xref: /openbmc/linux/drivers/usb/host/ehci-q.c (revision d0b73b48)
1 /*
2  * Copyright (C) 2001-2004 by David Brownell
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the
6  * Free Software Foundation; either version 2 of the License, or (at your
7  * option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  */
18 
19 /* this file is part of ehci-hcd.c */
20 
21 /*-------------------------------------------------------------------------*/
22 
23 /*
24  * EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
25  *
26  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
27  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
28  * buffers needed for the larger number).  We use one QH per endpoint, queue
29  * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
30  *
31  * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
32  * interrupts) needs careful scheduling.  Performance improvements can be
33  * an ongoing challenge.  That's in "ehci-sched.c".
34  *
35  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
36  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
37  * (b) special fields in qh entries or (c) split iso entries.  TTs will
38  * buffer low/full speed data so the host collects it at high speed.
39  */
40 
41 /*-------------------------------------------------------------------------*/
42 
43 /* fill a qtd, returning how much of the buffer we were able to queue up */
44 
45 static int
46 qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
47 		  size_t len, int token, int maxpacket)
48 {
49 	int	i, count;
50 	u64	addr = buf;
51 
52 	/* one buffer entry per 4K ... first might be short or unaligned */
53 	qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
54 	qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
55 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
56 	if (likely (len < count))		/* ... iff needed */
57 		count = len;
58 	else {
59 		buf +=  0x1000;
60 		buf &= ~0x0fff;
61 
62 		/* per-qtd limit: from 16K to 20K (best alignment) */
63 		for (i = 1; count < len && i < 5; i++) {
64 			addr = buf;
65 			qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
66 			qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
67 					(u32)(addr >> 32));
68 			buf += 0x1000;
69 			if ((count + 0x1000) < len)
70 				count += 0x1000;
71 			else
72 				count = len;
73 		}
74 
75 		/* short packets may only terminate transfers */
76 		if (count != len)
77 			count -= (count % maxpacket);
78 	}
79 	qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
80 	qtd->length = count;
81 
82 	return count;
83 }
84 
85 /*-------------------------------------------------------------------------*/
86 
87 static inline void
88 qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
89 {
90 	struct ehci_qh_hw *hw = qh->hw;
91 
92 	/* writes to an active overlay are unsafe */
93 	BUG_ON(qh->qh_state != QH_STATE_IDLE);
94 
95 	hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
96 	hw->hw_alt_next = EHCI_LIST_END(ehci);
97 
98 	/* Except for control endpoints, we make hardware maintain data
99 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
100 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
101 	 * ever clear it.
102 	 */
103 	if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) {
104 		unsigned	is_out, epnum;
105 
106 		is_out = qh->is_out;
107 		epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
108 		if (unlikely (!usb_gettoggle (qh->dev, epnum, is_out))) {
109 			hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
110 			usb_settoggle (qh->dev, epnum, is_out, 1);
111 		}
112 	}
113 
114 	hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
115 }
116 
117 /* if it weren't for a common silicon quirk (writing the dummy into the qh
118  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
119  * recovery (including urb dequeue) would need software changes to a QH...
120  */
121 static void
122 qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
123 {
124 	struct ehci_qtd *qtd;
125 
126 	if (list_empty (&qh->qtd_list))
127 		qtd = qh->dummy;
128 	else {
129 		qtd = list_entry (qh->qtd_list.next,
130 				struct ehci_qtd, qtd_list);
131 		/*
132 		 * first qtd may already be partially processed.
133 		 * If we come here during unlink, the QH overlay region
134 		 * might have reference to the just unlinked qtd. The
135 		 * qtd is updated in qh_completions(). Update the QH
136 		 * overlay here.
137 		 */
138 		if (cpu_to_hc32(ehci, qtd->qtd_dma) == qh->hw->hw_current) {
139 			qh->hw->hw_qtd_next = qtd->hw_next;
140 			qtd = NULL;
141 		}
142 	}
143 
144 	if (qtd)
145 		qh_update (ehci, qh, qtd);
146 }
147 
148 /*-------------------------------------------------------------------------*/
149 
150 static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
151 
152 static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
153 		struct usb_host_endpoint *ep)
154 {
155 	struct ehci_hcd		*ehci = hcd_to_ehci(hcd);
156 	struct ehci_qh		*qh = ep->hcpriv;
157 	unsigned long		flags;
158 
159 	spin_lock_irqsave(&ehci->lock, flags);
160 	qh->clearing_tt = 0;
161 	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
162 			&& ehci->rh_state == EHCI_RH_RUNNING)
163 		qh_link_async(ehci, qh);
164 	spin_unlock_irqrestore(&ehci->lock, flags);
165 }
166 
167 static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
168 		struct urb *urb, u32 token)
169 {
170 
171 	/* If an async split transaction gets an error or is unlinked,
172 	 * the TT buffer may be left in an indeterminate state.  We
173 	 * have to clear the TT buffer.
174 	 *
175 	 * Note: this routine is never called for Isochronous transfers.
176 	 */
177 	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
178 #ifdef DEBUG
179 		struct usb_device *tt = urb->dev->tt->hub;
180 		dev_dbg(&tt->dev,
181 			"clear tt buffer port %d, a%d ep%d t%08x\n",
182 			urb->dev->ttport, urb->dev->devnum,
183 			usb_pipeendpoint(urb->pipe), token);
184 #endif /* DEBUG */
185 		if (!ehci_is_TDI(ehci)
186 				|| urb->dev->tt->hub !=
187 				   ehci_to_hcd(ehci)->self.root_hub) {
188 			if (usb_hub_clear_tt_buffer(urb) == 0)
189 				qh->clearing_tt = 1;
190 		} else {
191 
192 			/* REVISIT ARC-derived cores don't clear the root
193 			 * hub TT buffer in this way...
