xref: /openbmc/linux/drivers/usb/host/ehci-q.c (revision e6dec923)
1 /*
2  * Copyright (C) 2001-2004 by David Brownell
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the
6  * Free Software Foundation; either version 2 of the License, or (at your
7  * option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  */
18 
19 /* this file is part of ehci-hcd.c */
20 
21 /*-------------------------------------------------------------------------*/
22 
23 /*
24  * EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
25  *
26  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
27  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
28  * buffers needed for the larger number).  We use one QH per endpoint, queue
29  * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
30  *
31  * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
32  * interrupts) needs careful scheduling.  Performance improvements can be
33  * an ongoing challenge.  That's in "ehci-sched.c".
34  *
35  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
36  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
37  * (b) special fields in qh entries or (c) split iso entries.  TTs will
38  * buffer low/full speed data so the host collects it at high speed.
39  */
40 
41 /*-------------------------------------------------------------------------*/
42 
43 /* fill a qtd, returning how much of the buffer we were able to queue up */
44 
45 static int
46 qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
47 		  size_t len, int token, int maxpacket)
48 {
49 	int	i, count;
50 	u64	addr = buf;
51 
52 	/* one buffer entry per 4K ... first might be short or unaligned */
53 	qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
54 	qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
55 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
56 	if (likely (len < count))		/* ... iff needed */
57 		count = len;
58 	else {
59 		buf +=  0x1000;
60 		buf &= ~0x0fff;
61 
62 		/* per-qtd limit: from 16K to 20K (best alignment) */
63 		for (i = 1; count < len && i < 5; i++) {
64 			addr = buf;
65 			qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
66 			qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
67 					(u32)(addr >> 32));
68 			buf += 0x1000;
69 			if ((count + 0x1000) < len)
70 				count += 0x1000;
71 			else
72 				count = len;
73 		}
74 
75 		/* short packets may only terminate transfers */
76 		if (count != len)
77 			count -= (count % maxpacket);
78 	}
79 	qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
80 	qtd->length = count;
81 
82 	return count;
83 }
84 
85 /*-------------------------------------------------------------------------*/
86 
87 static inline void
88 qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
89 {
90 	struct ehci_qh_hw *hw = qh->hw;
91 
92 	/* writes to an active overlay are unsafe */
93 	WARN_ON(qh->qh_state != QH_STATE_IDLE);
94 
95 	hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
96 	hw->hw_alt_next = EHCI_LIST_END(ehci);
97 
98 	/* Except for control endpoints, we make hardware maintain data
99 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
100 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
101 	 * ever clear it.
102 	 */
103 	if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) {
104 		unsigned	is_out, epnum;
105 
106 		is_out = qh->is_out;
107 		epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
108 		if (unlikely(!usb_gettoggle(qh->ps.udev, epnum, is_out))) {
109 			hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
110 			usb_settoggle(qh->ps.udev, epnum, is_out, 1);
111 		}
112 	}
113 
114 	hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
115 }
116 
117 /* if it weren't for a common silicon quirk (writing the dummy into the qh
118  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
119  * recovery (including urb dequeue) would need software changes to a QH...
120  */
121 static void
122 qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
123 {
124 	struct ehci_qtd *qtd;
125 
126 	qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list);
127 
128 	/*
129 	 * first qtd may already be partially processed.
130 	 * If we come here during unlink, the QH overlay region
131 	 * might have reference to the just unlinked qtd. The
132 	 * qtd is updated in qh_completions(). Update the QH
133 	 * overlay here.
134 	 */
135 	if (qh->hw->hw_token & ACTIVE_BIT(ehci)) {
136 		qh->hw->hw_qtd_next = qtd->hw_next;
137 		if (qh->should_be_inactive)
138 			ehci_warn(ehci, "qh %p should be inactive!\n", qh);
139 	} else {
140 		qh_update(ehci, qh, qtd);
141 	}
142 	qh->should_be_inactive = 0;
143 }
144 
145 /*-------------------------------------------------------------------------*/
146 
147 static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
148 
149 static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
150 		struct usb_host_endpoint *ep)
151 {
152 	struct ehci_hcd		*ehci = hcd_to_ehci(hcd);
153 	struct ehci_qh		*qh = ep->hcpriv;
154 	unsigned long		flags;
155 
156 	spin_lock_irqsave(&ehci->lock, flags);
157 	qh->clearing_tt = 0;
158 	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
159 			&& ehci->rh_state == EHCI_RH_RUNNING)
160 		qh_link_async(ehci, qh);
161 	spin_unlock_irqrestore(&ehci->lock, flags);
162 }
163 
164 static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
165 		struct urb *urb, u32 token)
166 {
167 
168 	/* If an async split transaction gets an error or is unlinked,
169 	 * the TT buffer may be left in an indeterminate state.  We
170 	 * have to clear the TT buffer.
171 	 *
172 	 * Note: this routine is never called for Isochronous transfers.
173 	 */
174 	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
175 #ifdef CONFIG_DYNAMIC_DEBUG
176 		struct usb_device *tt = urb->dev->tt->hub;
177 		dev_dbg(&tt->dev,
178 			"clear tt buffer port %d, a%d ep%d t%08x\n",
179 			urb->dev->ttport, urb->dev->devnum,
180 			usb_pipeendpoint(urb->pipe), token);
181 #endif /* CONFIG_DYNAMIC_DEBUG */
182 		if (!ehci_is_TDI(ehci)
183 				|| urb->dev->tt->hub !=
184 				   ehci_to_hcd(ehci)->self.root_hub) {
185 			if (usb_hub_clear_tt_buffer(urb) == 0)
186 				qh->clearing_tt = 1;
187 		} else {
188 
189 			/* REVISIT ARC-derived cores don't clear the root
190 			 * hub TT buffer in this way...
191 			 */
192 		}
193 	}
194 }
195 
196 static int qtd_copy_status (
197 	struct ehci_hcd *ehci,
198 	struct urb *urb,
199 	size_t length,
200 	u32 token
201 )
202 {
203 	int	status = -EINPROGRESS;
204 
205 	/* count IN/OUT bytes, not SETUP (even short packets) */
206 	if (likely (QTD_PID (token) != 2))
207 		urb->actual_length += length - QTD_LENGTH (token);
208 
209 	/* don't modify error codes */
210 	if (unlikely(urb->unlinked))
211 		return status;
212 
213 	/* force cleanup after short read; not always an error */
214 	if (unlikely (IS_SHORT_READ (token)))
215 		status = -EREMOTEIO;
216 
217 	/* serious "can't proceed" faults reported by the hardware */
218 	if (token & QTD_STS_HALT) {
219 		if (token & QTD_STS_BABBLE) {
220 			/* FIXME "must" disable babbling device's port too */
221 			status = -EOVERFLOW;
222 		/* CERR nonzero + halt --> stall */
223 		} else if (QTD_CERR(token)) {
224 			status = -EPIPE;
225 
226 		/* In theory, more than one of the following bits can be set
227 		 * since they are sticky and the transaction is retried.
228 		 * Which to test first is rather arbitrary.
