xref: /openbmc/linux/drivers/usb/host/ehci-q.c (revision 7eec52db361a6ae6fbbd86c2299718586866b664)
1 /*
2  * Copyright (C) 2001-2004 by David Brownell
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the
6  * Free Software Foundation; either version 2 of the License, or (at your
7  * option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  */
18 
19 /* this file is part of ehci-hcd.c */
20 
21 /*-------------------------------------------------------------------------*/
22 
23 /*
24  * EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
25  *
26  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
27  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
28  * buffers needed for the larger number).  We use one QH per endpoint, queue
29  * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
30  *
31  * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
32  * interrupts) needs careful scheduling.  Performance improvements can be
33  * an ongoing challenge.  That's in "ehci-sched.c".
34  *
35  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
36  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
37  * (b) special fields in qh entries or (c) split iso entries.  TTs will
38  * buffer low/full speed data so the host collects it at high speed.
39  */
40 
41 /*-------------------------------------------------------------------------*/
42 
43 /* fill a qtd, returning how much of the buffer we were able to queue up */
44 
45 static int
46 qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
47 		  size_t len, int token, int maxpacket)
48 {
49 	int	i, count;
50 	u64	addr = buf;
51 
52 	/* one buffer entry per 4K ... first might be short or unaligned */
53 	qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
54 	qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
55 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
56 	if (likely (len < count))		/* ... iff needed */
57 		count = len;
58 	else {
59 		buf +=  0x1000;
60 		buf &= ~0x0fff;
61 
62 		/* per-qtd limit: from 16K to 20K (best alignment) */
63 		for (i = 1; count < len && i < 5; i++) {
64 			addr = buf;
65 			qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
66 			qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
67 					(u32)(addr >> 32));
68 			buf += 0x1000;
69 			if ((count + 0x1000) < len)
70 				count += 0x1000;
71 			else
72 				count = len;
73 		}
74 
75 		/* short packets may only terminate transfers */
76 		if (count != len)
77 			count -= (count % maxpacket);
78 	}
79 	qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
80 	qtd->length = count;
81 
82 	return count;
83 }
84 
85 /*-------------------------------------------------------------------------*/
86 
87 static inline void
88 qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
89 {
90 	struct ehci_qh_hw *hw = qh->hw;
91 
92 	/* writes to an active overlay are unsafe */
93 	WARN_ON(qh->qh_state != QH_STATE_IDLE);
94 
95 	hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
96 	hw->hw_alt_next = EHCI_LIST_END(ehci);
97 
98 	/* Except for control endpoints, we make hardware maintain data
99 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
100 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
101 	 * ever clear it.
102 	 */
103 	if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) {
104 		unsigned	is_out, epnum;
105 
106 		is_out = qh->is_out;
107 		epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
108 		if (unlikely(!usb_gettoggle(qh->ps.udev, epnum, is_out))) {
109 			hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
110 			usb_settoggle(qh->ps.udev, epnum, is_out, 1);
111 		}
112 	}
113 
114 	hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
115 }
116 
117 /* if it weren't for a common silicon quirk (writing the dummy into the qh
118  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
119  * recovery (including urb dequeue) would need software changes to a QH...
120  */
121 static void
122 qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
123 {
124 	struct ehci_qtd *qtd;
125 
126 	qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list);
127 
128 	/*
129 	 * first qtd may already be partially processed.
130 	 * If we come here during unlink, the QH overlay region
131 	 * might have reference to the just unlinked qtd. The
132 	 * qtd is updated in qh_completions(). Update the QH
133 	 * overlay here.
134 	 */
135 	if (qh->hw->hw_token & ACTIVE_BIT(ehci))
136 		qh->hw->hw_qtd_next = qtd->hw_next;
137 	else
138 		qh_update(ehci, qh, qtd);
139 }
140 
141 /*-------------------------------------------------------------------------*/
142 
143 static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
144 
145 static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
146 		struct usb_host_endpoint *ep)
147 {
148 	struct ehci_hcd		*ehci = hcd_to_ehci(hcd);
149 	struct ehci_qh		*qh = ep->hcpriv;
150 	unsigned long		flags;
151 
152 	spin_lock_irqsave(&ehci->lock, flags);
153 	qh->clearing_tt = 0;
154 	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
155 			&& ehci->rh_state == EHCI_RH_RUNNING)
156 		qh_link_async(ehci, qh);
157 	spin_unlock_irqrestore(&ehci->lock, flags);
158 }
159 
160 static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
161 		struct urb *urb, u32 token)
162 {
163 
164 	/* If an async split transaction gets an error or is unlinked,
165 	 * the TT buffer may be left in an indeterminate state.  We
166 	 * have to clear the TT buffer.
167 	 *
168 	 * Note: this routine is never called for Isochronous transfers.
169 	 */
170 	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
171 #ifdef CONFIG_DYNAMIC_DEBUG
172 		struct usb_device *tt = urb->dev->tt->hub;
173 		dev_dbg(&tt->dev,
174 			"clear tt buffer port %d, a%d ep%d t%08x\n",
175 			urb->dev->ttport, urb->dev->devnum,
176 			usb_pipeendpoint(urb->pipe), token);
177 #endif /* CONFIG_DYNAMIC_DEBUG */
178 		if (!ehci_is_TDI(ehci)
179 				|| urb->dev->tt->hub !=
180 				   ehci_to_hcd(ehci)->self.root_hub) {
181 			if (usb_hub_clear_tt_buffer(urb) == 0)
182 				qh->clearing_tt = 1;
183 		} else {
184 
185 			/* REVISIT ARC-derived cores don't clear the root
186 			 * hub TT buffer in this way...
187 			 */
188 		}
189 	}
190 }
191 
192 static int qtd_copy_status (
193 	struct ehci_hcd *ehci,
194 	struct urb *urb,
195 	size_t length,
196 	u32 token
197 )
198 {
199 	int	status = -EINPROGRESS;
200 
201 	/* count IN/OUT bytes, not SETUP (even short packets) */
202 	if (likely (QTD_PID (token) != 2))
203 		urb->actual_length += length - QTD_LENGTH (token);
204 
205 	/* don't modify error codes */
206 	if (unlikely(urb->unlinked))
207 		return status;
208 
209 	/* force cleanup after short read; not always an error */
210 	if (unlikely (IS_SHORT_READ (token)))
211 		status = -EREMOTEIO;
212 
213 	/* serious "can't proceed" faults reported by the hardware */
214 	if (token & QTD_STS_HALT) {
215 		if (token & QTD_STS_BABBLE) {
216 			/* FIXME "must" disable babbling device's port too */
217 			status = -EOVERFLOW;
218 		/* CERR nonzero + halt --> stall */
219 		} else if (QTD_CERR(token)) {
220 			status = -EPIPE;
221 
222 		/* In theory, more than one of the following bits can be set
223 		 * since they are sticky and the transaction is retried.
