1 /* 2 * Copyright (C) 2001-2004 by David Brownell 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the 6 * Free Software Foundation; either version 2 of the License, or (at your 7 * option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 11 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software Foundation, 16 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 17 */ 18 19 /* this file is part of ehci-hcd.c */ 20 21 /*-------------------------------------------------------------------------*/ 22 23 /* 24 * EHCI hardware queue manipulation ... the core. QH/QTD manipulation. 25 * 26 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd" 27 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned 28 * buffers needed for the larger number). We use one QH per endpoint, queue 29 * multiple urbs (all three types) per endpoint. URBs may need several qtds. 30 * 31 * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with 32 * interrupts) needs careful scheduling. Performance improvements can be 33 * an ongoing challenge. That's in "ehci-sched.c". 34 * 35 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs, 36 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using 37 * (b) special fields in qh entries or (c) split iso entries. TTs will 38 * buffer low/full speed data so the host collects it at high speed. 39 */ 40 41 /*-------------------------------------------------------------------------*/ 42 43 /* fill a qtd, returning how much of the buffer we were able to queue up */ 44 45 static int 46 qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf, 47 size_t len, int token, int maxpacket) 48 { 49 int i, count; 50 u64 addr = buf; 51 52 /* one buffer entry per 4K ... first might be short or unaligned */ 53 qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr); 54 qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32)); 55 count = 0x1000 - (buf & 0x0fff); /* rest of that page */ 56 if (likely (len < count)) /* ... iff needed */ 57 count = len; 58 else { 59 buf += 0x1000; 60 buf &= ~0x0fff; 61 62 /* per-qtd limit: from 16K to 20K (best alignment) */ 63 for (i = 1; count < len && i < 5; i++) { 64 addr = buf; 65 qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr); 66 qtd->hw_buf_hi[i] = cpu_to_hc32(ehci, 67 (u32)(addr >> 32)); 68 buf += 0x1000; 69 if ((count + 0x1000) < len) 70 count += 0x1000; 71 else 72 count = len; 73 } 74 75 /* short packets may only terminate transfers */ 76 if (count != len) 77 count -= (count % maxpacket); 78 } 79 qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token); 80 qtd->length = count; 81 82 return count; 83 } 84 85 /*-------------------------------------------------------------------------*/ 86 87 static inline void 88 qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd) 89 { 90 struct ehci_qh_hw *hw = qh->hw; 91 92 /* writes to an active overlay are unsafe */ 93 WARN_ON(qh->qh_state != QH_STATE_IDLE); 94 95 hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma); 96 hw->hw_alt_next = EHCI_LIST_END(ehci); 97 98 /* Except for control endpoints, we make hardware maintain data 99 * toggle (like OHCI) ... here (re)initialize the toggle in the QH, 100 * and set the pseudo-toggle in udev. Only usb_clear_halt() will 101 * ever clear it. 102 */ 103 if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) { 104 unsigned is_out, epnum; 105 106 is_out = qh->is_out; 107 epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f; 108 if (unlikely(!usb_gettoggle(qh->ps.udev, epnum, is_out))) { 109 hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE); 110 usb_settoggle(qh->ps.udev, epnum, is_out, 1); 111 } 112 } 113 114 hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING); 115 } 116 117 /* if it weren't for a common silicon quirk (writing the dummy into the qh 118 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault 119 * recovery (including urb dequeue) would need software changes to a QH... 120 */ 121 static void 122 qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh) 123 { 124 struct ehci_qtd *qtd; 125 126 qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list); 127 128 /* 129 * first qtd may already be partially processed. 130 * If we come here during unlink, the QH overlay region 131 * might have reference to the just unlinked qtd. The 132 * qtd is updated in qh_completions(). Update the QH 133 * overlay here. 134 */ 135 if (qh->hw->hw_token & ACTIVE_BIT(ehci)) { 136 qh->hw->hw_qtd_next = qtd->hw_next; 137 if (qh->should_be_inactive) 138 ehci_warn(ehci, "qh %p should be inactive!\n", qh); 139 } else { 140 qh_update(ehci, qh, qtd); 141 } 142 qh->should_be_inactive = 0; 143 } 144 145 /*-------------------------------------------------------------------------*/ 146 147 static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh); 148 149 static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd, 150 struct usb_host_endpoint *ep) 151 { 152 struct ehci_hcd *ehci = hcd_to_ehci(hcd); 153 struct ehci_qh *qh = ep->hcpriv; 154 unsigned long flags; 155 156 spin_lock_irqsave(&ehci->lock, flags); 157 qh->clearing_tt = 0; 158 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list) 159 && ehci->rh_state == EHCI_RH_RUNNING) 160 qh_link_async(ehci, qh); 161 spin_unlock_irqrestore(&ehci->lock, flags); 162 } 163 164 static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh, 165 struct urb *urb, u32 token) 166 { 167 168 /* If an async split transaction gets an error or is unlinked, 169 * the TT buffer may be left in an indeterminate state. We 170 * have to clear the TT buffer. 171 * 172 * Note: this routine is never called for Isochronous transfers. 