1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Xilinx USB peripheral controller driver 4 * 5 * Copyright (C) 2004 by Thomas Rathbone 6 * Copyright (C) 2005 by HP Labs 7 * Copyright (C) 2005 by David Brownell 8 * Copyright (C) 2010 - 2014 Xilinx, Inc. 9 * 10 * Some parts of this driver code is based on the driver for at91-series 11 * USB peripheral controller (at91_udc.c). 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/delay.h> 16 #include <linux/device.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/interrupt.h> 19 #include <linux/io.h> 20 #include <linux/module.h> 21 #include <linux/of_address.h> 22 #include <linux/of_device.h> 23 #include <linux/of_platform.h> 24 #include <linux/of_irq.h> 25 #include <linux/prefetch.h> 26 #include <linux/usb/ch9.h> 27 #include <linux/usb/gadget.h> 28 29 /* Register offsets for the USB device.*/ 30 #define XUSB_EP0_CONFIG_OFFSET 0x0000 /* EP0 Config Reg Offset */ 31 #define XUSB_SETUP_PKT_ADDR_OFFSET 0x0080 /* Setup Packet Address */ 32 #define XUSB_ADDRESS_OFFSET 0x0100 /* Address Register */ 33 #define XUSB_CONTROL_OFFSET 0x0104 /* Control Register */ 34 #define XUSB_STATUS_OFFSET 0x0108 /* Status Register */ 35 #define XUSB_FRAMENUM_OFFSET 0x010C /* Frame Number Register */ 36 #define XUSB_IER_OFFSET 0x0110 /* Interrupt Enable Register */ 37 #define XUSB_BUFFREADY_OFFSET 0x0114 /* Buffer Ready Register */ 38 #define XUSB_TESTMODE_OFFSET 0x0118 /* Test Mode Register */ 39 #define XUSB_DMA_RESET_OFFSET 0x0200 /* DMA Soft Reset Register */ 40 #define XUSB_DMA_CONTROL_OFFSET 0x0204 /* DMA Control Register */ 41 #define XUSB_DMA_DSAR_ADDR_OFFSET 0x0208 /* DMA source Address Reg */ 42 #define XUSB_DMA_DDAR_ADDR_OFFSET 0x020C /* DMA destination Addr Reg */ 43 #define XUSB_DMA_LENGTH_OFFSET 0x0210 /* DMA Length Register */ 44 #define XUSB_DMA_STATUS_OFFSET 0x0214 /* DMA Status Register */ 45 46 /* Endpoint Configuration Space offsets */ 47 #define XUSB_EP_CFGSTATUS_OFFSET 0x00 /* Endpoint Config Status */ 48 #define XUSB_EP_BUF0COUNT_OFFSET 0x08 /* Buffer 0 Count */ 49 #define XUSB_EP_BUF1COUNT_OFFSET 0x0C /* Buffer 1 Count */ 50 51 #define XUSB_CONTROL_USB_READY_MASK 0x80000000 /* USB ready Mask */ 52 #define XUSB_CONTROL_USB_RMTWAKE_MASK 0x40000000 /* Remote wake up mask */ 53 54 /* Interrupt register related masks.*/ 55 #define XUSB_STATUS_GLOBAL_INTR_MASK 0x80000000 /* Global Intr Enable */ 56 #define XUSB_STATUS_DMADONE_MASK 0x04000000 /* DMA done Mask */ 57 #define XUSB_STATUS_DMAERR_MASK 0x02000000 /* DMA Error Mask */ 58 #define XUSB_STATUS_DMABUSY_MASK 0x80000000 /* DMA Error Mask */ 59 #define XUSB_STATUS_RESUME_MASK 0x01000000 /* USB Resume Mask */ 60 #define XUSB_STATUS_RESET_MASK 0x00800000 /* USB Reset Mask */ 61 #define XUSB_STATUS_SUSPEND_MASK 0x00400000 /* USB Suspend Mask */ 62 #define XUSB_STATUS_DISCONNECT_MASK 0x00200000 /* USB Disconnect Mask */ 63 #define XUSB_STATUS_FIFO_BUFF_RDY_MASK 0x00100000 /* FIFO Buff Ready Mask */ 64 #define XUSB_STATUS_FIFO_BUFF_FREE_MASK 0x00080000 /* FIFO Buff Free Mask */ 65 #define XUSB_STATUS_SETUP_PACKET_MASK 0x00040000 /* Setup packet received */ 66 #define XUSB_STATUS_EP1_BUFF2_COMP_MASK 0x00000200 /* EP 1 Buff 2 Processed */ 67 #define XUSB_STATUS_EP1_BUFF1_COMP_MASK 0x00000002 /* EP 1 Buff 1 Processed */ 68 #define XUSB_STATUS_EP0_BUFF2_COMP_MASK 0x00000100 /* EP 0 Buff 2 Processed */ 69 #define XUSB_STATUS_EP0_BUFF1_COMP_MASK 0x00000001 /* EP 0 Buff 1 Processed */ 70 #define XUSB_STATUS_HIGH_SPEED_MASK 0x00010000 /* USB Speed Mask */ 71 /* Suspend,Reset,Suspend and Disconnect Mask */ 72 #define XUSB_STATUS_INTR_EVENT_MASK 0x01E00000 73 /* Buffers completion Mask */ 74 #define XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK 0x0000FEFF 75 /* Mask for buffer 0 and buffer 1 completion for all Endpoints */ 76 #define XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK 0x00000101 77 #define XUSB_STATUS_EP_BUFF2_SHIFT 8 /* EP buffer offset */ 78 79 /* Endpoint Configuration Status Register */ 80 #define XUSB_EP_CFG_VALID_MASK 0x80000000 /* Endpoint Valid bit */ 81 #define XUSB_EP_CFG_STALL_MASK 0x40000000 /* Endpoint Stall bit */ 82 #define XUSB_EP_CFG_DATA_TOGGLE_MASK 0x08000000 /* Endpoint Data toggle */ 83 84 /* USB device specific global configuration constants.*/ 85 #define XUSB_MAX_ENDPOINTS 8 /* Maximum End Points */ 86 #define XUSB_EP_NUMBER_ZERO 0 /* End point Zero */ 87 /* DPRAM is the source address for DMA transfer */ 88 #define XUSB_DMA_READ_FROM_DPRAM 0x80000000 89 #define XUSB_DMA_DMASR_BUSY 0x80000000 /* DMA busy */ 90 #define XUSB_DMA_DMASR_ERROR 0x40000000 /* DMA Error */ 91 /* 92 * When this bit is set, the DMA buffer ready bit is set by hardware upon 93 * DMA transfer completion. 94 */ 95 #define XUSB_DMA_BRR_CTRL 0x40000000 /* DMA bufready ctrl bit */ 96 /* Phase States */ 97 #define SETUP_PHASE 0x0000 /* Setup Phase */ 98 #define DATA_PHASE 0x0001 /* Data Phase */ 99 #define STATUS_PHASE 0x0002 /* Status Phase */ 100 101 #define EP0_MAX_PACKET 64 /* Endpoint 0 maximum packet length */ 102 #define STATUSBUFF_SIZE 2 /* Buffer size for GET_STATUS command */ 103 #define EPNAME_SIZE 4 /* Buffer size for endpoint name */ 104 105 /* container_of helper macros */ 106 #define to_udc(g) container_of((g), struct xusb_udc, gadget) 107 #define to_xusb_ep(ep) container_of((ep), struct xusb_ep, ep_usb) 108 #define to_xusb_req(req) container_of((req), struct xusb_req, usb_req) 109 110 /** 111 * struct xusb_req - Xilinx USB device request structure 112 * @usb_req: Linux usb request structure 113 * @queue: usb device request queue 114 * @ep: pointer to xusb_endpoint structure 115 */ 116 struct xusb_req { 117 struct usb_request usb_req; 118 struct list_head queue; 119 struct xusb_ep *ep; 120 }; 121 122 /** 123 * struct xusb_ep - USB end point structure. 124 * @ep_usb: usb endpoint instance 125 * @queue: endpoint message queue 126 * @udc: xilinx usb peripheral driver instance pointer 127 * @desc: pointer to the usb endpoint descriptor 128 * @rambase: the endpoint buffer address 129 * @offset: the endpoint register offset value 130 * @name: name of the endpoint 131 * @epnumber: endpoint number 132 * @maxpacket: maximum packet size the endpoint can store 133 * @buffer0count: the size of the packet recieved in the first buffer 134 * @buffer1count: the size of the packet received in the second buffer 135 * @curbufnum: current buffer of endpoint that will be processed next 136 * @buffer0ready: the busy state of first buffer 137 * @buffer1ready: the busy state of second buffer 138 * @is_in: endpoint direction (IN or OUT) 139 * @is_iso: endpoint type(isochronous or non isochronous) 140 */ 141 struct xusb_ep { 142 struct usb_ep ep_usb; 143 struct list_head queue; 144 struct xusb_udc *udc; 145 const struct usb_endpoint_descriptor *desc; 146 u32 rambase; 147 u32 offset; 148 char name[4]; 149 u16 epnumber; 150 u16 maxpacket; 151 u16 buffer0count; 152 u16 buffer1count; 153 u8 curbufnum; 154 bool buffer0ready; 155 bool buffer1ready; 156 bool is_in; 157 bool is_iso; 158 }; 159 160 /** 161 * struct xusb_udc - USB peripheral driver structure 162 * @gadget: USB gadget driver instance 163 * @ep: an array of endpoint structures 164 * @driver: pointer to the usb gadget driver instance 165 * @setup: usb_ctrlrequest structure for control requests 166 * @req: pointer to dummy request for get status command 167 * @dev: pointer to device structure in gadget 168 * @usb_state: device in suspended state or not 169 * @remote_wkp: remote wakeup enabled by host 170 * @setupseqtx: tx status 171 * @setupseqrx: rx status 172 * @addr: the usb device base address 173 * @lock: instance of spinlock 174 * @dma_enabled: flag indicating whether the dma is included in the system 175 * @clk: pointer to struct clk 176 * @read_fn: function pointer to read device registers 177 * @write_fn: function pointer to write to device registers 178 */ 179 struct xusb_udc { 180 struct usb_gadget gadget; 181 struct xusb_ep ep[8]; 182 struct usb_gadget_driver *driver; 183 struct usb_ctrlrequest setup; 184 struct xusb_req *req; 185 struct device *dev; 186 u32 usb_state; 187 u32 remote_wkp; 188 u32 setupseqtx; 189 u32 setupseqrx; 190 void __iomem *addr; 191 spinlock_t lock; 192 bool dma_enabled; 193 struct clk *clk; 194 195 unsigned int (*read_fn)(void __iomem *); 196 void (*write_fn)(void __iomem *, u32, u32); 197 }; 198 199 /* Endpoint buffer start addresses in the core */ 200 static u32 rambase[8] = { 0x22, 0x1000, 0x1100, 0x1200, 0x1300, 0x1400, 0x1500, 201 0x1600 }; 202 203 static const char driver_name[] = "xilinx-udc"; 204 static const char ep0name[] = "ep0"; 205 206 /* Control endpoint configuration.