194 			 */
195 		}
196 	}
197 }
198 
199 static int qtd_copy_status (
200 	struct ehci_hcd *ehci,
201 	struct urb *urb,
202 	size_t length,
203 	u32 token
204 )
205 {
206 	int	status = -EINPROGRESS;
207 
208 	/* count IN/OUT bytes, not SETUP (even short packets) */
209 	if (likely (QTD_PID (token) != 2))
210 		urb->actual_length += length - QTD_LENGTH (token);
211 
212 	/* don't modify error codes */
213 	if (unlikely(urb->unlinked))
214 		return status;
215 
216 	/* force cleanup after short read; not always an error */
217 	if (unlikely (IS_SHORT_READ (token)))
218 		status = -EREMOTEIO;
219 
220 	/* serious "can't proceed" faults reported by the hardware */
221 	if (token & QTD_STS_HALT) {
222 		if (token & QTD_STS_BABBLE) {
223 			/* FIXME "must" disable babbling device's port too */
224 			status = -EOVERFLOW;
225 		/* CERR nonzero + halt --> stall */
226 		} else if (QTD_CERR(token)) {
227 			status = -EPIPE;
228 
229 		/* In theory, more than one of the following bits can be set
230 		 * since they are sticky and the transaction is retried.
231 		 * Which to test first is rather arbitrary.
232 		 */
233 		} else if (token & QTD_STS_MMF) {
234 			/* fs/ls interrupt xfer missed the complete-split */
235 			status = -EPROTO;
236 		} else if (token & QTD_STS_DBE) {
237 			status = (QTD_PID (token) == 1) /* IN ? */
238 				? -ENOSR  /* hc couldn't read data */
239 				: -ECOMM; /* hc couldn't write data */
240 		} else if (token & QTD_STS_XACT) {
241 			/* timeout, bad CRC, wrong PID, etc */
242 			ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
243 				urb->dev->devpath,
244 				usb_pipeendpoint(urb->pipe),
245 				usb_pipein(urb->pipe) ? "in" : "out");
246 			status = -EPROTO;
247 		} else {	/* unknown */
248 			status = -EPROTO;
249 		}
250 
251 		ehci_vdbg (ehci,
252 			"dev%d ep%d%s qtd token %08x --> status %d\n",
253 			usb_pipedevice (urb->pipe),
254 			usb_pipeendpoint (urb->pipe),
255 			usb_pipein (urb->pipe) ? "in" : "out",
256 			token, status);
257 	}
258 
259 	return status;
260 }
261 
262 static void
263 ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
264 __releases(ehci->lock)
265 __acquires(ehci->lock)
266 {
267 	if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
268 		/* ... update hc-wide periodic stats */
269 		ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
270 	}
271 
272 	if (unlikely(urb->unlinked)) {
273 		COUNT(ehci->stats.unlink);
274 	} else {
275 		/* report non-error and short read status as zero */
276 		if (status == -EINPROGRESS || status == -EREMOTEIO)
277 			status = 0;
278 		COUNT(ehci->stats.complete);
279 	}
280 
281 #ifdef EHCI_URB_TRACE
282 	ehci_dbg (ehci,
283 		"%s %s urb %p ep%d%s status %d len %d/%d\n",
284 		__func__, urb->dev->devpath, urb,
285 		usb_pipeendpoint (urb->pipe),
286 		usb_pipein (urb->pipe) ? "in" : "out",
287 		status,
288 		urb->actual_length, urb->transfer_buffer_length);
289 #endif
290 
291 	/* complete() can reenter this HCD */
292 	usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
293 	spin_unlock (&ehci->lock);
294 	usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
295 	spin_lock (&ehci->lock);
296 }
297 
298 static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
299 
300 /*
301  * Process and free completed qtds for a qh, returning URBs to drivers.
302  * Chases up to qh->hw_current.  Returns number of completions called,
303  * indicating how much "real" work we did.
304  */
305 static unsigned
306 qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
307 {
308 	struct ehci_qtd		*last, *end = qh->dummy;
309 	struct list_head	*entry, *tmp;
310 	int			last_status;
311 	int			stopped;
312 	unsigned		count = 0;
313 	u8			state;
314 	struct ehci_qh_hw	*hw = qh->hw;
315 
316 	if (unlikely (list_empty (&qh->qtd_list)))
317 		return count;
318 
319 	/* completions (or tasks on other cpus) must never clobber HALT
320 	 * till we've gone through and cleaned everything up, even when
321 	 * they add urbs to this qh's queue or mark them for unlinking.
322 	 *
323 	 * NOTE:  unlinking expects to be done in queue order.
324 	 *
325 	 * It's a bug for qh->qh_state to be anything other than
326 	 * QH_STATE_IDLE, unless our caller is scan_async() or
327 	 * scan_intr().
328 	 */
329 	state = qh->qh_state;
330 	qh->qh_state = QH_STATE_COMPLETING;
331 	stopped = (state == QH_STATE_IDLE);
332 
333  rescan:
334 	last = NULL;
335 	last_status = -EINPROGRESS;
336 	qh->needs_rescan = 0;
337 
338 	/* remove de-activated QTDs from front of queue.
339 	 * after faults (including short reads), cleanup this urb
340 	 * then let the queue advance.
341 	 * if queue is stopped, handles unlinks.
342 	 */
343 	list_for_each_safe (entry, tmp, &qh->qtd_list) {
344 		struct ehci_qtd	*qtd;
345 		struct urb	*urb;
346 		u32		token = 0;
347 
348 		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
349 		urb = qtd->urb;
350 
351 		/* clean up any state from previous QTD ...*/
352 		if (last) {
353 			if (likely (last->urb != urb)) {
354 				ehci_urb_done(ehci, last->urb, last_status);
355 				count++;
356 				last_status = -EINPROGRESS;
357 			}
358 			ehci_qtd_free (ehci, last);
359 			last = NULL;
360 		}
361 
362 		/* ignore urbs submitted during completions we reported */
363 		if (qtd == end)
364 			break;
365 
366 		/* hardware copies qtd out of qh overlay */
367 		rmb ();
368 		token = hc32_to_cpu(ehci, qtd->hw_token);
369 
370 		/* always clean up qtds the hc de-activated */
371  retry_xacterr:
372 		if ((token & QTD_STS_ACTIVE) == 0) {
373 
374 			/* Report Data Buffer Error: non-fatal but useful */
375 			if (token & QTD_STS_DBE)
376 				ehci_dbg(ehci,
377 					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
378 					urb,
379 					usb_endpoint_num(&urb->ep->desc),
380 					usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
381 					urb->transfer_buffer_length,
382 					qtd,
383 					qh);
384 
385 			/* on STALL, error, and short reads this urb must
386 			 * complete and all its qtds must be recycled.