173 */ 174 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) { 175 #ifdef CONFIG_DYNAMIC_DEBUG 176 struct usb_device *tt = urb->dev->tt->hub; 177 dev_dbg(&tt->dev, 178 "clear tt buffer port %d, a%d ep%d t%08x\n", 179 urb->dev->ttport, urb->dev->devnum, 180 usb_pipeendpoint(urb->pipe), token); 181 #endif /* CONFIG_DYNAMIC_DEBUG */ 182 if (!ehci_is_TDI(ehci) 183 || urb->dev->tt->hub != 184 ehci_to_hcd(ehci)->self.root_hub) { 185 if (usb_hub_clear_tt_buffer(urb) == 0) 186 qh->clearing_tt = 1; 187 } else { 188 189 /* REVISIT ARC-derived cores don't clear the root 190 * hub TT buffer in this way... 191 */ 192 } 193 } 194 } 195 196 static int qtd_copy_status ( 197 struct ehci_hcd *ehci, 198 struct urb *urb, 199 size_t length, 200 u32 token 201 ) 202 { 203 int status = -EINPROGRESS; 204 205 /* count IN/OUT bytes, not SETUP (even short packets) */ 206 if (likely (QTD_PID (token) != 2)) 207 urb->actual_length += length - QTD_LENGTH (token); 208 209 /* don't modify error codes */ 210 if (unlikely(urb->unlinked)) 211 return status; 212 213 /* force cleanup after short read; not always an error */ 214 if (unlikely (IS_SHORT_READ (token))) 215 status = -EREMOTEIO; 216 217 /* serious "can't proceed" faults reported by the hardware */ 218 if (token & QTD_STS_HALT) { 219 if (token & QTD_STS_BABBLE) { 220 /* FIXME "must" disable babbling device's port too */ 221 status = -EOVERFLOW; 222 /* CERR nonzero + halt --> stall */ 223 } else if (QTD_CERR(token)) { 224 status = -EPIPE; 225 226 /* In theory, more than one of the following bits can be set 227 * since they are sticky and the transaction is retried. 228 * Which to test first is rather arbitrary. 229 */ 230 } else if (token & QTD_STS_MMF) { 231 /* fs/ls interrupt xfer missed the complete-split */ 232 status = -EPROTO; 233 } else if (token & QTD_STS_DBE) { 234 status = (QTD_PID (token) == 1) /* IN ? */ 235 ? -ENOSR /* hc couldn't read data */ 236 : -ECOMM; /* hc couldn't write data */ 237 } else if (token & QTD_STS_XACT) { 238 /* timeout, bad CRC, wrong PID, etc */ 239 ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n", 240 urb->dev->devpath, 241 usb_pipeendpoint(urb->pipe), 242 usb_pipein(urb->pipe) ? "in" : "out"); 243 status = -EPROTO; 244 } else { /* unknown */ 245 status = -EPROTO; 246 } 247 } 248 249 return status; 250 } 251 252 static void 253 ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status) 254 { 255 if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { 256 /* ... update hc-wide periodic stats */ 257 ehci_to_hcd(ehci)->self.bandwidth_int_reqs--; 258 } 259 260 if (unlikely(urb->unlinked)) { 261 COUNT(ehci->stats.unlink); 262 } else { 263 /* report non-error and short read status as zero */ 264 if (status == -EINPROGRESS || status == -EREMOTEIO) 265 status = 0; 266 COUNT(ehci->stats.complete); 267 } 268 269 #ifdef EHCI_URB_TRACE 270 ehci_dbg (ehci, 271 "%s %s urb %p ep%d%s status %d len %d/%d\n", 272 __func__, urb->dev->devpath, urb, 273 usb_pipeendpoint (urb->pipe), 274 usb_pipein (urb->pipe) ? "in" : "out", 275 status, 276 urb->actual_length, urb->transfer_buffer_length); 277 #endif 278 279 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 280 usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status); 281 } 282 283 static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh); 284 285 /* 286 * Process and free completed qtds for a qh, returning URBs to drivers. 287 * Chases up to qh->hw_current. Returns nonzero if the caller should 288 * unlink qh. 289 */ 290 static unsigned 291 qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh) 292 { 293 struct ehci_qtd *last, *end = qh->dummy; 294 struct list_head *entry, *tmp; 295 int last_status; 296 int stopped; 297 u8 state; 298 struct ehci_qh_hw *hw = qh->hw; 299 300 /* completions (or tasks on other cpus) must never clobber HALT 301 * till we've gone through and cleaned everything up, even when 302 * they add urbs to this qh's queue or mark them for unlinking. 303 * 304 * NOTE: unlinking expects to be done in queue order. 305 * 306 * It's a bug for qh->qh_state to be anything other than 307 * QH_STATE_IDLE, unless our caller is scan_async() or 308 * scan_intr(). 309 */ 310 state = qh->qh_state; 311 qh->qh_state = QH_STATE_COMPLETING; 312 stopped = (state == QH_STATE_IDLE); 313 314 rescan: 315 last = NULL; 316 last_status = -EINPROGRESS; 317 qh->dequeue_during_giveback = 0; 318 319 /* remove de-activated QTDs from front of queue. 320 * after faults (including short reads), cleanup this urb 321 * then let the queue advance. 322 * if queue is stopped, handles unlinks. 323 */ 324 list_for_each_safe (entry, tmp, &qh->qtd_list) { 325 struct ehci_qtd *qtd; 326 struct urb *urb; 327 u32 token = 0; 328 329 qtd = list_entry (entry, struct ehci_qtd, qtd_list); 330 urb = qtd->urb; 331 332 /* clean up any state from previous QTD ...*/ 333 if (last) { 334 if (likely (last->urb != urb)) { 335 ehci_urb_done(ehci, last->urb, last_status); 336 last_status = -EINPROGRESS; 337 } 338 ehci_qtd_free (ehci, last); 339 last = NULL; 340 } 341 342 /* ignore urbs submitted during completions we reported */ 343 if (qtd == end) 344 break; 345 346 /* hardware copies qtd out of qh overlay */ 347 rmb (); 348 token = hc32_to_cpu(ehci, qtd->hw_token); 349 350 /* always clean up qtds the hc de-activated */ 351 retry_xacterr: 352 if ((token & QTD_STS_ACTIVE) == 0) { 353 354 /* Report Data Buffer Error: non-fatal but useful */ 355 if (token & QTD_STS_DBE) 356 ehci_dbg(ehci, 357 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n", 358 urb, 359 usb_endpoint_num(&urb->ep->desc), 360 usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out", 361 urb->transfer_buffer_length, 362 qtd, 363 qh); 364 365 /* on STALL, error, and short reads this urb must 366 * complete and all its qtds must be recycled. 