBIG;
1426 			goto fail;
1427 		}
1428 	}
1429 
1430 	/* need to schedule; when's the next (u)frame we could start?
1431 	 * this is bigger than ehci->i_thresh allows; scheduling itself
1432 	 * isn't free, the slop should handle reasonably slow cpus.  it
1433 	 * can also help high bandwidth if the dma and irq loads don't
1434 	 * jump until after the queue is primed.
1435 	 */
1436 	else {
1437 		int done = 0;
1438 		start = SCHEDULE_SLOP + (now & ~0x07);
1439 
1440 		/* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
1441 
1442 		/* find a uframe slot with enough bandwidth.
1443 		 * Early uframes are more precious because full-speed
1444 		 * iso IN transfers can't use late uframes,
1445 		 * and therefore they should be allocated last.
1446 		 */
1447 		next = start;
1448 		start += period;
1449 		do {
1450 			start--;
1451 			/* check schedule: enough space? */
1452 			if (stream->highspeed) {
1453 				if (itd_slot_ok(ehci, mod, start,
1454 						stream->usecs, period))
1455 					done = 1;
1456 			} else {
1457 				if ((start % 8) >= 6)
1458 					continue;
1459 				if (sitd_slot_ok(ehci, mod, stream,
1460 						start, sched, period))
1461 					done = 1;
1462 			}
1463 		} while (start > next && !done);
1464 
1465 		/* no room in the schedule */
1466 		if (!done) {
1467 			ehci_dbg(ehci, "iso resched full %p (now %d max %d)\n",
1468 				urb, now, now + mod);
1469 			status = -ENOSPC;
1470 			goto fail;
1471 		}
1472 	}
1473 
1474 	/* Tried to schedule too far into the future? */
1475 	if (unlikely(start - now + span - period
1476 				>= mod - 2 * SCHEDULE_SLOP)) {
1477 		ehci_dbg(ehci, "request %p would overflow (%d+%d >= %d)\n",
1478 				urb, start - now, span - period,
1479 				mod - 2 * SCHEDULE_SLOP);
1480 		status = -EFBIG;
1481 		goto fail;
1482 	}
1483 
1484 	stream->next_uframe = start & (mod - 1);
1485 
1486 	/* report high speed start in uframes; full speed, in frames */
1487 	urb->start_frame = stream->next_uframe;
1488 	if (!stream->highspeed)
1489 		urb->start_frame >>= 3;
1490 
1491 	/* Make sure scan_isoc() sees these */
1492 	if (ehci->isoc_count == 0)
1493 		ehci->next_frame = now >> 3;
1494 	return 0;
1495 
1496  fail:
1497 	iso_sched_free(stream, sched);
1498 	urb->hcpriv = NULL;
1499 	return status;
1500 }
1501 
1502 /*-------------------------------------------------------------------------*/
1503 
1504 static inline void
1505 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1506 		struct ehci_itd *itd)
1507 {
1508 	int i;
1509 
1510 	/* it's been recently zeroed */
1511 	itd->hw_next = EHCI_LIST_END(ehci);
1512 	itd->hw_bufp [0] = stream->buf0;
1513 	itd->hw_bufp [1] = stream->buf1;
1514 	itd->hw_bufp [2] = stream->buf2;
1515 
1516 	for (i = 0; i < 8; i++)
1517 		itd->index[i] = -1;
1518 
1519 	/* All other fields are filled when scheduling */
1520 }
1521 
1522 static inline void
1523 itd_patch(
1524 	struct ehci_hcd		*ehci,
1525 	struct ehci_itd		*itd,
1526 	struct ehci_iso_sched	*iso_sched,
1527 	unsigned		index,
1528 	u16			uframe
1529 )
1530 {
1531 	struct ehci_iso_packet	*uf = &iso_sched->packet [index];
1532 	unsigned		pg = itd->pg;
1533 
1534 	// BUG_ON (pg == 6 && uf->cross);
1535 
1536 	uframe &= 0x07;
1537 	itd->index [uframe] = index;
1538 
1539 	itd->hw_transaction[uframe] = uf->transaction;
1540 	itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1541 	itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1542 	itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1543 
1544 	/* iso_frame_desc[].offset must be strictly increasing */
1545 	if (unlikely (uf->cross)) {
1546 		u64	bufp = uf->bufp + 4096;
1547 
1548 		itd->pg = ++pg;
1549 		itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1550 		itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1551 	}
1552 }
1553 
1554 static inline void
