1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Xilinx USB peripheral controller driver 4 * 5 * Copyright (C) 2004 by Thomas Rathbone 6 * Copyright (C) 2005 by HP Labs 7 * Copyright (C) 2005 by David Brownell 8 * Copyright (C) 2010 - 2014 Xilinx, Inc. 9 * 10 * Some parts of this driver code is based on the driver for at91-series 11 * USB peripheral controller (at91_udc.c). 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/delay.h> 16 #include <linux/device.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/interrupt.h> 19 #include <linux/io.h> 20 #include <linux/module.h> 21 #include <linux/of_address.h> 22 #include <linux/of_device.h> 23 #include <linux/of_platform.h> 24 #include <linux/of_irq.h> 25 #include <linux/prefetch.h> 26 #include <linux/usb/ch9.h> 27 #include <linux/usb/gadget.h> 28 29 /* Register offsets for the USB device.*/ 30 #define XUSB_EP0_CONFIG_OFFSET 0x0000 /* EP0 Config Reg Offset */ 31 #define XUSB_SETUP_PKT_ADDR_OFFSET 0x0080 /* Setup Packet Address */ 32 #define XUSB_ADDRESS_OFFSET 0x0100 /* Address Register */ 33 #define XUSB_CONTROL_OFFSET 0x0104 /* Control Register */ 34 #define XUSB_STATUS_OFFSET 0x0108 /* Status Register */ 35 #define XUSB_FRAMENUM_OFFSET 0x010C /* Frame Number Register */ 36 #define XUSB_IER_OFFSET 0x0110 /* Interrupt Enable Register */ 37 #define XUSB_BUFFREADY_OFFSET 0x0114 /* Buffer Ready Register */ 38 #define XUSB_TESTMODE_OFFSET 0x0118 /* Test Mode Register */ 39 #define XUSB_DMA_RESET_OFFSET 0x0200 /* DMA Soft Reset Register */ 40 #define XUSB_DMA_CONTROL_OFFSET 0x0204 /* DMA Control Register */ 41 #define XUSB_DMA_DSAR_ADDR_OFFSET 0x0208 /* DMA source Address Reg */ 42 #define XUSB_DMA_DDAR_ADDR_OFFSET 0x020C /* DMA destination Addr Reg */ 43 #define XUSB_DMA_LENGTH_OFFSET 0x0210 /* DMA Length Register */ 44 #define XUSB_DMA_STATUS_OFFSET 0x0214 /* DMA Status Register */ 45 46 /* Endpoint Configuration Space offsets */ 47 #define XUSB_EP_CFGSTATUS_OFFSET 0x00 /* Endpoint Config Status */ 48 #define XUSB_EP_BUF0COUNT_OFFSET 0x08 /* Buffer 0 Count */ 49 #define XUSB_EP_BUF1COUNT_OFFSET 0x0C /* Buffer 1 Count */ 50 51 #define XUSB_CONTROL_USB_READY_MASK 0x80000000 /* USB ready Mask */ 52 #define XUSB_CONTROL_USB_RMTWAKE_MASK 0x40000000 /* Remote wake up mask */ 53 54 /* Interrupt register related masks.*/ 55 #define XUSB_STATUS_GLOBAL_INTR_MASK 0x80000000 /* Global Intr Enable */ 56 #define XUSB_STATUS_DMADONE_MASK 0x04000000 /* DMA done Mask */ 57 #define XUSB_STATUS_DMAERR_MASK 0x02000000 /* DMA Error Mask */ 58 #define XUSB_STATUS_DMABUSY_MASK 0x80000000 /* DMA Error Mask */ 59 #define XUSB_STATUS_RESUME_MASK 0x01000000 /* USB Resume Mask */ 60 #define XUSB_STATUS_RESET_MASK 0x00800000 /* USB Reset Mask */ 61 #define XUSB_STATUS_SUSPEND_MASK 0x00400000 /* USB Suspend Mask */ 62 #define XUSB_STATUS_DISCONNECT_MASK 0x00200000 /* USB Disconnect Mask */ 63 #define XUSB_STATUS_FIFO_BUFF_RDY_MASK 0x00100000 /* FIFO Buff Ready Mask */ 64 #define XUSB_STATUS_FIFO_BUFF_FREE_MASK 0x00080000 /* FIFO Buff Free Mask */ 65 #define XUSB_STATUS_SETUP_PACKET_MASK 0x00040000 /* Setup packet received */ 66 #define XUSB_STATUS_EP1_BUFF2_COMP_MASK 0x00000200 /* EP 1 Buff 2 Processed */ 67 #define XUSB_STATUS_EP1_BUFF1_COMP_MASK 0x00000002 /* EP 1 Buff 1 Processed */ 68 #define XUSB_STATUS_EP0_BUFF2_COMP_MASK 0x00000100 /* EP 0 Buff 2 Processed */ 69 #define XUSB_STATUS_EP0_BUFF1_COMP_MASK 0x00000001 /* EP 0 Buff 1 Processed */ 70 #define XUSB_STATUS_HIGH_SPEED_MASK 0x00010000 /* USB Speed Mask */ 71 /* Suspend,Reset,Suspend and Disconnect Mask */ 72 #define XUSB_STATUS_INTR_EVENT_MASK 0x01E00000 73 /* Buffers completion Mask */ 74 #define XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK 0x0000FEFF 75 /* Mask for buffer 0 and buffer 1 completion for all Endpoints */ 76 #define XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK 0x00000101 77 #define XUSB_STATUS_EP_BUFF2_SHIFT 8 /* EP buffer offset */ 78 79 /* Endpoint Configuration Status Register */ 80 #define XUSB_EP_CFG_VALID_MASK 0x80000000 /* Endpoint Valid bit */ 81 #define XUSB_EP_CFG_STALL_MASK 0x40000000 /* Endpoint Stall bit */ 82 #define XUSB_EP_CFG_DATA_TOGGLE_MASK 0x08000000 /* Endpoint Data toggle */ 83 84 /* USB device specific global configuration constants.*/ 85 #define XUSB_MAX_ENDPOINTS 8 /* Maximum End Points */ 86 #define XUSB_EP_NUMBER_ZERO 0 /* End point Zero */ 87 /* DPRAM is the source address for DMA transfer */ 88 #define XUSB_DMA_READ_FROM_DPRAM 0x80000000 89 #define XUSB_DMA_DMASR_BUSY 0x80000000 /* DMA busy */ 90 #define XUSB_DMA_DMASR_ERROR 0x40000000 /* DMA Error */ 91 /* 92 * When this bit is set, the DMA buffer ready bit is set by hardware upon 93 * DMA transfer completion. 94 */ 95 #define XUSB_DMA_BRR_CTRL 0x40000000 /* DMA bufready ctrl bit */ 96 /* Phase States */ 97 #define SETUP_PHASE 0x0000 /* Setup Phase */ 98 #define DATA_PHASE 0x0001 /* Data Phase */ 99 #define STATUS_PHASE 0x0002 /* Status Phase */ 100 101 #define EP0_MAX_PACKET 64 /* Endpoint 0 maximum packet length */ 102 #define STATUSBUFF_SIZE 2 /* Buffer size for GET_STATUS command */ 103 #define EPNAME_SIZE 4 /* Buffer size for endpoint name */ 104 105 /* container_of helper macros */ 106 #define to_udc(g) container_of((g), struct xusb_udc, gadget) 107 #define to_xusb_ep(ep) container_of((ep), struct xusb_ep, ep_usb) 108 #define to_xusb_req(req) container_of((req), struct xusb_req, usb_req) 109 110 /** 111 * struct xusb_req - Xilinx USB device request structure 112 * @usb_req: Linux usb request structure 113 * @queue: usb device request queue 114 * @ep: pointer to xusb_endpoint structure 115 */ 116 struct xusb_req { 117 struct usb_request usb_req; 118 struct list_head queue; 119 struct xusb_ep *ep; 120 }; 121 122 /** 123 * struct xusb_ep - USB end point structure. 124 * @ep_usb: usb endpoint instance 125 * @queue: endpoint message queue 126 * @udc: xilinx usb peripheral driver instance pointer 127 * @desc: pointer to the usb endpoint descriptor 128 * @rambase: the endpoint buffer address 129 * @offset: the endpoint register offset value 130 * @name: name of the endpoint 131 * @epnumber: endpoint number 132 * @maxpacket: maximum packet size the endpoint can store 133 * @buffer0count: the size of the packet recieved in the first buffer 134 * @buffer1count: the size of the packet received in the second buffer 135 * @curbufnum: current buffer of endpoint that will be processed next 136 * @buffer0ready: the busy state of first buffer 137 * @buffer1ready: the busy state of second buffer 138 * @is_in: endpoint direction (IN or OUT) 139 * @is_iso: endpoint type(isochronous or non isochronous) 140 */ 141 struct xusb_ep { 142 struct usb_ep ep_usb; 143 struct list_head queue; 144 struct xusb_udc *udc; 145 const struct usb_endpoint_descriptor *desc; 146 u32 rambase; 147 u32 offset; 148 char name[4]; 149 u16 epnumber; 150 u16 maxpacket; 151 u16 buffer0count; 152 u16 buffer1count; 153 u8 curbufnum; 154 bool buffer0ready; 155 bool buffer1ready; 156 bool is_in; 157 bool is_iso; 158 }; 159 160 /** 161 * struct xusb_udc - USB peripheral driver structure 162 * @gadget: USB gadget driver instance 163 * @ep: an array of endpoint structures 164 * @driver: pointer to the usb gadget driver instance 165 * @setup: usb_ctrlrequest structure for control requests 166 * @req: pointer to dummy request for get status command 167 * @dev: pointer to device structure in gadget 168 * @usb_state: device in suspended state or not 169 * @remote_wkp: remote wakeup enabled by host 170 * @setupseqtx: tx status 171 * @setupseqrx: rx status 172 * @addr: the usb device base address 173 * @lock: instance of spinlock 174 * @dma_enabled: flag indicating whether the dma is included in the system 175 * @clk: pointer to struct clk 176 * @read_fn: function pointer to read device registers 177 * @write_fn: function pointer to write to device registers 178 */ 179 struct xusb_udc { 180 struct usb_gadget gadget; 181 struct xusb_ep ep[8]; 182 struct usb_gadget_driver *driver; 183 struct usb_ctrlrequest setup; 184 struct xusb_req *req; 185 struct device *dev; 186 u32 usb_state; 187 u32 remote_wkp; 188 u32 setupseqtx; 189 u32 setupseqrx; 190 void __iomem *addr; 191 spinlock_t lock; 192 bool dma_enabled; 193 struct clk *clk; 194 195 unsigned int (*read_fn)(void __iomem *); 196 void (*write_fn)(void __iomem *, u32, u32); 197 }; 198 199 /* Endpoint buffer start addresses in the core */ 200 static u32 rambase[8] = { 0x22, 0x1000, 0x1100, 0x1200, 0x1300, 0x1400, 0x1500, 201 0x1600 }; 202 203 static const char driver_name[] = "xilinx-udc"; 204 static const char ep0name[] = "ep0"; 205 206 /* Control endpoint configuration.