*/ 207 static const struct usb_endpoint_descriptor config_bulk_out_desc = { 208 .bLength = USB_DT_ENDPOINT_SIZE, 209 .bDescriptorType = USB_DT_ENDPOINT, 210 .bEndpointAddress = USB_DIR_OUT, 211 .bmAttributes = USB_ENDPOINT_XFER_BULK, 212 .wMaxPacketSize = cpu_to_le16(EP0_MAX_PACKET), 213 }; 214 215 /** 216 * xudc_write32 - little endian write to device registers 217 * @addr: base addr of device registers 218 * @offset: register offset 219 * @val: data to be written 220 */ 221 static void xudc_write32(void __iomem *addr, u32 offset, u32 val) 222 { 223 iowrite32(val, addr + offset); 224 } 225 226 /** 227 * xudc_read32 - little endian read from device registers 228 * @addr: addr of device register 229 * Return: value at addr 230 */ 231 static unsigned int xudc_read32(void __iomem *addr) 232 { 233 return ioread32(addr); 234 } 235 236 /** 237 * xudc_write32_be - big endian write to device registers 238 * @addr: base addr of device registers 239 * @offset: register offset 240 * @val: data to be written 241 */ 242 static void xudc_write32_be(void __iomem *addr, u32 offset, u32 val) 243 { 244 iowrite32be(val, addr + offset); 245 } 246 247 /** 248 * xudc_read32_be - big endian read from device registers 249 * @addr: addr of device register 250 * Return: value at addr 251 */ 252 static unsigned int xudc_read32_be(void __iomem *addr) 253 { 254 return ioread32be(addr); 255 } 256 257 /** 258 * xudc_wrstatus - Sets up the usb device status stages. 259 * @udc: pointer to the usb device controller structure. 260 */ 261 static void xudc_wrstatus(struct xusb_udc *udc) 262 { 263 struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO]; 264 u32 epcfgreg; 265 266 epcfgreg = udc->read_fn(udc->addr + ep0->offset)| 267 XUSB_EP_CFG_DATA_TOGGLE_MASK; 268 udc->write_fn(udc->addr, ep0->offset, epcfgreg); 269 udc->write_fn(udc->addr, ep0->offset + XUSB_EP_BUF0COUNT_OFFSET, 0); 270 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); 271 } 272 273 /** 274 * xudc_epconfig - Configures the given endpoint. 275 * @ep: pointer to the usb device endpoint structure. 276 * @udc: pointer to the usb peripheral controller structure. 277 * 278 * This function configures a specific endpoint with the given configuration 279 * data. 280 */ 281 static void xudc_epconfig(struct xusb_ep *ep, struct xusb_udc *udc) 282 { 283 u32 epcfgreg; 284 285 /* 286 * Configure the end point direction, type, Max Packet Size and the 287 * EP buffer location. 288 */ 289 epcfgreg = ((ep->is_in << 29) | (ep->is_iso << 28) | 290 (ep->ep_usb.maxpacket << 15) | (ep->rambase)); 291 udc->write_fn(udc->addr, ep->offset, epcfgreg); 292 293 /* Set the Buffer count and the Buffer ready bits.*/ 294 udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF0COUNT_OFFSET, 295 ep->buffer0count); 296 udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF1COUNT_OFFSET, 297 ep->buffer1count); 298 if (ep->buffer0ready) 299 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 300 1 << ep->epnumber); 301 if (ep->buffer1ready) 302 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 303 1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT)); 304 } 305 306 /** 307 * xudc_start_dma - Starts DMA transfer. 308 * @ep: pointer to the usb device endpoint structure. 309 * @src: DMA source address. 310 * @dst: DMA destination address. 311 * @length: number of bytes to transfer. 312 * 313 * Return: 0 on success, error code on failure 314 * 315 * This function starts DMA transfer by writing to DMA source, 316 * destination and lenth registers. 317 */ 318 static int xudc_start_dma(struct xusb_ep *ep, dma_addr_t src, 319 dma_addr_t dst, u32 length) 320 { 321 struct xusb_udc *udc = ep->udc; 322 int rc = 0; 323 u32 timeout = 500; 324 u32 reg; 325 326 /* 327 * Set the addresses in the DMA source and 328 * destination registers and then set the length 329 * into the DMA length register. 330 */ 331 udc->write_fn(udc->addr, XUSB_DMA_DSAR_ADDR_OFFSET, src); 332 udc->write_fn(udc->addr, XUSB_DMA_DDAR_ADDR_OFFSET, dst); 333 udc->write_fn(udc->addr, XUSB_DMA_LENGTH_OFFSET, length); 334 335 /* 336 * Wait till DMA transaction is complete and 337 * check whether the DMA transaction was 338 * successful. 339 */ 340 do { 341 reg = udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET); 342 if (!(reg & XUSB_DMA_DMASR_BUSY)) 343 break; 344 345 /* 346 * We can't sleep here, because it's also called from 347 * interrupt context. 348 */ 349 timeout--; 350 if (!timeout) { 351 dev_err(udc->dev, "DMA timeout\n"); 352 return -ETIMEDOUT; 353 } 354 udelay(1); 355 } while (1); 356 357 if ((udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET) & 358 XUSB_DMA_DMASR_ERROR) == XUSB_DMA_DMASR_ERROR){ 359 dev_err(udc->dev, "DMA Error\n"); 360 rc = -EINVAL; 361 } 362 363 return rc; 364 } 365 366 /** 367 * xudc_dma_send - Sends IN data using DMA. 368 * @ep: pointer to the usb device endpoint structure. 369 * @req: pointer to the usb request structure. 370 * @buffer: pointer to data to be sent. 371 * @length: number of bytes to send. 372 * 373 * Return: 0 on success, -EAGAIN if no buffer is free and error 374 * code on failure. 375 * 376 * This function sends data using DMA. 377 */ 378 static int xudc_dma_send(struct xusb_ep *ep, struct xusb_req *req, 379 u8 *buffer, u32 length) 380 { 381 u32 *eprambase; 382 dma_addr_t src; 383 dma_addr_t dst; 384 struct xusb_udc *udc = ep->udc; 385 386 src = req->usb_req.dma + req->usb_req.actual; 387 if (req->usb_req.length) 388 dma_sync_single_for_device(udc->dev, src, 389 length, DMA_TO_DEVICE); 390 if (!ep->curbufnum && !ep->buffer0ready) { 391 /* Get the Buffer address and copy the transmit data.*/ 392 eprambase = (u32 __force *)(udc->addr + ep->rambase); 393 dst = virt_to_phys(eprambase); 394 udc->write_fn(udc->addr, ep->offset + 395 XUSB_EP_BUF0COUNT_OFFSET, length); 396 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET, 397 XUSB_DMA_BRR_CTRL | (1 << ep->epnumber)); 398 ep->buffer0ready = 1; 399 ep->curbufnum = 1; 400 } else if (ep->curbufnum && !ep->buffer1ready) { 401 /* Get the Buffer address and copy the transmit data.*/ 402 eprambase = (u32 __force *)(udc->addr + ep->rambase + 403 ep->ep_usb.maxpacket); 404 dst = virt_to_phys(eprambase); 405 udc->write_fn(udc->addr, ep->offset + 406 XUSB_EP_BUF1COUNT_OFFSET, length); 407 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET, 408 XUSB_DMA_BRR_CTRL | (1 << (ep->epnumber + 409 XUSB_STATUS_EP_BUFF2_SHIFT))); 410 ep->buffer1ready = 1; 411 ep->curbufnum = 0; 412 } else { 413 /* None of ping pong buffers are ready currently .*/ 414 return -EAGAIN; 415 } 416 417 return xudc_start_dma(ep, src, dst, length); 418 } 419 420 /** 421 * xudc_dma_receive - Receives OUT data using DMA. 422 * @ep: pointer to the usb device endpoint structure. 423 * @req: pointer to the usb request structure. 424 * @buffer: pointer to storage buffer of received data. 425 * @length: number of bytes to receive. 426 * 427 * Return: 0 on success, -EAGAIN if no buffer is free and error 428 * code on failure. 429 * 430 * This function receives data using DMA. 431 */ 432 static int xudc_dma_receive(struct xusb_ep *ep, struct xusb_req *req, 433 u8 *buffer, u32 length) 434 { 435 u32 *eprambase; 436 dma_addr_t src; 437 dma_addr_t dst; 438 struct xusb_udc *udc = ep->udc; 439 440 dst = req->usb_req.dma + req->usb_req.actual; 441 if (!ep->curbufnum && !ep->buffer0ready) { 442 /* Get the Buffer address and copy the transmit data */ 443 eprambase = (u32 __force *)(udc->addr + ep->rambase); 444 src = virt_to_phys(eprambase); 445 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET, 446 XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM | 447 (1 << ep->epnumber)); 448 ep->buffer0ready = 1; 449 ep->curbufnum = 1; 450 } else if (ep->curbufnum && !ep->buffer1ready) { 451 /* Get the Buffer address and copy the transmit data */ 452 eprambase = (u32 __force *)(udc->addr + 453 ep->rambase + ep->ep_usb.maxpacket); 454 src = virt_to_phys(eprambase); 455 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET, 456 XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM | 457 (1 << (ep->epnumber + 458 XUSB_STATUS_EP_BUFF2_SHIFT))); 459 ep->buffer1ready = 1; 460 ep->curbufnum = 0; 461 } else { 462 /* None of the ping-pong buffers are ready currently */ 463 return -EAGAIN; 464 } 465 466 return xudc_start_dma(ep, src, dst, length); 467 } 468 469 /** 470 * xudc_eptxrx - Transmits or receives data to or from an endpoint. 471 * @ep: pointer to the usb endpoint configuration structure. 472 * @req: pointer to the usb request structure. 