xref: /openbmc/linux/drivers/usb/host/ehci-q.c (revision c67e8ec0)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2001-2004 by David Brownell
4  */
5 
6 /* this file is part of ehci-hcd.c */
7 
8 /*-------------------------------------------------------------------------*/
9 
10 /*
11  * EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
12  *
13  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
14  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
15  * buffers needed for the larger number).  We use one QH per endpoint, queue
16  * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
17  *
18  * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
19  * interrupts) needs careful scheduling.  Performance improvements can be
20  * an ongoing challenge.  That's in "ehci-sched.c".
21  *
22  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
23  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
24  * (b) special fields in qh entries or (c) split iso entries.  TTs will
25  * buffer low/full speed data so the host collects it at high speed.
26  */
27 
28 /*-------------------------------------------------------------------------*/
29 
30 /* fill a qtd, returning how much of the buffer we were able to queue up */
31 
32 static int
33 qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
34 		  size_t len, int token, int maxpacket)
35 {
36 	int	i, count;
37 	u64	addr = buf;
38 
39 	/* one buffer entry per 4K ... first might be short or unaligned */
40 	qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
41 	qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
42 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
43 	if (likely (len < count))		/* ... iff needed */
44 		count = len;
45 	else {
46 		buf +=  0x1000;
47 		buf &= ~0x0fff;
48 
49 		/* per-qtd limit: from 16K to 20K (best alignment) */
50 		for (i = 1; count < len && i < 5; i++) {
51 			addr = buf;
52 			qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
53 			qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
54 					(u32)(addr >> 32));
55 			buf += 0x1000;
56 			if ((count + 0x1000) < len)
57 				count += 0x1000;
58 			else
59 				count = len;
60 		}
61 
62 		/* short packets may only terminate transfers */
63 		if (count != len)
64 			count -= (count % maxpacket);
65 	}
66 	qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
67 	qtd->length = count;
68 
69 	return count;
70 }
71 
72 /*-------------------------------------------------------------------------*/
73 
74 static inline void
75 qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
76 {
77 	struct ehci_qh_hw *hw = qh->hw;
78 
79 	/* writes to an active overlay are unsafe */
80 	WARN_ON(qh->qh_state != QH_STATE_IDLE);
81 
82 	hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
83 	hw->hw_alt_next = EHCI_LIST_END(ehci);
84 
85 	/* Except for control endpoints, we make hardware maintain data
86 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
87 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
88 	 * ever clear it.
89 	 */
90 	if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) {
91 		unsigned	is_out, epnum;
92 
93 		is_out = qh->is_out;
94 		epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
95 		if (unlikely(!usb_gettoggle(qh->ps.udev, epnum, is_out))) {
96 			hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
97 			usb_settoggle(qh->ps.udev, epnum, is_out, 1);
98 		}
99 	}
100 
101 	hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
102 }
103 
104 /* if it weren't for a common silicon quirk (writing the dummy into the qh
105  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
106  * recovery (including urb dequeue) would need software changes to a QH...
107  */
108 static void
109 qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
110 {
111 	struct ehci_qtd *qtd;
112 
113 	qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list);
114 
115 	/*
116 	 * first qtd may already be partially processed.
117 	 * If we come here during unlink, the QH overlay region
118 	 * might have reference to the just unlinked qtd. The
119 	 * qtd is updated in qh_completions(). Update the QH
120 	 * overlay here.
121 	 */
122 	if (qh->hw->hw_token & ACTIVE_BIT(ehci)) {
123 		qh->hw->hw_qtd_next = qtd->hw_next;
124 		if (qh->should_be_inactive)
125 			ehci_warn(ehci, "qh %p should be inactive!\n", qh);
126 	} else {
127 		qh_update(ehci, qh, qtd);
128 	}
129 	qh->should_be_inactive = 0;
130 }
131 
132 /*-------------------------------------------------------------------------*/
133 
134 static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
135 
136 static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
137 		struct usb_host_endpoint *ep)
138 {
139 	struct ehci_hcd		*ehci = hcd_to_ehci(hcd);
140 	struct ehci_qh		*qh = ep->hcpriv;
141 	unsigned long		flags;
142 
143 	spin_lock_irqsave(&ehci->lock, flags);
144 	qh->clearing_tt = 0;
145 	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
146 			&& ehci->rh_state == EHCI_RH_RUNNING)
147 		qh_link_async(ehci, qh);
148 	spin_unlock_irqrestore(&ehci->lock, flags);
149 }
150 
151 static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
152 		struct urb *urb, u32 token)
153 {
154 
155 	/* If an async split transaction gets an error or is unlinked,
156 	 * the TT buffer may be left in an indeterminate state.  We
157 	 * have to clear the TT buffer.
158 	 *
159 	 * Note: this routine is never called for Isochronous transfers.
160 	 */
161 	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
162 #ifdef CONFIG_DYNAMIC_DEBUG
163 		struct usb_device *tt = urb->dev->tt->hub;
164 		dev_dbg(&tt->dev,
165 			"clear tt buffer port %d, a%d ep%d t%08x\n",
166 			urb->dev->ttport, urb->dev->devnum,
167 			usb_pipeendpoint(urb->pipe), token);
168 #endif /* CONFIG_DYNAMIC_DEBUG */
169 		if (!ehci_is_TDI(ehci)
170 				|| urb->dev->tt->hub !=
171 				   ehci_to_hcd(ehci)->self.root_hub) {
172 			if (usb_hub_clear_tt_buffer(urb) == 0)
173 				qh->clearing_tt = 1;
174 		} else {
175 
176 			/* REVISIT ARC-derived cores don't clear the root
177 			 * hub TT buffer in this way...
178 			 */
179 		}
180 	}
181 }
182 
183 static int qtd_copy_status (
184 	struct ehci_hcd *ehci,
185 	struct urb *urb,
186 	size_t length,
187 	u32 token
188 )
189 {
190 	int	status = -EINPROGRESS;
191 
192 	/* count IN/OUT bytes, not SETUP (even short packets) */
193 	if (likely (QTD_PID (token) != 2))
194 		urb->actual_length += length - QTD_LENGTH (token);
195 
196 	/* don't modify error codes */
197 	if (unlikely(urb->unlinked))
198 		return status;
199 
200 	/* force cleanup after short read; not always an error */
201 	if (unlikely (IS_SHORT_READ (token)))
202 		status = -EREMOTEIO;
203 
204 	/* serious "can't proceed" faults reported by the hardware */
205 	if (token & QTD_STS_HALT) {
206 		if (token & QTD_STS_BABBLE) {
207 			/* FIXME "must" disable babbling device's port too */
208 			status = -EOVERFLOW;
209 		/* CERR nonzero + halt --> stall */
210 		} else if (QTD_CERR(token)) {
211 			status = -EPIPE;
212 
213 		/* In theory, more than one of the following bits can be set
214 		 * since they are sticky and the transaction is retried.
215 		 * Which to test first is rather arbitrary.
