1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Xilinx USB peripheral controller driver 4 * 5 * Copyright (C) 2004 by Thomas Rathbone 6 * Copyright (C) 2005 by HP Labs 7 * Copyright (C) 2005 by David Brownell 8 * Copyright (C) 2010 - 2014 Xilinx, Inc. 9 * 10 * Some parts of this driver code is based on the driver for at91-series 11 * USB peripheral controller (at91_udc.c). 12 */ 13 14 #include <linux/delay.h> 15 #include <linux/device.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/module.h> 20 #include <linux/of_address.h> 21 #include <linux/of_device.h> 22 #include <linux/of_platform.h> 23 #include <linux/of_irq.h> 24 #include <linux/prefetch.h> 25 #include <linux/usb/ch9.h> 26 #include <linux/usb/gadget.h> 27 28 /* Register offsets for the USB device.*/ 29 #define XUSB_EP0_CONFIG_OFFSET 0x0000 /* EP0 Config Reg Offset */ 30 #define XUSB_SETUP_PKT_ADDR_OFFSET 0x0080 /* Setup Packet Address */ 31 #define XUSB_ADDRESS_OFFSET 0x0100 /* Address Register */ 32 #define XUSB_CONTROL_OFFSET 0x0104 /* Control Register */ 33 #define XUSB_STATUS_OFFSET 0x0108 /* Status Register */ 34 #define XUSB_FRAMENUM_OFFSET 0x010C /* Frame Number Register */ 35 #define XUSB_IER_OFFSET 0x0110 /* Interrupt Enable Register */ 36 #define XUSB_BUFFREADY_OFFSET 0x0114 /* Buffer Ready Register */ 37 #define XUSB_TESTMODE_OFFSET 0x0118 /* Test Mode Register */ 38 #define XUSB_DMA_RESET_OFFSET 0x0200 /* DMA Soft Reset Register */ 39 #define XUSB_DMA_CONTROL_OFFSET 0x0204 /* DMA Control Register */ 40 #define XUSB_DMA_DSAR_ADDR_OFFSET 0x0208 /* DMA source Address Reg */ 41 #define XUSB_DMA_DDAR_ADDR_OFFSET 0x020C /* DMA destination Addr Reg */ 42 #define XUSB_DMA_LENGTH_OFFSET 0x0210 /* DMA Length Register */ 43 #define XUSB_DMA_STATUS_OFFSET 0x0214 /* DMA Status Register */ 44 45 /* Endpoint Configuration Space offsets */ 46 #define XUSB_EP_CFGSTATUS_OFFSET 0x00 /* Endpoint Config Status */ 47 #define XUSB_EP_BUF0COUNT_OFFSET 0x08 /* Buffer 0 Count */ 48 #define XUSB_EP_BUF1COUNT_OFFSET 0x0C /* Buffer 1 Count */ 49 50 #define XUSB_CONTROL_USB_READY_MASK 0x80000000 /* USB ready Mask */ 51 #define XUSB_CONTROL_USB_RMTWAKE_MASK 0x40000000 /* Remote wake up mask */ 52 53 /* Interrupt register related masks.*/ 54 #define XUSB_STATUS_GLOBAL_INTR_MASK 0x80000000 /* Global Intr Enable */ 55 #define XUSB_STATUS_DMADONE_MASK 0x04000000 /* DMA done Mask */ 56 #define XUSB_STATUS_DMAERR_MASK 0x02000000 /* DMA Error Mask */ 57 #define XUSB_STATUS_DMABUSY_MASK 0x80000000 /* DMA Error Mask */ 58 #define XUSB_STATUS_RESUME_MASK 0x01000000 /* USB Resume Mask */ 59 #define XUSB_STATUS_RESET_MASK 0x00800000 /* USB Reset Mask */ 60 #define XUSB_STATUS_SUSPEND_MASK 0x00400000 /* USB Suspend Mask */ 61 #define XUSB_STATUS_DISCONNECT_MASK 0x00200000 /* USB Disconnect Mask */ 62 #define XUSB_STATUS_FIFO_BUFF_RDY_MASK 0x00100000 /* FIFO Buff Ready Mask */ 63 #define XUSB_STATUS_FIFO_BUFF_FREE_MASK 0x00080000 /* FIFO Buff Free Mask */ 64 #define XUSB_STATUS_SETUP_PACKET_MASK 0x00040000 /* Setup packet received */ 65 #define XUSB_STATUS_EP1_BUFF2_COMP_MASK 0x00000200 /* EP 1 Buff 2 Processed */ 66 #define XUSB_STATUS_EP1_BUFF1_COMP_MASK 0x00000002 /* EP 1 Buff 1 Processed */ 67 #define XUSB_STATUS_EP0_BUFF2_COMP_MASK 0x00000100 /* EP 0 Buff 2 Processed */ 68 #define XUSB_STATUS_EP0_BUFF1_COMP_MASK 0x00000001 /* EP 0 Buff 1 Processed */ 69 #define XUSB_STATUS_HIGH_SPEED_MASK 0x00010000 /* USB Speed Mask */ 70 /* Suspend,Reset,Suspend and Disconnect Mask */ 71 #define XUSB_STATUS_INTR_EVENT_MASK 0x01E00000 72 /* Buffers completion Mask */ 73 #define XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK 0x0000FEFF 74 /* Mask for buffer 0 and buffer 1 completion for all Endpoints */ 75 #define XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK 0x00000101 76 #define XUSB_STATUS_EP_BUFF2_SHIFT 8 /* EP buffer offset */ 77 78 /* Endpoint Configuration Status Register */ 79 #define XUSB_EP_CFG_VALID_MASK 0x80000000 /* Endpoint Valid bit */ 80 #define XUSB_EP_CFG_STALL_MASK 0x40000000 /* Endpoint Stall bit */ 81 #define XUSB_EP_CFG_DATA_TOGGLE_MASK 0x08000000 /* Endpoint Data toggle */ 82 83 /* USB device specific global configuration constants.*/ 84 #define XUSB_MAX_ENDPOINTS 8 /* Maximum End Points */ 85 #define XUSB_EP_NUMBER_ZERO 0 /* End point Zero */ 86 /* DPRAM is the source address for DMA transfer */ 87 #define XUSB_DMA_READ_FROM_DPRAM 0x80000000 88 #define XUSB_DMA_DMASR_BUSY 0x80000000 /* DMA busy */ 89 #define XUSB_DMA_DMASR_ERROR 0x40000000 /* DMA Error */ 90 /* 91 * When this bit is set, the DMA buffer ready bit is set by hardware upon 92 * DMA transfer completion. 93 */ 94 #define XUSB_DMA_BRR_CTRL 0x40000000 /* DMA bufready ctrl bit */ 95 /* Phase States */ 96 #define SETUP_PHASE 0x0000 /* Setup Phase */ 97 #define DATA_PHASE 0x0001 /* Data Phase */ 98 #define STATUS_PHASE 0x0002 /* Status Phase */ 99 100 #define EP0_MAX_PACKET 64 /* Endpoint 0 maximum packet length */ 101 #define STATUSBUFF_SIZE 2 /* Buffer size for GET_STATUS command */ 102 #define EPNAME_SIZE 4 /* Buffer size for endpoint name */ 103 104 /* container_of helper macros */ 105 #define to_udc(g) container_of((g), struct xusb_udc, gadget) 106 #define to_xusb_ep(ep) container_of((ep), struct xusb_ep, ep_usb) 107 #define to_xusb_req(req) container_of((req), struct xusb_req, usb_req) 108 109 /** 110 * struct xusb_req - Xilinx USB device request structure 111 * @usb_req: Linux usb request structure 112 * @queue: usb device request queue 113 * @ep: pointer to xusb_endpoint structure 114 */ 115 struct xusb_req { 116 struct usb_request usb_req; 117 struct list_head queue; 118 struct xusb_ep *ep; 119 }; 120 121 /** 122 * struct xusb_ep - USB end point structure. 123 * @ep_usb: usb endpoint instance 124 * @queue: endpoint message queue 125 * @udc: xilinx usb peripheral driver instance pointer 126 * @desc: pointer to the usb endpoint descriptor 127 * @rambase: the endpoint buffer address 128 * @offset: the endpoint register offset value 129 * @name: name of the endpoint 130 * @epnumber: endpoint number 131 * @maxpacket: maximum packet size the endpoint can store 132 * @buffer0count: the size of the packet recieved in the first buffer 133 * @buffer1count: the size of the packet received in the second buffer 134 * @curbufnum: current buffer of endpoint that will be processed next 135 * @buffer0ready: the busy state of first buffer 136 * @buffer1ready: the busy state of second buffer 137 * @is_in: endpoint direction (IN or OUT) 138 * @is_iso: endpoint type(isochronous or non isochronous) 139 */ 140 struct xusb_ep { 141 struct usb_ep ep_usb; 142 struct list_head queue; 143 struct xusb_udc *udc; 144 const struct usb_endpoint_descriptor *desc; 145 u32 rambase; 146 u32 offset; 147 char name[4]; 148 u16 epnumber; 149 u16 maxpacket; 150 u16 buffer0count; 151 u16 buffer1count; 152 u8 curbufnum; 153 bool buffer0ready; 154 bool buffer1ready; 155 bool is_in; 156 bool is_iso; 157 }; 158 159 /** 160 * struct xusb_udc - USB peripheral driver structure 161 * @gadget: USB gadget driver instance 162 * @ep: an array of endpoint structures 163 * @driver: pointer to the usb gadget driver instance 164 * @setup: usb_ctrlrequest structure for control requests 165 * @req: pointer to dummy request for get status command 166 * @dev: pointer to device structure in gadget 167 * @usb_state: device in suspended state or not 168 * @remote_wkp: remote wakeup enabled by host 169 * @setupseqtx: tx status 170 * @setupseqrx: rx status 171 * @addr: the usb device base address 172 * @lock: instance of spinlock 173 * @dma_enabled: flag indicating whether the dma is included in the system 174 * @read_fn: function pointer to read device registers 175 * @write_fn: function pointer to write to device registers 176 */ 177 struct xusb_udc { 178 struct usb_gadget gadget; 179 struct xusb_ep ep[8]; 180 struct usb_gadget_driver *driver; 181 struct usb_ctrlrequest setup; 182 struct xusb_req *req; 183 struct device *dev; 184 u32 usb_state; 185 u32 remote_wkp; 186 u32 setupseqtx; 187 u32 setupseqrx; 188 void __iomem *addr; 189 spinlock_t lock; 190 bool dma_enabled; 191 192 unsigned int (*read_fn)(void __iomem *); 193 void (*write_fn)(void __iomem *, u32, u32); 194 }; 195 196 /* Endpoint buffer start addresses in the core */ 197 static u32 rambase[8] = { 0x22, 0x1000, 0x1100, 0x1200, 0x1300, 0x1400, 0x1500, 198 0x1600 }; 199 200 static const char driver_name[] = "xilinx-udc"; 201 static const char ep0name[] = "ep0"; 202 203 /* Control endpoint configuration.