1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * NVIDIA Tegra XUSB device mode controller
4  *
5  * Copyright (c) 2013-2019, NVIDIA CORPORATION.  All rights reserved.
6  * Copyright (c) 2015, Google Inc.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmapool.h>
14 #include <linux/interrupt.h>
15 #include <linux/iopoll.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/of_device.h>
20 #include <linux/phy/phy.h>
21 #include <linux/phy/tegra/xusb.h>
22 #include <linux/pm_domain.h>
23 #include <linux/platform_device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/reset.h>
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/role.h>
30 #include <linux/workqueue.h>
31 
32 /* XUSB_DEV registers */
33 #define SPARAM 0x000
34 #define  SPARAM_ERSTMAX_MASK GENMASK(20, 16)
35 #define  SPARAM_ERSTMAX(x) (((x) << 16) & SPARAM_ERSTMAX_MASK)
36 #define DB 0x004
37 #define  DB_TARGET_MASK GENMASK(15, 8)
38 #define  DB_TARGET(x) (((x) << 8) & DB_TARGET_MASK)
39 #define  DB_STREAMID_MASK GENMASK(31, 16)
40 #define  DB_STREAMID(x) (((x) << 16) & DB_STREAMID_MASK)
41 #define ERSTSZ 0x008
42 #define  ERSTSZ_ERSTXSZ_SHIFT(x) ((x) * 16)
43 #define  ERSTSZ_ERSTXSZ_MASK GENMASK(15, 0)
44 #define ERSTXBALO(x) (0x010 + 8 * (x))
45 #define ERSTXBAHI(x) (0x014 + 8 * (x))
46 #define ERDPLO 0x020
47 #define  ERDPLO_EHB BIT(3)
48 #define ERDPHI 0x024
49 #define EREPLO 0x028
50 #define  EREPLO_ECS BIT(0)
51 #define  EREPLO_SEGI BIT(1)
52 #define EREPHI 0x02c
53 #define CTRL 0x030
54 #define  CTRL_RUN BIT(0)
55 #define  CTRL_LSE BIT(1)
56 #define  CTRL_IE BIT(4)
57 #define  CTRL_SMI_EVT BIT(5)
58 #define  CTRL_SMI_DSE BIT(6)
59 #define  CTRL_EWE BIT(7)
60 #define  CTRL_DEVADDR_MASK GENMASK(30, 24)
61 #define  CTRL_DEVADDR(x) (((x) << 24) & CTRL_DEVADDR_MASK)
62 #define  CTRL_ENABLE BIT(31)
63 #define ST 0x034
64 #define  ST_RC BIT(0)
65 #define  ST_IP BIT(4)
66 #define RT_IMOD	0x038
67 #define  RT_IMOD_IMODI_MASK GENMASK(15, 0)
68 #define  RT_IMOD_IMODI(x) ((x) & RT_IMOD_IMODI_MASK)
69 #define  RT_IMOD_IMODC_MASK GENMASK(31, 16)
70 #define  RT_IMOD_IMODC(x) (((x) << 16) & RT_IMOD_IMODC_MASK)
71 #define PORTSC 0x03c
72 #define  PORTSC_CCS BIT(0)
73 #define  PORTSC_PED BIT(1)
74 #define  PORTSC_PR BIT(4)
75 #define  PORTSC_PLS_SHIFT 5
76 #define  PORTSC_PLS_MASK GENMASK(8, 5)
77 #define  PORTSC_PLS_U0 0x0
78 #define  PORTSC_PLS_U2 0x2
79 #define  PORTSC_PLS_U3 0x3
80 #define  PORTSC_PLS_DISABLED 0x4
81 #define  PORTSC_PLS_RXDETECT 0x5
82 #define  PORTSC_PLS_INACTIVE 0x6
83 #define  PORTSC_PLS_RESUME 0xf
84 #define  PORTSC_PLS(x) (((x) << PORTSC_PLS_SHIFT) & PORTSC_PLS_MASK)
85 #define  PORTSC_PS_SHIFT 10
86 #define  PORTSC_PS_MASK GENMASK(13, 10)
87 #define  PORTSC_PS_UNDEFINED 0x0
88 #define  PORTSC_PS_FS 0x1
89 #define  PORTSC_PS_LS 0x2
90 #define  PORTSC_PS_HS 0x3
91 #define  PORTSC_PS_SS 0x4
92 #define  PORTSC_LWS BIT(16)
93 #define  PORTSC_CSC BIT(17)
94 #define  PORTSC_WRC BIT(19)
95 #define  PORTSC_PRC BIT(21)
96 #define  PORTSC_PLC BIT(22)
97 #define  PORTSC_CEC BIT(23)
98 #define  PORTSC_WPR BIT(30)
99 #define  PORTSC_CHANGE_MASK (PORTSC_CSC | PORTSC_WRC | PORTSC_PRC | \
100 			     PORTSC_PLC | PORTSC_CEC)
101 #define ECPLO 0x040
102 #define ECPHI 0x044
103 #define MFINDEX 0x048
104 #define  MFINDEX_FRAME_SHIFT 3
105 #define  MFINDEX_FRAME_MASK GENMASK(13, 3)
106 #define PORTPM 0x04c
107 #define  PORTPM_L1S_MASK GENMASK(1, 0)
108 #define  PORTPM_L1S_DROP 0x0
109 #define  PORTPM_L1S_ACCEPT 0x1
110 #define  PORTPM_L1S_NYET 0x2
111 #define  PORTPM_L1S_STALL 0x3
112 #define  PORTPM_L1S(x) ((x) & PORTPM_L1S_MASK)
113 #define  PORTPM_RWE BIT(3)
114 #define  PORTPM_U2TIMEOUT_MASK GENMASK(15, 8)
115 #define  PORTPM_U1TIMEOUT_MASK GENMASK(23, 16)
116 #define  PORTPM_FLA BIT(24)
117 #define  PORTPM_VBA BIT(25)
118 #define  PORTPM_WOC BIT(26)
119 #define  PORTPM_WOD BIT(27)
120 #define  PORTPM_U1E BIT(28)
121 #define  PORTPM_U2E BIT(29)
122 #define  PORTPM_FRWE BIT(30)
123 #define  PORTPM_PNG_CYA BIT(31)
124 #define EP_HALT 0x050
125 #define EP_PAUSE 0x054
126 #define EP_RELOAD 0x058
127 #define EP_STCHG 0x05c
128 #define DEVNOTIF_LO 0x064
129 #define  DEVNOTIF_LO_TRIG BIT(0)
130 #define  DEVNOTIF_LO_TYPE_MASK GENMASK(7, 4)
131 #define  DEVNOTIF_LO_TYPE(x) (((x) << 4)  & DEVNOTIF_LO_TYPE_MASK)
132 #define  DEVNOTIF_LO_TYPE_FUNCTION_WAKE 0x1
133 #define DEVNOTIF_HI 0x068
134 #define PORTHALT 0x06c
135 #define  PORTHALT_HALT_LTSSM BIT(0)
136 #define  PORTHALT_HALT_REJECT BIT(1)
137 #define  PORTHALT_STCHG_REQ BIT(20)
138 #define  PORTHALT_STCHG_INTR_EN BIT(24)
139 #define PORT_TM	0x070
140 #define EP_THREAD_ACTIVE 0x074
141 #define EP_STOPPED 0x078
142 #define HSFSPI_COUNT0 0x100
143 #define HSFSPI_COUNT13 0x134
144 #define  HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK GENMASK(29, 0)
145 #define  HSFSPI_COUNT13_U2_RESUME_K_DURATION(x) ((x) & \
146 				HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK)
147 #define BLCG 0x840
148 #define SSPX_CORE_CNT0 0x610
149 #define  SSPX_CORE_CNT0_PING_TBURST_MASK GENMASK(7, 0)
150 #define  SSPX_CORE_CNT0_PING_TBURST(x) ((x) & SSPX_CORE_CNT0_PING_TBURST_MASK)
151 #define SSPX_CORE_CNT30 0x688
152 #define  SSPX_CORE_CNT30_LMPITP_TIMER_MASK GENMASK(19, 0)
153 #define  SSPX_CORE_CNT30_LMPITP_TIMER(x) ((x) & \
154 					SSPX_CORE_CNT30_LMPITP_TIMER_MASK)
155 #define SSPX_CORE_CNT32 0x690
156 #define  SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK GENMASK(7, 0)
157 #define  SSPX_CORE_CNT32_POLL_TBURST_MAX(x) ((x) & \
158 					SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK)
159 #define SSPX_CORE_PADCTL4 0x750
160 #define  SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK GENMASK(19, 0)
161 #define  SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(x) ((x) & \
162 				SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK)
163 #define  BLCG_DFPCI BIT(0)
164 #define  BLCG_UFPCI BIT(1)
165 #define  BLCG_FE BIT(2)
166 #define  BLCG_COREPLL_PWRDN BIT(8)
167 #define  BLCG_IOPLL_0_PWRDN BIT(9)
168 #define  BLCG_IOPLL_1_PWRDN BIT(10)
169 #define  BLCG_IOPLL_2_PWRDN BIT(11)
170 #define  BLCG_ALL 0x1ff
171 #define CFG_DEV_SSPI_XFER 0x858
172 #define  CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK GENMASK(31, 0)
173 #define  CFG_DEV_SSPI_XFER_ACKTIMEOUT(x) ((x) & \
174 					CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK)
175 #define CFG_DEV_FE 0x85c
176 #define  CFG_DEV_FE_PORTREGSEL_MASK GENMASK(1, 0)
177 #define  CFG_DEV_FE_PORTREGSEL_SS_PI 1
178 #define  CFG_DEV_FE_PORTREGSEL_HSFS_PI 2
179 #define  CFG_DEV_FE_PORTREGSEL(x) ((x) & CFG_DEV_FE_PORTREGSEL_MASK)
180 #define  CFG_DEV_FE_INFINITE_SS_RETRY BIT(29)
181 
182 /* FPCI registers */
183 #define XUSB_DEV_CFG_1 0x004
184 #define  XUSB_DEV_CFG_1_IO_SPACE_EN BIT(0)
185 #define  XUSB_DEV_CFG_1_MEMORY_SPACE_EN BIT(1)
186 #define  XUSB_DEV_CFG_1_BUS_MASTER_EN BIT(2)
187 #define XUSB_DEV_CFG_4 0x010
188 #define  XUSB_DEV_CFG_4_BASE_ADDR_MASK GENMASK(31, 15)
189 #define XUSB_DEV_CFG_5 0x014
190 
191 /* IPFS registers */
192 #define XUSB_DEV_CONFIGURATION_0 0x180
193 #define  XUSB_DEV_CONFIGURATION_0_EN_FPCI BIT(0)
194 #define XUSB_DEV_INTR_MASK_0 0x188
195 #define  XUSB_DEV_INTR_MASK_0_IP_INT_MASK BIT(16)
196 
197 struct tegra_xudc_ep_context {
198 	__le32 info0;
199 	__le32 info1;
200 	__le32 deq_lo;
201 	__le32 deq_hi;
202 	__le32 tx_info;
203 	__le32 rsvd[11];
204 };
205 
206 #define EP_STATE_DISABLED 0
207 #define EP_STATE_RUNNING 1
208 #define EP_STATE_HALTED 2
209 #define EP_STATE_STOPPED 3
210 #define EP_STATE_ERROR 4
211 
212 #define EP_TYPE_INVALID 0
213 #define EP_TYPE_ISOCH_OUT 1
214 #define EP_TYPE_BULK_OUT 2
215 #define EP_TYPE_INTERRUPT_OUT 3
216 #define EP_TYPE_CONTROL 4
217 #define EP_TYPE_ISCOH_IN 5
218 #define EP_TYPE_BULK_IN 6
219 #define EP_TYPE_INTERRUPT_IN 7
220 
221 #define BUILD_EP_CONTEXT_RW(name, member, shift, mask)			\
222 static inline u32 ep_ctx_read_##name(struct tegra_xudc_ep_context *ctx)	\
223 {									\
224 	return (le32_to_cpu(ctx->member) >> (shift)) & (mask);		\
225 }									\
226 static inline void							\
227 ep_ctx_write_##name(struct tegra_xudc_ep_context *ctx, u32 val)		\
228 {									\
229 	u32 tmp;							\
230 									\
231 	tmp = le32_to_cpu(ctx->member) & ~((mask) << (shift));		\
232 	tmp |= (val & (mask)) << (shift);				\
233 	ctx->member = cpu_to_le32(tmp);					\
234 }
235 
236 BUILD_EP_CONTEXT_RW(state, info0, 0, 0x7)
237 BUILD_EP_CONTEXT_RW(mult, info0, 8, 0x3)
238 BUILD_EP_CONTEXT_RW(max_pstreams, info0, 10, 0x1f)
239 BUILD_EP_CONTEXT_RW(lsa, info0, 15, 0x1)
240 BUILD_EP_CONTEXT_RW(interval, info0, 16, 0xff)
241 BUILD_EP_CONTEXT_RW(cerr, info1, 1, 0x3)
242 BUILD_EP_CONTEXT_RW(type, info1, 3, 0x7)
243 BUILD_EP_CONTEXT_RW(hid, info1, 7, 0x1)
244 BUILD_EP_CONTEXT_RW(max_burst_size, info1, 8, 0xff)
245 BUILD_EP_CONTEXT_RW(max_packet_size, info1, 16, 0xffff)
246 BUILD_EP_CONTEXT_RW(dcs, deq_lo, 0, 0x1)
247 BUILD_EP_CONTEXT_RW(deq_lo, deq_lo, 4, 0xfffffff)
248 BUILD_EP_CONTEXT_RW(deq_hi, deq_hi, 0, 0xffffffff)
249 BUILD_EP_CONTEXT_RW(avg_trb_len, tx_info, 0, 0xffff)
250 BUILD_EP_CONTEXT_RW(max_esit_payload, tx_info, 16, 0xffff)
251 BUILD_EP_CONTEXT_RW(edtla, rsvd[0], 0, 0xffffff)
252 BUILD_EP_CONTEXT_RW(seq_num, rsvd[0], 24, 0xff)
253 BUILD_EP_CONTEXT_RW(partial_td, rsvd[0], 25, 0x1)
254 BUILD_EP_CONTEXT_RW(cerrcnt, rsvd[1], 18, 0x3)
255 BUILD_EP_CONTEXT_RW(data_offset, rsvd[2], 0, 0x1ffff)
256 BUILD_EP_CONTEXT_RW(numtrbs, rsvd[2], 22, 0x1f)
257 BUILD_EP_CONTEXT_RW(devaddr, rsvd[6], 0, 0x7f)
258 
259 static inline u64 ep_ctx_read_deq_ptr(struct tegra_xudc_ep_context *ctx)
260 {
261 	return ((u64)ep_ctx_read_deq_hi(ctx) << 32) |
262 		(ep_ctx_read_deq_lo(ctx) << 4);
263 }
264 
265 static inline void
266 ep_ctx_write_deq_ptr(struct tegra_xudc_ep_context *ctx, u64 addr)
267 {
268 	ep_ctx_write_deq_lo(ctx, lower_32_bits(addr) >> 4);
269 	ep_ctx_write_deq_hi(ctx, upper_32_bits(addr));
270 }
271 
272 struct tegra_xudc_trb {
273 	__le32 data_lo;
274 	__le32 data_hi;
275 	__le32 status;
276 	__le32 control;
277 };
278 
279 #define TRB_TYPE_RSVD 0
280 #define TRB_TYPE_NORMAL 1
281 #define TRB_TYPE_SETUP_STAGE 2
282 #define TRB_TYPE_DATA_STAGE 3
283 #define TRB_TYPE_STATUS_STAGE 4
284 #define TRB_TYPE_ISOCH 5
285 #define TRB_TYPE_LINK 6
286 #define TRB_TYPE_TRANSFER_EVENT 32
287 #define TRB_TYPE_PORT_STATUS_CHANGE_EVENT 34
288 #define TRB_TYPE_STREAM 48
289 #define TRB_TYPE_SETUP_PACKET_EVENT 63
290 
291 #define TRB_CMPL_CODE_INVALID 0