216 		 */
217 		} else if (token & QTD_STS_MMF) {
218 			/* fs/ls interrupt xfer missed the complete-split */
219 			status = -EPROTO;
220 		} else if (token & QTD_STS_DBE) {
221 			status = (QTD_PID (token) == 1) /* IN ? */
222 				? -ENOSR  /* hc couldn't read data */
223 				: -ECOMM; /* hc couldn't write data */
224 		} else if (token & QTD_STS_XACT) {
225 			/* timeout, bad CRC, wrong PID, etc */
226 			ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
227 				urb->dev->devpath,
228 				usb_pipeendpoint(urb->pipe),
229 				usb_pipein(urb->pipe) ? "in" : "out");
230 			status = -EPROTO;
231 		} else {	/* unknown */
232 			status = -EPROTO;
233 		}
234 	}
235 
236 	return status;
237 }
238 
239 static void
240 ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
241 {
242 	if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
243 		/* ... update hc-wide periodic stats */
244 		ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
245 	}
246 
247 	if (unlikely(urb->unlinked)) {
248 		INCR(ehci->stats.unlink);
249 	} else {
250 		/* report non-error and short read status as zero */
251 		if (status == -EINPROGRESS || status == -EREMOTEIO)
252 			status = 0;
253 		INCR(ehci->stats.complete);
254 	}
255 
256 #ifdef EHCI_URB_TRACE
257 	ehci_dbg (ehci,
258 		"%s %s urb %p ep%d%s status %d len %d/%d\n",
259 		__func__, urb->dev->devpath, urb,
260 		usb_pipeendpoint (urb->pipe),
261 		usb_pipein (urb->pipe) ? "in" : "out",
262 		status,
263 		urb->actual_length, urb->transfer_buffer_length);
264 #endif
265 
266 	usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
267 	usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
268 }
269 
270 static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
271 
272 /*
273  * Process and free completed qtds for a qh, returning URBs to drivers.
274  * Chases up to qh->hw_current.  Returns nonzero if the caller should
275  * unlink qh.
276  */
277 static unsigned
278 qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
279 {
280 	struct ehci_qtd		*last, *end = qh->dummy;
281 	struct list_head	*entry, *tmp;
282 	int			last_status;
283 	int			stopped;
284 	u8			state;
285 	struct ehci_qh_hw	*hw = qh->hw;
286 
287 	/* completions (or tasks on other cpus) must never clobber HALT
288 	 * till we've gone through and cleaned everything up, even when
289 	 * they add urbs to this qh's queue or mark them for unlinking.
290 	 *
291 	 * NOTE:  unlinking expects to be done in queue order.
292 	 *
293 	 * It's a bug for qh->qh_state to be anything other than
294 	 * QH_STATE_IDLE, unless our caller is scan_async() or
295 	 * scan_intr().
296 	 */
297 	state = qh->qh_state;
298 	qh->qh_state = QH_STATE_COMPLETING;
299 	stopped = (state == QH_STATE_IDLE);
300 
301  rescan:
302 	last = NULL;
303 	last_status = -EINPROGRESS;
304 	qh->dequeue_during_giveback = 0;
305 
306 	/* remove de-activated QTDs from front of queue.
307 	 * after faults (including short reads), cleanup this urb
308 	 * then let the queue advance.
309 	 * if queue is stopped, handles unlinks.
310 	 */
311 	list_for_each_safe (entry, tmp, &qh->qtd_list) {
312 		struct ehci_qtd	*qtd;
313 		struct urb	*urb;
314 		u32		token = 0;
315 
316 		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
317 		urb = qtd->urb;
318 
319 		/* clean up any state from previous QTD ...*/
320 		if (last) {
321 			if (likely (last->urb != urb)) {
322 				ehci_urb_done(ehci, last->urb, last_status);
323 				last_status = -EINPROGRESS;
324 			}
325 			ehci_qtd_free (ehci, last);
326 			last = NULL;
327 		}
328 
329 		/* ignore urbs submitted during completions we reported */
330 		if (qtd == end)
331 			break;
332 
333 		/* hardware copies qtd out of qh overlay */
334 		rmb ();
335 		token = hc32_to_cpu(ehci, qtd->hw_token);
336 
337 		/* always clean up qtds the hc de-activated */
338  retry_xacterr:
339 		if ((token & QTD_STS_ACTIVE) == 0) {
340 
341 			/* Report Data Buffer Error: non-fatal but useful */
342 			if (token & QTD_STS_DBE)
343 				ehci_dbg(ehci,
344 					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
345 					urb,
346 					usb_endpoint_num(&urb->ep->desc),
347 					usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
348 					urb->transfer_buffer_length,
349 					qtd,
350 					qh);
351 
352 			/* on STALL, error, and short reads this urb must
353 			 * complete and all its qtds must be recycled.
354 			 */
355 			if ((token & QTD_STS_HALT) != 0) {
356 
357 				/* retry transaction errors until we
358 				 * reach the software xacterr limit
359 				 */
360 				if ((token & QTD_STS_XACT) &&
361 						QTD_CERR(token) == 0 &&
362 						++qh->xacterrs < QH_XACTERR_MAX &&
363 						!urb->unlinked) {
364 					ehci_dbg(ehci,
365 	"detected XactErr len %zu/%zu retry %d\n",
366 	qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
367 
368 					/* reset the token in the qtd and the
369 					 * qh overlay (which still contains
370 					 * the qtd) so that we pick up from
371 					 * where we left off
372 					 */
373 					token &= ~QTD_STS_HALT;
374 					token |= QTD_STS_ACTIVE |
375 							(EHCI_TUNE_CERR << 10);
376 					qtd->hw_token = cpu_to_hc32(ehci,
377 							token);
378 					wmb();
379 					hw->hw_token = cpu_to_hc32(ehci,
380 							token);
381 					goto retry_xacterr;
382 				}
383 				stopped = 1;
384 				qh->unlink_reason |= QH_UNLINK_HALTED;
385 
386 			/* magic dummy for some short reads; qh won't advance.
387 			 * that silicon quirk can kick in with this dummy too.
388 			 *
389 			 * other short reads won't stop the queue, including
390 			 * control transfers (status stage handles that) or
391 			 * most other single-qtd reads ... the queue stops if
392 			 * URB_SHORT_NOT_OK was set so the driver submitting
393 			 * the urbs could clean it up.
394 			 */
395 			} else if (IS_SHORT_READ (token)
396 					&& !(qtd->hw_alt_next
397 						& EHCI_LIST_END(ehci))) {
398 				stopped = 1;
399 				qh->unlink_reason |= QH_UNLINK_SHORT_READ;
400 			}
401 
402 		/* stop scanning when we reach qtds the hc is using */
403 		} else if (likely (!stopped
404 				&& ehci->rh_state >= EHCI_RH_RUNNING)) {
405 			break;
406 
407 		/* scan the whole queue for unlinks whenever it stops */
408 		} else {
409 			stopped = 1;
410 
411 			/* cancel everything if we halt, suspend, etc */
412 			if (ehci->rh_state < EHCI_RH_RUNNING) {
413 				last_status = -ESHUTDOWN;
414 				qh->unlink_reason |= QH_UNLINK_SHUTDOWN;
415 			}
416 
417 			/* this qtd is active; skip it unless a previous qtd
418 			 * for its urb faulted, or its urb was canceled.
