xref: /openbmc/linux/drivers/usb/host/ehci-q.c (revision 95e9fd10)
1 /*
2  * Copyright (C) 2001-2004 by David Brownell
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the
6  * Free Software Foundation; either version 2 of the License, or (at your
7  * option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  */
18 
19 /* this file is part of ehci-hcd.c */
20 
21 /*-------------------------------------------------------------------------*/
22 
23 /*
24  * EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
25  *
26  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
27  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
28  * buffers needed for the larger number).  We use one QH per endpoint, queue
29  * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
30  *
31  * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
32  * interrupts) needs careful scheduling.  Performance improvements can be
33  * an ongoing challenge.  That's in "ehci-sched.c".
34  *
35  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
36  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
37  * (b) special fields in qh entries or (c) split iso entries.  TTs will
38  * buffer low/full speed data so the host collects it at high speed.
39  */
40 
41 /*-------------------------------------------------------------------------*/
42 
43 /* fill a qtd, returning how much of the buffer we were able to queue up */
44 
45 static int
46 qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
47 		  size_t len, int token, int maxpacket)
48 {
49 	int	i, count;
50 	u64	addr = buf;
51 
52 	/* one buffer entry per 4K ... first might be short or unaligned */
53 	qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
54 	qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
55 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
56 	if (likely (len < count))		/* ... iff needed */
57 		count = len;
58 	else {
59 		buf +=  0x1000;
60 		buf &= ~0x0fff;
61 
62 		/* per-qtd limit: from 16K to 20K (best alignment) */
63 		for (i = 1; count < len && i < 5; i++) {
64 			addr = buf;
65 			qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
66 			qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
67 					(u32)(addr >> 32));
68 			buf += 0x1000;
69 			if ((count + 0x1000) < len)
70 				count += 0x1000;
71 			else
72 				count = len;
73 		}
74 
75 		/* short packets may only terminate transfers */
76 		if (count != len)
77 			count -= (count % maxpacket);
78 	}
79 	qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
80 	qtd->length = count;
81 
82 	return count;
83 }
84 
85 /*-------------------------------------------------------------------------*/
86 
87 static inline void
88 qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
89 {
90 	struct ehci_qh_hw *hw = qh->hw;
91 
92 	/* writes to an active overlay are unsafe */
93 	BUG_ON(qh->qh_state != QH_STATE_IDLE);
94 
95 	hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
96 	hw->hw_alt_next = EHCI_LIST_END(ehci);
97 
98 	/* Except for control endpoints, we make hardware maintain data
99 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
100 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
101 	 * ever clear it.
102 	 */
103 	if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) {
104 		unsigned	is_out, epnum;
105 
106 		is_out = qh->is_out;
107 		epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
108 		if (unlikely (!usb_gettoggle (qh->dev, epnum, is_out))) {
109 			hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
110 			usb_settoggle (qh->dev, epnum, is_out, 1);
111 		}
112 	}
113 
114 	hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
115 }
116 
117 /* if it weren't for a common silicon quirk (writing the dummy into the qh
118  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
119  * recovery (including urb dequeue) would need software changes to a QH...
120  */
121 static void
122 qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
123 {
124 	struct ehci_qtd *qtd;
125 
126 	if (list_empty (&qh->qtd_list))
127 		qtd = qh->dummy;
128 	else {
129 		qtd = list_entry (qh->qtd_list.next,
130 				struct ehci_qtd, qtd_list);
131 		/* first qtd may already be partially processed */
132 		if (cpu_to_hc32(ehci, qtd->qtd_dma) == qh->hw->hw_current)
133 			qtd = NULL;
134 	}
135 
136 	if (qtd)
137 		qh_update (ehci, qh, qtd);
138 }
139 
140 /*-------------------------------------------------------------------------*/
141 
142 static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
143 
144 static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
145 		struct usb_host_endpoint *ep)
146 {
147 	struct ehci_hcd		*ehci = hcd_to_ehci(hcd);
148 	struct ehci_qh		*qh = ep->hcpriv;
149 	unsigned long		flags;
150 
151 	spin_lock_irqsave(&ehci->lock, flags);
152 	qh->clearing_tt = 0;
153 	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
154 			&& ehci->rh_state == EHCI_RH_RUNNING)
155 		qh_link_async(ehci, qh);
156 	spin_unlock_irqrestore(&ehci->lock, flags);
157 }
158 
159 static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
160 		struct urb *urb, u32 token)
161 {
162 
163 	/* If an async split transaction gets an error or is unlinked,
164 	 * the TT buffer may be left in an indeterminate state.  We
165 	 * have to clear the TT buffer.
166 	 *
167 	 * Note: this routine is never called for Isochronous transfers.
168 	 */
169 	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
170 #ifdef DEBUG
171 		struct usb_device *tt = urb->dev->tt->hub;
172 		dev_dbg(&tt->dev,
173 			"clear tt buffer port %d, a%d ep%d t%08x\n",
174 			urb->dev->ttport, urb->dev->devnum,
175 			usb_pipeendpoint(urb->pipe), token);
176 #endif /* DEBUG */
177 		if (!ehci_is_TDI(ehci)
178 				|| urb->dev->tt->hub !=
179 				   ehci_to_hcd(ehci)->self.root_hub) {
180 			if (usb_hub_clear_tt_buffer(urb) == 0)
181 				qh->clearing_tt = 1;
182 		} else {
183 
184 			/* REVISIT ARC-derived cores don't clear the root
185 			 * hub TT buffer in this way...