387 			 */
388 			if ((token & QTD_STS_HALT) != 0) {
389 
390 				/* retry transaction errors until we
391 				 * reach the software xacterr limit
392 				 */
393 				if ((token & QTD_STS_XACT) &&
394 						QTD_CERR(token) == 0 &&
395 						++qh->xacterrs < QH_XACTERR_MAX &&
396 						!urb->unlinked) {
397 					ehci_dbg(ehci,
398 	"detected XactErr len %zu/%zu retry %d\n",
399 	qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
400 
401 					/* reset the token in the qtd and the
402 					 * qh overlay (which still contains
403 					 * the qtd) so that we pick up from
404 					 * where we left off
405 					 */
406 					token &= ~QTD_STS_HALT;
407 					token |= QTD_STS_ACTIVE |
408 							(EHCI_TUNE_CERR << 10);
409 					qtd->hw_token = cpu_to_hc32(ehci,
410 							token);
411 					wmb();
412 					hw->hw_token = cpu_to_hc32(ehci,
413 							token);
414 					goto retry_xacterr;
415 				}
416 				stopped = 1;
417 
418 			/* magic dummy for some short reads; qh won't advance.
419 			 * that silicon quirk can kick in with this dummy too.
420 			 *
421 			 * other short reads won't stop the queue, including
422 			 * control transfers (status stage handles that) or
423 			 * most other single-qtd reads ... the queue stops if
424 			 * URB_SHORT_NOT_OK was set so the driver submitting
425 			 * the urbs could clean it up.
426 			 */
427 			} else if (IS_SHORT_READ (token)
428 					&& !(qtd->hw_alt_next
429 						& EHCI_LIST_END(ehci))) {
430 				stopped = 1;
431 			}
432 
433 		/* stop scanning when we reach qtds the hc is using */
434 		} else if (likely (!stopped
435 				&& ehci->rh_state >= EHCI_RH_RUNNING)) {
436 			break;
437 
438 		/* scan the whole queue for unlinks whenever it stops */
439 		} else {
440 			stopped = 1;
441 
442 			/* cancel everything if we halt, suspend, etc */
443 			if (ehci->rh_state < EHCI_RH_RUNNING)
444 				last_status = -ESHUTDOWN;
445 
446 			/* this qtd is active; skip it unless a previous qtd
447 			 * for its urb faulted, or its urb was canceled.
448 			 */
449 			else if (last_status == -EINPROGRESS && !urb->unlinked)
450 				continue;
451 
452 			/* qh unlinked; token in overlay may be most current */
453 			if (state == QH_STATE_IDLE
454 					&& cpu_to_hc32(ehci, qtd->qtd_dma)
455 						== hw->hw_current) {
456 				token = hc32_to_cpu(ehci, hw->hw_token);
457 
458 				/* An unlink may leave an incomplete
459 				 * async transaction in the TT buffer.
460 				 * We have to clear it.
461 				 */
462 				ehci_clear_tt_buffer(ehci, qh, urb, token);
463 			}
464 		}
465 
466 		/* unless we already know the urb's status, collect qtd status
467 		 * and update count of bytes transferred.  in common short read
468 		 * cases with only one data qtd (including control transfers),
469 		 * queue processing won't halt.  but with two or more qtds (for
470 		 * example, with a 32 KB transfer), when the first qtd gets a
471 		 * short read the second must be removed by hand.
472 		 */
473 		if (last_status == -EINPROGRESS) {
474 			last_status = qtd_copy_status(ehci, urb,
475 					qtd->length, token);
476 			if (last_status == -EREMOTEIO
477 					&& (qtd->hw_alt_next
478 						& EHCI_LIST_END(ehci)))
479 				last_status = -EINPROGRESS;
480 
481 			/* As part of low/full-speed endpoint-halt processing
482 			 * we must clear the TT buffer (11.17.5).
483 			 */
484 			if (unlikely(last_status != -EINPROGRESS &&
485 					last_status != -EREMOTEIO)) {
486 				/* The TT's in some hubs malfunction when they
487 				 * receive this request following a STALL (they
488 				 * stop sending isochronous packets).  Since a
489 				 * STALL can't leave the TT buffer in a busy
490 				 * state (if you believe Figures 11-48 - 11-51
491 				 * in the USB 2.0 spec), we won't clear the TT
492 				 * buffer in this case.  Strictly speaking this
493 				 * is a violation of the spec.
494 				 */
495 				if (last_status != -EPIPE)
496 					ehci_clear_tt_buffer(ehci, qh, urb,
497 							token);
498 			}
499 		}
500 
501 		/* if we're removing something not at the queue head,
502 		 * patch the hardware queue pointer.
503 		 */
504 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
505 			last = list_entry (qtd->qtd_list.prev,
506 					struct ehci_qtd, qtd_list);
507 			last->hw_next = qtd->hw_next;
508 		}
509 
510 		/* remove qtd; it's recycled after possible urb completion */
511 		list_del (&qtd->qtd_list);
512 		last = qtd;
513 
514 		/* reinit the xacterr counter for the next qtd */
515 		qh->xacterrs = 0;
516 	}
517 
518 	/* last urb's completion might still need calling */
519 	if (likely (last != NULL)) {
520 		ehci_urb_done(ehci, last->urb, last_status);
521 		count++;
522 		ehci_qtd_free (ehci, last);
523 	}
524 
525 	/* Do we need to rescan for URBs dequeued during a giveback? */
526 	if (unlikely(qh->needs_rescan)) {
527 		/* If the QH is already unlinked, do the rescan now. */
528 		if (state == QH_STATE_IDLE)
529 			goto rescan;
530 
531 		/* Otherwise we have to wait until the QH is fully unlinked.
532 		 * Our caller will start an unlink if qh->needs_rescan is
533 		 * set.  But if an unlink has already started, nothing needs
534 		 * to be done.