292 #define TRB_CMPL_CODE_SUCCESS 1
293 #define TRB_CMPL_CODE_DATA_BUFFER_ERR 2
294 #define TRB_CMPL_CODE_BABBLE_DETECTED_ERR 3
295 #define TRB_CMPL_CODE_USB_TRANS_ERR 4
296 #define TRB_CMPL_CODE_TRB_ERR 5
297 #define TRB_CMPL_CODE_STALL 6
298 #define TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR 10
299 #define TRB_CMPL_CODE_SHORT_PACKET 13
300 #define TRB_CMPL_CODE_RING_UNDERRUN 14
301 #define TRB_CMPL_CODE_RING_OVERRUN 15
302 #define TRB_CMPL_CODE_EVENT_RING_FULL_ERR 21
303 #define TRB_CMPL_CODE_STOPPED 26
304 #define TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN 31
305 #define TRB_CMPL_CODE_STREAM_NUMP_ERROR 219
306 #define TRB_CMPL_CODE_PRIME_PIPE_RECEIVED 220
307 #define TRB_CMPL_CODE_HOST_REJECTED 221
308 #define TRB_CMPL_CODE_CTRL_DIR_ERR 222
309 #define TRB_CMPL_CODE_CTRL_SEQNUM_ERR 223
310 
311 #define BUILD_TRB_RW(name, member, shift, mask)				\
312 static inline u32 trb_read_##name(struct tegra_xudc_trb *trb)		\
313 {									\
314 	return (le32_to_cpu(trb->member) >> (shift)) & (mask);		\
315 }									\
316 static inline void							\
317 trb_write_##name(struct tegra_xudc_trb *trb, u32 val)			\
318 {									\
319 	u32 tmp;							\
320 									\
321 	tmp = le32_to_cpu(trb->member) & ~((mask) << (shift));		\
322 	tmp |= (val & (mask)) << (shift);				\
323 	trb->member = cpu_to_le32(tmp);					\
324 }
325 
326 BUILD_TRB_RW(data_lo, data_lo, 0, 0xffffffff)
327 BUILD_TRB_RW(data_hi, data_hi, 0, 0xffffffff)
328 BUILD_TRB_RW(seq_num, status, 0, 0xffff)
329 BUILD_TRB_RW(transfer_len, status, 0, 0xffffff)
330 BUILD_TRB_RW(td_size, status, 17, 0x1f)
331 BUILD_TRB_RW(cmpl_code, status, 24, 0xff)
332 BUILD_TRB_RW(cycle, control, 0, 0x1)
333 BUILD_TRB_RW(toggle_cycle, control, 1, 0x1)
334 BUILD_TRB_RW(isp, control, 2, 0x1)
335 BUILD_TRB_RW(chain, control, 4, 0x1)
336 BUILD_TRB_RW(ioc, control, 5, 0x1)
337 BUILD_TRB_RW(type, control, 10, 0x3f)
338 BUILD_TRB_RW(stream_id, control, 16, 0xffff)
339 BUILD_TRB_RW(endpoint_id, control, 16, 0x1f)
340 BUILD_TRB_RW(tlbpc, control, 16, 0xf)
341 BUILD_TRB_RW(data_stage_dir, control, 16, 0x1)
342 BUILD_TRB_RW(frame_id, control, 20, 0x7ff)
343 BUILD_TRB_RW(sia, control, 31, 0x1)
344 
345 static inline u64 trb_read_data_ptr(struct tegra_xudc_trb *trb)
346 {
347 	return ((u64)trb_read_data_hi(trb) << 32) |
348 		trb_read_data_lo(trb);
349 }
350 
351 static inline void trb_write_data_ptr(struct tegra_xudc_trb *trb, u64 addr)
352 {
353 	trb_write_data_lo(trb, lower_32_bits(addr));
354 	trb_write_data_hi(trb, upper_32_bits(addr));
355 }
356 
357 struct tegra_xudc_request {
358 	struct usb_request usb_req;
359 
360 	size_t buf_queued;
361 	unsigned int trbs_queued;
362 	unsigned int trbs_needed;
363 	bool need_zlp;
364 
365 	struct tegra_xudc_trb *first_trb;
366 	struct tegra_xudc_trb *last_trb;
367 
368 	struct list_head list;
369 };
370 
371 struct tegra_xudc_ep {
372 	struct tegra_xudc *xudc;
373 	struct usb_ep usb_ep;
374 	unsigned int index;
375 	char name[8];
376 
377 	struct tegra_xudc_ep_context *context;
378 
379 #define XUDC_TRANSFER_RING_SIZE 64
380 	struct tegra_xudc_trb *transfer_ring;
381 	dma_addr_t transfer_ring_phys;
382 
383 	unsigned int enq_ptr;
384 	unsigned int deq_ptr;
385 	bool pcs;
386 	bool ring_full;
387 	bool stream_rejected;
388 
389 	struct list_head queue;
390 	const struct usb_endpoint_descriptor *desc;
391 	const struct usb_ss_ep_comp_descriptor *comp_desc;
392 };
393 
394 struct tegra_xudc_sel_timing {
395 	__u8 u1sel;
396 	__u8 u1pel;
397 	__le16 u2sel;
398 	__le16 u2pel;
399 };
400 
401 enum tegra_xudc_setup_state {
402 	WAIT_FOR_SETUP,
403 	DATA_STAGE_XFER,
404 	DATA_STAGE_RECV,
405 	STATUS_STAGE_XFER,
406 	STATUS_STAGE_RECV,
407 };
408 
409 struct tegra_xudc_setup_packet {
410 	struct usb_ctrlrequest ctrl_req;
411 	unsigned int seq_num;
412 };
413 
414 struct tegra_xudc_save_regs {
415 	u32 ctrl;
416 	u32 portpm;
417 };
418 
419 struct tegra_xudc {
420 	struct device *dev;
421 	const struct tegra_xudc_soc *soc;
422 	struct tegra_xusb_padctl *padctl;
423 
424 	spinlock_t lock;
425 
426 	struct usb_gadget gadget;
427 	struct usb_gadget_driver *driver;
428 
429 #define XUDC_NR_EVENT_RINGS 2
430 #define XUDC_EVENT_RING_SIZE 4096
431 	struct tegra_xudc_trb *event_ring[XUDC_NR_EVENT_RINGS];
432 	dma_addr_t event_ring_phys[XUDC_NR_EVENT_RINGS];
433 	unsigned int event_ring_index;
434 	unsigned int event_ring_deq_ptr;
435 	bool ccs;
436 
437 #define XUDC_NR_EPS 32
438 	struct tegra_xudc_ep ep[XUDC_NR_EPS];
439 	struct tegra_xudc_ep_context *ep_context;
440 	dma_addr_t ep_context_phys;
441 
442 	struct device *genpd_dev_device;
443 	struct device *genpd_dev_ss;
444 	struct device_link *genpd_dl_device;
445 	struct device_link *genpd_dl_ss;
446 
447 	struct dma_pool *transfer_ring_pool;
448 
449 	bool queued_setup_packet;
450 	struct tegra_xudc_setup_packet setup_packet;
451 	enum tegra_xudc_setup_state setup_state;
452 	u16 setup_seq_num;
453 
454 	u16 dev_addr;
455 	u16 isoch_delay;
456 	struct tegra_xudc_sel_timing sel_timing;
457 	u8 test_mode_pattern;
458 	u16 status_buf;
459 	struct tegra_xudc_request *ep0_req;
460 
461 	bool pullup;
462 
463 	unsigned int nr_enabled_eps;
464 	unsigned int nr_isoch_eps;
465 
466 	unsigned int device_state;
467 	unsigned int resume_state;
468 
469 	int irq;
470 
471 	void __iomem *base;
472 	resource_size_t phys_base;
473 	void __iomem *ipfs;
474 	void __iomem *fpci;
475 
476 	struct regulator_bulk_data *supplies;
477 
478 	struct clk_bulk_data *clks;
479 
480 	enum usb_role device_mode;
481 	struct usb_role_switch *usb_role_sw;
482 	struct work_struct usb_role_sw_work;
483 
484 	struct phy *usb3_phy;
485 	struct phy *utmi_phy;
486 
487 	struct tegra_xudc_save_regs saved_regs;
488 	bool suspended;
489 	bool powergated;
490 
491 	struct completion disconnect_complete;
492 
493 	bool selfpowered;
494 
495 #define TOGGLE_VBUS_WAIT_MS 100
496 	struct delayed_work plc_reset_work;
497 	bool wait_csc;
498 
499 	struct delayed_work port_reset_war_work;
500 	bool wait_for_sec_prc;
501 };
502 
503 #define XUDC_TRB_MAX_BUFFER_SIZE 65536
504 #define XUDC_MAX_ISOCH_EPS 4
505 #define XUDC_INTERRUPT_MODERATION_US 0
506 
507 static struct usb_endpoint_descriptor tegra_xudc_ep0_desc = {
508 	.bLength = USB_DT_ENDPOINT_SIZE,
509 	.bDescriptorType = USB_DT_ENDPOINT,
510 	.bEndpointAddress = 0,
511 	.bmAttributes = USB_ENDPOINT_XFER_CONTROL,
512 	.wMaxPacketSize = cpu_to_le16(64),
513 };
514 
515 struct tegra_xudc_soc {
516 	const char * const *supply_names;
517 	unsigned int num_supplies;
518 	const char * const *clock_names;
519 	unsigned int num_clks;
520 	bool u1_enable;
521 	bool u2_enable;
522 	bool lpm_enable;
523 	bool invalid_seq_num;
524 	bool pls_quirk;
525 	bool port_reset_quirk;
526 	bool has_ipfs;
527 };
528 
529 static inline u32 fpci_readl(struct tegra_xudc *xudc, unsigned int offset)
530 {
531 	return readl(xudc->fpci + offset);
532 }
533 
534 static inline void fpci_writel(struct tegra_xudc *xudc, u32 val,
535 			       unsigned int offset)
536 {
537 	writel(val, xudc->fpci + offset);
538 }
539 
540 static inline u32 ipfs_readl(struct tegra_xudc *xudc, unsigned int offset)
541 {
542 	return readl(xudc->ipfs + offset);
543 }
544 
545 static inline void ipfs_writel(struct tegra_xudc *xudc, u32 val,
546 			       unsigned int offset)
547 {
548 	writel(val, xudc->ipfs + offset);
549 }
550 
551 static inline u32 xudc_readl(struct tegra_xudc *xudc, unsigned int offset)
552 {
553 	return readl(xudc->base + offset);
554 }
555 
556 static inline void xudc_writel(struct tegra_xudc *xudc, u32 val,
557 			       unsigned int offset)
558 {
559 	writel(val, xudc->base + offset);
560 }
561 
562 static inline int xudc_readl_poll(struct tegra_xudc *xudc,
563 				  unsigned int offset, u32 mask, u32 val)
564 {
565 	u32 regval;
566 
567 	return readl_poll_timeout_atomic(xudc->base + offset, regval,
568 					 (regval & mask) == val, 1, 100);
569 }
570 
571 static inline struct tegra_xudc *to_xudc(struct usb_gadget *gadget)
572 {
573 	return container_of(gadget, struct tegra_xudc, gadget);
574 }
575 
576 static inline struct tegra_xudc_ep *to_xudc_ep(struct usb_ep *ep)
577 {
578 	return container_of(ep, struct tegra_xudc_ep, usb_ep);
579 }
580 
581 static inline struct tegra_xudc_request *to_xudc_req(struct usb_request *req)
582 {
583 	return container_of(req, struct tegra_xudc_request, usb_req);
584 }
585 
586 static inline void dump_trb(struct tegra_xudc *xudc, const char *type,
587 			    struct tegra_xudc_trb *trb)
588 {
589 	dev_dbg(xudc->dev,
590 		"%s: %p, lo = %#x, hi = %#x, status = %#x, control = %#x\n",
591 		type, trb, trb->data_lo, trb->data_hi, trb->status,
592 		trb->control);
593 }
594 
595 static void tegra_xudc_device_mode_on(struct tegra_xudc *xudc)
596 {
597 	int err;
598 
599 	pm_runtime_get_sync(xudc->dev);
600 
601 	err = phy_power_on(xudc->utmi_phy);
602 	if (err < 0)
603 		dev_err(xudc->dev, "utmi power on failed %d\n", err);
604 
605 	err = phy_power_on(xudc->usb3_phy);
606 	if (err < 0)
607 		dev_err(xudc->dev, "usb3 phy power on failed %d\n", err);
608 
609 	dev_dbg(xudc->dev, "device mode on\n");
610 
611 	tegra_xusb_padctl_set_vbus_override(xudc->padctl, true);
612 
613 	xudc->device_mode = USB_ROLE_DEVICE;
614 }
615 
616 static void tegra_xudc_device_mode_off(struct tegra_xudc *xudc)
617 {
618 	bool connected = false;
619 	u32 pls, val;
620 	int err;
621 
622 	dev_dbg(xudc->dev, "device mode off\n");
623 
624 	connected = !!(xudc_readl(xudc, PORTSC) & PORTSC_CCS);
625 
626 	reinit_completion(&xudc->disconnect_complete);
627 
628 	tegra_xusb_padctl_set_vbus_override(xudc->padctl, false);
629 
630 	pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >>
631 		PORTSC_PLS_SHIFT;
632 
633 	/* Direct link to U0 if disconnected in RESUME or U2. */
634 	if (xudc->soc->pls_quirk && xudc->gadget.speed == USB_SPEED_SUPER &&
635 	    (pls == PORTSC_PLS_RESUME || pls == PORTSC_PLS_U2)) {
636 		val = xudc_readl(xudc, PORTPM);
637 		val |= PORTPM_FRWE;
638 		xudc_writel(xudc, val, PORTPM);
639 
640 		val = xudc_readl(xudc, PORTSC);
641 		val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
642 		val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0);
643 		xudc_writel(xudc, val, PORTSC);
644 	}
645 
646 	xudc->device_mode = USB_ROLE_NONE;
647 
648 	/* Wait for disconnect event. */
649 	if (connected)
650 		wait_for_completion(&xudc->disconnect_complete);
651 