*/ 207 static const struct usb_endpoint_descriptor config_bulk_out_desc = { 208 .bLength = USB_DT_ENDPOINT_SIZE, 209 .bDescriptorType = USB_DT_ENDPOINT, 210 .bEndpointAddress = USB_DIR_OUT, 211 .bmAttributes = USB_ENDPOINT_XFER_BULK, 212 .wMaxPacketSize = cpu_to_le16(EP0_MAX_PACKET), 213 }; 214 215 /** 216 * xudc_write32 - little endian write to device registers 217 * @addr: base addr of device registers 218 * @offset: register offset 219 * @val: data to be written 220 */ 221 static void xudc_write32(void __iomem *addr, u32 offset, u32 val) 222 { 223 iowrite32(val, addr + offset); 224 } 225 226 /** 227 * xudc_read32 - little endian read from device registers 228 * @addr: addr of device register 229 * Return: value at addr 230 */ 231 static unsigned int xudc_read32(void __iomem *addr) 232 { 233 return ioread32(addr); 234 } 235 236 /** 237 * xudc_write32_be - big endian write to device registers 238 * @addr: base addr of device registers 239 * @offset: register offset 240 * @val: data to be written 241 */ 242 static void xudc_write32_be(void __iomem *addr, u32 offset, u32 val) 243 { 244 iowrite32be(val, addr + offset); 245 } 246 247 /** 248 * xudc_read32_be - big endian read from device registers 249 * @addr: addr of device register 250 * Return: value at addr 251 */ 252 static unsigned int xudc_read32_be(void __iomem *addr) 253 { 254 return ioread32be(addr); 255 } 256 257 /** 258 * xudc_wrstatus - Sets up the usb device status stages. 259 * @udc: pointer to the usb device controller structure. 260 */ 261 static void xudc_wrstatus(struct xusb_udc *udc) 262 { 263 struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO]; 264 u32 epcfgreg; 265 266 epcfgreg = udc->read_fn(udc->addr + ep0->offset)| 267 XUSB_EP_CFG_DATA_TOGGLE_MASK; 268 udc->write_fn(udc->addr, ep0->offset, epcfgreg); 269 udc->write_fn(udc->addr, ep0->offset + XUSB_EP_BUF0COUNT_OFFSET, 0); 270 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); 271 } 272 273 /** 274 * xudc_epconfig - Configures the given endpoint. 275 * @ep: pointer to the usb device endpoint structure. 276 * @udc: pointer to the usb peripheral controller structure. 277 * 278 * This function configures a specific endpoint with the given configuration 279 * data. 280 */ 281 static void xudc_epconfig(struct xusb_ep *ep, struct xusb_udc *udc) 282 { 283 u32 epcfgreg; 284 285 /* 286 * Configure the end point direction, type, Max Packet Size and the 287 * EP buffer location. 288 */ 289 epcfgreg = ((ep->is_in << 29) | (ep->is_iso << 28) | 290 (ep->ep_usb.maxpacket << 15) | (ep->rambase)); 291 udc->write_fn(udc->addr, ep->offset, epcfgreg); 292 293 /* Set the Buffer count and the Buffer ready bits.*/ 294 udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF0COUNT_OFFSET, 295 ep->buffer0count); 296 udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF1COUNT_OFFSET, 297 ep->buffer1count); 298 if (ep->buffer0ready) 299 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 300 1 << ep->epnumber); 301 if (ep->buffer1ready) 302 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 303 1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT)); 304 } 305 306 /** 307 * xudc_start_dma - Starts DMA transfer. 308 * @ep: pointer to the usb device endpoint structure. 309 * @src: DMA source address. 310 * @dst: DMA destination address. 311 * @length: number of bytes to transfer. 312 * 313 * Return: 0 on success, error code on failure 314 * 315 * This function starts DMA transfer by writing to DMA source, 316 * destination and lenth registers. 317 */ 318 static int xudc_start_dma(struct xusb_ep *ep, dma_addr_t src, 319 dma_addr_t dst, u32 length) 320 { 321 struct xusb_udc *udc = ep->udc; 322 int rc = 0; 323 u32 timeout = 500; 324 u32 reg; 325 326 /* 327 * Set the addresses in the DMA source and 328 * destination registers and then set the length 329 * into the DMA length register. 330 */ 331 udc->write_fn(udc->addr, XUSB_DMA_DSAR_ADDR_OFFSET, src); 332 udc->write_fn(udc->addr, XUSB_DMA_DDAR_ADDR_OFFSET, dst); 333 udc->write_fn(udc->addr, XUSB_DMA_LENGTH_OFFSET, length); 334 335 /* 336 * Wait till DMA transaction is complete and 337 * check whether the DMA transaction was 338 * successful. 339 */ 340 do { 341 reg = udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET); 342 if (!(reg & XUSB_DMA_DMASR_BUSY)) 343 break; 344 345 /* 346 * We can't sleep here, because it's also called from 347 * interrupt context. 348 */ 349 timeout--; 350 if (!timeout) { 351 dev_err(udc->dev, "DMA timeout\n"); 352 return -ETIMEDOUT; 353 } 354 udelay(1); 355 } while (1); 356 357 if ((udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET) & 358 XUSB_DMA_DMASR_ERROR) == XUSB_DMA_DMASR_ERROR){ 359 dev_err(udc->dev, "DMA Error\n"); 360 rc = -EINVAL; 361 } 362 363 return rc; 364 } 365 366 /** 367 * xudc_dma_send - Sends IN data using DMA. 368 * @ep: pointer to the usb device endpoint structure. 369 * @req: pointer to the usb request structure. 370 * @buffer: pointer to data to be sent. 371 * @length: number of bytes to send. 372 * 373 * Return: 0 on success, -EAGAIN if no buffer is free and error 374 * code on failure. 375 * 376 * This function sends data using DMA. 377 */ 378 static int xudc_dma_send(struct xusb_ep *ep, struct xusb_req *req, 379 u8 *buffer, u32 length) 380 { 381 u32 *eprambase; 382 dma_addr_t src; 383 dma_addr_t dst; 384 struct xusb_udc *udc = ep->udc; 385 386 src = req->usb_req.dma + req->usb_req.actual; 387 if (req->usb_req.length) 388 dma_sync_single_for_device(udc->dev, src, 389 length, DMA_TO_DEVICE); 390 if (!ep->curbufnum && !ep->buffer0ready) { 391 /* Get the Buffer address and copy the transmit data.*/ 392 eprambase = (u32 __force *)(udc->addr + ep->rambase); 393 dst = virt_to_phys(eprambase); 394 udc->write_fn(udc->addr, ep->offset + 395 XUSB_EP_BUF0COUNT_OFFSET, length); 396 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET, 397 XUSB_DMA_BRR_CTRL | (1 << ep->epnumber)); 398 ep->buffer0ready = 1; 399 ep->curbufnum = 1; 400 } else if (ep->curbufnum && !ep->buffer1ready) { 401 /* Get the Buffer address and copy the transmit data.*/ 402 eprambase = (u32 __force *)(udc->addr + ep->rambase + 403 ep->ep_usb.maxpacket); 404 dst = virt_to_phys(eprambase); 405 udc->write_fn(udc->addr, ep->offset + 406 XUSB_EP_BUF1COUNT_OFFSET, length); 407 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET, 408 XUSB_DMA_BRR_CTRL | (1 << (ep->epnumber + 409 XUSB_STATUS_EP_BUFF2_SHIFT))); 410 ep->buffer1ready = 1; 411 ep->curbufnum = 0; 412 } else { 413 /* None of ping pong buffers are ready currently .*/ 414 return -EAGAIN; 415 } 416 417 return xudc_start_dma(ep, src, dst, length); 418 } 419 420 /** 421 * xudc_dma_receive - Receives OUT data using DMA. 422 * @ep: pointer to the usb device endpoint structure. 423 * @req: pointer to the usb request structure. 424 * @buffer: pointer to storage buffer of received data. 425 * @length: number of bytes to receive. 426 * 427 * Return: 0 on success, -EAGAIN if no buffer is free and error 428 * code on failure. 429 * 430 * This function receives data using DMA. 431 */ 432 static int xudc_dma_receive(struct xusb_ep *ep, struct xusb_req *req, 433 u8 *buffer, u32 length) 434 { 435 u32 *eprambase; 436 dma_addr_t src; 437 dma_addr_t dst; 438 struct xusb_udc *udc = ep->udc; 439 440 dst = req->usb_req.dma + req->usb_req.actual; 441 if (!ep->curbufnum && !ep->buffer0ready) { 442 /* Get the Buffer address and copy the transmit data */ 443 eprambase = (u32 __force *)(udc->addr + ep->rambase); 444 src = virt_to_phys(eprambase); 445 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET, 446 XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM | 447 (1 << ep->epnumber)); 448 ep->buffer0ready = 1; 449 ep->curbufnum = 1; 450 } else if (ep->curbufnum && !ep->buffer1ready) { 451 /* Get the Buffer address and copy the transmit data */ 452 eprambase = (u32 __force *)(udc->addr + 453 ep->rambase + ep->ep_usb.maxpacket); 454 src = virt_to_phys(eprambase); 455 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET, 456 XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM | 457 (1 << (ep->epnumber + 458 XUSB_STATUS_EP_BUFF2_SHIFT))); 459 ep->buffer1ready = 1; 460 ep->curbufnum = 0; 461 } else { 462 /* None of the ping-pong buffers are ready currently */ 463 return -EAGAIN; 464 } 465 466 return xudc_start_dma(ep, src, dst, length); 467 } 468 469 /** 470 * xudc_eptxrx - Transmits or receives data to or from an endpoint. 