473 * @bufferptr: pointer to buffer containing the data to be sent. 474 * @bufferlen: The number of data bytes to be sent. 475 * 476 * Return: 0 on success, -EAGAIN if no buffer is free. 477 * 478 * This function copies the transmit/receive data to/from the end point buffer 479 * and enables the buffer for transmission/reception. 480 */ 481 static int xudc_eptxrx(struct xusb_ep *ep, struct xusb_req *req, 482 u8 *bufferptr, u32 bufferlen) 483 { 484 u32 *eprambase; 485 u32 bytestosend; 486 int rc = 0; 487 struct xusb_udc *udc = ep->udc; 488 489 bytestosend = bufferlen; 490 if (udc->dma_enabled) { 491 if (ep->is_in) 492 rc = xudc_dma_send(ep, req, bufferptr, bufferlen); 493 else 494 rc = xudc_dma_receive(ep, req, bufferptr, bufferlen); 495 return rc; 496 } 497 /* Put the transmit buffer into the correct ping-pong buffer.*/ 498 if (!ep->curbufnum && !ep->buffer0ready) { 499 /* Get the Buffer address and copy the transmit data.*/ 500 eprambase = (u32 __force *)(udc->addr + ep->rambase); 501 if (ep->is_in) { 502 memcpy(eprambase, bufferptr, bytestosend); 503 udc->write_fn(udc->addr, ep->offset + 504 XUSB_EP_BUF0COUNT_OFFSET, bufferlen); 505 } else { 506 memcpy(bufferptr, eprambase, bytestosend); 507 } 508 /* 509 * Enable the buffer for transmission. 510 */ 511 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 512 1 << ep->epnumber); 513 ep->buffer0ready = 1; 514 ep->curbufnum = 1; 515 } else if (ep->curbufnum && !ep->buffer1ready) { 516 /* Get the Buffer address and copy the transmit data.*/ 517 eprambase = (u32 __force *)(udc->addr + ep->rambase + 518 ep->ep_usb.maxpacket); 519 if (ep->is_in) { 520 memcpy(eprambase, bufferptr, bytestosend); 521 udc->write_fn(udc->addr, ep->offset + 522 XUSB_EP_BUF1COUNT_OFFSET, bufferlen); 523 } else { 524 memcpy(bufferptr, eprambase, bytestosend); 525 } 526 /* 527 * Enable the buffer for transmission. 528 */ 529 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 530 1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT)); 531 ep->buffer1ready = 1; 532 ep->curbufnum = 0; 533 } else { 534 /* None of the ping-pong buffers are ready currently */ 535 return -EAGAIN; 536 } 537 return rc; 538 } 539 540 /** 541 * xudc_done - Exeutes the endpoint data transfer completion tasks. 542 * @ep: pointer to the usb device endpoint structure. 543 * @req: pointer to the usb request structure. 544 * @status: Status of the data transfer. 545 * 546 * Deletes the message from the queue and updates data transfer completion 547 * status. 548 */ 549 static void xudc_done(struct xusb_ep *ep, struct xusb_req *req, int status) 550 { 551 struct xusb_udc *udc = ep->udc; 552 553 list_del_init(&req->queue); 554 555 if (req->usb_req.status == -EINPROGRESS) 556 req->usb_req.status = status; 557 else 558 status = req->usb_req.status; 559 560 if (status && status != -ESHUTDOWN) 561 dev_dbg(udc->dev, "%s done %p, status %d\n", 562 ep->ep_usb.name, req, status); 563 /* unmap request if DMA is present*/ 564 if (udc->dma_enabled && ep->epnumber && req->usb_req.length) 565 usb_gadget_unmap_request(&udc->gadget, &req->usb_req, 566 ep->is_in); 567 568 if (req->usb_req.complete) { 569 spin_unlock(&udc->lock); 570 req->usb_req.complete(&ep->ep_usb, &req->usb_req); 571 spin_lock(&udc->lock); 572 } 573 } 574 575 /** 576 * xudc_read_fifo - Reads the data from the given endpoint buffer. 577 * @ep: pointer to the usb device endpoint structure. 578 * @req: pointer to the usb request structure. 579 * 580 * Return: 0 if request is completed and -EAGAIN if not completed. 581 * 582 * Pulls OUT packet data from the endpoint buffer. 583 */ 584 static int xudc_read_fifo(struct xusb_ep *ep, struct xusb_req *req) 585 { 586 u8 *buf; 587 u32 is_short, count, bufferspace; 588 u8 bufoffset; 589 u8 two_pkts = 0; 590 int ret; 591 int retval = -EAGAIN; 592 struct xusb_udc *udc = ep->udc; 593 594 if (ep->buffer0ready && ep->buffer1ready) { 595 dev_dbg(udc->dev, "Packet NOT ready!\n"); 596 return retval; 597 } 598 top: 599 if (ep->curbufnum) 600 bufoffset = XUSB_EP_BUF1COUNT_OFFSET; 601 else 602 bufoffset = XUSB_EP_BUF0COUNT_OFFSET; 603 604 count = udc->read_fn(udc->addr + ep->offset + bufoffset); 605 606 if (!ep->buffer0ready && !ep->buffer1ready) 607 two_pkts = 1; 608 609 buf = req->usb_req.buf + req->usb_req.actual; 610 prefetchw(buf); 611 bufferspace = req->usb_req.length - req->usb_req.actual; 612 is_short = count < ep->ep_usb.maxpacket; 613 614 if (unlikely(!bufferspace)) { 615 /* 616 * This happens when the driver's buffer 617 * is smaller than what the host sent. 618 * discard the extra data. 619 */ 620 if (req->usb_req.status != -EOVERFLOW) 621 dev_dbg(udc->dev, "%s overflow %d\n", 622 ep->ep_usb.name, count); 623 req->usb_req.status = -EOVERFLOW; 624 xudc_done(ep, req, -EOVERFLOW); 625 return 0; 626 } 627 628 ret = xudc_eptxrx(ep, req, buf, count); 629 switch (ret) { 630 case 0: 631 req->usb_req.actual += min(count, bufferspace); 632 dev_dbg(udc->dev, "read %s, %d bytes%s req %p %d/%d\n", 633 ep->ep_usb.name, count, is_short ? "/S" : "", req, 634 req->usb_req.actual, req->usb_req.length); 635 bufferspace -= count; 636 /* Completion */ 637 if ((req->usb_req.actual == req->usb_req.length) || is_short) { 638 if (udc->dma_enabled && req->usb_req.length) 639 dma_sync_single_for_cpu(udc->dev, 640 req->usb_req.dma, 641 req->usb_req.actual, 642 DMA_FROM_DEVICE); 643 xudc_done(ep, req, 0); 644 return 0; 645 } 646 if (two_pkts) { 647 two_pkts = 0; 648 goto top; 649 } 650 break; 651 case -EAGAIN: 652 dev_dbg(udc->dev, "receive busy\n"); 653 break; 654 case -EINVAL: 655 case -ETIMEDOUT: 656 /* DMA error, dequeue the request */ 657 xudc_done(ep, req, -ECONNRESET); 658 retval = 0; 659 break; 660 } 661 662 return retval; 663 } 664 665 /** 666 * xudc_write_fifo - Writes data into the given endpoint buffer. 667 * @ep: pointer to the usb device endpoint structure. 668 * @req: pointer to the usb request structure. 669 * 670 * Return: 0 if request is completed and -EAGAIN if not completed. 671 * 672 * Loads endpoint buffer for an IN packet. 673 */ 674 static int xudc_write_fifo(struct xusb_ep *ep, struct xusb_req *req) 675 { 676 u32 max; 677 u32 length; 678 int ret; 679 int retval = -EAGAIN; 680 struct xusb_udc *udc = ep->udc; 681 int is_last, is_short = 0; 682 u8 *buf; 683 684 max = le16_to_cpu(ep->desc->wMaxPacketSize); 685 buf = req->usb_req.buf + req->usb_req.actual; 686 prefetch(buf); 687 length = req->usb_req.length - req->usb_req.actual; 688 length = min(length, max); 689 690 ret = xudc_eptxrx(ep, req, buf, length); 691 switch (ret) { 692 case 0: 693 req->usb_req.actual += length; 694 if (unlikely(length != max)) { 695 is_last = is_short = 1; 696 } else { 697 if (likely(req->usb_req.length != 698 req->usb_req.actual) || req->usb_req.zero) 699 is_last = 0; 700 else 701 is_last = 1; 702 } 703 dev_dbg(udc->dev, "%s: wrote %s %d bytes%s%s %d left %p\n", 704 __func__, ep->ep_usb.name, length, is_last ? "/L" : "", 705 is_short ? "/S" : "", 706 req->usb_req.length - req->usb_req.actual, req); 707 /* completion */ 708 if (is_last) { 709 xudc_done(ep, req, 0); 710 retval = 0; 711 } 712 break; 713 case -EAGAIN: 714 dev_dbg(udc->dev, "Send busy\n"); 715 break; 716 case -EINVAL: 717 case -ETIMEDOUT: 718 /* DMA error, dequeue the request */ 719 xudc_done(ep, req, -ECONNRESET); 720 retval = 0; 721 break; 722 } 723 724 return retval; 725 } 726 727 /** 728 * xudc_nuke - Cleans up the data transfer message list. 729 * @ep: pointer to the usb device endpoint structure. 730 * @status: Status of the data transfer. 731 */ 732 static void xudc_nuke(struct xusb_ep *ep, int status) 733 { 734 struct xusb_req *req; 735 736 while (!list_empty(&ep->queue)) { 737 req = list_first_entry(&ep->queue, struct xusb_req, queue); 738 xudc_done(ep, req, status); 739 } 740 } 741 742 /** 743 * xudc_ep_set_halt - Stalls/unstalls the given endpoint. 744 * @_ep: pointer to the usb device endpoint structure. 745 * @value: value to indicate stall/unstall. 746 * 747 * Return: 0 for success and error value on failure 748 */ 749 static int xudc_ep_set_halt(struct usb_ep *_ep, int value) 750 { 751 struct xusb_ep *ep = to_xusb_ep(_ep); 752 struct xusb_udc *udc; 753 unsigned long flags; 754 u32 epcfgreg; 755 756 if (!_ep || (!ep->desc && ep->epnumber)) { 757 pr_debug("%s: bad ep or descriptor\n", __func__); 758 return -EINVAL; 759 } 760 udc = ep->udc; 761 762 if (ep->is_in && (!list_empty(&ep->queue)) && value) { 763 dev_dbg(udc->dev, "requests pending can't halt\n"); 764 return -EAGAIN; 765 } 766 767 if (ep->buffer0ready || ep->buffer1ready) { 768 dev_dbg(udc->dev, "HW buffers busy can't halt\n"); 769 return -EAGAIN; 770 } 771 772 spin_lock_irqsave(&udc->lock, flags); 773 774 if (value) { 775 /* Stall the device.