367 */ 368 if ((token & QTD_STS_HALT) != 0) { 369 370 /* retry transaction errors until we 371 * reach the software xacterr limit 372 */ 373 if ((token & QTD_STS_XACT) && 374 QTD_CERR(token) == 0 && 375 ++qh->xacterrs < QH_XACTERR_MAX && 376 !urb->unlinked) { 377 ehci_dbg(ehci, 378 "detected XactErr len %zu/%zu retry %d\n", 379 qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs); 380 381 /* reset the token in the qtd and the 382 * qh overlay (which still contains 383 * the qtd) so that we pick up from 384 * where we left off 385 */ 386 token &= ~QTD_STS_HALT; 387 token |= QTD_STS_ACTIVE | 388 (EHCI_TUNE_CERR << 10); 389 qtd->hw_token = cpu_to_hc32(ehci, 390 token); 391 wmb(); 392 hw->hw_token = cpu_to_hc32(ehci, 393 token); 394 goto retry_xacterr; 395 } 396 stopped = 1; 397 qh->unlink_reason |= QH_UNLINK_HALTED; 398 399 /* magic dummy for some short reads; qh won't advance. 400 * that silicon quirk can kick in with this dummy too. 401 * 402 * other short reads won't stop the queue, including 403 * control transfers (status stage handles that) or 404 * most other single-qtd reads ... the queue stops if 405 * URB_SHORT_NOT_OK was set so the driver submitting 406 * the urbs could clean it up. 407 */ 408 } else if (IS_SHORT_READ (token) 409 && !(qtd->hw_alt_next 410 & EHCI_LIST_END(ehci))) { 411 stopped = 1; 412 qh->unlink_reason |= QH_UNLINK_SHORT_READ; 413 } 414 415 /* stop scanning when we reach qtds the hc is using */ 416 } else if (likely (!stopped 417 && ehci->rh_state >= EHCI_RH_RUNNING)) { 418 break; 419 420 /* scan the whole queue for unlinks whenever it stops */ 421 } else { 422 stopped = 1; 423 424 /* cancel everything if we halt, suspend, etc */ 425 if (ehci->rh_state < EHCI_RH_RUNNING) { 426 last_status = -ESHUTDOWN; 427 qh->unlink_reason |= QH_UNLINK_SHUTDOWN; 428 } 429 430 /* this qtd is active; skip it unless a previous qtd 431 * for its urb faulted, or its urb was canceled. 432 */ 433 else if (last_status == -EINPROGRESS && !urb->unlinked) 434 continue; 435 436 /* 437 * If this was the active qtd when the qh was unlinked 438 * and the overlay's token is active, then the overlay 439 * hasn't been written back to the qtd yet so use its 440 * token instead of the qtd's. After the qtd is 441 * processed and removed, the overlay won't be valid 442 * any more. 443 */ 444 if (state == QH_STATE_IDLE && 445 qh->qtd_list.next == &qtd->qtd_list && 446 (hw->hw_token & ACTIVE_BIT(ehci))) { 447 token = hc32_to_cpu(ehci, hw->hw_token); 448 hw->hw_token &= ~ACTIVE_BIT(ehci); 449 qh->should_be_inactive = 1; 450 451 /* An unlink may leave an incomplete 452 * async transaction in the TT buffer. 453 * We have to clear it. 454 */ 455 ehci_clear_tt_buffer(ehci, qh, urb, token); 456 } 457 } 458 459 /* unless we already know the urb's status, collect qtd status 460 * and update count of bytes transferred. in common short read 461 * cases with only one data qtd (including control transfers), 462 * queue processing won't halt. but with two or more qtds (for 463 * example, with a 32 KB transfer), when the first qtd gets a 464 * short read the second must be removed by hand. 465 */ 466 if (last_status == -EINPROGRESS) { 467 last_status = qtd_copy_status(ehci, urb, 468 qtd->length, token); 469 if (last_status == -EREMOTEIO 470 && (qtd->hw_alt_next 471 & EHCI_LIST_END(ehci))) 472 last_status = -EINPROGRESS; 473 474 /* As part of low/full-speed endpoint-halt processing 475 * we must clear the TT buffer (11.17.5). 476 */ 477 if (unlikely(last_status != -EINPROGRESS && 478 last_status != -EREMOTEIO)) { 479 /* The TT's in some hubs malfunction when they 480 * receive this request following a STALL (they 481 * stop sending isochronous packets). Since a 482 * STALL can't leave the TT buffer in a busy 483 * state (if you believe Figures 11-48 - 11-51 484 * in the USB 2.0 spec), we won't clear the TT 485 * buffer in this case. Strictly speaking this 486 * is a violation of the spec. 487 */ 488 if (last_status != -EPIPE) 489 ehci_clear_tt_buffer(ehci, qh, urb, 490 token); 491 } 492 } 493 494 /* if we're removing something not at the queue head, 495 * patch the hardware queue pointer. 496 */ 497 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) { 498 last = list_entry (qtd->qtd_list.prev, 499 struct ehci_qtd, qtd_list); 500 last->hw_next = qtd->hw_next; 501 } 502 503 /* remove qtd; it's recycled after possible urb completion */ 504 list_del (&qtd->qtd_list); 505 last = qtd; 506 507 /* reinit the xacterr counter for the next qtd */ 508 qh->xacterrs = 0; 509 } 510 511 /* last urb's completion might still need calling */ 512 if (likely (last != NULL)) { 513 ehci_urb_done(ehci, last->urb, last_status); 514 ehci_qtd_free (ehci, last); 515 } 516 517 /* Do we need to rescan for URBs dequeued during a giveback? */ 518 if (unlikely(qh->dequeue_during_giveback)) { 519 /* If the QH is already unlinked, do the rescan now. */ 520 if (state == QH_STATE_IDLE) 521 goto rescan; 522 523 /* Otherwise the caller must unlink the QH. */ 524 } 525 526 /* restore original state; caller must unlink or relink */ 527 qh->qh_state = state; 528 529 /* be sure the hardware's done with the qh before refreshing 530 * it after fault cleanup, or recovering from silicon wrongly 531 * overlaying the dummy qtd (which reduces DMA chatter). 532 * 533 * We won't refresh a QH that's linked (after the HC 534 * stopped the queue). That avoids a race: 535 * - HC reads first part of QH; 536 * - CPU updates that first part and the token; 537 * - HC reads rest of that QH, including token 538 * Result: HC gets an inconsistent image, and then 539 * DMAs to/from the wrong memory (corrupting it). 540 * 541 * That should be rare for interrupt transfers, 542 * except maybe high bandwidth ... 