471 * @ep: pointer to the usb endpoint configuration structure. 472 * @req: pointer to the usb request structure. 473 * @bufferptr: pointer to buffer containing the data to be sent. 474 * @bufferlen: The number of data bytes to be sent. 475 * 476 * Return: 0 on success, -EAGAIN if no buffer is free. 477 * 478 * This function copies the transmit/receive data to/from the end point buffer 479 * and enables the buffer for transmission/reception. 480 */ 481 static int xudc_eptxrx(struct xusb_ep *ep, struct xusb_req *req, 482 u8 *bufferptr, u32 bufferlen) 483 { 484 u32 *eprambase; 485 u32 bytestosend; 486 int rc = 0; 487 struct xusb_udc *udc = ep->udc; 488 489 bytestosend = bufferlen; 490 if (udc->dma_enabled) { 491 if (ep->is_in) 492 rc = xudc_dma_send(ep, req, bufferptr, bufferlen); 493 else 494 rc = xudc_dma_receive(ep, req, bufferptr, bufferlen); 495 return rc; 496 } 497 /* Put the transmit buffer into the correct ping-pong buffer.*/ 498 if (!ep->curbufnum && !ep->buffer0ready) { 499 /* Get the Buffer address and copy the transmit data.*/ 500 eprambase = (u32 __force *)(udc->addr + ep->rambase); 501 if (ep->is_in) { 502 memcpy(eprambase, bufferptr, bytestosend); 503 udc->write_fn(udc->addr, ep->offset + 504 XUSB_EP_BUF0COUNT_OFFSET, bufferlen); 505 } else { 506 memcpy(bufferptr, eprambase, bytestosend); 507 } 508 /* 509 * Enable the buffer for transmission. 510 */ 511 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 512 1 << ep->epnumber); 513 ep->buffer0ready = 1; 514 ep->curbufnum = 1; 515 } else if (ep->curbufnum && !ep->buffer1ready) { 516 /* Get the Buffer address and copy the transmit data.*/ 517 eprambase = (u32 __force *)(udc->addr + ep->rambase + 518 ep->ep_usb.maxpacket); 519 if (ep->is_in) { 520 memcpy(eprambase, bufferptr, bytestosend); 521 udc->write_fn(udc->addr, ep->offset + 522 XUSB_EP_BUF1COUNT_OFFSET, bufferlen); 523 } else { 524 memcpy(bufferptr, eprambase, bytestosend); 525 } 526 /* 527 * Enable the buffer for transmission. 528 */ 529 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 530 1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT)); 531 ep->buffer1ready = 1; 532 ep->curbufnum = 0; 533 } else { 534 /* None of the ping-pong buffers are ready currently */ 535 return -EAGAIN; 536 } 537 return rc; 538 } 539 540 /** 541 * xudc_done - Exeutes the endpoint data transfer completion tasks. 542 * @ep: pointer to the usb device endpoint structure. 543 * @req: pointer to the usb request structure. 544 * @status: Status of the data transfer. 545 * 546 * Deletes the message from the queue and updates data transfer completion 547 * status. 548 */ 549 static void xudc_done(struct xusb_ep *ep, struct xusb_req *req, int status) 550 { 551 struct xusb_udc *udc = ep->udc; 552 553 list_del_init(&req->queue); 554 555 if (req->usb_req.status == -EINPROGRESS) 556 req->usb_req.status = status; 557 else 558 status = req->usb_req.status; 559 560 if (status && status != -ESHUTDOWN) 561 dev_dbg(udc->dev, "%s done %p, status %d\n", 562 ep->ep_usb.name, req, status); 563 /* unmap request if DMA is present*/ 564 if (udc->dma_enabled && ep->epnumber && req->usb_req.length) 565 usb_gadget_unmap_request(&udc->gadget, &req->usb_req, 566 ep->is_in); 567 568 if (req->usb_req.complete) { 569 spin_unlock(&udc->lock); 570 req->usb_req.complete(&ep->ep_usb, &req->usb_req); 571 spin_lock(&udc->lock); 572 } 573 } 574 575 /** 576 * xudc_read_fifo - Reads the data from the given endpoint buffer. 577 * @ep: pointer to the usb device endpoint structure. 578 * @req: pointer to the usb request structure. 579 * 580 * Return: 0 if request is completed and -EAGAIN if not completed. 581 * 582 * Pulls OUT packet data from the endpoint buffer. 583 */ 584 static int xudc_read_fifo(struct xusb_ep *ep, struct xusb_req *req) 585 { 586 u8 *buf; 587 u32 is_short, count, bufferspace; 588 u8 bufoffset; 589 u8 two_pkts = 0; 590 int ret; 591 int retval = -EAGAIN; 592 struct xusb_udc *udc = ep->udc; 593 594 if (ep->buffer0ready && ep->buffer1ready) { 595 dev_dbg(udc->dev, "Packet NOT ready!\n"); 596 return retval; 597 } 598 top: 599 if (ep->curbufnum) 600 bufoffset = XUSB_EP_BUF1COUNT_OFFSET; 601 else 602 bufoffset = XUSB_EP_BUF0COUNT_OFFSET; 603 604 count = udc->read_fn(udc->addr + ep->offset + bufoffset); 605 606 if (!ep->buffer0ready && !ep->buffer1ready) 607 two_pkts = 1; 608 609 buf = req->usb_req.buf + req->usb_req.actual; 610 prefetchw(buf); 611 bufferspace = req->usb_req.length - req->usb_req.actual; 612 is_short = count < ep->ep_usb.maxpacket; 613 614 if (unlikely(!bufferspace)) { 615 /* 616 * This happens when the driver's buffer 617 * is smaller than what the host sent. 618 * discard the extra data. 619 */ 620 if (req->usb_req.status != -EOVERFLOW) 621 dev_dbg(udc->dev, "%s overflow %d\n", 622 ep->ep_usb.name, count); 623 req->usb_req.status = -EOVERFLOW; 624 xudc_done(ep, req, -EOVERFLOW); 625 return 0; 626 } 627 628 ret = xudc_eptxrx(ep, req, buf, count); 629 switch (ret) { 630 case 0: 631 req->usb_req.actual += min(count, bufferspace); 632 dev_dbg(udc->dev, "read %s, %d bytes%s req %p %d/%d\n", 633 ep->ep_usb.name, count, is_short ? "/S" : "", req, 634 req->usb_req.actual, req->usb_req.length); 635 bufferspace -= count; 636 /* Completion */ 637 if ((req->usb_req.actual == req->usb_req.length) || is_short) { 638 if (udc->dma_enabled && req->usb_req.length) 639 dma_sync_single_for_cpu(udc->dev, 640 req->usb_req.dma, 641 req->usb_req.actual, 642 DMA_FROM_DEVICE); 643 xudc_done(ep, req, 0); 644 return 0; 645 } 646 if (two_pkts) { 647 two_pkts = 0; 648 goto top; 649 } 650 break; 651 case -EAGAIN: 652 dev_dbg(udc->dev, "receive busy\n"); 653 break; 654 case -EINVAL: 655 case -ETIMEDOUT: 656 /* DMA error, dequeue the request */ 657 xudc_done(ep, req, -ECONNRESET); 658 retval = 0; 659 break; 660 } 661 662 return retval; 663 } 664 665 /** 666 * xudc_write_fifo - Writes data into the given endpoint buffer. 667 * @ep: pointer to the usb device endpoint structure. 668 * @req: pointer to the usb request structure. 669 * 670 * Return: 0 if request is completed and -EAGAIN if not completed. 671 * 672 * Loads endpoint buffer for an IN packet. 673 */ 674 static int xudc_write_fifo(struct xusb_ep *ep, struct xusb_req *req) 675 { 676 u32 max; 677 u32 length; 678 int ret; 679 int retval = -EAGAIN; 680 struct xusb_udc *udc = ep->udc; 681 int is_last, is_short = 0; 682 u8 *buf; 683 684 max = le16_to_cpu(ep->desc->wMaxPacketSize); 685 buf = req->usb_req.buf + req->usb_req.actual; 686 prefetch(buf); 687 length = req->usb_req.length - req->usb_req.actual; 688 length = min(length, max); 689 690 ret = xudc_eptxrx(ep, req, buf, length); 691 switch (ret) { 692 case 0: 693 req->usb_req.actual += length; 694 if (unlikely(length != max)) { 695 is_last = is_short = 1; 696 } else { 697 if (likely(req->usb_req.length != 698 req->usb_req.actual) || req->usb_req.zero) 699 is_last = 0; 700 else 701 is_last = 1; 702 } 703 dev_dbg(udc->dev, "%s: wrote %s %d bytes%s%s %d left %p\n", 704 __func__, ep->ep_usb.name, length, is_last ? "/L" : "", 705 is_short ? "/S" : "", 706 req->usb_req.length - req->usb_req.actual, req); 707 /* completion */ 708 if (is_last) { 709 xudc_done(ep, req, 0); 710 retval = 0; 711 } 712 break; 713 case -EAGAIN: 714 dev_dbg(udc->dev, "Send busy\n"); 715 break; 716 case -EINVAL: 717 case -ETIMEDOUT: 718 /* DMA error, dequeue the request */ 719 xudc_done(ep, req, -ECONNRESET); 720 retval = 0; 721 break; 722 } 723 724 return retval; 725 } 726 727 /** 728 * xudc_nuke - Cleans up the data transfer message list. 729 * @ep: pointer to the usb device endpoint structure. 730 * @status: Status of the data transfer. 731 */ 732 static void xudc_nuke(struct xusb_ep *ep, int status) 733 { 734 struct xusb_req *req; 735 736 while (!list_empty(&ep->queue)) { 737 req = list_first_entry(&ep->queue, struct xusb_req, queue); 738 xudc_done(ep, req, status); 739 } 740 } 741 742 /** 743 * xudc_ep_set_halt - Stalls/unstalls the given endpoint. 744 * @_ep: pointer to the usb device endpoint structure. 745 * @value: value to indicate stall/unstall. 746 * 747 * Return: 0 for success and error value on failure 748 */ 749 static int xudc_ep_set_halt(struct usb_ep *_ep, int value) 750 { 751 struct xusb_ep *ep = to_xusb_ep(_ep); 752 struct xusb_udc *udc; 753 unsigned long flags; 754 u32 epcfgreg; 755 756 if (!