652 	/* Make sure interrupt handler has completed before powergating. */
653 	synchronize_irq(xudc->irq);
654 
655 	err = phy_power_off(xudc->utmi_phy);
656 	if (err < 0)
657 		dev_err(xudc->dev, "utmi_phy power off failed %d\n", err);
658 
659 	err = phy_power_off(xudc->usb3_phy);
660 	if (err < 0)
661 		dev_err(xudc->dev, "usb3_phy power off failed %d\n", err);
662 
663 	pm_runtime_put(xudc->dev);
664 }
665 
666 static void tegra_xudc_usb_role_sw_work(struct work_struct *work)
667 {
668 	struct tegra_xudc *xudc = container_of(work, struct tegra_xudc,
669 					       usb_role_sw_work);
670 
671 	if (!xudc->usb_role_sw ||
672 		usb_role_switch_get_role(xudc->usb_role_sw) == USB_ROLE_DEVICE)
673 		tegra_xudc_device_mode_on(xudc);
674 	else
675 		tegra_xudc_device_mode_off(xudc);
676 
677 }
678 
679 static int tegra_xudc_usb_role_sw_set(struct device *dev, enum usb_role role)
680 {
681 	struct tegra_xudc *xudc = dev_get_drvdata(dev);
682 	unsigned long flags;
683 
684 	dev_dbg(dev, "%s role is %d\n", __func__, role);
685 
686 	spin_lock_irqsave(&xudc->lock, flags);
687 
688 	if (!xudc->suspended)
689 		schedule_work(&xudc->usb_role_sw_work);
690 
691 	spin_unlock_irqrestore(&xudc->lock, flags);
692 
693 	return 0;
694 }
695 
696 static void tegra_xudc_plc_reset_work(struct work_struct *work)
697 {
698 	struct delayed_work *dwork = to_delayed_work(work);
699 	struct tegra_xudc *xudc = container_of(dwork, struct tegra_xudc,
700 					       plc_reset_work);
701 	unsigned long flags;
702 
703 	spin_lock_irqsave(&xudc->lock, flags);
704 
705 	if (xudc->wait_csc) {
706 		u32 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >>
707 			PORTSC_PLS_SHIFT;
708 
709 		if (pls == PORTSC_PLS_INACTIVE) {
710 			dev_info(xudc->dev, "PLS = Inactive. Toggle VBUS\n");
711 			tegra_xusb_padctl_set_vbus_override(xudc->padctl,
712 							      false);
713 			tegra_xusb_padctl_set_vbus_override(xudc->padctl, true);
714 			xudc->wait_csc = false;
715 		}
716 	}
717 
718 	spin_unlock_irqrestore(&xudc->lock, flags);
719 }
720 
721 static void tegra_xudc_port_reset_war_work(struct work_struct *work)
722 {
723 	struct delayed_work *dwork = to_delayed_work(work);
724 	struct tegra_xudc *xudc =
725 		container_of(dwork, struct tegra_xudc, port_reset_war_work);
726 	unsigned long flags;
727 	u32 pls;
728 	int ret;
729 
730 	spin_lock_irqsave(&xudc->lock, flags);
731 
732 	if ((xudc->device_mode == USB_ROLE_DEVICE)
733 			      && xudc->wait_for_sec_prc) {
734 		pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >>
735 			PORTSC_PLS_SHIFT;
736 		dev_dbg(xudc->dev, "pls = %x\n", pls);
737 
738 		if (pls == PORTSC_PLS_DISABLED) {
739 			dev_dbg(xudc->dev, "toggle vbus\n");
740 			/* PRC doesn't complete in 100ms, toggle the vbus */
741 			ret = tegra_phy_xusb_utmi_port_reset(xudc->utmi_phy);
742 			if (ret == 1)
743 				xudc->wait_for_sec_prc = 0;
744 		}
745 	}
746 
747 	spin_unlock_irqrestore(&xudc->lock, flags);
748 }
749 
750 static dma_addr_t trb_virt_to_phys(struct tegra_xudc_ep *ep,
751 				   struct tegra_xudc_trb *trb)
752 {
753 	unsigned int index;
754 
755 	index = trb - ep->transfer_ring;
756 
757 	if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE))
758 		return 0;
759 
760 	return (ep->transfer_ring_phys + index * sizeof(*trb));
761 }
762 
763 static struct tegra_xudc_trb *trb_phys_to_virt(struct tegra_xudc_ep *ep,
764 					       dma_addr_t addr)
765 {
766 	struct tegra_xudc_trb *trb;
767 	unsigned int index;
768 
769 	index = (addr - ep->transfer_ring_phys) / sizeof(*trb);
770 
771 	if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE))
772 		return NULL;
773 
774 	trb = &ep->transfer_ring[index];
775 
776 	return trb;
777 }
778 
779 static void ep_reload(struct tegra_xudc *xudc, unsigned int ep)
780 {
781 	xudc_writel(xudc, BIT(ep), EP_RELOAD);
782 	xudc_readl_poll(xudc, EP_RELOAD, BIT(ep), 0);
783 }
784 
785 static void ep_pause(struct tegra_xudc *xudc, unsigned int ep)
786 {
787 	u32 val;
788 
789 	val = xudc_readl(xudc, EP_PAUSE);
790 	if (val & BIT(ep))
791 		return;
792 	val |= BIT(ep);
793 
794 	xudc_writel(xudc, val, EP_PAUSE);
795 
796 	xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
797 
798 	xudc_writel(xudc, BIT(ep), EP_STCHG);
799 }
800 
801 static void ep_unpause(struct tegra_xudc *xudc, unsigned int ep)
802 {
803 	u32 val;
804 
805 	val = xudc_readl(xudc, EP_PAUSE);
806 	if (!(val & BIT(ep)))
807 		return;
808 	val &= ~BIT(ep);
809 
810 	xudc_writel(xudc, val, EP_PAUSE);
811 
812 	xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
813 
814 	xudc_writel(xudc, BIT(ep), EP_STCHG);
815 }
816 
817 static void ep_unpause_all(struct tegra_xudc *xudc)
818 {
819 	u32 val;
820 
821 	val = xudc_readl(xudc, EP_PAUSE);
822 
823 	xudc_writel(xudc, 0, EP_PAUSE);
824 
825 	xudc_readl_poll(xudc, EP_STCHG, val, val);
826 
827 	xudc_writel(xudc, val, EP_STCHG);
828 }
829 
830 static void ep_halt(struct tegra_xudc *xudc, unsigned int ep)
831 {
832 	u32 val;
833 
834 	val = xudc_readl(xudc, EP_HALT);
835 	if (val & BIT(ep))
836 		return;
837 	val |= BIT(ep);
838 	xudc_writel(xudc, val, EP_HALT);
839 
840 	xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
841 
842 	xudc_writel(xudc, BIT(ep), EP_STCHG);
843 }
844 
845 static void ep_unhalt(struct tegra_xudc *xudc, unsigned int ep)
846 {
847 	u32 val;
848 
849 	val = xudc_readl(xudc, EP_HALT);
850 	if (!(val & BIT(ep)))
851 		return;
852 	val &= ~BIT(ep);
853 	xudc_writel(xudc, val, EP_HALT);
854 
855 	xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
856 
857 	xudc_writel(xudc, BIT(ep), EP_STCHG);
858 }
859 
860 static void ep_unhalt_all(struct tegra_xudc *xudc)
861 {
862 	u32 val;
863 
864 	val = xudc_readl(xudc, EP_HALT);
865 	if (!val)
866 		return;
867 	xudc_writel(xudc, 0, EP_HALT);
868 
869 	xudc_readl_poll(xudc, EP_STCHG, val, val);
870 
871 	xudc_writel(xudc, val, EP_STCHG);
872 }
873 
874 static void ep_wait_for_stopped(struct tegra_xudc *xudc, unsigned int ep)
875 {
876 	xudc_readl_poll(xudc, EP_STOPPED, BIT(ep), BIT(ep));
877 	xudc_writel(xudc, BIT(ep), EP_STOPPED);
878 }
879 
880 static void ep_wait_for_inactive(struct tegra_xudc *xudc, unsigned int ep)
881 {
882 	xudc_readl_poll(xudc, EP_THREAD_ACTIVE, BIT(ep), 0);
883 }
884 
885 static void tegra_xudc_req_done(struct tegra_xudc_ep *ep,
886 				struct tegra_xudc_request *req, int status)
887 {
888 	struct tegra_xudc *xudc = ep->xudc;
889 
890 	dev_dbg(xudc->dev, "completing request %p on EP %u with status %d\n",
891 		 req, ep->index, status);
892 
893 	if (likely(req->usb_req.status == -EINPROGRESS))
894 		req->usb_req.status = status;
895 
896 	list_del_init(&req->list);
897 
898 	if (usb_endpoint_xfer_control(ep->desc)) {
899 		usb_gadget_unmap_request(&xudc->gadget, &req->usb_req,
900 					 (xudc->setup_state ==
901 					  DATA_STAGE_XFER));
902 	} else {
903 		usb_gadget_unmap_request(&xudc->gadget, &req->usb_req,
904 					 usb_endpoint_dir_in(ep->desc));
905 	}
906 
907 	spin_unlock(&xudc->lock);
908 	usb_gadget_giveback_request(&ep->usb_ep, &req->usb_req);
909 	spin_lock(&xudc->lock);
910 }
911 
912 static void tegra_xudc_ep_nuke(struct tegra_xudc_ep *ep, int status)
913 {
914 	struct tegra_xudc_request *req;
915 
916 	while (!list_empty(&ep->queue)) {
917 		req = list_first_entry(&ep->queue, struct tegra_xudc_request,
918 				       list);
919 		tegra_xudc_req_done(ep, req, status);
920 	}
921 }
922 
923 static unsigned int ep_available_trbs(struct tegra_xudc_ep *ep)
924 {
925 	if (ep->ring_full)
926 		return 0;
927 
928 	if (ep->deq_ptr > ep->enq_ptr)
929 		return ep->deq_ptr - ep->enq_ptr - 1;
930 
931 	return XUDC_TRANSFER_RING_SIZE - (ep->enq_ptr - ep->deq_ptr) - 2;
932 }
933 
934 static void tegra_xudc_queue_one_trb(struct tegra_xudc_ep *ep,
935 				     struct tegra_xudc_request *req,
936 				     struct tegra_xudc_trb *trb,
937 				     bool ioc)
938 {
939 	struct tegra_xudc *xudc = ep->xudc;
940 	dma_addr_t buf_addr;
941 	size_t len;
942 
943 	len = min_t(size_t, XUDC_TRB_MAX_BUFFER_SIZE, req->usb_req.length -
944 		    req->buf_queued);
945 	if (len > 0)
946 		buf_addr = req->usb_req.dma + req->buf_queued;
947 	else
948 		buf_addr = 0;
949 
950 	trb_write_data_ptr(trb, buf_addr);
951 
952 	trb_write_transfer_len(trb, len);
953 	trb_write_td_size(trb, req->trbs_needed - req->trbs_queued - 1);
954 
955 	if (req->trbs_queued == req->trbs_needed - 1 ||
956 		(req->need_zlp && req->trbs_queued == req->trbs_needed - 2))
957 		trb_write_chain(trb, 0);
958 	else
959 		trb_write_chain(trb, 1);
960 
961 	trb_write_ioc(trb, ioc);
962 
963 	if (usb_endpoint_dir_out(ep->desc) ||
964 	    (usb_endpoint_xfer_control(ep->desc) &&
965 	     (xudc->setup_state == DATA_STAGE_RECV)))
966 		trb_write_isp(trb, 1);
967 	else
968 		trb_write_isp(trb, 0);
969 
970 	if (usb_endpoint_xfer_control(ep->desc)) {
971 		if (xudc->setup_state == DATA_STAGE_XFER ||
972 		    xudc->setup_state == DATA_STAGE_RECV)
973 			trb_write_type(trb, TRB_TYPE_DATA_STAGE);
974 		else
975 			trb_write_type(trb, TRB_TYPE_STATUS_STAGE);
976 
977 		if (xudc->setup_state == DATA_STAGE_XFER ||
978 		    xudc->setup_state == STATUS_STAGE_XFER)
979 			trb_write_data_stage_dir(trb, 1);
980 		else
981 			trb_write_data_stage_dir(trb, 0);
982 	} else if (usb_endpoint_xfer_isoc(ep->desc)) {
983 		trb_write_type(trb, TRB_TYPE_ISOCH);
984 		trb_write_sia(trb, 1);
985 		trb_write_frame_id(trb, 0);
986 		trb_write_tlbpc(trb, 0);
987 	} else if (usb_ss_max_streams(ep->comp_desc)) {
988 		trb_write_type(trb, TRB_TYPE_STREAM);
989 		trb_write_stream_id(trb, req->usb_req.stream_id);
990 	} else {
991 		trb_write_type(trb, TRB_TYPE_NORMAL);
992 		trb_write_stream_id(trb, 0);
993 	}
994 
995 	trb_write_cycle(trb, ep->pcs);
996 
997 	req->trbs_queued++;
998 	req->buf_queued += len;
999 
1000 	dump_trb(xudc, "TRANSFER", trb);
1001 }
1002 
1003 static unsigned int tegra_xudc_queue_trbs(struct tegra_xudc_ep *ep,
1004 					  struct tegra_xudc_request *req)
1005 {
1006 	unsigned int i, count, available;
1007 	bool wait_td = false;
1008 
1009 	available = ep_available_trbs(ep);
1010 	count = req->trbs_needed - req->trbs_queued;
1011 	if (available < count) {
1012 		count = available;
1013 		ep->ring_full = true;
1014 	}
1015 
1016 	/*
1017 	 * To generate zero-length packet on USB bus, SW needs schedule a
1018 	 * standalone zero-length TD. According to HW's behavior, SW needs
1019 	 * to schedule TDs in different ways for different endpoint types.