186 			 */
187 		}
188 	}
189 }
190 
191 static int qtd_copy_status (
192 	struct ehci_hcd *ehci,
193 	struct urb *urb,
194 	size_t length,
195 	u32 token
196 )
197 {
198 	int	status = -EINPROGRESS;
199 
200 	/* count IN/OUT bytes, not SETUP (even short packets) */
201 	if (likely (QTD_PID (token) != 2))
202 		urb->actual_length += length - QTD_LENGTH (token);
203 
204 	/* don't modify error codes */
205 	if (unlikely(urb->unlinked))
206 		return status;
207 
208 	/* force cleanup after short read; not always an error */
209 	if (unlikely (IS_SHORT_READ (token)))
210 		status = -EREMOTEIO;
211 
212 	/* serious "can't proceed" faults reported by the hardware */
213 	if (token & QTD_STS_HALT) {
214 		if (token & QTD_STS_BABBLE) {
215 			/* FIXME "must" disable babbling device's port too */
216 			status = -EOVERFLOW;
217 		/* CERR nonzero + halt --> stall */
218 		} else if (QTD_CERR(token)) {
219 			status = -EPIPE;
220 
221 		/* In theory, more than one of the following bits can be set
222 		 * since they are sticky and the transaction is retried.
223 		 * Which to test first is rather arbitrary.
224 		 */
225 		} else if (token & QTD_STS_MMF) {
226 			/* fs/ls interrupt xfer missed the complete-split */
227 			status = -EPROTO;
228 		} else if (token & QTD_STS_DBE) {
229 			status = (QTD_PID (token) == 1) /* IN ? */
230 				? -ENOSR  /* hc couldn't read data */
231 				: -ECOMM; /* hc couldn't write data */
232 		} else if (token & QTD_STS_XACT) {
233 			/* timeout, bad CRC, wrong PID, etc */
234 			ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
235 				urb->dev->devpath,
236 				usb_pipeendpoint(urb->pipe),
237 				usb_pipein(urb->pipe) ? "in" : "out");
238 			status = -EPROTO;
239 		} else {	/* unknown */
240 			status = -EPROTO;
241 		}
242 
243 		ehci_vdbg (ehci,
244 			"dev%d ep%d%s qtd token %08x --> status %d\n",
245 			usb_pipedevice (urb->pipe),
246 			usb_pipeendpoint (urb->pipe),
247 			usb_pipein (urb->pipe) ? "in" : "out",
248 			token, status);
249 	}
250 
251 	return status;
252 }
253 
254 static void
255 ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
256 __releases(ehci->lock)
257 __acquires(ehci->lock)
258 {
259 	if (likely (urb->hcpriv != NULL)) {
260 		struct ehci_qh	*qh = (struct ehci_qh *) urb->hcpriv;
261 
262 		/* S-mask in a QH means it's an interrupt urb */
263 		if ((qh->hw->hw_info2 & cpu_to_hc32(ehci, QH_SMASK)) != 0) {
264 
265 			/* ... update hc-wide periodic stats (for usbfs) */
266 			ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
267 		}
268 	}
269 
270 	if (unlikely(urb->unlinked)) {
271 		COUNT(ehci->stats.unlink);
272 	} else {
273 		/* report non-error and short read status as zero */
274 		if (status == -EINPROGRESS || status == -EREMOTEIO)
275 			status = 0;
276 		COUNT(ehci->stats.complete);
277 	}
278 
279 #ifdef EHCI_URB_TRACE
280 	ehci_dbg (ehci,
281 		"%s %s urb %p ep%d%s status %d len %d/%d\n",
282 		__func__, urb->dev->devpath, urb,
283 		usb_pipeendpoint (urb->pipe),
284 		usb_pipein (urb->pipe) ? "in" : "out",
285 		status,
286 		urb->actual_length, urb->transfer_buffer_length);
287 #endif
288 
289 	/* complete() can reenter this HCD */
290 	usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
291 	spin_unlock (&ehci->lock);
292 	usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
293 	spin_lock (&ehci->lock);
294 }
295 
296 static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
297 
298 /*
299  * Process and free completed qtds for a qh, returning URBs to drivers.
300  * Chases up to qh->hw_current.  Returns number of completions called,
301  * indicating how much "real" work we did.
302  */
303 static unsigned
304 qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
305 {
306 	struct ehci_qtd		*last, *end = qh->dummy;
307 	struct list_head	*entry, *tmp;
308 	int			last_status;
309 	int			stopped;
310 	unsigned		count = 0;
311 	u8			state;
312 	struct ehci_qh_hw	*hw = qh->hw;
313 
314 	if (unlikely (list_empty (&qh->qtd_list)))
315 		return count;
316 
317 	/* completions (or tasks on other cpus) must never clobber HALT
318 	 * till we've gone through and cleaned everything up, even when
319 	 * they add urbs to this qh's queue or mark them for unlinking.
320 	 *
321 	 * NOTE:  unlinking expects to be done in queue order.
322 	 *
323 	 * It's a bug for qh->qh_state to be anything other than
324 	 * QH_STATE_IDLE, unless our caller is scan_async() or
325 	 * scan_intr().
326 	 */
327 	state = qh->qh_state;
328 	qh->qh_state = QH_STATE_COMPLETING;
329 	stopped = (state == QH_STATE_IDLE);
330 
331  rescan:
332 	last = NULL;
333 	last_status = -EINPROGRESS;
334 	qh->needs_rescan = 0;
335 
336 	/* remove de-activated QTDs from front of queue.
337 	 * after faults (including short reads), cleanup this urb
338 	 * then let the queue advance.
339 	 * if queue is stopped, handles unlinks.
340 	 */
341 	list_for_each_safe (entry, tmp, &qh->qtd_list) {
342 		struct ehci_qtd	*qtd;
343 		struct urb	*urb;
344 		u32		token = 0;
345 
346 		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
347 		urb = qtd->urb;
348 
349 		/* clean up any state from previous QTD ...*/
350 		if (last) {
351 			if (likely (last->urb != urb)) {
352 				ehci_urb_done(ehci, last->urb, last_status);
353 				count++;
354 				last_status = -EINPROGRESS;
355 			}
356 			ehci_qtd_free (ehci, last);
357 			last = NULL;
358 		}
359 
360 		/* ignore urbs submitted during completions we reported */
361 		if (qtd == end)
362 			break;
363 
364 		/* hardware copies qtd out of qh overlay */
365 		rmb ();
366 		token = hc32_to_cpu(ehci, qtd->hw_token);
367 
368 		/* always clean up qtds the hc de-activated */
369  retry_xacterr:
370 		if ((token & QTD_STS_ACTIVE) == 0) {
371 
372 			/* Report Data Buffer Error: non-fatal but useful */
373 			if (token & QTD_STS_DBE)
374 				ehci_dbg(ehci,
375 					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
376 					urb,
377 					usb_endpoint_num(&urb->ep->desc),
378 					usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
379 					urb->transfer_buffer_length,
380 					qtd,
381 					qh);
382 
383 			/* on STALL, error, and short reads this urb must
384 			 * complete and all its qtds must be recycled.