*/ 204 static const struct usb_endpoint_descriptor config_bulk_out_desc = { 205 .bLength = USB_DT_ENDPOINT_SIZE, 206 .bDescriptorType = USB_DT_ENDPOINT, 207 .bEndpointAddress = USB_DIR_OUT, 208 .bmAttributes = USB_ENDPOINT_XFER_BULK, 209 .wMaxPacketSize = cpu_to_le16(EP0_MAX_PACKET), 210 }; 211 212 /** 213 * xudc_write32 - little endian write to device registers 214 * @addr: base addr of device registers 215 * @offset: register offset 216 * @val: data to be written 217 */ 218 static void xudc_write32(void __iomem *addr, u32 offset, u32 val) 219 { 220 iowrite32(val, addr + offset); 221 } 222 223 /** 224 * xudc_read32 - little endian read from device registers 225 * @addr: addr of device register 226 * Return: value at addr 227 */ 228 static unsigned int xudc_read32(void __iomem *addr) 229 { 230 return ioread32(addr); 231 } 232 233 /** 234 * xudc_write32_be - big endian write to device registers 235 * @addr: base addr of device registers 236 * @offset: register offset 237 * @val: data to be written 238 */ 239 static void xudc_write32_be(void __iomem *addr, u32 offset, u32 val) 240 { 241 iowrite32be(val, addr + offset); 242 } 243 244 /** 245 * xudc_read32_be - big endian read from device registers 246 * @addr: addr of device register 247 * Return: value at addr 248 */ 249 static unsigned int xudc_read32_be(void __iomem *addr) 250 { 251 return ioread32be(addr); 252 } 253 254 /** 255 * xudc_wrstatus - Sets up the usb device status stages. 256 * @udc: pointer to the usb device controller structure. 257 */ 258 static void xudc_wrstatus(struct xusb_udc *udc) 259 { 260 struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO]; 261 u32 epcfgreg; 262 263 epcfgreg = udc->read_fn(udc->addr + ep0->offset)| 264 XUSB_EP_CFG_DATA_TOGGLE_MASK; 265 udc->write_fn(udc->addr, ep0->offset, epcfgreg); 266 udc->write_fn(udc->addr, ep0->offset + XUSB_EP_BUF0COUNT_OFFSET, 0); 267 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); 268 } 269 270 /** 271 * xudc_epconfig - Configures the given endpoint. 272 * @ep: pointer to the usb device endpoint structure. 273 * @udc: pointer to the usb peripheral controller structure. 274 * 275 * This function configures a specific endpoint with the given configuration 276 * data. 277 */ 278 static void xudc_epconfig(struct xusb_ep *ep, struct xusb_udc *udc) 279 { 280 u32 epcfgreg; 281 282 /* 283 * Configure the end point direction, type, Max Packet Size and the 284 * EP buffer location. 285 */ 286 epcfgreg = ((ep->is_in << 29) | (ep->is_iso << 28) | 287 (ep->ep_usb.maxpacket << 15) | (ep->rambase)); 288 udc->write_fn(udc->addr, ep->offset, epcfgreg); 289 290 /* Set the Buffer count and the Buffer ready bits.*/ 291 udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF0COUNT_OFFSET, 292 ep->buffer0count); 293 udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF1COUNT_OFFSET, 294 ep->buffer1count); 295 if (ep->buffer0ready) 296 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 297 1 << ep->epnumber); 298 if (ep->buffer1ready) 299 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 300 1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT)); 301 } 302 303 /** 304 * xudc_start_dma - Starts DMA transfer. 305 * @ep: pointer to the usb device endpoint structure. 306 * @src: DMA source address. 307 * @dst: DMA destination address. 308 * @length: number of bytes to transfer. 309 * 310 * Return: 0 on success, error code on failure 311 * 312 * This function starts DMA transfer by writing to DMA source, 313 * destination and lenth registers. 314 */ 315 static int xudc_start_dma(struct xusb_ep *ep, dma_addr_t src, 316 dma_addr_t dst, u32 length) 317 { 318 struct xusb_udc *udc = ep->udc; 319 int rc = 0; 320 u32 timeout = 500; 321 u32 reg; 322 323 /* 324 * Set the addresses in the DMA source and 325 * destination registers and then set the length 326 * into the DMA length register. 327 */ 328 udc->write_fn(udc->addr, XUSB_DMA_DSAR_ADDR_OFFSET, src); 329 udc->write_fn(udc->addr, XUSB_DMA_DDAR_ADDR_OFFSET, dst); 330 udc->write_fn(udc->addr, XUSB_DMA_LENGTH_OFFSET, length); 331 332 /* 333 * Wait till DMA transaction is complete and 334 * check whether the DMA transaction was 335 * successful. 336 */ 337 do { 338 reg = udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET); 339 if (!(reg & XUSB_DMA_DMASR_BUSY)) 340 break; 341 342 /* 343 * We can't sleep here, because it's also called from 344 * interrupt context. 345 */ 346 timeout--; 347 if (!timeout) { 348 dev_err(udc->dev, "DMA timeout\n"); 349 return -ETIMEDOUT; 350 } 351 udelay(1); 352 } while (1); 353 354 if ((udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET) & 355 XUSB_DMA_DMASR_ERROR) == XUSB_DMA_DMASR_ERROR){ 356 dev_err(udc->dev, "DMA Error\n"); 357 rc = -EINVAL; 358 } 359 360 return rc; 361 } 362 363 /** 364 * xudc_dma_send - Sends IN data using DMA. 365 * @ep: pointer to the usb device endpoint structure. 366 * @req: pointer to the usb request structure. 367 * @buffer: pointer to data to be sent. 368 * @length: number of bytes to send. 369 * 370 * Return: 0 on success, -EAGAIN if no buffer is free and error 371 * code on failure. 372 * 373 * This function sends data using DMA. 374 */ 375 static int xudc_dma_send(struct xusb_ep *ep, struct xusb_req *req, 376 u8 *buffer, u32 length) 377 { 378 u32 *eprambase; 379 dma_addr_t src; 380 dma_addr_t dst; 381 struct xusb_udc *udc = ep->udc; 382 383 src = req->usb_req.dma + req->usb_req.actual; 384 if (req->usb_req.length) 385 dma_sync_single_for_device(udc->dev, src, 386 length, DMA_TO_DEVICE); 387 if (!ep->curbufnum && !ep->buffer0ready) { 388 /* Get the Buffer address and copy the transmit data.*/ 389 eprambase = (u32 __force *)(udc->addr + ep->rambase); 390 dst = virt_to_phys(eprambase); 391 udc->write_fn(udc->addr, ep->offset + 392 XUSB_EP_BUF0COUNT_OFFSET, length); 393 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET, 394 XUSB_DMA_BRR_CTRL | (1 << ep->epnumber)); 395 ep->buffer0ready = 1; 396 ep->curbufnum = 1; 397 } else if (ep->curbufnum && !ep->buffer1ready) { 398 /* Get the Buffer address and copy the transmit data.*/ 399 eprambase = (u32 __force *)(udc->addr + ep->rambase + 400 ep->ep_usb.maxpacket); 401 dst = virt_to_phys(eprambase); 402 udc->write_fn(udc->addr, ep->offset + 403 XUSB_EP_BUF1COUNT_OFFSET, length); 404 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET, 405 XUSB_DMA_BRR_CTRL | (1 << (ep->epnumber + 406 XUSB_STATUS_EP_BUFF2_SHIFT))); 407 ep->buffer1ready = 1; 408 ep->curbufnum = 0; 409 } else { 410 /* None of ping pong buffers are ready currently .*/ 411 return -EAGAIN; 412 } 413 414 return xudc_start_dma(ep, src, dst, length); 415 } 416 417 /** 418 * xudc_dma_receive - Receives OUT data using DMA. 419 * @ep: pointer to the usb device endpoint structure. 420 * @req: pointer to the usb request structure. 421 * @buffer: pointer to storage buffer of received data. 422 * @length: number of bytes to receive. 423 * 424 * Return: 0 on success, -EAGAIN if no buffer is free and error 425 * code on failure. 426 * 427 * This function receives data using DMA. 428 */ 429 static int xudc_dma_receive(struct xusb_ep *ep, struct xusb_req *req, 430 u8 *buffer, u32 length) 431 { 432 u32 *eprambase; 433 dma_addr_t src; 434 dma_addr_t dst; 435 struct xusb_udc *udc = ep->udc; 436 437 dst = req->usb_req.dma + req->usb_req.actual; 438 if (!ep->curbufnum && !ep->buffer0ready) { 439 /* Get the Buffer address and copy the transmit data */ 440 eprambase = (u32 __force *)(udc->addr + ep->rambase); 441 src = virt_to_phys(eprambase); 442 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET, 443 XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM | 444 (1 << ep->epnumber)); 445 ep->buffer0ready = 1; 446 ep->curbufnum = 1; 447 } else if (ep->curbufnum && !ep->buffer1ready) { 448 /* Get the Buffer address and copy the transmit data */ 449 eprambase = (u32 __force *)(udc->addr + 450 ep->rambase + ep->ep_usb.maxpacket); 451 src = virt_to_phys(eprambase); 452 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET, 453 XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM | 454 (1 << (ep->epnumber + 455 XUSB_STATUS_EP_BUFF2_SHIFT))); 456 ep->buffer1ready = 1; 457 ep->curbufnum = 0; 458 } else { 459 /* None of the ping-pong buffers are ready currently */ 460 return -EAGAIN; 461 } 462 463 return xudc_start_dma(ep, src, dst, length); 464 } 465 466 /** 467 * xudc_eptxrx - Transmits or receives data to or from an endpoint. 