229 		 */
230 		} else if (token & QTD_STS_MMF) {
231 			/* fs/ls interrupt xfer missed the complete-split */
232 			status = -EPROTO;
233 		} else if (token & QTD_STS_DBE) {
234 			status = (QTD_PID (token) == 1) /* IN ? */
235 				? -ENOSR  /* hc couldn't read data */
236 				: -ECOMM; /* hc couldn't write data */
237 		} else if (token & QTD_STS_XACT) {
238 			/* timeout, bad CRC, wrong PID, etc */
239 			ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
240 				urb->dev->devpath,
241 				usb_pipeendpoint(urb->pipe),
242 				usb_pipein(urb->pipe) ? "in" : "out");
243 			status = -EPROTO;
244 		} else {	/* unknown */
245 			status = -EPROTO;
246 		}
247 	}
248 
249 	return status;
250 }
251 
252 static void
253 ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
254 {
255 	if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
256 		/* ... update hc-wide periodic stats */
257 		ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
258 	}
259 
260 	if (unlikely(urb->unlinked)) {
261 		COUNT(ehci->stats.unlink);
262 	} else {
263 		/* report non-error and short read status as zero */
264 		if (status == -EINPROGRESS || status == -EREMOTEIO)
265 			status = 0;
266 		COUNT(ehci->stats.complete);
267 	}
268 
269 #ifdef EHCI_URB_TRACE
270 	ehci_dbg (ehci,
271 		"%s %s urb %p ep%d%s status %d len %d/%d\n",
272 		__func__, urb->dev->devpath, urb,
273 		usb_pipeendpoint (urb->pipe),
274 		usb_pipein (urb->pipe) ? "in" : "out",
275 		status,
276 		urb->actual_length, urb->transfer_buffer_length);
277 #endif
278 
279 	usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
280 	usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
281 }
282 
283 static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
284 
285 /*
286  * Process and free completed qtds for a qh, returning URBs to drivers.
287  * Chases up to qh->hw_current.  Returns nonzero if the caller should
288  * unlink qh.
289  */
290 static unsigned
291 qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
292 {
293 	struct ehci_qtd		*last, *end = qh->dummy;
294 	struct list_head	*entry, *tmp;
295 	int			last_status;
296 	int			stopped;
297 	u8			state;
298 	struct ehci_qh_hw	*hw = qh->hw;
299 
300 	/* completions (or tasks on other cpus) must never clobber HALT
301 	 * till we've gone through and cleaned everything up, even when
302 	 * they add urbs to this qh's queue or mark them for unlinking.
303 	 *
304 	 * NOTE:  unlinking expects to be done in queue order.
305 	 *
306 	 * It's a bug for qh->qh_state to be anything other than
307 	 * QH_STATE_IDLE, unless our caller is scan_async() or
308 	 * scan_intr().
309 	 */
310 	state = qh->qh_state;
311 	qh->qh_state = QH_STATE_COMPLETING;
312 	stopped = (state == QH_STATE_IDLE);
313 
314  rescan:
315 	last = NULL;
316 	last_status = -EINPROGRESS;
317 	qh->dequeue_during_giveback = 0;
318 
319 	/* remove de-activated QTDs from front of queue.
320 	 * after faults (including short reads), cleanup this urb
321 	 * then let the queue advance.
322 	 * if queue is stopped, handles unlinks.
323 	 */
324 	list_for_each_safe (entry, tmp, &qh->qtd_list) {
325 		struct ehci_qtd	*qtd;
326 		struct urb	*urb;
327 		u32		token = 0;
328 
329 		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
330 		urb = qtd->urb;
331 
332 		/* clean up any state from previous QTD ...*/
333 		if (last) {
334 			if (likely (last->urb != urb)) {
335 				ehci_urb_done(ehci, last->urb, last_status);
336 				last_status = -EINPROGRESS;
337 			}
338 			ehci_qtd_free (ehci, last);
339 			last = NULL;
340 		}
341 
342 		/* ignore urbs submitted during completions we reported */
343 		if (qtd == end)
344 			break;
345 
346 		/* hardware copies qtd out of qh overlay */
347 		rmb ();
348 		token = hc32_to_cpu(ehci, qtd->hw_token);
349 
350 		/* always clean up qtds the hc de-activated */
351  retry_xacterr:
352 		if ((token & QTD_STS_ACTIVE) == 0) {
353 
354 			/* Report Data Buffer Error: non-fatal but useful */
355 			if (token & QTD_STS_DBE)
356 				ehci_dbg(ehci,
357 					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
358 					urb,
359 					usb_endpoint_num(&urb->ep->desc),
360 					usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
361 					urb->transfer_buffer_length,
362 					qtd,
363 					qh);
364 
365 			/* on STALL, error, and short reads this urb must
366 			 * complete and all its qtds must be recycled.
367 			 */
368 			if ((token & QTD_STS_HALT) != 0) {
369 
370 				/* retry transaction errors until we
371 				 * reach the software xacterr limit
372 				 */
373 				if ((token & QTD_STS_XACT) &&
374 						QTD_CERR(token) == 0 &&
375 						++qh->xacterrs < QH_XACTERR_MAX &&
376 						!urb->unlinked) {
377 					ehci_dbg(ehci,
378 	"detected XactErr len %zu/%zu retry %d\n",
379 	qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
380 
381 					/* reset the token in the qtd and the
382 					 * qh overlay (which still contains
383 					 * the qtd) so that we pick up from
384 					 * where we left off
385 					 */
386 					token &= ~QTD_STS_HALT;
387 					token |= QTD_STS_ACTIVE |
388 							(EHCI_TUNE_CERR << 10);
389 					qtd->hw_token = cpu_to_hc32(ehci,
390 							token);
391 					wmb();
392 					hw->hw_token = cpu_to_hc32(ehci,
393 							token);
394 					goto retry_xacterr;
395 				}
396 				stopped = 1;
397 				qh->unlink_reason |= QH_UNLINK_HALTED;
398 
399 			/* magic dummy for some short reads; qh won't advance.
400 			 * that silicon quirk can kick in with this dummy too.
401 			 *
402 			 * other short reads won't stop the queue, including
403 			 * control transfers (status stage handles that) or
404 			 * most other single-qtd reads ... the queue stops if
405 			 * URB_SHORT_NOT_OK was set so the driver submitting
406 			 * the urbs could clean it up.
407 			 */
408 			} else if (IS_SHORT_READ (token)
409 					&& !(qtd->hw_alt_next
410 						& EHCI_LIST_END(ehci))) {
411 				stopped = 1;
412 				qh->unlink_reason |= QH_UNLINK_SHORT_READ;
413 			}
414 
415 		/* stop scanning when we reach qtds the hc is using */
416 		} else if (likely (!stopped
417 				&& ehci->rh_state >= EHCI_RH_RUNNING)) {
418 			break;
419 
420 		/* scan the whole queue for unlinks whenever it stops */
421 		} else {
422 			stopped = 1;
423 
424 			/* cancel everything if we halt, suspend, etc */
425 			if (ehci->rh_state < EHCI_RH_RUNNING) {
426 				last_status = -ESHUTDOWN;
427 				qh->unlink_reason |= QH_UNLINK_SHUTDOWN;
428 			}
429 
430 			/* this qtd is active; skip it unless a previous qtd
431 			 * for its urb faulted, or its urb was canceled.