_ep || (!ep->desc && ep->epnumber)) { 757 pr_debug("%s: bad ep or descriptor\n", __func__); 758 return -EINVAL; 759 } 760 udc = ep->udc; 761 762 if (ep->is_in && (!list_empty(&ep->queue)) && value) { 763 dev_dbg(udc->dev, "requests pending can't halt\n"); 764 return -EAGAIN; 765 } 766 767 if (ep->buffer0ready || ep->buffer1ready) { 768 dev_dbg(udc->dev, "HW buffers busy can't halt\n"); 769 return -EAGAIN; 770 } 771 772 spin_lock_irqsave(&udc->lock, flags); 773 774 if (value) { 775 /* Stall the device.*/ 776 epcfgreg = udc->read_fn(udc->addr + ep->offset); 777 epcfgreg |= XUSB_EP_CFG_STALL_MASK; 778 udc->write_fn(udc->addr, ep->offset, epcfgreg); 779 } else { 780 /* Unstall the device.*/ 781 epcfgreg = udc->read_fn(udc->addr + ep->offset); 782 epcfgreg &= ~XUSB_EP_CFG_STALL_MASK; 783 udc->write_fn(udc->addr, ep->offset, epcfgreg); 784 if (ep->epnumber) { 785 /* Reset the toggle bit.*/ 786 epcfgreg = udc->read_fn(ep->udc->addr + ep->offset); 787 epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK; 788 udc->write_fn(udc->addr, ep->offset, epcfgreg); 789 } 790 } 791 792 spin_unlock_irqrestore(&udc->lock, flags); 793 return 0; 794 } 795 796 /** 797 * __xudc_ep_enable - Enables the given endpoint. 798 * @ep: pointer to the xusb endpoint structure. 799 * @desc: pointer to usb endpoint descriptor. 800 * 801 * Return: 0 for success and error value on failure 802 */ 803 static int __xudc_ep_enable(struct xusb_ep *ep, 804 const struct usb_endpoint_descriptor *desc) 805 { 806 struct xusb_udc *udc = ep->udc; 807 u32 tmp; 808 u32 epcfg; 809 u32 ier; 810 u16 maxpacket; 811 812 ep->is_in = ((desc->bEndpointAddress & USB_DIR_IN) != 0); 813 /* Bit 3...0:endpoint number */ 814 ep->epnumber = (desc->bEndpointAddress & 0x0f); 815 ep->desc = desc; 816 ep->ep_usb.desc = desc; 817 tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 818 ep->ep_usb.maxpacket = maxpacket = le16_to_cpu(desc->wMaxPacketSize); 819 820 switch (tmp) { 821 case USB_ENDPOINT_XFER_CONTROL: 822 dev_dbg(udc->dev, "only one control endpoint\n"); 823 /* NON- ISO */ 824 ep->is_iso = 0; 825 return -EINVAL; 826 case USB_ENDPOINT_XFER_INT: 827 /* NON- ISO */ 828 ep->is_iso = 0; 829 if (maxpacket > 64) { 830 dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket); 831 return -EINVAL; 832 } 833 break; 834 case USB_ENDPOINT_XFER_BULK: 835 /* NON- ISO */ 836 ep->is_iso = 0; 837 if (!(is_power_of_2(maxpacket) && maxpacket >= 8 && 838 maxpacket <= 512)) { 839 dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket); 840 return -EINVAL; 841 } 842 break; 843 case USB_ENDPOINT_XFER_ISOC: 844 /* ISO */ 845 ep->is_iso = 1; 846 break; 847 } 848 849 ep->buffer0ready = false; 850 ep->buffer1ready = false; 851 ep->curbufnum = 0; 852 ep->rambase = rambase[ep->epnumber]; 853 xudc_epconfig(ep, udc); 854 855 dev_dbg(udc->dev, "Enable Endpoint %d max pkt is %d\n", 856 ep->epnumber, maxpacket); 857 858 /* Enable the End point.*/ 859 epcfg = udc->read_fn(udc->addr + ep->offset); 860 epcfg |= XUSB_EP_CFG_VALID_MASK; 861 udc->write_fn(udc->addr, ep->offset, epcfg); 862 if (ep->epnumber) 863 ep->rambase <<= 2; 864 865 /* Enable buffer completion interrupts for endpoint */ 866 ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 867 ier |= (XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK << ep->epnumber); 868 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier); 869 870 /* for OUT endpoint set buffers ready to receive */ 871 if (ep->epnumber && !ep->is_in) { 872 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 873 1 << ep->epnumber); 874 ep->buffer0ready = true; 875 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 876 (1 << (ep->epnumber + 877 XUSB_STATUS_EP_BUFF2_SHIFT))); 878 ep->buffer1ready = true; 879 } 880 881 return 0; 882 } 883 884 /** 885 * xudc_ep_enable - Enables the given endpoint. 886 * @_ep: pointer to the usb endpoint structure. 887 * @desc: pointer to usb endpoint descriptor. 888 * 889 * Return: 0 for success and error value on failure 890 */ 891 static int xudc_ep_enable(struct usb_ep *_ep, 892 const struct usb_endpoint_descriptor *desc) 893 { 894 struct xusb_ep *ep; 895 struct xusb_udc *udc; 896 unsigned long flags; 897 int ret; 898 899 if (!_ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT) { 900 pr_debug("%s: bad ep or descriptor\n", __func__); 901 return -EINVAL; 902 } 903 904 ep = to_xusb_ep(_ep); 905 udc = ep->udc; 906 907 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) { 908 dev_dbg(udc->dev, "bogus device state\n"); 909 return -ESHUTDOWN; 910 } 911 912 spin_lock_irqsave(&udc->lock, flags); 913 ret = __xudc_ep_enable(ep, desc); 914 spin_unlock_irqrestore(&udc->lock, flags); 915 916 return ret; 917 } 918 919 /** 920 * xudc_ep_disable - Disables the given endpoint. 921 * @_ep: pointer to the usb endpoint structure. 922 * 923 * Return: 0 for success and error value on failure 924 */ 925 static int xudc_ep_disable(struct usb_ep *_ep) 926 { 927 struct xusb_ep *ep; 928 unsigned long flags; 929 u32 epcfg; 930 struct xusb_udc *udc; 931 932 if (!_ep) { 933 pr_debug("%s: invalid ep\n", __func__); 934 return -EINVAL; 935 } 936 937 ep = to_xusb_ep(_ep); 938 udc = ep->udc; 939 940 spin_lock_irqsave(&udc->lock, flags); 941 942 xudc_nuke(ep, -ESHUTDOWN); 943 944 /* Restore the endpoint's pristine config */ 945 ep->desc = NULL; 946 ep->ep_usb.desc = NULL; 947 948 dev_dbg(udc->dev, "USB Ep %d disable\n ", ep->epnumber); 949 /* Disable the endpoint.*/ 950 epcfg = udc->read_fn(udc->addr + ep->offset); 951 epcfg &= ~XUSB_EP_CFG_VALID_MASK; 952 udc->write_fn(udc->addr, ep->offset, epcfg); 953 954 spin_unlock_irqrestore(&udc->lock, flags); 955 return 0; 956 } 957 958 /** 959 * xudc_ep_alloc_request - Initializes the request queue. 960 * @_ep: pointer to the usb endpoint structure. 961 * @gfp_flags: Flags related to the request call. 962 * 963 * Return: pointer to request structure on success and a NULL on failure. 964 */ 965 static struct usb_request *xudc_ep_alloc_request(struct usb_ep *_ep, 966 gfp_t gfp_flags) 967 { 968 struct xusb_ep *ep = to_xusb_ep(_ep); 969 struct xusb_req *req; 970 971 req = kzalloc(sizeof(*req), gfp_flags); 972 if (!req) 973 return NULL; 974 975 req->ep = ep; 976 INIT_LIST_HEAD(&req->queue); 977 return &req->usb_req; 978 } 979 980 /** 981 * xudc_free_request - Releases the request from queue. 982 * @_ep: pointer to the usb device endpoint structure. 983 * @_req: pointer to the usb request structure. 984 */ 985 static void xudc_free_request(struct usb_ep *_ep, struct usb_request *_req) 986 { 987 struct xusb_req *req = to_xusb_req(_req); 988 989 kfree(req); 990 } 991 992 /** 993 * __xudc_ep0_queue - Adds the request to endpoint 0 queue. 994 * @ep0: pointer to the xusb endpoint 0 structure. 995 * @req: pointer to the xusb request structure. 996 * 997 * Return: 0 for success and error value on failure 998 */ 999 static int __xudc_ep0_queue(struct xusb_ep *ep0, struct xusb_req *req) 1000 { 1001 struct xusb_udc *udc = ep0->udc; 1002 u32 length; 1003 u8 *corebuf; 1004 1005 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) { 1006 dev_dbg(udc->dev, "%s, bogus device state\n", __func__); 1007 return -EINVAL; 1008 } 1009 if (!list_empty(&ep0->queue)) { 1010 dev_dbg(udc->dev, "%s:ep0 busy\n", __func__); 1011 return -EBUSY; 1012 } 1013 1014 req->usb_req.status = -EINPROGRESS; 1015 req->usb_req.actual = 0; 1016 1017 list_add_tail(&req->queue, &ep0->queue); 1018 1019 if (udc->setup.bRequestType & USB_DIR_IN) { 1020 prefetch(req->usb_req.buf); 1021 length = req->usb_req.length; 1022 corebuf = (void __force *) ((ep0->rambase << 2) + 1023 udc->addr); 1024 length = req->usb_req.actual = min_t(u32, length, 1025 EP0_MAX_PACKET); 1026 memcpy(corebuf, req->usb_req.buf, length); 1027 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, length); 1028 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); 1029 } else { 1030 if (udc->setup.wLength) { 1031 /* Enable EP0 buffer to receive data */ 1032 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0); 1033 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); 1034 } else { 1035 xudc_wrstatus(udc); 1036 } 1037 } 1038 1039 return 0; 1040 } 1041 1042 /** 1043 * xudc_ep0_queue - Adds the request to endpoint 0 queue. 1044 * @_ep: pointer to the usb endpoint 0 structure. 1045 * @_req: pointer to the usb request structure. 