*/ 776 epcfgreg = udc->read_fn(udc->addr + ep->offset); 777 epcfgreg |= XUSB_EP_CFG_STALL_MASK; 778 udc->write_fn(udc->addr, ep->offset, epcfgreg); 779 } else { 780 /* Unstall the device.*/ 781 epcfgreg = udc->read_fn(udc->addr + ep->offset); 782 epcfgreg &= ~XUSB_EP_CFG_STALL_MASK; 783 udc->write_fn(udc->addr, ep->offset, epcfgreg); 784 if (ep->epnumber) { 785 /* Reset the toggle bit.*/ 786 epcfgreg = udc->read_fn(ep->udc->addr + ep->offset); 787 epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK; 788 udc->write_fn(udc->addr, ep->offset, epcfgreg); 789 } 790 } 791 792 spin_unlock_irqrestore(&udc->lock, flags); 793 return 0; 794 } 795 796 /** 797 * __xudc_ep_enable - Enables the given endpoint. 798 * @ep: pointer to the xusb endpoint structure. 799 * @desc: pointer to usb endpoint descriptor. 800 * 801 * Return: 0 for success and error value on failure 802 */ 803 static int __xudc_ep_enable(struct xusb_ep *ep, 804 const struct usb_endpoint_descriptor *desc) 805 { 806 struct xusb_udc *udc = ep->udc; 807 u32 tmp; 808 u32 epcfg; 809 u32 ier; 810 u16 maxpacket; 811 812 ep->is_in = ((desc->bEndpointAddress & USB_DIR_IN) != 0); 813 /* Bit 3...0:endpoint number */ 814 ep->epnumber = (desc->bEndpointAddress & 0x0f); 815 ep->desc = desc; 816 ep->ep_usb.desc = desc; 817 tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 818 ep->ep_usb.maxpacket = maxpacket = le16_to_cpu(desc->wMaxPacketSize); 819 820 switch (tmp) { 821 case USB_ENDPOINT_XFER_CONTROL: 822 dev_dbg(udc->dev, "only one control endpoint\n"); 823 /* NON- ISO */ 824 ep->is_iso = 0; 825 return -EINVAL; 826 case USB_ENDPOINT_XFER_INT: 827 /* NON- ISO */ 828 ep->is_iso = 0; 829 if (maxpacket > 64) { 830 dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket); 831 return -EINVAL; 832 } 833 break; 834 case USB_ENDPOINT_XFER_BULK: 835 /* NON- ISO */ 836 ep->is_iso = 0; 837 if (!(is_power_of_2(maxpacket) && maxpacket >= 8 && 838 maxpacket <= 512)) { 839 dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket); 840 return -EINVAL; 841 } 842 break; 843 case USB_ENDPOINT_XFER_ISOC: 844 /* ISO */ 845 ep->is_iso = 1; 846 break; 847 } 848 849 ep->buffer0ready = false; 850 ep->buffer1ready = false; 851 ep->curbufnum = 0; 852 ep->rambase = rambase[ep->epnumber]; 853 xudc_epconfig(ep, udc); 854 855 dev_dbg(udc->dev, "Enable Endpoint %d max pkt is %d\n", 856 ep->epnumber, maxpacket); 857 858 /* Enable the End point.*/ 859 epcfg = udc->read_fn(udc->addr + ep->offset); 860 epcfg |= XUSB_EP_CFG_VALID_MASK; 861 udc->write_fn(udc->addr, ep->offset, epcfg); 862 if (ep->epnumber) 863 ep->rambase <<= 2; 864 865 /* Enable buffer completion interrupts for endpoint */ 866 ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 867 ier |= (XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK << ep->epnumber); 868 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier); 869 870 /* for OUT endpoint set buffers ready to receive */ 871 if (ep->epnumber && !ep->is_in) { 872 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 873 1 << ep->epnumber); 874 ep->buffer0ready = true; 875 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 876 (1 << (ep->epnumber + 877 XUSB_STATUS_EP_BUFF2_SHIFT))); 878 ep->buffer1ready = true; 879 } 880 881 return 0; 882 } 883 884 /** 885 * xudc_ep_enable - Enables the given endpoint. 886 * @_ep: pointer to the usb endpoint structure. 887 * @desc: pointer to usb endpoint descriptor. 888 * 889 * Return: 0 for success and error value on failure 890 */ 891 static int xudc_ep_enable(struct usb_ep *_ep, 892 const struct usb_endpoint_descriptor *desc) 893 { 894 struct xusb_ep *ep; 895 struct xusb_udc *udc; 896 unsigned long flags; 897 int ret; 898 899 if (!_ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT) { 900 pr_debug("%s: bad ep or descriptor\n", __func__); 901 return -EINVAL; 902 } 903 904 ep = to_xusb_ep(_ep); 905 udc = ep->udc; 906 907 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) { 908 dev_dbg(udc->dev, "bogus device state\n"); 909 return -ESHUTDOWN; 910 } 911 912 spin_lock_irqsave(&udc->lock, flags); 913 ret = __xudc_ep_enable(ep, desc); 914 spin_unlock_irqrestore(&udc->lock, flags); 915 916 return ret; 917 } 918 919 /** 920 * xudc_ep_disable - Disables the given endpoint. 921 * @_ep: pointer to the usb endpoint structure. 922 * 923 * Return: 0 for success and error value on failure 924 */ 925 static int xudc_ep_disable(struct usb_ep *_ep) 926 { 927 struct xusb_ep *ep; 928 unsigned long flags; 929 u32 epcfg; 930 struct xusb_udc *udc; 931 932 if (!_ep) { 933 pr_debug("%s: invalid ep\n", __func__); 934 return -EINVAL; 935 } 936 937 ep = to_xusb_ep(_ep); 938 udc = ep->udc; 939 940 spin_lock_irqsave(&udc->lock, flags); 941 942 xudc_nuke(ep, -ESHUTDOWN); 943 944 /* Restore the endpoint's pristine config */ 945 ep->desc = NULL; 946 ep->ep_usb.desc = NULL; 947 948 dev_dbg(udc->dev, "USB Ep %d disable\n ", ep->epnumber); 949 /* Disable the endpoint.*/ 950 epcfg = udc->read_fn(udc->addr + ep->offset); 951 epcfg &= ~XUSB_EP_CFG_VALID_MASK; 952 udc->write_fn(udc->addr, ep->offset, epcfg); 953 954 spin_unlock_irqrestore(&udc->lock, flags); 955 return 0; 956 } 957 958 /** 959 * xudc_ep_alloc_request - Initializes the request queue. 960 * @_ep: pointer to the usb endpoint structure. 961 * @gfp_flags: Flags related to the request call. 962 * 963 * Return: pointer to request structure on success and a NULL on failure. 964 */ 965 static struct usb_request *xudc_ep_alloc_request(struct usb_ep *_ep, 966 gfp_t gfp_flags) 967 { 968 struct xusb_ep *ep = to_xusb_ep(_ep); 969 struct xusb_req *req; 970 971 req = kzalloc(sizeof(*req), gfp_flags); 972 if (!req) 973 return NULL; 974 975 req->ep = ep; 976 INIT_LIST_HEAD(&req->queue); 977 return &req->usb_req; 978 } 979 980 /** 981 * xudc_free_request - Releases the request from queue. 982 * @_ep: pointer to the usb device endpoint structure. 983 * @_req: pointer to the usb request structure. 984 */ 985 static void xudc_free_request(struct usb_ep *_ep, struct usb_request *_req) 986 { 987 struct xusb_req *req = to_xusb_req(_req); 988 989 kfree(req); 990 } 991 992 /** 993 * __xudc_ep0_queue - Adds the request to endpoint 0 queue. 994 * @ep0: pointer to the xusb endpoint 0 structure. 995 * @req: pointer to the xusb request structure. 996 * 997 * Return: 0 for success and error value on failure 998 */ 999 static int __xudc_ep0_queue(struct xusb_ep *ep0, struct xusb_req *req) 1000 { 1001 struct xusb_udc *udc = ep0->udc; 1002 u32 length; 1003 u8 *corebuf; 1004 1005 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) { 1006 dev_dbg(udc->dev, "%s, bogus device state\n", __func__); 1007 return -EINVAL; 1008 } 1009 if (!list_empty(&ep0->queue)) { 1010 dev_dbg(udc->dev, "%s:ep0 busy\n", __func__); 1011 return -EBUSY; 1012 } 1013 1014 req->usb_req.status = -EINPROGRESS; 1015 req->usb_req.actual = 0; 1016 1017 list_add_tail(&req->queue, &ep0->queue); 1018 1019 if (udc->setup.bRequestType & USB_DIR_IN) { 1020 prefetch(req->usb_req.buf); 1021 length = req->usb_req.length; 1022 corebuf = (void __force *) ((ep0->rambase << 2) + 1023 udc->addr); 1024 length = req->usb_req.actual = min_t(u32, length, 1025 EP0_MAX_PACKET); 1026 memcpy(corebuf, req->usb_req.buf, length); 1027 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, length); 1028 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); 1029 } else { 1030 if (udc->setup.wLength) { 1031 /* Enable EP0 buffer to receive data */ 1032 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0); 1033 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); 1034 } else { 1035 xudc_wrstatus(udc); 1036 } 1037 } 1038 1039 return 0; 1040 } 1041 1042 /** 1043 * xudc_ep0_queue - Adds the request to endpoint 0 queue. 1044 * @_ep: pointer to the usb endpoint 0 structure. 1045 * @_req: pointer to the usb request structure. 1046 * @gfp_flags: Flags related to the request call. 1047 * 1048 * Return: 0 for success and error value on failure 1049 */ 1050 static int xudc_ep0_queue(struct usb_ep *_ep, struct usb_request *_req, 1051 gfp_t gfp_flags) 1052 { 1053 struct xusb_req *req = to_xusb_req(_req); 1054 struct xusb_ep *ep0 = to_xusb_ep(_ep); 1055 struct xusb_udc *udc = ep0->udc; 1056 unsigned long flags; 1057 int ret; 1058 1059 spin_lock_irqsave(&udc->lock, flags); 1060 ret = __xudc_ep0_queue(ep0, req); 1061 spin_unlock_irqrestore(&udc->lock, flags); 1062 1063 return ret; 1064 } 1065 1066 /** 1067 * xudc_ep_queue - Adds the request to endpoint queue. 1068 * @_ep: pointer to the usb endpoint structure. 1069 * @_req: pointer to the usb request structure. 