468 * @ep: pointer to the usb endpoint configuration structure. 469 * @req: pointer to the usb request structure. 470 * @bufferptr: pointer to buffer containing the data to be sent. 471 * @bufferlen: The number of data bytes to be sent. 472 * 473 * Return: 0 on success, -EAGAIN if no buffer is free. 474 * 475 * This function copies the transmit/receive data to/from the end point buffer 476 * and enables the buffer for transmission/reception. 477 */ 478 static int xudc_eptxrx(struct xusb_ep *ep, struct xusb_req *req, 479 u8 *bufferptr, u32 bufferlen) 480 { 481 u32 *eprambase; 482 u32 bytestosend; 483 int rc = 0; 484 struct xusb_udc *udc = ep->udc; 485 486 bytestosend = bufferlen; 487 if (udc->dma_enabled) { 488 if (ep->is_in) 489 rc = xudc_dma_send(ep, req, bufferptr, bufferlen); 490 else 491 rc = xudc_dma_receive(ep, req, bufferptr, bufferlen); 492 return rc; 493 } 494 /* Put the transmit buffer into the correct ping-pong buffer.*/ 495 if (!ep->curbufnum && !ep->buffer0ready) { 496 /* Get the Buffer address and copy the transmit data.*/ 497 eprambase = (u32 __force *)(udc->addr + ep->rambase); 498 if (ep->is_in) { 499 memcpy(eprambase, bufferptr, bytestosend); 500 udc->write_fn(udc->addr, ep->offset + 501 XUSB_EP_BUF0COUNT_OFFSET, bufferlen); 502 } else { 503 memcpy(bufferptr, eprambase, bytestosend); 504 } 505 /* 506 * Enable the buffer for transmission. 507 */ 508 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 509 1 << ep->epnumber); 510 ep->buffer0ready = 1; 511 ep->curbufnum = 1; 512 } else if (ep->curbufnum && !ep->buffer1ready) { 513 /* Get the Buffer address and copy the transmit data.*/ 514 eprambase = (u32 __force *)(udc->addr + ep->rambase + 515 ep->ep_usb.maxpacket); 516 if (ep->is_in) { 517 memcpy(eprambase, bufferptr, bytestosend); 518 udc->write_fn(udc->addr, ep->offset + 519 XUSB_EP_BUF1COUNT_OFFSET, bufferlen); 520 } else { 521 memcpy(bufferptr, eprambase, bytestosend); 522 } 523 /* 524 * Enable the buffer for transmission. 525 */ 526 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 527 1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT)); 528 ep->buffer1ready = 1; 529 ep->curbufnum = 0; 530 } else { 531 /* None of the ping-pong buffers are ready currently */ 532 return -EAGAIN; 533 } 534 return rc; 535 } 536 537 /** 538 * xudc_done - Exeutes the endpoint data transfer completion tasks. 539 * @ep: pointer to the usb device endpoint structure. 540 * @req: pointer to the usb request structure. 541 * @status: Status of the data transfer. 542 * 543 * Deletes the message from the queue and updates data transfer completion 544 * status. 545 */ 546 static void xudc_done(struct xusb_ep *ep, struct xusb_req *req, int status) 547 { 548 struct xusb_udc *udc = ep->udc; 549 550 list_del_init(&req->queue); 551 552 if (req->usb_req.status == -EINPROGRESS) 553 req->usb_req.status = status; 554 else 555 status = req->usb_req.status; 556 557 if (status && status != -ESHUTDOWN) 558 dev_dbg(udc->dev, "%s done %p, status %d\n", 559 ep->ep_usb.name, req, status); 560 /* unmap request if DMA is present*/ 561 if (udc->dma_enabled && ep->epnumber && req->usb_req.length) 562 usb_gadget_unmap_request(&udc->gadget, &req->usb_req, 563 ep->is_in); 564 565 if (req->usb_req.complete) { 566 spin_unlock(&udc->lock); 567 req->usb_req.complete(&ep->ep_usb, &req->usb_req); 568 spin_lock(&udc->lock); 569 } 570 } 571 572 /** 573 * xudc_read_fifo - Reads the data from the given endpoint buffer. 574 * @ep: pointer to the usb device endpoint structure. 575 * @req: pointer to the usb request structure. 576 * 577 * Return: 0 if request is completed and -EAGAIN if not completed. 578 * 579 * Pulls OUT packet data from the endpoint buffer. 580 */ 581 static int xudc_read_fifo(struct xusb_ep *ep, struct xusb_req *req) 582 { 583 u8 *buf; 584 u32 is_short, count, bufferspace; 585 u8 bufoffset; 586 u8 two_pkts = 0; 587 int ret; 588 int retval = -EAGAIN; 589 struct xusb_udc *udc = ep->udc; 590 591 if (ep->buffer0ready && ep->buffer1ready) { 592 dev_dbg(udc->dev, "Packet NOT ready!\n"); 593 return retval; 594 } 595 top: 596 if (ep->curbufnum) 597 bufoffset = XUSB_EP_BUF1COUNT_OFFSET; 598 else 599 bufoffset = XUSB_EP_BUF0COUNT_OFFSET; 600 601 count = udc->read_fn(udc->addr + ep->offset + bufoffset); 602 603 if (!ep->buffer0ready && !ep->buffer1ready) 604 two_pkts = 1; 605 606 buf = req->usb_req.buf + req->usb_req.actual; 607 prefetchw(buf); 608 bufferspace = req->usb_req.length - req->usb_req.actual; 609 is_short = count < ep->ep_usb.maxpacket; 610 611 if (unlikely(!bufferspace)) { 612 /* 613 * This happens when the driver's buffer 614 * is smaller than what the host sent. 615 * discard the extra data. 616 */ 617 if (req->usb_req.status != -EOVERFLOW) 618 dev_dbg(udc->dev, "%s overflow %d\n", 619 ep->ep_usb.name, count); 620 req->usb_req.status = -EOVERFLOW; 621 xudc_done(ep, req, -EOVERFLOW); 622 return 0; 623 } 624 625 ret = xudc_eptxrx(ep, req, buf, count); 626 switch (ret) { 627 case 0: 628 req->usb_req.actual += min(count, bufferspace); 629 dev_dbg(udc->dev, "read %s, %d bytes%s req %p %d/%d\n", 630 ep->ep_usb.name, count, is_short ? "/S" : "", req, 631 req->usb_req.actual, req->usb_req.length); 632 bufferspace -= count; 633 /* Completion */ 634 if ((req->usb_req.actual == req->usb_req.length) || is_short) { 635 if (udc->dma_enabled && req->usb_req.length) 636 dma_sync_single_for_cpu(udc->dev, 637 req->usb_req.dma, 638 req->usb_req.actual, 639 DMA_FROM_DEVICE); 640 xudc_done(ep, req, 0); 641 return 0; 642 } 643 if (two_pkts) { 644 two_pkts = 0; 645 goto top; 646 } 647 break; 648 case -EAGAIN: 649 dev_dbg(udc->dev, "receive busy\n"); 650 break; 651 case -EINVAL: 652 case -ETIMEDOUT: 653 /* DMA error, dequeue the request */ 654 xudc_done(ep, req, -ECONNRESET); 655 retval = 0; 656 break; 657 } 658 659 return retval; 660 } 661 662 /** 663 * xudc_write_fifo - Writes data into the given endpoint buffer. 664 * @ep: pointer to the usb device endpoint structure. 665 * @req: pointer to the usb request structure. 666 * 667 * Return: 0 if request is completed and -EAGAIN if not completed. 668 * 669 * Loads endpoint buffer for an IN packet. 670 */ 671 static int xudc_write_fifo(struct xusb_ep *ep, struct xusb_req *req) 672 { 673 u32 max; 674 u32 length; 675 int ret; 676 int retval = -EAGAIN; 677 struct xusb_udc *udc = ep->udc; 678 int is_last, is_short = 0; 679 u8 *buf; 680 681 max = le16_to_cpu(ep->desc->wMaxPacketSize); 682 buf = req->usb_req.buf + req->usb_req.actual; 683 prefetch(buf); 684 length = req->usb_req.length - req->usb_req.actual; 685 length = min(length, max); 686 687 ret = xudc_eptxrx(ep, req, buf, length); 688 switch (ret) { 689 case 0: 690 req->usb_req.actual += length; 691 if (unlikely(length != max)) { 692 is_last = is_short = 1; 693 } else { 694 if (likely(req->usb_req.length != 695 req->usb_req.actual) || req->usb_req.zero) 696 is_last = 0; 697 else 698 is_last = 1; 699 } 700 dev_dbg(udc->dev, "%s: wrote %s %d bytes%s%s %d left %p\n", 701 __func__, ep->ep_usb.name, length, is_last ? "/L" : "", 702 is_short ? "/S" : "", 703 req->usb_req.length - req->usb_req.actual, req); 704 /* completion */ 705 if (is_last) { 706 xudc_done(ep, req, 0); 707 retval = 0; 708 } 709 break; 710 case -EAGAIN: 711 dev_dbg(udc->dev, "Send busy\n"); 712 break; 713 case -EINVAL: 714 case -ETIMEDOUT: 715 /* DMA error, dequeue the request */ 716 xudc_done(ep, req, -ECONNRESET); 717 retval = 0; 718 break; 719 } 720 721 return retval; 722 } 723 724 /** 725 * xudc_nuke - Cleans up the data transfer message list. 726 * @ep: pointer to the usb device endpoint structure. 727 * @status: Status of the data transfer. 728 */ 729 static void xudc_nuke(struct xusb_ep *ep, int status) 730 { 731 struct xusb_req *req; 732 733 while (!list_empty(&ep->queue)) { 734 req = list_first_entry(&ep->queue, struct xusb_req, queue); 735 xudc_done(ep, req, status); 736 } 737 } 738 739 /** 740 * xudc_ep_set_halt - Stalls/unstalls the given endpoint. 741 * @_ep: pointer to the usb device endpoint structure. 742 * @value: value to indicate stall/unstall. 