385 			 */
386 			if ((token & QTD_STS_HALT) != 0) {
387 
388 				/* retry transaction errors until we
389 				 * reach the software xacterr limit
390 				 */
391 				if ((token & QTD_STS_XACT) &&
392 						QTD_CERR(token) == 0 &&
393 						++qh->xacterrs < QH_XACTERR_MAX &&
394 						!urb->unlinked) {
395 					ehci_dbg(ehci,
396 	"detected XactErr len %zu/%zu retry %d\n",
397 	qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
398 
399 					/* reset the token in the qtd and the
400 					 * qh overlay (which still contains
401 					 * the qtd) so that we pick up from
402 					 * where we left off
403 					 */
404 					token &= ~QTD_STS_HALT;
405 					token |= QTD_STS_ACTIVE |
406 							(EHCI_TUNE_CERR << 10);
407 					qtd->hw_token = cpu_to_hc32(ehci,
408 							token);
409 					wmb();
410 					hw->hw_token = cpu_to_hc32(ehci,
411 							token);
412 					goto retry_xacterr;
413 				}
414 				stopped = 1;
415 
416 			/* magic dummy for some short reads; qh won't advance.
417 			 * that silicon quirk can kick in with this dummy too.
418 			 *
419 			 * other short reads won't stop the queue, including
420 			 * control transfers (status stage handles that) or
421 			 * most other single-qtd reads ... the queue stops if
422 			 * URB_SHORT_NOT_OK was set so the driver submitting
423 			 * the urbs could clean it up.
424 			 */
425 			} else if (IS_SHORT_READ (token)
426 					&& !(qtd->hw_alt_next
427 						& EHCI_LIST_END(ehci))) {
428 				stopped = 1;
429 			}
430 
431 		/* stop scanning when we reach qtds the hc is using */
432 		} else if (likely (!stopped
433 				&& ehci->rh_state >= EHCI_RH_RUNNING)) {
434 			break;
435 
436 		/* scan the whole queue for unlinks whenever it stops */
437 		} else {
438 			stopped = 1;
439 
440 			/* cancel everything if we halt, suspend, etc */
441 			if (ehci->rh_state < EHCI_RH_RUNNING)
442 				last_status = -ESHUTDOWN;
443 
444 			/* this qtd is active; skip it unless a previous qtd
445 			 * for its urb faulted, or its urb was canceled.
446 			 */
447 			else if (last_status == -EINPROGRESS && !urb->unlinked)
448 				continue;
449 
450 			/* qh unlinked; token in overlay may be most current */
451 			if (state == QH_STATE_IDLE
452 					&& cpu_to_hc32(ehci, qtd->qtd_dma)
453 						== hw->hw_current) {
454 				token = hc32_to_cpu(ehci, hw->hw_token);
455 
456 				/* An unlink may leave an incomplete
457 				 * async transaction in the TT buffer.
458 				 * We have to clear it.
459 				 */
460 				ehci_clear_tt_buffer(ehci, qh, urb, token);
461 			}
462 		}
463 
464 		/* unless we already know the urb's status, collect qtd status
465 		 * and update count of bytes transferred.  in common short read
466 		 * cases with only one data qtd (including control transfers),
467 		 * queue processing won't halt.  but with two or more qtds (for
468 		 * example, with a 32 KB transfer), when the first qtd gets a
469 		 * short read the second must be removed by hand.
470 		 */
471 		if (last_status == -EINPROGRESS) {
472 			last_status = qtd_copy_status(ehci, urb,
473 					qtd->length, token);
474 			if (last_status == -EREMOTEIO
475 					&& (qtd->hw_alt_next
476 						& EHCI_LIST_END(ehci)))
477 				last_status = -EINPROGRESS;
478 
479 			/* As part of low/full-speed endpoint-halt processing
480 			 * we must clear the TT buffer (11.17.5).
481 			 */
482 			if (unlikely(last_status != -EINPROGRESS &&
483 					last_status != -EREMOTEIO)) {
484 				/* The TT's in some hubs malfunction when they
485 				 * receive this request following a STALL (they
486 				 * stop sending isochronous packets).  Since a
487 				 * STALL can't leave the TT buffer in a busy
488 				 * state (if you believe Figures 11-48 - 11-51
489 				 * in the USB 2.0 spec), we won't clear the TT
490 				 * buffer in this case.  Strictly speaking this
491 				 * is a violation of the spec.
492 				 */
493 				if (last_status != -EPIPE)
494 					ehci_clear_tt_buffer(ehci, qh, urb,
495 							token);
496 			}
497 		}
498 
499 		/* if we're removing something not at the queue head,
500 		 * patch the hardware queue pointer.
501 		 */
502 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
503 			last = list_entry (qtd->qtd_list.prev,
504 					struct ehci_qtd, qtd_list);
505 			last->hw_next = qtd->hw_next;
506 		}
507 
508 		/* remove qtd; it's recycled after possible urb completion */
509 		list_del (&qtd->qtd_list);
510 		last = qtd;
511 
512 		/* reinit the xacterr counter for the next qtd */
513 		qh->xacterrs = 0;
514 	}
515 
516 	/* last urb's completion might still need calling */
517 	if (likely (last != NULL)) {
518 		ehci_urb_done(ehci, last->urb, last_status);
519 		count++;
520 		ehci_qtd_free (ehci, last);
521 	}
522 
523 	/* Do we need to rescan for URBs dequeued during a giveback? */
524 	if (unlikely(qh->needs_rescan)) {
525 		/* If the QH is already unlinked, do the rescan now. */
526 		if (state == QH_STATE_IDLE)
527 			goto rescan;
528 
529 		/* Otherwise we have to wait until the QH is fully unlinked.