1070 * @gfp_flags: Flags related to the request call. 1071 * 1072 * Return: 0 for success and error value on failure 1073 */ 1074 static int xudc_ep_queue(struct usb_ep *_ep, struct usb_request *_req, 1075 gfp_t gfp_flags) 1076 { 1077 struct xusb_req *req = to_xusb_req(_req); 1078 struct xusb_ep *ep = to_xusb_ep(_ep); 1079 struct xusb_udc *udc = ep->udc; 1080 int ret; 1081 unsigned long flags; 1082 1083 if (!ep->desc) { 1084 dev_dbg(udc->dev, "%s: queuing request to disabled %s\n", 1085 __func__, ep->name); 1086 return -ESHUTDOWN; 1087 } 1088 1089 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) { 1090 dev_dbg(udc->dev, "%s, bogus device state\n", __func__); 1091 return -EINVAL; 1092 } 1093 1094 spin_lock_irqsave(&udc->lock, flags); 1095 1096 _req->status = -EINPROGRESS; 1097 _req->actual = 0; 1098 1099 if (udc->dma_enabled) { 1100 ret = usb_gadget_map_request(&udc->gadget, &req->usb_req, 1101 ep->is_in); 1102 if (ret) { 1103 dev_dbg(udc->dev, "gadget_map failed ep%d\n", 1104 ep->epnumber); 1105 spin_unlock_irqrestore(&udc->lock, flags); 1106 return -EAGAIN; 1107 } 1108 } 1109 1110 if (list_empty(&ep->queue)) { 1111 if (ep->is_in) { 1112 dev_dbg(udc->dev, "xudc_write_fifo from ep_queue\n"); 1113 if (!xudc_write_fifo(ep, req)) 1114 req = NULL; 1115 } else { 1116 dev_dbg(udc->dev, "xudc_read_fifo from ep_queue\n"); 1117 if (!xudc_read_fifo(ep, req)) 1118 req = NULL; 1119 } 1120 } 1121 1122 if (req != NULL) 1123 list_add_tail(&req->queue, &ep->queue); 1124 1125 spin_unlock_irqrestore(&udc->lock, flags); 1126 return 0; 1127 } 1128 1129 /** 1130 * xudc_ep_dequeue - Removes the request from the queue. 1131 * @_ep: pointer to the usb device endpoint structure. 1132 * @_req: pointer to the usb request structure. 1133 * 1134 * Return: 0 for success and error value on failure 1135 */ 1136 static int xudc_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req) 1137 { 1138 struct xusb_ep *ep = to_xusb_ep(_ep); 1139 struct xusb_req *req = NULL; 1140 struct xusb_req *iter; 1141 struct xusb_udc *udc = ep->udc; 1142 unsigned long flags; 1143 1144 spin_lock_irqsave(&udc->lock, flags); 1145 /* Make sure it's actually queued on this endpoint */ 1146 list_for_each_entry(iter, &ep->queue, queue) { 1147 if (&iter->usb_req != _req) 1148 continue; 1149 req = iter; 1150 break; 1151 } 1152 if (!req) { 1153 spin_unlock_irqrestore(&udc->lock, flags); 1154 return -EINVAL; 1155 } 1156 xudc_done(ep, req, -ECONNRESET); 1157 spin_unlock_irqrestore(&udc->lock, flags); 1158 1159 return 0; 1160 } 1161 1162 /** 1163 * xudc_ep0_enable - Enables the given endpoint. 1164 * @ep: pointer to the usb endpoint structure. 1165 * @desc: pointer to usb endpoint descriptor. 1166 * 1167 * Return: error always. 1168 * 1169 * endpoint 0 enable should not be called by gadget layer. 1170 */ 1171 static int xudc_ep0_enable(struct usb_ep *ep, 1172 const struct usb_endpoint_descriptor *desc) 1173 { 1174 return -EINVAL; 1175 } 1176 1177 /** 1178 * xudc_ep0_disable - Disables the given endpoint. 1179 * @ep: pointer to the usb endpoint structure. 1180 * 1181 * Return: error always. 1182 * 1183 * endpoint 0 disable should not be called by gadget layer. 1184 */ 1185 static int xudc_ep0_disable(struct usb_ep *ep) 1186 { 1187 return -EINVAL; 1188 } 1189 1190 static const struct usb_ep_ops xusb_ep0_ops = { 1191 .enable = xudc_ep0_enable, 1192 .disable = xudc_ep0_disable, 1193 .alloc_request = xudc_ep_alloc_request, 1194 .free_request = xudc_free_request, 1195 .queue = xudc_ep0_queue, 1196 .dequeue = xudc_ep_dequeue, 1197 .set_halt = xudc_ep_set_halt, 1198 }; 1199 1200 static const struct usb_ep_ops xusb_ep_ops = { 1201 .enable = xudc_ep_enable, 1202 .disable = xudc_ep_disable, 1203 .alloc_request = xudc_ep_alloc_request, 1204 .free_request = xudc_free_request, 1205 .queue = xudc_ep_queue, 1206 .dequeue = xudc_ep_dequeue, 1207 .set_halt = xudc_ep_set_halt, 1208 }; 1209 1210 /** 1211 * xudc_get_frame - Reads the current usb frame number. 1212 * @gadget: pointer to the usb gadget structure. 1213 * 1214 * Return: current frame number for success and error value on failure. 1215 */ 1216 static int xudc_get_frame(struct usb_gadget *gadget) 1217 { 1218 struct xusb_udc *udc; 1219 int frame; 1220 1221 if (!gadget) 1222 return -ENODEV; 1223 1224 udc = to_udc(gadget); 1225 frame = udc->read_fn(udc->addr + XUSB_FRAMENUM_OFFSET); 1226 return frame; 1227 } 1228 1229 /** 1230 * xudc_wakeup - Send remote wakeup signal to host 1231 * @gadget: pointer to the usb gadget structure. 1232 * 1233 * Return: 0 on success and error on failure 1234 */ 1235 static int xudc_wakeup(struct usb_gadget *gadget) 1236 { 1237 struct xusb_udc *udc = to_udc(gadget); 1238 u32 crtlreg; 1239 int status = -EINVAL; 1240 unsigned long flags; 1241 1242 spin_lock_irqsave(&udc->lock, flags); 1243 1244 /* Remote wake up not enabled by host */ 1245 if (!udc->remote_wkp) 1246 goto done; 1247 1248 crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET); 1249 crtlreg |= XUSB_CONTROL_USB_RMTWAKE_MASK; 1250 /* set remote wake up bit */ 1251 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg); 1252 /* 1253 * wait for a while and reset remote wake up bit since this bit 1254 * is not cleared by HW after sending remote wakeup to host. 1255 */ 1256 mdelay(2); 1257 1258 crtlreg &= ~XUSB_CONTROL_USB_RMTWAKE_MASK; 1259 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg); 1260 status = 0; 1261 done: 1262 spin_unlock_irqrestore(&udc->lock, flags); 1263 return status; 1264 } 1265 1266 /** 1267 * xudc_pullup - start/stop USB traffic 1268 * @gadget: pointer to the usb gadget structure. 1269 * @is_on: flag to start or stop 1270 * 1271 * Return: 0 always 1272 * 1273 * This function starts/stops SIE engine of IP based on is_on. 1274 */ 1275 static int xudc_pullup(struct usb_gadget *gadget, int is_on) 1276 { 1277 struct xusb_udc *udc = to_udc(gadget); 1278 unsigned long flags; 1279 u32 crtlreg; 1280 1281 spin_lock_irqsave(&udc->lock, flags); 1282 1283 crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET); 1284 if (is_on) 1285 crtlreg |= XUSB_CONTROL_USB_READY_MASK; 1286 else 1287 crtlreg &= ~XUSB_CONTROL_USB_READY_MASK; 1288 1289 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg); 1290 1291 spin_unlock_irqrestore(&udc->lock, flags); 1292 1293 return 0; 1294 } 1295 1296 /** 1297 * xudc_eps_init - initialize endpoints. 1298 * @udc: pointer to the usb device controller structure. 1299 */ 1300 static void xudc_eps_init(struct xusb_udc *udc) 1301 { 1302 u32 ep_number; 1303 1304 INIT_LIST_HEAD(&udc->gadget.ep_list); 1305 1306 for (ep_number = 0; ep_number < XUSB_MAX_ENDPOINTS; ep_number++) { 1307 struct xusb_ep *ep = &udc->ep[ep_number]; 1308 1309 if (ep_number) { 1310 list_add_tail(&ep->ep_usb.ep_list, 1311 &udc->gadget.ep_list); 1312 usb_ep_set_maxpacket_limit(&ep->ep_usb, 1313 (unsigned short) ~0); 1314 snprintf(ep->name, EPNAME_SIZE, "ep%d", ep_number); 1315 ep->ep_usb.name = ep->name; 1316 ep->ep_usb.ops = &xusb_ep_ops; 1317 1318 ep->ep_usb.caps.type_iso = true; 1319 ep->ep_usb.caps.type_bulk = true; 1320 ep->ep_usb.caps.type_int = true; 1321 } else { 1322 ep->ep_usb.name = ep0name; 1323 usb_ep_set_maxpacket_limit(&ep->ep_usb, EP0_MAX_PACKET); 1324 ep->ep_usb.ops = &xusb_ep0_ops; 1325 1326 ep->ep_usb.caps.type_control = true; 1327 } 1328 1329 ep->ep_usb.caps.dir_in = true; 1330 ep->ep_usb.caps.dir_out = true; 1331 1332 ep->udc = udc; 1333 ep->epnumber = ep_number; 1334 ep->desc = NULL; 1335 /* 1336 * The configuration register address offset between 1337 * each endpoint is 0x10. 1338 */ 1339 ep->offset = XUSB_EP0_CONFIG_OFFSET + (ep_number * 0x10); 1340 ep->is_in = 0; 1341 ep->is_iso = 0; 1342 ep->maxpacket = 0; 1343 xudc_epconfig(ep, udc); 1344 1345 /* Initialize one queue per endpoint */ 1346 INIT_LIST_HEAD(&ep->queue); 1347 } 1348 } 1349 1350 /** 1351 * xudc_stop_activity - Stops any further activity on the device. 1352 * @udc: pointer to the usb device controller structure. 1353 */ 1354 static void xudc_stop_activity(struct xusb_udc *udc) 1355 { 1356 int i; 1357 struct xusb_ep *ep; 1358 1359 for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) { 1360 ep = &udc->ep[i]; 1361 xudc_nuke(ep, -ESHUTDOWN); 1362 } 1363 } 1364 1365 /** 1366 * xudc_start - Starts the device. 