1555 itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1556 {
1557 	union ehci_shadow	*prev = &ehci->pshadow[frame];
1558 	__hc32			*hw_p = &ehci->periodic[frame];
1559 	union ehci_shadow	here = *prev;
1560 	__hc32			type = 0;
1561 
1562 	/* skip any iso nodes which might belong to previous microframes */
1563 	while (here.ptr) {
1564 		type = Q_NEXT_TYPE(ehci, *hw_p);
1565 		if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1566 			break;
1567 		prev = periodic_next_shadow(ehci, prev, type);
1568 		hw_p = shadow_next_periodic(ehci, &here, type);
1569 		here = *prev;
1570 	}
1571 
1572 	itd->itd_next = here;
1573 	itd->hw_next = *hw_p;
1574 	prev->itd = itd;
1575 	itd->frame = frame;
1576 	wmb ();
1577 	*hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1578 }
1579 
1580 /* fit urb's itds into the selected schedule slot; activate as needed */
1581 static void itd_link_urb(
1582 	struct ehci_hcd		*ehci,
1583 	struct urb		*urb,
1584 	unsigned		mod,
1585 	struct ehci_iso_stream	*stream
1586 )
1587 {
1588 	int			packet;
1589 	unsigned		next_uframe, uframe, frame;
1590 	struct ehci_iso_sched	*iso_sched = urb->hcpriv;
1591 	struct ehci_itd		*itd;
1592 
1593 	next_uframe = stream->next_uframe & (mod - 1);
1594 
1595 	if (unlikely (list_empty(&stream->td_list))) {
1596 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1597 				+= stream->bandwidth;
1598 		ehci_vdbg (ehci,
1599 			"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
1600 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1601 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1602 			urb->interval,
1603 			next_uframe >> 3, next_uframe & 0x7);
1604 	}
1605 
1606 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1607 		if (ehci->amd_pll_fix == 1)
1608 			usb_amd_quirk_pll_disable();
1609 	}
1610 
1611 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1612 
1613 	/* fill iTDs uframe by uframe */
1614 	for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) {
1615 		if (itd == NULL) {
1616 			/* ASSERT:  we have all necessary itds */
1617 			// BUG_ON (list_empty (&iso_sched->td_list));
1618 
1619 			/* ASSERT:  no itds for this endpoint in this uframe */
1620 
1621 			itd = list_entry (iso_sched->td_list.next,
1622 					struct ehci_itd, itd_list);
1623 			list_move_tail (&itd->itd_list, &stream->td_list);
1624 			itd->stream = stream;
1625 			itd->urb = urb;
1626 			itd_init (ehci, stream, itd);
1627 		}
1628 
1629 		uframe = next_uframe & 0x07;
1630 		frame = next_uframe >> 3;
1631 
1632 		itd_patch(ehci, itd, iso_sched, packet, uframe);
1633 
1634 		next_uframe += stream->interval;
1635 		next_uframe &= mod - 1;
1636 		packet++;
1637 
1638 		/* link completed itds into the schedule */
1639 		if (((next_uframe >> 3) != frame)
1640 				|| packet == urb->number_of_packets) {
1641 			itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1642 			itd = NULL;
1643 		}
1644 	}
1645 	stream->next_uframe = next_uframe;
1646 
1647 	/* don't need that schedule data any more */
1648 	iso_sched_free (stream, iso_sched);
1649 	urb->hcpriv = NULL;
1650 
1651 	++ehci->isoc_count;
1652 	enable_periodic(ehci);
1653 }
1654 
1655 #define	ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1656 
1657 /* Process and recycle a completed ITD.  Return true iff its urb completed,
1658  * and hence its completion callback probably added things to the hardware
1659  * schedule.
1660  *
1661  * Note that we carefully avoid recycling this descriptor until after any
1662  * completion callback runs, so that it won't be reused quickly.  That is,
1663  * assuming (a) no more than two urbs per frame on this endpoint, and also
1664  * (b) only this endpoint's completions submit URBs.  It seems some silicon
1665  * corrupts things if you reuse completed descriptors very quickly...