419 			 */
420 			else if (last_status == -EINPROGRESS && !urb->unlinked)
421 				continue;
422 
423 			/*
424 			 * If this was the active qtd when the qh was unlinked
425 			 * and the overlay's token is active, then the overlay
426 			 * hasn't been written back to the qtd yet so use its
427 			 * token instead of the qtd's.  After the qtd is
428 			 * processed and removed, the overlay won't be valid
429 			 * any more.
430 			 */
431 			if (state == QH_STATE_IDLE &&
432 					qh->qtd_list.next == &qtd->qtd_list &&
433 					(hw->hw_token & ACTIVE_BIT(ehci))) {
434 				token = hc32_to_cpu(ehci, hw->hw_token);
435 				hw->hw_token &= ~ACTIVE_BIT(ehci);
436 				qh->should_be_inactive = 1;
437 
438 				/* An unlink may leave an incomplete
439 				 * async transaction in the TT buffer.
440 				 * We have to clear it.
441 				 */
442 				ehci_clear_tt_buffer(ehci, qh, urb, token);
443 			}
444 		}
445 
446 		/* unless we already know the urb's status, collect qtd status
447 		 * and update count of bytes transferred.  in common short read
448 		 * cases with only one data qtd (including control transfers),
449 		 * queue processing won't halt.  but with two or more qtds (for
450 		 * example, with a 32 KB transfer), when the first qtd gets a
451 		 * short read the second must be removed by hand.
452 		 */
453 		if (last_status == -EINPROGRESS) {
454 			last_status = qtd_copy_status(ehci, urb,
455 					qtd->length, token);
456 			if (last_status == -EREMOTEIO
457 					&& (qtd->hw_alt_next
458 						& EHCI_LIST_END(ehci)))
459 				last_status = -EINPROGRESS;
460 
461 			/* As part of low/full-speed endpoint-halt processing
462 			 * we must clear the TT buffer (11.17.5).
463 			 */
464 			if (unlikely(last_status != -EINPROGRESS &&
465 					last_status != -EREMOTEIO)) {
466 				/* The TT's in some hubs malfunction when they
467 				 * receive this request following a STALL (they
468 				 * stop sending isochronous packets).  Since a
469 				 * STALL can't leave the TT buffer in a busy
470 				 * state (if you believe Figures 11-48 - 11-51
471 				 * in the USB 2.0 spec), we won't clear the TT
472 				 * buffer in this case.  Strictly speaking this
473 				 * is a violation of the spec.
474 				 */
475 				if (last_status != -EPIPE)
476 					ehci_clear_tt_buffer(ehci, qh, urb,
477 							token);
478 			}
479 		}
480 
481 		/* if we're removing something not at the queue head,
482 		 * patch the hardware queue pointer.
483 		 */
484 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
485 			last = list_entry (qtd->qtd_list.prev,
486 					struct ehci_qtd, qtd_list);
487 			last->hw_next = qtd->hw_next;
488 		}
489 
490 		/* remove qtd; it's recycled after possible urb completion */
491 		list_del (&qtd->qtd_list);
492 		last = qtd;
493 
494 		/* reinit the xacterr counter for the next qtd */
495 		qh->xacterrs = 0;
496 	}
497 
498 	/* last urb's completion might still need calling */
499 	if (likely (last != NULL)) {
500 		ehci_urb_done(ehci, last->urb, last_status);
501 		ehci_qtd_free (ehci, last);
502 	}
503 
504 	/* Do we need to rescan for URBs dequeued during a giveback? */
505 	if (unlikely(qh->dequeue_during_giveback)) {
506 		/* If the QH is already unlinked, do the rescan now. */
507 		if (state == QH_STATE_IDLE)
508 			goto rescan;
509 
510 		/* Otherwise the caller must unlink the QH. */
511 	}
512 
513 	/* restore original state; caller must unlink or relink */
514 	qh->qh_state = state;
515 
516 	/* be sure the hardware's done with the qh before refreshing
517 	 * it after fault cleanup, or recovering from silicon wrongly
518 	 * overlaying the dummy qtd (which reduces DMA chatter).
519 	 *
520 	 * We won't refresh a QH that's linked (after the HC
521 	 * stopped the queue).  That avoids a race:
522 	 *  - HC reads first part of QH;
523 	 *  - CPU updates that first part and the token;
524 	 *  - HC reads rest of that QH, including token
525 	 * Result:  HC gets an inconsistent image, and then
526 	 * DMAs to/from the wrong memory (corrupting it).
527 	 *
528 	 * That should be rare for interrupt transfers,
529 	 * except maybe high bandwidth ...
530 	 */
531 	if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci))
532 		qh->unlink_reason |= QH_UNLINK_DUMMY_OVERLAY;
533 
534 	/* Let the caller know if the QH needs to be unlinked. */
535 	return qh->unlink_reason;
536 }
537 
538 /*-------------------------------------------------------------------------*/
539 
540 /*
541  * reverse of qh_urb_transaction:  free a list of TDs.
542  * used for cleanup after errors, before HC sees an URB's TDs.
543  */
544 static void qtd_list_free (
545 	struct ehci_hcd		*ehci,
546 	struct urb		*urb,
547 	struct list_head	*qtd_list
548 ) {
549 	struct list_head	*entry, *temp;
550 
551 	list_for_each_safe (entry, temp, qtd_list) {
552 		struct ehci_qtd	*qtd;
553 
554 		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
555 		list_del (&qtd->qtd_list);
556 		ehci_qtd_free (ehci, qtd);
557 	}
558 }
559 
560 /*
561  * create a list of filled qtds for this URB; won't link into qh.