224 		 * Which to test first is rather arbitrary.
225 		 */
226 		} else if (token & QTD_STS_MMF) {
227 			/* fs/ls interrupt xfer missed the complete-split */
228 			status = -EPROTO;
229 		} else if (token & QTD_STS_DBE) {
230 			status = (QTD_PID (token) == 1) /* IN ? */
231 				? -ENOSR  /* hc couldn't read data */
232 				: -ECOMM; /* hc couldn't write data */
233 		} else if (token & QTD_STS_XACT) {
234 			/* timeout, bad CRC, wrong PID, etc */
235 			ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
236 				urb->dev->devpath,
237 				usb_pipeendpoint(urb->pipe),
238 				usb_pipein(urb->pipe) ? "in" : "out");
239 			status = -EPROTO;
240 		} else {	/* unknown */
241 			status = -EPROTO;
242 		}
243 	}
244 
245 	return status;
246 }
247 
248 static void
249 ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
250 {
251 	if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
252 		/* ... update hc-wide periodic stats */
253 		ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
254 	}
255 
256 	if (unlikely(urb->unlinked)) {
257 		COUNT(ehci->stats.unlink);
258 	} else {
259 		/* report non-error and short read status as zero */
260 		if (status == -EINPROGRESS || status == -EREMOTEIO)
261 			status = 0;
262 		COUNT(ehci->stats.complete);
263 	}
264 
265 #ifdef EHCI_URB_TRACE
266 	ehci_dbg (ehci,
267 		"%s %s urb %p ep%d%s status %d len %d/%d\n",
268 		__func__, urb->dev->devpath, urb,
269 		usb_pipeendpoint (urb->pipe),
270 		usb_pipein (urb->pipe) ? "in" : "out",
271 		status,
272 		urb->actual_length, urb->transfer_buffer_length);
273 #endif
274 
275 	usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
276 	usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
277 }
278 
279 static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
280 
281 /*
282  * Process and free completed qtds for a qh, returning URBs to drivers.
283  * Chases up to qh->hw_current.  Returns nonzero if the caller should
284  * unlink qh.
285  */
286 static unsigned
287 qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
288 {
289 	struct ehci_qtd		*last, *end = qh->dummy;
290 	struct list_head	*entry, *tmp;
291 	int			last_status;
292 	int			stopped;
293 	u8			state;
294 	struct ehci_qh_hw	*hw = qh->hw;
295 
296 	/* completions (or tasks on other cpus) must never clobber HALT
297 	 * till we've gone through and cleaned everything up, even when
298 	 * they add urbs to this qh's queue or mark them for unlinking.
299 	 *
300 	 * NOTE:  unlinking expects to be done in queue order.
301 	 *
302 	 * It's a bug for qh->qh_state to be anything other than
303 	 * QH_STATE_IDLE, unless our caller is scan_async() or
304 	 * scan_intr().
305 	 */
306 	state = qh->qh_state;
307 	qh->qh_state = QH_STATE_COMPLETING;
308 	stopped = (state == QH_STATE_IDLE);
309 
310  rescan:
311 	last = NULL;
312 	last_status = -EINPROGRESS;
313 	qh->dequeue_during_giveback = 0;
314 
315 	/* remove de-activated QTDs from front of queue.
316 	 * after faults (including short reads), cleanup this urb
317 	 * then let the queue advance.
318 	 * if queue is stopped, handles unlinks.
319 	 */
320 	list_for_each_safe (entry, tmp, &qh->qtd_list) {
321 		struct ehci_qtd	*qtd;
322 		struct urb	*urb;
323 		u32		token = 0;
324 
325 		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
326 		urb = qtd->urb;
327 
328 		/* clean up any state from previous QTD ...*/
329 		if (last) {
330 			if (likely (last->urb != urb)) {
331 				ehci_urb_done(ehci, last->urb, last_status);
332 				last_status = -EINPROGRESS;
333 			}
334 			ehci_qtd_free (ehci, last);
335 			last = NULL;
336 		}
337 
338 		/* ignore urbs submitted during completions we reported */
339 		if (qtd == end)
340 			break;
341 
342 		/* hardware copies qtd out of qh overlay */
343 		rmb ();
344 		token = hc32_to_cpu(ehci, qtd->hw_token);
345 
346 		/* always clean up qtds the hc de-activated */
347  retry_xacterr:
348 		if ((token & QTD_STS_ACTIVE) == 0) {
349 
350 			/* Report Data Buffer Error: non-fatal but useful */
351 			if (token & QTD_STS_DBE)
352 				ehci_dbg(ehci,
353 					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
354 					urb,
355 					usb_endpoint_num(&urb->ep->desc),
356 					usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
357 					urb->transfer_buffer_length,
358 					qtd,
359 					qh);
360 
361 			/* on STALL, error, and short reads this urb must
362 			 * complete and all its qtds must be recycled.
363 			 */
364 			if ((token & QTD_STS_HALT) != 0) {
365 
366 				/* retry transaction errors until we
367 				 * reach the software xacterr limit
368 				 */
369 				if ((token & QTD_STS_XACT) &&
370 						QTD_CERR(token) == 0 &&
371 						++qh->xacterrs < QH_XACTERR_MAX &&
372 						!urb->unlinked) {
373 					ehci_dbg(ehci,
374 	"detected XactErr len %zu/%zu retry %d\n",
375 	qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
376 
377 					/* reset the token in the qtd and the
378 					 * qh overlay (which still contains
379 					 * the qtd) so that we pick up from
380 					 * where we left off
381 					 */
382 					token &= ~QTD_STS_HALT;
383 					token |= QTD_STS_ACTIVE |
384 							(EHCI_TUNE_CERR << 10);
385 					qtd->hw_token = cpu_to_hc32(ehci,
386 							token);
387 					wmb();
388 					hw->hw_token = cpu_to_hc32(ehci,
389 							token);
390 					goto retry_xacterr;
391 				}
392 				stopped = 1;
393 
394 			/* magic dummy for some short reads; qh won't advance.
395 			 * that silicon quirk can kick in with this dummy too.
396 			 *
397 			 * other short reads won't stop the queue, including
398 			 * control transfers (status stage handles that) or
399 			 * most other single-qtd reads ... the queue stops if
400 			 * URB_SHORT_NOT_OK was set so the driver submitting
401 			 * the urbs could clean it up.