743 * 744 * Return: 0 for success and error value on failure 745 */ 746 static int xudc_ep_set_halt(struct usb_ep *_ep, int value) 747 { 748 struct xusb_ep *ep = to_xusb_ep(_ep); 749 struct xusb_udc *udc; 750 unsigned long flags; 751 u32 epcfgreg; 752 753 if (!_ep || (!ep->desc && ep->epnumber)) { 754 pr_debug("%s: bad ep or descriptor\n", __func__); 755 return -EINVAL; 756 } 757 udc = ep->udc; 758 759 if (ep->is_in && (!list_empty(&ep->queue)) && value) { 760 dev_dbg(udc->dev, "requests pending can't halt\n"); 761 return -EAGAIN; 762 } 763 764 if (ep->buffer0ready || ep->buffer1ready) { 765 dev_dbg(udc->dev, "HW buffers busy can't halt\n"); 766 return -EAGAIN; 767 } 768 769 spin_lock_irqsave(&udc->lock, flags); 770 771 if (value) { 772 /* Stall the device.*/ 773 epcfgreg = udc->read_fn(udc->addr + ep->offset); 774 epcfgreg |= XUSB_EP_CFG_STALL_MASK; 775 udc->write_fn(udc->addr, ep->offset, epcfgreg); 776 } else { 777 /* Unstall the device.*/ 778 epcfgreg = udc->read_fn(udc->addr + ep->offset); 779 epcfgreg &= ~XUSB_EP_CFG_STALL_MASK; 780 udc->write_fn(udc->addr, ep->offset, epcfgreg); 781 if (ep->epnumber) { 782 /* Reset the toggle bit.*/ 783 epcfgreg = udc->read_fn(ep->udc->addr + ep->offset); 784 epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK; 785 udc->write_fn(udc->addr, ep->offset, epcfgreg); 786 } 787 } 788 789 spin_unlock_irqrestore(&udc->lock, flags); 790 return 0; 791 } 792 793 /** 794 * xudc_ep_enable - Enables the given endpoint. 795 * @ep: pointer to the xusb endpoint structure. 796 * @desc: pointer to usb endpoint descriptor. 797 * 798 * Return: 0 for success and error value on failure 799 */ 800 static int __xudc_ep_enable(struct xusb_ep *ep, 801 const struct usb_endpoint_descriptor *desc) 802 { 803 struct xusb_udc *udc = ep->udc; 804 u32 tmp; 805 u32 epcfg; 806 u32 ier; 807 u16 maxpacket; 808 809 ep->is_in = ((desc->bEndpointAddress & USB_DIR_IN) != 0); 810 /* Bit 3...0:endpoint number */ 811 ep->epnumber = (desc->bEndpointAddress & 0x0f); 812 ep->desc = desc; 813 ep->ep_usb.desc = desc; 814 tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 815 ep->ep_usb.maxpacket = maxpacket = le16_to_cpu(desc->wMaxPacketSize); 816 817 switch (tmp) { 818 case USB_ENDPOINT_XFER_CONTROL: 819 dev_dbg(udc->dev, "only one control endpoint\n"); 820 /* NON- ISO */ 821 ep->is_iso = 0; 822 return -EINVAL; 823 case USB_ENDPOINT_XFER_INT: 824 /* NON- ISO */ 825 ep->is_iso = 0; 826 if (maxpacket > 64) { 827 dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket); 828 return -EINVAL; 829 } 830 break; 831 case USB_ENDPOINT_XFER_BULK: 832 /* NON- ISO */ 833 ep->is_iso = 0; 834 if (!(is_power_of_2(maxpacket) && maxpacket >= 8 && 835 maxpacket <= 512)) { 836 dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket); 837 return -EINVAL; 838 } 839 break; 840 case USB_ENDPOINT_XFER_ISOC: 841 /* ISO */ 842 ep->is_iso = 1; 843 break; 844 } 845 846 ep->buffer0ready = 0; 847 ep->buffer1ready = 0; 848 ep->curbufnum = 0; 849 ep->rambase = rambase[ep->epnumber]; 850 xudc_epconfig(ep, udc); 851 852 dev_dbg(udc->dev, "Enable Endpoint %d max pkt is %d\n", 853 ep->epnumber, maxpacket); 854 855 /* Enable the End point.*/ 856 epcfg = udc->read_fn(udc->addr + ep->offset); 857 epcfg |= XUSB_EP_CFG_VALID_MASK; 858 udc->write_fn(udc->addr, ep->offset, epcfg); 859 if (ep->epnumber) 860 ep->rambase <<= 2; 861 862 /* Enable buffer completion interrupts for endpoint */ 863 ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 864 ier |= (XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK << ep->epnumber); 865 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier); 866 867 /* for OUT endpoint set buffers ready to receive */ 868 if (ep->epnumber && !ep->is_in) { 869 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 870 1 << ep->epnumber); 871 ep->buffer0ready = 1; 872 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 873 (1 << (ep->epnumber + 874 XUSB_STATUS_EP_BUFF2_SHIFT))); 875 ep->buffer1ready = 1; 876 } 877 878 return 0; 879 } 880 881 /** 882 * xudc_ep_enable - Enables the given endpoint. 883 * @_ep: pointer to the usb endpoint structure. 884 * @desc: pointer to usb endpoint descriptor. 885 * 886 * Return: 0 for success and error value on failure 887 */ 888 static int xudc_ep_enable(struct usb_ep *_ep, 889 const struct usb_endpoint_descriptor *desc) 890 { 891 struct xusb_ep *ep; 892 struct xusb_udc *udc; 893 unsigned long flags; 894 int ret; 895 896 if (!_ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT) { 897 pr_debug("%s: bad ep or descriptor\n", __func__); 898 return -EINVAL; 899 } 900 901 ep = to_xusb_ep(_ep); 902 udc = ep->udc; 903 904 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) { 905 dev_dbg(udc->dev, "bogus device state\n"); 906 return -ESHUTDOWN; 907 } 908 909 spin_lock_irqsave(&udc->lock, flags); 910 ret = __xudc_ep_enable(ep, desc); 911 spin_unlock_irqrestore(&udc->lock, flags); 912 913 return ret; 914 } 915 916 /** 917 * xudc_ep_disable - Disables the given endpoint. 918 * @_ep: pointer to the usb endpoint structure. 919 * 920 * Return: 0 for success and error value on failure 921 */ 922 static int xudc_ep_disable(struct usb_ep *_ep) 923 { 924 struct xusb_ep *ep; 925 unsigned long flags; 926 u32 epcfg; 927 struct xusb_udc *udc; 928 929 if (!_ep) { 930 pr_debug("%s: invalid ep\n", __func__); 931 return -EINVAL; 932 } 933 934 ep = to_xusb_ep(_ep); 935 udc = ep->udc; 936 937 spin_lock_irqsave(&udc->lock, flags); 938 939 xudc_nuke(ep, -ESHUTDOWN); 940 941 /* Restore the endpoint's pristine config */ 942 ep->desc = NULL; 943 ep->ep_usb.desc = NULL; 944 945 dev_dbg(udc->dev, "USB Ep %d disable\n ", ep->epnumber); 946 /* Disable the endpoint.*/ 947 epcfg = udc->read_fn(udc->addr + ep->offset); 948 epcfg &= ~XUSB_EP_CFG_VALID_MASK; 949 udc->write_fn(udc->addr, ep->offset, epcfg); 950 951 spin_unlock_irqrestore(&udc->lock, flags); 952 return 0; 953 } 954 955 /** 956 * xudc_ep_alloc_request - Initializes the request queue. 957 * @_ep: pointer to the usb endpoint structure. 958 * @gfp_flags: Flags related to the request call. 959 * 960 * Return: pointer to request structure on success and a NULL on failure. 961 */ 962 static struct usb_request *xudc_ep_alloc_request(struct usb_ep *_ep, 963 gfp_t gfp_flags) 964 { 965 struct xusb_ep *ep = to_xusb_ep(_ep); 966 struct xusb_req *req; 967 968 req = kzalloc(sizeof(*req), gfp_flags); 969 if (!req) 970 return NULL; 971 972 req->ep = ep; 973 INIT_LIST_HEAD(&req->queue); 974 return &req->usb_req; 975 } 976 977 /** 978 * xudc_free_request - Releases the request from queue. 979 * @_ep: pointer to the usb device endpoint structure. 980 * @_req: pointer to the usb request structure. 981 */ 982 static void xudc_free_request(struct usb_ep *_ep, struct usb_request *_req) 983 { 984 struct xusb_req *req = to_xusb_req(_req); 985 986 kfree(req); 987 } 988 989 /** 990 * xudc_ep0_queue - Adds the request to endpoint 0 queue. 991 * @ep0: pointer to the xusb endpoint 0 structure. 992 * @req: pointer to the xusb request structure. 993 * 994 * Return: 0 for success and error value on failure 995 */ 996 static int __xudc_ep0_queue(struct xusb_ep *ep0, struct xusb_req *req) 997 { 998 struct xusb_udc *udc = ep0->udc; 999 u32 length; 1000 u8 *corebuf; 1001 1002 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) { 1003 dev_dbg(udc->dev, "%s, bogus device state\n", __func__); 1004 return -EINVAL; 1005 } 1006 if (!list_empty(&ep0->queue)) { 1007 dev_dbg(udc->dev, "%s:ep0 busy\n", __func__); 1008 return -EBUSY; 1009 } 1010 1011 req->usb_req.status = -EINPROGRESS; 1012 req->usb_req.actual = 0; 1013 1014 list_add_tail(&req->queue, &ep0->queue); 1015 1016 if (udc->setup.bRequestType & USB_DIR_IN) { 1017 prefetch(req->usb_req.buf); 1018 length = req->usb_req.length; 1019 corebuf = (void __force *) ((ep0->rambase << 2) + 1020 udc->addr); 1021 length = req->usb_req.actual = min_t(u32, length, 1022 EP0_MAX_PACKET); 1023 memcpy(corebuf, req->usb_req.buf, length); 1024 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, length); 1025 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); 1026 } else { 1027 if (udc->setup.wLength) { 1028 /* Enable EP0 buffer to receive data */ 1029 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0); 1030 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); 1031 } else { 1032 xudc_wrstatus(udc); 1033 } 1034 } 1035 1036 return 0; 1037 } 1038 1039 /** 1040 * xudc_ep0_queue - Adds the request to endpoint 0 queue. 