1367 * @gadget: pointer to the usb gadget structure 1368 * @driver: pointer to gadget driver structure 1369 * 1370 * Return: zero on success and error on failure 1371 */ 1372 static int xudc_start(struct usb_gadget *gadget, 1373 struct usb_gadget_driver *driver) 1374 { 1375 struct xusb_udc *udc = to_udc(gadget); 1376 struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO]; 1377 const struct usb_endpoint_descriptor *desc = &config_bulk_out_desc; 1378 unsigned long flags; 1379 int ret = 0; 1380 1381 spin_lock_irqsave(&udc->lock, flags); 1382 1383 if (udc->driver) { 1384 dev_err(udc->dev, "%s is already bound to %s\n", 1385 udc->gadget.name, udc->driver->driver.name); 1386 ret = -EBUSY; 1387 goto err; 1388 } 1389 1390 /* hook up the driver */ 1391 udc->driver = driver; 1392 udc->gadget.speed = driver->max_speed; 1393 1394 /* Enable the control endpoint. */ 1395 ret = __xudc_ep_enable(ep0, desc); 1396 1397 /* Set device address and remote wakeup to 0 */ 1398 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0); 1399 udc->remote_wkp = 0; 1400 err: 1401 spin_unlock_irqrestore(&udc->lock, flags); 1402 return ret; 1403 } 1404 1405 /** 1406 * xudc_stop - stops the device. 1407 * @gadget: pointer to the usb gadget structure 1408 * 1409 * Return: zero always 1410 */ 1411 static int xudc_stop(struct usb_gadget *gadget) 1412 { 1413 struct xusb_udc *udc = to_udc(gadget); 1414 unsigned long flags; 1415 1416 spin_lock_irqsave(&udc->lock, flags); 1417 1418 udc->gadget.speed = USB_SPEED_UNKNOWN; 1419 udc->driver = NULL; 1420 1421 /* Set device address and remote wakeup to 0 */ 1422 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0); 1423 udc->remote_wkp = 0; 1424 1425 xudc_stop_activity(udc); 1426 1427 spin_unlock_irqrestore(&udc->lock, flags); 1428 1429 return 0; 1430 } 1431 1432 static const struct usb_gadget_ops xusb_udc_ops = { 1433 .get_frame = xudc_get_frame, 1434 .wakeup = xudc_wakeup, 1435 .pullup = xudc_pullup, 1436 .udc_start = xudc_start, 1437 .udc_stop = xudc_stop, 1438 }; 1439 1440 /** 1441 * xudc_clear_stall_all_ep - clears stall of every endpoint. 1442 * @udc: pointer to the udc structure. 1443 */ 1444 static void xudc_clear_stall_all_ep(struct xusb_udc *udc) 1445 { 1446 struct xusb_ep *ep; 1447 u32 epcfgreg; 1448 int i; 1449 1450 for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) { 1451 ep = &udc->ep[i]; 1452 epcfgreg = udc->read_fn(udc->addr + ep->offset); 1453 epcfgreg &= ~XUSB_EP_CFG_STALL_MASK; 1454 udc->write_fn(udc->addr, ep->offset, epcfgreg); 1455 if (ep->epnumber) { 1456 /* Reset the toggle bit.*/ 1457 epcfgreg = udc->read_fn(udc->addr + ep->offset); 1458 epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK; 1459 udc->write_fn(udc->addr, ep->offset, epcfgreg); 1460 } 1461 } 1462 } 1463 1464 /** 1465 * xudc_startup_handler - The usb device controller interrupt handler. 1466 * @udc: pointer to the udc structure. 1467 * @intrstatus: The mask value containing the interrupt sources. 1468 * 1469 * This function handles the RESET,SUSPEND,RESUME and DISCONNECT interrupts. 1470 */ 1471 static void xudc_startup_handler(struct xusb_udc *udc, u32 intrstatus) 1472 { 1473 u32 intrreg; 1474 1475 if (intrstatus & XUSB_STATUS_RESET_MASK) { 1476 1477 dev_dbg(udc->dev, "Reset\n"); 1478 1479 if (intrstatus & XUSB_STATUS_HIGH_SPEED_MASK) 1480 udc->gadget.speed = USB_SPEED_HIGH; 1481 else 1482 udc->gadget.speed = USB_SPEED_FULL; 1483 1484 xudc_stop_activity(udc); 1485 xudc_clear_stall_all_ep(udc); 1486 udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0); 1487 1488 /* Set device address and remote wakeup to 0 */ 1489 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0); 1490 udc->remote_wkp = 0; 1491 1492 /* Enable the suspend, resume and disconnect */ 1493 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 1494 intrreg |= XUSB_STATUS_SUSPEND_MASK | XUSB_STATUS_RESUME_MASK | 1495 XUSB_STATUS_DISCONNECT_MASK; 1496 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg); 1497 } 1498 if (intrstatus & XUSB_STATUS_SUSPEND_MASK) { 1499 1500 dev_dbg(udc->dev, "Suspend\n"); 1501 1502 /* Enable the reset, resume and disconnect */ 1503 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 1504 intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK | 1505 XUSB_STATUS_DISCONNECT_MASK; 1506 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg); 1507 1508 udc->usb_state = USB_STATE_SUSPENDED; 1509 1510 if (udc->driver->suspend) { 1511 spin_unlock(&udc->lock); 1512 udc->driver->suspend(&udc->gadget); 1513 spin_lock(&udc->lock); 1514 } 1515 } 1516 if (intrstatus & XUSB_STATUS_RESUME_MASK) { 1517 bool condition = (udc->usb_state != USB_STATE_SUSPENDED); 1518 1519 dev_WARN_ONCE(udc->dev, condition, 1520 "Resume IRQ while not suspended\n"); 1521 1522 dev_dbg(udc->dev, "Resume\n"); 1523 1524 /* Enable the reset, suspend and disconnect */ 1525 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 1526 intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_SUSPEND_MASK | 1527 XUSB_STATUS_DISCONNECT_MASK; 1528 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg); 1529 1530 udc->usb_state = 0; 1531 1532 if (udc->driver->resume) { 1533 spin_unlock(&udc->lock); 1534 udc->driver->resume(&udc->gadget); 1535 spin_lock(&udc->lock); 1536 } 1537 } 1538 if (intrstatus & XUSB_STATUS_DISCONNECT_MASK) { 1539 1540 dev_dbg(udc->dev, "Disconnect\n"); 1541 1542 /* Enable the reset, resume and suspend */ 1543 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 1544 intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK | 1545 XUSB_STATUS_SUSPEND_MASK; 1546 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg); 1547 1548 if (udc->driver && udc->driver->disconnect) { 1549 spin_unlock(&udc->lock); 1550 udc->driver->disconnect(&udc->gadget); 1551 spin_lock(&udc->lock); 1552 } 1553 } 1554 } 1555 1556 /** 1557 * xudc_ep0_stall - Stall endpoint zero. 1558 * @udc: pointer to the udc structure. 1559 * 1560 * This function stalls endpoint zero. 1561 */ 1562 static void xudc_ep0_stall(struct xusb_udc *udc) 1563 { 1564 u32 epcfgreg; 1565 struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO]; 1566 1567 epcfgreg = udc->read_fn(udc->addr + ep0->offset); 1568 epcfgreg |= XUSB_EP_CFG_STALL_MASK; 1569 udc->write_fn(udc->addr, ep0->offset, epcfgreg); 1570 } 1571 1572 /** 1573 * xudc_setaddress - executes SET_ADDRESS command 1574 * @udc: pointer to the udc structure. 1575 * 1576 * This function executes USB SET_ADDRESS command 1577 */ 1578 static void xudc_setaddress(struct xusb_udc *udc) 1579 { 1580 struct xusb_ep *ep0 = &udc->ep[0]; 1581 struct xusb_req *req = udc->req; 1582 int ret; 1583 1584 req->usb_req.length = 0; 1585 ret = __xudc_ep0_queue(ep0, req); 1586 if (ret == 0) 1587 return; 1588 1589 dev_err(udc->dev, "Can't respond to SET ADDRESS request\n"); 1590 xudc_ep0_stall(udc); 1591 } 1592 1593 /** 1594 * xudc_getstatus - executes GET_STATUS command 1595 * @udc: pointer to the udc structure. 1596 * 1597 * This function executes USB GET_STATUS command 1598 */ 1599 static void xudc_getstatus(struct xusb_udc *udc) 1600 { 1601 struct xusb_ep *ep0 = &udc->ep[0]; 1602 struct xusb_req *req = udc->req; 1603 struct xusb_ep *target_ep; 1604 u16 status = 0; 1605 u32 epcfgreg; 1606 int epnum; 1607 u32 halt; 1608 int ret; 1609 1610 switch (udc->setup.bRequestType & USB_RECIP_MASK) { 1611 case USB_RECIP_DEVICE: 1612 /* Get device status */ 1613 status = 1 << USB_DEVICE_SELF_POWERED; 1614 if (udc->remote_wkp) 1615 status |= (1 << USB_DEVICE_REMOTE_WAKEUP); 1616 break; 1617 case USB_RECIP_INTERFACE: 1618 break; 1619 case USB_RECIP_ENDPOINT: 1620 epnum = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK; 1621 if (epnum >= XUSB_MAX_ENDPOINTS) 1622 goto stall; 1623 target_ep = &udc->ep[epnum]; 1624 epcfgreg = udc->read_fn(udc->addr + target_ep->offset); 1625 halt = epcfgreg & XUSB_EP_CFG_STALL_MASK; 1626 if (udc->setup.wIndex & USB_DIR_IN) { 1627 if (!target_ep->is_in) 1628 goto stall; 1629 } else { 1630 if (target_ep->is_in) 1631 goto stall; 1632 } 1633 if (halt) 1634 status = 1 << USB_ENDPOINT_HALT; 1635 break; 1636 default: 1637 goto stall; 1638 } 1639 1640 req->usb_req.length = 2; 1641 *(u16 *)req->usb_req.buf = cpu_to_le16(status); 1642 ret = __xudc_ep0_queue(ep0, req); 1643 if (ret == 0) 1644 return; 1645 stall: 1646 dev_err(udc->dev, "Can't respond to getstatus request\n"); 1647 xudc_ep0_stall(udc); 1648 } 1649 1650 /** 1651 * xudc_set_clear_feature - Executes the set feature and clear feature commands. 1652 * @udc: pointer to the usb device controller structure. 1653 * 1654 * Processes the SET_FEATURE and CLEAR_FEATURE commands. 1655 */ 1656 static void xudc_set_clear_feature(struct xusb_udc *udc) 1657 { 1658 struct xusb_ep *ep0 = &udc->ep[0]; 1659 struct xusb_req *req = udc->req; 1660 struct xusb_ep *target_ep; 1661 u8 endpoint; 1662 u8 outinbit; 1663 u32 epcfgreg; 1664 int flag = (udc->setup.bRequest == USB_REQ_SET_FEATURE ? 1 : 0); 1665 int ret; 1666 1667 switch (udc->setup.bRequestType) { 1668 case USB_RECIP_DEVICE: 1669 switch (udc->setup.wValue) { 1670 case USB_DEVICE_TEST_MODE: 1671 /* 1672 * The Test Mode will be executed 1673 * after the status phase. 