543 */ 544 if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci)) 545 qh->unlink_reason |= QH_UNLINK_DUMMY_OVERLAY; 546 547 /* Let the caller know if the QH needs to be unlinked. */ 548 return qh->unlink_reason; 549 } 550 551 /*-------------------------------------------------------------------------*/ 552 553 // high bandwidth multiplier, as encoded in highspeed endpoint descriptors 554 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) 555 // ... and packet size, for any kind of endpoint descriptor 556 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) 557 558 /* 559 * reverse of qh_urb_transaction: free a list of TDs. 560 * used for cleanup after errors, before HC sees an URB's TDs. 561 */ 562 static void qtd_list_free ( 563 struct ehci_hcd *ehci, 564 struct urb *urb, 565 struct list_head *qtd_list 566 ) { 567 struct list_head *entry, *temp; 568 569 list_for_each_safe (entry, temp, qtd_list) { 570 struct ehci_qtd *qtd; 571 572 qtd = list_entry (entry, struct ehci_qtd, qtd_list); 573 list_del (&qtd->qtd_list); 574 ehci_qtd_free (ehci, qtd); 575 } 576 } 577 578 /* 579 * create a list of filled qtds for this URB; won't link into qh. 580 */ 581 static struct list_head * 582 qh_urb_transaction ( 583 struct ehci_hcd *ehci, 584 struct urb *urb, 585 struct list_head *head, 586 gfp_t flags 587 ) { 588 struct ehci_qtd *qtd, *qtd_prev; 589 dma_addr_t buf; 590 int len, this_sg_len, maxpacket; 591 int is_input; 592 u32 token; 593 int i; 594 struct scatterlist *sg; 595 596 /* 597 * URBs map to sequences of QTDs: one logical transaction 598 */ 599 qtd = ehci_qtd_alloc (ehci, flags); 600 if (unlikely (!qtd)) 601 return NULL; 602 list_add_tail (&qtd->qtd_list, head); 603 qtd->urb = urb; 604 605 token = QTD_STS_ACTIVE; 606 token |= (EHCI_TUNE_CERR << 10); 607 /* for split transactions, SplitXState initialized to zero */ 608 609 len = urb->transfer_buffer_length; 610 is_input = usb_pipein (urb->pipe); 611 if (usb_pipecontrol (urb->pipe)) { 612 /* SETUP pid */ 613 qtd_fill(ehci, qtd, urb->setup_dma, 614 sizeof (struct usb_ctrlrequest), 615 token | (2 /* "setup" */ << 8), 8); 616 617 /* ... and always at least one more pid */ 618 token ^= QTD_TOGGLE; 619 qtd_prev = qtd; 620 qtd = ehci_qtd_alloc (ehci, flags); 621 if (unlikely (!qtd)) 622 goto cleanup; 623 qtd->urb = urb; 624 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma); 625 list_add_tail (&qtd->qtd_list, head); 626 627 /* for zero length DATA stages, STATUS is always IN */ 628 if (len == 0) 629 token |= (1 /* "in" */ << 8); 630 } 631 632 /* 633 * data transfer stage: buffer setup 634 */ 635 i = urb->num_mapped_sgs; 636 if (len > 0 && i > 0) { 637 sg = urb->sg; 638 buf = sg_dma_address(sg); 639 640 /* urb->transfer_buffer_length may be smaller than the 641 * size of the scatterlist (or vice versa) 642 */ 643 this_sg_len = min_t(int, sg_dma_len(sg), len); 644 } else { 645 sg = NULL; 646 buf = urb->transfer_dma; 647 this_sg_len = len; 648 } 649 650 if (is_input) 651 token |= (1 /* "in" */ << 8); 652 /* else it's already initted to "out" pid (0 << 8) */ 653 654 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input)); 655 656 /* 657 * buffer gets wrapped in one or more qtds; 658 * last one may be "short" (including zero len) 659 * and may serve as a control status ack 660 */ 661 for (;;) { 662 int this_qtd_len; 663 664 this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token, 665 maxpacket); 666 this_sg_len -= this_qtd_len; 667 len -= this_qtd_len; 668 buf += this_qtd_len; 669 670 /* 671 * short reads advance to a "magic" dummy instead of the next 672 * qtd ... that forces the queue to stop, for manual cleanup. 673 * (this will usually be overridden later.) 674 */ 675 if (is_input) 676 qtd->hw_alt_next = ehci->async->hw->hw_alt_next; 677 678 /* qh makes control packets use qtd toggle; maybe switch it */ 679 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0) 680 token ^= QTD_TOGGLE; 681 682 if (likely(this_sg_len <= 0)) { 683 if (--i <= 0 || len <= 0) 684 break; 685 sg = sg_next(sg); 686 buf = sg_dma_address(sg); 687 this_sg_len = min_t(int, sg_dma_len(sg), len); 688 } 689 690 qtd_prev = qtd; 691 qtd = ehci_qtd_alloc (ehci, flags); 692 if (unlikely (!qtd)) 693 goto cleanup; 694 qtd->urb = urb; 695 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma); 696 list_add_tail (&qtd->qtd_list, head); 697 } 698 699 /* 700 * unless the caller requires manual cleanup after short reads, 701 * have the alt_next mechanism keep the queue running after the 702 * last data qtd (the only one, for control and most other cases). 703 */ 704 if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 705 || usb_pipecontrol (urb->pipe))) 706 qtd->hw_alt_next = EHCI_LIST_END(ehci); 707 708 /* 709 * control requests may need a terminating data "status" ack; 710 * other OUT ones may need a terminating short packet 711 * (zero length). 712 */ 713 if (likely (urb->transfer_buffer_length != 0)) { 714 int one_more = 0; 715 716 if (usb_pipecontrol (urb->pipe)) { 717 one_more = 1; 718 token ^= 0x0100; /* "in" <--> "out" */ 719 token |= QTD_TOGGLE; /* force DATA1 */ 720 } else if (usb_pipeout(urb->pipe) 721 && (urb->transfer_flags & URB_ZERO_PACKET) 722 && !(urb->transfer_buffer_length % maxpacket)) { 723 one_more = 1; 724 } 725 if (one_more) { 726 qtd_prev = qtd; 727 qtd = ehci_qtd_alloc (ehci, flags); 728 if (unlikely (!qtd)) 729 goto cleanup; 730 qtd->urb = urb; 731 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma); 732 list_add_tail (&qtd->qtd_list, head); 733 734 /* never any data in such packets */ 735 qtd_fill(ehci, qtd, 0, 0, token, 0); 736 } 737 } 738 739 /* by default, enable interrupt on urb completion */ 740 if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT))) 741 qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC); 742 return head; 743 744 cleanup: 745 qtd_list_free (ehci, urb, head); 746 return NULL; 747 } 748 749 /*-------------------------------------------------------------------------*/ 750 751 // Would be best to create all qh's from config descriptors, 752 // when each interface/altsetting is established. Unlink 753 // any previous qh and cancel its urbs first; endpoints are 754 // implicitly reset then (data toggle too). 755 // That'd mean updating how usbcore talks to HCDs. (2.7?) 756 757 758 /* 759 * Each QH holds a qtd list; a QH is used for everything except iso. 760 * 761 * For interrupt urbs, the scheduler must set the microframe scheduling 762 * mask(s) each time the QH gets scheduled. For highspeed, that's 763 * just one microframe in the s-mask. For split interrupt transactions 764 * there are additional complications: c-mask, maybe FSTNs. 