1666  */
1667 static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd)
1668 {
1669 	struct urb				*urb = itd->urb;
1670 	struct usb_iso_packet_descriptor	*desc;
1671 	u32					t;
1672 	unsigned				uframe;
1673 	int					urb_index = -1;
1674 	struct ehci_iso_stream			*stream = itd->stream;
1675 	struct usb_device			*dev;
1676 	bool					retval = false;
1677 
1678 	/* for each uframe with a packet */
1679 	for (uframe = 0; uframe < 8; uframe++) {
1680 		if (likely (itd->index[uframe] == -1))
1681 			continue;
1682 		urb_index = itd->index[uframe];
1683 		desc = &urb->iso_frame_desc [urb_index];
1684 
1685 		t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]);
1686 		itd->hw_transaction [uframe] = 0;
1687 
1688 		/* report transfer status */
1689 		if (unlikely (t & ISO_ERRS)) {
1690 			urb->error_count++;
1691 			if (t & EHCI_ISOC_BUF_ERR)
1692 				desc->status = usb_pipein (urb->pipe)
1693 					? -ENOSR  /* hc couldn't read */
1694 					: -ECOMM; /* hc couldn't write */
1695 			else if (t & EHCI_ISOC_BABBLE)
1696 				desc->status = -EOVERFLOW;
1697 			else /* (t & EHCI_ISOC_XACTERR) */
1698 				desc->status = -EPROTO;
1699 
1700 			/* HC need not update length with this error */
1701 			if (!(t & EHCI_ISOC_BABBLE)) {
1702 				desc->actual_length = EHCI_ITD_LENGTH(t);
1703 				urb->actual_length += desc->actual_length;
1704 			}
1705 		} else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) {
1706 			desc->status = 0;
1707 			desc->actual_length = EHCI_ITD_LENGTH(t);
1708 			urb->actual_length += desc->actual_length;
1709 		} else {
1710 			/* URB was too late */
1711 			desc->status = -EXDEV;
1712 		}
1713 	}
1714 
1715 	/* handle completion now? */
1716 	if (likely ((urb_index + 1) != urb->number_of_packets))
1717 		goto done;
1718 
1719 	/* ASSERT: it's really the last itd for this urb
1720 	list_for_each_entry (itd, &stream->td_list, itd_list)
1721 		BUG_ON (itd->urb == urb);
1722 	 */
1723 
1724 	/* give urb back to the driver; completion often (re)submits */
1725 	dev = urb->dev;
1726 	ehci_urb_done(ehci, urb, 0);
1727 	retval = true;
1728 	urb = NULL;
1729 
1730 	--ehci->isoc_count;
1731 	disable_periodic(ehci);
1732 
1733 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1734 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1735 		if (ehci->amd_pll_fix == 1)
1736 			usb_amd_quirk_pll_enable();
1737 	}
1738 
1739 	if (unlikely(list_is_singular(&stream->td_list))) {
1740 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1741 				-= stream->bandwidth;
1742 		ehci_vdbg (ehci,
1743 			"deschedule devp %s ep%d%s-iso\n",
1744 			dev->devpath, stream->bEndpointAddress & 0x0f,
1745 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
1746 	}
1747 
1748 done:
1749 	itd->urb = NULL;
1750 
1751 	/* Add to the end of the free list for later reuse */
1752 	list_move_tail(&itd->itd_list, &stream->free_list);
1753 
1754 	/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
1755 	if (list_empty(&stream->td_list)) {
1756 		list_splice_tail_init(&stream->free_list,
1757 				&ehci->cached_itd_list);
1758 		start_free_itds(ehci);
1759 	}
1760 
1761 	return retval;
1762 }
1763 
1764 /*-------------------------------------------------------------------------*/
1765 
1766 static int itd_submit (struct ehci_hcd *ehci, struct urb *urb,
1767 	gfp_t mem_flags)
1768 {
1769 	int			status = -EINVAL;
1770 	unsigned long		flags;
1771 	struct ehci_iso_stream	*stream;
1772 
1773 	/* Get iso_stream head */
1774 	stream = iso_stream_find (ehci, urb);
1775 	if (unlikely (stream == NULL)) {
1776 		ehci_dbg (ehci, "can't get iso stream\n");
1777 		return -ENOMEM;
1778 	}
1779 	if (unlikely (urb->interval != stream->interval)) {
1780 		ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
1781 			stream->interval, urb->interval);
1782 		goto done;
1783 	}
1784 
1785 #ifdef EHCI_URB_TRACE