432 			 */
433 			else if (last_status == -EINPROGRESS && !urb->unlinked)
434 				continue;
435 
436 			/*
437 			 * If this was the active qtd when the qh was unlinked
438 			 * and the overlay's token is active, then the overlay
439 			 * hasn't been written back to the qtd yet so use its
440 			 * token instead of the qtd's.  After the qtd is
441 			 * processed and removed, the overlay won't be valid
442 			 * any more.
443 			 */
444 			if (state == QH_STATE_IDLE &&
445 					qh->qtd_list.next == &qtd->qtd_list &&
446 					(hw->hw_token & ACTIVE_BIT(ehci))) {
447 				token = hc32_to_cpu(ehci, hw->hw_token);
448 				hw->hw_token &= ~ACTIVE_BIT(ehci);
449 				qh->should_be_inactive = 1;
450 
451 				/* An unlink may leave an incomplete
452 				 * async transaction in the TT buffer.
453 				 * We have to clear it.
454 				 */
455 				ehci_clear_tt_buffer(ehci, qh, urb, token);
456 			}
457 		}
458 
459 		/* unless we already know the urb's status, collect qtd status
460 		 * and update count of bytes transferred.  in common short read
461 		 * cases with only one data qtd (including control transfers),
462 		 * queue processing won't halt.  but with two or more qtds (for
463 		 * example, with a 32 KB transfer), when the first qtd gets a
464 		 * short read the second must be removed by hand.
465 		 */
466 		if (last_status == -EINPROGRESS) {
467 			last_status = qtd_copy_status(ehci, urb,
468 					qtd->length, token);
469 			if (last_status == -EREMOTEIO
470 					&& (qtd->hw_alt_next
471 						& EHCI_LIST_END(ehci)))
472 				last_status = -EINPROGRESS;
473 
474 			/* As part of low/full-speed endpoint-halt processing
475 			 * we must clear the TT buffer (11.17.5).
476 			 */
477 			if (unlikely(last_status != -EINPROGRESS &&
478 					last_status != -EREMOTEIO)) {
479 				/* The TT's in some hubs malfunction when they
480 				 * receive this request following a STALL (they
481 				 * stop sending isochronous packets).  Since a
482 				 * STALL can't leave the TT buffer in a busy
483 				 * state (if you believe Figures 11-48 - 11-51
484 				 * in the USB 2.0 spec), we won't clear the TT
485 				 * buffer in this case.  Strictly speaking this
486 				 * is a violation of the spec.
487 				 */
488 				if (last_status != -EPIPE)
489 					ehci_clear_tt_buffer(ehci, qh, urb,
490 							token);
491 			}
492 		}
493 
494 		/* if we're removing something not at the queue head,
495 		 * patch the hardware queue pointer.
496 		 */
497 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
498 			last = list_entry (qtd->qtd_list.prev,
499 					struct ehci_qtd, qtd_list);
500 			last->hw_next = qtd->hw_next;
501 		}
502 
503 		/* remove qtd; it's recycled after possible urb completion */
504 		list_del (&qtd->qtd_list);
505 		last = qtd;
506 
507 		/* reinit the xacterr counter for the next qtd */
508 		qh->xacterrs = 0;
509 	}
510 
511 	/* last urb's completion might still need calling */
512 	if (likely (last != NULL)) {
513 		ehci_urb_done(ehci, last->urb, last_status);
514 		ehci_qtd_free (ehci, last);
515 	}
516 
517 	/* Do we need to rescan for URBs dequeued during a giveback? */
518 	if (unlikely(qh->dequeue_during_giveback)) {
519 		/* If the QH is already unlinked, do the rescan now. */
520 		if (state == QH_STATE_IDLE)
521 			goto rescan;
522 
523 		/* Otherwise the caller must unlink the QH. */
524 	}
525 
526 	/* restore original state; caller must unlink or relink */
527 	qh->qh_state = state;
528 
529 	/* be sure the hardware's done with the qh before refreshing
530 	 * it after fault cleanup, or recovering from silicon wrongly
531 	 * overlaying the dummy qtd (which reduces DMA chatter).
532 	 *
533 	 * We won't refresh a QH that's linked (after the HC
534 	 * stopped the queue).  That avoids a race:
535 	 *  - HC reads first part of QH;
536 	 *  - CPU updates that first part and the token;
537 	 *  - HC reads rest of that QH, including token
538 	 * Result:  HC gets an inconsistent image, and then
539 	 * DMAs to/from the wrong memory (corrupting it).
540 	 *
541 	 * That should be rare for interrupt transfers,
542 	 * except maybe high bandwidth ...
543 	 */
544 	if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci))
545 		qh->unlink_reason |= QH_UNLINK_DUMMY_OVERLAY;
546 
547 	/* Let the caller know if the QH needs to be unlinked. */
548 	return qh->unlink_reason;
549 }
550 
551 /*-------------------------------------------------------------------------*/
552 
553 /*
554  * reverse of qh_urb_transaction:  free a list of TDs.
555  * used for cleanup after errors, before HC sees an URB's TDs.
556  */
557 static void qtd_list_free (
558 	struct ehci_hcd		*ehci,
559 	struct urb		*urb,
560 	struct list_head	*qtd_list
561 ) {
562 	struct list_head	*entry, *temp;
563 
564 	list_for_each_safe (entry, temp, qtd_list) {
565 		struct ehci_qtd	*qtd;
566 
567 		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
568 		list_del (&qtd->qtd_list);
569 		ehci_qtd_free (ehci, qtd);
570 	}
571 }
572 
573 /*
574  * create a list of filled qtds for this URB; won't link into qh.