1041 * @_ep: pointer to the usb endpoint 0 structure. 1042 * @_req: pointer to the usb request structure. 1043 * @gfp_flags: Flags related to the request call. 1044 * 1045 * Return: 0 for success and error value on failure 1046 */ 1047 static int xudc_ep0_queue(struct usb_ep *_ep, struct usb_request *_req, 1048 gfp_t gfp_flags) 1049 { 1050 struct xusb_req *req = to_xusb_req(_req); 1051 struct xusb_ep *ep0 = to_xusb_ep(_ep); 1052 struct xusb_udc *udc = ep0->udc; 1053 unsigned long flags; 1054 int ret; 1055 1056 spin_lock_irqsave(&udc->lock, flags); 1057 ret = __xudc_ep0_queue(ep0, req); 1058 spin_unlock_irqrestore(&udc->lock, flags); 1059 1060 return ret; 1061 } 1062 1063 /** 1064 * xudc_ep_queue - Adds the request to endpoint queue. 1065 * @_ep: pointer to the usb endpoint structure. 1066 * @_req: pointer to the usb request structure. 1067 * @gfp_flags: Flags related to the request call. 1068 * 1069 * Return: 0 for success and error value on failure 1070 */ 1071 static int xudc_ep_queue(struct usb_ep *_ep, struct usb_request *_req, 1072 gfp_t gfp_flags) 1073 { 1074 struct xusb_req *req = to_xusb_req(_req); 1075 struct xusb_ep *ep = to_xusb_ep(_ep); 1076 struct xusb_udc *udc = ep->udc; 1077 int ret; 1078 unsigned long flags; 1079 1080 if (!ep->desc) { 1081 dev_dbg(udc->dev, "%s: queuing request to disabled %s\n", 1082 __func__, ep->name); 1083 return -ESHUTDOWN; 1084 } 1085 1086 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) { 1087 dev_dbg(udc->dev, "%s, bogus device state\n", __func__); 1088 return -EINVAL; 1089 } 1090 1091 spin_lock_irqsave(&udc->lock, flags); 1092 1093 _req->status = -EINPROGRESS; 1094 _req->actual = 0; 1095 1096 if (udc->dma_enabled) { 1097 ret = usb_gadget_map_request(&udc->gadget, &req->usb_req, 1098 ep->is_in); 1099 if (ret) { 1100 dev_dbg(udc->dev, "gadget_map failed ep%d\n", 1101 ep->epnumber); 1102 spin_unlock_irqrestore(&udc->lock, flags); 1103 return -EAGAIN; 1104 } 1105 } 1106 1107 if (list_empty(&ep->queue)) { 1108 if (ep->is_in) { 1109 dev_dbg(udc->dev, "xudc_write_fifo from ep_queue\n"); 1110 if (!xudc_write_fifo(ep, req)) 1111 req = NULL; 1112 } else { 1113 dev_dbg(udc->dev, "xudc_read_fifo from ep_queue\n"); 1114 if (!xudc_read_fifo(ep, req)) 1115 req = NULL; 1116 } 1117 } 1118 1119 if (req != NULL) 1120 list_add_tail(&req->queue, &ep->queue); 1121 1122 spin_unlock_irqrestore(&udc->lock, flags); 1123 return 0; 1124 } 1125 1126 /** 1127 * xudc_ep_dequeue - Removes the request from the queue. 1128 * @_ep: pointer to the usb device endpoint structure. 1129 * @_req: pointer to the usb request structure. 1130 * 1131 * Return: 0 for success and error value on failure 1132 */ 1133 static int xudc_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req) 1134 { 1135 struct xusb_ep *ep = to_xusb_ep(_ep); 1136 struct xusb_req *req = to_xusb_req(_req); 1137 struct xusb_udc *udc = ep->udc; 1138 unsigned long flags; 1139 1140 spin_lock_irqsave(&udc->lock, flags); 1141 /* Make sure it's actually queued on this endpoint */ 1142 list_for_each_entry(req, &ep->queue, queue) { 1143 if (&req->usb_req == _req) 1144 break; 1145 } 1146 if (&req->usb_req != _req) { 1147 spin_unlock_irqrestore(&udc->lock, flags); 1148 return -EINVAL; 1149 } 1150 xudc_done(ep, req, -ECONNRESET); 1151 spin_unlock_irqrestore(&udc->lock, flags); 1152 1153 return 0; 1154 } 1155 1156 /** 1157 * xudc_ep0_enable - Enables the given endpoint. 1158 * @ep: pointer to the usb endpoint structure. 1159 * @desc: pointer to usb endpoint descriptor. 1160 * 1161 * Return: error always. 1162 * 1163 * endpoint 0 enable should not be called by gadget layer. 1164 */ 1165 static int xudc_ep0_enable(struct usb_ep *ep, 1166 const struct usb_endpoint_descriptor *desc) 1167 { 1168 return -EINVAL; 1169 } 1170 1171 /** 1172 * xudc_ep0_disable - Disables the given endpoint. 1173 * @ep: pointer to the usb endpoint structure. 1174 * 1175 * Return: error always. 1176 * 1177 * endpoint 0 disable should not be called by gadget layer. 1178 */ 1179 static int xudc_ep0_disable(struct usb_ep *ep) 1180 { 1181 return -EINVAL; 1182 } 1183 1184 static const struct usb_ep_ops xusb_ep0_ops = { 1185 .enable = xudc_ep0_enable, 1186 .disable = xudc_ep0_disable, 1187 .alloc_request = xudc_ep_alloc_request, 1188 .free_request = xudc_free_request, 1189 .queue = xudc_ep0_queue, 1190 .dequeue = xudc_ep_dequeue, 1191 .set_halt = xudc_ep_set_halt, 1192 }; 1193 1194 static const struct usb_ep_ops xusb_ep_ops = { 1195 .enable = xudc_ep_enable, 1196 .disable = xudc_ep_disable, 1197 .alloc_request = xudc_ep_alloc_request, 1198 .free_request = xudc_free_request, 1199 .queue = xudc_ep_queue, 1200 .dequeue = xudc_ep_dequeue, 1201 .set_halt = xudc_ep_set_halt, 1202 }; 1203 1204 /** 1205 * xudc_get_frame - Reads the current usb frame number. 1206 * @gadget: pointer to the usb gadget structure. 1207 * 1208 * Return: current frame number for success and error value on failure. 1209 */ 1210 static int xudc_get_frame(struct usb_gadget *gadget) 1211 { 1212 struct xusb_udc *udc; 1213 int frame; 1214 1215 if (!gadget) 1216 return -ENODEV; 1217 1218 udc = to_udc(gadget); 1219 frame = udc->read_fn(udc->addr + XUSB_FRAMENUM_OFFSET); 1220 return frame; 1221 } 1222 1223 /** 1224 * xudc_wakeup - Send remote wakeup signal to host 1225 * @gadget: pointer to the usb gadget structure. 1226 * 1227 * Return: 0 on success and error on failure 1228 */ 1229 static int xudc_wakeup(struct usb_gadget *gadget) 1230 { 1231 struct xusb_udc *udc = to_udc(gadget); 1232 u32 crtlreg; 1233 int status = -EINVAL; 1234 unsigned long flags; 1235 1236 spin_lock_irqsave(&udc->lock, flags); 1237 1238 /* Remote wake up not enabled by host */ 1239 if (!udc->remote_wkp) 1240 goto done; 1241 1242 crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET); 1243 crtlreg |= XUSB_CONTROL_USB_RMTWAKE_MASK; 1244 /* set remote wake up bit */ 1245 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg); 1246 /* 1247 * wait for a while and reset remote wake up bit since this bit 1248 * is not cleared by HW after sending remote wakeup to host. 1249 */ 1250 mdelay(2); 1251 1252 crtlreg &= ~XUSB_CONTROL_USB_RMTWAKE_MASK; 1253 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg); 1254 status = 0; 1255 done: 1256 spin_unlock_irqrestore(&udc->lock, flags); 1257 return status; 1258 } 1259 1260 /** 1261 * xudc_pullup - start/stop USB traffic 1262 * @gadget: pointer to the usb gadget structure. 1263 * @is_on: flag to start or stop 1264 * 1265 * Return: 0 always 1266 * 1267 * This function starts/stops SIE engine of IP based on is_on. 1268 */ 1269 static int xudc_pullup(struct usb_gadget *gadget, int is_on) 1270 { 1271 struct xusb_udc *udc = to_udc(gadget); 1272 unsigned long flags; 1273 u32 crtlreg; 1274 1275 spin_lock_irqsave(&udc->lock, flags); 1276 1277 crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET); 1278 if (is_on) 1279 crtlreg |= XUSB_CONTROL_USB_READY_MASK; 1280 else 1281 crtlreg &= ~XUSB_CONTROL_USB_READY_MASK; 1282 1283 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg); 1284 1285 spin_unlock_irqrestore(&udc->lock, flags); 1286 1287 return 0; 1288 } 1289 1290 /** 1291 * xudc_eps_init - initialize endpoints. 1292 * @udc: pointer to the usb device controller structure. 1293 */ 1294 static void xudc_eps_init(struct xusb_udc *udc) 1295 { 1296 u32 ep_number; 1297 1298 INIT_LIST_HEAD(&udc->gadget.ep_list); 1299 1300 for (ep_number = 0; ep_number < XUSB_MAX_ENDPOINTS; ep_number++) { 1301 struct xusb_ep *ep = &udc->ep[ep_number]; 1302 1303 if (ep_number) { 1304 list_add_tail(&ep->ep_usb.ep_list, 1305 &udc->gadget.ep_list); 1306 usb_ep_set_maxpacket_limit(&ep->ep_usb, 1307 (unsigned short) ~0); 1308 snprintf(ep->name, EPNAME_SIZE, "ep%d", ep_number); 1309 ep->ep_usb.name = ep->name; 1310 ep->ep_usb.ops = &xusb_ep_ops; 1311 1312 ep->ep_usb.caps.type_iso = true; 1313 ep->ep_usb.caps.type_bulk = true; 1314 ep->ep_usb.caps.type_int = true; 1315 } else { 1316 ep->ep_usb.name = ep0name; 1317 usb_ep_set_maxpacket_limit(&ep->ep_usb, EP0_MAX_PACKET); 1318 ep->ep_usb.ops = &xusb_ep0_ops; 1319 1320 ep->ep_usb.caps.type_control = true; 1321 } 1322 1323 ep->ep_usb.caps.dir_in = true; 1324 ep->ep_usb.caps.dir_out = true; 1325 1326 ep->udc = udc; 1327 ep->epnumber = ep_number; 1328 ep->desc = NULL; 1329 /* 1330 * The configuration register address offset between 1331 * each endpoint is 0x10. 