402 			 */
403 			} else if (IS_SHORT_READ (token)
404 					&& !(qtd->hw_alt_next
405 						& EHCI_LIST_END(ehci))) {
406 				stopped = 1;
407 			}
408 
409 		/* stop scanning when we reach qtds the hc is using */
410 		} else if (likely (!stopped
411 				&& ehci->rh_state >= EHCI_RH_RUNNING)) {
412 			break;
413 
414 		/* scan the whole queue for unlinks whenever it stops */
415 		} else {
416 			stopped = 1;
417 
418 			/* cancel everything if we halt, suspend, etc */
419 			if (ehci->rh_state < EHCI_RH_RUNNING)
420 				last_status = -ESHUTDOWN;
421 
422 			/* this qtd is active; skip it unless a previous qtd
423 			 * for its urb faulted, or its urb was canceled.
424 			 */
425 			else if (last_status == -EINPROGRESS && !urb->unlinked)
426 				continue;
427 
428 			/*
429 			 * If this was the active qtd when the qh was unlinked
430 			 * and the overlay's token is active, then the overlay
431 			 * hasn't been written back to the qtd yet so use its
432 			 * token instead of the qtd's.  After the qtd is
433 			 * processed and removed, the overlay won't be valid
434 			 * any more.
435 			 */
436 			if (state == QH_STATE_IDLE &&
437 					qh->qtd_list.next == &qtd->qtd_list &&
438 					(hw->hw_token & ACTIVE_BIT(ehci))) {
439 				token = hc32_to_cpu(ehci, hw->hw_token);
440 				hw->hw_token &= ~ACTIVE_BIT(ehci);
441 
442 				/* An unlink may leave an incomplete
443 				 * async transaction in the TT buffer.
444 				 * We have to clear it.
445 				 */
446 				ehci_clear_tt_buffer(ehci, qh, urb, token);
447 			}
448 		}
449 
450 		/* unless we already know the urb's status, collect qtd status
451 		 * and update count of bytes transferred.  in common short read
452 		 * cases with only one data qtd (including control transfers),
453 		 * queue processing won't halt.  but with two or more qtds (for
454 		 * example, with a 32 KB transfer), when the first qtd gets a
455 		 * short read the second must be removed by hand.
456 		 */
457 		if (last_status == -EINPROGRESS) {
458 			last_status = qtd_copy_status(ehci, urb,
459 					qtd->length, token);
460 			if (last_status == -EREMOTEIO
461 					&& (qtd->hw_alt_next
462 						& EHCI_LIST_END(ehci)))
463 				last_status = -EINPROGRESS;
464 
465 			/* As part of low/full-speed endpoint-halt processing
466 			 * we must clear the TT buffer (11.17.5).
467 			 */
468 			if (unlikely(last_status != -EINPROGRESS &&
469 					last_status != -EREMOTEIO)) {
470 				/* The TT's in some hubs malfunction when they
471 				 * receive this request following a STALL (they
472 				 * stop sending isochronous packets).  Since a
473 				 * STALL can't leave the TT buffer in a busy
474 				 * state (if you believe Figures 11-48 - 11-51
475 				 * in the USB 2.0 spec), we won't clear the TT
476 				 * buffer in this case.  Strictly speaking this
477 				 * is a violation of the spec.
478 				 */
479 				if (last_status != -EPIPE)
480 					ehci_clear_tt_buffer(ehci, qh, urb,
481 							token);
482 			}
483 		}
484 
485 		/* if we're removing something not at the queue head,
486 		 * patch the hardware queue pointer.
487 		 */
488 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
489 			last = list_entry (qtd->qtd_list.prev,
490 					struct ehci_qtd, qtd_list);
491 			last->hw_next = qtd->hw_next;
492 		}
493 
494 		/* remove qtd; it's recycled after possible urb completion */
495 		list_del (&qtd->qtd_list);
496 		last = qtd;
497 
498 		/* reinit the xacterr counter for the next qtd */
499 		qh->xacterrs = 0;
500 	}
501 
502 	/* last urb's completion might still need calling */
503 	if (likely (last != NULL)) {
504 		ehci_urb_done(ehci, last->urb, last_status);
505 		ehci_qtd_free (ehci, last);
506 	}
507 
508 	/* Do we need to rescan for URBs dequeued during a giveback? */
509 	if (unlikely(qh->dequeue_during_giveback)) {
510 		/* If the QH is already unlinked, do the rescan now. */
511 		if (state == QH_STATE_IDLE)
512 			goto rescan;
513 
514 		/* Otherwise the caller must unlink the QH. */
515 	}
516 
517 	/* restore original state; caller must unlink or relink */
518 	qh->qh_state = state;
519 
520 	/* be sure the hardware's done with the qh before refreshing
521 	 * it after fault cleanup, or recovering from silicon wrongly
522 	 * overlaying the dummy qtd (which reduces DMA chatter).
523 	 *
524 	 * We won't refresh a QH that's linked (after the HC
525 	 * stopped the queue).  That avoids a race:
526 	 *  - HC reads first part of QH;
527 	 *  - CPU updates that first part and the token;
528 	 *  - HC reads rest of that QH, including token
529 	 * Result:  HC gets an inconsistent image, and then
530 	 * DMAs to/from the wrong memory (corrupting it).
531 	 *
532 	 * That should be rare for interrupt transfers,
533 	 * except maybe high bandwidth ...
534 	 */
535 	if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci))
536 		qh->exception = 1;
537 
538 	/* Let the caller know if the QH needs to be unlinked. */
539 	return qh->exception;
540 }
541 
542 /*-------------------------------------------------------------------------*/
543 
544 // high bandwidth multiplier, as encoded in highspeed endpoint descriptors
545 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
546 // ... and packet size, for any kind of endpoint descriptor
547 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
548 
549 /*
550  * reverse of qh_urb_transaction:  free a list of TDs.
551  * used for cleanup after errors, before HC sees an URB's TDs.
552  */
553 static void qtd_list_free (
554 	struct ehci_hcd		*ehci,
555 	struct urb		*urb,
556 	struct list_head	*qtd_list
557 ) {
558 	struct list_head	*entry, *temp;
559 
560 	list_for_each_safe (entry, temp, qtd_list) {
561 		struct ehci_qtd	*qtd;
562 
563 		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
564 		list_del (&qtd->qtd_list);
565 		ehci_qtd_free (ehci, qtd);
566 	}
567 }
568 
569 /*
570  * create a list of filled qtds for this URB; won't link into qh.