530 		 * Our caller will start an unlink if qh->needs_rescan is
531 		 * set.  But if an unlink has already started, nothing needs
532 		 * to be done.
533 		 */
534 		if (state != QH_STATE_LINKED)
535 			qh->needs_rescan = 0;
536 	}
537 
538 	/* restore original state; caller must unlink or relink */
539 	qh->qh_state = state;
540 
541 	/* be sure the hardware's done with the qh before refreshing
542 	 * it after fault cleanup, or recovering from silicon wrongly
543 	 * overlaying the dummy qtd (which reduces DMA chatter).
544 	 */
545 	if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci)) {
546 		switch (state) {
547 		case QH_STATE_IDLE:
548 			qh_refresh(ehci, qh);
549 			break;
550 		case QH_STATE_LINKED:
551 			/* We won't refresh a QH that's linked (after the HC
552 			 * stopped the queue).  That avoids a race:
553 			 *  - HC reads first part of QH;
554 			 *  - CPU updates that first part and the token;
555 			 *  - HC reads rest of that QH, including token
556 			 * Result:  HC gets an inconsistent image, and then
557 			 * DMAs to/from the wrong memory (corrupting it).
558 			 *
559 			 * That should be rare for interrupt transfers,
560 			 * except maybe high bandwidth ...
561 			 */
562 
563 			/* Tell the caller to start an unlink */
564 			qh->needs_rescan = 1;
565 			break;
566 		/* otherwise, unlink already started */
567 		}
568 	}
569 
570 	return count;
571 }
572 
573 /*-------------------------------------------------------------------------*/
574 
575 // high bandwidth multiplier, as encoded in highspeed endpoint descriptors
576 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
577 // ... and packet size, for any kind of endpoint descriptor
578 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
579 
580 /*
581  * reverse of qh_urb_transaction:  free a list of TDs.
582  * used for cleanup after errors, before HC sees an URB's TDs.
583  */
584 static void qtd_list_free (
585 	struct ehci_hcd		*ehci,
586 	struct urb		*urb,
587 	struct list_head	*qtd_list
588 ) {
589 	struct list_head	*entry, *temp;
590 
591 	list_for_each_safe (entry, temp, qtd_list) {
592 		struct ehci_qtd	*qtd;
593 
594 		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
595 		list_del (&qtd->qtd_list);
596 		ehci_qtd_free (ehci, qtd);
597 	}
598 }
599 
600 /*
601  * create a list of filled qtds for this URB; won't link into qh.
602  */
603 static struct list_head *
604 qh_urb_transaction (
605 	struct ehci_hcd		*ehci,
606 	struct urb		*urb,
607 	struct list_head	*head,
608 	gfp_t			flags
609 ) {
610 	struct ehci_qtd		*qtd, *qtd_prev;
611 	dma_addr_t		buf;
612 	int			len, this_sg_len, maxpacket;
613 	int			is_input;
614 	u32			token;
615 	int			i;
616 	struct scatterlist	*sg;
617 
618 	/*
619 	 * URBs map to sequences of QTDs:  one logical transaction
620 	 */
621 	qtd = ehci_qtd_alloc (ehci, flags);
622 	if (unlikely (!qtd))
623 		return NULL;
624 	list_add_tail (&qtd->qtd_list, head);
625 	qtd->urb = urb;
626 
627 	token = QTD_STS_ACTIVE;
628 	token |= (EHCI_TUNE_CERR << 10);
629 	/* for split transactions, SplitXState initialized to zero */
630 
631 	len = urb->transfer_buffer_length;
632 	is_input = usb_pipein (urb->pipe);
633 	if (usb_pipecontrol (urb->pipe)) {
634 		/* SETUP pid */
635 		qtd_fill(ehci, qtd, urb->setup_dma,
636 				sizeof (struct usb_ctrlrequest),
637 				token | (2 /* "setup" */ << 8), 8);
638 
639 		/* ... and always at least one more pid */
640 		token ^= QTD_TOGGLE;
641 		qtd_prev = qtd;
642 		qtd = ehci_qtd_alloc (ehci, flags);
643 		if (unlikely (!qtd))
644 			goto cleanup;
645 		qtd->urb = urb;
646 		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
647 		list_add_tail (&qtd->qtd_list, head);
648 
649 		/* for zero length DATA stages, STATUS is always IN */
650 		if (len == 0)
651 			token |= (1 /* "in" */ << 8);
652 	}
653 
654 	/*
655 	 * data transfer stage:  buffer setup
656 	 */
657 	i = urb->num_mapped_sgs;
658 	if (len > 0 && i > 0) {
659 		sg = urb->sg;
660 		buf = sg_dma_address(sg);
661 
662 		/* urb->transfer_buffer_length may be smaller than the
663 		 * size of the scatterlist (or vice versa)
664 		 */
665 		this_sg_len = min_t(int, sg_dma_len(sg), len);
666 	} else {
667 		sg = NULL;
668 		buf = urb->transfer_dma;
669 		this_sg_len = len;
670 	}
671 
672 	if (is_input)
673 		token |= (1 /* "in" */ << 8);
674 	/* else it's already initted to "out" pid (0 << 8) */
675 
676 	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
677 
678 	/*
679 	 * buffer gets wrapped in one or more qtds;
680 	 * last one may be "short" (including zero len)
681 	 * and may serve as a control status ack
682 	 */
683 	for (;;) {
684 		int this_qtd_len;
685 
686 		this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
687 				maxpacket);
688 		this_sg_len -= this_qtd_len;
689 		len -= this_qtd_len;
690 		buf += this_qtd_len;
691 
692 		/*
693 		 * short reads advance to a "magic" dummy instead of the next
694 		 * qtd ... that forces the queue to stop, for manual cleanup.
695 		 * (this will usually be overridden later.)