535 		 */
536 		if (state != QH_STATE_LINKED)
537 			qh->needs_rescan = 0;
538 	}
539 
540 	/* restore original state; caller must unlink or relink */
541 	qh->qh_state = state;
542 
543 	/* be sure the hardware's done with the qh before refreshing
544 	 * it after fault cleanup, or recovering from silicon wrongly
545 	 * overlaying the dummy qtd (which reduces DMA chatter).
546 	 */
547 	if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci)) {
548 		switch (state) {
549 		case QH_STATE_IDLE:
550 			qh_refresh(ehci, qh);
551 			break;
552 		case QH_STATE_LINKED:
553 			/* We won't refresh a QH that's linked (after the HC
554 			 * stopped the queue).  That avoids a race:
555 			 *  - HC reads first part of QH;
556 			 *  - CPU updates that first part and the token;
557 			 *  - HC reads rest of that QH, including token
558 			 * Result:  HC gets an inconsistent image, and then
559 			 * DMAs to/from the wrong memory (corrupting it).
560 			 *
561 			 * That should be rare for interrupt transfers,
562 			 * except maybe high bandwidth ...
563 			 */
564 
565 			/* Tell the caller to start an unlink */
566 			qh->needs_rescan = 1;
567 			break;
568 		/* otherwise, unlink already started */
569 		}
570 	}
571 
572 	return count;
573 }
574 
575 /*-------------------------------------------------------------------------*/
576 
577 // high bandwidth multiplier, as encoded in highspeed endpoint descriptors
578 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
579 // ... and packet size, for any kind of endpoint descriptor
580 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
581 
582 /*
583  * reverse of qh_urb_transaction:  free a list of TDs.
584  * used for cleanup after errors, before HC sees an URB's TDs.
585  */
586 static void qtd_list_free (
587 	struct ehci_hcd		*ehci,
588 	struct urb		*urb,
589 	struct list_head	*qtd_list
590 ) {
591 	struct list_head	*entry, *temp;
592 
593 	list_for_each_safe (entry, temp, qtd_list) {
594 		struct ehci_qtd	*qtd;
595 
596 		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
597 		list_del (&qtd->qtd_list);
598 		ehci_qtd_free (ehci, qtd);
599 	}
600 }
601 
602 /*
603  * create a list of filled qtds for this URB; won't link into qh.
604  */
605 static struct list_head *
606 qh_urb_transaction (
607 	struct ehci_hcd		*ehci,
608 	struct urb		*urb,
609 	struct list_head	*head,
610 	gfp_t			flags
611 ) {
612 	struct ehci_qtd		*qtd, *qtd_prev;
613 	dma_addr_t		buf;
614 	int			len, this_sg_len, maxpacket;
615 	int			is_input;
616 	u32			token;
617 	int			i;
618 	struct scatterlist	*sg;
619 
620 	/*
621 	 * URBs map to sequences of QTDs:  one logical transaction
622 	 */
623 	qtd = ehci_qtd_alloc (ehci, flags);
624 	if (unlikely (!qtd))
625 		return NULL;
626 	list_add_tail (&qtd->qtd_list, head);
627 	qtd->urb = urb;
628 
629 	token = QTD_STS_ACTIVE;
630 	token |= (EHCI_TUNE_CERR << 10);
631 	/* for split transactions, SplitXState initialized to zero */
632 
633 	len = urb->transfer_buffer_length;
634 	is_input = usb_pipein (urb->pipe);
635 	if (usb_pipecontrol (urb->pipe)) {
636 		/* SETUP pid */
637 		qtd_fill(ehci, qtd, urb->setup_dma,
638 				sizeof (struct usb_ctrlrequest),
639 				token | (2 /* "setup" */ << 8), 8);
640 
641 		/* ... and always at least one more pid */
642 		token ^= QTD_TOGGLE;
643 		qtd_prev = qtd;
644 		qtd = ehci_qtd_alloc (ehci, flags);
645 		if (unlikely (!qtd))
646 			goto cleanup;
647 		qtd->urb = urb;
648 		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
649 		list_add_tail (&qtd->qtd_list, head);
650 
651 		/* for zero length DATA stages, STATUS is always IN */
652 		if (len == 0)
653 			token |= (1 /* "in" */ << 8);
654 	}
655 
656 	/*
657 	 * data transfer stage:  buffer setup
658 	 */
659 	i = urb->num_mapped_sgs;
660 	if (len > 0 && i > 0) {
661 		sg = urb->sg;
662 		buf = sg_dma_address(sg);
663 
664 		/* urb->transfer_buffer_length may be smaller than the
665 		 * size of the scatterlist (or vice versa)
666 		 */
667 		this_sg_len = min_t(int, sg_dma_len(sg), len);
668 	} else {
669 		sg = NULL;
670 		buf = urb->transfer_dma;
671 		this_sg_len = len;
672 	}
673 
674 	if (is_input)
675 		token |= (1 /* "in" */ << 8);
676 	/* else it's already initted to "out" pid (0 << 8) */
677 
678 	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
679 
680 	/*
681 	 * buffer gets wrapped in one or more qtds;
682 	 * last one may be "short" (including zero len)
683 	 * and may serve as a control status ack
684 	 */
685 	for (;;) {
686 		int this_qtd_len;
687 
688 		this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
689 				maxpacket);
690 		this_sg_len -= this_qtd_len;
691 		len -= this_qtd_len;
692 		buf += this_qtd_len;
693 
694 		/*
695 		 * short reads advance to a "magic" dummy instead of the next
696 		 * qtd ... that forces the queue to stop, for manual cleanup.
697 		 * (this will usually be overridden later.)
698 		 */
699 		if (is_input)
700 			qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
701 
702 		/* qh makes control packets use qtd toggle; maybe switch it */
703 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
704 			token ^= QTD_TOGGLE;
705 
706 		if (likely(this_sg_len <= 0)) {
707 			if (--i <= 0 || len <= 0)
708 				break;
709 			sg = sg_next(sg);
710 			buf = sg_dma_address(sg);
711 			this_sg_len = min_t(int, sg_dma_len(sg), len);
712 		}
713 
714 		qtd_prev = qtd;
715 		qtd = ehci_qtd_alloc (ehci, flags);
716 		if (unlikely (!qtd))
717 			goto cleanup;
718 		qtd->urb = urb;
719 		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
720 		list_add_tail (&qtd->qtd_list, head);
721 	}
722 
723 	/*
724 	 * unless the caller requires manual cleanup after short reads,
725 	 * have the alt_next mechanism keep the queue running after the
726 	 * last data qtd (the only one, for control and most other cases).