562  */
563 static struct list_head *
564 qh_urb_transaction (
565 	struct ehci_hcd		*ehci,
566 	struct urb		*urb,
567 	struct list_head	*head,
568 	gfp_t			flags
569 ) {
570 	struct ehci_qtd		*qtd, *qtd_prev;
571 	dma_addr_t		buf;
572 	int			len, this_sg_len, maxpacket;
573 	int			is_input;
574 	u32			token;
575 	int			i;
576 	struct scatterlist	*sg;
577 
578 	/*
579 	 * URBs map to sequences of QTDs:  one logical transaction
580 	 */
581 	qtd = ehci_qtd_alloc (ehci, flags);
582 	if (unlikely (!qtd))
583 		return NULL;
584 	list_add_tail (&qtd->qtd_list, head);
585 	qtd->urb = urb;
586 
587 	token = QTD_STS_ACTIVE;
588 	token |= (EHCI_TUNE_CERR << 10);
589 	/* for split transactions, SplitXState initialized to zero */
590 
591 	len = urb->transfer_buffer_length;
592 	is_input = usb_pipein (urb->pipe);
593 	if (usb_pipecontrol (urb->pipe)) {
594 		/* SETUP pid */
595 		qtd_fill(ehci, qtd, urb->setup_dma,
596 				sizeof (struct usb_ctrlrequest),
597 				token | (2 /* "setup" */ << 8), 8);
598 
599 		/* ... and always at least one more pid */
600 		token ^= QTD_TOGGLE;
601 		qtd_prev = qtd;
602 		qtd = ehci_qtd_alloc (ehci, flags);
603 		if (unlikely (!qtd))
604 			goto cleanup;
605 		qtd->urb = urb;
606 		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
607 		list_add_tail (&qtd->qtd_list, head);
608 
609 		/* for zero length DATA stages, STATUS is always IN */
610 		if (len == 0)
611 			token |= (1 /* "in" */ << 8);
612 	}
613 
614 	/*
615 	 * data transfer stage:  buffer setup
616 	 */
617 	i = urb->num_mapped_sgs;
618 	if (len > 0 && i > 0) {
619 		sg = urb->sg;
620 		buf = sg_dma_address(sg);
621 
622 		/* urb->transfer_buffer_length may be smaller than the
623 		 * size of the scatterlist (or vice versa)
624 		 */
625 		this_sg_len = min_t(int, sg_dma_len(sg), len);
626 	} else {
627 		sg = NULL;
628 		buf = urb->transfer_dma;
629 		this_sg_len = len;
630 	}
631 
632 	if (is_input)
633 		token |= (1 /* "in" */ << 8);
634 	/* else it's already initted to "out" pid (0 << 8) */
635 
636 	maxpacket = usb_maxpacket(urb->dev, urb->pipe, !is_input);
637 
638 	/*
639 	 * buffer gets wrapped in one or more qtds;
640 	 * last one may be "short" (including zero len)
641 	 * and may serve as a control status ack
642 	 */
643 	for (;;) {
644 		int this_qtd_len;
645 
646 		this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
647 				maxpacket);
648 		this_sg_len -= this_qtd_len;
649 		len -= this_qtd_len;
650 		buf += this_qtd_len;
651 
652 		/*
653 		 * short reads advance to a "magic" dummy instead of the next
654 		 * qtd ... that forces the queue to stop, for manual cleanup.
655 		 * (this will usually be overridden later.)
656 		 */
657 		if (is_input)
658 			qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
659 
660 		/* qh makes control packets use qtd toggle; maybe switch it */
661 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
662 			token ^= QTD_TOGGLE;
663 
664 		if (likely(this_sg_len <= 0)) {
665 			if (--i <= 0 || len <= 0)
666 				break;
667 			sg = sg_next(sg);
668 			buf = sg_dma_address(sg);
669 			this_sg_len = min_t(int, sg_dma_len(sg), len);
670 		}
671 
672 		qtd_prev = qtd;
673 		qtd = ehci_qtd_alloc (ehci, flags);
674 		if (unlikely (!qtd))
675 			goto cleanup;
676 		qtd->urb = urb;
677 		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
678 		list_add_tail (&qtd->qtd_list, head);
679 	}
680 
681 	/*
682 	 * unless the caller requires manual cleanup after short reads,
683 	 * have the alt_next mechanism keep the queue running after the
684 	 * last data qtd (the only one, for control and most other cases).
685 	 */
686 	if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
687 				|| usb_pipecontrol (urb->pipe)))
688 		qtd->hw_alt_next = EHCI_LIST_END(ehci);
689 
690 	/*
691 	 * control requests may need a terminating data "status" ack;
692 	 * other OUT ones may need a terminating short packet
693 	 * (zero length).
694 	 */
695 	if (likely (urb->transfer_buffer_length != 0)) {
696 		int	one_more = 0;
697 
698 		if (usb_pipecontrol (urb->pipe)) {
699 			one_more = 1;
700 			token ^= 0x0100;	/* "in" <--> "out"  */
701 			token |= QTD_TOGGLE;	/* force DATA1 */
702 		} else if (usb_pipeout(urb->pipe)
703 				&& (urb->transfer_flags & URB_ZERO_PACKET)
704 				&& !(urb->transfer_buffer_length % maxpacket)) {
705 			one_more = 1;
706 		}
707 		if (one_more) {
708 			qtd_prev = qtd;
709 			qtd = ehci_qtd_alloc (ehci, flags);
710 			if (unlikely (!qtd))
711 				goto cleanup;
712 			qtd->urb = urb;
713 			qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
714 			list_add_tail (&qtd->qtd_list, head);
715 
716 			/* never any data in such packets */
717 			qtd_fill(ehci, qtd, 0, 0, token, 0);
718 		}
719 	}
720 
721 	/* by default, enable interrupt on urb completion */
722 	if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
723 		qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
724 	return head;
725 
726 cleanup:
727 	qtd_list_free (ehci, urb, head);
728 	return NULL;
729 }
730 
731 /*-------------------------------------------------------------------------*/
732 
733 // Would be best to create all qh's from config descriptors,
734 // when each interface/altsetting is established.  Unlink
735 // any previous qh and cancel its urbs first; endpoints are
736 // implicitly reset then (data toggle too).
737 // That'd mean updating how usbcore talks to HCDs. (2.7?)
738 
739 
740 /*
741  * Each QH holds a qtd list; a QH is used for everything except iso.
742  *
743  * For interrupt urbs, the scheduler must set the microframe scheduling
744  * mask(s) each time the QH gets scheduled.  For highspeed, that's
745  * just one microframe in the s-mask.  For split interrupt transactions
746  * there are additional complications: c-mask, maybe FSTNs.
747  */
748 static struct ehci_qh *
749 qh_make (
750 	struct ehci_hcd		*ehci,
751 	struct urb		*urb,
752 	gfp_t			flags
753 ) {
754 	struct ehci_qh		*qh = ehci_qh_alloc (ehci, flags);
755 	struct usb_host_endpoint *ep;
756 	u32			info1 = 0, info2 = 0;
757 	int			is_input, type;
758 	int			maxp = 0;
759 	int			mult;
760 	struct usb_tt		*tt = urb->dev->tt;
761 	struct ehci_qh_hw	*hw;
762 
763 	if (!qh)
764 		return qh;
765 
766 	/*
767 	 * init endpoint/device data for this QH
768 	 */
769 	info1 |= usb_pipeendpoint (urb->pipe) << 8;
770 	info1 |= usb_pipedevice (urb->pipe) << 0;
771 
772 	is_input = usb_pipein (urb->pipe);
773 	type = usb_pipetype (urb->pipe);
774 	ep = usb_pipe_endpoint (urb->dev, urb->pipe);
775 	maxp = usb_endpoint_maxp (&ep->desc);
776 	mult = usb_endpoint_maxp_mult (&ep->desc);
777 
778 	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
779 	 * acts like up to 3KB, but is built from smaller packets.
780 	 */
781 	if (maxp > 1024) {
782 		ehci_dbg(ehci, "bogus qh maxpacket %d\n", maxp);
783 		goto done;
784 	}
785 
786 	/* Compute interrupt scheduling parameters just once, and save.
787 	 * - allowing for high bandwidth, how many nsec/uframe are used?
788 	 * - split transactions need a second CSPLIT uframe; same question
789 	 * - splits also need a schedule gap (for full/low speed I/O)
790 	 * - qh has a polling interval
791 	 *
792 	 * For control/bulk requests, the HC or TT handles these.