1332 */ 1333 ep->offset = XUSB_EP0_CONFIG_OFFSET + (ep_number * 0x10); 1334 ep->is_in = 0; 1335 ep->is_iso = 0; 1336 ep->maxpacket = 0; 1337 xudc_epconfig(ep, udc); 1338 1339 /* Initialize one queue per endpoint */ 1340 INIT_LIST_HEAD(&ep->queue); 1341 } 1342 } 1343 1344 /** 1345 * xudc_stop_activity - Stops any further activity on the device. 1346 * @udc: pointer to the usb device controller structure. 1347 */ 1348 static void xudc_stop_activity(struct xusb_udc *udc) 1349 { 1350 int i; 1351 struct xusb_ep *ep; 1352 1353 for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) { 1354 ep = &udc->ep[i]; 1355 xudc_nuke(ep, -ESHUTDOWN); 1356 } 1357 } 1358 1359 /** 1360 * xudc_start - Starts the device. 1361 * @gadget: pointer to the usb gadget structure 1362 * @driver: pointer to gadget driver structure 1363 * 1364 * Return: zero on success and error on failure 1365 */ 1366 static int xudc_start(struct usb_gadget *gadget, 1367 struct usb_gadget_driver *driver) 1368 { 1369 struct xusb_udc *udc = to_udc(gadget); 1370 struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO]; 1371 const struct usb_endpoint_descriptor *desc = &config_bulk_out_desc; 1372 unsigned long flags; 1373 int ret = 0; 1374 1375 spin_lock_irqsave(&udc->lock, flags); 1376 1377 if (udc->driver) { 1378 dev_err(udc->dev, "%s is already bound to %s\n", 1379 udc->gadget.name, udc->driver->driver.name); 1380 ret = -EBUSY; 1381 goto err; 1382 } 1383 1384 /* hook up the driver */ 1385 udc->driver = driver; 1386 udc->gadget.speed = driver->max_speed; 1387 1388 /* Enable the control endpoint. */ 1389 ret = __xudc_ep_enable(ep0, desc); 1390 1391 /* Set device address and remote wakeup to 0 */ 1392 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0); 1393 udc->remote_wkp = 0; 1394 err: 1395 spin_unlock_irqrestore(&udc->lock, flags); 1396 return ret; 1397 } 1398 1399 /** 1400 * xudc_stop - stops the device. 1401 * @gadget: pointer to the usb gadget structure 1402 * @driver: pointer to usb gadget driver structure 1403 * 1404 * Return: zero always 1405 */ 1406 static int xudc_stop(struct usb_gadget *gadget) 1407 { 1408 struct xusb_udc *udc = to_udc(gadget); 1409 unsigned long flags; 1410 1411 spin_lock_irqsave(&udc->lock, flags); 1412 1413 udc->gadget.speed = USB_SPEED_UNKNOWN; 1414 udc->driver = NULL; 1415 1416 /* Set device address and remote wakeup to 0 */ 1417 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0); 1418 udc->remote_wkp = 0; 1419 1420 xudc_stop_activity(udc); 1421 1422 spin_unlock_irqrestore(&udc->lock, flags); 1423 1424 return 0; 1425 } 1426 1427 static const struct usb_gadget_ops xusb_udc_ops = { 1428 .get_frame = xudc_get_frame, 1429 .wakeup = xudc_wakeup, 1430 .pullup = xudc_pullup, 1431 .udc_start = xudc_start, 1432 .udc_stop = xudc_stop, 1433 }; 1434 1435 /** 1436 * xudc_clear_stall_all_ep - clears stall of every endpoint. 1437 * @udc: pointer to the udc structure. 1438 */ 1439 static void xudc_clear_stall_all_ep(struct xusb_udc *udc) 1440 { 1441 struct xusb_ep *ep; 1442 u32 epcfgreg; 1443 int i; 1444 1445 for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) { 1446 ep = &udc->ep[i]; 1447 epcfgreg = udc->read_fn(udc->addr + ep->offset); 1448 epcfgreg &= ~XUSB_EP_CFG_STALL_MASK; 1449 udc->write_fn(udc->addr, ep->offset, epcfgreg); 1450 if (ep->epnumber) { 1451 /* Reset the toggle bit.*/ 1452 epcfgreg = udc->read_fn(udc->addr + ep->offset); 1453 epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK; 1454 udc->write_fn(udc->addr, ep->offset, epcfgreg); 1455 } 1456 } 1457 } 1458 1459 /** 1460 * xudc_startup_handler - The usb device controller interrupt handler. 1461 * @udc: pointer to the udc structure. 1462 * @intrstatus: The mask value containing the interrupt sources. 1463 * 1464 * This function handles the RESET,SUSPEND,RESUME and DISCONNECT interrupts. 1465 */ 1466 static void xudc_startup_handler(struct xusb_udc *udc, u32 intrstatus) 1467 { 1468 u32 intrreg; 1469 1470 if (intrstatus & XUSB_STATUS_RESET_MASK) { 1471 1472 dev_dbg(udc->dev, "Reset\n"); 1473 1474 if (intrstatus & XUSB_STATUS_HIGH_SPEED_MASK) 1475 udc->gadget.speed = USB_SPEED_HIGH; 1476 else 1477 udc->gadget.speed = USB_SPEED_FULL; 1478 1479 xudc_stop_activity(udc); 1480 xudc_clear_stall_all_ep(udc); 1481 udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0); 1482 1483 /* Set device address and remote wakeup to 0 */ 1484 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0); 1485 udc->remote_wkp = 0; 1486 1487 /* Enable the suspend, resume and disconnect */ 1488 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 1489 intrreg |= XUSB_STATUS_SUSPEND_MASK | XUSB_STATUS_RESUME_MASK | 1490 XUSB_STATUS_DISCONNECT_MASK; 1491 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg); 1492 } 1493 if (intrstatus & XUSB_STATUS_SUSPEND_MASK) { 1494 1495 dev_dbg(udc->dev, "Suspend\n"); 1496 1497 /* Enable the reset, resume and disconnect */ 1498 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 1499 intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK | 1500 XUSB_STATUS_DISCONNECT_MASK; 1501 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg); 1502 1503 udc->usb_state = USB_STATE_SUSPENDED; 1504 1505 if (udc->driver->suspend) { 1506 spin_unlock(&udc->lock); 1507 udc->driver->suspend(&udc->gadget); 1508 spin_lock(&udc->lock); 1509 } 1510 } 1511 if (intrstatus & XUSB_STATUS_RESUME_MASK) { 1512 bool condition = (udc->usb_state != USB_STATE_SUSPENDED); 1513 1514 dev_WARN_ONCE(udc->dev, condition, 1515 "Resume IRQ while not suspended\n"); 1516 1517 dev_dbg(udc->dev, "Resume\n"); 1518 1519 /* Enable the reset, suspend and disconnect */ 1520 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 1521 intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_SUSPEND_MASK | 1522 XUSB_STATUS_DISCONNECT_MASK; 1523 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg); 1524 1525 udc->usb_state = 0; 1526 1527 if (udc->driver->resume) { 1528 spin_unlock(&udc->lock); 1529 udc->driver->resume(&udc->gadget); 1530 spin_lock(&udc->lock); 1531 } 1532 } 1533 if (intrstatus & XUSB_STATUS_DISCONNECT_MASK) { 1534 1535 dev_dbg(udc->dev, "Disconnect\n"); 1536 1537 /* Enable the reset, resume and suspend */ 1538 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 1539 intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK | 1540 XUSB_STATUS_SUSPEND_MASK; 1541 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg); 1542 1543 if (udc->driver && udc->driver->disconnect) { 1544 spin_unlock(&udc->lock); 1545 udc->driver->disconnect(&udc->gadget); 1546 spin_lock(&udc->lock); 1547 } 1548 } 1549 } 1550 1551 /** 1552 * xudc_ep0_stall - Stall endpoint zero. 1553 * @udc: pointer to the udc structure. 1554 * 1555 * This function stalls endpoint zero. 1556 */ 1557 static void xudc_ep0_stall(struct xusb_udc *udc) 1558 { 1559 u32 epcfgreg; 1560 struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO]; 1561 1562 epcfgreg = udc->read_fn(udc->addr + ep0->offset); 1563 epcfgreg |= XUSB_EP_CFG_STALL_MASK; 1564 udc->write_fn(udc->addr, ep0->offset, epcfgreg); 1565 } 1566 1567 /** 1568 * xudc_setaddress - executes SET_ADDRESS command 1569 * @udc: pointer to the udc structure. 1570 * 1571 * This function executes USB SET_ADDRESS command 1572 */ 1573 static void xudc_setaddress(struct xusb_udc *udc) 1574 { 1575 struct xusb_ep *ep0 = &udc->ep[0]; 1576 struct xusb_req *req = udc->req; 1577 int ret; 1578 1579 req->usb_req.length = 0; 1580 ret = __xudc_ep0_queue(ep0, req); 1581 if (ret == 0) 1582 return; 1583 1584 dev_err(udc->dev, "Can't respond to SET ADDRESS request\n"); 1585 xudc_ep0_stall(udc); 1586 } 1587 1588 /** 1589 * xudc_getstatus - executes GET_STATUS command 1590 * @udc: pointer to the udc structure. 