727 	 */
728 	if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
729 				|| usb_pipecontrol (urb->pipe)))
730 		qtd->hw_alt_next = EHCI_LIST_END(ehci);
731 
732 	/*
733 	 * control requests may need a terminating data "status" ack;
734 	 * other OUT ones may need a terminating short packet
735 	 * (zero length).
736 	 */
737 	if (likely (urb->transfer_buffer_length != 0)) {
738 		int	one_more = 0;
739 
740 		if (usb_pipecontrol (urb->pipe)) {
741 			one_more = 1;
742 			token ^= 0x0100;	/* "in" <--> "out"  */
743 			token |= QTD_TOGGLE;	/* force DATA1 */
744 		} else if (usb_pipeout(urb->pipe)
745 				&& (urb->transfer_flags & URB_ZERO_PACKET)
746 				&& !(urb->transfer_buffer_length % maxpacket)) {
747 			one_more = 1;
748 		}
749 		if (one_more) {
750 			qtd_prev = qtd;
751 			qtd = ehci_qtd_alloc (ehci, flags);
752 			if (unlikely (!qtd))
753 				goto cleanup;
754 			qtd->urb = urb;
755 			qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
756 			list_add_tail (&qtd->qtd_list, head);
757 
758 			/* never any data in such packets */
759 			qtd_fill(ehci, qtd, 0, 0, token, 0);
760 		}
761 	}
762 
763 	/* by default, enable interrupt on urb completion */
764 	if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
765 		qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
766 	return head;
767 
768 cleanup:
769 	qtd_list_free (ehci, urb, head);
770 	return NULL;
771 }
772 
773 /*-------------------------------------------------------------------------*/
774 
775 // Would be best to create all qh's from config descriptors,
776 // when each interface/altsetting is established.  Unlink
777 // any previous qh and cancel its urbs first; endpoints are
778 // implicitly reset then (data toggle too).
779 // That'd mean updating how usbcore talks to HCDs. (2.7?)
780 
781 
782 /*
783  * Each QH holds a qtd list; a QH is used for everything except iso.
784  *
785  * For interrupt urbs, the scheduler must set the microframe scheduling
786  * mask(s) each time the QH gets scheduled.  For highspeed, that's
787  * just one microframe in the s-mask.  For split interrupt transactions
788  * there are additional complications: c-mask, maybe FSTNs.
789  */
790 static struct ehci_qh *
791 qh_make (
792 	struct ehci_hcd		*ehci,
793 	struct urb		*urb,
794 	gfp_t			flags
795 ) {
796 	struct ehci_qh		*qh = ehci_qh_alloc (ehci, flags);
797 	u32			info1 = 0, info2 = 0;
798 	int			is_input, type;
799 	int			maxp = 0;
800 	struct usb_tt		*tt = urb->dev->tt;
801 	struct ehci_qh_hw	*hw;
802 
803 	if (!qh)
804 		return qh;
805 
806 	/*
807 	 * init endpoint/device data for this QH
808 	 */
809 	info1 |= usb_pipeendpoint (urb->pipe) << 8;
810 	info1 |= usb_pipedevice (urb->pipe) << 0;
811 
812 	is_input = usb_pipein (urb->pipe);
813 	type = usb_pipetype (urb->pipe);
814 	maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input);
815 
816 	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
817 	 * acts like up to 3KB, but is built from smaller packets.
818 	 */
819 	if (max_packet(maxp) > 1024) {
820 		ehci_dbg(ehci, "bogus qh maxpacket %d\n", max_packet(maxp));
821 		goto done;
822 	}
823 
824 	/* Compute interrupt scheduling parameters just once, and save.
825 	 * - allowing for high bandwidth, how many nsec/uframe are used?
826 	 * - split transactions need a second CSPLIT uframe; same question
827 	 * - splits also need a schedule gap (for full/low speed I/O)
828 	 * - qh has a polling interval
829 	 *
830 	 * For control/bulk requests, the HC or TT handles these.
831 	 */
832 	if (type == PIPE_INTERRUPT) {
833 		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
834 				is_input, 0,
835 				hb_mult(maxp) * max_packet(maxp)));
836 		qh->start = NO_FRAME;
837 
838 		if (urb->dev->speed == USB_SPEED_HIGH) {
839 			qh->c_usecs = 0;
840 			qh->gap_uf = 0;
841 
842 			qh->period = urb->interval >> 3;
843 			if (qh->period == 0 && urb->interval != 1) {
844 				/* NOTE interval 2 or 4 uframes could work.
845 				 * But interval 1 scheduling is simpler, and
846 				 * includes high bandwidth.
847 				 */
848 				urb->interval = 1;
849 			} else if (qh->period > ehci->periodic_size) {
850 				qh->period = ehci->periodic_size;
851 				urb->interval = qh->period << 3;
852 			}
853 		} else {
854 			int		think_time;
855 
856 			/* gap is f(FS/LS transfer times) */
857 			qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
858 					is_input, 0, maxp) / (125 * 1000);
859 
860 			/* FIXME this just approximates SPLIT/CSPLIT times */
861 			if (is_input) {		// SPLIT, gap, CSPLIT+DATA
862 				qh->c_usecs = qh->usecs + HS_USECS (0);
863 				qh->usecs = HS_USECS (1);
864 			} else {		// SPLIT+DATA, gap, CSPLIT
865 				qh->usecs += HS_USECS (1);
866 				qh->c_usecs = HS_USECS (0);
867 			}
868 
869 			think_time = tt ? tt->think_time : 0;
870 			qh->tt_usecs = NS_TO_US (think_time +
871 					usb_calc_bus_time (urb->dev->speed,
872 					is_input, 0, max_packet (maxp)));
873 			qh->period = urb->interval;
874 			if (qh->period > ehci->periodic_size) {
875 				qh->period = ehci->periodic_size;
876 				urb->interval = qh->period;
877 			}
878 		}
879 	}
880 
881 	/* support for tt scheduling, and access to toggles */
882 	qh->dev = urb->dev;
883 
884 	/* using TT? */
885 	switch (urb->dev->speed) {
886 	case USB_SPEED_LOW:
887 		info1 |= QH_LOW_SPEED;
888 		/* FALL THROUGH */
889 
890 	case USB_SPEED_FULL:
891 		/* EPS 0 means "full" */
892 		if (type != PIPE_INTERRUPT)
893 			info1 |= (EHCI_TUNE_RL_TT << 28);
894 		if (type == PIPE_CONTROL) {
895 			info1 |= QH_CONTROL_EP;		/* for TT */
896 			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
897 		}
898 		info1 |= maxp << 16;
899 
900 		info2 |= (EHCI_TUNE_MULT_TT << 30);
901 
902 		/* Some Freescale processors have an erratum in which the
903 		 * port number in the queue head was 0..N-1 instead of 1..N.