575  */
576 static struct list_head *
577 qh_urb_transaction (
578 	struct ehci_hcd		*ehci,
579 	struct urb		*urb,
580 	struct list_head	*head,
581 	gfp_t			flags
582 ) {
583 	struct ehci_qtd		*qtd, *qtd_prev;
584 	dma_addr_t		buf;
585 	int			len, this_sg_len, maxpacket;
586 	int			is_input;
587 	u32			token;
588 	int			i;
589 	struct scatterlist	*sg;
590 
591 	/*
592 	 * URBs map to sequences of QTDs:  one logical transaction
593 	 */
594 	qtd = ehci_qtd_alloc (ehci, flags);
595 	if (unlikely (!qtd))
596 		return NULL;
597 	list_add_tail (&qtd->qtd_list, head);
598 	qtd->urb = urb;
599 
600 	token = QTD_STS_ACTIVE;
601 	token |= (EHCI_TUNE_CERR << 10);
602 	/* for split transactions, SplitXState initialized to zero */
603 
604 	len = urb->transfer_buffer_length;
605 	is_input = usb_pipein (urb->pipe);
606 	if (usb_pipecontrol (urb->pipe)) {
607 		/* SETUP pid */
608 		qtd_fill(ehci, qtd, urb->setup_dma,
609 				sizeof (struct usb_ctrlrequest),
610 				token | (2 /* "setup" */ << 8), 8);
611 
612 		/* ... and always at least one more pid */
613 		token ^= QTD_TOGGLE;
614 		qtd_prev = qtd;
615 		qtd = ehci_qtd_alloc (ehci, flags);
616 		if (unlikely (!qtd))
617 			goto cleanup;
618 		qtd->urb = urb;
619 		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
620 		list_add_tail (&qtd->qtd_list, head);
621 
622 		/* for zero length DATA stages, STATUS is always IN */
623 		if (len == 0)
624 			token |= (1 /* "in" */ << 8);
625 	}
626 
627 	/*
628 	 * data transfer stage:  buffer setup
629 	 */
630 	i = urb->num_mapped_sgs;
631 	if (len > 0 && i > 0) {
632 		sg = urb->sg;
633 		buf = sg_dma_address(sg);
634 
635 		/* urb->transfer_buffer_length may be smaller than the
636 		 * size of the scatterlist (or vice versa)
637 		 */
638 		this_sg_len = min_t(int, sg_dma_len(sg), len);
639 	} else {
640 		sg = NULL;
641 		buf = urb->transfer_dma;
642 		this_sg_len = len;
643 	}
644 
645 	if (is_input)
646 		token |= (1 /* "in" */ << 8);
647 	/* else it's already initted to "out" pid (0 << 8) */
648 
649 	maxpacket = usb_maxpacket(urb->dev, urb->pipe, !is_input);
650 
651 	/*
652 	 * buffer gets wrapped in one or more qtds;
653 	 * last one may be "short" (including zero len)
654 	 * and may serve as a control status ack
655 	 */
656 	for (;;) {
657 		int this_qtd_len;
658 
659 		this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
660 				maxpacket);
661 		this_sg_len -= this_qtd_len;
662 		len -= this_qtd_len;
663 		buf += this_qtd_len;
664 
665 		/*
666 		 * short reads advance to a "magic" dummy instead of the next
667 		 * qtd ... that forces the queue to stop, for manual cleanup.
668 		 * (this will usually be overridden later.)
669 		 */
670 		if (is_input)
671 			qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
672 
673 		/* qh makes control packets use qtd toggle; maybe switch it */
674 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
675 			token ^= QTD_TOGGLE;
676 
677 		if (likely(this_sg_len <= 0)) {
678 			if (--i <= 0 || len <= 0)
679 				break;
680 			sg = sg_next(sg);
681 			buf = sg_dma_address(sg);
682 			this_sg_len = min_t(int, sg_dma_len(sg), len);
683 		}
684 
685 		qtd_prev = qtd;
686 		qtd = ehci_qtd_alloc (ehci, flags);
687 		if (unlikely (!qtd))
688 			goto cleanup;
689 		qtd->urb = urb;
690 		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
691 		list_add_tail (&qtd->qtd_list, head);
692 	}
693 
694 	/*
695 	 * unless the caller requires manual cleanup after short reads,
696 	 * have the alt_next mechanism keep the queue running after the
697 	 * last data qtd (the only one, for control and most other cases).
698 	 */
699 	if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
700 				|| usb_pipecontrol (urb->pipe)))
701 		qtd->hw_alt_next = EHCI_LIST_END(ehci);
702 
703 	/*
704 	 * control requests may need a terminating data "status" ack;
705 	 * other OUT ones may need a terminating short packet
706 	 * (zero length).
707 	 */
708 	if (likely (urb->transfer_buffer_length != 0)) {
709 		int	one_more = 0;
710 
711 		if (usb_pipecontrol (urb->pipe)) {
712 			one_more = 1;
713 			token ^= 0x0100;	/* "in" <--> "out"  */
714 			token |= QTD_TOGGLE;	/* force DATA1 */
715 		} else if (usb_pipeout(urb->pipe)
716 				&& (urb->transfer_flags & URB_ZERO_PACKET)
717 				&& !(urb->transfer_buffer_length % maxpacket)) {
718 			one_more = 1;
719 		}
720 		if (one_more) {
721 			qtd_prev = qtd;
722 			qtd = ehci_qtd_alloc (ehci, flags);
723 			if (unlikely (!qtd))
724 				goto cleanup;
725 			qtd->urb = urb;
726 			qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
727 			list_add_tail (&qtd->qtd_list, head);
728 
729 			/* never any data in such packets */
730 			qtd_fill(ehci, qtd, 0, 0, token, 0);
731 		}
732 	}
733 
734 	/* by default, enable interrupt on urb completion */
735 	if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
736 		qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
737 	return head;
738 
739 cleanup:
740 	qtd_list_free (ehci, urb, head);
741 	return NULL;
742 }
743 
744 /*-------------------------------------------------------------------------*/
745 
746 // Would be best to create all qh's from config descriptors,
747 // when each interface/altsetting is established.  Unlink
748 // any previous qh and cancel its urbs first; endpoints are
749 // implicitly reset then (data toggle too).
750 // That'd mean updating how usbcore talks to HCDs. (2.7?)
751 
752 
753 /*
754  * Each QH holds a qtd list; a QH is used for everything except iso.
755  *
756  * For interrupt urbs, the scheduler must set the microframe scheduling
757  * mask(s) each time the QH gets scheduled.  For highspeed, that's
758  * just one microframe in the s-mask.  For split interrupt transactions
759  * there are additional complications: c-mask, maybe FSTNs.
760  */
761 static struct ehci_qh *
762 qh_make (
763 	struct ehci_hcd		*ehci,
764 	struct urb		*urb,
765 	gfp_t			flags
766 ) {
767 	struct ehci_qh		*qh = ehci_qh_alloc (ehci, flags);
768 	struct usb_host_endpoint *ep;
769 	u32			info1 = 0, info2 = 0;
770 	int			is_input, type;
771 	int			maxp = 0;
772 	int			mult;
773 	struct usb_tt		*tt = urb->dev->tt;
774 	struct ehci_qh_hw	*hw;
775 
776 	if (!qh)
777 		return qh;
778 
779 	/*
780 	 * init endpoint/device data for this QH
781 	 */
782 	info1 |= usb_pipeendpoint (urb->pipe) << 8;
783 	info1 |= usb_pipedevice (urb->pipe) << 0;
784 
785 	is_input = usb_pipein (urb->pipe);
786 	type = usb_pipetype (urb->pipe);
787 	ep = usb_pipe_endpoint (urb->dev, urb->pipe);
788 	maxp = usb_endpoint_maxp (&ep->desc);
789 	mult = usb_endpoint_maxp_mult (&ep->desc);
790 
791 	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
792 	 * acts like up to 3KB, but is built from smaller packets.
793 	 */
794 	if (maxp > 1024) {
795 		ehci_dbg(ehci, "bogus qh maxpacket %d\n", maxp);
796 		goto done;
797 	}
798 
799 	/* Compute interrupt scheduling parameters just once, and save.
800 	 * - allowing for high bandwidth, how many nsec/uframe are used?
801 	 * - split transactions need a second CSPLIT uframe; same question
802 	 * - splits also need a schedule gap (for full/low speed I/O)
803 	 * - qh has a polling interval
804 	 *
805 	 * For control/bulk requests, the HC or TT handles these.