571  */
572 static struct list_head *
573 qh_urb_transaction (
574 	struct ehci_hcd		*ehci,
575 	struct urb		*urb,
576 	struct list_head	*head,
577 	gfp_t			flags
578 ) {
579 	struct ehci_qtd		*qtd, *qtd_prev;
580 	dma_addr_t		buf;
581 	int			len, this_sg_len, maxpacket;
582 	int			is_input;
583 	u32			token;
584 	int			i;
585 	struct scatterlist	*sg;
586 
587 	/*
588 	 * URBs map to sequences of QTDs:  one logical transaction
589 	 */
590 	qtd = ehci_qtd_alloc (ehci, flags);
591 	if (unlikely (!qtd))
592 		return NULL;
593 	list_add_tail (&qtd->qtd_list, head);
594 	qtd->urb = urb;
595 
596 	token = QTD_STS_ACTIVE;
597 	token |= (EHCI_TUNE_CERR << 10);
598 	/* for split transactions, SplitXState initialized to zero */
599 
600 	len = urb->transfer_buffer_length;
601 	is_input = usb_pipein (urb->pipe);
602 	if (usb_pipecontrol (urb->pipe)) {
603 		/* SETUP pid */
604 		qtd_fill(ehci, qtd, urb->setup_dma,
605 				sizeof (struct usb_ctrlrequest),
606 				token | (2 /* "setup" */ << 8), 8);
607 
608 		/* ... and always at least one more pid */
609 		token ^= QTD_TOGGLE;
610 		qtd_prev = qtd;
611 		qtd = ehci_qtd_alloc (ehci, flags);
612 		if (unlikely (!qtd))
613 			goto cleanup;
614 		qtd->urb = urb;
615 		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
616 		list_add_tail (&qtd->qtd_list, head);
617 
618 		/* for zero length DATA stages, STATUS is always IN */
619 		if (len == 0)
620 			token |= (1 /* "in" */ << 8);
621 	}
622 
623 	/*
624 	 * data transfer stage:  buffer setup
625 	 */
626 	i = urb->num_mapped_sgs;
627 	if (len > 0 && i > 0) {
628 		sg = urb->sg;
629 		buf = sg_dma_address(sg);
630 
631 		/* urb->transfer_buffer_length may be smaller than the
632 		 * size of the scatterlist (or vice versa)
633 		 */
634 		this_sg_len = min_t(int, sg_dma_len(sg), len);
635 	} else {
636 		sg = NULL;
637 		buf = urb->transfer_dma;
638 		this_sg_len = len;
639 	}
640 
641 	if (is_input)
642 		token |= (1 /* "in" */ << 8);
643 	/* else it's already initted to "out" pid (0 << 8) */
644 
645 	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
646 
647 	/*
648 	 * buffer gets wrapped in one or more qtds;
649 	 * last one may be "short" (including zero len)
650 	 * and may serve as a control status ack
651 	 */
652 	for (;;) {
653 		int this_qtd_len;
654 
655 		this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
656 				maxpacket);
657 		this_sg_len -= this_qtd_len;
658 		len -= this_qtd_len;
659 		buf += this_qtd_len;
660 
661 		/*
662 		 * short reads advance to a "magic" dummy instead of the next
663 		 * qtd ... that forces the queue to stop, for manual cleanup.
664 		 * (this will usually be overridden later.)
665 		 */
666 		if (is_input)
667 			qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
668 
669 		/* qh makes control packets use qtd toggle; maybe switch it */
670 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
671 			token ^= QTD_TOGGLE;
672 
673 		if (likely(this_sg_len <= 0)) {
674 			if (--i <= 0 || len <= 0)
675 				break;
676 			sg = sg_next(sg);
677 			buf = sg_dma_address(sg);
678 			this_sg_len = min_t(int, sg_dma_len(sg), len);
679 		}
680 
681 		qtd_prev = qtd;
682 		qtd = ehci_qtd_alloc (ehci, flags);
683 		if (unlikely (!qtd))
684 			goto cleanup;
685 		qtd->urb = urb;
686 		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
687 		list_add_tail (&qtd->qtd_list, head);
688 	}
689 
690 	/*
691 	 * unless the caller requires manual cleanup after short reads,
692 	 * have the alt_next mechanism keep the queue running after the
693 	 * last data qtd (the only one, for control and most other cases).
694 	 */
695 	if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
696 				|| usb_pipecontrol (urb->pipe)))
697 		qtd->hw_alt_next = EHCI_LIST_END(ehci);
698 
699 	/*
700 	 * control requests may need a terminating data "status" ack;
701 	 * other OUT ones may need a terminating short packet
702 	 * (zero length).
703 	 */
704 	if (likely (urb->transfer_buffer_length != 0)) {
705 		int	one_more = 0;
706 
707 		if (usb_pipecontrol (urb->pipe)) {
708 			one_more = 1;
709 			token ^= 0x0100;	/* "in" <--> "out"  */
710 			token |= QTD_TOGGLE;	/* force DATA1 */
711 		} else if (usb_pipeout(urb->pipe)
712 				&& (urb->transfer_flags & URB_ZERO_PACKET)
713 				&& !(urb->transfer_buffer_length % maxpacket)) {
714 			one_more = 1;
715 		}
716 		if (one_more) {
717 			qtd_prev = qtd;
718 			qtd = ehci_qtd_alloc (ehci, flags);
719 			if (unlikely (!qtd))
720 				goto cleanup;
721 			qtd->urb = urb;
722 			qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
723 			list_add_tail (&qtd->qtd_list, head);
724 
725 			/* never any data in such packets */
726 			qtd_fill(ehci, qtd, 0, 0, token, 0);
727 		}
728 	}
729 
730 	/* by default, enable interrupt on urb completion */
731 	if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
732 		qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
733 	return head;
734 
735 cleanup:
736 	qtd_list_free (ehci, urb, head);
737 	return NULL;
738 }
739 
740 /*-------------------------------------------------------------------------*/
741 
742 // Would be best to create all qh's from config descriptors,
743 // when each interface/altsetting is established.  Unlink
744 // any previous qh and cancel its urbs first; endpoints are
745 // implicitly reset then (data toggle too).
746 // That'd mean updating how usbcore talks to HCDs. (2.7?)
747 
748 
749 /*
750  * Each QH holds a qtd list; a QH is used for everything except iso.
751  *
752  * For interrupt urbs, the scheduler must set the microframe scheduling
753  * mask(s) each time the QH gets scheduled.  For highspeed, that's
754  * just one microframe in the s-mask.  For split interrupt transactions
755  * there are additional complications: c-mask, maybe FSTNs.
756  */
757 static struct ehci_qh *
758 qh_make (
759 	struct ehci_hcd		*ehci,
760 	struct urb		*urb,
761 	gfp_t			flags
762 ) {
763 	struct ehci_qh		*qh = ehci_qh_alloc (ehci, flags);
764 	u32			info1 = 0, info2 = 0;
765 	int			is_input, type;
766 	int			maxp = 0;
767 	struct usb_tt		*tt = urb->dev->tt;
768 	struct ehci_qh_hw	*hw;
769 
770 	if (!qh)
771 		return qh;
772 
773 	/*
774 	 * init endpoint/device data for this QH
775 	 */
776 	info1 |= usb_pipeendpoint (urb->pipe) << 8;
777 	info1 |= usb_pipedevice (urb->pipe) << 0;
778 
779 	is_input = usb_pipein (urb->pipe);
780 	type = usb_pipetype (urb->pipe);
781 	maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input);
782 
783 	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
784 	 * acts like up to 3KB, but is built from smaller packets.