1674 */ 1675 break; 1676 case USB_DEVICE_REMOTE_WAKEUP: 1677 if (flag) 1678 udc->remote_wkp = 1; 1679 else 1680 udc->remote_wkp = 0; 1681 break; 1682 default: 1683 xudc_ep0_stall(udc); 1684 break; 1685 } 1686 break; 1687 case USB_RECIP_ENDPOINT: 1688 if (!udc->setup.wValue) { 1689 endpoint = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK; 1690 if (endpoint >= XUSB_MAX_ENDPOINTS) { 1691 xudc_ep0_stall(udc); 1692 return; 1693 } 1694 target_ep = &udc->ep[endpoint]; 1695 outinbit = udc->setup.wIndex & USB_ENDPOINT_DIR_MASK; 1696 outinbit = outinbit >> 7; 1697 1698 /* Make sure direction matches.*/ 1699 if (outinbit != target_ep->is_in) { 1700 xudc_ep0_stall(udc); 1701 return; 1702 } 1703 epcfgreg = udc->read_fn(udc->addr + target_ep->offset); 1704 if (!endpoint) { 1705 /* Clear the stall.*/ 1706 epcfgreg &= ~XUSB_EP_CFG_STALL_MASK; 1707 udc->write_fn(udc->addr, 1708 target_ep->offset, epcfgreg); 1709 } else { 1710 if (flag) { 1711 epcfgreg |= XUSB_EP_CFG_STALL_MASK; 1712 udc->write_fn(udc->addr, 1713 target_ep->offset, 1714 epcfgreg); 1715 } else { 1716 /* Unstall the endpoint.*/ 1717 epcfgreg &= ~(XUSB_EP_CFG_STALL_MASK | 1718 XUSB_EP_CFG_DATA_TOGGLE_MASK); 1719 udc->write_fn(udc->addr, 1720 target_ep->offset, 1721 epcfgreg); 1722 } 1723 } 1724 } 1725 break; 1726 default: 1727 xudc_ep0_stall(udc); 1728 return; 1729 } 1730 1731 req->usb_req.length = 0; 1732 ret = __xudc_ep0_queue(ep0, req); 1733 if (ret == 0) 1734 return; 1735 1736 dev_err(udc->dev, "Can't respond to SET/CLEAR FEATURE\n"); 1737 xudc_ep0_stall(udc); 1738 } 1739 1740 /** 1741 * xudc_handle_setup - Processes the setup packet. 1742 * @udc: pointer to the usb device controller structure. 1743 * 1744 * Process setup packet and delegate to gadget layer. 1745 */ 1746 static void xudc_handle_setup(struct xusb_udc *udc) 1747 __must_hold(&udc->lock) 1748 { 1749 struct xusb_ep *ep0 = &udc->ep[0]; 1750 struct usb_ctrlrequest setup; 1751 u32 *ep0rambase; 1752 1753 /* Load up the chapter 9 command buffer.*/ 1754 ep0rambase = (u32 __force *) (udc->addr + XUSB_SETUP_PKT_ADDR_OFFSET); 1755 memcpy(&setup, ep0rambase, 8); 1756 1757 udc->setup = setup; 1758 udc->setup.wValue = cpu_to_le16(setup.wValue); 1759 udc->setup.wIndex = cpu_to_le16(setup.wIndex); 1760 udc->setup.wLength = cpu_to_le16(setup.wLength); 1761 1762 /* Clear previous requests */ 1763 xudc_nuke(ep0, -ECONNRESET); 1764 1765 if (udc->setup.bRequestType & USB_DIR_IN) { 1766 /* Execute the get command.*/ 1767 udc->setupseqrx = STATUS_PHASE; 1768 udc->setupseqtx = DATA_PHASE; 1769 } else { 1770 /* Execute the put command.*/ 1771 udc->setupseqrx = DATA_PHASE; 1772 udc->setupseqtx = STATUS_PHASE; 1773 } 1774 1775 switch (udc->setup.bRequest) { 1776 case USB_REQ_GET_STATUS: 1777 /* Data+Status phase form udc */ 1778 if ((udc->setup.bRequestType & 1779 (USB_DIR_IN | USB_TYPE_MASK)) != 1780 (USB_DIR_IN | USB_TYPE_STANDARD)) 1781 break; 1782 xudc_getstatus(udc); 1783 return; 1784 case USB_REQ_SET_ADDRESS: 1785 /* Status phase from udc */ 1786 if (udc->setup.bRequestType != (USB_DIR_OUT | 1787 USB_TYPE_STANDARD | USB_RECIP_DEVICE)) 1788 break; 1789 xudc_setaddress(udc); 1790 return; 1791 case USB_REQ_CLEAR_FEATURE: 1792 case USB_REQ_SET_FEATURE: 1793 /* Requests with no data phase, status phase from udc */ 1794 if ((udc->setup.bRequestType & USB_TYPE_MASK) 1795 != USB_TYPE_STANDARD) 1796 break; 1797 xudc_set_clear_feature(udc); 1798 return; 1799 default: 1800 break; 1801 } 1802 1803 spin_unlock(&udc->lock); 1804 if (udc->driver->setup(&udc->gadget, &setup) < 0) 1805 xudc_ep0_stall(udc); 1806 spin_lock(&udc->lock); 1807 } 1808 1809 /** 1810 * xudc_ep0_out - Processes the endpoint 0 OUT token. 1811 * @udc: pointer to the usb device controller structure. 1812 */ 1813 static void xudc_ep0_out(struct xusb_udc *udc) 1814 { 1815 struct xusb_ep *ep0 = &udc->ep[0]; 1816 struct xusb_req *req; 1817 u8 *ep0rambase; 1818 unsigned int bytes_to_rx; 1819 void *buffer; 1820 1821 req = list_first_entry(&ep0->queue, struct xusb_req, queue); 1822 1823 switch (udc->setupseqrx) { 1824 case STATUS_PHASE: 1825 /* 1826 * This resets both state machines for the next 1827 * Setup packet. 1828 */ 1829 udc->setupseqrx = SETUP_PHASE; 1830 udc->setupseqtx = SETUP_PHASE; 1831 req->usb_req.actual = req->usb_req.length; 1832 xudc_done(ep0, req, 0); 1833 break; 1834 case DATA_PHASE: 1835 bytes_to_rx = udc->read_fn(udc->addr + 1836 XUSB_EP_BUF0COUNT_OFFSET); 1837 /* Copy the data to be received from the DPRAM. */ 1838 ep0rambase = (u8 __force *) (udc->addr + 1839 (ep0->rambase << 2)); 1840 buffer = req->usb_req.buf + req->usb_req.actual; 1841 req->usb_req.actual = req->usb_req.actual + bytes_to_rx; 1842 memcpy(buffer, ep0rambase, bytes_to_rx); 1843 1844 if (req->usb_req.length == req->usb_req.actual) { 1845 /* Data transfer completed get ready for Status stage */ 1846 xudc_wrstatus(udc); 1847 } else { 1848 /* Enable EP0 buffer to receive data */ 1849 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0); 1850 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); 1851 } 1852 break; 1853 default: 1854 break; 1855 } 1856 } 1857 1858 /** 1859 * xudc_ep0_in - Processes the endpoint 0 IN token. 1860 * @udc: pointer to the usb device controller structure. 1861 */ 1862 static void xudc_ep0_in(struct xusb_udc *udc) 1863 { 1864 struct xusb_ep *ep0 = &udc->ep[0]; 1865 struct xusb_req *req; 1866 unsigned int bytes_to_tx; 1867 void *buffer; 1868 u32 epcfgreg; 1869 u16 count = 0; 1870 u16 length; 1871 u8 *ep0rambase; 1872 u8 test_mode = udc->setup.wIndex >> 8; 1873 1874 req = list_first_entry(&ep0->queue, struct xusb_req, queue); 1875 bytes_to_tx = req->usb_req.length - req->usb_req.actual; 1876 1877 switch (udc->setupseqtx) { 1878 case STATUS_PHASE: 1879 switch (udc->setup.bRequest) { 1880 case USB_REQ_SET_ADDRESS: 1881 /* Set the address of the device.*/ 1882 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 1883 udc->setup.wValue); 1884 break; 1885 case USB_REQ_SET_FEATURE: 1886 if (udc->setup.bRequestType == 1887 USB_RECIP_DEVICE) { 1888 if (udc->setup.wValue == 1889 USB_DEVICE_TEST_MODE) 1890 udc->write_fn(udc->addr, 1891 XUSB_TESTMODE_OFFSET, 1892 test_mode); 1893 } 1894 break; 1895 } 1896 req->usb_req.actual = req->usb_req.length; 1897 xudc_done(ep0, req, 0); 1898 break; 1899 case DATA_PHASE: 1900 if (!bytes_to_tx) { 1901 /* 1902 * We're done with data transfer, next 1903 * will be zero length OUT with data toggle of 1904 * 1. Setup data_toggle. 1905 */ 1906 epcfgreg = udc->read_fn(udc->addr + ep0->offset); 1907 epcfgreg |= XUSB_EP_CFG_DATA_TOGGLE_MASK; 1908 udc->write_fn(udc->addr, ep0->offset, epcfgreg); 1909 udc->setupseqtx = STATUS_PHASE; 1910 } else { 1911 length = count = min_t(u32, bytes_to_tx, 1912 EP0_MAX_PACKET); 1913 /* Copy the data to be transmitted into the DPRAM. */ 1914 ep0rambase = (u8 __force *) (udc->addr + 1915 (ep0->rambase << 2)); 1916 buffer = req->usb_req.buf + req->usb_req.actual; 1917 req->usb_req.actual = req->usb_req.actual + length; 1918 memcpy(ep0rambase, buffer, length); 1919 } 1920 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, count); 1921 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1); 1922 break; 1923 default: 1924 break; 1925 } 1926 } 1927 1928 /** 1929 * xudc_ctrl_ep_handler - Endpoint 0 interrupt handler. 1930 * @udc: pointer to the udc structure. 1931 * @intrstatus: It's the mask value for the interrupt sources on endpoint 0. 1932 * 1933 * Processes the commands received during enumeration phase. 1934 */ 1935 static void xudc_ctrl_ep_handler(struct xusb_udc *udc, u32 intrstatus) 1936 { 1937 1938 if (intrstatus & XUSB_STATUS_SETUP_PACKET_MASK) { 1939 xudc_handle_setup(udc); 1940 } else { 1941 if (intrstatus & XUSB_STATUS_FIFO_BUFF_RDY_MASK) 1942 xudc_ep0_out(udc); 1943 else if (intrstatus & XUSB_STATUS_FIFO_BUFF_FREE_MASK) 1944 xudc_ep0_in(udc); 1945 } 1946 } 1947 1948 /** 1949 * xudc_nonctrl_ep_handler - Non control endpoint interrupt handler. 1950 * @udc: pointer to the udc structure. 1951 * @epnum: End point number for which the interrupt is to be processed 1952 * @intrstatus: mask value for interrupt sources of endpoints other 1953 * than endpoint 0. 1954 * 1955 * Processes the buffer completion interrupts. 1956 */ 1957 static void xudc_nonctrl_ep_handler(struct xusb_udc *udc, u8 epnum, 1958 u32 intrstatus) 1959 { 1960 1961 struct xusb_req *req; 1962 struct xusb_ep *ep; 1963 1964 ep = &udc->ep[epnum]; 1965 /* Process the End point interrupts.