1591 * 1592 * This function executes USB GET_STATUS command 1593 */ 1594 static void xudc_getstatus(struct xusb_udc *udc) 1595 { 1596 struct xusb_ep *ep0 = &udc->ep[0]; 1597 struct xusb_req *req = udc->req; 1598 struct xusb_ep *target_ep; 1599 u16 status = 0; 1600 u32 epcfgreg; 1601 int epnum; 1602 u32 halt; 1603 int ret; 1604 1605 switch (udc->setup.bRequestType & USB_RECIP_MASK) { 1606 case USB_RECIP_DEVICE: 1607 /* Get device status */ 1608 status = 1 << USB_DEVICE_SELF_POWERED; 1609 if (udc->remote_wkp) 1610 status |= (1 << USB_DEVICE_REMOTE_WAKEUP); 1611 break; 1612 case USB_RECIP_INTERFACE: 1613 break; 1614 case USB_RECIP_ENDPOINT: 1615 epnum = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK; 1616 target_ep = &udc->ep[epnum]; 1617 epcfgreg = udc->read_fn(udc->addr + target_ep->offset); 1618 halt = epcfgreg & XUSB_EP_CFG_STALL_MASK; 1619 if (udc->setup.wIndex & USB_DIR_IN) { 1620 if (!target_ep->is_in) 1621 goto stall; 1622 } else { 1623 if (target_ep->is_in) 1624 goto stall; 1625 } 1626 if (halt) 1627 status = 1 << USB_ENDPOINT_HALT; 1628 break; 1629 default: 1630 goto stall; 1631 } 1632 1633 req->usb_req.length = 2; 1634 *(u16 *)req->usb_req.buf = cpu_to_le16(status); 1635 ret = __xudc_ep0_queue(ep0, req); 1636 if (ret == 0) 1637 return; 1638 stall: 1639 dev_err(udc->dev, "Can't respond to getstatus request\n"); 1640 xudc_ep0_stall(udc); 1641 } 1642 1643 /** 1644 * xudc_set_clear_feature - Executes the set feature and clear feature commands. 1645 * @udc: pointer to the usb device controller structure. 1646 * 1647 * Processes the SET_FEATURE and CLEAR_FEATURE commands. 1648 */ 1649 static void xudc_set_clear_feature(struct xusb_udc *udc) 1650 { 1651 struct xusb_ep *ep0 = &udc->ep[0]; 1652 struct xusb_req *req = udc->req; 1653 struct xusb_ep *target_ep; 1654 u8 endpoint; 1655 u8 outinbit; 1656 u32 epcfgreg; 1657 int flag = (udc->setup.bRequest == USB_REQ_SET_FEATURE ? 1 : 0); 1658 int ret; 1659 1660 switch (udc->setup.bRequestType) { 1661 case USB_RECIP_DEVICE: 1662 switch (udc->setup.wValue) { 1663 case USB_DEVICE_TEST_MODE: 1664 /* 1665 * The Test Mode will be executed 1666 * after the status phase. 1667 */ 1668 break; 1669 case USB_DEVICE_REMOTE_WAKEUP: 1670 if (flag) 1671 udc->remote_wkp = 1; 1672 else 1673 udc->remote_wkp = 0; 1674 break; 1675 default: 1676 xudc_ep0_stall(udc); 1677 break; 1678 } 1679 break; 1680 case USB_RECIP_ENDPOINT: 1681 if (!udc->setup.wValue) { 1682 endpoint = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK; 1683 target_ep = &udc->ep[endpoint]; 1684 outinbit = udc->setup.wIndex & USB_ENDPOINT_DIR_MASK; 1685 outinbit = outinbit >> 7; 1686 1687 /* Make sure direction matches.*/ 1688 if (outinbit != target_ep->is_in) { 1689 xudc_ep0_stall(udc); 1690 return; 1691 } 1692 epcfgreg = udc->read_fn(udc->addr + target_ep->offset); 1693 if (!endpoint) { 1694 /* Clear the stall.*/ 1695 epcfgreg &= ~XUSB_EP_CFG_STALL_MASK; 1696 udc->write_fn(udc->addr, 1697 target_ep->offset, epcfgreg); 1698 } else { 1699 if (flag) { 1700 epcfgreg |= XUSB_EP_CFG_STALL_MASK; 1701 udc->write_fn(udc->addr, 1702 target_ep->offset, 1703 epcfgreg); 1704 } else { 1705 /* Unstall the endpoint.*/ 1706 epcfgreg &= ~(XUSB_EP_CFG_STALL_MASK | 1707 XUSB_EP_CFG_DATA_TOGGLE_MASK); 1708 udc->write_fn(udc->addr, 1709 target_ep->offset, 1710 epcfgreg); 1711 } 1712 } 1713 } 1714 break; 1715 default: 1716 xudc_ep0_stall(udc); 1717 return; 1718 } 1719 1720 req->usb_req.length = 0; 1721 ret = __xudc_ep0_queue(ep0, req); 1722 if (ret == 0) 1723 return; 1724 1725 dev_err(udc->dev, "Can't respond to SET/CLEAR FEATURE\n"); 1726 xudc_ep0_stall(udc); 1727 } 1728 1729 /** 1730 * xudc_handle_setup - Processes the setup packet. 1731 * @udc: pointer to the usb device controller structure. 1732 * 1733 * Process setup packet and delegate to gadget layer. 1734 */ 1735 static void xudc_handle_setup(struct xusb_udc *udc) 1736 { 1737 struct xusb_ep *ep0 = &udc->ep[0]; 1738 struct usb_ctrlrequest setup; 1739 u32 *ep0rambase; 1740 1741 /* Load up the chapter 9 command buffer.*/ 1742 ep0rambase = (u32 __force *) (udc->addr + XUSB_SETUP_PKT_ADDR_OFFSET); 1743 memcpy(&setup, ep0rambase, 8); 1744 1745 udc->setup = setup; 1746 udc->setup.wValue = cpu_to_le16(setup.wValue); 1747 udc->setup.wIndex = cpu_to_le16(setup.wIndex); 1748 udc->setup.wLength = cpu_to_le16(setup.wLength); 1749 1750 /* Clear previous requests */ 1751 xudc_nuke(ep0, -ECONNRESET); 1752 1753 if (udc->setup.bRequestType & USB_DIR_IN) { 1754 /* Execute the get command.*/ 1755 udc->setupseqrx = STATUS_PHASE; 1756 udc->setupseqtx = DATA_PHASE; 1757 } else { 1758 /* Execute the put command.*/ 1759 udc->setupseqrx = DATA_PHASE; 1760 udc->setupseqtx = STATUS_PHASE; 1761 } 1762 1763 switch (udc->setup.bRequest) { 1764 case USB_REQ_GET_STATUS: 1765 /* Data+Status phase form udc */ 1766 if ((udc->setup.bRequestType & 1767 (USB_DIR_IN | USB_TYPE_MASK)) != 1768 (USB_DIR_IN | USB_TYPE_STANDARD)) 1769 break; 1770 xudc_getstatus(udc); 1771 return; 1772 case USB_REQ_SET_ADDRESS: 1773 /* Status phase from udc */ 1774 if (udc->setup.bRequestType != (USB_DIR_OUT | 1775 USB_TYPE_STANDARD | USB_RECIP_DEVICE)) 1776 break; 1777 xudc_setaddress(udc); 1778 return; 1779 case USB_REQ_CLEAR_FEATURE: 1780 case USB_REQ_SET_FEATURE: 1781 /* Requests with no data phase, status phase from udc */ 1782 if ((udc->setup.bRequestType & USB_TYPE_MASK) 1783 != USB_TYPE_STANDARD) 1784 break; 1785 xudc_set_clear_feature(udc); 1786 return; 1787 default: 1788 break; 1789 } 1790 1791 spin_unlock(&udc->lock); 1792 if (udc->driver->setup(&udc->gadget, &setup) < 0) 1793 xudc_ep0_stall(udc); 1794 spin_lock(&udc->lock); 1795 } 1796 1797 /** 1798 * xudc_ep0_out - Processes the endpoint 0 OUT token. 1799 * @udc: pointer to the usb device controller structure. 1800 */ 1801 static void xudc_ep0_out(struct xusb_udc *udc) 1802 { 1803 struct xusb_ep *ep0 = &udc->ep[0]; 1804 struct xusb_req *req; 1805 u8 *ep0rambase; 1806 unsigned int bytes_to_rx; 1807 void *buffer; 1808 1809 req = list_first_entry(&ep0->queue, struct xusb_req, queue); 1810 1811 switch (udc->setupseqrx) { 1812 case STATUS_PHASE: 1813 /* 1814 * This resets both state machines for the next 1815 * Setup packet. 1816 */ 1817 udc->setupseqrx = SETUP_PHASE; 1818 udc->setupseqtx = SETUP_PHASE; 1819 req->usb_req.actual = req->usb_req.length; 1820 xudc_done(ep0, req, 0); 1821 break; 1822 case DATA_PHASE: 1823 bytes_to_rx = udc->read_fn(udc->addr + 1824 XUSB_EP_BUF0COUNT_OFFSET); 1825 /* Copy the data to be received from the DPRAM. */ 1826 ep0rambase = (u8 __force *) (udc->addr + 1827 (ep0->rambase << 2)); 1828 buffer = req->usb_req.buf + req->usb_req.actual; 1829 req->usb_req.actual = req->usb_req.actual + bytes_to_rx; 1830 memcpy(buffer, ep0rambase, bytes_to_rx); 1831 1832 if (req->usb_req.length == req->usb_req.actual) { 1833 /* Data transfer completed get ready for Status stage */ 1834 xudc_wrstatus(udc); 1835 } else { 1836 /* Enable EP0 buffer to receive data */ 1837 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0); 1838 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); 1839 } 1840 break; 1841 default: 1842 break; 1843 } 1844 } 1845 1846 /** 1847 * xudc_ep0_in - Processes the endpoint 0 IN token. 1848 * @udc: pointer to the usb device controller structure. 1849 */ 1850 static void xudc_ep0_in(struct xusb_udc *udc) 1851 { 1852 struct xusb_ep *ep0 = &udc->ep[0]; 1853 struct xusb_req *req; 1854 unsigned int bytes_to_tx; 1855 void *buffer; 1856 u32 epcfgreg; 1857 u16 count = 0; 1858 u16 length; 1859 u8 *ep0rambase; 1860 u8 test_mode = udc->setup.wIndex >> 8; 1861 1862 req = list_first_entry(&ep0->queue, struct xusb_req, queue); 1863 bytes_to_tx = req->usb_req.length - req->usb_req.actual; 1864 1865 switch (udc->setupseqtx) { 1866 case STATUS_PHASE: 1867 switch (udc->setup.bRequest) { 1868 case USB_REQ_SET_ADDRESS: 1869 /* Set the address of the device.*/ 1870 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 1871 udc->setup.wValue); 1872 break; 1873 case USB_REQ_SET_FEATURE: 1874 if (udc->setup.bRequestType == 1875 USB_RECIP_DEVICE) { 1876 if (udc->setup.wValue == 1877 USB_DEVICE_TEST_MODE) 1878 udc->write_fn(udc->addr, 1879 XUSB_TESTMODE_OFFSET, 1880 test_mode); 1881 } 1882 break; 1883 } 1884 req->usb_req.actual = req->usb_req.length; 1885 xudc_done(ep0, req, 0); 1886 break; 1887 case DATA_PHASE: 1888 if (!bytes_to_tx) { 1889 /* 1890 * We're done with data transfer, next 1891 * will be zero length OUT with data toggle of 1892 * 1. Setup data_toggle. 1893 */ 1894 epcfgreg = udc->read_fn(udc->addr + ep0->offset); 1895 epcfgreg |= XUSB_EP_CFG_DATA_TOGGLE_MASK; 1896 udc->write_fn(udc->addr, ep0->offset, epcfgreg); 1897 udc->setupseqtx = STATUS_PHASE; 1898 } else { 1899 length = count = min_t(u32, bytes_to_tx, 1900 EP0_MAX_PACKET); 1901 /* Copy the data to be transmitted into the DPRAM. */ 1902 ep0rambase = (u8 __force *) (udc->addr + 1903 (ep0->rambase << 2)); 1904 buffer = req->usb_req.buf + req->usb_req.actual; 1905 req->usb_req.actual = req->usb_req.actual + length; 1906 memcpy(ep0rambase, buffer, length); 1907 } 1908 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, count); 1909 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); 1910 break; 1911 default: 1912 break; 1913 } 1914 } 1915 1916 /** 1917 * xudc_ctrl_ep_handler - Endpoint 0 interrupt handler. 