793 	 */
794 	if (type == PIPE_INTERRUPT) {
795 		unsigned	tmp;
796 
797 		qh->ps.usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
798 				is_input, 0, mult * maxp));
799 		qh->ps.phase = NO_FRAME;
800 
801 		if (urb->dev->speed == USB_SPEED_HIGH) {
802 			qh->ps.c_usecs = 0;
803 			qh->gap_uf = 0;
804 
805 			if (urb->interval > 1 && urb->interval < 8) {
806 				/* NOTE interval 2 or 4 uframes could work.
807 				 * But interval 1 scheduling is simpler, and
808 				 * includes high bandwidth.
809 				 */
810 				urb->interval = 1;
811 			} else if (urb->interval > ehci->periodic_size << 3) {
812 				urb->interval = ehci->periodic_size << 3;
813 			}
814 			qh->ps.period = urb->interval >> 3;
815 
816 			/* period for bandwidth allocation */
817 			tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
818 					1 << (urb->ep->desc.bInterval - 1));
819 
820 			/* Allow urb->interval to override */
821 			qh->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
822 			qh->ps.bw_period = qh->ps.bw_uperiod >> 3;
823 		} else {
824 			int		think_time;
825 
826 			/* gap is f(FS/LS transfer times) */
827 			qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
828 					is_input, 0, maxp) / (125 * 1000);
829 
830 			/* FIXME this just approximates SPLIT/CSPLIT times */
831 			if (is_input) {		// SPLIT, gap, CSPLIT+DATA
832 				qh->ps.c_usecs = qh->ps.usecs + HS_USECS(0);
833 				qh->ps.usecs = HS_USECS(1);
834 			} else {		// SPLIT+DATA, gap, CSPLIT
835 				qh->ps.usecs += HS_USECS(1);
836 				qh->ps.c_usecs = HS_USECS(0);
837 			}
838 
839 			think_time = tt ? tt->think_time : 0;
840 			qh->ps.tt_usecs = NS_TO_US(think_time +
841 					usb_calc_bus_time (urb->dev->speed,
842 					is_input, 0, maxp));
843 			if (urb->interval > ehci->periodic_size)
844 				urb->interval = ehci->periodic_size;
845 			qh->ps.period = urb->interval;
846 
847 			/* period for bandwidth allocation */
848 			tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
849 					urb->ep->desc.bInterval);
850 			tmp = rounddown_pow_of_two(tmp);
851 
852 			/* Allow urb->interval to override */
853 			qh->ps.bw_period = min_t(unsigned, tmp, urb->interval);
854 			qh->ps.bw_uperiod = qh->ps.bw_period << 3;
855 		}
856 	}
857 
858 	/* support for tt scheduling, and access to toggles */
859 	qh->ps.udev = urb->dev;
860 	qh->ps.ep = urb->ep;
861 
862 	/* using TT? */
863 	switch (urb->dev->speed) {
864 	case USB_SPEED_LOW:
865 		info1 |= QH_LOW_SPEED;
866 		/* FALL THROUGH */
867 
868 	case USB_SPEED_FULL:
869 		/* EPS 0 means "full" */
870 		if (type != PIPE_INTERRUPT)
871 			info1 |= (EHCI_TUNE_RL_TT << 28);
872 		if (type == PIPE_CONTROL) {
873 			info1 |= QH_CONTROL_EP;		/* for TT */
874 			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
875 		}
876 		info1 |= maxp << 16;
877 
878 		info2 |= (EHCI_TUNE_MULT_TT << 30);
879 
880 		/* Some Freescale processors have an erratum in which the
881 		 * port number in the queue head was 0..N-1 instead of 1..N.
882 		 */
883 		if (ehci_has_fsl_portno_bug(ehci))
884 			info2 |= (urb->dev->ttport-1) << 23;
885 		else
886 			info2 |= urb->dev->ttport << 23;
887 
888 		/* set the address of the TT; for TDI's integrated
889 		 * root hub tt, leave it zeroed.
890 		 */
891 		if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
892 			info2 |= tt->hub->devnum << 16;
893 
894 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
895 
896 		break;
897 
898 	case USB_SPEED_HIGH:		/* no TT involved */
899 		info1 |= QH_HIGH_SPEED;
900 		if (type == PIPE_CONTROL) {
901 			info1 |= (EHCI_TUNE_RL_HS << 28);
902 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
903 			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
904 			info2 |= (EHCI_TUNE_MULT_HS << 30);
905 		} else if (type == PIPE_BULK) {
906 			info1 |= (EHCI_TUNE_RL_HS << 28);
907 			/* The USB spec says that high speed bulk endpoints
908 			 * always use 512 byte maxpacket.  But some device
909 			 * vendors decided to ignore that, and MSFT is happy
910 			 * to help them do so.  So now people expect to use
911 			 * such nonconformant devices with Linux too; sigh.
912 			 */
913 			info1 |= maxp << 16;
914 			info2 |= (EHCI_TUNE_MULT_HS << 30);
915 		} else {		/* PIPE_INTERRUPT */
916 			info1 |= maxp << 16;
917 			info2 |= mult << 30;
918 		}
919 		break;
920 	default:
921 		ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev,
922 			urb->dev->speed);
923 done:
924 		qh_destroy(ehci, qh);
925 		return NULL;
926 	}
927 
928 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
929 
930 	/* init as live, toggle clear */
931 	qh->qh_state = QH_STATE_IDLE;
932 	hw = qh->hw;
933 	hw->hw_info1 = cpu_to_hc32(ehci, info1);
934 	hw->hw_info2 = cpu_to_hc32(ehci, info2);
935 	qh->is_out = !is_input;
936 	usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
937 	return qh;
938 }
939 
940 /*-------------------------------------------------------------------------*/
941 
942 static void enable_async(struct ehci_hcd *ehci)
943 {
944 	if (ehci->async_count++)
945 		return;
946 
947 	/* Stop waiting to turn off the async schedule */
948 	ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC);
949 
950 	/* Don't start the schedule until ASS is 0 */
951 	ehci_poll_ASS(ehci);
952 	turn_on_io_watchdog(ehci);
953 }
954 
955 static void disable_async(struct ehci_hcd *ehci)
956 {
957 	if (--ehci->async_count)
958 		return;
959 
960 	/* The async schedule and unlink lists are supposed to be empty */
961 	WARN_ON(ehci->async->qh_next.qh || !list_empty(&ehci->async_unlink) ||
962 			!list_empty(&ehci->async_idle));
963 
964 	/* Don't turn off the schedule until ASS is 1 */
965 	ehci_poll_ASS(ehci);
966 }
967 
968 /* move qh (and its qtds) onto async queue; maybe enable queue.  */
969 
970 static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
971 {
972 	__hc32		dma = QH_NEXT(ehci, qh->qh_dma);
973 	struct ehci_qh	*head;
974 
975 	/* Don't link a QH if there's a Clear-TT-Buffer pending */
976 	if (unlikely(qh->clearing_tt))
977 		return;
978 
979 	WARN_ON(qh->qh_state != QH_STATE_IDLE);
980 
981 	/* clear halt and/or toggle; and maybe recover from silicon quirk */
982 	qh_refresh(ehci, qh);
983 
984 	/* splice right after start */
985 	head = ehci->async;
986 	qh->qh_next = head->qh_next;
987 	qh->hw->hw_next = head->hw->hw_next;
988 	wmb ();
989 
990 	head->qh_next.qh = qh;
991 	head->hw->hw_next = dma;
992 
993 	qh->qh_state = QH_STATE_LINKED;
994 	qh->xacterrs = 0;
995 	qh->unlink_reason = 0;
996 	/* qtd completions reported later by interrupt */
997 
998 	enable_async(ehci);
999 }
1000 
1001 /*-------------------------------------------------------------------------*/
1002 
1003 /*
1004  * For control/bulk/interrupt, return QH with these TDs appended.