1786 	ehci_dbg (ehci,
1787 		"%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1788 		__func__, urb->dev->devpath, urb,
1789 		usb_pipeendpoint (urb->pipe),
1790 		usb_pipein (urb->pipe) ? "in" : "out",
1791 		urb->transfer_buffer_length,
1792 		urb->number_of_packets, urb->interval,
1793 		stream);
1794 #endif
1795 
1796 	/* allocate ITDs w/o locking anything */
1797 	status = itd_urb_transaction (stream, ehci, urb, mem_flags);
1798 	if (unlikely (status < 0)) {
1799 		ehci_dbg (ehci, "can't init itds\n");
1800 		goto done;
1801 	}
1802 
1803 	/* schedule ... need to lock */
1804 	spin_lock_irqsave (&ehci->lock, flags);
1805 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1806 		status = -ESHUTDOWN;
1807 		goto done_not_linked;
1808 	}
1809 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1810 	if (unlikely(status))
1811 		goto done_not_linked;
1812 	status = iso_stream_schedule(ehci, urb, stream);
1813 	if (likely (status == 0))
1814 		itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
1815 	else
1816 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1817  done_not_linked:
1818 	spin_unlock_irqrestore (&ehci->lock, flags);
1819  done:
1820 	return status;
1821 }
1822 
1823 /*-------------------------------------------------------------------------*/
1824 
1825 /*
1826  * "Split ISO TDs" ... used for USB 1.1 devices going through the
1827  * TTs in USB 2.0 hubs.  These need microframe scheduling.
1828  */
1829 
1830 static inline void
1831 sitd_sched_init(
1832 	struct ehci_hcd		*ehci,
1833 	struct ehci_iso_sched	*iso_sched,
1834 	struct ehci_iso_stream	*stream,
1835 	struct urb		*urb
1836 )
1837 {
1838 	unsigned	i;
1839 	dma_addr_t	dma = urb->transfer_dma;
1840 
1841 	/* how many frames are needed for these transfers */
1842 	iso_sched->span = urb->number_of_packets * stream->interval;
1843 
1844 	/* figure out per-frame sitd fields that we'll need later
1845 	 * when we fit new sitds into the schedule.
1846 	 */
1847 	for (i = 0; i < urb->number_of_packets; i++) {
1848 		struct ehci_iso_packet	*packet = &iso_sched->packet [i];
1849 		unsigned		length;
1850 		dma_addr_t		buf;
1851 		u32			trans;
1852 
1853 		length = urb->iso_frame_desc [i].length & 0x03ff;
1854 		buf = dma + urb->iso_frame_desc [i].offset;
1855 
1856 		trans = SITD_STS_ACTIVE;
1857 		if (((i + 1) == urb->number_of_packets)
1858 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1859 			trans |= SITD_IOC;
1860 		trans |= length << 16;
1861 		packet->transaction = cpu_to_hc32(ehci, trans);
1862 
1863 		/* might need to cross a buffer page within a td */
1864 		packet->bufp = buf;
1865 		packet->buf1 = (buf + length) & ~0x0fff;
1866 		if (packet->buf1 != (buf & ~(u64)0x0fff))
1867 			packet->cross = 1;
1868 
1869 		/* OUT uses multiple start-splits */
1870 		if (stream->bEndpointAddress & USB_DIR_IN)
1871 			continue;
1872 		length = (length + 187) / 188;
1873 		if (length > 1) /* BEGIN vs ALL */
1874 			length |= 1 << 3;
1875 		packet->buf1 |= length;
1876 	}
1877 }
1878 
1879 static int
1880 sitd_urb_transaction (
1881 	struct ehci_iso_stream	*stream,
1882 	struct ehci_hcd		*ehci,
1883 	struct urb		*urb,
1884 	gfp_t			mem_flags
1885 )
1886 {
1887 	struct ehci_sitd	*sitd;
1888 	dma_addr_t		sitd_dma;
1889 	int			i;
1890 	struct ehci_iso_sched	*iso_sched;
1891 	unsigned long		flags;
1892 
1893 	iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1894 	if (iso_sched == NULL)
1895 		return -ENOMEM;
1896 
1897 	sitd_sched_init(ehci, iso_sched, stream, urb);
1898 
1899 	/* allocate/init sITDs */
1900 	spin_lock_irqsave (&ehci->lock, flags);
1901 	for (i = 0; i < urb->number_of_packets; i++) {
1902 
1903 		/* NOTE:  for now, we don't try to handle wraparound cases
1904 		 * for IN (using sitd->hw_backpointer, like a FSTN), which
1905 		 * means we never need two sitds for full speed packets.