904 		 */
905 		if (ehci_has_fsl_portno_bug(ehci))
906 			info2 |= (urb->dev->ttport-1) << 23;
907 		else
908 			info2 |= urb->dev->ttport << 23;
909 
910 		/* set the address of the TT; for TDI's integrated
911 		 * root hub tt, leave it zeroed.
912 		 */
913 		if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
914 			info2 |= tt->hub->devnum << 16;
915 
916 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
917 
918 		break;
919 
920 	case USB_SPEED_HIGH:		/* no TT involved */
921 		info1 |= QH_HIGH_SPEED;
922 		if (type == PIPE_CONTROL) {
923 			info1 |= (EHCI_TUNE_RL_HS << 28);
924 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
925 			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
926 			info2 |= (EHCI_TUNE_MULT_HS << 30);
927 		} else if (type == PIPE_BULK) {
928 			info1 |= (EHCI_TUNE_RL_HS << 28);
929 			/* The USB spec says that high speed bulk endpoints
930 			 * always use 512 byte maxpacket.  But some device
931 			 * vendors decided to ignore that, and MSFT is happy
932 			 * to help them do so.  So now people expect to use
933 			 * such nonconformant devices with Linux too; sigh.
934 			 */
935 			info1 |= max_packet(maxp) << 16;
936 			info2 |= (EHCI_TUNE_MULT_HS << 30);
937 		} else {		/* PIPE_INTERRUPT */
938 			info1 |= max_packet (maxp) << 16;
939 			info2 |= hb_mult (maxp) << 30;
940 		}
941 		break;
942 	default:
943 		ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev,
944 			urb->dev->speed);
945 done:
946 		qh_destroy(ehci, qh);
947 		return NULL;
948 	}
949 
950 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
951 
952 	/* init as live, toggle clear, advance to dummy */
953 	qh->qh_state = QH_STATE_IDLE;
954 	hw = qh->hw;
955 	hw->hw_info1 = cpu_to_hc32(ehci, info1);
956 	hw->hw_info2 = cpu_to_hc32(ehci, info2);
957 	qh->is_out = !is_input;
958 	usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
959 	qh_refresh (ehci, qh);
960 	return qh;
961 }
962 
963 /*-------------------------------------------------------------------------*/
964 
965 static void enable_async(struct ehci_hcd *ehci)
966 {
967 	if (ehci->async_count++)
968 		return;
969 
970 	/* Stop waiting to turn off the async schedule */
971 	ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC);
972 
973 	/* Don't start the schedule until ASS is 0 */
974 	ehci_poll_ASS(ehci);
975 	turn_on_io_watchdog(ehci);
976 }
977 
978 static void disable_async(struct ehci_hcd *ehci)
979 {
980 	if (--ehci->async_count)
981 		return;
982 
983 	/* The async schedule and async_unlink list are supposed to be empty */
984 	WARN_ON(ehci->async->qh_next.qh || ehci->async_unlink);
985 
986 	/* Don't turn off the schedule until ASS is 1 */
987 	ehci_poll_ASS(ehci);
988 }
989 
990 /* move qh (and its qtds) onto async queue; maybe enable queue.  */
991 
992 static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
993 {
994 	__hc32		dma = QH_NEXT(ehci, qh->qh_dma);
995 	struct ehci_qh	*head;
996 
997 	/* Don't link a QH if there's a Clear-TT-Buffer pending */
998 	if (unlikely(qh->clearing_tt))
999 		return;
1000 
1001 	WARN_ON(qh->qh_state != QH_STATE_IDLE);
1002 
1003 	/* clear halt and/or toggle; and maybe recover from silicon quirk */
1004 	qh_refresh(ehci, qh);
1005 
1006 	/* splice right after start */
1007 	head = ehci->async;
1008 	qh->qh_next = head->qh_next;
1009 	qh->hw->hw_next = head->hw->hw_next;
1010 	wmb ();
1011 
1012 	head->qh_next.qh = qh;
1013 	head->hw->hw_next = dma;
1014 
1015 	qh->xacterrs = 0;
1016 	qh->qh_state = QH_STATE_LINKED;
1017 	/* qtd completions reported later by interrupt */
1018 
1019 	enable_async(ehci);
1020 }
1021 
1022 /*-------------------------------------------------------------------------*/
1023 
1024 /*
1025  * For control/bulk/interrupt, return QH with these TDs appended.
1026  * Allocates and initializes the QH if necessary.
1027  * Returns null if it can't allocate a QH it needs to.
1028  * If the QH has TDs (urbs) already, that's great.