1005  * Allocates and initializes the QH if necessary.
1006  * Returns null if it can't allocate a QH it needs to.
1007  * If the QH has TDs (urbs) already, that's great.
1008  */
1009 static struct ehci_qh *qh_append_tds (
1010 	struct ehci_hcd		*ehci,
1011 	struct urb		*urb,
1012 	struct list_head	*qtd_list,
1013 	int			epnum,
1014 	void			**ptr
1015 )
1016 {
1017 	struct ehci_qh		*qh = NULL;
1018 	__hc32			qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
1019 
1020 	qh = (struct ehci_qh *) *ptr;
1021 	if (unlikely (qh == NULL)) {
1022 		/* can't sleep here, we have ehci->lock... */
1023 		qh = qh_make (ehci, urb, GFP_ATOMIC);
1024 		*ptr = qh;
1025 	}
1026 	if (likely (qh != NULL)) {
1027 		struct ehci_qtd	*qtd;
1028 
1029 		if (unlikely (list_empty (qtd_list)))
1030 			qtd = NULL;
1031 		else
1032 			qtd = list_entry (qtd_list->next, struct ehci_qtd,
1033 					qtd_list);
1034 
1035 		/* control qh may need patching ... */
1036 		if (unlikely (epnum == 0)) {
1037 
1038                         /* usb_reset_device() briefly reverts to address 0 */
1039                         if (usb_pipedevice (urb->pipe) == 0)
1040 				qh->hw->hw_info1 &= ~qh_addr_mask;
1041 		}
1042 
1043 		/* just one way to queue requests: swap with the dummy qtd.
1044 		 * only hc or qh_refresh() ever modify the overlay.
1045 		 */
1046 		if (likely (qtd != NULL)) {
1047 			struct ehci_qtd		*dummy;
1048 			dma_addr_t		dma;
1049 			__hc32			token;
1050 
1051 			/* to avoid racing the HC, use the dummy td instead of
1052 			 * the first td of our list (becomes new dummy).  both
1053 			 * tds stay deactivated until we're done, when the
1054 			 * HC is allowed to fetch the old dummy (4.10.2).
1055 			 */
1056 			token = qtd->hw_token;
1057 			qtd->hw_token = HALT_BIT(ehci);
1058 
1059 			dummy = qh->dummy;
1060 
1061 			dma = dummy->qtd_dma;
1062 			*dummy = *qtd;
1063 			dummy->qtd_dma = dma;
1064 
1065 			list_del (&qtd->qtd_list);
1066 			list_add (&dummy->qtd_list, qtd_list);
1067 			list_splice_tail(qtd_list, &qh->qtd_list);
1068 
1069 			ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
1070 			qh->dummy = qtd;
1071 
1072 			/* hc must see the new dummy at list end */
1073 			dma = qtd->qtd_dma;
1074 			qtd = list_entry (qh->qtd_list.prev,
1075 					struct ehci_qtd, qtd_list);
1076 			qtd->hw_next = QTD_NEXT(ehci, dma);
1077 
1078 			/* let the hc process these next qtds */
1079 			wmb ();
1080 			dummy->hw_token = token;
1081 
1082 			urb->hcpriv = qh;
1083 		}
1084 	}
1085 	return qh;
1086 }
1087 
1088 /*-------------------------------------------------------------------------*/
1089 
1090 static int
1091 submit_async (
1092 	struct ehci_hcd		*ehci,
1093 	struct urb		*urb,
1094 	struct list_head	*qtd_list,
1095 	gfp_t			mem_flags
1096 ) {
1097 	int			epnum;
1098 	unsigned long		flags;
1099 	struct ehci_qh		*qh = NULL;
1100 	int			rc;
1101 
1102 	epnum = urb->ep->desc.bEndpointAddress;
1103 
1104 #ifdef EHCI_URB_TRACE
1105 	{
1106 		struct ehci_qtd *qtd;
1107 		qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1108 		ehci_dbg(ehci,
1109 			 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1110 			 __func__, urb->dev->devpath, urb,
1111 			 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1112 			 urb->transfer_buffer_length,
1113 			 qtd, urb->ep->hcpriv);
1114 	}
1115 #endif
1116 
1117 	spin_lock_irqsave (&ehci->lock, flags);
1118 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1119 		rc = -ESHUTDOWN;
1120 		goto done;
1121 	}
1122 	rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1123 	if (unlikely(rc))
1124 		goto done;
1125 
1126 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
1127 	if (unlikely(qh == NULL)) {
1128 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1129 		rc = -ENOMEM;
1130 		goto done;
1131 	}
1132 
1133 	/* Control/bulk operations through TTs don't need scheduling,
1134 	 * the HC and TT handle it when the TT has a buffer ready.
1135 	 */
1136 	if (likely (qh->qh_state == QH_STATE_IDLE))
1137 		qh_link_async(ehci, qh);
1138  done:
1139 	spin_unlock_irqrestore (&ehci->lock, flags);
1140 	if (unlikely (qh == NULL))
1141 		qtd_list_free (ehci, urb, qtd_list);
1142 	return rc;
1143 }
1144 
1145 /*-------------------------------------------------------------------------*/
1146 #ifdef CONFIG_USB_HCD_TEST_MODE
1147 /*
1148  * This function creates the qtds and submits them for the
1149  * SINGLE_STEP_SET_FEATURE Test.