1020 	 *
1021 	 * For control endpoint:
1022 	 * - Data stage TD (IOC = 1, CH = 0)
1023 	 * - Ring doorbell and wait transfer event
1024 	 * - Data stage TD for ZLP (IOC = 1, CH = 0)
1025 	 * - Ring doorbell
1026 	 *
1027 	 * For bulk and interrupt endpoints:
1028 	 * - Normal transfer TD (IOC = 0, CH = 0)
1029 	 * - Normal transfer TD for ZLP (IOC = 1, CH = 0)
1030 	 * - Ring doorbell
1031 	 */
1032 
1033 	if (req->need_zlp && usb_endpoint_xfer_control(ep->desc) && count > 1)
1034 		wait_td = true;
1035 
1036 	if (!req->first_trb)
1037 		req->first_trb = &ep->transfer_ring[ep->enq_ptr];
1038 
1039 	for (i = 0; i < count; i++) {
1040 		struct tegra_xudc_trb *trb = &ep->transfer_ring[ep->enq_ptr];
1041 		bool ioc = false;
1042 
1043 		if ((i == count - 1) || (wait_td && i == count - 2))
1044 			ioc = true;
1045 
1046 		tegra_xudc_queue_one_trb(ep, req, trb, ioc);
1047 		req->last_trb = trb;
1048 
1049 		ep->enq_ptr++;
1050 		if (ep->enq_ptr == XUDC_TRANSFER_RING_SIZE - 1) {
1051 			trb = &ep->transfer_ring[ep->enq_ptr];
1052 			trb_write_cycle(trb, ep->pcs);
1053 			ep->pcs = !ep->pcs;
1054 			ep->enq_ptr = 0;
1055 		}
1056 
1057 		if (ioc)
1058 			break;
1059 	}
1060 
1061 	return count;
1062 }
1063 
1064 static void tegra_xudc_ep_ring_doorbell(struct tegra_xudc_ep *ep)
1065 {
1066 	struct tegra_xudc *xudc = ep->xudc;
1067 	u32 val;
1068 
1069 	if (list_empty(&ep->queue))
1070 		return;
1071 
1072 	val = DB_TARGET(ep->index);
1073 	if (usb_endpoint_xfer_control(ep->desc)) {
1074 		val |= DB_STREAMID(xudc->setup_seq_num);
1075 	} else if (usb_ss_max_streams(ep->comp_desc) > 0) {
1076 		struct tegra_xudc_request *req;
1077 
1078 		/* Don't ring doorbell if the stream has been rejected. */
1079 		if (ep->stream_rejected)
1080 			return;
1081 
1082 		req = list_first_entry(&ep->queue, struct tegra_xudc_request,
1083 				       list);
1084 		val |= DB_STREAMID(req->usb_req.stream_id);
1085 	}
1086 
1087 	dev_dbg(xudc->dev, "ring doorbell: %#x\n", val);
1088 	xudc_writel(xudc, val, DB);
1089 }
1090 
1091 static void tegra_xudc_ep_kick_queue(struct tegra_xudc_ep *ep)
1092 {
1093 	struct tegra_xudc_request *req;
1094 	bool trbs_queued = false;
1095 
1096 	list_for_each_entry(req, &ep->queue, list) {
1097 		if (ep->ring_full)
1098 			break;
1099 
1100 		if (tegra_xudc_queue_trbs(ep, req) > 0)
1101 			trbs_queued = true;
1102 	}
1103 
1104 	if (trbs_queued)
1105 		tegra_xudc_ep_ring_doorbell(ep);
1106 }
1107 
1108 static int
1109 __tegra_xudc_ep_queue(struct tegra_xudc_ep *ep, struct tegra_xudc_request *req)
1110 {
1111 	struct tegra_xudc *xudc = ep->xudc;
1112 	int err;
1113 
1114 	if (usb_endpoint_xfer_control(ep->desc) && !list_empty(&ep->queue)) {
1115 		dev_err(xudc->dev, "control EP has pending transfers\n");
1116 		return -EINVAL;
1117 	}
1118 
1119 	if (usb_endpoint_xfer_control(ep->desc)) {
1120 		err = usb_gadget_map_request(&xudc->gadget, &req->usb_req,
1121 					     (xudc->setup_state ==
1122 					      DATA_STAGE_XFER));
1123 	} else {
1124 		err = usb_gadget_map_request(&xudc->gadget, &req->usb_req,
1125 					     usb_endpoint_dir_in(ep->desc));
1126 	}
1127 
1128 	if (err < 0) {
1129 		dev_err(xudc->dev, "failed to map request: %d\n", err);
1130 		return err;
1131 	}
1132 
1133 	req->first_trb = NULL;
1134 	req->last_trb = NULL;
1135 	req->buf_queued = 0;
1136 	req->trbs_queued = 0;
1137 	req->need_zlp = false;
1138 	req->trbs_needed = DIV_ROUND_UP(req->usb_req.length,
1139 					XUDC_TRB_MAX_BUFFER_SIZE);
1140 	if (req->usb_req.length == 0)
1141 		req->trbs_needed++;
1142 
1143 	if (!usb_endpoint_xfer_isoc(ep->desc) &&
1144 	    req->usb_req.zero && req->usb_req.length &&
1145 	    ((req->usb_req.length % ep->usb_ep.maxpacket) == 0)) {
1146 		req->trbs_needed++;
1147 		req->need_zlp = true;
1148 	}
1149 
1150 	req->usb_req.status = -EINPROGRESS;
1151 	req->usb_req.actual = 0;
1152 
1153 	list_add_tail(&req->list, &ep->queue);
1154 
1155 	tegra_xudc_ep_kick_queue(ep);
1156 
1157 	return 0;
1158 }
1159 
1160 static int
1161 tegra_xudc_ep_queue(struct usb_ep *usb_ep, struct usb_request *usb_req,
1162 		    gfp_t gfp)
1163 {
1164 	struct tegra_xudc_request *req;
1165 	struct tegra_xudc_ep *ep;
1166 	struct tegra_xudc *xudc;
1167 	unsigned long flags;
1168 	int ret;
1169 
1170 	if (!usb_ep || !usb_req)
1171 		return -EINVAL;
1172 
1173 	ep = to_xudc_ep(usb_ep);
1174 	req = to_xudc_req(usb_req);
1175 	xudc = ep->xudc;
1176 
1177 	spin_lock_irqsave(&xudc->lock, flags);
1178 	if (xudc->powergated || !ep->desc) {
1179 		ret = -ESHUTDOWN;
1180 		goto unlock;
1181 	}
1182 
1183 	ret = __tegra_xudc_ep_queue(ep, req);
1184 unlock:
1185 	spin_unlock_irqrestore(&xudc->lock, flags);
1186 
1187 	return ret;
1188 }
1189 
1190 static void squeeze_transfer_ring(struct tegra_xudc_ep *ep,
1191 				  struct tegra_xudc_request *req)
1192 {
1193 	struct tegra_xudc_trb *trb = req->first_trb;
1194 	bool pcs_enq = trb_read_cycle(trb);
1195 	bool pcs;
1196 
1197 	/*
1198 	 * Clear out all the TRBs part of or after the cancelled request,
1199 	 * and must correct trb cycle bit to the last un-enqueued state.
1200 	 */
1201 	while (trb != &ep->transfer_ring[ep->enq_ptr]) {
1202 		pcs = trb_read_cycle(trb);
1203 		memset(trb, 0, sizeof(*trb));
1204 		trb_write_cycle(trb, !pcs);
1205 		trb++;
1206 
1207 		if (trb_read_type(trb) == TRB_TYPE_LINK)
1208 			trb = ep->transfer_ring;
1209 	}
1210 
1211 	/* Requests will be re-queued at the start of the cancelled request. */
1212 	ep->enq_ptr = req->first_trb - ep->transfer_ring;
1213 	/*
1214 	 * Retrieve the correct cycle bit state from the first trb of
1215 	 * the cancelled request.
1216 	 */
1217 	ep->pcs = pcs_enq;
1218 	ep->ring_full = false;
1219 	list_for_each_entry_continue(req, &ep->queue, list) {
1220 		req->usb_req.status = -EINPROGRESS;
1221 		req->usb_req.actual = 0;
1222 
1223 		req->first_trb = NULL;
1224 		req->last_trb = NULL;
1225 		req->buf_queued = 0;
1226 		req->trbs_queued = 0;
1227 	}
1228 }
1229 
1230 /*
1231  * Determine if the given TRB is in the range [first trb, last trb] for the
1232  * given request.
1233  */
1234 static bool trb_in_request(struct tegra_xudc_ep *ep,
1235 			   struct tegra_xudc_request *req,
1236 			   struct tegra_xudc_trb *trb)
1237 {
1238 	dev_dbg(ep->xudc->dev, "%s: request %p -> %p; trb %p\n", __func__,
1239 		req->first_trb, req->last_trb, trb);
1240 
1241 	if (trb >= req->first_trb && (trb <= req->last_trb ||
1242 				      req->last_trb < req->first_trb))
1243 		return true;
1244 
1245 	if (trb < req->first_trb && trb <= req->last_trb &&
1246 	    req->last_trb < req->first_trb)
1247 		return true;
1248 
1249 	return false;
1250 }
1251 
1252 /*
1253  * Determine if the given TRB is in the range [EP enqueue pointer, first TRB)
1254  * for the given endpoint and request.
1255  */
1256 static bool trb_before_request(struct tegra_xudc_ep *ep,
1257 			       struct tegra_xudc_request *req,
1258 			       struct tegra_xudc_trb *trb)
1259 {
1260 	struct tegra_xudc_trb *enq_trb = &ep->transfer_ring[ep->enq_ptr];
1261 
1262 	dev_dbg(ep->xudc->dev, "%s: request %p -> %p; enq ptr: %p; trb %p\n",
1263 		__func__, req->first_trb, req->last_trb, enq_trb, trb);
1264 
1265 	if (trb < req->first_trb && (enq_trb <= trb ||
1266 				     req->first_trb < enq_trb))
1267 		return true;
1268 
1269 	if (trb > req->first_trb && req->first_trb < enq_trb && enq_trb <= trb)
1270 		return true;
1271 
1272 	return false;
1273 }
1274 
1275 static int
1276 __tegra_xudc_ep_dequeue(struct tegra_xudc_ep *ep,
1277 			struct tegra_xudc_request *req)
1278 {
1279 	struct tegra_xudc *xudc = ep->xudc;
1280 	struct tegra_xudc_request *r;
1281 	struct tegra_xudc_trb *deq_trb;
1282 	bool busy, kick_queue = false;
1283 	int ret = 0;
1284 
1285 	/* Make sure the request is actually queued to this endpoint. */
1286 	list_for_each_entry(r, &ep->queue, list) {
1287 		if (r == req)
1288 			break;
1289 	}
1290 
1291 	if (r != req)
1292 		return -EINVAL;
1293 
1294 	/* Request hasn't been queued in the transfer ring yet. */
1295 	if (!req->trbs_queued) {
1296 		tegra_xudc_req_done(ep, req, -ECONNRESET);
1297 		return 0;
1298 	}
1299 
1300 	/* Halt DMA for this endpiont. */
1301 	if (ep_ctx_read_state(ep->context) == EP_STATE_RUNNING) {
1302 		ep_pause(xudc, ep->index);
1303 		ep_wait_for_inactive(xudc, ep->index);
1304 	}
1305 
1306 	deq_trb = trb_phys_to_virt(ep, ep_ctx_read_deq_ptr(ep->context));
1307 	/* Is the hardware processing the TRB at the dequeue pointer? */
1308 	busy = (trb_read_cycle(deq_trb) == ep_ctx_read_dcs(ep->context));
1309 
1310 	if (trb_in_request(ep, req, deq_trb) && busy) {
1311 		/*
1312 		 * Request has been partially completed or it hasn't
1313 		 * started processing yet.
1314 		 */
1315 		dma_addr_t deq_ptr;
1316 
1317 		squeeze_transfer_ring(ep, req);
1318 
1319 		req->usb_req.actual = ep_ctx_read_edtla(ep->context);
1320 		tegra_xudc_req_done(ep, req, -ECONNRESET);
1321 		kick_queue = true;
1322 
1323 		/* EDTLA is > 0: request has been partially completed */
1324 		if (req->usb_req.actual > 0) {
1325 			/*
1326 			 * Abort the pending transfer and update the dequeue
1327 			 * pointer
1328 			 */
1329 			ep_ctx_write_edtla(ep->context, 0);
1330 			ep_ctx_write_partial_td(ep->context, 0);
1331 			ep_ctx_write_data_offset(ep->context, 0);
1332 
1333 			deq_ptr = trb_virt_to_phys(ep,
1334 					&ep->transfer_ring[ep->enq_ptr]);
1335 
1336 			if (dma_mapping_error(xudc->dev, deq_ptr)) {
1337 				ret = -EINVAL;
1338 			} else {
1339 				ep_ctx_write_deq_ptr(ep->context, deq_ptr);
1340 				ep_ctx_write_dcs(ep->context, ep->pcs);
1341 				ep_reload(xudc, ep->index);
1342 			}
1343 		}
1344 	} else if (trb_before_request(ep, req, deq_trb) && busy) {
1345 		/* Request hasn't started processing yet. */
1346 		squeeze_transfer_ring(ep, req);
1347 
1348 		tegra_xudc_req_done(ep, req, -ECONNRESET);
1349 		kick_queue = true;
1350 	} else {
1351 		/*
1352 		 * Request has completed, but we haven't processed the
1353 		 * completion event yet.
1354 		 */
1355 		tegra_xudc_req_done(ep, req, -ECONNRESET);
1356 		ret = -EINVAL;
1357 	}
1358 
1359 	/* Resume the endpoint. */
1360 	ep_unpause(xudc, ep->index);
1361 
1362 	if (kick_queue)
1363 		tegra_xudc_ep_kick_queue(ep);
1364 
1365 	return ret;
1366 }
1367 
1368 static int
1369 tegra_xudc_ep_dequeue(struct usb_ep *usb_ep, struct usb_request *usb_req)
1370 {
1371 	struct tegra_xudc_request *req;
1372 	struct tegra_xudc_ep *ep;
1373 	struct tegra_xudc *xudc;
1374 	unsigned long flags;
1375 	int ret;
1376 
1377 	if (!usb_ep || !usb_req)
1378 		return -EINVAL;
1379 
1380 	ep = to_xudc_ep(usb_ep);
1381 	req = to_xudc_req(usb_req);
1382 	xudc = ep->xudc;
1383 
1384 	spin_lock_irqsave(&xudc->lock, flags);
1385 
1386 	if (xudc->powergated || !ep->desc) {
1387 		ret = -ESHUTDOWN;
1388 		goto unlock;
1389 	}
1390 
1391 	ret = __tegra_xudc_ep_dequeue(ep, req);
1392 unlock:
1393 	spin_unlock_irqrestore(&xudc->lock, flags);
1394 
1395 	return ret;
1396 }
1397 
1398 static int __tegra_xudc_ep_set_halt(struct tegra_xudc_ep *ep, bool halt)
1399 {
1400 	struct tegra_xudc *xudc = ep->xudc;
1401 
1402 	if (!ep->desc)
1403 		return -EINVAL;
1404 
1405 	if (usb_endpoint_xfer_isoc(ep->desc)) {
1406 		dev_err(xudc->dev, "can't halt isoc EP\n");
1407 		return -ENOTSUPP;
1408 	}
1409 
1410 	if (!!(xudc_readl(xudc, EP_HALT) & BIT(ep->index)) == halt) {
1411 		dev_dbg(xudc->dev, "EP %u already %s\n", ep->index,
1412 			halt ? "halted" : "not halted");
1413 		return 0;
1414 	}
1415 
1416 	if (halt) {
1417 		ep_halt(xudc, ep->index);
1418 	} else {
1419 		ep_ctx_write_state(ep->context, EP_STATE_DISABLED);
1420 
1421 		ep_reload(xudc, ep->index);
1422 
1423 		ep_ctx_write_state(ep->context, EP_STATE_RUNNING);
1424 		ep_ctx_write_seq_num(ep->context, 0);
1425 
1426 		ep_reload(xudc, ep->index);
1427 		ep_unpause(xudc, ep->index);
1428 		ep_unhalt(xudc, ep->index);
1429 
1430 		tegra_xudc_ep_ring_doorbell(ep);
1431 	}
1432 
1433 	return 0;
1434 }
1435 
1436 static int tegra_xudc_ep_set_halt(struct usb_ep *usb_ep, int value)
1437 {
1438 	struct tegra_xudc_ep *ep;
1439 	struct tegra_xudc *xudc;
1440 	unsigned long flags;
1441 	int ret;
1442 
1443 	if (!usb_ep)
1444 		return -EINVAL;
1445 
1446 	ep = to_xudc_ep(usb_ep);
1447 	xudc = ep->xudc;
1448 
1449 	spin_lock_irqsave(&xudc->lock, flags);
1450 	if (xudc->powergated) {
1451 		ret = -ESHUTDOWN;
1452 		goto unlock;
1453 	}
1454 
1455 	if (value && usb_endpoint_dir_in(ep->desc) &&
1456 	    !list_empty(&ep->queue)) {
1457 		dev_err(xudc->dev, "can't halt EP with requests pending\n");
1458 		ret = -EAGAIN;
1459 		goto unlock;
1460 	}
1461 
1462 	ret = __tegra_xudc_ep_set_halt(ep, value);
1463 unlock:
1464 	spin_unlock_irqrestore(&xudc->lock, flags);
1465 
1466 	return ret;
1467 }
1468 
1469 static void tegra_xudc_ep_context_setup(struct tegra_xudc_ep *ep)
1470 {
1471 	const struct usb_endpoint_descriptor *desc = ep->desc;
1472 	const struct usb_ss_ep_comp_descriptor *comp_desc = ep->comp_desc;
1473 	struct tegra_xudc *xudc = ep->xudc;
1474 	u16 maxpacket, maxburst = 0, esit = 0;
1475 	u32 val;
1476 
1477 	maxpacket = usb_endpoint_maxp(desc) & 0x7ff;
1478 	if (xudc->gadget.speed == USB_SPEED_SUPER) {
1479 		if (!usb_endpoint_xfer_control(desc))
1480 			maxburst = comp_desc->bMaxBurst;
1481 
1482 		if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc))
1483 			esit = le16_to_cpu(comp_desc->wBytesPerInterval);
1484 	} else if ((xudc->gadget.speed < USB_SPEED_SUPER) &&
1485 		   (usb_endpoint_xfer_int(desc) ||
1486 		    usb_endpoint_xfer_isoc(desc))) {
1487 		if (xudc->gadget.speed == USB_SPEED_HIGH) {
1488 			maxburst = (usb_endpoint_maxp(desc) >> 11) & 0x3;
1489 			if (maxburst == 0x3) {
1490 				dev_warn(xudc->dev,
1491 					 "invalid endpoint maxburst\n");
1492 				maxburst = 0x2;
1493 			}
1494 		}
1495 		esit = maxpacket * (maxburst + 1);
1496 	}
1497 
1498 	memset(ep->context, 0, sizeof(*ep->context));
1499 
1500 	ep_ctx_write_state(ep->context, EP_STATE_RUNNING);
1501 	ep_ctx_write_interval(ep->context, desc->bInterval);
1502 	if (xudc->gadget.speed == USB_SPEED_SUPER) {
1503 		if (usb_endpoint_xfer_isoc(desc)) {
1504 			ep_ctx_write_mult(ep->context,
1505 					  comp_desc->bmAttributes & 0x3);
1506 		}
1507 
1508 		if (usb_endpoint_xfer_bulk(desc)) {
1509 			ep_ctx_write_max_pstreams(ep->context,
1510 						  comp_desc->bmAttributes &
1511 						  0x1f);
1512 			ep_ctx_write_lsa(ep->context, 1);
1513 		}
1514 	}
1515 
1516 	if (!usb_endpoint_xfer_control(desc) && usb_endpoint_dir_out(desc))
1517 		val = usb_endpoint_type(desc);
1518 	else
1519 		val = usb_endpoint_type(desc) + EP_TYPE_CONTROL;
1520 
1521 	ep_ctx_write_type(ep->context, val);
1522 	ep_ctx_write_cerr(ep->context, 0x3);
1523 	ep_ctx_write_max_packet_size(ep->context, maxpacket);
1524 	ep_ctx_write_max_burst_size(ep->context, maxburst);
1525 
1526 	ep_ctx_write_deq_ptr(ep->context, ep->transfer_ring_phys);
1527 	ep_ctx_write_dcs(ep->context, ep->pcs);
1528 
1529 	/* Select a reasonable average TRB length based on endpoint type. */
1530 	switch (usb_endpoint_type(desc)) {
1531 	case USB_ENDPOINT_XFER_CONTROL:
1532 		val = 8;
1533 		break;
1534 	case USB_ENDPOINT_XFER_INT:
1535 		val = 1024;
1536 		break;
1537 	case USB_ENDPOINT_XFER_BULK:
1538 	case USB_ENDPOINT_XFER_ISOC:
1539 	default:
1540 		val = 3072;
1541 		break;
1542 	}
1543 
1544 	ep_ctx_write_avg_trb_len(ep->context, val);
1545 	ep_ctx_write_max_esit_payload(ep->context, esit);
1546 
1547 	ep_ctx_write_cerrcnt(ep->context, 0x3);
1548 }
1549 
1550 static void setup_link_trb(struct tegra_xudc_ep *ep,
1551 			   struct tegra_xudc_trb *trb)
1552 {
1553 	trb_write_data_ptr(trb, ep->transfer_ring_phys);
1554 	trb_write_type(trb, TRB_TYPE_LINK);
1555 	trb_write_toggle_cycle(trb, 1);
1556 }
1557 
1558 static int __tegra_xudc_ep_disable(struct tegra_xudc_ep *ep)
1559 {
1560 	struct tegra_xudc *xudc = ep->xudc;
1561 
1562 	if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) {
1563 		dev_err(xudc->dev, "endpoint %u already disabled\n",
1564 			ep->index);
1565 		return -EINVAL;
1566 	}
1567 
1568 	ep_ctx_write_state(ep->context, EP_STATE_DISABLED);
1569 
1570 	ep_reload(xudc, ep->index);
1571 
1572 	tegra_xudc_ep_nuke(ep, -ESHUTDOWN);
1573 
1574 	xudc->nr_enabled_eps--;
1575 	if (usb_endpoint_xfer_isoc(ep->desc))
1576 		xudc->nr_isoch_eps--;
1577 
1578 	ep->desc = NULL;
1579 	ep->comp_desc = NULL;
1580 
1581 	memset(ep->context, 0, sizeof(*ep->context));
1582 
1583 	ep_unpause(xudc, ep->index);
1584 	ep_unhalt(xudc, ep->index);
1585 	if (xudc_readl(xudc, EP_STOPPED) & BIT(ep->index))
1586 		xudc_writel(xudc, BIT(ep->index), EP_STOPPED);
1587 
1588 	/*
1589 	 * If this is the last endpoint disabled in a de-configure request,
1590 	 * switch back to address state.