765 */ 766 static struct ehci_qh * 767 qh_make ( 768 struct ehci_hcd *ehci, 769 struct urb *urb, 770 gfp_t flags 771 ) { 772 struct ehci_qh *qh = ehci_qh_alloc (ehci, flags); 773 u32 info1 = 0, info2 = 0; 774 int is_input, type; 775 int maxp = 0; 776 struct usb_tt *tt = urb->dev->tt; 777 struct ehci_qh_hw *hw; 778 779 if (!qh) 780 return qh; 781 782 /* 783 * init endpoint/device data for this QH 784 */ 785 info1 |= usb_pipeendpoint (urb->pipe) << 8; 786 info1 |= usb_pipedevice (urb->pipe) << 0; 787 788 is_input = usb_pipein (urb->pipe); 789 type = usb_pipetype (urb->pipe); 790 maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input); 791 792 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth 793 * acts like up to 3KB, but is built from smaller packets. 794 */ 795 if (max_packet(maxp) > 1024) { 796 ehci_dbg(ehci, "bogus qh maxpacket %d\n", max_packet(maxp)); 797 goto done; 798 } 799 800 /* Compute interrupt scheduling parameters just once, and save. 801 * - allowing for high bandwidth, how many nsec/uframe are used? 802 * - split transactions need a second CSPLIT uframe; same question 803 * - splits also need a schedule gap (for full/low speed I/O) 804 * - qh has a polling interval 805 * 806 * For control/bulk requests, the HC or TT handles these. 807 */ 808 if (type == PIPE_INTERRUPT) { 809 unsigned tmp; 810 811 qh->ps.usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH, 812 is_input, 0, 813 hb_mult(maxp) * max_packet(maxp))); 814 qh->ps.phase = NO_FRAME; 815 816 if (urb->dev->speed == USB_SPEED_HIGH) { 817 qh->ps.c_usecs = 0; 818 qh->gap_uf = 0; 819 820 if (urb->interval > 1 && urb->interval < 8) { 821 /* NOTE interval 2 or 4 uframes could work. 822 * But interval 1 scheduling is simpler, and 823 * includes high bandwidth. 824 */ 825 urb->interval = 1; 826 } else if (urb->interval > ehci->periodic_size << 3) { 827 urb->interval = ehci->periodic_size << 3; 828 } 829 qh->ps.period = urb->interval >> 3; 830 831 /* period for bandwidth allocation */ 832 tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE, 833 1 << (urb->ep->desc.bInterval - 1)); 834 835 /* Allow urb->interval to override */ 836 qh->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval); 837 qh->ps.bw_period = qh->ps.bw_uperiod >> 3; 838 } else { 839 int think_time; 840 841 /* gap is f(FS/LS transfer times) */ 842 qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed, 843 is_input, 0, maxp) / (125 * 1000); 844 845 /* FIXME this just approximates SPLIT/CSPLIT times */ 846 if (is_input) { // SPLIT, gap, CSPLIT+DATA 847 qh->ps.c_usecs = qh->ps.usecs + HS_USECS(0); 848 qh->ps.usecs = HS_USECS(1); 849 } else { // SPLIT+DATA, gap, CSPLIT 850 qh->ps.usecs += HS_USECS(1); 851 qh->ps.c_usecs = HS_USECS(0); 852 } 853 854 think_time = tt ? tt->think_time : 0; 855 qh->ps.tt_usecs = NS_TO_US(think_time + 856 usb_calc_bus_time (urb->dev->speed, 857 is_input, 0, max_packet (maxp))); 858 if (urb->interval > ehci->periodic_size) 859 urb->interval = ehci->periodic_size; 860 qh->ps.period = urb->interval; 861 862 /* period for bandwidth allocation */ 863 tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES, 864 urb->ep->desc.bInterval); 865 tmp = rounddown_pow_of_two(tmp); 866 867 /* Allow urb->interval to override */ 868 qh->ps.bw_period = min_t(unsigned, tmp, urb->interval); 869 qh->ps.bw_uperiod = qh->ps.bw_period << 3; 870 } 871 } 872 873 /* support for tt scheduling, and access to toggles */ 874 qh->ps.udev = urb->dev; 875 qh->ps.ep = urb->ep; 876 877 /* using TT? */ 878 switch (urb->dev->speed) { 879 case USB_SPEED_LOW: 880 info1 |= QH_LOW_SPEED; 881 /* FALL THROUGH */ 882 883 case USB_SPEED_FULL: 884 /* EPS 0 means "full" */ 885 if (type != PIPE_INTERRUPT) 886 info1 |= (EHCI_TUNE_RL_TT << 28); 887 if (type == PIPE_CONTROL) { 888 info1 |= QH_CONTROL_EP; /* for TT */ 889 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */ 890 } 891 info1 |= maxp << 16; 892 893 info2 |= (EHCI_TUNE_MULT_TT << 30); 894 895 /* Some Freescale processors have an erratum in which the 896 * port number in the queue head was 0..N-1 instead of 1..N. 897 */ 898 if (ehci_has_fsl_portno_bug(ehci)) 899 info2 |= (urb->dev->ttport-1) << 23; 900 else 901 info2 |= urb->dev->ttport << 23; 902 903 /* set the address of the TT; for TDI's integrated 904 * root hub tt, leave it zeroed. 905 */ 906 if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub) 907 info2 |= tt->hub->devnum << 16; 908 909 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */ 910 911 break; 912 913 case USB_SPEED_HIGH: /* no TT involved */ 914 info1 |= QH_HIGH_SPEED; 915 if (type == PIPE_CONTROL) { 916 info1 |= (EHCI_TUNE_RL_HS << 28); 917 info1 |= 64 << 16; /* usb2 fixed maxpacket */ 918 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */ 919 info2 |= (EHCI_TUNE_MULT_HS << 30); 920 } else if (type == PIPE_BULK) { 921 info1 |= (EHCI_TUNE_RL_HS << 28); 922 /* The USB spec says that high speed bulk endpoints 923 * always use 512 byte maxpacket. But some device 924 * vendors decided to ignore that, and MSFT is happy 925 * to help them do so. So now people expect to use 926 * such nonconformant devices with Linux too; sigh. 927 */ 928 info1 |= max_packet(maxp) << 16; 929 info2 |= (EHCI_TUNE_MULT_HS << 30); 930 } else { /* PIPE_INTERRUPT */ 931 info1 |= max_packet (maxp) << 16; 932 info2 |= hb_mult (maxp) << 30; 933 } 934 break; 935 default: 936 ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev, 937 urb->dev->speed); 938 done: 939 qh_destroy(ehci, qh); 940 return NULL; 941 } 942 943 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */ 944 945 /* init as live, toggle clear */ 946 qh->qh_state = QH_STATE_IDLE; 947 hw = qh->hw; 948 hw->hw_info1 = cpu_to_hc32(ehci, info1); 949 hw->hw_info2 = cpu_to_hc32(ehci, info2); 950 qh->is_out = !is_input; 951 usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1); 952 return qh; 