696 		 */
697 		if (is_input)
698 			qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
699 
700 		/* qh makes control packets use qtd toggle; maybe switch it */
701 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
702 			token ^= QTD_TOGGLE;
703 
704 		if (likely(this_sg_len <= 0)) {
705 			if (--i <= 0 || len <= 0)
706 				break;
707 			sg = sg_next(sg);
708 			buf = sg_dma_address(sg);
709 			this_sg_len = min_t(int, sg_dma_len(sg), len);
710 		}
711 
712 		qtd_prev = qtd;
713 		qtd = ehci_qtd_alloc (ehci, flags);
714 		if (unlikely (!qtd))
715 			goto cleanup;
716 		qtd->urb = urb;
717 		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
718 		list_add_tail (&qtd->qtd_list, head);
719 	}
720 
721 	/*
722 	 * unless the caller requires manual cleanup after short reads,
723 	 * have the alt_next mechanism keep the queue running after the
724 	 * last data qtd (the only one, for control and most other cases).
725 	 */
726 	if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
727 				|| usb_pipecontrol (urb->pipe)))
728 		qtd->hw_alt_next = EHCI_LIST_END(ehci);
729 
730 	/*
731 	 * control requests may need a terminating data "status" ack;
732 	 * other OUT ones may need a terminating short packet
733 	 * (zero length).
734 	 */
735 	if (likely (urb->transfer_buffer_length != 0)) {
736 		int	one_more = 0;
737 
738 		if (usb_pipecontrol (urb->pipe)) {
739 			one_more = 1;
740 			token ^= 0x0100;	/* "in" <--> "out"  */
741 			token |= QTD_TOGGLE;	/* force DATA1 */
742 		} else if (usb_pipeout(urb->pipe)
743 				&& (urb->transfer_flags & URB_ZERO_PACKET)
744 				&& !(urb->transfer_buffer_length % maxpacket)) {
745 			one_more = 1;
746 		}
747 		if (one_more) {
748 			qtd_prev = qtd;
749 			qtd = ehci_qtd_alloc (ehci, flags);
750 			if (unlikely (!qtd))
751 				goto cleanup;
752 			qtd->urb = urb;
753 			qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
754 			list_add_tail (&qtd->qtd_list, head);
755 
756 			/* never any data in such packets */
757 			qtd_fill(ehci, qtd, 0, 0, token, 0);
758 		}
759 	}
760 
761 	/* by default, enable interrupt on urb completion */
762 	if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
763 		qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
764 	return head;
765 
766 cleanup:
767 	qtd_list_free (ehci, urb, head);
768 	return NULL;
769 }
770 
771 /*-------------------------------------------------------------------------*/
772 
773 // Would be best to create all qh's from config descriptors,
774 // when each interface/altsetting is established.  Unlink
775 // any previous qh and cancel its urbs first; endpoints are
776 // implicitly reset then (data toggle too).
777 // That'd mean updating how usbcore talks to HCDs. (2.7?)
778 
779 
780 /*
781  * Each QH holds a qtd list; a QH is used for everything except iso.
782  *
783  * For interrupt urbs, the scheduler must set the microframe scheduling
784  * mask(s) each time the QH gets scheduled.  For highspeed, that's
785  * just one microframe in the s-mask.  For split interrupt transactions
786  * there are additional complications: c-mask, maybe FSTNs.
787  */
788 static struct ehci_qh *
789 qh_make (
790 	struct ehci_hcd		*ehci,
791 	struct urb		*urb,
792 	gfp_t			flags
793 ) {
794 	struct ehci_qh		*qh = ehci_qh_alloc (ehci, flags);
795 	u32			info1 = 0, info2 = 0;
796 	int			is_input, type;
797 	int			maxp = 0;
798 	struct usb_tt		*tt = urb->dev->tt;
799 	struct ehci_qh_hw	*hw;
800 
801 	if (!qh)
802 		return qh;
803 
804 	/*
805 	 * init endpoint/device data for this QH
806 	 */
807 	info1 |= usb_pipeendpoint (urb->pipe) << 8;
808 	info1 |= usb_pipedevice (urb->pipe) << 0;
809 
810 	is_input = usb_pipein (urb->pipe);
811 	type = usb_pipetype (urb->pipe);
812 	maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input);
813 
814 	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
815 	 * acts like up to 3KB, but is built from smaller packets.
816 	 */
817 	if (max_packet(maxp) > 1024) {
818 		ehci_dbg(ehci, "bogus qh maxpacket %d\n", max_packet(maxp));
819 		goto done;
820 	}
821 
822 	/* Compute interrupt scheduling parameters just once, and save.
823 	 * - allowing for high bandwidth, how many nsec/uframe are used?
824 	 * - split transactions need a second CSPLIT uframe; same question
825 	 * - splits also need a schedule gap (for full/low speed I/O)
826 	 * - qh has a polling interval
827 	 *
828 	 * For control/bulk requests, the HC or TT handles these.
829 	 */
830 	if (type == PIPE_INTERRUPT) {
831 		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
832 				is_input, 0,
833 				hb_mult(maxp) * max_packet(maxp)));
834 		qh->start = NO_FRAME;
835 
836 		if (urb->dev->speed == USB_SPEED_HIGH) {
837 			qh->c_usecs = 0;
838 			qh->gap_uf = 0;
839 
840 			qh->period = urb->interval >> 3;
841 			if (qh->period == 0 && urb->interval != 1) {
842 				/* NOTE interval 2 or 4 uframes could work.
843 				 * But interval 1 scheduling is simpler, and
844 				 * includes high bandwidth.