806 	 */
807 	if (type == PIPE_INTERRUPT) {
808 		unsigned	tmp;
809 
810 		qh->ps.usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
811 				is_input, 0, mult * maxp));
812 		qh->ps.phase = NO_FRAME;
813 
814 		if (urb->dev->speed == USB_SPEED_HIGH) {
815 			qh->ps.c_usecs = 0;
816 			qh->gap_uf = 0;
817 
818 			if (urb->interval > 1 && urb->interval < 8) {
819 				/* NOTE interval 2 or 4 uframes could work.
820 				 * But interval 1 scheduling is simpler, and
821 				 * includes high bandwidth.
822 				 */
823 				urb->interval = 1;
824 			} else if (urb->interval > ehci->periodic_size << 3) {
825 				urb->interval = ehci->periodic_size << 3;
826 			}
827 			qh->ps.period = urb->interval >> 3;
828 
829 			/* period for bandwidth allocation */
830 			tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
831 					1 << (urb->ep->desc.bInterval - 1));
832 
833 			/* Allow urb->interval to override */
834 			qh->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
835 			qh->ps.bw_period = qh->ps.bw_uperiod >> 3;
836 		} else {
837 			int		think_time;
838 
839 			/* gap is f(FS/LS transfer times) */
840 			qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
841 					is_input, 0, maxp) / (125 * 1000);
842 
843 			/* FIXME this just approximates SPLIT/CSPLIT times */
844 			if (is_input) {		// SPLIT, gap, CSPLIT+DATA
845 				qh->ps.c_usecs = qh->ps.usecs + HS_USECS(0);
846 				qh->ps.usecs = HS_USECS(1);
847 			} else {		// SPLIT+DATA, gap, CSPLIT
848 				qh->ps.usecs += HS_USECS(1);
849 				qh->ps.c_usecs = HS_USECS(0);
850 			}
851 
852 			think_time = tt ? tt->think_time : 0;
853 			qh->ps.tt_usecs = NS_TO_US(think_time +
854 					usb_calc_bus_time (urb->dev->speed,
855 					is_input, 0, maxp));
856 			if (urb->interval > ehci->periodic_size)
857 				urb->interval = ehci->periodic_size;
858 			qh->ps.period = urb->interval;
859 
860 			/* period for bandwidth allocation */
861 			tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
862 					urb->ep->desc.bInterval);
863 			tmp = rounddown_pow_of_two(tmp);
864 
865 			/* Allow urb->interval to override */
866 			qh->ps.bw_period = min_t(unsigned, tmp, urb->interval);
867 			qh->ps.bw_uperiod = qh->ps.bw_period << 3;
868 		}
869 	}
870 
871 	/* support for tt scheduling, and access to toggles */
872 	qh->ps.udev = urb->dev;
873 	qh->ps.ep = urb->ep;
874 
875 	/* using TT? */
876 	switch (urb->dev->speed) {
877 	case USB_SPEED_LOW:
878 		info1 |= QH_LOW_SPEED;
879 		/* FALL THROUGH */
880 
881 	case USB_SPEED_FULL:
882 		/* EPS 0 means "full" */
883 		if (type != PIPE_INTERRUPT)
884 			info1 |= (EHCI_TUNE_RL_TT << 28);
885 		if (type == PIPE_CONTROL) {
886 			info1 |= QH_CONTROL_EP;		/* for TT */
887 			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
888 		}
889 		info1 |= maxp << 16;
890 
891 		info2 |= (EHCI_TUNE_MULT_TT << 30);
892 
893 		/* Some Freescale processors have an erratum in which the
894 		 * port number in the queue head was 0..N-1 instead of 1..N.
895 		 */
896 		if (ehci_has_fsl_portno_bug(ehci))
897 			info2 |= (urb->dev->ttport-1) << 23;
898 		else
899 			info2 |= urb->dev->ttport << 23;
900 
901 		/* set the address of the TT; for TDI's integrated
902 		 * root hub tt, leave it zeroed.
903 		 */
904 		if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
905 			info2 |= tt->hub->devnum << 16;
906 
907 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
908 
909 		break;
910 
911 	case USB_SPEED_HIGH:		/* no TT involved */
912 		info1 |= QH_HIGH_SPEED;
913 		if (type == PIPE_CONTROL) {
914 			info1 |= (EHCI_TUNE_RL_HS << 28);
915 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
916 			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
917 			info2 |= (EHCI_TUNE_MULT_HS << 30);
918 		} else if (type == PIPE_BULK) {
919 			info1 |= (EHCI_TUNE_RL_HS << 28);
920 			/* The USB spec says that high speed bulk endpoints
921 			 * always use 512 byte maxpacket.  But some device
922 			 * vendors decided to ignore that, and MSFT is happy
923 			 * to help them do so.  So now people expect to use
924 			 * such nonconformant devices with Linux too; sigh.
925 			 */
926 			info1 |= maxp << 16;
927 			info2 |= (EHCI_TUNE_MULT_HS << 30);
928 		} else {		/* PIPE_INTERRUPT */
929 			info1 |= maxp << 16;
930 			info2 |= mult << 30;
931 		}
932 		break;
933 	default:
934 		ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev,
935 			urb->dev->speed);
936 done:
937 		qh_destroy(ehci, qh);
938 		return NULL;
939 	}
940 
941 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
942 
943 	/* init as live, toggle clear */
944 	qh->qh_state = QH_STATE_IDLE;
945 	hw = qh->hw;
946 	hw->hw_info1 = cpu_to_hc32(ehci, info1);
947 	hw->hw_info2 = cpu_to_hc32(ehci, info2);
948 	qh->is_out = !is_input;
949 	usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
950 	return qh;
951 }
952 
953 /*-------------------------------------------------------------------------*/
954 
955 static void enable_async(struct ehci_hcd *ehci)
956 {
957 	if (ehci->async_count++)
958 		return;
959 
960 	/* Stop waiting to turn off the async schedule */
961 	ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC);
962 
963 	/* Don't start the schedule until ASS is 0 */
964 	ehci_poll_ASS(ehci);
965 	turn_on_io_watchdog(ehci);
966 }
967 
968 static void disable_async(struct ehci_hcd *ehci)
969 {
970 	if (--ehci->async_count)
971 		return;
972 
973 	/* The async schedule and unlink lists are supposed to be empty */
974 	WARN_ON(ehci->async->qh_next.qh || !list_empty(&ehci->async_unlink) ||
975 			!list_empty(&ehci->async_idle));
976 
977 	/* Don't turn off the schedule until ASS is 1 */
978 	ehci_poll_ASS(ehci);
979 }
980 
981 /* move qh (and its qtds) onto async queue; maybe enable queue.  */
982 
983 static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
984 {
985 	__hc32		dma = QH_NEXT(ehci, qh->qh_dma);
986 	struct ehci_qh	*head;
987 
988 	/* Don't link a QH if there's a Clear-TT-Buffer pending */
989 	if (unlikely(qh->clearing_tt))
990 		return;
991 
992 	WARN_ON(qh->qh_state != QH_STATE_IDLE);
993 
994 	/* clear halt and/or toggle; and maybe recover from silicon quirk */
995 	qh_refresh(ehci, qh);
996 
997 	/* splice right after start */
998 	head = ehci->async;
999 	qh->qh_next = head->qh_next;
1000 	qh->hw->hw_next = head->hw->hw_next;
1001 	wmb ();
1002 
1003 	head->qh_next.qh = qh;
1004 	head->hw->hw_next = dma;
1005 
1006 	qh->qh_state = QH_STATE_LINKED;
1007 	qh->xacterrs = 0;
1008 	qh->unlink_reason = 0;
1009 	/* qtd completions reported later by interrupt */
1010 
1011 	enable_async(ehci);
1012 }
1013 
1014 /*-------------------------------------------------------------------------*/
1015 
1016 /*
1017  * For control/bulk/interrupt, return QH with these TDs appended.