953 } 954 955 /*-------------------------------------------------------------------------*/ 956 957 static void enable_async(struct ehci_hcd *ehci) 958 { 959 if (ehci->async_count++) 960 return; 961 962 /* Stop waiting to turn off the async schedule */ 963 ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC); 964 965 /* Don't start the schedule until ASS is 0 */ 966 ehci_poll_ASS(ehci); 967 turn_on_io_watchdog(ehci); 968 } 969 970 static void disable_async(struct ehci_hcd *ehci) 971 { 972 if (--ehci->async_count) 973 return; 974 975 /* The async schedule and unlink lists are supposed to be empty */ 976 WARN_ON(ehci->async->qh_next.qh || !list_empty(&ehci->async_unlink) || 977 !list_empty(&ehci->async_idle)); 978 979 /* Don't turn off the schedule until ASS is 1 */ 980 ehci_poll_ASS(ehci); 981 } 982 983 /* move qh (and its qtds) onto async queue; maybe enable queue. */ 984 985 static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh) 986 { 987 __hc32 dma = QH_NEXT(ehci, qh->qh_dma); 988 struct ehci_qh *head; 989 990 /* Don't link a QH if there's a Clear-TT-Buffer pending */ 991 if (unlikely(qh->clearing_tt)) 992 return; 993 994 WARN_ON(qh->qh_state != QH_STATE_IDLE); 995 996 /* clear halt and/or toggle; and maybe recover from silicon quirk */ 997 qh_refresh(ehci, qh); 998 999 /* splice right after start */ 1000 head = ehci->async; 1001 qh->qh_next = head->qh_next; 1002 qh->hw->hw_next = head->hw->hw_next; 1003 wmb (); 1004 1005 head->qh_next.qh = qh; 1006 head->hw->hw_next = dma; 1007 1008 qh->qh_state = QH_STATE_LINKED; 1009 qh->xacterrs = 0; 1010 qh->unlink_reason = 0; 1011 /* qtd completions reported later by interrupt */ 1012 1013 enable_async(ehci); 1014 } 1015 1016 /*-------------------------------------------------------------------------*/ 1017 1018 /* 1019 * For control/bulk/interrupt, return QH with these TDs appended. 1020 * Allocates and initializes the QH if necessary. 1021 * Returns null if it can't allocate a QH it needs to. 1022 * If the QH has TDs (urbs) already, that's great. 1023 */ 1024 static struct ehci_qh *qh_append_tds ( 1025 struct ehci_hcd *ehci, 1026 struct urb *urb, 1027 struct list_head *qtd_list, 1028 int epnum, 1029 void **ptr 1030 ) 1031 { 1032 struct ehci_qh *qh = NULL; 1033 __hc32 qh_addr_mask = cpu_to_hc32(ehci, 0x7f); 1034 1035 qh = (struct ehci_qh *) *ptr; 1036 if (unlikely (qh == NULL)) { 1037 /* can't sleep here, we have ehci->lock... */ 1038 qh = qh_make (ehci, urb, GFP_ATOMIC); 1039 *ptr = qh; 1040 } 1041 if (likely (qh != NULL)) { 1042 struct ehci_qtd *qtd; 1043 1044 if (unlikely (list_empty (qtd_list))) 1045 qtd = NULL; 1046 else 1047 qtd = list_entry (qtd_list->next, struct ehci_qtd, 1048 qtd_list); 1049 1050 /* control qh may need patching ... */ 1051 if (unlikely (epnum == 0)) { 1052 1053 /* usb_reset_device() briefly reverts to address 0 */ 1054 if (usb_pipedevice (urb->pipe) == 0) 1055 qh->hw->hw_info1 &= ~qh_addr_mask; 1056 } 1057 1058 /* just one way to queue requests: swap with the dummy qtd. 1059 * only hc or qh_refresh() ever modify the overlay. 1060 */ 1061 if (likely (qtd != NULL)) { 1062 struct ehci_qtd *dummy; 1063 dma_addr_t dma; 1064 __hc32 token; 1065 1066 /* to avoid racing the HC, use the dummy td instead of 1067 * the first td of our list (becomes new dummy). both 1068 * tds stay deactivated until we're done, when the 1069 * HC is allowed to fetch the old dummy (4.10.2). 1070 */ 1071 token = qtd->hw_token; 1072 qtd->hw_token = HALT_BIT(ehci); 1073 1074 dummy = qh->dummy; 1075 1076 dma = dummy->qtd_dma; 1077 *dummy = *qtd; 1078 dummy->qtd_dma = dma; 1079 1080 list_del (&qtd->qtd_list); 1081 list_add (&dummy->qtd_list, qtd_list); 1082 list_splice_tail(qtd_list, &qh->qtd_list); 1083 1084 ehci_qtd_init(ehci, qtd, qtd->qtd_dma); 1085 qh->dummy = qtd; 1086 1087 /* hc must see the new dummy at list end */ 1088 dma = qtd->qtd_dma; 1089 qtd = list_entry (qh->qtd_list.prev, 1090 struct ehci_qtd, qtd_list); 1091 qtd->hw_next = QTD_NEXT(ehci, dma); 1092 1093 /* let the hc process these next qtds */ 1094 wmb (); 1095 dummy->hw_token = token; 1096 1097 urb->hcpriv = qh; 1098 } 1099 } 1100 return qh; 1101 } 1102 1103 /*-------------------------------------------------------------------------*/ 1104 1105 static int 1106 submit_async ( 1107 struct ehci_hcd *ehci, 1108 struct urb *urb, 1109 struct list_head *qtd_list, 1110 gfp_t mem_flags 1111 ) { 1112 int epnum; 1113 unsigned long flags; 1114 struct ehci_qh *qh = NULL; 1115 int rc; 1116 1117 epnum = urb->ep->desc.bEndpointAddress; 1118 1119 #ifdef EHCI_URB_TRACE 1120 { 1121 struct ehci_qtd *qtd; 1122 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list); 1123 ehci_dbg(ehci, 1124 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n", 1125 __func__, urb->dev->devpath, urb, 1126 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out", 1127 urb->transfer_buffer_length, 1128 qtd, urb->ep->hcpriv); 1129 } 1130 #endif 1131 1132 spin_lock_irqsave (&ehci->lock, flags); 1133 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { 1134 rc = -ESHUTDOWN; 1135 goto done; 1136 } 1137 rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); 1138 if (unlikely(rc)) 1139 goto done; 1140 1141 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv); 1142 if (unlikely(qh == NULL)) { 1143 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); 1144 rc = -ENOMEM; 1145 goto done; 1146 } 1147 1148 /* Control/bulk operations through TTs don't need scheduling, 1149 * the HC and TT handle it when the TT has a buffer ready. 