1150  * This is done in two parts: first SETUP req for GetDesc is sent then
1151  * 15 seconds later, the IN stage for GetDesc starts to req data from dev
1152  *
1153  * is_setup : i/p arguement decides which of the two stage needs to be
1154  * performed; TRUE - SETUP and FALSE - IN+STATUS
1155  * Returns 0 if success
1156  */
1157 static int submit_single_step_set_feature(
1158 	struct usb_hcd  *hcd,
1159 	struct urb      *urb,
1160 	int             is_setup
1161 ) {
1162 	struct ehci_hcd		*ehci = hcd_to_ehci(hcd);
1163 	struct list_head	qtd_list;
1164 	struct list_head	*head;
1165 
1166 	struct ehci_qtd		*qtd, *qtd_prev;
1167 	dma_addr_t		buf;
1168 	int			len, maxpacket;
1169 	u32			token;
1170 
1171 	INIT_LIST_HEAD(&qtd_list);
1172 	head = &qtd_list;
1173 
1174 	/* URBs map to sequences of QTDs:  one logical transaction */
1175 	qtd = ehci_qtd_alloc(ehci, GFP_KERNEL);
1176 	if (unlikely(!qtd))
1177 		return -1;
1178 	list_add_tail(&qtd->qtd_list, head);
1179 	qtd->urb = urb;
1180 
1181 	token = QTD_STS_ACTIVE;
1182 	token |= (EHCI_TUNE_CERR << 10);
1183 
1184 	len = urb->transfer_buffer_length;
1185 	/*
1186 	 * Check if the request is to perform just the SETUP stage (getDesc)
1187 	 * as in SINGLE_STEP_SET_FEATURE test, DATA stage (IN) happens
1188 	 * 15 secs after the setup
1189 	 */
1190 	if (is_setup) {
1191 		/* SETUP pid, and interrupt after SETUP completion */
1192 		qtd_fill(ehci, qtd, urb->setup_dma,
1193 				sizeof(struct usb_ctrlrequest),
1194 				QTD_IOC | token | (2 /* "setup" */ << 8), 8);
1195 
1196 		submit_async(ehci, urb, &qtd_list, GFP_ATOMIC);
1197 		return 0; /*Return now; we shall come back after 15 seconds*/
1198 	}
1199 
1200 	/*
1201 	 * IN: data transfer stage:  buffer setup : start the IN txn phase for
1202 	 * the get_Desc SETUP which was sent 15seconds back
1203 	 */
1204 	token ^= QTD_TOGGLE;   /*We need to start IN with DATA-1 Pid-sequence*/
1205 	buf = urb->transfer_dma;
1206 
1207 	token |= (1 /* "in" */ << 8);  /*This is IN stage*/
1208 
1209 	maxpacket = usb_maxpacket(urb->dev, urb->pipe, 0);
1210 
1211 	qtd_fill(ehci, qtd, buf, len, token, maxpacket);
1212 
1213 	/*
1214 	 * Our IN phase shall always be a short read; so keep the queue running
1215 	 * and let it advance to the next qtd which zero length OUT status
1216 	 */
1217 	qtd->hw_alt_next = EHCI_LIST_END(ehci);
1218 
1219 	/* STATUS stage for GetDesc control request */
1220 	token ^= 0x0100;        /* "in" <--> "out"  */
1221 	token |= QTD_TOGGLE;    /* force DATA1 */
1222 
1223 	qtd_prev = qtd;
1224 	qtd = ehci_qtd_alloc(ehci, GFP_ATOMIC);
1225 	if (unlikely(!qtd))
1226 		goto cleanup;
1227 	qtd->urb = urb;
1228 	qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
1229 	list_add_tail(&qtd->qtd_list, head);
1230 
1231 	/* Interrupt after STATUS completion */
1232 	qtd_fill(ehci, qtd, 0, 0, token | QTD_IOC, 0);
1233 
1234 	submit_async(ehci, urb, &qtd_list, GFP_KERNEL);
1235 
1236 	return 0;
1237 
1238 cleanup:
1239 	qtd_list_free(ehci, urb, head);
1240 	return -1;
1241 }
1242 #endif /* CONFIG_USB_HCD_TEST_MODE */
1243 
1244 /*-------------------------------------------------------------------------*/
1245 
1246 static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1247 {
1248 	struct ehci_qh		*prev;
1249 
1250 	/* Add to the end of the list of QHs waiting for the next IAAD */
1251 	qh->qh_state = QH_STATE_UNLINK_WAIT;
1252 	list_add_tail(&qh->unlink_node, &ehci->async_unlink);
1253 
1254 	/* Unlink it from the schedule */
1255 	prev = ehci->async;
1256 	while (prev->qh_next.qh != qh)
1257 		prev = prev->qh_next.qh;
1258 
1259 	prev->hw->hw_next = qh->hw->hw_next;
1260 	prev->qh_next = qh->qh_next;
1261 	if (ehci->qh_scan_next == qh)
1262 		ehci->qh_scan_next = qh->qh_next.qh;
1263 }
1264 
1265 static void start_iaa_cycle(struct ehci_hcd *ehci)
1266 {
1267 	/* If the controller isn't running, we don't have to wait for it */
1268 	if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) {
1269 		end_unlink_async(ehci);
1270 
1271 	/* Otherwise start a new IAA cycle if one isn't already running */
1272 	} else if (ehci->rh_state == EHCI_RH_RUNNING &&
1273 			!ehci->iaa_in_progress) {
1274 
1275 		/* Make sure the unlinks are all visible to the hardware */
1276 		wmb();
1277 
1278 		ehci_writel(ehci, ehci->command | CMD_IAAD,
1279 				&ehci->regs->command);
1280 		ehci_readl(ehci, &ehci->regs->command);
1281 		ehci->iaa_in_progress = true;
1282 		ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true);
1283 	}
1284 }
1285 
1286 static void end_iaa_cycle(struct ehci_hcd *ehci)
1287 {
1288 	if (ehci->has_synopsys_hc_bug)
1289 		ehci_writel(ehci, (u32) ehci->async->qh_dma,
1290 			    &ehci->regs->async_next);
1291 
1292 	/* The current IAA cycle has ended */
1293 	ehci->iaa_in_progress = false;
1294 
1295 	end_unlink_async(ehci);
1296 }
1297 
1298 /* See if the async qh for the qtds being unlinked are now gone from the HC */
1299 
1300 static void end_unlink_async(struct ehci_hcd *ehci)
1301 {
1302 	struct ehci_qh		*qh;
1303 	bool			early_exit;
1304 
1305 	if (list_empty(&ehci->async_unlink))
1306 		return;
1307 	qh = list_first_entry(&ehci->async_unlink, struct ehci_qh,
1308 			unlink_node);	/* QH whose IAA cycle just ended */
1309 
1310 	/*
1311 	 * If async_unlinking is set then this routine is already running,
1312 	 * either on the stack or on another CPU.
1313 	 */
1314 	early_exit = ehci->async_unlinking;
1315 
1316 	/* If the controller isn't running, process all the waiting QHs */
1317 	if (ehci->rh_state < EHCI_RH_RUNNING)
1318 		list_splice_tail_init(&ehci->async_unlink, &ehci->async_idle);
1319 
1320 	/*
1321 	 * Intel (?) bug: The HC can write back the overlay region even
1322 	 * after the IAA interrupt occurs.  In self-defense, always go
1323 	 * through two IAA cycles for each QH.
1324 	 */
1325 	else if (qh->qh_state == QH_STATE_UNLINK) {
1326 		/*
1327 		 * Second IAA cycle has finished.  Process only the first
1328 		 * waiting QH (NVIDIA (?) bug).
1329 		 */
1330 		list_move_tail(&qh->unlink_node, &ehci->async_idle);
1331 	}
1332 
1333 	/*
1334 	 * AMD/ATI (?) bug: The HC can continue to use an active QH long
1335 	 * after the IAA interrupt occurs.  To prevent problems, QHs that
1336 	 * may still be active will wait until 2 ms have passed with no
1337 	 * change to the hw_current and hw_token fields (this delay occurs
1338 	 * between the two IAA cycles).
1339 	 *
1340 	 * The EHCI spec (4.8.2) says that active QHs must not be removed
1341 	 * from the async schedule and recommends waiting until the QH
1342 	 * goes inactive.  This is ridiculous because the QH will _never_
1343 	 * become inactive if the endpoint NAKs indefinitely.