1591 	 */
1592 	if ((xudc->device_state == USB_STATE_CONFIGURED) &&
1593 	    (xudc->nr_enabled_eps == 1)) {
1594 		u32 val;
1595 
1596 		xudc->device_state = USB_STATE_ADDRESS;
1597 		usb_gadget_set_state(&xudc->gadget, xudc->device_state);
1598 
1599 		val = xudc_readl(xudc, CTRL);
1600 		val &= ~CTRL_RUN;
1601 		xudc_writel(xudc, val, CTRL);
1602 	}
1603 
1604 	dev_info(xudc->dev, "ep %u disabled\n", ep->index);
1605 
1606 	return 0;
1607 }
1608 
1609 static int tegra_xudc_ep_disable(struct usb_ep *usb_ep)
1610 {
1611 	struct tegra_xudc_ep *ep;
1612 	struct tegra_xudc *xudc;
1613 	unsigned long flags;
1614 	int ret;
1615 
1616 	if (!usb_ep)
1617 		return -EINVAL;
1618 
1619 	ep = to_xudc_ep(usb_ep);
1620 	xudc = ep->xudc;
1621 
1622 	spin_lock_irqsave(&xudc->lock, flags);
1623 	if (xudc->powergated) {
1624 		ret = -ESHUTDOWN;
1625 		goto unlock;
1626 	}
1627 
1628 	ret = __tegra_xudc_ep_disable(ep);
1629 unlock:
1630 	spin_unlock_irqrestore(&xudc->lock, flags);
1631 
1632 	return ret;
1633 }
1634 
1635 static int __tegra_xudc_ep_enable(struct tegra_xudc_ep *ep,
1636 				  const struct usb_endpoint_descriptor *desc)
1637 {
1638 	struct tegra_xudc *xudc = ep->xudc;
1639 	unsigned int i;
1640 	u32 val;
1641 
1642 	if (xudc->gadget.speed == USB_SPEED_SUPER &&
1643 		!usb_endpoint_xfer_control(desc) && !ep->usb_ep.comp_desc)
1644 		return -EINVAL;
1645 
1646 	/* Disable the EP if it is not disabled */
1647 	if (ep_ctx_read_state(ep->context) != EP_STATE_DISABLED)
1648 		__tegra_xudc_ep_disable(ep);
1649 
1650 	ep->desc = desc;
1651 	ep->comp_desc = ep->usb_ep.comp_desc;
1652 
1653 	if (usb_endpoint_xfer_isoc(desc)) {
1654 		if (xudc->nr_isoch_eps > XUDC_MAX_ISOCH_EPS) {
1655 			dev_err(xudc->dev, "too many isoch endpoints\n");
1656 			return -EBUSY;
1657 		}
1658 		xudc->nr_isoch_eps++;
1659 	}
1660 
1661 	memset(ep->transfer_ring, 0, XUDC_TRANSFER_RING_SIZE *
1662 	       sizeof(*ep->transfer_ring));
1663 	setup_link_trb(ep, &ep->transfer_ring[XUDC_TRANSFER_RING_SIZE - 1]);
1664 
1665 	ep->enq_ptr = 0;
1666 	ep->deq_ptr = 0;
1667 	ep->pcs = true;
1668 	ep->ring_full = false;
1669 	xudc->nr_enabled_eps++;
1670 
1671 	tegra_xudc_ep_context_setup(ep);
1672 
1673 	/*
1674 	 * No need to reload and un-halt EP0.  This will be done automatically
1675 	 * once a valid SETUP packet is received.
1676 	 */
1677 	if (usb_endpoint_xfer_control(desc))
1678 		goto out;
1679 
1680 	/*
1681 	 * Transition to configured state once the first non-control
1682 	 * endpoint is enabled.
1683 	 */
1684 	if (xudc->device_state == USB_STATE_ADDRESS) {
1685 		val = xudc_readl(xudc, CTRL);
1686 		val |= CTRL_RUN;
1687 		xudc_writel(xudc, val, CTRL);
1688 
1689 		xudc->device_state = USB_STATE_CONFIGURED;
1690 		usb_gadget_set_state(&xudc->gadget, xudc->device_state);
1691 	}
1692 
1693 	if (usb_endpoint_xfer_isoc(desc)) {
1694 		/*
1695 		 * Pause all bulk endpoints when enabling an isoch endpoint
1696 		 * to ensure the isoch endpoint is allocated enough bandwidth.
1697 		 */
1698 		for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) {
1699 			if (xudc->ep[i].desc &&
1700 			    usb_endpoint_xfer_bulk(xudc->ep[i].desc))
1701 				ep_pause(xudc, i);
1702 		}
1703 	}
1704 
1705 	ep_reload(xudc, ep->index);
1706 	ep_unpause(xudc, ep->index);
1707 	ep_unhalt(xudc, ep->index);
1708 
1709 	if (usb_endpoint_xfer_isoc(desc)) {
1710 		for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) {
1711 			if (xudc->ep[i].desc &&
1712 			    usb_endpoint_xfer_bulk(xudc->ep[i].desc))
1713 				ep_unpause(xudc, i);
1714 		}
1715 	}
1716 
1717 out:
1718 	dev_info(xudc->dev, "EP %u (type: %s, dir: %s) enabled\n", ep->index,
1719 		 usb_ep_type_string(usb_endpoint_type(ep->desc)),
1720 		 usb_endpoint_dir_in(ep->desc) ? "in" : "out");
1721 
1722 	return 0;
1723 }
1724 
1725 static int tegra_xudc_ep_enable(struct usb_ep *usb_ep,
1726 				const struct usb_endpoint_descriptor *desc)
1727 {
1728 	struct tegra_xudc_ep *ep;
1729 	struct tegra_xudc *xudc;
1730 	unsigned long flags;
1731 	int ret;
1732 
1733 	if  (!usb_ep || !desc || (desc->bDescriptorType != USB_DT_ENDPOINT))
1734 		return -EINVAL;
1735 
1736 	ep = to_xudc_ep(usb_ep);
1737 	xudc = ep->xudc;
1738 
1739 	spin_lock_irqsave(&xudc->lock, flags);
1740 	if (xudc->powergated) {
1741 		ret = -ESHUTDOWN;
1742 		goto unlock;
1743 	}
1744 
1745 	ret = __tegra_xudc_ep_enable(ep, desc);
1746 unlock:
1747 	spin_unlock_irqrestore(&xudc->lock, flags);
1748 
1749 	return ret;
1750 }
1751 
1752 static struct usb_request *
1753 tegra_xudc_ep_alloc_request(struct usb_ep *usb_ep, gfp_t gfp)
1754 {
1755 	struct tegra_xudc_request *req;
1756 
1757 	req = kzalloc(sizeof(*req), gfp);
1758 	if (!req)
1759 		return NULL;
1760 
1761 	INIT_LIST_HEAD(&req->list);
1762 
1763 	return &req->usb_req;
1764 }
1765 
1766 static void tegra_xudc_ep_free_request(struct usb_ep *usb_ep,
1767 				       struct usb_request *usb_req)
1768 {
1769 	struct tegra_xudc_request *req = to_xudc_req(usb_req);
1770 
1771 	kfree(req);
1772 }
1773 
1774 static struct usb_ep_ops tegra_xudc_ep_ops = {
1775 	.enable = tegra_xudc_ep_enable,
1776 	.disable = tegra_xudc_ep_disable,
1777 	.alloc_request = tegra_xudc_ep_alloc_request,
1778 	.free_request = tegra_xudc_ep_free_request,
1779 	.queue = tegra_xudc_ep_queue,
1780 	.dequeue = tegra_xudc_ep_dequeue,
1781 	.set_halt = tegra_xudc_ep_set_halt,
1782 };
1783 
1784 static int tegra_xudc_ep0_enable(struct usb_ep *usb_ep,
1785 				 const struct usb_endpoint_descriptor *desc)
1786 {
1787 	return -EBUSY;
1788 }
1789 
1790 static int tegra_xudc_ep0_disable(struct usb_ep *usb_ep)
1791 {
1792 	return -EBUSY;
1793 }
1794 
1795 static struct usb_ep_ops tegra_xudc_ep0_ops = {
1796 	.enable = tegra_xudc_ep0_enable,
1797 	.disable = tegra_xudc_ep0_disable,
1798 	.alloc_request = tegra_xudc_ep_alloc_request,
1799 	.free_request = tegra_xudc_ep_free_request,
1800 	.queue = tegra_xudc_ep_queue,
1801 	.dequeue = tegra_xudc_ep_dequeue,
1802 	.set_halt = tegra_xudc_ep_set_halt,
1803 };
1804 
1805 static int tegra_xudc_gadget_get_frame(struct usb_gadget *gadget)
1806 {
1807 	struct tegra_xudc *xudc = to_xudc(gadget);
1808 	unsigned long flags;
1809 	int ret;
1810 
1811 	spin_lock_irqsave(&xudc->lock, flags);
1812 	if (xudc->powergated) {
1813 		ret = -ESHUTDOWN;
1814 		goto unlock;
1815 	}
1816 
1817 	ret = (xudc_readl(xudc, MFINDEX) & MFINDEX_FRAME_MASK) >>
1818 		MFINDEX_FRAME_SHIFT;
1819 unlock:
1820 	spin_unlock_irqrestore(&xudc->lock, flags);
1821 
1822 	return ret;
1823 }
1824 
1825 static void tegra_xudc_resume_device_state(struct tegra_xudc *xudc)
1826 {
1827 	unsigned int i;
1828 	u32 val;
1829 
1830 	ep_unpause_all(xudc);
1831 
1832 	/* Direct link to U0. */
1833 	val = xudc_readl(xudc, PORTSC);
1834 	if (((val & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT) != PORTSC_PLS_U0) {
1835 		val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
1836 		val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0);
1837 		xudc_writel(xudc, val, PORTSC);
1838 	}
1839 
1840 	if (xudc->device_state == USB_STATE_SUSPENDED) {
1841 		xudc->device_state = xudc->resume_state;
1842 		usb_gadget_set_state(&xudc->gadget, xudc->device_state);
1843 		xudc->resume_state = 0;
1844 	}
1845 
1846 	/*
1847 	 * Doorbells may be dropped if they are sent too soon (< ~200ns)
1848 	 * after unpausing the endpoint.  Wait for 500ns just to be safe.