1029  */
1030 static struct ehci_qh *qh_append_tds (
1031 	struct ehci_hcd		*ehci,
1032 	struct urb		*urb,
1033 	struct list_head	*qtd_list,
1034 	int			epnum,
1035 	void			**ptr
1036 )
1037 {
1038 	struct ehci_qh		*qh = NULL;
1039 	__hc32			qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
1040 
1041 	qh = (struct ehci_qh *) *ptr;
1042 	if (unlikely (qh == NULL)) {
1043 		/* can't sleep here, we have ehci->lock... */
1044 		qh = qh_make (ehci, urb, GFP_ATOMIC);
1045 		*ptr = qh;
1046 	}
1047 	if (likely (qh != NULL)) {
1048 		struct ehci_qtd	*qtd;
1049 
1050 		if (unlikely (list_empty (qtd_list)))
1051 			qtd = NULL;
1052 		else
1053 			qtd = list_entry (qtd_list->next, struct ehci_qtd,
1054 					qtd_list);
1055 
1056 		/* control qh may need patching ... */
1057 		if (unlikely (epnum == 0)) {
1058 
1059                         /* usb_reset_device() briefly reverts to address 0 */
1060                         if (usb_pipedevice (urb->pipe) == 0)
1061 				qh->hw->hw_info1 &= ~qh_addr_mask;
1062 		}
1063 
1064 		/* just one way to queue requests: swap with the dummy qtd.
1065 		 * only hc or qh_refresh() ever modify the overlay.
1066 		 */
1067 		if (likely (qtd != NULL)) {
1068 			struct ehci_qtd		*dummy;
1069 			dma_addr_t		dma;
1070 			__hc32			token;
1071 
1072 			/* to avoid racing the HC, use the dummy td instead of
1073 			 * the first td of our list (becomes new dummy).  both
1074 			 * tds stay deactivated until we're done, when the
1075 			 * HC is allowed to fetch the old dummy (4.10.2).
1076 			 */
1077 			token = qtd->hw_token;
1078 			qtd->hw_token = HALT_BIT(ehci);
1079 
1080 			dummy = qh->dummy;
1081 
1082 			dma = dummy->qtd_dma;
1083 			*dummy = *qtd;
1084 			dummy->qtd_dma = dma;
1085 
1086 			list_del (&qtd->qtd_list);
1087 			list_add (&dummy->qtd_list, qtd_list);
1088 			list_splice_tail(qtd_list, &qh->qtd_list);
1089 
1090 			ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
1091 			qh->dummy = qtd;
1092 
1093 			/* hc must see the new dummy at list end */
1094 			dma = qtd->qtd_dma;
1095 			qtd = list_entry (qh->qtd_list.prev,
1096 					struct ehci_qtd, qtd_list);
1097 			qtd->hw_next = QTD_NEXT(ehci, dma);
1098 
1099 			/* let the hc process these next qtds */
1100 			wmb ();
1101 			dummy->hw_token = token;
1102 
1103 			urb->hcpriv = qh;
1104 		}
1105 	}
1106 	return qh;
1107 }
1108 
1109 /*-------------------------------------------------------------------------*/
1110 
1111 static int
1112 submit_async (
1113 	struct ehci_hcd		*ehci,
1114 	struct urb		*urb,
1115 	struct list_head	*qtd_list,
1116 	gfp_t			mem_flags
1117 ) {
1118 	int			epnum;
1119 	unsigned long		flags;
1120 	struct ehci_qh		*qh = NULL;
1121 	int			rc;
1122 
1123 	epnum = urb->ep->desc.bEndpointAddress;
1124 
1125 #ifdef EHCI_URB_TRACE
1126 	{
1127 		struct ehci_qtd *qtd;
1128 		qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1129 		ehci_dbg(ehci,
1130 			 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1131 			 __func__, urb->dev->devpath, urb,
1132 			 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1133 			 urb->transfer_buffer_length,
1134 			 qtd, urb->ep->hcpriv);
1135 	}
1136 #endif
1137 
1138 	spin_lock_irqsave (&ehci->lock, flags);
1139 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1140 		rc = -ESHUTDOWN;
1141 		goto done;
1142 	}
1143 	rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1144 	if (unlikely(rc))
1145 		goto done;
1146 
1147 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
1148 	if (unlikely(qh == NULL)) {
1149 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1150 		rc = -ENOMEM;
1151 		goto done;
1152 	}
1153 
1154 	/* Control/bulk operations through TTs don't need scheduling,
1155 	 * the HC and TT handle it when the TT has a buffer ready.
1156 	 */
1157 	if (likely (qh->qh_state == QH_STATE_IDLE))
1158 		qh_link_async(ehci, qh);
1159  done:
1160 	spin_unlock_irqrestore (&ehci->lock, flags);
1161 	if (unlikely (qh == NULL))
1162 		qtd_list_free (ehci, urb, qtd_list);
1163 	return rc;
1164 }
1165 
1166 /*-------------------------------------------------------------------------*/
1167 
1168 static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1169 {
1170 	struct ehci_qh		*prev;
1171 
1172 	/* Add to the end of the list of QHs waiting for the next IAAD */
1173 	qh->qh_state = QH_STATE_UNLINK;
1174 	if (ehci->async_unlink)
1175 		ehci->async_unlink_last->unlink_next = qh;
1176 	else
1177 		ehci->async_unlink = qh;
1178 	ehci->async_unlink_last = qh;
1179 
1180 	/* Unlink it from the schedule */
1181 	prev = ehci->async;
1182 	while (prev->qh_next.qh != qh)
1183 		prev = prev->qh_next.qh;
1184 
1185 	prev->hw->hw_next = qh->hw->hw_next;
1186 	prev->qh_next = qh->qh_next;
1187 	if (ehci->qh_scan_next == qh)
1188 		ehci->qh_scan_next = qh->qh_next.qh;
1189 }
1190 
1191 static void start_iaa_cycle(struct ehci_hcd *ehci, bool nested)
1192 {
1193 	/*
1194 	 * Do nothing if an IAA cycle is already running or
1195 	 * if one will be started shortly.