*/ 1966 if (intrstatus & (XUSB_STATUS_EP0_BUFF1_COMP_MASK << epnum)) 1967 ep->buffer0ready = 0; 1968 if (intrstatus & (XUSB_STATUS_EP0_BUFF2_COMP_MASK << epnum)) 1969 ep->buffer1ready = false; 1970 1971 if (list_empty(&ep->queue)) 1972 return; 1973 1974 req = list_first_entry(&ep->queue, struct xusb_req, queue); 1975 1976 if (ep->is_in) 1977 xudc_write_fifo(ep, req); 1978 else 1979 xudc_read_fifo(ep, req); 1980 } 1981 1982 /** 1983 * xudc_irq - The main interrupt handler. 1984 * @irq: The interrupt number. 1985 * @_udc: pointer to the usb device controller structure. 1986 * 1987 * Return: IRQ_HANDLED after the interrupt is handled. 1988 */ 1989 static irqreturn_t xudc_irq(int irq, void *_udc) 1990 { 1991 struct xusb_udc *udc = _udc; 1992 u32 intrstatus; 1993 u32 ier; 1994 u8 index; 1995 u32 bufintr; 1996 unsigned long flags; 1997 1998 spin_lock_irqsave(&udc->lock, flags); 1999 2000 /* 2001 * Event interrupts are level sensitive hence first disable 2002 * IER, read ISR and figure out active interrupts. 2003 */ 2004 ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 2005 ier &= ~XUSB_STATUS_INTR_EVENT_MASK; 2006 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier); 2007 2008 /* Read the Interrupt Status Register.*/ 2009 intrstatus = udc->read_fn(udc->addr + XUSB_STATUS_OFFSET); 2010 2011 /* Call the handler for the event interrupt.*/ 2012 if (intrstatus & XUSB_STATUS_INTR_EVENT_MASK) { 2013 /* 2014 * Check if there is any action to be done for : 2015 * - USB Reset received {XUSB_STATUS_RESET_MASK} 2016 * - USB Suspend received {XUSB_STATUS_SUSPEND_MASK} 2017 * - USB Resume received {XUSB_STATUS_RESUME_MASK} 2018 * - USB Disconnect received {XUSB_STATUS_DISCONNECT_MASK} 2019 */ 2020 xudc_startup_handler(udc, intrstatus); 2021 } 2022 2023 /* Check the buffer completion interrupts */ 2024 if (intrstatus & XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK) { 2025 /* Enable Reset, Suspend, Resume and Disconnect */ 2026 ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET); 2027 ier |= XUSB_STATUS_INTR_EVENT_MASK; 2028 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier); 2029 2030 if (intrstatus & XUSB_STATUS_EP0_BUFF1_COMP_MASK) 2031 xudc_ctrl_ep_handler(udc, intrstatus); 2032 2033 for (index = 1; index < 8; index++) { 2034 bufintr = ((intrstatus & 2035 (XUSB_STATUS_EP1_BUFF1_COMP_MASK << 2036 (index - 1))) || (intrstatus & 2037 (XUSB_STATUS_EP1_BUFF2_COMP_MASK << 2038 (index - 1)))); 2039 if (bufintr) { 2040 xudc_nonctrl_ep_handler(udc, index, 2041 intrstatus); 2042 } 2043 } 2044 } 2045 2046 spin_unlock_irqrestore(&udc->lock, flags); 2047 return IRQ_HANDLED; 2048 } 2049 2050 /** 2051 * xudc_probe - The device probe function for driver initialization. 2052 * @pdev: pointer to the platform device structure. 2053 * 2054 * Return: 0 for success and error value on failure 2055 */ 2056 static int xudc_probe(struct platform_device *pdev) 2057 { 2058 struct device_node *np = pdev->dev.of_node; 2059 struct resource *res; 2060 struct xusb_udc *udc; 2061 int irq; 2062 int ret; 2063 u32 ier; 2064 u8 *buff; 2065 2066 udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL); 2067 if (!udc) 2068 return -ENOMEM; 2069 2070 /* Create a dummy request for GET_STATUS, SET_ADDRESS */ 2071 udc->req = devm_kzalloc(&pdev->dev, sizeof(struct xusb_req), 2072 GFP_KERNEL); 2073 if (!udc->req) 2074 return -ENOMEM; 2075 2076 buff = devm_kzalloc(&pdev->dev, STATUSBUFF_SIZE, GFP_KERNEL); 2077 if (!buff) 2078 return -ENOMEM; 2079 2080 udc->req->usb_req.buf = buff; 2081 2082 /* Map the registers */ 2083 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2084 udc->addr = devm_ioremap_resource(&pdev->dev, res); 2085 if (IS_ERR(udc->addr)) 2086 return PTR_ERR(udc->addr); 2087 2088 irq = platform_get_irq(pdev, 0); 2089 if (irq < 0) 2090 return irq; 2091 ret = devm_request_irq(&pdev->dev, irq, xudc_irq, 0, 2092 dev_name(&pdev->dev), udc); 2093 if (ret < 0) { 2094 dev_dbg(&pdev->dev, "unable to request irq %d", irq); 2095 goto fail; 2096 } 2097 2098 udc->dma_enabled = of_property_read_bool(np, "xlnx,has-builtin-dma"); 2099 2100 /* Setup gadget structure */ 2101 udc->gadget.ops = &xusb_udc_ops; 2102 udc->gadget.max_speed = USB_SPEED_HIGH; 2103 udc->gadget.speed = USB_SPEED_UNKNOWN; 2104 udc->gadget.ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO].ep_usb; 2105 udc->gadget.name = driver_name; 2106 2107 udc->clk = devm_clk_get(&pdev->dev, "s_axi_aclk"); 2108 if (IS_ERR(udc->clk)) { 2109 if (PTR_ERR(udc->clk) != -ENOENT) { 2110 ret = PTR_ERR(udc->clk); 2111 goto fail; 2112 } 2113 2114 /* 2115 * Clock framework support is optional, continue on, 2116 * anyways if we don't find a matching clock 2117 */ 2118 dev_warn(&pdev->dev, "s_axi_aclk clock property is not found\n"); 2119 udc->clk = NULL; 2120 } 2121 2122 ret = clk_prepare_enable(udc->clk); 2123 if (ret) { 2124 dev_err(&pdev->dev, "Unable to enable clock.\n"); 2125 return ret; 2126 } 2127 2128 spin_lock_init(&udc->lock); 2129 2130 /* Check for IP endianness */ 2131 udc->write_fn = xudc_write32_be; 2132 udc->read_fn = xudc_read32_be; 2133 udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, USB_TEST_J); 2134 if ((udc->read_fn(udc->addr + XUSB_TESTMODE_OFFSET)) 2135 != USB_TEST_J) { 2136 udc->write_fn = xudc_write32; 2137 udc->read_fn = xudc_read32; 2138 } 2139 udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0); 2140 2141 xudc_eps_init(udc); 2142 2143 /* Set device address to 0.*/ 2144 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0); 2145 2146 ret = usb_add_gadget_udc(&pdev->dev, &udc->gadget); 2147 if (ret) 2148 goto err_disable_unprepare_clk; 2149 2150 udc->dev = &udc->gadget.dev; 2151 2152 /* Enable the interrupts.*/ 2153 ier = XUSB_STATUS_GLOBAL_INTR_MASK | XUSB_STATUS_INTR_EVENT_MASK | 2154 XUSB_STATUS_FIFO_BUFF_RDY_MASK | XUSB_STATUS_FIFO_BUFF_FREE_MASK | 2155 XUSB_STATUS_SETUP_PACKET_MASK | 2156 XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK; 2157 2158 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier); 2159 2160 platform_set_drvdata(pdev, udc); 2161 2162 dev_vdbg(&pdev->dev, "%s at 0x%08X mapped to %p %s\n", 2163 driver_name, (u32)res->start, udc->addr, 2164 udc->dma_enabled ? "with DMA" : "without DMA"); 2165 2166 return 0; 2167 2168 err_disable_unprepare_clk: 2169 clk_disable_unprepare(udc->clk); 2170 fail: 2171 dev_err(&pdev->dev, "probe failed, %d\n", ret); 2172 return ret; 2173 } 2174 2175 /** 2176 * xudc_remove - Releases the resources allocated during the initialization. 2177 * @pdev: pointer to the platform device structure. 2178 * 2179 * Return: 0 always 2180 */ 2181 static int xudc_remove(struct platform_device *pdev) 2182 { 2183 struct xusb_udc *udc = platform_get_drvdata(pdev); 2184 2185 usb_del_gadget_udc(&udc->gadget); 2186 clk_disable_unprepare(udc->clk); 2187 2188 return 0; 2189 } 2190 2191 #ifdef CONFIG_PM_SLEEP 2192 static int xudc_suspend(struct device *dev) 2193 { 2194 struct xusb_udc *udc; 2195 u32 crtlreg; 2196 unsigned long flags; 2197 2198 udc = dev_get_drvdata(dev); 2199 2200 spin_lock_irqsave(&udc->lock, flags); 2201 2202 crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET); 2203 crtlreg &= ~XUSB_CONTROL_USB_READY_MASK; 2204 2205 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg); 2206 2207 spin_unlock_irqrestore(&udc->lock, flags); 2208 if (udc->driver && udc->driver->suspend) 2209 udc->driver->suspend(&udc->gadget); 2210 2211 clk_disable(udc->clk); 2212 2213 return 0; 2214 } 2215 2216 static int xudc_resume(struct device *dev) 2217 { 2218 struct xusb_udc *udc; 2219 u32 crtlreg; 2220 unsigned long flags; 2221 int ret; 2222 2223 udc = dev_get_drvdata(dev); 2224 2225 ret = clk_enable(udc->clk); 2226 if (ret < 0) 2227 return ret; 2228 2229 spin_lock_irqsave(&udc->lock, flags); 2230 2231 crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET); 2232 crtlreg |= XUSB_CONTROL_USB_READY_MASK; 2233 2234 udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg); 2235 2236 spin_unlock_irqrestore(&udc->lock, flags); 2237 2238 return 0; 2239 } 2240 #endif /* CONFIG_PM_SLEEP */ 2241 2242 static const struct dev_pm_ops xudc_pm_ops = { 2243 SET_SYSTEM_SLEEP_PM_OPS(xudc_suspend, xudc_resume) 2244 }; 2245 2246 /* Match table for of_platform binding */ 2247 static const struct of_device_id usb_of_match[] = { 2248 { .compatible = "xlnx,usb2-device-4.00.a", }, 2249 { /* end of list */ }, 2250 }; 2251 MODULE_DEVICE_TABLE(of, usb_of_match); 2252 2253 static struct platform_driver xudc_driver = { 2254 .driver = { 2255 .name = driver_name, 2256 .of_match_table = usb_of_match, 2257 .pm = &xudc_pm_ops, 2258 }, 2259 .probe = xudc_probe, 2260 .remove = xudc_remove, 2261 }; 2262 2263 module_platform_driver(xudc_driver); 2264 2265 MODULE_DESCRIPTION("Xilinx udc driver"); 2266 MODULE_AUTHOR("Xilinx, Inc"); 2267 MODULE_LICENSE("GPL"); 2268