1150 */ 1151 if (likely (qh->qh_state == QH_STATE_IDLE)) 1152 qh_link_async(ehci, qh); 1153 done: 1154 spin_unlock_irqrestore (&ehci->lock, flags); 1155 if (unlikely (qh == NULL)) 1156 qtd_list_free (ehci, urb, qtd_list); 1157 return rc; 1158 } 1159 1160 /*-------------------------------------------------------------------------*/ 1161 #ifdef CONFIG_USB_HCD_TEST_MODE 1162 /* 1163 * This function creates the qtds and submits them for the 1164 * SINGLE_STEP_SET_FEATURE Test. 1165 * This is done in two parts: first SETUP req for GetDesc is sent then 1166 * 15 seconds later, the IN stage for GetDesc starts to req data from dev 1167 * 1168 * is_setup : i/p arguement decides which of the two stage needs to be 1169 * performed; TRUE - SETUP and FALSE - IN+STATUS 1170 * Returns 0 if success 1171 */ 1172 static int submit_single_step_set_feature( 1173 struct usb_hcd *hcd, 1174 struct urb *urb, 1175 int is_setup 1176 ) { 1177 struct ehci_hcd *ehci = hcd_to_ehci(hcd); 1178 struct list_head qtd_list; 1179 struct list_head *head; 1180 1181 struct ehci_qtd *qtd, *qtd_prev; 1182 dma_addr_t buf; 1183 int len, maxpacket; 1184 u32 token; 1185 1186 INIT_LIST_HEAD(&qtd_list); 1187 head = &qtd_list; 1188 1189 /* URBs map to sequences of QTDs: one logical transaction */ 1190 qtd = ehci_qtd_alloc(ehci, GFP_KERNEL); 1191 if (unlikely(!qtd)) 1192 return -1; 1193 list_add_tail(&qtd->qtd_list, head); 1194 qtd->urb = urb; 1195 1196 token = QTD_STS_ACTIVE; 1197 token |= (EHCI_TUNE_CERR << 10); 1198 1199 len = urb->transfer_buffer_length; 1200 /* 1201 * Check if the request is to perform just the SETUP stage (getDesc) 1202 * as in SINGLE_STEP_SET_FEATURE test, DATA stage (IN) happens 1203 * 15 secs after the setup 1204 */ 1205 if (is_setup) { 1206 /* SETUP pid */ 1207 qtd_fill(ehci, qtd, urb->setup_dma, 1208 sizeof(struct usb_ctrlrequest), 1209 token | (2 /* "setup" */ << 8), 8); 1210 1211 submit_async(ehci, urb, &qtd_list, GFP_ATOMIC); 1212 return 0; /*Return now; we shall come back after 15 seconds*/ 1213 } 1214 1215 /* 1216 * IN: data transfer stage: buffer setup : start the IN txn phase for 1217 * the get_Desc SETUP which was sent 15seconds back 1218 */ 1219 token ^= QTD_TOGGLE; /*We need to start IN with DATA-1 Pid-sequence*/ 1220 buf = urb->transfer_dma; 1221 1222 token |= (1 /* "in" */ << 8); /*This is IN stage*/ 1223 1224 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, 0)); 1225 1226 qtd_fill(ehci, qtd, buf, len, token, maxpacket); 1227 1228 /* 1229 * Our IN phase shall always be a short read; so keep the queue running 1230 * and let it advance to the next qtd which zero length OUT status 1231 */ 1232 qtd->hw_alt_next = EHCI_LIST_END(ehci); 1233 1234 /* STATUS stage for GetDesc control request */ 1235 token ^= 0x0100; /* "in" <--> "out" */ 1236 token |= QTD_TOGGLE; /* force DATA1 */ 1237 1238 qtd_prev = qtd; 1239 qtd = ehci_qtd_alloc(ehci, GFP_ATOMIC); 1240 if (unlikely(!qtd)) 1241 goto cleanup; 1242 qtd->urb = urb; 1243 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma); 1244 list_add_tail(&qtd->qtd_list, head); 1245 1246 /* dont fill any data in such packets */ 1247 qtd_fill(ehci, qtd, 0, 0, token, 0); 1248 1249 /* by default, enable interrupt on urb completion */ 1250 if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT))) 1251 qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC); 1252 1253 submit_async(ehci, urb, &qtd_list, GFP_KERNEL); 1254 1255 return 0; 1256 1257 cleanup: 1258 qtd_list_free(ehci, urb, head); 1259 return -1; 1260 } 1261 #endif /* CONFIG_USB_HCD_TEST_MODE */ 1262 1263 /*-------------------------------------------------------------------------*/ 1264 1265 static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh) 1266 { 1267 struct ehci_qh *prev; 1268 1269 /* Add to the end of the list of QHs waiting for the next IAAD */ 1270 qh->qh_state = QH_STATE_UNLINK_WAIT; 1271 list_add_tail(&qh->unlink_node, &ehci->async_unlink); 1272 1273 /* Unlink it from the schedule */ 1274 prev = ehci->async; 1275 while (prev->qh_next.qh != qh) 1276 prev = prev->qh_next.qh; 1277 1278 prev->hw->hw_next = qh->hw->hw_next; 1279 prev->qh_next = qh->qh_next; 1280 if (ehci->qh_scan_next == qh) 1281 ehci->qh_scan_next = qh->qh_next.qh; 1282 } 1283 1284 static void start_iaa_cycle(struct ehci_hcd *ehci) 1285 { 1286 /* If the controller isn't running, we don't have to wait for it */ 1287 if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) { 1288 end_unlink_async(ehci); 1289 1290 /* Otherwise start a new IAA cycle if one isn't already running */ 1291 } else if (ehci->rh_state == EHCI_RH_RUNNING && 1292 !ehci->iaa_in_progress) { 1293 1294 /* Make sure the unlinks are all visible to the hardware */ 1295 wmb(); 1296 1297 ehci_writel(ehci, ehci->command | CMD_IAAD, 1298 &ehci->regs->command); 1299 ehci_readl(ehci, &ehci->regs->command); 1300 ehci->iaa_in_progress = true; 1301 ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true); 1302 } 1303 } 1304 1305 static void end_iaa_cycle(struct ehci_hcd *ehci) 1306 { 1307 if (ehci->has_synopsys_hc_bug) 1308 ehci_writel(ehci, (u32) ehci->async->qh_dma, 1309 &ehci->regs->async_next); 1310 1311 /* The current IAA cycle has ended */ 1312 ehci->iaa_in_progress = false; 1313 1314 end_unlink_async(ehci); 1315 } 1316 1317 /* See if the async qh for the qtds being unlinked are now gone from the HC */ 1318 1319 static void end_unlink_async(struct ehci_hcd *ehci) 1320 { 1321 struct ehci_qh *qh; 1322 bool early_exit; 1323 1324 if (list_empty(&ehci->async_unlink)) 1325 return; 1326 qh = list_first_entry(&ehci->async_unlink, struct ehci_qh, 1327 unlink_node); /* QH whose IAA cycle just ended */ 1328 1329 /* 1330 * If async_unlinking is set then this routine is already running, 1331 * either on the stack or on another CPU. 1332 */ 1333 early_exit = ehci->async_unlinking; 1334 1335 /* If the controller isn't running, process all the waiting QHs */ 1336 if (ehci->rh_state < EHCI_RH_RUNNING) 1337 list_splice_tail_init(&ehci->async_unlink, &ehci->async_idle); 1338 1339 /* 1340 * Intel (?) bug: The HC can write back the overlay region even 1341 * after the IAA interrupt occurs. In self-defense, always go 1342 * through two IAA cycles for each QH. 1343 */ 1344 else if (qh->qh_state == QH_STATE_UNLINK) { 1345 /* 1346 * Second IAA cycle has finished. Process only the first 1347 * waiting QH (NVIDIA (?) bug). 