785 	 */
786 	if (max_packet(maxp) > 1024) {
787 		ehci_dbg(ehci, "bogus qh maxpacket %d\n", max_packet(maxp));
788 		goto done;
789 	}
790 
791 	/* Compute interrupt scheduling parameters just once, and save.
792 	 * - allowing for high bandwidth, how many nsec/uframe are used?
793 	 * - split transactions need a second CSPLIT uframe; same question
794 	 * - splits also need a schedule gap (for full/low speed I/O)
795 	 * - qh has a polling interval
796 	 *
797 	 * For control/bulk requests, the HC or TT handles these.
798 	 */
799 	if (type == PIPE_INTERRUPT) {
800 		unsigned	tmp;
801 
802 		qh->ps.usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
803 				is_input, 0,
804 				hb_mult(maxp) * max_packet(maxp)));
805 		qh->ps.phase = NO_FRAME;
806 
807 		if (urb->dev->speed == USB_SPEED_HIGH) {
808 			qh->ps.c_usecs = 0;
809 			qh->gap_uf = 0;
810 
811 			if (urb->interval > 1 && urb->interval < 8) {
812 				/* NOTE interval 2 or 4 uframes could work.
813 				 * But interval 1 scheduling is simpler, and
814 				 * includes high bandwidth.
815 				 */
816 				urb->interval = 1;
817 			} else if (urb->interval > ehci->periodic_size << 3) {
818 				urb->interval = ehci->periodic_size << 3;
819 			}
820 			qh->ps.period = urb->interval >> 3;
821 
822 			/* period for bandwidth allocation */
823 			tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
824 					1 << (urb->ep->desc.bInterval - 1));
825 
826 			/* Allow urb->interval to override */
827 			qh->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
828 			qh->ps.bw_period = qh->ps.bw_uperiod >> 3;
829 		} else {
830 			int		think_time;
831 
832 			/* gap is f(FS/LS transfer times) */
833 			qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
834 					is_input, 0, maxp) / (125 * 1000);
835 
836 			/* FIXME this just approximates SPLIT/CSPLIT times */
837 			if (is_input) {		// SPLIT, gap, CSPLIT+DATA
838 				qh->ps.c_usecs = qh->ps.usecs + HS_USECS(0);
839 				qh->ps.usecs = HS_USECS(1);
840 			} else {		// SPLIT+DATA, gap, CSPLIT
841 				qh->ps.usecs += HS_USECS(1);
842 				qh->ps.c_usecs = HS_USECS(0);
843 			}
844 
845 			think_time = tt ? tt->think_time : 0;
846 			qh->ps.tt_usecs = NS_TO_US(think_time +
847 					usb_calc_bus_time (urb->dev->speed,
848 					is_input, 0, max_packet (maxp)));
849 			if (urb->interval > ehci->periodic_size)
850 				urb->interval = ehci->periodic_size;
851 			qh->ps.period = urb->interval;
852 
853 			/* period for bandwidth allocation */
854 			tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
855 					urb->ep->desc.bInterval);
856 			tmp = rounddown_pow_of_two(tmp);
857 
858 			/* Allow urb->interval to override */
859 			qh->ps.bw_period = min_t(unsigned, tmp, urb->interval);
860 			qh->ps.bw_uperiod = qh->ps.bw_period << 3;
861 		}
862 	}
863 
864 	/* support for tt scheduling, and access to toggles */
865 	qh->ps.udev = urb->dev;
866 	qh->ps.ep = urb->ep;
867 
868 	/* using TT? */
869 	switch (urb->dev->speed) {
870 	case USB_SPEED_LOW:
871 		info1 |= QH_LOW_SPEED;
872 		/* FALL THROUGH */
873 
874 	case USB_SPEED_FULL:
875 		/* EPS 0 means "full" */
876 		if (type != PIPE_INTERRUPT)
877 			info1 |= (EHCI_TUNE_RL_TT << 28);
878 		if (type == PIPE_CONTROL) {
879 			info1 |= QH_CONTROL_EP;		/* for TT */
880 			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
881 		}
882 		info1 |= maxp << 16;
883 
884 		info2 |= (EHCI_TUNE_MULT_TT << 30);
885 
886 		/* Some Freescale processors have an erratum in which the
887 		 * port number in the queue head was 0..N-1 instead of 1..N.
888 		 */
889 		if (ehci_has_fsl_portno_bug(ehci))
890 			info2 |= (urb->dev->ttport-1) << 23;
891 		else
892 			info2 |= urb->dev->ttport << 23;
893 
894 		/* set the address of the TT; for TDI's integrated
895 		 * root hub tt, leave it zeroed.
896 		 */
897 		if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
898 			info2 |= tt->hub->devnum << 16;
899 
900 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
901 
902 		break;
903 
904 	case USB_SPEED_HIGH:		/* no TT involved */
905 		info1 |= QH_HIGH_SPEED;
906 		if (type == PIPE_CONTROL) {
907 			info1 |= (EHCI_TUNE_RL_HS << 28);
908 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
909 			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
910 			info2 |= (EHCI_TUNE_MULT_HS << 30);
911 		} else if (type == PIPE_BULK) {
912 			info1 |= (EHCI_TUNE_RL_HS << 28);
913 			/* The USB spec says that high speed bulk endpoints
914 			 * always use 512 byte maxpacket.  But some device
915 			 * vendors decided to ignore that, and MSFT is happy
916 			 * to help them do so.  So now people expect to use
917 			 * such nonconformant devices with Linux too; sigh.