845 				 */
846 				urb->interval = 1;
847 			} else if (qh->period > ehci->periodic_size) {
848 				qh->period = ehci->periodic_size;
849 				urb->interval = qh->period << 3;
850 			}
851 		} else {
852 			int		think_time;
853 
854 			/* gap is f(FS/LS transfer times) */
855 			qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
856 					is_input, 0, maxp) / (125 * 1000);
857 
858 			/* FIXME this just approximates SPLIT/CSPLIT times */
859 			if (is_input) {		// SPLIT, gap, CSPLIT+DATA
860 				qh->c_usecs = qh->usecs + HS_USECS (0);
861 				qh->usecs = HS_USECS (1);
862 			} else {		// SPLIT+DATA, gap, CSPLIT
863 				qh->usecs += HS_USECS (1);
864 				qh->c_usecs = HS_USECS (0);
865 			}
866 
867 			think_time = tt ? tt->think_time : 0;
868 			qh->tt_usecs = NS_TO_US (think_time +
869 					usb_calc_bus_time (urb->dev->speed,
870 					is_input, 0, max_packet (maxp)));
871 			qh->period = urb->interval;
872 			if (qh->period > ehci->periodic_size) {
873 				qh->period = ehci->periodic_size;
874 				urb->interval = qh->period;
875 			}
876 		}
877 	}
878 
879 	/* support for tt scheduling, and access to toggles */
880 	qh->dev = urb->dev;
881 
882 	/* using TT? */
883 	switch (urb->dev->speed) {
884 	case USB_SPEED_LOW:
885 		info1 |= QH_LOW_SPEED;
886 		/* FALL THROUGH */
887 
888 	case USB_SPEED_FULL:
889 		/* EPS 0 means "full" */
890 		if (type != PIPE_INTERRUPT)
891 			info1 |= (EHCI_TUNE_RL_TT << 28);
892 		if (type == PIPE_CONTROL) {
893 			info1 |= QH_CONTROL_EP;		/* for TT */
894 			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
895 		}
896 		info1 |= maxp << 16;
897 
898 		info2 |= (EHCI_TUNE_MULT_TT << 30);
899 
900 		/* Some Freescale processors have an erratum in which the
901 		 * port number in the queue head was 0..N-1 instead of 1..N.
902 		 */
903 		if (ehci_has_fsl_portno_bug(ehci))
904 			info2 |= (urb->dev->ttport-1) << 23;
905 		else
906 			info2 |= urb->dev->ttport << 23;
907 
908 		/* set the address of the TT; for TDI's integrated
909 		 * root hub tt, leave it zeroed.
910 		 */
911 		if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
912 			info2 |= tt->hub->devnum << 16;
913 
914 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
915 
916 		break;
917 
918 	case USB_SPEED_HIGH:		/* no TT involved */
919 		info1 |= QH_HIGH_SPEED;
920 		if (type == PIPE_CONTROL) {
921 			info1 |= (EHCI_TUNE_RL_HS << 28);
922 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
923 			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
924 			info2 |= (EHCI_TUNE_MULT_HS << 30);
925 		} else if (type == PIPE_BULK) {
926 			info1 |= (EHCI_TUNE_RL_HS << 28);
927 			/* The USB spec says that high speed bulk endpoints
928 			 * always use 512 byte maxpacket.  But some device
929 			 * vendors decided to ignore that, and MSFT is happy
930 			 * to help them do so.  So now people expect to use
931 			 * such nonconformant devices with Linux too; sigh.
932 			 */
933 			info1 |= max_packet(maxp) << 16;
934 			info2 |= (EHCI_TUNE_MULT_HS << 30);
935 		} else {		/* PIPE_INTERRUPT */
936 			info1 |= max_packet (maxp) << 16;
937 			info2 |= hb_mult (maxp) << 30;
938 		}
939 		break;
940 	default:
941 		ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev,
942 			urb->dev->speed);
943 done:
944 		qh_destroy(ehci, qh);
945 		return NULL;
946 	}
947 
948 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
949 
950 	/* init as live, toggle clear, advance to dummy */
951 	qh->qh_state = QH_STATE_IDLE;
952 	hw = qh->hw;
953 	hw->hw_info1 = cpu_to_hc32(ehci, info1);
954 	hw->hw_info2 = cpu_to_hc32(ehci, info2);
955 	qh->is_out = !is_input;
956 	usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
957 	qh_refresh (ehci, qh);
958 	return qh;
959 }
960 
961 /*-------------------------------------------------------------------------*/
962 
963 static void enable_async(struct ehci_hcd *ehci)
964 {
965 	if (ehci->async_count++)
966 		return;
967 
968 	/* Stop waiting to turn off the async schedule */
969 	ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC);
970 
971 	/* Don't start the schedule until ASS is 0 */
972 	ehci_poll_ASS(ehci);
973 	turn_on_io_watchdog(ehci);
974 }
975 
976 static void disable_async(struct ehci_hcd *ehci)
977 {
978 	if (--ehci->async_count)
979 		return;
980 
981 	/* The async schedule and async_unlink list are supposed to be empty */
982 	WARN_ON(ehci->async->qh_next.qh || ehci->async_unlink);
983 
984 	/* Don't turn off the schedule until ASS is 1 */
985 	ehci_poll_ASS(ehci);
986 }
987 
988 /* move qh (and its qtds) onto async queue; maybe enable queue.  */
989 
990 static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
991 {
992 	__hc32		dma = QH_NEXT(ehci, qh->qh_dma);
993 	struct ehci_qh	*head;
994 
995 	/* Don't link a QH if there's a Clear-TT-Buffer pending */
996 	if (unlikely(qh->clearing_tt))
997 		return;
998 
999 	WARN_ON(qh->qh_state != QH_STATE_IDLE);
1000 
1001 	/* clear halt and/or toggle; and maybe recover from silicon quirk */
1002 	qh_refresh(ehci, qh);
1003 
1004 	/* splice right after start */
1005 	head = ehci->async;
1006 	qh->qh_next = head->qh_next;
1007 	qh->hw->hw_next = head->hw->hw_next;
1008 	wmb ();
1009 
1010 	head->qh_next.qh = qh;
1011 	head->hw->hw_next = dma;
1012 
1013 	qh->xacterrs = 0;
1014 	qh->qh_state = QH_STATE_LINKED;
1015 	/* qtd completions reported later by interrupt */
1016 
1017 	enable_async(ehci);
1018 }
1019 
1020 /*-------------------------------------------------------------------------*/
1021 
1022 /*
1023  * For control/bulk/interrupt, return QH with these TDs appended.
1024  * Allocates and initializes the QH if necessary.
1025  * Returns null if it can't allocate a QH it needs to.
1026  * If the QH has TDs (urbs) already, that's great.