1018  * Allocates and initializes the QH if necessary.
1019  * Returns null if it can't allocate a QH it needs to.
1020  * If the QH has TDs (urbs) already, that's great.
1021  */
1022 static struct ehci_qh *qh_append_tds (
1023 	struct ehci_hcd		*ehci,
1024 	struct urb		*urb,
1025 	struct list_head	*qtd_list,
1026 	int			epnum,
1027 	void			**ptr
1028 )
1029 {
1030 	struct ehci_qh		*qh = NULL;
1031 	__hc32			qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
1032 
1033 	qh = (struct ehci_qh *) *ptr;
1034 	if (unlikely (qh == NULL)) {
1035 		/* can't sleep here, we have ehci->lock... */
1036 		qh = qh_make (ehci, urb, GFP_ATOMIC);
1037 		*ptr = qh;
1038 	}
1039 	if (likely (qh != NULL)) {
1040 		struct ehci_qtd	*qtd;
1041 
1042 		if (unlikely (list_empty (qtd_list)))
1043 			qtd = NULL;
1044 		else
1045 			qtd = list_entry (qtd_list->next, struct ehci_qtd,
1046 					qtd_list);
1047 
1048 		/* control qh may need patching ... */
1049 		if (unlikely (epnum == 0)) {
1050 
1051                         /* usb_reset_device() briefly reverts to address 0 */
1052                         if (usb_pipedevice (urb->pipe) == 0)
1053 				qh->hw->hw_info1 &= ~qh_addr_mask;
1054 		}
1055 
1056 		/* just one way to queue requests: swap with the dummy qtd.
1057 		 * only hc or qh_refresh() ever modify the overlay.
1058 		 */
1059 		if (likely (qtd != NULL)) {
1060 			struct ehci_qtd		*dummy;
1061 			dma_addr_t		dma;
1062 			__hc32			token;
1063 
1064 			/* to avoid racing the HC, use the dummy td instead of
1065 			 * the first td of our list (becomes new dummy).  both
1066 			 * tds stay deactivated until we're done, when the
1067 			 * HC is allowed to fetch the old dummy (4.10.2).
1068 			 */
1069 			token = qtd->hw_token;
1070 			qtd->hw_token = HALT_BIT(ehci);
1071 
1072 			dummy = qh->dummy;
1073 
1074 			dma = dummy->qtd_dma;
1075 			*dummy = *qtd;
1076 			dummy->qtd_dma = dma;
1077 
1078 			list_del (&qtd->qtd_list);
1079 			list_add (&dummy->qtd_list, qtd_list);
1080 			list_splice_tail(qtd_list, &qh->qtd_list);
1081 
1082 			ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
1083 			qh->dummy = qtd;
1084 
1085 			/* hc must see the new dummy at list end */
1086 			dma = qtd->qtd_dma;
1087 			qtd = list_entry (qh->qtd_list.prev,
1088 					struct ehci_qtd, qtd_list);
1089 			qtd->hw_next = QTD_NEXT(ehci, dma);
1090 
1091 			/* let the hc process these next qtds */
1092 			wmb ();
1093 			dummy->hw_token = token;
1094 
1095 			urb->hcpriv = qh;
1096 		}
1097 	}
1098 	return qh;
1099 }
1100 
1101 /*-------------------------------------------------------------------------*/
1102 
1103 static int
1104 submit_async (
1105 	struct ehci_hcd		*ehci,
1106 	struct urb		*urb,
1107 	struct list_head	*qtd_list,
1108 	gfp_t			mem_flags
1109 ) {
1110 	int			epnum;
1111 	unsigned long		flags;
1112 	struct ehci_qh		*qh = NULL;
1113 	int			rc;
1114 
1115 	epnum = urb->ep->desc.bEndpointAddress;
1116 
1117 #ifdef EHCI_URB_TRACE
1118 	{
1119 		struct ehci_qtd *qtd;
1120 		qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1121 		ehci_dbg(ehci,
1122 			 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1123 			 __func__, urb->dev->devpath, urb,
1124 			 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1125 			 urb->transfer_buffer_length,
1126 			 qtd, urb->ep->hcpriv);
1127 	}
1128 #endif
1129 
1130 	spin_lock_irqsave (&ehci->lock, flags);
1131 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1132 		rc = -ESHUTDOWN;
1133 		goto done;
1134 	}
1135 	rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1136 	if (unlikely(rc))
1137 		goto done;
1138 
1139 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
1140 	if (unlikely(qh == NULL)) {
1141 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1142 		rc = -ENOMEM;
1143 		goto done;
1144 	}
1145 
1146 	/* Control/bulk operations through TTs don't need scheduling,
1147 	 * the HC and TT handle it when the TT has a buffer ready.
1148 	 */
1149 	if (likely (qh->qh_state == QH_STATE_IDLE))
1150 		qh_link_async(ehci, qh);
1151  done:
1152 	spin_unlock_irqrestore (&ehci->lock, flags);
1153 	if (unlikely (qh == NULL))
1154 		qtd_list_free (ehci, urb, qtd_list);
1155 	return rc;
1156 }
1157 
1158 /*-------------------------------------------------------------------------*/
1159 #ifdef CONFIG_USB_HCD_TEST_MODE
1160 /*
1161  * This function creates the qtds and submits them for the
1162  * SINGLE_STEP_SET_FEATURE Test.