918 			 */
919 			info1 |= max_packet(maxp) << 16;
920 			info2 |= (EHCI_TUNE_MULT_HS << 30);
921 		} else {		/* PIPE_INTERRUPT */
922 			info1 |= max_packet (maxp) << 16;
923 			info2 |= hb_mult (maxp) << 30;
924 		}
925 		break;
926 	default:
927 		ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev,
928 			urb->dev->speed);
929 done:
930 		qh_destroy(ehci, qh);
931 		return NULL;
932 	}
933 
934 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
935 
936 	/* init as live, toggle clear */
937 	qh->qh_state = QH_STATE_IDLE;
938 	hw = qh->hw;
939 	hw->hw_info1 = cpu_to_hc32(ehci, info1);
940 	hw->hw_info2 = cpu_to_hc32(ehci, info2);
941 	qh->is_out = !is_input;
942 	usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
943 	return qh;
944 }
945 
946 /*-------------------------------------------------------------------------*/
947 
948 static void enable_async(struct ehci_hcd *ehci)
949 {
950 	if (ehci->async_count++)
951 		return;
952 
953 	/* Stop waiting to turn off the async schedule */
954 	ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC);
955 
956 	/* Don't start the schedule until ASS is 0 */
957 	ehci_poll_ASS(ehci);
958 	turn_on_io_watchdog(ehci);
959 }
960 
961 static void disable_async(struct ehci_hcd *ehci)
962 {
963 	if (--ehci->async_count)
964 		return;
965 
966 	/* The async schedule and unlink lists are supposed to be empty */
967 	WARN_ON(ehci->async->qh_next.qh || !list_empty(&ehci->async_unlink) ||
968 			!list_empty(&ehci->async_idle));
969 
970 	/* Don't turn off the schedule until ASS is 1 */
971 	ehci_poll_ASS(ehci);
972 }
973 
974 /* move qh (and its qtds) onto async queue; maybe enable queue.  */
975 
976 static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
977 {
978 	__hc32		dma = QH_NEXT(ehci, qh->qh_dma);
979 	struct ehci_qh	*head;
980 
981 	/* Don't link a QH if there's a Clear-TT-Buffer pending */
982 	if (unlikely(qh->clearing_tt))
983 		return;
984 
985 	WARN_ON(qh->qh_state != QH_STATE_IDLE);
986 
987 	/* clear halt and/or toggle; and maybe recover from silicon quirk */
988 	qh_refresh(ehci, qh);
989 
990 	/* splice right after start */
991 	head = ehci->async;
992 	qh->qh_next = head->qh_next;
993 	qh->hw->hw_next = head->hw->hw_next;
994 	wmb ();
995 
996 	head->qh_next.qh = qh;
997 	head->hw->hw_next = dma;
998 
999 	qh->qh_state = QH_STATE_LINKED;
1000 	qh->xacterrs = 0;
1001 	qh->exception = 0;
1002 	/* qtd completions reported later by interrupt */
1003 
1004 	enable_async(ehci);
1005 }
1006 
1007 /*-------------------------------------------------------------------------*/
1008 
1009 /*
1010  * For control/bulk/interrupt, return QH with these TDs appended.
1011  * Allocates and initializes the QH if necessary.
1012  * Returns null if it can't allocate a QH it needs to.
1013  * If the QH has TDs (urbs) already, that's great.
1014  */
1015 static struct ehci_qh *qh_append_tds (
1016 	struct ehci_hcd		*ehci,
1017 	struct urb		*urb,
1018 	struct list_head	*qtd_list,
1019 	int			epnum,
1020 	void			**ptr
1021 )
1022 {
1023 	struct ehci_qh		*qh = NULL;
1024 	__hc32			qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
1025 
1026 	qh = (struct ehci_qh *) *ptr;
1027 	if (unlikely (qh == NULL)) {
1028 		/* can't sleep here, we have ehci->lock... */
1029 		qh = qh_make (ehci, urb, GFP_ATOMIC);
1030 		*ptr = qh;
1031 	}
1032 	if (likely (qh != NULL)) {
1033 		struct ehci_qtd	*qtd;
1034 
1035 		if (unlikely (list_empty (qtd_list)))
1036 			qtd = NULL;
1037 		else
1038 			qtd = list_entry (qtd_list->next, struct ehci_qtd,
1039 					qtd_list);
1040 
1041 		/* control qh may need patching ... */
1042 		if (unlikely (epnum == 0)) {
1043 
1044                         /* usb_reset_device() briefly reverts to address 0 */
1045                         if (usb_pipedevice (urb->pipe) == 0)
1046 				qh->hw->hw_info1 &= ~qh_addr_mask;
1047 		}
1048 
1049 		/* just one way to queue requests: swap with the dummy qtd.
1050 		 * only hc or qh_refresh() ever modify the overlay.
1051 		 */
1052 		if (likely (qtd != NULL)) {
1053 			struct ehci_qtd		*dummy;
1054 			dma_addr_t		dma;
1055 			__hc32			token;
1056 
1057 			/* to avoid racing the HC, use the dummy td instead of
1058 			 * the first td of our list (becomes new dummy).  both
1059 			 * tds stay deactivated until we're done, when the
1060 			 * HC is allowed to fetch the old dummy (4.10.2).
1061 			 */
1062 			token = qtd->hw_token;
1063 			qtd->hw_token = HALT_BIT(ehci);
1064 
1065 			dummy = qh->dummy;
1066 
1067 			dma = dummy->qtd_dma;
1068 			*dummy = *qtd;
1069 			dummy->qtd_dma = dma;
1070 
1071 			list_del (&qtd->qtd_list);
1072 			list_add (&dummy->qtd_list, qtd_list);
1073 			list_splice_tail(qtd_list, &qh->qtd_list);
1074 
1075 			ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
1076 			qh->dummy = qtd;
1077 
1078 			/* hc must see the new dummy at list end */
1079 			dma = qtd->qtd_dma;
1080 			qtd = list_entry (qh->qtd_list.prev,
1081 					struct ehci_qtd, qtd_list);
1082 			qtd->hw_next = QTD_NEXT(ehci, dma);
1083 
1084 			/* let the hc process these next qtds */
1085 			wmb ();
1086 			dummy->hw_token = token;
1087 
1088 			urb->hcpriv = qh;
1089 		}
1090 	}
1091 	return qh;
1092 }
1093 
1094 /*-------------------------------------------------------------------------*/
1095 
1096 static int
1097 submit_async (
1098 	struct ehci_hcd		*ehci,
1099 	struct urb		*urb,
1100 	struct list_head	*qtd_list,
1101 	gfp_t			mem_flags
1102 ) {
1103 	int			epnum;
1104 	unsigned long		flags;
1105 	struct ehci_qh		*qh = NULL;
1106 	int			rc;
1107 
1108 	epnum = urb->ep->desc.bEndpointAddress;
1109 
1110 #ifdef EHCI_URB_TRACE
1111 	{
1112 		struct ehci_qtd *qtd;
1113 		qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1114 		ehci_dbg(ehci,
1115 			 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1116 			 __func__, urb->dev->devpath, urb,
1117 			 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1118 			 urb->transfer_buffer_length,
1119 			 qtd, urb->ep->hcpriv);
1120 	}
1121 #endif
1122 
1123 	spin_lock_irqsave (&ehci->lock, flags);
1124 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1125 		rc = -ESHUTDOWN;
1126 		goto done;
1127 	}
1128 	rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1129 	if (unlikely(rc))
1130 		goto done;
1131 
1132 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
1133 	if (unlikely(qh == NULL)) {
1134 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1135 		rc = -ENOMEM;
1136 		goto done;
1137 	}
1138 
1139 	/* Control/bulk operations through TTs don't need scheduling,
1140 	 * the HC and TT handle it when the TT has a buffer ready.