1027  */
1028 static struct ehci_qh *qh_append_tds (
1029 	struct ehci_hcd		*ehci,
1030 	struct urb		*urb,
1031 	struct list_head	*qtd_list,
1032 	int			epnum,
1033 	void			**ptr
1034 )
1035 {
1036 	struct ehci_qh		*qh = NULL;
1037 	__hc32			qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
1038 
1039 	qh = (struct ehci_qh *) *ptr;
1040 	if (unlikely (qh == NULL)) {
1041 		/* can't sleep here, we have ehci->lock... */
1042 		qh = qh_make (ehci, urb, GFP_ATOMIC);
1043 		*ptr = qh;
1044 	}
1045 	if (likely (qh != NULL)) {
1046 		struct ehci_qtd	*qtd;
1047 
1048 		if (unlikely (list_empty (qtd_list)))
1049 			qtd = NULL;
1050 		else
1051 			qtd = list_entry (qtd_list->next, struct ehci_qtd,
1052 					qtd_list);
1053 
1054 		/* control qh may need patching ... */
1055 		if (unlikely (epnum == 0)) {
1056 
1057                         /* usb_reset_device() briefly reverts to address 0 */
1058                         if (usb_pipedevice (urb->pipe) == 0)
1059 				qh->hw->hw_info1 &= ~qh_addr_mask;
1060 		}
1061 
1062 		/* just one way to queue requests: swap with the dummy qtd.
1063 		 * only hc or qh_refresh() ever modify the overlay.
1064 		 */
1065 		if (likely (qtd != NULL)) {
1066 			struct ehci_qtd		*dummy;
1067 			dma_addr_t		dma;
1068 			__hc32			token;
1069 
1070 			/* to avoid racing the HC, use the dummy td instead of
1071 			 * the first td of our list (becomes new dummy).  both
1072 			 * tds stay deactivated until we're done, when the
1073 			 * HC is allowed to fetch the old dummy (4.10.2).
1074 			 */
1075 			token = qtd->hw_token;
1076 			qtd->hw_token = HALT_BIT(ehci);
1077 
1078 			dummy = qh->dummy;
1079 
1080 			dma = dummy->qtd_dma;
1081 			*dummy = *qtd;
1082 			dummy->qtd_dma = dma;
1083 
1084 			list_del (&qtd->qtd_list);
1085 			list_add (&dummy->qtd_list, qtd_list);
1086 			list_splice_tail(qtd_list, &qh->qtd_list);
1087 
1088 			ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
1089 			qh->dummy = qtd;
1090 
1091 			/* hc must see the new dummy at list end */
1092 			dma = qtd->qtd_dma;
1093 			qtd = list_entry (qh->qtd_list.prev,
1094 					struct ehci_qtd, qtd_list);
1095 			qtd->hw_next = QTD_NEXT(ehci, dma);
1096 
1097 			/* let the hc process these next qtds */
1098 			wmb ();
1099 			dummy->hw_token = token;
1100 
1101 			urb->hcpriv = qh;
1102 		}
1103 	}
1104 	return qh;
1105 }
1106 
1107 /*-------------------------------------------------------------------------*/
1108 
1109 static int
1110 submit_async (
1111 	struct ehci_hcd		*ehci,
1112 	struct urb		*urb,
1113 	struct list_head	*qtd_list,
1114 	gfp_t			mem_flags
1115 ) {
1116 	int			epnum;
1117 	unsigned long		flags;
1118 	struct ehci_qh		*qh = NULL;
1119 	int			rc;
1120 
1121 	epnum = urb->ep->desc.bEndpointAddress;
1122 
1123 #ifdef EHCI_URB_TRACE
1124 	{
1125 		struct ehci_qtd *qtd;
1126 		qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1127 		ehci_dbg(ehci,
1128 			 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1129 			 __func__, urb->dev->devpath, urb,
1130 			 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1131 			 urb->transfer_buffer_length,
1132 			 qtd, urb->ep->hcpriv);
1133 	}
1134 #endif
1135 
1136 	spin_lock_irqsave (&ehci->lock, flags);
1137 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1138 		rc = -ESHUTDOWN;
1139 		goto done;
1140 	}
1141 	rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1142 	if (unlikely(rc))
1143 		goto done;
1144 
1145 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
1146 	if (unlikely(qh == NULL)) {
1147 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1148 		rc = -ENOMEM;
1149 		goto done;
1150 	}
1151 
1152 	/* Control/bulk operations through TTs don't need scheduling,
1153 	 * the HC and TT handle it when the TT has a buffer ready.
1154 	 */
1155 	if (likely (qh->qh_state == QH_STATE_IDLE))
1156 		qh_link_async(ehci, qh);
1157  done:
1158 	spin_unlock_irqrestore (&ehci->lock, flags);
1159 	if (unlikely (qh == NULL))
1160 		qtd_list_free (ehci, urb, qtd_list);
1161 	return rc;
1162 }
1163 
1164 /*-------------------------------------------------------------------------*/
1165 
1166 static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1167 {
1168 	struct ehci_qh		*prev;
1169 
1170 	/* Add to the end of the list of QHs waiting for the next IAAD */
1171 	qh->qh_state = QH_STATE_UNLINK;
1172 	if (ehci->async_unlink)
1173 		ehci->async_unlink_last->unlink_next = qh;
1174 	else
1175 		ehci->async_unlink = qh;
1176 	ehci->async_unlink_last = qh;
1177 
1178 	/* Unlink it from the schedule */
1179 	prev = ehci->async;
1180 	while (prev->qh_next.qh != qh)
1181 		prev = prev->qh_next.qh;
1182 
1183 	prev->hw->hw_next = qh->hw->hw_next;
1184 	prev->qh_next = qh->qh_next;
1185 	if (ehci->qh_scan_next == qh)
1186 		ehci->qh_scan_next = qh->qh_next.qh;
1187 }
1188 
1189 static void start_iaa_cycle(struct ehci_hcd *ehci, bool nested)
1190 {
1191 	/*
1192 	 * Do nothing if an IAA cycle is already running or
1193 	 * if one will be started shortly.