1163  * This is done in two parts: first SETUP req for GetDesc is sent then
1164  * 15 seconds later, the IN stage for GetDesc starts to req data from dev
1165  *
1166  * is_setup : i/p arguement decides which of the two stage needs to be
1167  * performed; TRUE - SETUP and FALSE - IN+STATUS
1168  * Returns 0 if success
1169  */
1170 static int submit_single_step_set_feature(
1171 	struct usb_hcd  *hcd,
1172 	struct urb      *urb,
1173 	int             is_setup
1174 ) {
1175 	struct ehci_hcd		*ehci = hcd_to_ehci(hcd);
1176 	struct list_head	qtd_list;
1177 	struct list_head	*head;
1178 
1179 	struct ehci_qtd		*qtd, *qtd_prev;
1180 	dma_addr_t		buf;
1181 	int			len, maxpacket;
1182 	u32			token;
1183 
1184 	INIT_LIST_HEAD(&qtd_list);
1185 	head = &qtd_list;
1186 
1187 	/* URBs map to sequences of QTDs:  one logical transaction */
1188 	qtd = ehci_qtd_alloc(ehci, GFP_KERNEL);
1189 	if (unlikely(!qtd))
1190 		return -1;
1191 	list_add_tail(&qtd->qtd_list, head);
1192 	qtd->urb = urb;
1193 
1194 	token = QTD_STS_ACTIVE;
1195 	token |= (EHCI_TUNE_CERR << 10);
1196 
1197 	len = urb->transfer_buffer_length;
1198 	/*
1199 	 * Check if the request is to perform just the SETUP stage (getDesc)
1200 	 * as in SINGLE_STEP_SET_FEATURE test, DATA stage (IN) happens
1201 	 * 15 secs after the setup
1202 	 */
1203 	if (is_setup) {
1204 		/* SETUP pid */
1205 		qtd_fill(ehci, qtd, urb->setup_dma,
1206 				sizeof(struct usb_ctrlrequest),
1207 				token | (2 /* "setup" */ << 8), 8);
1208 
1209 		submit_async(ehci, urb, &qtd_list, GFP_ATOMIC);
1210 		return 0; /*Return now; we shall come back after 15 seconds*/
1211 	}
1212 
1213 	/*
1214 	 * IN: data transfer stage:  buffer setup : start the IN txn phase for
1215 	 * the get_Desc SETUP which was sent 15seconds back
1216 	 */
1217 	token ^= QTD_TOGGLE;   /*We need to start IN with DATA-1 Pid-sequence*/
1218 	buf = urb->transfer_dma;
1219 
1220 	token |= (1 /* "in" */ << 8);  /*This is IN stage*/
1221 
1222 	maxpacket = usb_maxpacket(urb->dev, urb->pipe, 0);
1223 
1224 	qtd_fill(ehci, qtd, buf, len, token, maxpacket);
1225 
1226 	/*
1227 	 * Our IN phase shall always be a short read; so keep the queue running
1228 	 * and let it advance to the next qtd which zero length OUT status
1229 	 */
1230 	qtd->hw_alt_next = EHCI_LIST_END(ehci);
1231 
1232 	/* STATUS stage for GetDesc control request */
1233 	token ^= 0x0100;        /* "in" <--> "out"  */
1234 	token |= QTD_TOGGLE;    /* force DATA1 */
1235 
1236 	qtd_prev = qtd;
1237 	qtd = ehci_qtd_alloc(ehci, GFP_ATOMIC);
1238 	if (unlikely(!qtd))
1239 		goto cleanup;
1240 	qtd->urb = urb;
1241 	qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
1242 	list_add_tail(&qtd->qtd_list, head);
1243 
1244 	/* dont fill any data in such packets */
1245 	qtd_fill(ehci, qtd, 0, 0, token, 0);
1246 
1247 	/* by default, enable interrupt on urb completion */
1248 	if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
1249 		qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
1250 
1251 	submit_async(ehci, urb, &qtd_list, GFP_KERNEL);
1252 
1253 	return 0;
1254 
1255 cleanup:
1256 	qtd_list_free(ehci, urb, head);
1257 	return -1;
1258 }
1259 #endif /* CONFIG_USB_HCD_TEST_MODE */
1260 
1261 /*-------------------------------------------------------------------------*/
1262 
1263 static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1264 {
1265 	struct ehci_qh		*prev;
1266 
1267 	/* Add to the end of the list of QHs waiting for the next IAAD */
1268 	qh->qh_state = QH_STATE_UNLINK_WAIT;
1269 	list_add_tail(&qh->unlink_node, &ehci->async_unlink);
1270 
1271 	/* Unlink it from the schedule */
1272 	prev = ehci->async;
1273 	while (prev->qh_next.qh != qh)
1274 		prev = prev->qh_next.qh;
1275 
1276 	prev->hw->hw_next = qh->hw->hw_next;
1277 	prev->qh_next = qh->qh_next;
1278 	if (ehci->qh_scan_next == qh)
1279 		ehci->qh_scan_next = qh->qh_next.qh;
1280 }
1281 
1282 static void start_iaa_cycle(struct ehci_hcd *ehci)
1283 {
1284 	/* If the controller isn't running, we don't have to wait for it */
1285 	if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) {
1286 		end_unlink_async(ehci);
1287 
1288 	/* Otherwise start a new IAA cycle if one isn't already running */
1289 	} else if (ehci->rh_state == EHCI_RH_RUNNING &&
1290 			!ehci->iaa_in_progress) {
1291 
1292 		/* Make sure the unlinks are all visible to the hardware */
1293 		wmb();
1294 
1295 		ehci_writel(ehci, ehci->command | CMD_IAAD,
1296 				&ehci->regs->command);
1297 		ehci_readl(ehci, &ehci->regs->command);
1298 		ehci->iaa_in_progress = true;
1299 		ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true);
1300 	}
1301 }
1302 
1303 static void end_iaa_cycle(struct ehci_hcd *ehci)
1304 {
1305 	if (ehci->has_synopsys_hc_bug)
1306 		ehci_writel(ehci, (u32) ehci->async->qh_dma,
1307 			    &ehci->regs->async_next);
1308 
1309 	/* The current IAA cycle has ended */
1310 	ehci->iaa_in_progress = false;
1311 
1312 	end_unlink_async(ehci);
1313 }
1314 
1315 /* See if the async qh for the qtds being unlinked are now gone from the HC */
1316 
1317 static void end_unlink_async(struct ehci_hcd *ehci)
1318 {
1319 	struct ehci_qh		*qh;
1320 	bool			early_exit;
1321 
1322 	if (list_empty(&ehci->async_unlink))
1323 		return;
1324 	qh = list_first_entry(&ehci->async_unlink, struct ehci_qh,
1325 			unlink_node);	/* QH whose IAA cycle just ended */
1326 
1327 	/*
1328 	 * If async_unlinking is set then this routine is already running,
1329 	 * either on the stack or on another CPU.
1330 	 */
1331 	early_exit = ehci->async_unlinking;
1332 
1333 	/* If the controller isn't running, process all the waiting QHs */
1334 	if (ehci->rh_state < EHCI_RH_RUNNING)
1335 		list_splice_tail_init(&ehci->async_unlink, &ehci->async_idle);
1336 
1337 	/*
1338 	 * Intel (?) bug: The HC can write back the overlay region even
1339 	 * after the IAA interrupt occurs.  In self-defense, always go
1340 	 * through two IAA cycles for each QH.
1341 	 */
1342 	else if (qh->qh_state == QH_STATE_UNLINK) {
1343 		/*
1344 		 * Second IAA cycle has finished.  Process only the first
1345 		 * waiting QH (NVIDIA (?) bug).
1346 		 */
1347 		list_move_tail(&qh->unlink_node, &ehci->async_idle);
1348 	}
1349 
1350 	/*
1351 	 * AMD/ATI (?) bug: The HC can continue to use an active QH long
1352 	 * after the IAA interrupt occurs.  To prevent problems, QHs that
1353 	 * may still be active will wait until 2 ms have passed with no
1354 	 * change to the hw_current and hw_token fields (this delay occurs
1355 	 * between the two IAA cycles).