1849 	 */
1850 	ndelay(500);
1851 	for (i = 0; i < ARRAY_SIZE(xudc->ep); i++)
1852 		tegra_xudc_ep_ring_doorbell(&xudc->ep[i]);
1853 }
1854 
1855 static int tegra_xudc_gadget_wakeup(struct usb_gadget *gadget)
1856 {
1857 	struct tegra_xudc *xudc = to_xudc(gadget);
1858 	unsigned long flags;
1859 	int ret = 0;
1860 	u32 val;
1861 
1862 	spin_lock_irqsave(&xudc->lock, flags);
1863 
1864 	if (xudc->powergated) {
1865 		ret = -ESHUTDOWN;
1866 		goto unlock;
1867 	}
1868 	val = xudc_readl(xudc, PORTPM);
1869 	dev_dbg(xudc->dev, "%s: PORTPM=%#x, speed=%x\n", __func__,
1870 			val, gadget->speed);
1871 
1872 	if (((xudc->gadget.speed <= USB_SPEED_HIGH) &&
1873 	     (val & PORTPM_RWE)) ||
1874 	    ((xudc->gadget.speed == USB_SPEED_SUPER) &&
1875 	     (val & PORTPM_FRWE))) {
1876 		tegra_xudc_resume_device_state(xudc);
1877 
1878 		/* Send Device Notification packet. */
1879 		if (xudc->gadget.speed == USB_SPEED_SUPER) {
1880 			val = DEVNOTIF_LO_TYPE(DEVNOTIF_LO_TYPE_FUNCTION_WAKE)
1881 					     | DEVNOTIF_LO_TRIG;
1882 			xudc_writel(xudc, 0, DEVNOTIF_HI);
1883 			xudc_writel(xudc, val, DEVNOTIF_LO);
1884 		}
1885 	}
1886 
1887 unlock:
1888 	dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret);
1889 	spin_unlock_irqrestore(&xudc->lock, flags);
1890 
1891 	return ret;
1892 }
1893 
1894 static int tegra_xudc_gadget_pullup(struct usb_gadget *gadget, int is_on)
1895 {
1896 	struct tegra_xudc *xudc = to_xudc(gadget);
1897 	unsigned long flags;
1898 	u32 val;
1899 
1900 	pm_runtime_get_sync(xudc->dev);
1901 
1902 	spin_lock_irqsave(&xudc->lock, flags);
1903 
1904 	if (is_on != xudc->pullup) {
1905 		val = xudc_readl(xudc, CTRL);
1906 		if (is_on)
1907 			val |= CTRL_ENABLE;
1908 		else
1909 			val &= ~CTRL_ENABLE;
1910 		xudc_writel(xudc, val, CTRL);
1911 	}
1912 
1913 	xudc->pullup = is_on;
1914 	dev_dbg(xudc->dev, "%s: pullup:%d", __func__, is_on);
1915 
1916 	spin_unlock_irqrestore(&xudc->lock, flags);
1917 
1918 	pm_runtime_put(xudc->dev);
1919 
1920 	return 0;
1921 }
1922 
1923 static int tegra_xudc_gadget_start(struct usb_gadget *gadget,
1924 				   struct usb_gadget_driver *driver)
1925 {
1926 	struct tegra_xudc *xudc = to_xudc(gadget);
1927 	unsigned long flags;
1928 	u32 val;
1929 	int ret;
1930 
1931 	if (!driver)
1932 		return -EINVAL;
1933 
1934 	pm_runtime_get_sync(xudc->dev);
1935 
1936 	spin_lock_irqsave(&xudc->lock, flags);
1937 
1938 	if (xudc->driver) {
1939 		ret = -EBUSY;
1940 		goto unlock;
1941 	}
1942 
1943 	xudc->setup_state = WAIT_FOR_SETUP;
1944 	xudc->device_state = USB_STATE_DEFAULT;
1945 	usb_gadget_set_state(&xudc->gadget, xudc->device_state);
1946 
1947 	ret = __tegra_xudc_ep_enable(&xudc->ep[0], &tegra_xudc_ep0_desc);
1948 	if (ret < 0)
1949 		goto unlock;
1950 
1951 	val = xudc_readl(xudc, CTRL);
1952 	val |= CTRL_IE | CTRL_LSE;
1953 	xudc_writel(xudc, val, CTRL);
1954 
1955 	val = xudc_readl(xudc, PORTHALT);
1956 	val |= PORTHALT_STCHG_INTR_EN;
1957 	xudc_writel(xudc, val, PORTHALT);
1958 
1959 	if (xudc->pullup) {
1960 		val = xudc_readl(xudc, CTRL);
1961 		val |= CTRL_ENABLE;
1962 		xudc_writel(xudc, val, CTRL);
1963 	}
1964 
1965 	xudc->driver = driver;
1966 unlock:
1967 	dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret);
1968 	spin_unlock_irqrestore(&xudc->lock, flags);
1969 
1970 	pm_runtime_put(xudc->dev);
1971 
1972 	return ret;
1973 }
1974 
1975 static int tegra_xudc_gadget_stop(struct usb_gadget *gadget)
1976 {
1977 	struct tegra_xudc *xudc = to_xudc(gadget);
1978 	unsigned long flags;
1979 	u32 val;
1980 
1981 	pm_runtime_get_sync(xudc->dev);
1982 
1983 	spin_lock_irqsave(&xudc->lock, flags);
1984 
1985 	val = xudc_readl(xudc, CTRL);
1986 	val &= ~(CTRL_IE | CTRL_ENABLE);
1987 	xudc_writel(xudc, val, CTRL);
1988 
1989 	__tegra_xudc_ep_disable(&xudc->ep[0]);
1990 
1991 	xudc->driver = NULL;
1992 	dev_dbg(xudc->dev, "Gadget stopped");
1993 
1994 	spin_unlock_irqrestore(&xudc->lock, flags);
1995 
1996 	pm_runtime_put(xudc->dev);
1997 
1998 	return 0;
1999 }
2000 
2001 static int tegra_xudc_set_selfpowered(struct usb_gadget *gadget, int is_on)
2002 {
2003 	struct tegra_xudc *xudc = to_xudc(gadget);
2004 
2005 	dev_dbg(xudc->dev, "%s: %d\n", __func__, is_on);
2006 	xudc->selfpowered = !!is_on;
2007 
2008 	return 0;
2009 }
2010 
2011 static struct usb_gadget_ops tegra_xudc_gadget_ops = {
2012 	.get_frame = tegra_xudc_gadget_get_frame,
2013 	.wakeup = tegra_xudc_gadget_wakeup,
2014 	.pullup = tegra_xudc_gadget_pullup,
2015 	.udc_start = tegra_xudc_gadget_start,
2016 	.udc_stop = tegra_xudc_gadget_stop,
2017 	.set_selfpowered = tegra_xudc_set_selfpowered,
2018 };
2019 
2020 static void no_op_complete(struct usb_ep *ep, struct usb_request *req)
2021 {
2022 }
2023 
2024 static int
2025 tegra_xudc_ep0_queue_status(struct tegra_xudc *xudc,
2026 		void (*cmpl)(struct usb_ep *, struct usb_request *))
2027 {
2028 	xudc->ep0_req->usb_req.buf = NULL;
2029 	xudc->ep0_req->usb_req.dma = 0;
2030 	xudc->ep0_req->usb_req.length = 0;
2031 	xudc->ep0_req->usb_req.complete = cmpl;
2032 	xudc->ep0_req->usb_req.context = xudc;
2033 
2034 	return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req);
2035 }
2036 
2037 static int
2038 tegra_xudc_ep0_queue_data(struct tegra_xudc *xudc, void *buf, size_t len,
2039 		void (*cmpl)(struct usb_ep *, struct usb_request *))
2040 {
2041 	xudc->ep0_req->usb_req.buf = buf;
2042 	xudc->ep0_req->usb_req.length = len;
2043 	xudc->ep0_req->usb_req.complete = cmpl;
2044 	xudc->ep0_req->usb_req.context = xudc;
2045 
2046 	return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req);
2047 }
2048 
2049 static void tegra_xudc_ep0_req_done(struct tegra_xudc *xudc)
2050 {
2051 	switch (xudc->setup_state) {
2052 	case DATA_STAGE_XFER:
2053 		xudc->setup_state = STATUS_STAGE_RECV;
2054 		tegra_xudc_ep0_queue_status(xudc, no_op_complete);
2055 		break;
2056 	case DATA_STAGE_RECV:
2057 		xudc->setup_state = STATUS_STAGE_XFER;
2058 		tegra_xudc_ep0_queue_status(xudc, no_op_complete);
2059 		break;
2060 	default:
2061 		xudc->setup_state = WAIT_FOR_SETUP;
2062 		break;
2063 	}
2064 }
2065 
2066 static int tegra_xudc_ep0_delegate_req(struct tegra_xudc *xudc,
2067 				       struct usb_ctrlrequest *ctrl)
2068 {
2069 	int ret;
2070 
2071 	spin_unlock(&xudc->lock);
2072 	ret = xudc->driver->setup(&xudc->gadget, ctrl);
2073 	spin_lock(&xudc->lock);
2074 
2075 	return ret;
2076 }
2077 
2078 static void set_feature_complete(struct usb_ep *ep, struct usb_request *req)
2079 {
2080 	struct tegra_xudc *xudc = req->context;
2081 
2082 	if (xudc->test_mode_pattern) {
2083 		xudc_writel(xudc, xudc->test_mode_pattern, PORT_TM);
2084 		xudc->test_mode_pattern = 0;
2085 	}
2086 }
2087 
2088 static int tegra_xudc_ep0_set_feature(struct tegra_xudc *xudc,
2089 				      struct usb_ctrlrequest *ctrl)
2090 {
2091 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
2092 	u32 feature = le16_to_cpu(ctrl->wValue);
2093 	u32 index = le16_to_cpu(ctrl->wIndex);
2094 	u32 val, ep;
2095 	int ret;
2096 
2097 	if (le16_to_cpu(ctrl->wLength) != 0)
2098 		return -EINVAL;
2099 
2100 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
2101 	case USB_RECIP_DEVICE:
2102 		switch (feature) {
2103 		case USB_DEVICE_REMOTE_WAKEUP:
2104 			if ((xudc->gadget.speed == USB_SPEED_SUPER) ||
2105 			    (xudc->device_state == USB_STATE_DEFAULT))
2106 				return -EINVAL;
2107 
2108 			val = xudc_readl(xudc, PORTPM);
2109 			if (set)
2110 				val |= PORTPM_RWE;
2111 			else
2112 				val &= ~PORTPM_RWE;
2113 
2114 			xudc_writel(xudc, val, PORTPM);
2115 			break;
2116 		case USB_DEVICE_U1_ENABLE:
2117 		case USB_DEVICE_U2_ENABLE:
2118 			if ((xudc->device_state != USB_STATE_CONFIGURED) ||
2119 			    (xudc->gadget.speed != USB_SPEED_SUPER))
2120 				return -EINVAL;
2121 
2122 			val = xudc_readl(xudc, PORTPM);
2123 			if ((feature == USB_DEVICE_U1_ENABLE) &&
2124 			     xudc->soc->u1_enable) {
2125 				if (set)
2126 					val |= PORTPM_U1E;
2127 				else
2128 					val &= ~PORTPM_U1E;
2129 			}
2130 
2131 			if ((feature == USB_DEVICE_U2_ENABLE) &&
2132 			     xudc->soc->u2_enable) {
2133 				if (set)
2134 					val |= PORTPM_U2E;
2135 				else
2136 					val &= ~PORTPM_U2E;
2137 			}
2138 
2139 			xudc_writel(xudc, val, PORTPM);
2140 			break;
2141 		case USB_DEVICE_TEST_MODE:
2142 			if (xudc->gadget.speed != USB_SPEED_HIGH)
2143 				return -EINVAL;
2144 
2145 			if (!set)
2146 				return -EINVAL;
2147 
2148 			xudc->test_mode_pattern = index >> 8;
2149 			break;
2150 		default:
2151 			return -EINVAL;
2152 		}
2153 
2154 		break;
2155 	case USB_RECIP_INTERFACE:
2156 		if (xudc->device_state != USB_STATE_CONFIGURED)
2157 			return -EINVAL;
2158 
2159 		switch (feature) {
2160 		case USB_INTRF_FUNC_SUSPEND:
2161 			if (set) {
2162 				val = xudc_readl(xudc, PORTPM);
2163 
2164 				if (index & USB_INTRF_FUNC_SUSPEND_RW)
2165 					val |= PORTPM_FRWE;
2166 				else
2167 					val &= ~PORTPM_FRWE;
2168 
2169 				xudc_writel(xudc, val, PORTPM);
2170 			}
2171 
2172 			return tegra_xudc_ep0_delegate_req(xudc, ctrl);
2173 		default:
2174 			return -EINVAL;
2175 		}
2176 
2177 		break;
2178 	case USB_RECIP_ENDPOINT:
2179 		ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 +
2180 			((index & USB_DIR_IN) ? 1 : 0);
2181 
2182 		if ((xudc->device_state == USB_STATE_DEFAULT) ||
2183 		    ((xudc->device_state == USB_STATE_ADDRESS) &&
2184 		     (index != 0)))
2185 			return -EINVAL;
2186 
2187 		ret = __tegra_xudc_ep_set_halt(&xudc->ep[ep], set);
2188 		if (ret < 0)
2189 			return ret;
2190 		break;
2191 	default:
2192 		return -EINVAL;
2193 	}
2194 
2195 	return tegra_xudc_ep0_queue_status(xudc, set_feature_complete);
2196 }
2197 
2198 static int tegra_xudc_ep0_get_status(struct tegra_xudc *xudc,
2199 				     struct usb_ctrlrequest *ctrl)
2200 {
2201 	struct tegra_xudc_ep_context *ep_ctx;
2202 	u32 val, ep, index = le16_to_cpu(ctrl->wIndex);
2203 	u16 status = 0;
2204 
2205 	if (!(ctrl->bRequestType & USB_DIR_IN))
2206 		return -EINVAL;
2207 
2208 	if ((le16_to_cpu(ctrl->wValue) != 0) ||
2209 	    (le16_to_cpu(ctrl->wLength) != 2))
2210 		return -EINVAL;
2211 
2212 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
2213 	case USB_RECIP_DEVICE:
2214 		val = xudc_readl(xudc, PORTPM);
2215 
2216 		if (xudc->selfpowered)
2217 			status |= BIT(USB_DEVICE_SELF_POWERED);
2218 
2219 		if ((xudc->gadget.speed < USB_SPEED_SUPER) &&
2220 		    (val & PORTPM_RWE))
2221 			status |= BIT(USB_DEVICE_REMOTE_WAKEUP);
2222 
2223 		if (xudc->gadget.speed == USB_SPEED_SUPER) {
2224 			if (val & PORTPM_U1E)
2225 				status |= BIT(USB_DEV_STAT_U1_ENABLED);
2226 			if (val & PORTPM_U2E)
2227 				status |= BIT(USB_DEV_STAT_U2_ENABLED);
2228 		}
2229 		break;
2230 	case USB_RECIP_INTERFACE:
2231 		if (xudc->gadget.speed == USB_SPEED_SUPER) {
2232 			status |= USB_INTRF_STAT_FUNC_RW_CAP;
2233 			val = xudc_readl(xudc, PORTPM);
2234 			if (val & PORTPM_FRWE)
2235 				status |= USB_INTRF_STAT_FUNC_RW;
2236 		}
2237 		break;
2238 	case USB_RECIP_ENDPOINT:
2239 		ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 +
2240 			((index & USB_DIR_IN) ? 1 : 0);
2241 		ep_ctx = &xudc->ep_context[ep];
2242 
2243 		if ((xudc->device_state != USB_STATE_CONFIGURED) &&
2244 		    ((xudc->device_state != USB_STATE_ADDRESS) || (ep != 0)))
2245 			return -EINVAL;
2246 
2247 		if (ep_ctx_read_state(ep_ctx) == EP_STATE_DISABLED)
2248 			return -EINVAL;
2249 
2250 		if (xudc_readl(xudc, EP_HALT) & BIT(ep))
2251 			status |= BIT(USB_ENDPOINT_HALT);
2252 		break;
2253 	default:
2254 		return -EINVAL;
2255 	}
2256 
2257 	xudc->status_buf = cpu_to_le16(status);
2258 	return tegra_xudc_ep0_queue_data(xudc, &xudc->status_buf,
2259 					 sizeof(xudc->status_buf),
2260 					 no_op_complete);
2261 }
2262 
2263 static void set_sel_complete(struct usb_ep *ep, struct usb_request *req)
2264 {
2265 	/* Nothing to do with SEL values */
2266 }
2267 
2268 static int tegra_xudc_ep0_set_sel(struct tegra_xudc *xudc,
2269 				  struct usb_ctrlrequest *ctrl)
2270 {
2271 	if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE |
2272 				     USB_TYPE_STANDARD))
2273 		return -EINVAL;
2274 