1348 */ 1349 list_move_tail(&qh->unlink_node, &ehci->async_idle); 1350 } 1351 1352 /* 1353 * AMD/ATI (?) bug: The HC can continue to use an active QH long 1354 * after the IAA interrupt occurs. To prevent problems, QHs that 1355 * may still be active will wait until 2 ms have passed with no 1356 * change to the hw_current and hw_token fields (this delay occurs 1357 * between the two IAA cycles). 1358 * 1359 * The EHCI spec (4.8.2) says that active QHs must not be removed 1360 * from the async schedule and recommends waiting until the QH 1361 * goes inactive. This is ridiculous because the QH will _never_ 1362 * become inactive if the endpoint NAKs indefinitely. 1363 */ 1364 1365 /* Some reasons for unlinking guarantee the QH can't be active */ 1366 else if (qh->unlink_reason & (QH_UNLINK_HALTED | 1367 QH_UNLINK_SHORT_READ | QH_UNLINK_DUMMY_OVERLAY)) 1368 goto DelayDone; 1369 1370 /* The QH can't be active if the queue was and still is empty... */ 1371 else if ((qh->unlink_reason & QH_UNLINK_QUEUE_EMPTY) && 1372 list_empty(&qh->qtd_list)) 1373 goto DelayDone; 1374 1375 /* ... or if the QH has halted */ 1376 else if (qh->hw->hw_token & cpu_to_hc32(ehci, QTD_STS_HALT)) 1377 goto DelayDone; 1378 1379 /* Otherwise we have to wait until the QH stops changing */ 1380 else { 1381 __hc32 qh_current, qh_token; 1382 1383 qh_current = qh->hw->hw_current; 1384 qh_token = qh->hw->hw_token; 1385 if (qh_current != ehci->old_current || 1386 qh_token != ehci->old_token) { 1387 ehci->old_current = qh_current; 1388 ehci->old_token = qh_token; 1389 ehci_enable_event(ehci, 1390 EHCI_HRTIMER_ACTIVE_UNLINK, true); 1391 return; 1392 } 1393 DelayDone: 1394 qh->qh_state = QH_STATE_UNLINK; 1395 early_exit = true; 1396 } 1397 ehci->old_current = ~0; /* Prepare for next QH */ 1398 1399 /* Start a new IAA cycle if any QHs are waiting for it */ 1400 if (!list_empty(&ehci->async_unlink)) 1401 start_iaa_cycle(ehci); 1402 1403 /* 1404 * Don't allow nesting or concurrent calls, 1405 * or wait for the second IAA cycle for the next QH. 1406 */ 1407 if (early_exit) 1408 return; 1409 1410 /* Process the idle QHs */ 1411 ehci->async_unlinking = true; 1412 while (!list_empty(&ehci->async_idle)) { 1413 qh = list_first_entry(&ehci->async_idle, struct ehci_qh, 1414 unlink_node); 1415 list_del(&qh->unlink_node); 1416 1417 qh->qh_state = QH_STATE_IDLE; 1418 qh->qh_next.qh = NULL; 1419 1420 if (!list_empty(&qh->qtd_list)) 1421 qh_completions(ehci, qh); 1422 if (!list_empty(&qh->qtd_list) && 1423 ehci->rh_state == EHCI_RH_RUNNING) 1424 qh_link_async(ehci, qh); 1425 disable_async(ehci); 1426 } 1427 ehci->async_unlinking = false; 1428 } 1429 1430 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh); 1431 1432 static void unlink_empty_async(struct ehci_hcd *ehci) 1433 { 1434 struct ehci_qh *qh; 1435 struct ehci_qh *qh_to_unlink = NULL; 1436 int count = 0; 1437 1438 /* Find the last async QH which has been empty for a timer cycle */ 1439 for (qh = ehci->async->qh_next.qh; qh; qh = qh->qh_next.qh) { 1440 if (list_empty(&qh->qtd_list) && 1441 qh->qh_state == QH_STATE_LINKED) { 1442 ++count; 1443 if (qh->unlink_cycle != ehci->async_unlink_cycle) 1444 qh_to_unlink = qh; 1445 } 1446 } 1447 1448 /* If nothing else is being unlinked, unlink the last empty QH */ 1449 if (list_empty(&ehci->async_unlink) && qh_to_unlink) { 1450 qh_to_unlink->unlink_reason |= QH_UNLINK_QUEUE_EMPTY; 1451 start_unlink_async(ehci, qh_to_unlink); 1452 --count; 1453 } 1454 1455 /* Other QHs will be handled later */ 1456 if (count > 0) { 1457 ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true); 1458 ++ehci->async_unlink_cycle; 1459 } 1460 } 1461 1462 #ifdef CONFIG_PM 1463 1464 /* The root hub is suspended; unlink all the async QHs */ 1465 static void unlink_empty_async_suspended(struct ehci_hcd *ehci) 1466 { 1467 struct ehci_qh *qh; 1468 1469 while (ehci->async->qh_next.qh) { 1470 qh = ehci->async->qh_next.qh; 1471 WARN_ON(!list_empty(&qh->qtd_list)); 1472 single_unlink_async(ehci, qh); 1473 } 1474 } 1475 1476 #endif 1477 1478 /* makes sure the async qh will become idle */ 1479 /* caller must own ehci->lock */ 1480 1481 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh) 1482 { 1483 /* If the QH isn't linked then there's nothing we can do. */ 1484 if (qh->qh_state != QH_STATE_LINKED) 1485 return; 1486 1487 single_unlink_async(ehci, qh); 1488 start_iaa_cycle(ehci); 1489 } 1490 1491 /*-------------------------------------------------------------------------*/ 1492 1493 static void scan_async (struct ehci_hcd *ehci) 1494 { 1495 struct ehci_qh *qh; 1496 bool check_unlinks_later = false; 1497 1498 ehci->qh_scan_next = ehci->async->qh_next.qh; 1499 while (ehci->qh_scan_next) { 1500 qh = ehci->qh_scan_next; 1501 ehci->qh_scan_next = qh->qh_next.qh; 1502 1503 /* clean any finished work for this qh */ 1504 if (!list_empty(&qh->qtd_list)) { 1505 int temp; 1506 1507 /* 1508 * Unlinks could happen here; completion reporting 1509 * drops the lock. That's why ehci->qh_scan_next 1510 * always holds the next qh to scan; if the next qh 1511 * gets unlinked then ehci->qh_scan_next is adjusted 1512 * in single_unlink_async(). 1513 */ 1514 temp = qh_completions(ehci, qh); 1515 if (unlikely(temp)) { 1516 start_unlink_async(ehci, qh); 1517 } else if (list_empty(&qh->qtd_list) 1518 && qh->qh_state == QH_STATE_LINKED) { 1519 qh->unlink_cycle = ehci->async_unlink_cycle; 1520 check_unlinks_later = true; 1521 } 1522 } 1523 } 1524 1525 /* 1526 * Unlink empty entries, reducing DMA usage as well 1527 * as HCD schedule-scanning costs. Delay for any qh 1528 * we just scanned, there's a not-unusual case that it 1529 * doesn't stay idle for long. 1530 */ 1531 if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING && 1532 !(ehci->enabled_hrtimer_events & 1533 BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) { 1534 ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true); 1535 ++ehci->async_unlink_cycle; 1536 } 1537 } 1538