1906 		 */
1907 
1908 		/*
1909 		 * Use siTDs from the free list, but not siTDs that may
1910 		 * still be in use by the hardware.
1911 		 */
1912 		if (likely(!list_empty(&stream->free_list))) {
1913 			sitd = list_first_entry(&stream->free_list,
1914 					 struct ehci_sitd, sitd_list);
1915 			if (sitd->frame == ehci->now_frame)
1916 				goto alloc_sitd;
1917 			list_del (&sitd->sitd_list);
1918 			sitd_dma = sitd->sitd_dma;
1919 		} else {
1920  alloc_sitd:
1921 			spin_unlock_irqrestore (&ehci->lock, flags);
1922 			sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags,
1923 					&sitd_dma);
1924 			spin_lock_irqsave (&ehci->lock, flags);
1925 			if (!sitd) {
1926 				iso_sched_free(stream, iso_sched);
1927 				spin_unlock_irqrestore(&ehci->lock, flags);
1928 				return -ENOMEM;
1929 			}
1930 		}
1931 
1932 		memset (sitd, 0, sizeof *sitd);
1933 		sitd->sitd_dma = sitd_dma;
1934 		list_add (&sitd->sitd_list, &iso_sched->td_list);
1935 	}
1936 
1937 	/* temporarily store schedule info in hcpriv */
1938 	urb->hcpriv = iso_sched;
1939 	urb->error_count = 0;
1940 
1941 	spin_unlock_irqrestore (&ehci->lock, flags);
1942 	return 0;
1943 }
1944 
1945 /*-------------------------------------------------------------------------*/
1946 
1947 static inline void
1948 sitd_patch(
1949 	struct ehci_hcd		*ehci,
1950 	struct ehci_iso_stream	*stream,
1951 	struct ehci_sitd	*sitd,
1952 	struct ehci_iso_sched	*iso_sched,
1953 	unsigned		index
1954 )
1955 {
1956 	struct ehci_iso_packet	*uf = &iso_sched->packet [index];
1957 	u64			bufp = uf->bufp;
1958 
1959 	sitd->hw_next = EHCI_LIST_END(ehci);
1960 	sitd->hw_fullspeed_ep = stream->address;
1961 	sitd->hw_uframe = stream->splits;
1962 	sitd->hw_results = uf->transaction;
1963 	sitd->hw_backpointer = EHCI_LIST_END(ehci);
1964 
1965 	bufp = uf->bufp;
1966 	sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
1967 	sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
1968 
1969 	sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
1970 	if (uf->cross)
1971 		bufp += 4096;
1972 	sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
1973 	sitd->index = index;
1974 }
1975 
1976 static inline void
1977 sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
1978 {
1979 	/* note: sitd ordering could matter (CSPLIT then SSPLIT) */
1980 	sitd->sitd_next = ehci->pshadow [frame];
1981 	sitd->hw_next = ehci->periodic [frame];
1982 	ehci->pshadow [frame].sitd = sitd;
1983 	sitd->frame = frame;
1984 	wmb ();
1985 	ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
1986 }
1987 
1988 /* fit urb's sitds into the selected schedule slot; activate as needed */
1989 static void sitd_link_urb(
1990 	struct ehci_hcd		*ehci,
1991 	struct urb		*urb,
1992 	unsigned		mod,
1993 	struct ehci_iso_stream	*stream
1994 )
1995 {
1996 	int			packet;
1997 	unsigned		next_uframe;
1998 	struct ehci_iso_sched	*sched = urb->hcpriv;
1999 	struct ehci_sitd	*sitd;
2000 
2001 	next_uframe = stream->next_uframe;
2002 
2003 	if (list_empty(&stream->td_list)) {
2004 		/* usbfs ignores TT bandwidth */
2005 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2006 				+= stream->bandwidth;
2007 		ehci_vdbg (ehci,
2008 			"sched devp %s ep%d%s-iso [%d] %dms/%04x\n",
2009 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
2010 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