1344 	 */
1345 
1346 	/* Some reasons for unlinking guarantee the QH can't be active */
1347 	else if (qh->unlink_reason & (QH_UNLINK_HALTED |
1348 			QH_UNLINK_SHORT_READ | QH_UNLINK_DUMMY_OVERLAY))
1349 		goto DelayDone;
1350 
1351 	/* The QH can't be active if the queue was and still is empty... */
1352 	else if	((qh->unlink_reason & QH_UNLINK_QUEUE_EMPTY) &&
1353 			list_empty(&qh->qtd_list))
1354 		goto DelayDone;
1355 
1356 	/* ... or if the QH has halted */
1357 	else if	(qh->hw->hw_token & cpu_to_hc32(ehci, QTD_STS_HALT))
1358 		goto DelayDone;
1359 
1360 	/* Otherwise we have to wait until the QH stops changing */
1361 	else {
1362 		__hc32		qh_current, qh_token;
1363 
1364 		qh_current = qh->hw->hw_current;
1365 		qh_token = qh->hw->hw_token;
1366 		if (qh_current != ehci->old_current ||
1367 				qh_token != ehci->old_token) {
1368 			ehci->old_current = qh_current;
1369 			ehci->old_token = qh_token;
1370 			ehci_enable_event(ehci,
1371 					EHCI_HRTIMER_ACTIVE_UNLINK, true);
1372 			return;
1373 		}
1374  DelayDone:
1375 		qh->qh_state = QH_STATE_UNLINK;
1376 		early_exit = true;
1377 	}
1378 	ehci->old_current = ~0;		/* Prepare for next QH */
1379 
1380 	/* Start a new IAA cycle if any QHs are waiting for it */
1381 	if (!list_empty(&ehci->async_unlink))
1382 		start_iaa_cycle(ehci);
1383 
1384 	/*
1385 	 * Don't allow nesting or concurrent calls,
1386 	 * or wait for the second IAA cycle for the next QH.
1387 	 */
1388 	if (early_exit)
1389 		return;
1390 
1391 	/* Process the idle QHs */
1392 	ehci->async_unlinking = true;
1393 	while (!list_empty(&ehci->async_idle)) {
1394 		qh = list_first_entry(&ehci->async_idle, struct ehci_qh,
1395 				unlink_node);
1396 		list_del(&qh->unlink_node);
1397 
1398 		qh->qh_state = QH_STATE_IDLE;
1399 		qh->qh_next.qh = NULL;
1400 
1401 		if (!list_empty(&qh->qtd_list))
1402 			qh_completions(ehci, qh);
1403 		if (!list_empty(&qh->qtd_list) &&
1404 				ehci->rh_state == EHCI_RH_RUNNING)
1405 			qh_link_async(ehci, qh);
1406 		disable_async(ehci);
1407 	}
1408 	ehci->async_unlinking = false;
1409 }
1410 
1411 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
1412 
1413 static void unlink_empty_async(struct ehci_hcd *ehci)
1414 {
1415 	struct ehci_qh		*qh;
1416 	struct ehci_qh		*qh_to_unlink = NULL;
1417 	int			count = 0;
1418 
1419 	/* Find the last async QH which has been empty for a timer cycle */
1420 	for (qh = ehci->async->qh_next.qh; qh; qh = qh->qh_next.qh) {
1421 		if (list_empty(&qh->qtd_list) &&
1422 				qh->qh_state == QH_STATE_LINKED) {
1423 			++count;
1424 			if (qh->unlink_cycle != ehci->async_unlink_cycle)
1425 				qh_to_unlink = qh;
1426 		}
1427 	}
1428 
1429 	/* If nothing else is being unlinked, unlink the last empty QH */
1430 	if (list_empty(&ehci->async_unlink) && qh_to_unlink) {
1431 		qh_to_unlink->unlink_reason |= QH_UNLINK_QUEUE_EMPTY;
1432 		start_unlink_async(ehci, qh_to_unlink);
1433 		--count;
1434 	}
1435 
1436 	/* Other QHs will be handled later */
1437 	if (count > 0) {
1438 		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1439 		++ehci->async_unlink_cycle;
1440 	}
1441 }
1442 
1443 #ifdef	CONFIG_PM
1444 
1445 /* The root hub is suspended; unlink all the async QHs */
1446 static void unlink_empty_async_suspended(struct ehci_hcd *ehci)
1447 {
1448 	struct ehci_qh		*qh;
1449 
1450 	while (ehci->async->qh_next.qh) {
1451 		qh = ehci->async->qh_next.qh;
1452 		WARN_ON(!list_empty(&qh->qtd_list));
1453 		single_unlink_async(ehci, qh);
1454 	}
1455 }
1456 
1457 #endif
1458 
1459 /* makes sure the async qh will become idle */
1460 /* caller must own ehci->lock */
1461 
1462 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1463 {
1464 	/* If the QH isn't linked then there's nothing we can do. */
1465 	if (qh->qh_state != QH_STATE_LINKED)
1466 		return;
1467 
1468 	single_unlink_async(ehci, qh);
1469 	start_iaa_cycle(ehci);
1470 }
1471 
1472 /*-------------------------------------------------------------------------*/
1473 
1474 static void scan_async (struct ehci_hcd *ehci)
1475 {
1476 	struct ehci_qh		*qh;
1477 	bool			check_unlinks_later = false;
1478 
1479 	ehci->qh_scan_next = ehci->async->qh_next.qh;
1480 	while (ehci->qh_scan_next) {
1481 		qh = ehci->qh_scan_next;
1482 		ehci->qh_scan_next = qh->qh_next.qh;
1483 
1484 		/* clean any finished work for this qh */
1485 		if (!list_empty(&qh->qtd_list)) {
1486 			int temp;
1487 
1488 			/*
1489 			 * Unlinks could happen here; completion reporting
1490 			 * drops the lock.  That's why ehci->qh_scan_next
1491 			 * always holds the next qh to scan; if the next qh
1492 			 * gets unlinked then ehci->qh_scan_next is adjusted
1493 			 * in single_unlink_async().
1494 			 */
1495 			temp = qh_completions(ehci, qh);
1496 			if (unlikely(temp)) {
1497 				start_unlink_async(ehci, qh);
1498 			} else if (list_empty(&qh->qtd_list)
1499 					&& qh->qh_state == QH_STATE_LINKED) {
1500 				qh->unlink_cycle = ehci->async_unlink_cycle;
1501 				check_unlinks_later = true;
1502 			}
1503 		}
1504 	}
1505 
1506 	/*
1507 	 * Unlink empty entries, reducing DMA usage as well
1508 	 * as HCD schedule-scanning costs.  Delay for any qh
1509 	 * we just scanned, there's a not-unusual case that it
1510 	 * doesn't stay idle for long.
1511 	 */
1512 	if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING &&
1513 			!(ehci->enabled_hrtimer_events &
1514 				BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) {
1515 		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1516 		++ehci->async_unlink_cycle;
1517 	}
1518 }
1519