2275 	if (xudc->device_state == USB_STATE_DEFAULT)
2276 		return -EINVAL;
2277 
2278 	if ((le16_to_cpu(ctrl->wIndex) != 0) ||
2279 	    (le16_to_cpu(ctrl->wValue) != 0) ||
2280 	    (le16_to_cpu(ctrl->wLength) != 6))
2281 		return -EINVAL;
2282 
2283 	return tegra_xudc_ep0_queue_data(xudc, &xudc->sel_timing,
2284 					 sizeof(xudc->sel_timing),
2285 					 set_sel_complete);
2286 }
2287 
2288 static void set_isoch_delay_complete(struct usb_ep *ep, struct usb_request *req)
2289 {
2290 	/* Nothing to do with isoch delay */
2291 }
2292 
2293 static int tegra_xudc_ep0_set_isoch_delay(struct tegra_xudc *xudc,
2294 					  struct usb_ctrlrequest *ctrl)
2295 {
2296 	u32 delay = le16_to_cpu(ctrl->wValue);
2297 
2298 	if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE |
2299 				   USB_TYPE_STANDARD))
2300 		return -EINVAL;
2301 
2302 	if ((delay > 65535) || (le16_to_cpu(ctrl->wIndex) != 0) ||
2303 	    (le16_to_cpu(ctrl->wLength) != 0))
2304 		return -EINVAL;
2305 
2306 	xudc->isoch_delay = delay;
2307 
2308 	return tegra_xudc_ep0_queue_status(xudc, set_isoch_delay_complete);
2309 }
2310 
2311 static void set_address_complete(struct usb_ep *ep, struct usb_request *req)
2312 {
2313 	struct tegra_xudc *xudc = req->context;
2314 
2315 	if ((xudc->device_state == USB_STATE_DEFAULT) &&
2316 	    (xudc->dev_addr != 0)) {
2317 		xudc->device_state = USB_STATE_ADDRESS;
2318 		usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2319 	} else if ((xudc->device_state == USB_STATE_ADDRESS) &&
2320 		   (xudc->dev_addr == 0)) {
2321 		xudc->device_state = USB_STATE_DEFAULT;
2322 		usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2323 	}
2324 }
2325 
2326 static int tegra_xudc_ep0_set_address(struct tegra_xudc *xudc,
2327 				      struct usb_ctrlrequest *ctrl)
2328 {
2329 	struct tegra_xudc_ep *ep0 = &xudc->ep[0];
2330 	u32 val, addr = le16_to_cpu(ctrl->wValue);
2331 
2332 	if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE |
2333 				     USB_TYPE_STANDARD))
2334 		return -EINVAL;
2335 
2336 	if ((addr > 127) || (le16_to_cpu(ctrl->wIndex) != 0) ||
2337 	    (le16_to_cpu(ctrl->wLength) != 0))
2338 		return -EINVAL;
2339 
2340 	if (xudc->device_state == USB_STATE_CONFIGURED)
2341 		return -EINVAL;
2342 
2343 	dev_dbg(xudc->dev, "set address: %u\n", addr);
2344 
2345 	xudc->dev_addr = addr;
2346 	val = xudc_readl(xudc, CTRL);
2347 	val &= ~(CTRL_DEVADDR_MASK);
2348 	val |= CTRL_DEVADDR(addr);
2349 	xudc_writel(xudc, val, CTRL);
2350 
2351 	ep_ctx_write_devaddr(ep0->context, addr);
2352 
2353 	return tegra_xudc_ep0_queue_status(xudc, set_address_complete);
2354 }
2355 
2356 static int tegra_xudc_ep0_standard_req(struct tegra_xudc *xudc,
2357 				      struct usb_ctrlrequest *ctrl)
2358 {
2359 	int ret;
2360 
2361 	switch (ctrl->bRequest) {
2362 	case USB_REQ_GET_STATUS:
2363 		dev_dbg(xudc->dev, "USB_REQ_GET_STATUS\n");
2364 		ret = tegra_xudc_ep0_get_status(xudc, ctrl);
2365 		break;
2366 	case USB_REQ_SET_ADDRESS:
2367 		dev_dbg(xudc->dev, "USB_REQ_SET_ADDRESS\n");
2368 		ret = tegra_xudc_ep0_set_address(xudc, ctrl);
2369 		break;
2370 	case USB_REQ_SET_SEL:
2371 		dev_dbg(xudc->dev, "USB_REQ_SET_SEL\n");
2372 		ret = tegra_xudc_ep0_set_sel(xudc, ctrl);
2373 		break;
2374 	case USB_REQ_SET_ISOCH_DELAY:
2375 		dev_dbg(xudc->dev, "USB_REQ_SET_ISOCH_DELAY\n");
2376 		ret = tegra_xudc_ep0_set_isoch_delay(xudc, ctrl);
2377 		break;
2378 	case USB_REQ_CLEAR_FEATURE:
2379 	case USB_REQ_SET_FEATURE:
2380 		dev_dbg(xudc->dev, "USB_REQ_CLEAR/SET_FEATURE\n");
2381 		ret = tegra_xudc_ep0_set_feature(xudc, ctrl);
2382 		break;
2383 	case USB_REQ_SET_CONFIGURATION:
2384 		dev_dbg(xudc->dev, "USB_REQ_SET_CONFIGURATION\n");
2385 		/*
2386 		 * In theory we need to clear RUN bit before status stage of
2387 		 * deconfig request sent, but this seems to be causing problems.
2388 		 * Clear RUN once all endpoints are disabled instead.
2389 		 */
2390 		fallthrough;
2391 	default:
2392 		ret = tegra_xudc_ep0_delegate_req(xudc, ctrl);
2393 		break;
2394 	}
2395 
2396 	return ret;
2397 }
2398 
2399 static void tegra_xudc_handle_ep0_setup_packet(struct tegra_xudc *xudc,
2400 					       struct usb_ctrlrequest *ctrl,
2401 					       u16 seq_num)
2402 {
2403 	int ret;
2404 
2405 	xudc->setup_seq_num = seq_num;
2406 
2407 	/* Ensure EP0 is unhalted. */
2408 	ep_unhalt(xudc, 0);
2409 
2410 	/*
2411 	 * On Tegra210, setup packets with sequence numbers 0xfffe or 0xffff
2412 	 * are invalid.  Halt EP0 until we get a valid packet.
2413 	 */
2414 	if (xudc->soc->invalid_seq_num &&
2415 	    (seq_num == 0xfffe || seq_num == 0xffff)) {
2416 		dev_warn(xudc->dev, "invalid sequence number detected\n");
2417 		ep_halt(xudc, 0);
2418 		return;
2419 	}
2420 
2421 	if (ctrl->wLength)
2422 		xudc->setup_state = (ctrl->bRequestType & USB_DIR_IN) ?
2423 			DATA_STAGE_XFER :  DATA_STAGE_RECV;
2424 	else
2425 		xudc->setup_state = STATUS_STAGE_XFER;
2426 
2427 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD)
2428 		ret = tegra_xudc_ep0_standard_req(xudc, ctrl);
2429 	else
2430 		ret = tegra_xudc_ep0_delegate_req(xudc, ctrl);
2431 
2432 	if (ret < 0) {
2433 		dev_warn(xudc->dev, "setup request failed: %d\n", ret);
2434 		xudc->setup_state = WAIT_FOR_SETUP;
2435 		ep_halt(xudc, 0);
2436 	}
2437 }
2438 
2439 static void tegra_xudc_handle_ep0_event(struct tegra_xudc *xudc,
2440 					struct tegra_xudc_trb *event)
2441 {
2442 	struct usb_ctrlrequest *ctrl = (struct usb_ctrlrequest *)event;
2443 	u16 seq_num = trb_read_seq_num(event);
2444 
2445 	if (xudc->setup_state != WAIT_FOR_SETUP) {
2446 		/*
2447 		 * The controller is in the process of handling another
2448 		 * setup request.  Queue subsequent requests and handle
2449 		 * the last one once the controller reports a sequence
2450 		 * number error.
2451 		 */
2452 		memcpy(&xudc->setup_packet.ctrl_req, ctrl, sizeof(*ctrl));
2453 		xudc->setup_packet.seq_num = seq_num;
2454 		xudc->queued_setup_packet = true;
2455 	} else {
2456 		tegra_xudc_handle_ep0_setup_packet(xudc, ctrl, seq_num);
2457 	}
2458 }
2459 
2460 static struct tegra_xudc_request *
2461 trb_to_request(struct tegra_xudc_ep *ep, struct tegra_xudc_trb *trb)
2462 {
2463 	struct tegra_xudc_request *req;
2464 
2465 	list_for_each_entry(req, &ep->queue, list) {
2466 		if (!req->trbs_queued)
2467 			break;
2468 
2469 		if (trb_in_request(ep, req, trb))
2470 			return req;
2471 	}
2472 
2473 	return NULL;
2474 }
2475 
2476 static void tegra_xudc_handle_transfer_completion(struct tegra_xudc *xudc,
2477 						  struct tegra_xudc_ep *ep,
2478 						  struct tegra_xudc_trb *event)
2479 {
2480 	struct tegra_xudc_request *req;
2481 	struct tegra_xudc_trb *trb;
2482 	bool short_packet;
2483 
2484 	short_packet = (trb_read_cmpl_code(event) ==
2485 			TRB_CMPL_CODE_SHORT_PACKET);
2486 
2487 	trb = trb_phys_to_virt(ep, trb_read_data_ptr(event));
2488 	req = trb_to_request(ep, trb);
2489 
2490 	/*
2491 	 * TDs are complete on short packet or when the completed TRB is the
2492 	 * last TRB in the TD (the CHAIN bit is unset).
2493 	 */
2494 	if (req && (short_packet || (!trb_read_chain(trb) &&
2495 		(req->trbs_needed == req->trbs_queued)))) {
2496 		struct tegra_xudc_trb *last = req->last_trb;
2497 		unsigned int residual;
2498 
2499 		residual = trb_read_transfer_len(event);
2500 		req->usb_req.actual = req->usb_req.length - residual;
2501 
2502 		dev_dbg(xudc->dev, "bytes transferred %u / %u\n",
2503 			req->usb_req.actual, req->usb_req.length);
2504 
2505 		tegra_xudc_req_done(ep, req, 0);
2506 
2507 		if (ep->desc && usb_endpoint_xfer_control(ep->desc))
2508 			tegra_xudc_ep0_req_done(xudc);
2509 
2510 		/*
2511 		 * Advance the dequeue pointer past the end of the current TD
2512 		 * on short packet completion.
2513 		 */
2514 		if (short_packet) {
2515 			ep->deq_ptr = (last - ep->transfer_ring) + 1;
2516 			if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1)
2517 				ep->deq_ptr = 0;
2518 		}
2519 	} else if (!req) {
2520 		dev_warn(xudc->dev, "transfer event on dequeued request\n");
2521 	}
2522 
2523 	if (ep->desc)
2524 		tegra_xudc_ep_kick_queue(ep);
2525 }
2526 
2527 static void tegra_xudc_handle_transfer_event(struct tegra_xudc *xudc,
2528 					     struct tegra_xudc_trb *event)
2529 {
2530 	unsigned int ep_index = trb_read_endpoint_id(event);
2531 	struct tegra_xudc_ep *ep = &xudc->ep[ep_index];
2532 	struct tegra_xudc_trb *trb;
2533 	u16 comp_code;
2534 
2535 	if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) {
2536 		dev_warn(xudc->dev, "transfer event on disabled EP %u\n",
2537 			 ep_index);
2538 		return;
2539 	}
2540 
2541 	/* Update transfer ring dequeue pointer. */
2542 	trb = trb_phys_to_virt(ep, trb_read_data_ptr(event));
2543 	comp_code = trb_read_cmpl_code(event);
2544 	if (comp_code != TRB_CMPL_CODE_BABBLE_DETECTED_ERR) {
2545 		ep->deq_ptr = (trb - ep->transfer_ring) + 1;
2546 
2547 		if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1)
2548 			ep->deq_ptr = 0;
2549 		ep->ring_full = false;
2550 	}
2551 
2552 	switch (comp_code) {
2553 	case TRB_CMPL_CODE_SUCCESS:
2554 	case TRB_CMPL_CODE_SHORT_PACKET:
2555 		tegra_xudc_handle_transfer_completion(xudc, ep, event);
2556 		break;
2557 	case TRB_CMPL_CODE_HOST_REJECTED:
2558 		dev_info(xudc->dev, "stream rejected on EP %u\n", ep_index);
2559 
2560 		ep->stream_rejected = true;
2561 		break;
2562 	case TRB_CMPL_CODE_PRIME_PIPE_RECEIVED:
2563 		dev_info(xudc->dev, "prime pipe received on EP %u\n", ep_index);
2564 
2565 		if (ep->stream_rejected) {
2566 			ep->stream_rejected = false;
2567 			/*
2568 			 * An EP is stopped when a stream is rejected.  Wait
2569 			 * for the EP to report that it is stopped and then
2570 			 * un-stop it.
2571 			 */
2572 			ep_wait_for_stopped(xudc, ep_index);
2573 		}
2574 		tegra_xudc_ep_ring_doorbell(ep);
2575 		break;
2576 	case TRB_CMPL_CODE_BABBLE_DETECTED_ERR:
2577 		/*
2578 		 * Wait for the EP to be stopped so the controller stops
2579 		 * processing doorbells.
2580 		 */
2581 		ep_wait_for_stopped(xudc, ep_index);
2582 		ep->enq_ptr = ep->deq_ptr;
2583 		tegra_xudc_ep_nuke(ep, -EIO);
2584 		/* FALLTHROUGH */
2585 	case TRB_CMPL_CODE_STREAM_NUMP_ERROR:
2586 	case TRB_CMPL_CODE_CTRL_DIR_ERR:
2587 	case TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR:
2588 	case TRB_CMPL_CODE_RING_UNDERRUN:
2589 	case TRB_CMPL_CODE_RING_OVERRUN:
2590 	case TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN:
2591 	case TRB_CMPL_CODE_USB_TRANS_ERR:
2592 	case TRB_CMPL_CODE_TRB_ERR:
2593 		dev_err(xudc->dev, "completion error %#x on EP %u\n",
2594 			comp_code, ep_index);
2595 
2596 		ep_halt(xudc, ep_index);
2597 		break;
2598 	case TRB_CMPL_CODE_CTRL_SEQNUM_ERR:
2599 		dev_info(xudc->dev, "sequence number error\n");
2600 
2601 		/*
2602 		 * Kill any queued control request and skip to the last
2603 		 * setup packet we received.
2604 		 */
2605 		tegra_xudc_ep_nuke(ep, -EINVAL);
2606 		xudc->setup_state = WAIT_FOR_SETUP;
2607 		if (!xudc->queued_setup_packet)
2608 			break;
2609 
2610 		tegra_xudc_handle_ep0_setup_packet(xudc,
2611 						   &xudc->setup_packet.ctrl_req,
2612 						   xudc->setup_packet.seq_num);
2613 		xudc->queued_setup_packet = false;
2614 		break;
2615 	case TRB_CMPL_CODE_STOPPED:
2616 		dev_dbg(xudc->dev, "stop completion code on EP %u\n",
2617 			ep_index);
2618 
2619 		/* Disconnected. */
2620 		tegra_xudc_ep_nuke(ep, -ECONNREFUSED);
2621 		break;
2622 	default:
2623 		dev_dbg(xudc->dev, "completion event %#x on EP %u\n",
2624 			comp_code, ep_index);
2625 		break;
2626 	}
2627 }
2628 
2629 static void tegra_xudc_reset(struct tegra_xudc *xudc)
2630 {
2631 	struct tegra_xudc_ep *ep0 = &xudc->ep[0];
2632 	dma_addr_t deq_ptr;
2633 	unsigned int i;
2634 
2635 	xudc->setup_state = WAIT_FOR_SETUP;
2636 	xudc->device_state = USB_STATE_DEFAULT;
2637 	usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2638 
2639 	ep_unpause_all(xudc);
2640 
2641 	for (i = 0; i < ARRAY_SIZE(xudc->ep); i++)
2642 		tegra_xudc_ep_nuke(&xudc->ep[i], -ESHUTDOWN);
2643 
2644 	/*
2645 	 * Reset sequence number and dequeue pointer to flush the transfer
2646 	 * ring.