2011 			(next_uframe >> 3) & (ehci->periodic_size - 1),
2012 			stream->interval, hc32_to_cpu(ehci, stream->splits));
2013 	}
2014 
2015 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2016 		if (ehci->amd_pll_fix == 1)
2017 			usb_amd_quirk_pll_disable();
2018 	}
2019 
2020 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2021 
2022 	/* fill sITDs frame by frame */
2023 	for (packet = 0, sitd = NULL;
2024 			packet < urb->number_of_packets;
2025 			packet++) {
2026 
2027 		/* ASSERT:  we have all necessary sitds */
2028 		BUG_ON (list_empty (&sched->td_list));
2029 
2030 		/* ASSERT:  no itds for this endpoint in this frame */
2031 
2032 		sitd = list_entry (sched->td_list.next,
2033 				struct ehci_sitd, sitd_list);
2034 		list_move_tail (&sitd->sitd_list, &stream->td_list);
2035 		sitd->stream = stream;
2036 		sitd->urb = urb;
2037 
2038 		sitd_patch(ehci, stream, sitd, sched, packet);
2039 		sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2040 				sitd);
2041 
2042 		next_uframe += stream->interval << 3;
2043 	}
2044 	stream->next_uframe = next_uframe & (mod - 1);
2045 
2046 	/* don't need that schedule data any more */
2047 	iso_sched_free (stream, sched);
2048 	urb->hcpriv = NULL;
2049 
2050 	++ehci->isoc_count;
2051 	enable_periodic(ehci);
2052 }
2053 
2054 /*-------------------------------------------------------------------------*/
2055 
2056 #define	SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2057 				| SITD_STS_XACT | SITD_STS_MMF)
2058 
2059 /* Process and recycle a completed SITD.  Return true iff its urb completed,
2060  * and hence its completion callback probably added things to the hardware
2061  * schedule.
2062  *
2063  * Note that we carefully avoid recycling this descriptor until after any
2064  * completion callback runs, so that it won't be reused quickly.  That is,
2065  * assuming (a) no more than two urbs per frame on this endpoint, and also
2066  * (b) only this endpoint's completions submit URBs.  It seems some silicon
2067  * corrupts things if you reuse completed descriptors very quickly...
2068  */
2069 static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd)
2070 {
2071 	struct urb				*urb = sitd->urb;
2072 	struct usb_iso_packet_descriptor	*desc;
2073 	u32					t;
2074 	int					urb_index = -1;
2075 	struct ehci_iso_stream			*stream = sitd->stream;
2076 	struct usb_device			*dev;
2077 	bool					retval = false;
2078 
2079 	urb_index = sitd->index;
2080 	desc = &urb->iso_frame_desc [urb_index];
2081 	t = hc32_to_cpup(ehci, &sitd->hw_results);
2082 
2083 	/* report transfer status */
2084 	if (t & SITD_ERRS) {
2085 		urb->error_count++;
2086 		if (t & SITD_STS_DBE)
2087 			desc->status = usb_pipein (urb->pipe)
2088 				? -ENOSR  /* hc couldn't read */
2089 				: -ECOMM; /* hc couldn't write */
2090 		else if (t & SITD_STS_BABBLE)
2091 			desc->status = -EOVERFLOW;
2092 		else /* XACT, MMF, etc */
2093 			desc->status = -EPROTO;
2094 	} else {
2095 		desc->status = 0;
2096 		desc->actual_length = desc->length - SITD_LENGTH(t);
2097 		urb->actual_length += desc->actual_length;
2098 	}
2099 
2100 	/* handle completion now? */
2101 	if ((urb_index + 1) != urb->number_of_packets)
2102 		goto done;
2103 
2104 	/* ASSERT: it's really the last sitd for this urb
2105 	list_for_each_entry (sitd, &stream->td_list, sitd_list)
2106 		BUG_ON (sitd->urb == urb);
2107 	 */