1141 	 */
1142 	if (likely (qh->qh_state == QH_STATE_IDLE))
1143 		qh_link_async(ehci, qh);
1144  done:
1145 	spin_unlock_irqrestore (&ehci->lock, flags);
1146 	if (unlikely (qh == NULL))
1147 		qtd_list_free (ehci, urb, qtd_list);
1148 	return rc;
1149 }
1150 
1151 /*-------------------------------------------------------------------------*/
1152 #ifdef CONFIG_USB_HCD_TEST_MODE
1153 /*
1154  * This function creates the qtds and submits them for the
1155  * SINGLE_STEP_SET_FEATURE Test.
1156  * This is done in two parts: first SETUP req for GetDesc is sent then
1157  * 15 seconds later, the IN stage for GetDesc starts to req data from dev
1158  *
1159  * is_setup : i/p arguement decides which of the two stage needs to be
1160  * performed; TRUE - SETUP and FALSE - IN+STATUS
1161  * Returns 0 if success
1162  */
1163 static int submit_single_step_set_feature(
1164 	struct usb_hcd  *hcd,
1165 	struct urb      *urb,
1166 	int             is_setup
1167 ) {
1168 	struct ehci_hcd		*ehci = hcd_to_ehci(hcd);
1169 	struct list_head	qtd_list;
1170 	struct list_head	*head;
1171 
1172 	struct ehci_qtd		*qtd, *qtd_prev;
1173 	dma_addr_t		buf;
1174 	int			len, maxpacket;
1175 	u32			token;
1176 
1177 	INIT_LIST_HEAD(&qtd_list);
1178 	head = &qtd_list;
1179 
1180 	/* URBs map to sequences of QTDs:  one logical transaction */
1181 	qtd = ehci_qtd_alloc(ehci, GFP_KERNEL);
1182 	if (unlikely(!qtd))
1183 		return -1;
1184 	list_add_tail(&qtd->qtd_list, head);
1185 	qtd->urb = urb;
1186 
1187 	token = QTD_STS_ACTIVE;
1188 	token |= (EHCI_TUNE_CERR << 10);
1189 
1190 	len = urb->transfer_buffer_length;
1191 	/*
1192 	 * Check if the request is to perform just the SETUP stage (getDesc)
1193 	 * as in SINGLE_STEP_SET_FEATURE test, DATA stage (IN) happens
1194 	 * 15 secs after the setup
1195 	 */
1196 	if (is_setup) {
1197 		/* SETUP pid */
1198 		qtd_fill(ehci, qtd, urb->setup_dma,
1199 				sizeof(struct usb_ctrlrequest),
1200 				token | (2 /* "setup" */ << 8), 8);
1201 
1202 		submit_async(ehci, urb, &qtd_list, GFP_ATOMIC);
1203 		return 0; /*Return now; we shall come back after 15 seconds*/
1204 	}
1205 
1206 	/*
1207 	 * IN: data transfer stage:  buffer setup : start the IN txn phase for
1208 	 * the get_Desc SETUP which was sent 15seconds back
1209 	 */
1210 	token ^= QTD_TOGGLE;   /*We need to start IN with DATA-1 Pid-sequence*/
1211 	buf = urb->transfer_dma;
1212 
1213 	token |= (1 /* "in" */ << 8);  /*This is IN stage*/
1214 
1215 	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, 0));
1216 
1217 	qtd_fill(ehci, qtd, buf, len, token, maxpacket);
1218 
1219 	/*
1220 	 * Our IN phase shall always be a short read; so keep the queue running
1221 	 * and let it advance to the next qtd which zero length OUT status
1222 	 */
1223 	qtd->hw_alt_next = EHCI_LIST_END(ehci);
1224 
1225 	/* STATUS stage for GetDesc control request */
1226 	token ^= 0x0100;        /* "in" <--> "out"  */
1227 	token |= QTD_TOGGLE;    /* force DATA1 */
1228 
1229 	qtd_prev = qtd;
1230 	qtd = ehci_qtd_alloc(ehci, GFP_ATOMIC);
1231 	if (unlikely(!qtd))
1232 		goto cleanup;
1233 	qtd->urb = urb;
1234 	qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
1235 	list_add_tail(&qtd->qtd_list, head);
1236 
1237 	/* dont fill any data in such packets */
1238 	qtd_fill(ehci, qtd, 0, 0, token, 0);
1239 
1240 	/* by default, enable interrupt on urb completion */
1241 	if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
1242 		qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
1243 
1244 	submit_async(ehci, urb, &qtd_list, GFP_KERNEL);
1245 
1246 	return 0;
1247 
1248 cleanup:
1249 	qtd_list_free(ehci, urb, head);
1250 	return -1;
1251 }
1252 #endif /* CONFIG_USB_HCD_TEST_MODE */
1253 
1254 /*-------------------------------------------------------------------------*/
1255 
1256 static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1257 {
1258 	struct ehci_qh		*prev;
1259 
1260 	/* Add to the end of the list of QHs waiting for the next IAAD */
1261 	qh->qh_state = QH_STATE_UNLINK_WAIT;
1262 	list_add_tail(&qh->unlink_node, &ehci->async_unlink);
1263 
1264 	/* Unlink it from the schedule */
1265 	prev = ehci->async;
1266 	while (prev->qh_next.qh != qh)
1267 		prev = prev->qh_next.qh;
1268 
1269 	prev->hw->hw_next = qh->hw->hw_next;
1270 	prev->qh_next = qh->qh_next;
1271 	if (ehci->qh_scan_next == qh)
1272 		ehci->qh_scan_next = qh->qh_next.qh;
1273 }
1274 
1275 static void start_iaa_cycle(struct ehci_hcd *ehci)
1276 {
1277 	/* Do nothing if an IAA cycle is already running */
1278 	if (ehci->iaa_in_progress)
1279 		return;
1280 	ehci->iaa_in_progress = true;
1281 
1282 	/* If the controller isn't running, we don't have to wait for it */
1283 	if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) {
1284 		end_unlink_async(ehci);
1285 
1286 	/* Otherwise start a new IAA cycle */
1287 	} else if (likely(ehci->rh_state == EHCI_RH_RUNNING)) {
1288 
1289 		/* Make sure the unlinks are all visible to the hardware */
1290 		wmb();
1291 
1292 		ehci_writel(ehci, ehci->command | CMD_IAAD,
1293 				&ehci->regs->command);
1294 		ehci_readl(ehci, &ehci->regs->command);
1295 		ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true);
1296 	}
1297 }
1298 
1299 /* the async qh for the qtds being unlinked are now gone from the HC */
1300 
1301 static void end_unlink_async(struct ehci_hcd *ehci)
1302 {
1303 	struct ehci_qh		*qh;
1304 	bool			early_exit;
1305 
1306 	if (ehci->has_synopsys_hc_bug)
1307 		ehci_writel(ehci, (u32) ehci->async->qh_dma,
1308 			    &ehci->regs->async_next);
1309 
1310 	/* The current IAA cycle has ended */
1311 	ehci->iaa_in_progress = false;
1312 
1313 	if (list_empty(&ehci->async_unlink))
1314 		return;
1315 	qh = list_first_entry(&ehci->async_unlink, struct ehci_qh,
1316 			unlink_node);	/* QH whose IAA cycle just ended */
1317 
1318 	/*
1319 	 * If async_unlinking is set then this routine is already running,
1320 	 * either on the stack or on another CPU.