1356 	 *
1357 	 * The EHCI spec (4.8.2) says that active QHs must not be removed
1358 	 * from the async schedule and recommends waiting until the QH
1359 	 * goes inactive.  This is ridiculous because the QH will _never_
1360 	 * become inactive if the endpoint NAKs indefinitely.
1361 	 */
1362 
1363 	/* Some reasons for unlinking guarantee the QH can't be active */
1364 	else if (qh->unlink_reason & (QH_UNLINK_HALTED |
1365 			QH_UNLINK_SHORT_READ | QH_UNLINK_DUMMY_OVERLAY))
1366 		goto DelayDone;
1367 
1368 	/* The QH can't be active if the queue was and still is empty... */
1369 	else if	((qh->unlink_reason & QH_UNLINK_QUEUE_EMPTY) &&
1370 			list_empty(&qh->qtd_list))
1371 		goto DelayDone;
1372 
1373 	/* ... or if the QH has halted */
1374 	else if	(qh->hw->hw_token & cpu_to_hc32(ehci, QTD_STS_HALT))
1375 		goto DelayDone;
1376 
1377 	/* Otherwise we have to wait until the QH stops changing */
1378 	else {
1379 		__hc32		qh_current, qh_token;
1380 
1381 		qh_current = qh->hw->hw_current;
1382 		qh_token = qh->hw->hw_token;
1383 		if (qh_current != ehci->old_current ||
1384 				qh_token != ehci->old_token) {
1385 			ehci->old_current = qh_current;
1386 			ehci->old_token = qh_token;
1387 			ehci_enable_event(ehci,
1388 					EHCI_HRTIMER_ACTIVE_UNLINK, true);
1389 			return;
1390 		}
1391  DelayDone:
1392 		qh->qh_state = QH_STATE_UNLINK;
1393 		early_exit = true;
1394 	}
1395 	ehci->old_current = ~0;		/* Prepare for next QH */
1396 
1397 	/* Start a new IAA cycle if any QHs are waiting for it */
1398 	if (!list_empty(&ehci->async_unlink))
1399 		start_iaa_cycle(ehci);
1400 
1401 	/*
1402 	 * Don't allow nesting or concurrent calls,
1403 	 * or wait for the second IAA cycle for the next QH.
1404 	 */
1405 	if (early_exit)
1406 		return;
1407 
1408 	/* Process the idle QHs */
1409 	ehci->async_unlinking = true;
1410 	while (!list_empty(&ehci->async_idle)) {
1411 		qh = list_first_entry(&ehci->async_idle, struct ehci_qh,
1412 				unlink_node);
1413 		list_del(&qh->unlink_node);
1414 
1415 		qh->qh_state = QH_STATE_IDLE;
1416 		qh->qh_next.qh = NULL;
1417 
1418 		if (!list_empty(&qh->qtd_list))
1419 			qh_completions(ehci, qh);
1420 		if (!list_empty(&qh->qtd_list) &&
1421 				ehci->rh_state == EHCI_RH_RUNNING)
1422 			qh_link_async(ehci, qh);
1423 		disable_async(ehci);
1424 	}
1425 	ehci->async_unlinking = false;
1426 }
1427 
1428 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
1429 
1430 static void unlink_empty_async(struct ehci_hcd *ehci)
1431 {
1432 	struct ehci_qh		*qh;
1433 	struct ehci_qh		*qh_to_unlink = NULL;
1434 	int			count = 0;
1435 
1436 	/* Find the last async QH which has been empty for a timer cycle */
1437 	for (qh = ehci->async->qh_next.qh; qh; qh = qh->qh_next.qh) {
1438 		if (list_empty(&qh->qtd_list) &&
1439 				qh->qh_state == QH_STATE_LINKED) {
1440 			++count;
1441 			if (qh->unlink_cycle != ehci->async_unlink_cycle)
1442 				qh_to_unlink = qh;
1443 		}
1444 	}
1445 
1446 	/* If nothing else is being unlinked, unlink the last empty QH */
1447 	if (list_empty(&ehci->async_unlink) && qh_to_unlink) {
1448 		qh_to_unlink->unlink_reason |= QH_UNLINK_QUEUE_EMPTY;
1449 		start_unlink_async(ehci, qh_to_unlink);
1450 		--count;
1451 	}
1452 
1453 	/* Other QHs will be handled later */
1454 	if (count > 0) {
1455 		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1456 		++ehci->async_unlink_cycle;
1457 	}
1458 }
1459 
1460 #ifdef	CONFIG_PM
1461 
1462 /* The root hub is suspended; unlink all the async QHs */
1463 static void unlink_empty_async_suspended(struct ehci_hcd *ehci)
1464 {
1465 	struct ehci_qh		*qh;
1466 
1467 	while (ehci->async->qh_next.qh) {
1468 		qh = ehci->async->qh_next.qh;
1469 		WARN_ON(!list_empty(&qh->qtd_list));
1470 		single_unlink_async(ehci, qh);
1471 	}
1472 }
1473 
1474 #endif
1475 
1476 /* makes sure the async qh will become idle */
1477 /* caller must own ehci->lock */
1478 
1479 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1480 {
1481 	/* If the QH isn't linked then there's nothing we can do. */
1482 	if (qh->qh_state != QH_STATE_LINKED)
1483 		return;
1484 
1485 	single_unlink_async(ehci, qh);
1486 	start_iaa_cycle(ehci);
1487 }
1488 
1489 /*-------------------------------------------------------------------------*/
1490 
1491 static void scan_async (struct ehci_hcd *ehci)
1492 {
1493 	struct ehci_qh		*qh;
1494 	bool			check_unlinks_later = false;
1495 
1496 	ehci->qh_scan_next = ehci->async->qh_next.qh;
1497 	while (ehci->qh_scan_next) {
1498 		qh = ehci->qh_scan_next;
1499 		ehci->qh_scan_next = qh->qh_next.qh;
1500 
1501 		/* clean any finished work for this qh */
1502 		if (!list_empty(&qh->qtd_list)) {
1503 			int temp;
1504 
1505 			/*
1506 			 * Unlinks could happen here; completion reporting
1507 			 * drops the lock.  That's why ehci->qh_scan_next
1508 			 * always holds the next qh to scan; if the next qh
1509 			 * gets unlinked then ehci->qh_scan_next is adjusted
1510 			 * in single_unlink_async().
1511 			 */
1512 			temp = qh_completions(ehci, qh);
1513 			if (unlikely(temp)) {
1514 				start_unlink_async(ehci, qh);
1515 			} else if (list_empty(&qh->qtd_list)
1516 					&& qh->qh_state == QH_STATE_LINKED) {
1517 				qh->unlink_cycle = ehci->async_unlink_cycle;
1518 				check_unlinks_later = true;
1519 			}
1520 		}
1521 	}
1522 
1523 	/*
1524 	 * Unlink empty entries, reducing DMA usage as well
1525 	 * as HCD schedule-scanning costs.  Delay for any qh
1526 	 * we just scanned, there's a not-unusual case that it
1527 	 * doesn't stay idle for long.
1528 	 */
1529 	if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING &&
1530 			!(ehci->enabled_hrtimer_events &
1531 				BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) {
1532 		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1533 		++ehci->async_unlink_cycle;
1534 	}
1535 }
1536