2108 
2109 	/* give urb back to the driver; completion often (re)submits */
2110 	dev = urb->dev;
2111 	ehci_urb_done(ehci, urb, 0);
2112 	retval = true;
2113 	urb = NULL;
2114 
2115 	--ehci->isoc_count;
2116 	disable_periodic(ehci);
2117 
2118 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2119 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2120 		if (ehci->amd_pll_fix == 1)
2121 			usb_amd_quirk_pll_enable();
2122 	}
2123 
2124 	if (list_is_singular(&stream->td_list)) {
2125 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2126 				-= stream->bandwidth;
2127 		ehci_vdbg (ehci,
2128 			"deschedule devp %s ep%d%s-iso\n",
2129 			dev->devpath, stream->bEndpointAddress & 0x0f,
2130 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
2131 	}
2132 
2133 done:
2134 	sitd->urb = NULL;
2135 
2136 	/* Add to the end of the free list for later reuse */
2137 	list_move_tail(&sitd->sitd_list, &stream->free_list);
2138 
2139 	/* Recycle the siTDs when the pipeline is empty (ep no longer in use) */
2140 	if (list_empty(&stream->td_list)) {
2141 		list_splice_tail_init(&stream->free_list,
2142 				&ehci->cached_sitd_list);
2143 		start_free_itds(ehci);
2144 	}
2145 
2146 	return retval;
2147 }
2148 
2149 
2150 static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb,
2151 	gfp_t mem_flags)
2152 {
2153 	int			status = -EINVAL;
2154 	unsigned long		flags;
2155 	struct ehci_iso_stream	*stream;
2156 
2157 	/* Get iso_stream head */
2158 	stream = iso_stream_find (ehci, urb);
2159 	if (stream == NULL) {
2160 		ehci_dbg (ehci, "can't get iso stream\n");
2161 		return -ENOMEM;
2162 	}
2163 	if (urb->interval != stream->interval) {
2164 		ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
2165 			stream->interval, urb->interval);
2166 		goto done;
2167 	}
2168 
2169 #ifdef EHCI_URB_TRACE
2170 	ehci_dbg (ehci,
2171 		"submit %p dev%s ep%d%s-iso len %d\n",
2172 		urb, urb->dev->devpath,
2173 		usb_pipeendpoint (urb->pipe),
2174 		usb_pipein (urb->pipe) ? "in" : "out",
2175 		urb->transfer_buffer_length);
2176 #endif
2177 
2178 	/* allocate SITDs */
2179 	status = sitd_urb_transaction (stream, ehci, urb, mem_flags);
2180 	if (status < 0) {
2181 		ehci_dbg (ehci, "can't init sitds\n");
2182 		goto done;
2183 	}
2184 
2185 	/* schedule ... need to lock */
2186 	spin_lock_irqsave (&ehci->lock, flags);
2187 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2188 		status = -ESHUTDOWN;
2189 		goto done_not_linked;
2190 	}
2191 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2192 	if (unlikely(status))
2193 		goto done_not_linked;
2194 	status = iso_stream_schedule(ehci, urb, stream);
2195 	if (status == 0)
2196 		sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
2197 	else
2198 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2199  done_not_linked:
2200 	spin_unlock_irqrestore (&ehci->lock, flags);
2201  done:
2202 	return status;
2203 }
2204 
2205 /*-------------------------------------------------------------------------*/
2206 
2207 static void scan_isoc(struct ehci_hcd *ehci)
2208 {
2209 	unsigned	uf, now_frame, frame;
2210 	unsigned	fmask = ehci->periodic_size - 1;
2211 	bool		modified, live;
2212 
2213 	/*
2214 	 * When running, scan from last scan point up to "now"
2215 	 * else clean up by scanning everything that's left.
2216 	 * Touches as few pages as possible:  cache-friendly.