1321 	 */
1322 	early_exit = ehci->async_unlinking;
1323 
1324 	/* If the controller isn't running, process all the waiting QHs */
1325 	if (ehci->rh_state < EHCI_RH_RUNNING)
1326 		list_splice_tail_init(&ehci->async_unlink, &ehci->async_idle);
1327 
1328 	/*
1329 	 * Intel (?) bug: The HC can write back the overlay region even
1330 	 * after the IAA interrupt occurs.  In self-defense, always go
1331 	 * through two IAA cycles for each QH.
1332 	 */
1333 	else if (qh->qh_state == QH_STATE_UNLINK_WAIT) {
1334 		qh->qh_state = QH_STATE_UNLINK;
1335 		early_exit = true;
1336 	}
1337 
1338 	/* Otherwise process only the first waiting QH (NVIDIA bug?) */
1339 	else
1340 		list_move_tail(&qh->unlink_node, &ehci->async_idle);
1341 
1342 	/* Start a new IAA cycle if any QHs are waiting for it */
1343 	if (!list_empty(&ehci->async_unlink))
1344 		start_iaa_cycle(ehci);
1345 
1346 	/*
1347 	 * Don't allow nesting or concurrent calls,
1348 	 * or wait for the second IAA cycle for the next QH.
1349 	 */
1350 	if (early_exit)
1351 		return;
1352 
1353 	/* Process the idle QHs */
1354 	ehci->async_unlinking = true;
1355 	while (!list_empty(&ehci->async_idle)) {
1356 		qh = list_first_entry(&ehci->async_idle, struct ehci_qh,
1357 				unlink_node);
1358 		list_del(&qh->unlink_node);
1359 
1360 		qh->qh_state = QH_STATE_IDLE;
1361 		qh->qh_next.qh = NULL;
1362 
1363 		if (!list_empty(&qh->qtd_list))
1364 			qh_completions(ehci, qh);
1365 		if (!list_empty(&qh->qtd_list) &&
1366 				ehci->rh_state == EHCI_RH_RUNNING)
1367 			qh_link_async(ehci, qh);
1368 		disable_async(ehci);
1369 	}
1370 	ehci->async_unlinking = false;
1371 }
1372 
1373 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
1374 
1375 static void unlink_empty_async(struct ehci_hcd *ehci)
1376 {
1377 	struct ehci_qh		*qh;
1378 	struct ehci_qh		*qh_to_unlink = NULL;
1379 	int			count = 0;
1380 
1381 	/* Find the last async QH which has been empty for a timer cycle */
1382 	for (qh = ehci->async->qh_next.qh; qh; qh = qh->qh_next.qh) {
1383 		if (list_empty(&qh->qtd_list) &&
1384 				qh->qh_state == QH_STATE_LINKED) {
1385 			++count;
1386 			if (qh->unlink_cycle != ehci->async_unlink_cycle)
1387 				qh_to_unlink = qh;
1388 		}
1389 	}
1390 
1391 	/* If nothing else is being unlinked, unlink the last empty QH */
1392 	if (list_empty(&ehci->async_unlink) && qh_to_unlink) {
1393 		start_unlink_async(ehci, qh_to_unlink);
1394 		--count;
1395 	}
1396 
1397 	/* Other QHs will be handled later */
1398 	if (count > 0) {
1399 		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1400 		++ehci->async_unlink_cycle;
1401 	}
1402 }
1403 
1404 /* The root hub is suspended; unlink all the async QHs */
1405 static void __maybe_unused unlink_empty_async_suspended(struct ehci_hcd *ehci)
1406 {
1407 	struct ehci_qh		*qh;
1408 
1409 	while (ehci->async->qh_next.qh) {
1410 		qh = ehci->async->qh_next.qh;
1411 		WARN_ON(!list_empty(&qh->qtd_list));
1412 		single_unlink_async(ehci, qh);
1413 	}
1414 	start_iaa_cycle(ehci);
1415 }
1416 
1417 /* makes sure the async qh will become idle */
1418 /* caller must own ehci->lock */
1419 
1420 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1421 {
1422 	/* If the QH isn't linked then there's nothing we can do. */
1423 	if (qh->qh_state != QH_STATE_LINKED)
1424 		return;
1425 
1426 	single_unlink_async(ehci, qh);
1427 	start_iaa_cycle(ehci);
1428 }
1429 
1430 /*-------------------------------------------------------------------------*/
1431 
1432 static void scan_async (struct ehci_hcd *ehci)
1433 {
1434 	struct ehci_qh		*qh;
1435 	bool			check_unlinks_later = false;
1436 
1437 	ehci->qh_scan_next = ehci->async->qh_next.qh;
1438 	while (ehci->qh_scan_next) {
1439 		qh = ehci->qh_scan_next;
1440 		ehci->qh_scan_next = qh->qh_next.qh;
1441 
1442 		/* clean any finished work for this qh */
1443 		if (!list_empty(&qh->qtd_list)) {
1444 			int temp;
1445 
1446 			/*
1447 			 * Unlinks could happen here; completion reporting
1448 			 * drops the lock.  That's why ehci->qh_scan_next
1449 			 * always holds the next qh to scan; if the next qh
1450 			 * gets unlinked then ehci->qh_scan_next is adjusted
1451 			 * in single_unlink_async().
1452 			 */
1453 			temp = qh_completions(ehci, qh);
1454 			if (unlikely(temp)) {
1455 				start_unlink_async(ehci, qh);
1456 			} else if (list_empty(&qh->qtd_list)
1457 					&& qh->qh_state == QH_STATE_LINKED) {
1458 				qh->unlink_cycle = ehci->async_unlink_cycle;
1459 				check_unlinks_later = true;
1460 			}
1461 		}
1462 	}
1463 
1464 	/*
1465 	 * Unlink empty entries, reducing DMA usage as well
1466 	 * as HCD schedule-scanning costs.  Delay for any qh
1467 	 * we just scanned, there's a not-unusual case that it
1468 	 * doesn't stay idle for long.
1469 	 */
1470 	if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING &&
1471 			!(ehci->enabled_hrtimer_events &
1472 				BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) {
1473 		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1474 		++ehci->async_unlink_cycle;
1475 	}
1476 }
1477