1918 * @udc: pointer to the udc structure. 1919 * @intrstatus: It's the mask value for the interrupt sources on endpoint 0. 1920 * 1921 * Processes the commands received during enumeration phase. 1922 */ 1923 static void xudc_ctrl_ep_handler(struct xusb_udc *udc, u32 intrstatus) 1924 { 1925 1926 if (intrstatus & XUSB_STATUS_SETUP_PACKET_MASK) { 1927 xudc_handle_setup(udc); 1928 } else { 1929 if (intrstatus & XUSB_STATUS_FIFO_BUFF_RDY_MASK) 1930 xudc_ep0_out(udc); 1931 else if (intrstatus & XUSB_STATUS_FIFO_BUFF_FREE_MASK) 1932 xudc_ep0_in(udc); 1933 } 1934 } 1935 1936 /** 1937 * xudc_nonctrl_ep_handler - Non control endpoint interrupt handler. 1938 * @udc: pointer to the udc structure. 1939 * @epnum: End point number for which the interrupt is to be processed 1940 * @intrstatus: mask value for interrupt sources of endpoints other 1941 * than endpoint 0. 1942 * 1943 * Processes the buffer completion interrupts. 1944 */ 1945 static void xudc_nonctrl_ep_handler(struct xusb_udc *udc, u8 epnum, 1946 u32 intrstatus) 1947 { 1948 1949 struct xusb_req *req; 1950 struct xusb_ep *ep; 1951 1952 ep = &udc->ep[epnum]; 1953 /* Process the End point interrupts.*/ 1954 if (intrstatus & (XUSB_STATUS_EP0_BUFF1_COMP_MASK << epnum)) 1955 ep->buffer0ready = 0; 1956 if (intrstatus & (XUSB_STATUS_EP0_BUFF2_COMP_MASK << epnum)) 1957 ep->buffer1ready = 0; 1958 1959 if (list_empty(&ep->queue)) 1960 return; 1961 1962 req = list_first_entry(&ep->queue, struct xusb_req, queue); 1963 1964 if (ep->is_in) 1965 xudc_write_fifo(ep, req); 1966 else 1967 xudc_read_fifo(ep, req); 1968 } 1969 1970 /** 1971 * xudc_irq - The main interrupt handler. 1972 * @irq: The interrupt number. 1973 * @_udc: pointer to the usb device controller structure. 1974 * 1975 * Return: IRQ_HANDLED after the interrupt is handled. 1976 */ 1977 static irqreturn_t xudc_irq(int irq, void *_udc) 1978 { 1979 struct xusb_udc *udc = _udc; 1980 u32 intrstatus; 1981 u32 ier; 1982 u8 index; 1983 u32 bufintr; 1984 unsigned long flags; 1985 1986 spin_lock_irqsave(&udc->lock, flags); 1987 1988 /* 1989 * Event interrupts are level sensitive hence first disable 1990 * IER, read ISR and figure out active interrupts. 1991 */ 1992 ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 1993 ier &= ~XUSB_STATUS_INTR_EVENT_MASK; 1994 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier); 1995 1996 /* Read the Interrupt Status Register.*/ 1997 intrstatus = udc->read_fn(udc->addr + XUSB_STATUS_OFFSET); 1998 1999 /* Call the handler for the event interrupt.*/ 2000 if (intrstatus & XUSB_STATUS_INTR_EVENT_MASK) { 2001 /* 2002 * Check if there is any action to be done for : 2003 * - USB Reset received {XUSB_STATUS_RESET_MASK} 2004 * - USB Suspend received {XUSB_STATUS_SUSPEND_MASK} 2005 * - USB Resume received {XUSB_STATUS_RESUME_MASK} 2006 * - USB Disconnect received {XUSB_STATUS_DISCONNECT_MASK} 2007 */ 2008 xudc_startup_handler(udc, intrstatus); 2009 } 2010 2011 /* Check the buffer completion interrupts */ 2012 if (intrstatus & XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK) { 2013 /* Enable Reset, Suspend, Resume and Disconnect */ 2014 ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 2015 ier |= XUSB_STATUS_INTR_EVENT_MASK; 2016 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier); 2017 2018 if (intrstatus & XUSB_STATUS_EP0_BUFF1_COMP_MASK) 2019 xudc_ctrl_ep_handler(udc, intrstatus); 2020 2021 for (index = 1; index < 8; index++) { 2022 bufintr = ((intrstatus & 2023 (XUSB_STATUS_EP1_BUFF1_COMP_MASK << 2024 (index - 1))) || (intrstatus & 2025 (XUSB_STATUS_EP1_BUFF2_COMP_MASK << 2026 (index - 1)))); 2027 if (bufintr) { 2028 xudc_nonctrl_ep_handler(udc, index, 2029 intrstatus); 2030 } 2031 } 2032 } 2033 2034 spin_unlock_irqrestore(&udc->lock, flags); 2035 return IRQ_HANDLED; 2036 } 2037 2038 /** 2039 * xudc_probe - The device probe function for driver initialization. 2040 * @pdev: pointer to the platform device structure. 2041 * 2042 * Return: 0 for success and error value on failure 2043 */ 2044 static int xudc_probe(struct platform_device *pdev) 2045 { 2046 struct device_node *np = pdev->dev.of_node; 2047 struct resource *res; 2048 struct xusb_udc *udc; 2049 int irq; 2050 int ret; 2051 u32 ier; 2052 u8 *buff; 2053 2054 udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL); 2055 if (!udc) 2056 return -ENOMEM; 2057 2058 /* Create a dummy request for GET_STATUS, SET_ADDRESS */ 2059 udc->req = devm_kzalloc(&pdev->dev, sizeof(struct xusb_req), 2060 GFP_KERNEL); 2061 if (!udc->req) 2062 return -ENOMEM; 2063 2064 buff = devm_kzalloc(&pdev->dev, STATUSBUFF_SIZE, GFP_KERNEL); 2065 if (!buff) 2066 return -ENOMEM; 2067 2068 udc->req->usb_req.buf = buff; 2069 2070 /* Map the registers */ 2071 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2072 udc->addr = devm_ioremap_resource(&pdev->dev, res); 2073 if (IS_ERR(udc->addr)) 2074 return PTR_ERR(udc->addr); 2075 2076 irq = platform_get_irq(pdev, 0); 2077 if (irq < 0) { 2078 dev_err(&pdev->dev, "unable to get irq\n"); 2079 return irq; 2080 } 2081 ret = devm_request_irq(&pdev->dev, irq, xudc_irq, 0, 2082 dev_name(&pdev->dev), udc); 2083 if (ret < 0) { 2084 dev_dbg(&pdev->dev, "unable to request irq %d", irq); 2085 goto fail; 2086 } 2087 2088 udc->dma_enabled = of_property_read_bool(np, "xlnx,has-builtin-dma"); 2089 2090 /* Setup gadget structure */ 2091 udc->gadget.ops = &xusb_udc_ops; 2092 udc->gadget.max_speed = USB_SPEED_HIGH; 2093 udc->gadget.speed = USB_SPEED_UNKNOWN; 2094 udc->gadget.ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO].ep_usb; 2095 udc->gadget.name = driver_name; 2096 2097 spin_lock_init(&udc->lock); 2098 2099 /* Check for IP endianness */ 2100 udc->write_fn = xudc_write32_be; 2101 udc->read_fn = xudc_read32_be; 2102 udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, TEST_J); 2103 if ((udc->read_fn(udc->addr + XUSB_TESTMODE_OFFSET)) 2104 != TEST_J) { 2105 udc->write_fn = xudc_write32; 2106 udc->read_fn = xudc_read32; 2107 } 2108 udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0); 2109 2110 xudc_eps_init(udc); 2111 2112 /* Set device address to 0.*/ 2113 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0); 2114 2115 ret = usb_add_gadget_udc(&pdev->dev, &udc->gadget); 2116 if (ret) 2117 goto fail; 2118 2119 udc->dev = &udc->gadget.dev; 2120 2121 /* Enable the interrupts.*/ 2122 ier = XUSB_STATUS_GLOBAL_INTR_MASK | XUSB_STATUS_INTR_EVENT_MASK | 2123 XUSB_STATUS_FIFO_BUFF_RDY_MASK | XUSB_STATUS_FIFO_BUFF_FREE_MASK | 2124 XUSB_STATUS_SETUP_PACKET_MASK | 2125 XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK; 2126 2127 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier); 2128 2129 platform_set_drvdata(pdev, udc); 2130 2131 dev_vdbg(&pdev->dev, "%s at 0x%08X mapped to %p %s\n", 2132 driver_name, (u32)res->start, udc->addr, 2133 udc->dma_enabled ? "with DMA" : "without DMA"); 2134 2135 return 0; 2136 fail: 2137 dev_err(&pdev->dev, "probe failed, %d\n", ret); 2138 return ret; 2139 } 2140 2141 /** 2142 * xudc_remove - Releases the resources allocated during the initialization. 2143 * @pdev: pointer to the platform device structure. 2144 * 2145 * Return: 0 always 2146 */ 2147 static int xudc_remove(struct platform_device *pdev) 2148 { 2149 struct xusb_udc *udc = platform_get_drvdata(pdev); 2150 2151 usb_del_gadget_udc(&udc->gadget); 2152 2153 return 0; 2154 } 2155 2156 /* Match table for of_platform binding */ 2157 static const struct of_device_id usb_of_match[] = { 2158 { .compatible = "xlnx,usb2-device-4.00.a", }, 2159 { /* end of list */ }, 2160 }; 2161 MODULE_DEVICE_TABLE(of, usb_of_match); 2162 2163 static struct platform_driver xudc_driver = { 2164 .driver = { 2165 .name = driver_name, 2166 .of_match_table = usb_of_match, 2167 }, 2168 .probe = xudc_probe, 2169 .remove = xudc_remove, 2170 }; 2171 2172 module_platform_driver(xudc_driver); 2173 2174 MODULE_DESCRIPTION("Xilinx udc driver"); 2175 MODULE_AUTHOR("Xilinx, Inc"); 2176 MODULE_LICENSE("GPL"); 2177