1046 * @gfp_flags: Flags related to the request call. 1047 * 1048 * Return: 0 for success and error value on failure 1049 */ 1050 static int xudc_ep0_queue(struct usb_ep *_ep, struct usb_request *_req, 1051 gfp_t gfp_flags) 1052 { 1053 struct xusb_req *req = to_xusb_req(_req); 1054 struct xusb_ep *ep0 = to_xusb_ep(_ep); 1055 struct xusb_udc *udc = ep0->udc; 1056 unsigned long flags; 1057 int ret; 1058 1059 spin_lock_irqsave(&udc->lock, flags); 1060 ret = __xudc_ep0_queue(ep0, req); 1061 spin_unlock_irqrestore(&udc->lock, flags); 1062 1063 return ret; 1064 } 1065 1066 /** 1067 * xudc_ep_queue - Adds the request to endpoint queue. 1068 * @_ep: pointer to the usb endpoint structure. 1069 * @_req: pointer to the usb request structure. 1070 * @gfp_flags: Flags related to the request call. 1071 * 1072 * Return: 0 for success and error value on failure 1073 */ 1074 static int xudc_ep_queue(struct usb_ep *_ep, struct usb_request *_req, 1075 gfp_t gfp_flags) 1076 { 1077 struct xusb_req *req = to_xusb_req(_req); 1078 struct xusb_ep *ep = to_xusb_ep(_ep); 1079 struct xusb_udc *udc = ep->udc; 1080 int ret; 1081 unsigned long flags; 1082 1083 if (!ep->desc) { 1084 dev_dbg(udc->dev, "%s: queuing request to disabled %s\n", 1085 __func__, ep->name); 1086 return -ESHUTDOWN; 1087 } 1088 1089 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) { 1090 dev_dbg(udc->dev, "%s, bogus device state\n", __func__); 1091 return -EINVAL; 1092 } 1093 1094 spin_lock_irqsave(&udc->lock, flags); 1095 1096 _req->status = -EINPROGRESS; 1097 _req->actual = 0; 1098 1099 if (udc->dma_enabled) { 1100 ret = usb_gadget_map_request(&udc->gadget, &req->usb_req, 1101 ep->is_in); 1102 if (ret) { 1103 dev_dbg(udc->dev, "gadget_map failed ep%d\n", 1104 ep->epnumber); 1105 spin_unlock_irqrestore(&udc->lock, flags); 1106 return -EAGAIN; 1107 } 1108 } 1109 1110 if (list_empty(&ep->queue)) { 1111 if (ep->is_in) { 1112 dev_dbg(udc->dev, "xudc_write_fifo from ep_queue\n"); 1113 if (!xudc_write_fifo(ep, req)) 1114 req = NULL; 1115 } else { 1116 dev_dbg(udc->dev, "xudc_read_fifo from ep_queue\n"); 1117 if (!xudc_read_fifo(ep, req)) 1118 req = NULL; 1119 } 1120 } 1121 1122 if (req != NULL) 1123 list_add_tail(&req->queue, &ep->queue); 1124 1125 spin_unlock_irqrestore(&udc->lock, flags); 1126 return 0; 1127 } 1128 1129 /** 1130 * xudc_ep_dequeue - Removes the request from the queue. 1131 * @_ep: pointer to the usb device endpoint structure. 1132 * @_req: pointer to the usb request structure. 1133 * 1134 * Return: 0 for success and error value on failure 1135 */ 1136 static int xudc_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req) 1137 { 1138 struct xusb_ep *ep = to_xusb_ep(_ep); 1139 struct xusb_req *req = to_xusb_req(_req); 1140 struct xusb_udc *udc = ep->udc; 1141 unsigned long flags; 1142 1143 spin_lock_irqsave(&udc->lock, flags); 1144 /* Make sure it's actually queued on this endpoint */ 1145 list_for_each_entry(req, &ep->queue, queue) { 1146 if (&req->usb_req == _req) 1147 break; 1148 } 1149 if (&req->usb_req != _req) { 1150 spin_unlock_irqrestore(&udc->lock, flags); 1151 return -EINVAL; 1152 } 1153 xudc_done(ep, req, -ECONNRESET); 1154 spin_unlock_irqrestore(&udc->lock, flags); 1155 1156 return 0; 1157 } 1158 1159 /** 1160 * xudc_ep0_enable - Enables the given endpoint. 1161 * @ep: pointer to the usb endpoint structure. 1162 * @desc: pointer to usb endpoint descriptor. 1163 * 1164 * Return: error always. 1165 * 1166 * endpoint 0 enable should not be called by gadget layer. 1167 */ 1168 static int xudc_ep0_enable(struct usb_ep *ep, 1169 const struct usb_endpoint_descriptor *desc) 1170 { 1171 return -EINVAL; 1172 } 1173 1174 /** 1175 * xudc_ep0_disable - Disables the given endpoint. 1176 * @ep: pointer to the usb endpoint structure. 1177 * 1178 * Return: error always. 1179 * 1180 * endpoint 0 disable should not be called by gadget layer. 1181 */ 1182 static int xudc_ep0_disable(struct usb_ep *ep) 1183 { 1184 return -EINVAL; 1185 } 1186 1187 static const struct usb_ep_ops xusb_ep0_ops = { 1188 .enable = xudc_ep0_enable, 1189 .disable = xudc_ep0_disable, 1190 .alloc_request = xudc_ep_alloc_request, 1191 .free_request = xudc_free_request, 1192 .queue = xudc_ep0_queue, 1193 .dequeue = xudc_ep_dequeue, 1194 .set_halt = xudc_ep_set_halt, 1195 }; 1196 1197 static const struct usb_ep_ops xusb_ep_ops = { 1198 .enable = xudc_ep_enable, 1199 .disable = xudc_ep_disable, 1200 .alloc_request = xudc_ep_alloc_request, 1201 .free_request = xudc_free_request, 1202 .queue = xudc_ep_queue, 1203 .dequeue = xudc_ep_dequeue, 1204 .set_halt = xudc_ep_set_halt, 1205 }; 1206 1207 /** 1208 * xudc_get_frame - Reads the current usb frame number. 1209 * @gadget: pointer to the usb gadget structure. 1210 * 1211 * Return: current frame number for success and error value on failure. 1212 */ 1213 static int xudc_get_frame(struct usb_gadget *gadget) 1214 { 1215 struct xusb_udc *udc; 1216 int frame; 1217 1218 if (!gadget) 1219 return -ENODEV; 1220 1221 udc = to_udc(gadget); 1222 frame = udc->read_fn(udc->addr + XUSB_FRAMENUM_OFFSET); 1223 return frame; 1224 } 1225 1226 /** 1227 * xudc_wakeup - Send remote wakeup signal to host 1228 * @gadget: pointer to the usb gadget structure. 1229 * 1230 * Return: 0 on success and error on failure 1231 */ 1232 static int xudc_wakeup(struct usb_gadget *gadget) 1233 { 1234 struct xusb_udc *udc = to_udc(gadget); 1235 u32 crtlreg; 1236 int status = -EINVAL; 1237 unsigned long flags; 1238 1239 spin_lock_irqsave(&udc->lock, flags); 1240 1241 /* Remote wake up not enabled by host */ 1242 if (!udc->remote_wkp) 1243 goto done; 1244 1245 crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET); 1246 crtlreg |= XUSB_CONTROL_USB_RMTWAKE_MASK; 1247 /* set remote wake up bit */ 1248 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg); 1249 /* 1250 * wait for a while and reset remote wake up bit since this bit 1251 * is not cleared by HW after sending remote wakeup to host. 1252 */ 1253 mdelay(2); 1254 1255 crtlreg &= ~XUSB_CONTROL_USB_RMTWAKE_MASK; 1256 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg); 1257 status = 0; 1258 done: 1259 spin_unlock_irqrestore(&udc->lock, flags); 1260 return status; 1261 } 1262 1263 /** 1264 * xudc_pullup - start/stop USB traffic 1265 * @gadget: pointer to the usb gadget structure. 1266 * @is_on: flag to start or stop 1267 * 1268 * Return: 0 always 1269 * 1270 * This function starts/stops SIE engine of IP based on is_on. 1271 */ 1272 static int xudc_pullup(struct usb_gadget *gadget, int is_on) 1273 { 1274 struct xusb_udc *udc = to_udc(gadget); 1275 unsigned long flags; 1276 u32 crtlreg; 1277 1278 spin_lock_irqsave(&udc->lock, flags); 1279 1280 crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET); 1281 if (is_on) 1282 crtlreg |= XUSB_CONTROL_USB_READY_MASK; 1283 else 1284 crtlreg &= ~XUSB_CONTROL_USB_READY_MASK; 1285 1286 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg); 1287 1288 spin_unlock_irqrestore(&udc->lock, flags); 1289 1290 return 0; 1291 } 1292 1293 /** 1294 * xudc_eps_init - initialize endpoints. 1295 * @udc: pointer to the usb device controller structure. 1296 */ 1297 static void xudc_eps_init(struct xusb_udc *udc) 1298 { 1299 u32 ep_number; 1300 1301 INIT_LIST_HEAD(&udc->gadget.ep_list); 1302 1303 for (ep_number = 0; ep_number < XUSB_MAX_ENDPOINTS; ep_number++) { 1304 struct xusb_ep *ep = &udc->ep[ep_number]; 1305 1306 if (ep_number) { 1307 list_add_tail(&ep->ep_usb.ep_list, 1308 &udc->gadget.ep_list); 1309 usb_ep_set_maxpacket_limit(&ep->ep_usb, 1310 (unsigned short) ~0); 1311 snprintf(ep->name, EPNAME_SIZE, "ep%d", ep_number); 1312 ep->ep_usb.name = ep->name; 1313 ep->ep_usb.ops = &xusb_ep_ops; 1314 1315 ep->ep_usb.caps.type_iso = true; 1316 ep->ep_usb.caps.type_bulk = true; 1317 ep->ep_usb.caps.type_int = true; 1318 } else { 1319 ep->ep_usb.name = ep0name; 1320 usb_ep_set_maxpacket_limit(&ep->ep_usb, EP0_MAX_PACKET); 1321 ep->ep_usb.ops = &xusb_ep0_ops; 1322 1323 ep->ep_usb.caps.type_control = true; 1324 } 1325 1326 ep->ep_usb.caps.dir_in = true; 1327 ep->ep_usb.caps.dir_out = true; 1328 1329 ep->udc = udc; 1330 ep->epnumber = ep_number; 1331 ep->desc = NULL; 1332 /* 1333 * The configuration register address offset between 1334 * each endpoint is 0x10. 1335 */ 1336 ep->offset = XUSB_EP0_CONFIG_OFFSET + (ep_number * 0x10); 1337 ep->is_in = 0; 1338 ep->is_iso = 0; 1339 ep->maxpacket = 0; 1340 xudc_epconfig(ep, udc); 1341 1342 /* Initialize one queue per endpoint */ 1343 INIT_LIST_HEAD(&ep->queue); 1344 } 1345 } 1346 1347 /** 1348 * xudc_stop_activity - Stops any further activity on the device. 