1196 	 */
1197 	if (ehci->async_iaa || ehci->async_unlinking)
1198 		return;
1199 
1200 	/* If the controller isn't running, we don't have to wait for it */
1201 	if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) {
1202 
1203 		/* Do all the waiting QHs */
1204 		ehci->async_iaa = ehci->async_unlink;
1205 		ehci->async_unlink = NULL;
1206 
1207 		if (!nested)		/* Avoid recursion */
1208 			end_unlink_async(ehci);
1209 
1210 	/* Otherwise start a new IAA cycle */
1211 	} else if (likely(ehci->rh_state == EHCI_RH_RUNNING)) {
1212 		struct ehci_qh		*qh;
1213 
1214 		/* Do only the first waiting QH (nVidia bug?) */
1215 		qh = ehci->async_unlink;
1216 		ehci->async_iaa = qh;
1217 		ehci->async_unlink = qh->unlink_next;
1218 		qh->unlink_next = NULL;
1219 
1220 		/* Make sure the unlinks are all visible to the hardware */
1221 		wmb();
1222 
1223 		ehci_writel(ehci, ehci->command | CMD_IAAD,
1224 				&ehci->regs->command);
1225 		ehci_readl(ehci, &ehci->regs->command);
1226 		ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true);
1227 	}
1228 }
1229 
1230 /* the async qh for the qtds being unlinked are now gone from the HC */
1231 
1232 static void end_unlink_async(struct ehci_hcd *ehci)
1233 {
1234 	struct ehci_qh		*qh;
1235 
1236 	if (ehci->has_synopsys_hc_bug)
1237 		ehci_writel(ehci, (u32) ehci->async->qh_dma,
1238 			    &ehci->regs->async_next);
1239 
1240 	/* Process the idle QHs */
1241  restart:
1242 	ehci->async_unlinking = true;
1243 	while (ehci->async_iaa) {
1244 		qh = ehci->async_iaa;
1245 		ehci->async_iaa = qh->unlink_next;
1246 		qh->unlink_next = NULL;
1247 
1248 		qh->qh_state = QH_STATE_IDLE;
1249 		qh->qh_next.qh = NULL;
1250 
1251 		qh_completions(ehci, qh);
1252 		if (!list_empty(&qh->qtd_list) &&
1253 				ehci->rh_state == EHCI_RH_RUNNING)
1254 			qh_link_async(ehci, qh);
1255 		disable_async(ehci);
1256 	}
1257 	ehci->async_unlinking = false;
1258 
1259 	/* Start a new IAA cycle if any QHs are waiting for it */
1260 	if (ehci->async_unlink) {
1261 		start_iaa_cycle(ehci, true);
1262 		if (unlikely(ehci->rh_state < EHCI_RH_RUNNING))
1263 			goto restart;
1264 	}
1265 }
1266 
1267 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
1268 
1269 static void unlink_empty_async(struct ehci_hcd *ehci)
1270 {
1271 	struct ehci_qh		*qh;
1272 	struct ehci_qh		*qh_to_unlink = NULL;
1273 	bool			check_unlinks_later = false;
1274 	int			count = 0;
1275 
1276 	/* Find the last async QH which has been empty for a timer cycle */
1277 	for (qh = ehci->async->qh_next.qh; qh; qh = qh->qh_next.qh) {
1278 		if (list_empty(&qh->qtd_list) &&
1279 				qh->qh_state == QH_STATE_LINKED) {
1280 			++count;
1281 			if (qh->unlink_cycle == ehci->async_unlink_cycle)
1282 				check_unlinks_later = true;
1283 			else
1284 				qh_to_unlink = qh;
1285 		}
1286 	}
1287 
1288 	/* If nothing else is being unlinked, unlink the last empty QH */
1289 	if (!ehci->async_iaa && !ehci->async_unlink && qh_to_unlink) {
1290 		start_unlink_async(ehci, qh_to_unlink);
1291 		--count;
1292 	}
1293 
1294 	/* Other QHs will be handled later */
1295 	if (count > 0) {
1296 		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1297 		++ehci->async_unlink_cycle;
1298 	}
1299 }
1300 
1301 /* makes sure the async qh will become idle */
1302 /* caller must own ehci->lock */
1303 
1304 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1305 {
1306 	/*
1307 	 * If the QH isn't linked then there's nothing we can do
1308 	 * unless we were called during a giveback, in which case
1309 	 * qh_completions() has to deal with it.
1310 	 */
1311 	if (qh->qh_state != QH_STATE_LINKED) {
1312 		if (qh->qh_state == QH_STATE_COMPLETING)
1313 			qh->needs_rescan = 1;
1314 		return;
1315 	}
1316 
1317 	single_unlink_async(ehci, qh);
1318 	start_iaa_cycle(ehci, false);
1319 }
1320 
1321 /*-------------------------------------------------------------------------*/
1322 
1323 static void scan_async (struct ehci_hcd *ehci)
1324 {
1325 	struct ehci_qh		*qh;
1326 	bool			check_unlinks_later = false;
1327 
1328 	ehci->qh_scan_next = ehci->async->qh_next.qh;
1329 	while (ehci->qh_scan_next) {
1330 		qh = ehci->qh_scan_next;
1331 		ehci->qh_scan_next = qh->qh_next.qh;
1332  rescan:
1333 		/* clean any finished work for this qh */
1334 		if (!list_empty(&qh->qtd_list)) {
1335 			int temp;
1336 
1337 			/*
1338 			 * Unlinks could happen here; completion reporting
1339 			 * drops the lock.  That's why ehci->qh_scan_next
1340 			 * always holds the next qh to scan; if the next qh
1341 			 * gets unlinked then ehci->qh_scan_next is adjusted
1342 			 * in single_unlink_async().
1343 			 */
1344 			temp = qh_completions(ehci, qh);
1345 			if (qh->needs_rescan) {
1346 				start_unlink_async(ehci, qh);
1347 			} else if (list_empty(&qh->qtd_list)
1348 					&& qh->qh_state == QH_STATE_LINKED) {
1349 				qh->unlink_cycle = ehci->async_unlink_cycle;
1350 				check_unlinks_later = true;
1351 			} else if (temp != 0)
1352 				goto rescan;
1353 		}
1354 	}
1355 
1356 	/*
1357 	 * Unlink empty entries, reducing DMA usage as well
1358 	 * as HCD schedule-scanning costs.  Delay for any qh
1359 	 * we just scanned, there's a not-unusual case that it
1360 	 * doesn't stay idle for long.
1361 	 */
1362 	if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING &&
1363 			!(ehci->enabled_hrtimer_events &
1364 				BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) {
1365 		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1366 		++ehci->async_unlink_cycle;
1367 	}
1368 }
1369