1194 	 */
1195 	if (ehci->async_iaa || ehci->async_unlinking)
1196 		return;
1197 
1198 	/* Do all the waiting QHs at once */
1199 	ehci->async_iaa = ehci->async_unlink;
1200 	ehci->async_unlink = NULL;
1201 
1202 	/* If the controller isn't running, we don't have to wait for it */
1203 	if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) {
1204 		if (!nested)		/* Avoid recursion */
1205 			end_unlink_async(ehci);
1206 
1207 	/* Otherwise start a new IAA cycle */
1208 	} else if (likely(ehci->rh_state == EHCI_RH_RUNNING)) {
1209 		/* Make sure the unlinks are all visible to the hardware */
1210 		wmb();
1211 
1212 		ehci_writel(ehci, ehci->command | CMD_IAAD,
1213 				&ehci->regs->command);
1214 		ehci_readl(ehci, &ehci->regs->command);
1215 		ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true);
1216 	}
1217 }
1218 
1219 /* the async qh for the qtds being unlinked are now gone from the HC */
1220 
1221 static void end_unlink_async(struct ehci_hcd *ehci)
1222 {
1223 	struct ehci_qh		*qh;
1224 
1225 	if (ehci->has_synopsys_hc_bug)
1226 		ehci_writel(ehci, (u32) ehci->async->qh_dma,
1227 			    &ehci->regs->async_next);
1228 
1229 	/* Process the idle QHs */
1230  restart:
1231 	ehci->async_unlinking = true;
1232 	while (ehci->async_iaa) {
1233 		qh = ehci->async_iaa;
1234 		ehci->async_iaa = qh->unlink_next;
1235 		qh->unlink_next = NULL;
1236 
1237 		qh->qh_state = QH_STATE_IDLE;
1238 		qh->qh_next.qh = NULL;
1239 
1240 		qh_completions(ehci, qh);
1241 		if (!list_empty(&qh->qtd_list) &&
1242 				ehci->rh_state == EHCI_RH_RUNNING)
1243 			qh_link_async(ehci, qh);
1244 		disable_async(ehci);
1245 	}
1246 	ehci->async_unlinking = false;
1247 
1248 	/* Start a new IAA cycle if any QHs are waiting for it */
1249 	if (ehci->async_unlink) {
1250 		start_iaa_cycle(ehci, true);
1251 		if (unlikely(ehci->rh_state < EHCI_RH_RUNNING))
1252 			goto restart;
1253 	}
1254 }
1255 
1256 static void unlink_empty_async(struct ehci_hcd *ehci)
1257 {
1258 	struct ehci_qh		*qh, *next;
1259 	bool			stopped = (ehci->rh_state < EHCI_RH_RUNNING);
1260 	bool			check_unlinks_later = false;
1261 
1262 	/* Unlink all the async QHs that have been empty for a timer cycle */
1263 	next = ehci->async->qh_next.qh;
1264 	while (next) {
1265 		qh = next;
1266 		next = qh->qh_next.qh;
1267 
1268 		if (list_empty(&qh->qtd_list) &&
1269 				qh->qh_state == QH_STATE_LINKED) {
1270 			if (!stopped && qh->unlink_cycle ==
1271 					ehci->async_unlink_cycle)
1272 				check_unlinks_later = true;
1273 			else
1274 				single_unlink_async(ehci, qh);
1275 		}
1276 	}
1277 
1278 	/* Start a new IAA cycle if any QHs are waiting for it */
1279 	if (ehci->async_unlink)
1280 		start_iaa_cycle(ehci, false);
1281 
1282 	/* QHs that haven't been empty for long enough will be handled later */
1283 	if (check_unlinks_later) {
1284 		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1285 		++ehci->async_unlink_cycle;
1286 	}
1287 }
1288 
1289 /* makes sure the async qh will become idle */
1290 /* caller must own ehci->lock */
1291 
1292 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1293 {
1294 	/*
1295 	 * If the QH isn't linked then there's nothing we can do
1296 	 * unless we were called during a giveback, in which case
1297 	 * qh_completions() has to deal with it.
1298 	 */
1299 	if (qh->qh_state != QH_STATE_LINKED) {
1300 		if (qh->qh_state == QH_STATE_COMPLETING)
1301 			qh->needs_rescan = 1;
1302 		return;
1303 	}
1304 
1305 	single_unlink_async(ehci, qh);
1306 	start_iaa_cycle(ehci, false);
1307 }
1308 
1309 /*-------------------------------------------------------------------------*/
1310 
1311 static void scan_async (struct ehci_hcd *ehci)
1312 {
1313 	struct ehci_qh		*qh;
1314 	bool			check_unlinks_later = false;
1315 
1316 	ehci->qh_scan_next = ehci->async->qh_next.qh;
1317 	while (ehci->qh_scan_next) {
1318 		qh = ehci->qh_scan_next;
1319 		ehci->qh_scan_next = qh->qh_next.qh;
1320  rescan:
1321 		/* clean any finished work for this qh */
1322 		if (!list_empty(&qh->qtd_list)) {
1323 			int temp;
1324 
1325 			/*
1326 			 * Unlinks could happen here; completion reporting
1327 			 * drops the lock.  That's why ehci->qh_scan_next
1328 			 * always holds the next qh to scan; if the next qh
1329 			 * gets unlinked then ehci->qh_scan_next is adjusted
1330 			 * in single_unlink_async().
1331 			 */
1332 			temp = qh_completions(ehci, qh);
1333 			if (qh->needs_rescan) {
1334 				start_unlink_async(ehci, qh);
1335 			} else if (list_empty(&qh->qtd_list)
1336 					&& qh->qh_state == QH_STATE_LINKED) {
1337 				qh->unlink_cycle = ehci->async_unlink_cycle;
1338 				check_unlinks_later = true;
1339 			} else if (temp != 0)
1340 				goto rescan;
1341 		}
1342 	}
1343 
1344 	/*
1345 	 * Unlink empty entries, reducing DMA usage as well
1346 	 * as HCD schedule-scanning costs.  Delay for any qh
1347 	 * we just scanned, there's a not-unusual case that it
1348 	 * doesn't stay idle for long.
1349 	 */
1350 	if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING &&
1351 			!(ehci->enabled_hrtimer_events &
1352 				BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) {
1353 		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1354 		++ehci->async_unlink_cycle;
1355 	}
1356 }
1357