1349 * @udc: pointer to the usb device controller structure. 1350 */ 1351 static void xudc_stop_activity(struct xusb_udc *udc) 1352 { 1353 int i; 1354 struct xusb_ep *ep; 1355 1356 for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) { 1357 ep = &udc->ep[i]; 1358 xudc_nuke(ep, -ESHUTDOWN); 1359 } 1360 } 1361 1362 /** 1363 * xudc_start - Starts the device. 1364 * @gadget: pointer to the usb gadget structure 1365 * @driver: pointer to gadget driver structure 1366 * 1367 * Return: zero on success and error on failure 1368 */ 1369 static int xudc_start(struct usb_gadget *gadget, 1370 struct usb_gadget_driver *driver) 1371 { 1372 struct xusb_udc *udc = to_udc(gadget); 1373 struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO]; 1374 const struct usb_endpoint_descriptor *desc = &config_bulk_out_desc; 1375 unsigned long flags; 1376 int ret = 0; 1377 1378 spin_lock_irqsave(&udc->lock, flags); 1379 1380 if (udc->driver) { 1381 dev_err(udc->dev, "%s is already bound to %s\n", 1382 udc->gadget.name, udc->driver->driver.name); 1383 ret = -EBUSY; 1384 goto err; 1385 } 1386 1387 /* hook up the driver */ 1388 udc->driver = driver; 1389 udc->gadget.speed = driver->max_speed; 1390 1391 /* Enable the control endpoint. */ 1392 ret = __xudc_ep_enable(ep0, desc); 1393 1394 /* Set device address and remote wakeup to 0 */ 1395 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0); 1396 udc->remote_wkp = 0; 1397 err: 1398 spin_unlock_irqrestore(&udc->lock, flags); 1399 return ret; 1400 } 1401 1402 /** 1403 * xudc_stop - stops the device. 1404 * @gadget: pointer to the usb gadget structure 1405 * 1406 * Return: zero always 1407 */ 1408 static int xudc_stop(struct usb_gadget *gadget) 1409 { 1410 struct xusb_udc *udc = to_udc(gadget); 1411 unsigned long flags; 1412 1413 spin_lock_irqsave(&udc->lock, flags); 1414 1415 udc->gadget.speed = USB_SPEED_UNKNOWN; 1416 udc->driver = NULL; 1417 1418 /* Set device address and remote wakeup to 0 */ 1419 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0); 1420 udc->remote_wkp = 0; 1421 1422 xudc_stop_activity(udc); 1423 1424 spin_unlock_irqrestore(&udc->lock, flags); 1425 1426 return 0; 1427 } 1428 1429 static const struct usb_gadget_ops xusb_udc_ops = { 1430 .get_frame = xudc_get_frame, 1431 .wakeup = xudc_wakeup, 1432 .pullup = xudc_pullup, 1433 .udc_start = xudc_start, 1434 .udc_stop = xudc_stop, 1435 }; 1436 1437 /** 1438 * xudc_clear_stall_all_ep - clears stall of every endpoint. 1439 * @udc: pointer to the udc structure. 1440 */ 1441 static void xudc_clear_stall_all_ep(struct xusb_udc *udc) 1442 { 1443 struct xusb_ep *ep; 1444 u32 epcfgreg; 1445 int i; 1446 1447 for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) { 1448 ep = &udc->ep[i]; 1449 epcfgreg = udc->read_fn(udc->addr + ep->offset); 1450 epcfgreg &= ~XUSB_EP_CFG_STALL_MASK; 1451 udc->write_fn(udc->addr, ep->offset, epcfgreg); 1452 if (ep->epnumber) { 1453 /* Reset the toggle bit.*/ 1454 epcfgreg = udc->read_fn(udc->addr + ep->offset); 1455 epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK; 1456 udc->write_fn(udc->addr, ep->offset, epcfgreg); 1457 } 1458 } 1459 } 1460 1461 /** 1462 * xudc_startup_handler - The usb device controller interrupt handler. 1463 * @udc: pointer to the udc structure. 1464 * @intrstatus: The mask value containing the interrupt sources. 1465 * 1466 * This function handles the RESET,SUSPEND,RESUME and DISCONNECT interrupts. 1467 */ 1468 static void xudc_startup_handler(struct xusb_udc *udc, u32 intrstatus) 1469 { 1470 u32 intrreg; 1471 1472 if (intrstatus & XUSB_STATUS_RESET_MASK) { 1473 1474 dev_dbg(udc->dev, "Reset\n"); 1475 1476 if (intrstatus & XUSB_STATUS_HIGH_SPEED_MASK) 1477 udc->gadget.speed = USB_SPEED_HIGH; 1478 else 1479 udc->gadget.speed = USB_SPEED_FULL; 1480 1481 xudc_stop_activity(udc); 1482 xudc_clear_stall_all_ep(udc); 1483 udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0); 1484 1485 /* Set device address and remote wakeup to 0 */ 1486 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0); 1487 udc->remote_wkp = 0; 1488 1489 /* Enable the suspend, resume and disconnect */ 1490 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 1491 intrreg |= XUSB_STATUS_SUSPEND_MASK | XUSB_STATUS_RESUME_MASK | 1492 XUSB_STATUS_DISCONNECT_MASK; 1493 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg); 1494 } 1495 if (intrstatus & XUSB_STATUS_SUSPEND_MASK) { 1496 1497 dev_dbg(udc->dev, "Suspend\n"); 1498 1499 /* Enable the reset, resume and disconnect */ 1500 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 1501 intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK | 1502 XUSB_STATUS_DISCONNECT_MASK; 1503 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg); 1504 1505 udc->usb_state = USB_STATE_SUSPENDED; 1506 1507 if (udc->driver->suspend) { 1508 spin_unlock(&udc->lock); 1509 udc->driver->suspend(&udc->gadget); 1510 spin_lock(&udc->lock); 1511 } 1512 } 1513 if (intrstatus & XUSB_STATUS_RESUME_MASK) { 1514 bool condition = (udc->usb_state != USB_STATE_SUSPENDED); 1515 1516 dev_WARN_ONCE(udc->dev, condition, 1517 "Resume IRQ while not suspended\n"); 1518 1519 dev_dbg(udc->dev, "Resume\n"); 1520 1521 /* Enable the reset, suspend and disconnect */ 1522 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 1523 intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_SUSPEND_MASK | 1524 XUSB_STATUS_DISCONNECT_MASK; 1525 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg); 1526 1527 udc->usb_state = 0; 1528 1529 if (udc->driver->resume) { 1530 spin_unlock(&udc->lock); 1531 udc->driver->resume(&udc->gadget); 1532 spin_lock(&udc->lock); 1533 } 1534 } 1535 if (intrstatus & XUSB_STATUS_DISCONNECT_MASK) { 1536 1537 dev_dbg(udc->dev, "Disconnect\n"); 1538 1539 /* Enable the reset, resume and suspend */ 1540 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 1541 intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK | 1542 XUSB_STATUS_SUSPEND_MASK; 1543 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg); 1544 1545 if (udc->driver && udc->driver->disconnect) { 1546 spin_unlock(&udc->lock); 1547 udc->driver->disconnect(&udc->gadget); 1548 spin_lock(&udc->lock); 1549 } 1550 } 1551 } 1552 1553 /** 1554 * xudc_ep0_stall - Stall endpoint zero. 1555 * @udc: pointer to the udc structure. 1556 * 1557 * This function stalls endpoint zero. 1558 */ 1559 static void xudc_ep0_stall(struct xusb_udc *udc) 1560 { 1561 u32 epcfgreg; 1562 struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO]; 1563 1564 epcfgreg = udc->read_fn(udc->addr + ep0->offset); 1565 epcfgreg |= XUSB_EP_CFG_STALL_MASK; 1566 udc->write_fn(udc->addr, ep0->offset, epcfgreg); 1567 } 1568 1569 /** 1570 * xudc_setaddress - executes SET_ADDRESS command 1571 * @udc: pointer to the udc structure. 1572 * 1573 * This function executes USB SET_ADDRESS command 1574 */ 1575 static void xudc_setaddress(struct xusb_udc *udc) 1576 { 1577 struct xusb_ep *ep0 = &udc->ep[0]; 1578 struct xusb_req *req = udc->req; 1579 int ret; 1580 1581 req->usb_req.length = 0; 1582 ret = __xudc_ep0_queue(ep0, req); 1583 if (ret == 0) 1584 return; 1585 1586 dev_err(udc->dev, "Can't respond to SET ADDRESS request\n"); 1587 xudc_ep0_stall(udc); 1588 } 1589 1590 /** 1591 * xudc_getstatus - executes GET_STATUS command 1592 * @udc: pointer to the udc structure. 1593 * 1594 * This function executes USB GET_STATUS command 1595 */ 1596 static void xudc_getstatus(struct xusb_udc *udc) 1597 { 1598 struct xusb_ep *ep0 = &udc->ep[0]; 1599 struct xusb_req *req = udc->req; 1600 struct xusb_ep *target_ep; 1601 u16 status = 0; 1602 u32 epcfgreg; 1603 int epnum; 1604 u32 halt; 1605 int ret; 1606 1607 switch (udc->setup.bRequestType & USB_RECIP_MASK) { 1608 case USB_RECIP_DEVICE: 1609 /* Get device status */ 1610 status = 1 << USB_DEVICE_SELF_POWERED; 1611 if (udc->remote_wkp) 1612 status |= (1 << USB_DEVICE_REMOTE_WAKEUP); 1613 break; 1614 case USB_RECIP_INTERFACE: 1615 break; 1616 case USB_RECIP_ENDPOINT: 1617 epnum = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK; 1618 target_ep = &udc->ep[epnum]; 1619 epcfgreg = udc->read_fn(udc->addr + target_ep->offset); 1620 halt = epcfgreg & XUSB_EP_CFG_STALL_MASK; 1621 if (udc->setup.wIndex & USB_DIR_IN) { 1622 if (!target_ep->is_in) 1623 goto stall; 1624 } else { 1625 if (target_ep->is_in) 1626 goto stall; 1627 } 1628 if (halt) 1629 status = 1 << USB_ENDPOINT_HALT; 1630 break; 1631 default: 1632 goto stall; 1633 } 1634 1635 req->usb_req.length = 2; 1636 *(u16 *)req->usb_req.buf = cpu_to_le16(status); 1637 ret = __xudc_ep0_queue(ep0, req); 1638 if (ret == 0) 1639 return; 1640 stall: 1641 dev_err(udc->dev, "Can't respond to getstatus request\n"); 1642 xudc_ep0_stall(udc); 1643 } 1644 1645 /** 1646 * xudc_set_clear_feature - Executes the set feature and clear feature commands. 