2217 	 */
2218 	if (ehci->rh_state >= EHCI_RH_RUNNING) {
2219 		uf = ehci_read_frame_index(ehci);
2220 		now_frame = (uf >> 3) & fmask;
2221 		live = true;
2222 	} else  {
2223 		now_frame = (ehci->next_frame - 1) & fmask;
2224 		live = false;
2225 	}
2226 	ehci->now_frame = now_frame;
2227 
2228 	frame = ehci->next_frame;
2229 	for (;;) {
2230 		union ehci_shadow	q, *q_p;
2231 		__hc32			type, *hw_p;
2232 
2233 restart:
2234 		/* scan each element in frame's queue for completions */
2235 		q_p = &ehci->pshadow [frame];
2236 		hw_p = &ehci->periodic [frame];
2237 		q.ptr = q_p->ptr;
2238 		type = Q_NEXT_TYPE(ehci, *hw_p);
2239 		modified = false;
2240 
2241 		while (q.ptr != NULL) {
2242 			switch (hc32_to_cpu(ehci, type)) {
2243 			case Q_TYPE_ITD:
2244 				/* If this ITD is still active, leave it for
2245 				 * later processing ... check the next entry.
2246 				 * No need to check for activity unless the
2247 				 * frame is current.
2248 				 */
2249 				if (frame == now_frame && live) {
2250 					rmb();
2251 					for (uf = 0; uf < 8; uf++) {
2252 						if (q.itd->hw_transaction[uf] &
2253 							    ITD_ACTIVE(ehci))
2254 							break;
2255 					}
2256 					if (uf < 8) {
2257 						q_p = &q.itd->itd_next;
2258 						hw_p = &q.itd->hw_next;
2259 						type = Q_NEXT_TYPE(ehci,
2260 							q.itd->hw_next);
2261 						q = *q_p;
2262 						break;
2263 					}
2264 				}
2265 
2266 				/* Take finished ITDs out of the schedule
2267 				 * and process them:  recycle, maybe report
2268 				 * URB completion.  HC won't cache the
2269 				 * pointer for much longer, if at all.
2270 				 */
2271 				*q_p = q.itd->itd_next;
2272 				if (!ehci->use_dummy_qh ||
2273 				    q.itd->hw_next != EHCI_LIST_END(ehci))
2274 					*hw_p = q.itd->hw_next;
2275 				else
2276 					*hw_p = ehci->dummy->qh_dma;
2277 				type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2278 				wmb();
2279 				modified = itd_complete (ehci, q.itd);
2280 				q = *q_p;
2281 				break;
2282 			case Q_TYPE_SITD:
2283 				/* If this SITD is still active, leave it for
2284 				 * later processing ... check the next entry.
2285 				 * No need to check for activity unless the
2286 				 * frame is current.
2287 				 */
2288 				if (((frame == now_frame) ||
2289 				     (((frame + 1) & fmask) == now_frame))
2290 				    && live
2291 				    && (q.sitd->hw_results &
2292 					SITD_ACTIVE(ehci))) {
2293 
2294 					q_p = &q.sitd->sitd_next;
2295 					hw_p = &q.sitd->hw_next;
2296 					type = Q_NEXT_TYPE(ehci,
2297 							q.sitd->hw_next);
2298 					q = *q_p;
2299 					break;
2300 				}
2301 
2302 				/* Take finished SITDs out of the schedule
2303 				 * and process them:  recycle, maybe report
2304 				 * URB completion.
2305 				 */
2306 				*q_p = q.sitd->sitd_next;
2307 				if (!ehci->use_dummy_qh ||
2308 				    q.sitd->hw_next != EHCI_LIST_END(ehci))
2309 					*hw_p = q.sitd->hw_next;
2310 				else
2311 					*hw_p = ehci->dummy->qh_dma;
2312 				type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2313 				wmb();
2314 				modified = sitd_complete (ehci, q.sitd);
2315 				q = *q_p;
2316 				break;
2317 			default:
2318 				ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n",
2319 					type, frame, q.ptr);
2320 				// BUG ();
2321 				/* FALL THROUGH */
2322 			case Q_TYPE_QH:
2323 			case Q_TYPE_FSTN:
2324 				/* End of the iTDs and siTDs */
2325 				q.ptr = NULL;
2326 				break;
2327 			}
2328 
2329 			/* assume completion callbacks modify the queue */
2330 			if (unlikely(modified && ehci->isoc_count > 0))
2331 				goto restart;
2332 		}
2333 
2334 		/* Stop when we have reached the current frame */
2335 		if (frame == now_frame)
2336 			break;
2337 		frame = (frame + 1) & fmask;
2338 	}
2339 	ehci->next_frame = now_frame;
2340 }
2341