1647 * @udc: pointer to the usb device controller structure. 1648 * 1649 * Processes the SET_FEATURE and CLEAR_FEATURE commands. 1650 */ 1651 static void xudc_set_clear_feature(struct xusb_udc *udc) 1652 { 1653 struct xusb_ep *ep0 = &udc->ep[0]; 1654 struct xusb_req *req = udc->req; 1655 struct xusb_ep *target_ep; 1656 u8 endpoint; 1657 u8 outinbit; 1658 u32 epcfgreg; 1659 int flag = (udc->setup.bRequest == USB_REQ_SET_FEATURE ? 1 : 0); 1660 int ret; 1661 1662 switch (udc->setup.bRequestType) { 1663 case USB_RECIP_DEVICE: 1664 switch (udc->setup.wValue) { 1665 case USB_DEVICE_TEST_MODE: 1666 /* 1667 * The Test Mode will be executed 1668 * after the status phase. 1669 */ 1670 break; 1671 case USB_DEVICE_REMOTE_WAKEUP: 1672 if (flag) 1673 udc->remote_wkp = 1; 1674 else 1675 udc->remote_wkp = 0; 1676 break; 1677 default: 1678 xudc_ep0_stall(udc); 1679 break; 1680 } 1681 break; 1682 case USB_RECIP_ENDPOINT: 1683 if (!udc->setup.wValue) { 1684 endpoint = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK; 1685 target_ep = &udc->ep[endpoint]; 1686 outinbit = udc->setup.wIndex & USB_ENDPOINT_DIR_MASK; 1687 outinbit = outinbit >> 7; 1688 1689 /* Make sure direction matches.*/ 1690 if (outinbit != target_ep->is_in) { 1691 xudc_ep0_stall(udc); 1692 return; 1693 } 1694 epcfgreg = udc->read_fn(udc->addr + target_ep->offset); 1695 if (!endpoint) { 1696 /* Clear the stall.*/ 1697 epcfgreg &= ~XUSB_EP_CFG_STALL_MASK; 1698 udc->write_fn(udc->addr, 1699 target_ep->offset, epcfgreg); 1700 } else { 1701 if (flag) { 1702 epcfgreg |= XUSB_EP_CFG_STALL_MASK; 1703 udc->write_fn(udc->addr, 1704 target_ep->offset, 1705 epcfgreg); 1706 } else { 1707 /* Unstall the endpoint.*/ 1708 epcfgreg &= ~(XUSB_EP_CFG_STALL_MASK | 1709 XUSB_EP_CFG_DATA_TOGGLE_MASK); 1710 udc->write_fn(udc->addr, 1711 target_ep->offset, 1712 epcfgreg); 1713 } 1714 } 1715 } 1716 break; 1717 default: 1718 xudc_ep0_stall(udc); 1719 return; 1720 } 1721 1722 req->usb_req.length = 0; 1723 ret = __xudc_ep0_queue(ep0, req); 1724 if (ret == 0) 1725 return; 1726 1727 dev_err(udc->dev, "Can't respond to SET/CLEAR FEATURE\n"); 1728 xudc_ep0_stall(udc); 1729 } 1730 1731 /** 1732 * xudc_handle_setup - Processes the setup packet. 1733 * @udc: pointer to the usb device controller structure. 1734 * 1735 * Process setup packet and delegate to gadget layer. 1736 */ 1737 static void xudc_handle_setup(struct xusb_udc *udc) 1738 __must_hold(&udc->lock) 1739 { 1740 struct xusb_ep *ep0 = &udc->ep[0]; 1741 struct usb_ctrlrequest setup; 1742 u32 *ep0rambase; 1743 1744 /* Load up the chapter 9 command buffer.*/ 1745 ep0rambase = (u32 __force *) (udc->addr + XUSB_SETUP_PKT_ADDR_OFFSET); 1746 memcpy(&setup, ep0rambase, 8); 1747 1748 udc->setup = setup; 1749 udc->setup.wValue = cpu_to_le16(setup.wValue); 1750 udc->setup.wIndex = cpu_to_le16(setup.wIndex); 1751 udc->setup.wLength = cpu_to_le16(setup.wLength); 1752 1753 /* Clear previous requests */ 1754 xudc_nuke(ep0, -ECONNRESET); 1755 1756 if (udc->setup.bRequestType & USB_DIR_IN) { 1757 /* Execute the get command.*/ 1758 udc->setupseqrx = STATUS_PHASE; 1759 udc->setupseqtx = DATA_PHASE; 1760 } else { 1761 /* Execute the put command.*/ 1762 udc->setupseqrx = DATA_PHASE; 1763 udc->setupseqtx = STATUS_PHASE; 1764 } 1765 1766 switch (udc->setup.bRequest) { 1767 case USB_REQ_GET_STATUS: 1768 /* Data+Status phase form udc */ 1769 if ((udc->setup.bRequestType & 1770 (USB_DIR_IN | USB_TYPE_MASK)) != 1771 (USB_DIR_IN | USB_TYPE_STANDARD)) 1772 break; 1773 xudc_getstatus(udc); 1774 return; 1775 case USB_REQ_SET_ADDRESS: 1776 /* Status phase from udc */ 1777 if (udc->setup.bRequestType != (USB_DIR_OUT | 1778 USB_TYPE_STANDARD | USB_RECIP_DEVICE)) 1779 break; 1780 xudc_setaddress(udc); 1781 return; 1782 case USB_REQ_CLEAR_FEATURE: 1783 case USB_REQ_SET_FEATURE: 1784 /* Requests with no data phase, status phase from udc */ 1785 if ((udc->setup.bRequestType & USB_TYPE_MASK) 1786 != USB_TYPE_STANDARD) 1787 break; 1788 xudc_set_clear_feature(udc); 1789 return; 1790 default: 1791 break; 1792 } 1793 1794 spin_unlock(&udc->lock); 1795 if (udc->driver->setup(&udc->gadget, &setup) < 0) 1796 xudc_ep0_stall(udc); 1797 spin_lock(&udc->lock); 1798 } 1799 1800 /** 1801 * xudc_ep0_out - Processes the endpoint 0 OUT token. 1802 * @udc: pointer to the usb device controller structure. 1803 */ 1804 static void xudc_ep0_out(struct xusb_udc *udc) 1805 { 1806 struct xusb_ep *ep0 = &udc->ep[0]; 1807 struct xusb_req *req; 1808 u8 *ep0rambase; 1809 unsigned int bytes_to_rx; 1810 void *buffer; 1811 1812 req = list_first_entry(&ep0->queue, struct xusb_req, queue); 1813 1814 switch (udc->setupseqrx) { 1815 case STATUS_PHASE: 1816 /* 1817 * This resets both state machines for the next 1818 * Setup packet. 1819 */ 1820 udc->setupseqrx = SETUP_PHASE; 1821 udc->setupseqtx = SETUP_PHASE; 1822 req->usb_req.actual = req->usb_req.length; 1823 xudc_done(ep0, req, 0); 1824 break; 1825 case DATA_PHASE: 1826 bytes_to_rx = udc->read_fn(udc->addr + 1827 XUSB_EP_BUF0COUNT_OFFSET); 1828 /* Copy the data to be received from the DPRAM. */ 1829 ep0rambase = (u8 __force *) (udc->addr + 1830 (ep0->rambase << 2)); 1831 buffer = req->usb_req.buf + req->usb_req.actual; 1832 req->usb_req.actual = req->usb_req.actual + bytes_to_rx; 1833 memcpy(buffer, ep0rambase, bytes_to_rx); 1834 1835 if (req->usb_req.length == req->usb_req.actual) { 1836 /* Data transfer completed get ready for Status stage */ 1837 xudc_wrstatus(udc); 1838 } else { 1839 /* Enable EP0 buffer to receive data */ 1840 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0); 1841 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); 1842 } 1843 break; 1844 default: 1845 break; 1846 } 1847 } 1848 1849 /** 1850 * xudc_ep0_in - Processes the endpoint 0 IN token. 1851 * @udc: pointer to the usb device controller structure. 1852 */ 1853 static void xudc_ep0_in(struct xusb_udc *udc) 1854 { 1855 struct xusb_ep *ep0 = &udc->ep[0]; 1856 struct xusb_req *req; 1857 unsigned int bytes_to_tx; 1858 void *buffer; 1859 u32 epcfgreg; 1860 u16 count = 0; 1861 u16 length; 1862 u8 *ep0rambase; 1863 u8 test_mode = udc->setup.wIndex >> 8; 1864 1865 req = list_first_entry(&ep0->queue, struct xusb_req, queue); 1866 bytes_to_tx = req->usb_req.length - req->usb_req.actual; 1867 1868 switch (udc->setupseqtx) { 1869 case STATUS_PHASE: 1870 switch (udc->setup.bRequest) { 1871 case USB_REQ_SET_ADDRESS: 1872 /* Set the address of the device.*/ 1873 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 1874 udc->setup.wValue); 1875 break; 1876 case USB_REQ_SET_FEATURE: 1877 if (udc->setup.bRequestType == 1878 USB_RECIP_DEVICE) { 1879 if (udc->setup.wValue == 1880 USB_DEVICE_TEST_MODE) 1881 udc->write_fn(udc->addr, 1882 XUSB_TESTMODE_OFFSET, 1883 test_mode); 1884 } 1885 break; 1886 } 1887 req->usb_req.actual = req->usb_req.length; 1888 xudc_done(ep0, req, 0); 1889 break; 1890 case DATA_PHASE: 1891 if (!bytes_to_tx) { 1892 /* 1893 * We're done with data transfer, next 1894 * will be zero length OUT with data toggle of 1895 * 1. Setup data_toggle. 1896 */ 1897 epcfgreg = udc->read_fn(udc->addr + ep0->offset); 1898 epcfgreg |= XUSB_EP_CFG_DATA_TOGGLE_MASK; 1899 udc->write_fn(udc->addr, ep0->offset, epcfgreg); 1900 udc->setupseqtx = STATUS_PHASE; 1901 } else { 1902 length = count = min_t(u32, bytes_to_tx, 1903 EP0_MAX_PACKET); 1904 /* Copy the data to be transmitted into the DPRAM. */ 1905 ep0rambase = (u8 __force *) (udc->addr + 1906 (ep0->rambase << 2)); 1907 buffer = req->usb_req.buf + req->usb_req.actual; 1908 req->usb_req.actual = req->usb_req.actual + length; 1909 memcpy(ep0rambase, buffer, length); 1910 } 1911 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, count); 1912 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); 1913 break; 1914 default: 1915 break; 1916 } 1917 } 1918 1919 /** 1920 * xudc_ctrl_ep_handler - Endpoint 0 interrupt handler. 1921 * @udc: pointer to the udc structure. 1922 * @intrstatus: It's the mask value for the interrupt sources on endpoint 0. 1923 * 1924 * Processes the commands received during enumeration phase. 1925 */ 1926 static void xudc_ctrl_ep_handler(struct xusb_udc *udc, u32 intrstatus) 1927 { 1928 1929 if (intrstatus & XUSB_STATUS_SETUP_PACKET_MASK) { 1930 xudc_handle_setup(udc); 1931 } else { 1932 if (intrstatus & XUSB_STATUS_FIFO_BUFF_RDY_MASK) 1933 xudc_ep0_out(udc); 1934 else if (intrstatus & XUSB_STATUS_FIFO_BUFF_FREE_MASK) 1935 xudc_ep0_in(udc); 1936 } 1937 } 1938 1939 /** 1940 * xudc_nonctrl_ep_handler - Non control endpoint interrupt handler. 1941 * @udc: pointer to the udc structure. 1942 * @epnum: End point number for which the interrupt is to be processed 1943 * @intrstatus: mask value for interrupt sources of endpoints other 1944 * than endpoint 0. 1945 * 1946 * Processes the buffer completion interrupts. 1947 */ 1948 static void xudc_nonctrl_ep_handler(struct xusb_udc *udc, u8 epnum, 1949 u32 intrstatus) 1950 { 1951 1952 struct xusb_req *req; 1953 struct xusb_ep *ep; 1954 1955 ep = &udc->ep[epnum]; 1956 /* Process the End point interrupts.*/ 1957 if (intrstatus & (XUSB_STATUS_EP0_BUFF1_COMP_MASK << epnum)) 1958 ep->buffer0ready = 0; 1959 if (intrstatus & (XUSB_STATUS_EP0_BUFF2_COMP_MASK << epnum)) 1960 ep->buffer1ready = false; 1961 1962 if (list_empty(&ep->queue)) 1963 return; 1964 1965 req = list_first_entry(&ep->queue, struct xusb_req, queue); 1966 1967 if (ep->is_in) 1968 xudc_write_fifo(ep, req); 1969 else 1970 xudc_read_fifo(ep, req); 1971 } 1972 1973 /** 1974 * xudc_irq - The main interrupt handler. 1975 * @irq: The interrupt number. 1976 * @_udc: pointer to the usb device controller structure. 1977 * 1978 * Return: IRQ_HANDLED after the interrupt is handled. 1979 */ 1980 static irqreturn_t xudc_irq(int irq, void *_udc) 1981 { 1982 struct xusb_udc *udc = _udc; 1983 u32 intrstatus; 1984 u32 ier; 1985 u8 index; 1986 u32 bufintr; 1987 unsigned long flags; 1988 1989 spin_lock_irqsave(&udc->lock, flags); 1990 1991 /* 1992 * Event interrupts are level sensitive hence first disable 1993 * IER, read ISR and figure out active interrupts. 1994 */ 1995 ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 1996 ier &= ~XUSB_STATUS_INTR_EVENT_MASK; 1997 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier); 1998 1999 /* Read the Interrupt Status Register.*/ 2000 intrstatus = udc->read_fn(udc->addr + XUSB_STATUS_OFFSET); 2001 2002 /* Call the handler for the event interrupt.*/ 2003 if (intrstatus & XUSB_STATUS_INTR_EVENT_MASK) { 2004 /* 2005 * Check if there is any action to be done for : 2006 * - USB Reset received {XUSB_STATUS_RESET_MASK} 2007 * - USB Suspend received {XUSB_STATUS_SUSPEND_MASK} 2008 * - USB Resume received {XUSB_STATUS_RESUME_MASK} 2009 * - USB Disconnect received {XUSB_STATUS_DISCONNECT_MASK} 2010 */ 2011 xudc_startup_handler(udc, intrstatus); 2012 } 2013 2014 /* Check the buffer completion interrupts */ 2015 if (intrstatus & XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK) { 2016 /* Enable Reset, Suspend, Resume and Disconnect */ 2017 ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 2018 ier |= XUSB_STATUS_INTR_EVENT_MASK; 2019 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier); 2020 2021 if (intrstatus & XUSB_STATUS_EP0_BUFF1_COMP_MASK) 2022 xudc_ctrl_ep_handler(udc, intrstatus); 2023 2024 for (index = 1; index < 8; index++) { 2025 bufintr = ((intrstatus & 2026 (XUSB_STATUS_EP1_BUFF1_COMP_MASK << 2027 (index - 1))) || (intrstatus & 2028 (XUSB_STATUS_EP1_BUFF2_COMP_MASK << 2029 (index - 1)))); 2030 if (bufintr) { 2031 xudc_nonctrl_ep_handler(udc, index, 2032 intrstatus); 2033 } 2034 } 2035 } 2036 2037 spin_unlock_irqrestore(&udc->lock, flags); 2038 return IRQ_HANDLED; 2039 } 2040 2041 /** 2042 * xudc_probe - The device probe function for driver initialization. 2043 * @pdev: pointer to the platform device structure. 2044 * 2045 * Return: 0 for success and error value on failure 2046 */ 2047 static int xudc_probe(struct platform_device *pdev) 2048 { 2049 struct device_node *np = pdev->dev.of_node; 2050 struct resource *res; 2051 struct xusb_udc *udc; 2052 int irq; 2053 int ret; 2054 u32 ier; 2055 u8 *buff; 2056 2057 udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL); 2058 if (!udc) 2059 return -ENOMEM; 2060 2061 /* Create a dummy request for GET_STATUS, SET_ADDRESS */ 2062 udc->req = devm_kzalloc(&pdev->dev, sizeof(struct xusb_req), 2063 GFP_KERNEL); 2064 if (!udc->req) 2065 return -ENOMEM; 2066 2067 buff = devm_kzalloc(&pdev->dev, STATUSBUFF_SIZE, GFP_KERNEL); 2068 if (!buff) 2069 return -ENOMEM; 2070 2071 udc->req->usb_req.buf = buff; 2072 2073 /* Map the registers */ 2074 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2075 udc->addr = devm_ioremap_resource(&pdev->dev, res); 2076 if (IS_ERR(udc->addr)) 2077 return PTR_ERR(udc->addr); 2078 2079 irq = platform_get_irq(pdev, 0); 2080 if (irq < 0) 2081 return irq; 2082 ret = devm_request_irq(&pdev->dev, irq, xudc_irq, 0, 2083 dev_name(&pdev->dev), udc); 2084 if (ret < 0) { 2085 dev_dbg(&pdev->dev, "unable to request irq %d", irq); 2086 goto fail; 2087 } 2088 2089 udc->dma_enabled = of_property_read_bool(np, "xlnx,has-builtin-dma"); 2090 2091 /* Setup gadget structure */ 2092 udc->gadget.ops = &xusb_udc_ops; 2093 udc->gadget.max_speed = USB_SPEED_HIGH; 2094 udc->gadget.speed = USB_SPEED_UNKNOWN; 2095 udc->gadget.ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO].ep_usb; 2096 udc->gadget.name = driver_name; 2097 2098 udc->clk = devm_clk_get(&pdev->dev, "s_axi_aclk"); 2099 if (IS_ERR(udc->clk)) { 2100 if (PTR_ERR(udc->clk) != -ENOENT) { 2101 ret = PTR_ERR(udc->clk); 2102 goto fail; 2103 } 2104 2105 /* 2106 * Clock framework support is optional, continue on, 2107 * anyways if we don't find a matching clock 2108 */ 2109 dev_warn(&pdev->dev, "s_axi_aclk clock property is not found\n"); 2110 udc->clk = NULL; 2111 } 2112 2113 ret = clk_prepare_enable(udc->clk); 2114 if (ret) { 2115 dev_err(&pdev->dev, "Unable to enable clock.\n"); 2116 return ret; 2117 } 2118 2119 spin_lock_init(&udc->lock); 2120 2121 /* Check for IP endianness */ 2122 udc->write_fn = xudc_write32_be; 2123 udc->read_fn = xudc_read32_be; 2124 udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, USB_TEST_J); 2125 if ((udc->read_fn(udc->addr + XUSB_TESTMODE_OFFSET)) 2126 != USB_TEST_J) { 2127 udc->write_fn = xudc_write32; 2128 udc->read_fn = xudc_read32; 2129 } 2130 udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0); 2131 2132 xudc_eps_init(udc); 2133 2134 /* Set device address to 0.*/ 2135 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0); 2136 2137 ret = usb_add_gadget_udc(&pdev->dev, &udc->gadget); 2138 if (ret) 2139 goto fail; 2140 2141 udc->dev = &udc->gadget.dev; 2142 2143 /* Enable the interrupts.*/ 2144 ier = XUSB_STATUS_GLOBAL_INTR_MASK | XUSB_STATUS_INTR_EVENT_MASK | 2145 XUSB_STATUS_FIFO_BUFF_RDY_MASK | XUSB_STATUS_FIFO_BUFF_FREE_MASK | 2146 XUSB_STATUS_SETUP_PACKET_MASK | 2147 XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK; 2148 2149 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier); 2150 2151 platform_set_drvdata(pdev, udc); 2152 2153 dev_vdbg(&pdev->dev, "%s at 0x%08X mapped to %p %s\n", 2154 driver_name, (u32)res->start, udc->addr, 2155 udc->dma_enabled ? "with DMA" : "without DMA"); 2156 2157 return 0; 2158 fail: 2159 dev_err(&pdev->dev, "probe failed, %d\n", ret); 2160 return ret; 2161 } 2162 2163 /** 2164 * xudc_remove - Releases the resources allocated during the initialization. 2165 * @pdev: pointer to the platform device structure. 2166 * 2167 * Return: 0 always 2168 */ 2169 static int xudc_remove(struct platform_device *pdev) 2170 { 2171 struct xusb_udc *udc = platform_get_drvdata(pdev); 2172 2173 usb_del_gadget_udc(&udc->gadget); 2174 clk_disable_unprepare(udc->clk); 2175 2176 return 0; 2177 } 2178 2179 /* Match table for of_platform binding */ 2180 static const struct of_device_id usb_of_match[] = { 2181 { .compatible = "xlnx,usb2-device-4.00.a", }, 2182 { /* end of list */ }, 2183 }; 2184 MODULE_DEVICE_TABLE(of, usb_of_match); 2185 2186 static struct platform_driver xudc_driver = { 2187 .driver = { 2188 .name = driver_name, 2189 .of_match_table = usb_of_match, 2190 }, 2191 .probe = xudc_probe, 2192 .remove = xudc_remove, 2193 }; 2194 2195 module_platform_driver(xudc_driver); 2196 2197 MODULE_DESCRIPTION("Xilinx udc driver"); 2198 MODULE_AUTHOR("Xilinx, Inc"); 2199 MODULE_LICENSE("GPL"); 2200