2647 	 */
2648 	ep0->deq_ptr = ep0->enq_ptr;
2649 	ep0->ring_full = false;
2650 
2651 	xudc->setup_seq_num = 0;
2652 	xudc->queued_setup_packet = false;
2653 
2654 	ep_ctx_write_seq_num(ep0->context, xudc->setup_seq_num);
2655 
2656 	deq_ptr = trb_virt_to_phys(ep0, &ep0->transfer_ring[ep0->deq_ptr]);
2657 
2658 	if (!dma_mapping_error(xudc->dev, deq_ptr)) {
2659 		ep_ctx_write_deq_ptr(ep0->context, deq_ptr);
2660 		ep_ctx_write_dcs(ep0->context, ep0->pcs);
2661 	}
2662 
2663 	ep_unhalt_all(xudc);
2664 	ep_reload(xudc, 0);
2665 	ep_unpause(xudc, 0);
2666 }
2667 
2668 static void tegra_xudc_port_connect(struct tegra_xudc *xudc)
2669 {
2670 	struct tegra_xudc_ep *ep0 = &xudc->ep[0];
2671 	u16 maxpacket;
2672 	u32 val;
2673 
2674 	val = (xudc_readl(xudc, PORTSC) & PORTSC_PS_MASK) >> PORTSC_PS_SHIFT;
2675 	switch (val) {
2676 	case PORTSC_PS_LS:
2677 		xudc->gadget.speed = USB_SPEED_LOW;
2678 		break;
2679 	case PORTSC_PS_FS:
2680 		xudc->gadget.speed = USB_SPEED_FULL;
2681 		break;
2682 	case PORTSC_PS_HS:
2683 		xudc->gadget.speed = USB_SPEED_HIGH;
2684 		break;
2685 	case PORTSC_PS_SS:
2686 		xudc->gadget.speed = USB_SPEED_SUPER;
2687 		break;
2688 	default:
2689 		xudc->gadget.speed = USB_SPEED_UNKNOWN;
2690 		break;
2691 	}
2692 
2693 	xudc->device_state = USB_STATE_DEFAULT;
2694 	usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2695 
2696 	xudc->setup_state = WAIT_FOR_SETUP;
2697 
2698 	if (xudc->gadget.speed == USB_SPEED_SUPER)
2699 		maxpacket = 512;
2700 	else
2701 		maxpacket = 64;
2702 
2703 	ep_ctx_write_max_packet_size(ep0->context, maxpacket);
2704 	tegra_xudc_ep0_desc.wMaxPacketSize = cpu_to_le16(maxpacket);
2705 	usb_ep_set_maxpacket_limit(&ep0->usb_ep, maxpacket);
2706 
2707 	if (!xudc->soc->u1_enable) {
2708 		val = xudc_readl(xudc, PORTPM);
2709 		val &= ~(PORTPM_U1TIMEOUT_MASK);
2710 		xudc_writel(xudc, val, PORTPM);
2711 	}
2712 
2713 	if (!xudc->soc->u2_enable) {
2714 		val = xudc_readl(xudc, PORTPM);
2715 		val &= ~(PORTPM_U2TIMEOUT_MASK);
2716 		xudc_writel(xudc, val, PORTPM);
2717 	}
2718 
2719 	if (xudc->gadget.speed <= USB_SPEED_HIGH) {
2720 		val = xudc_readl(xudc, PORTPM);
2721 		val &= ~(PORTPM_L1S_MASK);
2722 		if (xudc->soc->lpm_enable)
2723 			val |= PORTPM_L1S(PORTPM_L1S_ACCEPT);
2724 		else
2725 			val |= PORTPM_L1S(PORTPM_L1S_NYET);
2726 		xudc_writel(xudc, val, PORTPM);
2727 	}
2728 
2729 	val = xudc_readl(xudc, ST);
2730 	if (val & ST_RC)
2731 		xudc_writel(xudc, ST_RC, ST);
2732 }
2733 
2734 static void tegra_xudc_port_disconnect(struct tegra_xudc *xudc)
2735 {
2736 	tegra_xudc_reset(xudc);
2737 
2738 	if (xudc->driver && xudc->driver->disconnect) {
2739 		spin_unlock(&xudc->lock);
2740 		xudc->driver->disconnect(&xudc->gadget);
2741 		spin_lock(&xudc->lock);
2742 	}
2743 
2744 	xudc->device_state = USB_STATE_NOTATTACHED;
2745 	usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2746 
2747 	complete(&xudc->disconnect_complete);
2748 }
2749 
2750 static void tegra_xudc_port_reset(struct tegra_xudc *xudc)
2751 {
2752 	tegra_xudc_reset(xudc);
2753 
2754 	if (xudc->driver) {
2755 		spin_unlock(&xudc->lock);
2756 		usb_gadget_udc_reset(&xudc->gadget, xudc->driver);
2757 		spin_lock(&xudc->lock);
2758 	}
2759 
2760 	tegra_xudc_port_connect(xudc);
2761 }
2762 
2763 static void tegra_xudc_port_suspend(struct tegra_xudc *xudc)
2764 {
2765 	dev_dbg(xudc->dev, "port suspend\n");
2766 
2767 	xudc->resume_state = xudc->device_state;
2768 	xudc->device_state = USB_STATE_SUSPENDED;
2769 	usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2770 
2771 	if (xudc->driver->suspend) {
2772 		spin_unlock(&xudc->lock);
2773 		xudc->driver->suspend(&xudc->gadget);
2774 		spin_lock(&xudc->lock);
2775 	}
2776 }
2777 
2778 static void tegra_xudc_port_resume(struct tegra_xudc *xudc)
2779 {
2780 	dev_dbg(xudc->dev, "port resume\n");
2781 
2782 	tegra_xudc_resume_device_state(xudc);
2783 
2784 	if (xudc->driver->resume) {
2785 		spin_unlock(&xudc->lock);
2786 		xudc->driver->resume(&xudc->gadget);
2787 		spin_lock(&xudc->lock);
2788 	}
2789 }
2790 
2791 static inline void clear_port_change(struct tegra_xudc *xudc, u32 flag)
2792 {
2793 	u32 val;
2794 
2795 	val = xudc_readl(xudc, PORTSC);
2796 	val &= ~PORTSC_CHANGE_MASK;
2797 	val |= flag;
2798 	xudc_writel(xudc, val, PORTSC);
2799 }
2800 
2801 static void __tegra_xudc_handle_port_status(struct tegra_xudc *xudc)
2802 {
2803 	u32 portsc, porthalt;
2804 
2805 	porthalt = xudc_readl(xudc, PORTHALT);
2806 	if ((porthalt & PORTHALT_STCHG_REQ) &&
2807 	    (porthalt & PORTHALT_HALT_LTSSM)) {
2808 		dev_dbg(xudc->dev, "STCHG_REQ, PORTHALT = %#x\n", porthalt);
2809 		porthalt &= ~PORTHALT_HALT_LTSSM;
2810 		xudc_writel(xudc, porthalt, PORTHALT);
2811 	}
2812 
2813 	portsc = xudc_readl(xudc, PORTSC);
2814 	if ((portsc & PORTSC_PRC) && (portsc & PORTSC_PR)) {
2815 		dev_dbg(xudc->dev, "PRC, PR, PORTSC = %#x\n", portsc);
2816 		clear_port_change(xudc, PORTSC_PRC | PORTSC_PED);
2817 #define TOGGLE_VBUS_WAIT_MS 100
2818 		if (xudc->soc->port_reset_quirk) {
2819 			schedule_delayed_work(&xudc->port_reset_war_work,
2820 				msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS));
2821 			xudc->wait_for_sec_prc = 1;
2822 		}
2823 	}
2824 
2825 	if ((portsc & PORTSC_PRC) && !(portsc & PORTSC_PR)) {
2826 		dev_dbg(xudc->dev, "PRC, Not PR, PORTSC = %#x\n", portsc);
2827 		clear_port_change(xudc, PORTSC_PRC | PORTSC_PED);
2828 		tegra_xudc_port_reset(xudc);
2829 		cancel_delayed_work(&xudc->port_reset_war_work);
2830 		xudc->wait_for_sec_prc = 0;
2831 	}
2832 
2833 	portsc = xudc_readl(xudc, PORTSC);
2834 	if (portsc & PORTSC_WRC) {
2835 		dev_dbg(xudc->dev, "WRC, PORTSC = %#x\n", portsc);
2836 		clear_port_change(xudc, PORTSC_WRC | PORTSC_PED);
2837 		if (!(xudc_readl(xudc, PORTSC) & PORTSC_WPR))
2838 			tegra_xudc_port_reset(xudc);
2839 	}
2840 
2841 	portsc = xudc_readl(xudc, PORTSC);
2842 	if (portsc & PORTSC_CSC) {
2843 		dev_dbg(xudc->dev, "CSC, PORTSC = %#x\n", portsc);
2844 		clear_port_change(xudc, PORTSC_CSC);
2845 
2846 		if (portsc & PORTSC_CCS)
2847 			tegra_xudc_port_connect(xudc);
2848 		else
2849 			tegra_xudc_port_disconnect(xudc);
2850 
2851 		if (xudc->wait_csc) {
2852 			cancel_delayed_work(&xudc->plc_reset_work);
2853 			xudc->wait_csc = false;
2854 		}
2855 	}
2856 
2857 	portsc = xudc_readl(xudc, PORTSC);
2858 	if (portsc & PORTSC_PLC) {
2859 		u32 pls = (portsc & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT;
2860 
2861 		dev_dbg(xudc->dev, "PLC, PORTSC = %#x\n", portsc);
2862 		clear_port_change(xudc, PORTSC_PLC);
2863 		switch (pls) {
2864 		case PORTSC_PLS_U3:
2865 			tegra_xudc_port_suspend(xudc);
2866 			break;
2867 		case PORTSC_PLS_U0:
2868 			if (xudc->gadget.speed < USB_SPEED_SUPER)
2869 				tegra_xudc_port_resume(xudc);
2870 			break;
2871 		case PORTSC_PLS_RESUME:
2872 			if (xudc->gadget.speed == USB_SPEED_SUPER)
2873 				tegra_xudc_port_resume(xudc);
2874 			break;
2875 		case PORTSC_PLS_INACTIVE:
2876 			schedule_delayed_work(&xudc->plc_reset_work,
2877 					msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS));
2878 			xudc->wait_csc = true;
2879 			break;
2880 		default:
2881 			break;
2882 		}
2883 	}
2884 
2885 	if (portsc & PORTSC_CEC) {
2886 		dev_warn(xudc->dev, "CEC, PORTSC = %#x\n", portsc);
2887 		clear_port_change(xudc, PORTSC_CEC);
2888 	}
2889 
2890 	dev_dbg(xudc->dev, "PORTSC = %#x\n", xudc_readl(xudc, PORTSC));
2891 }
2892 
2893 static void tegra_xudc_handle_port_status(struct tegra_xudc *xudc)
2894 {
2895 	while ((xudc_readl(xudc, PORTSC) & PORTSC_CHANGE_MASK) ||
2896 	       (xudc_readl(xudc, PORTHALT) & PORTHALT_STCHG_REQ))
2897 		__tegra_xudc_handle_port_status(xudc);
2898 }
2899 
2900 static void tegra_xudc_handle_event(struct tegra_xudc *xudc,
2901 				    struct tegra_xudc_trb *event)
2902 {
2903 	u32 type = trb_read_type(event);
2904 
2905 	dump_trb(xudc, "EVENT", event);
2906 
2907 	switch (type) {
2908 	case TRB_TYPE_PORT_STATUS_CHANGE_EVENT:
2909 		tegra_xudc_handle_port_status(xudc);
2910 		break;
2911 	case TRB_TYPE_TRANSFER_EVENT:
2912 		tegra_xudc_handle_transfer_event(xudc, event);
2913 		break;
2914 	case TRB_TYPE_SETUP_PACKET_EVENT:
2915 		tegra_xudc_handle_ep0_event(xudc, event);
2916 		break;
2917 	default:
2918 		dev_info(xudc->dev, "Unrecognized TRB type = %#x\n", type);
2919 		break;
2920 	}
2921 }
2922 
2923 static void tegra_xudc_process_event_ring(struct tegra_xudc *xudc)
2924 {
2925 	struct tegra_xudc_trb *event;
2926 	dma_addr_t erdp;
2927 
2928 	while (true) {
2929 		event = xudc->event_ring[xudc->event_ring_index] +
2930 			xudc->event_ring_deq_ptr;
2931 
2932 		if (trb_read_cycle(event) != xudc->ccs)
2933 			break;
2934 
2935 		tegra_xudc_handle_event(xudc, event);
2936 
2937 		xudc->event_ring_deq_ptr++;
2938 		if (xudc->event_ring_deq_ptr == XUDC_EVENT_RING_SIZE) {
2939 			xudc->event_ring_deq_ptr = 0;
2940 			xudc->event_ring_index++;
2941 		}
2942 
2943 		if (xudc->event_ring_index == XUDC_NR_EVENT_RINGS) {
2944 			xudc->event_ring_index = 0;
2945 			xudc->ccs = !xudc->ccs;
2946 		}
2947 	}
2948 
2949 	erdp = xudc->event_ring_phys[xudc->event_ring_index] +
2950 		xudc->event_ring_deq_ptr * sizeof(*event);
2951 
2952 	xudc_writel(xudc, upper_32_bits(erdp), ERDPHI);
2953 	xudc_writel(xudc, lower_32_bits(erdp) | ERDPLO_EHB, ERDPLO);
2954 }
2955 
2956 static irqreturn_t tegra_xudc_irq(int irq, void *data)
2957 {
2958 	struct tegra_xudc *xudc = data;
2959 	unsigned long flags;
2960 	u32 val;
2961 
2962 	val = xudc_readl(xudc, ST);
2963 	if (!(val & ST_IP))
2964 		return IRQ_NONE;
2965 	xudc_writel(xudc, ST_IP, ST);
2966 
2967 	spin_lock_irqsave(&xudc->lock, flags);
2968 	tegra_xudc_process_event_ring(xudc);
2969 	spin_unlock_irqrestore(&xudc->lock, flags);
2970 
2971 	return IRQ_HANDLED;
2972 }
2973 
2974 static int tegra_xudc_alloc_ep(struct tegra_xudc *xudc, unsigned int index)
2975 {
2976 	struct tegra_xudc_ep *ep = &xudc->ep[index];
2977 
2978 	ep->xudc = xudc;
2979 	ep->index = index;
2980 	ep->context = &xudc->ep_context[index];
2981 	INIT_LIST_HEAD(&ep->queue);
2982 
2983 	/*
2984 	 * EP1 would be the input endpoint corresponding to EP0, but since
2985 	 * EP0 is bi-directional, EP1 is unused.
2986 	 */
2987 	if (index == 1)
2988 		return 0;
2989 
2990 	ep->transfer_ring = dma_pool_alloc(xudc->transfer_ring_pool,
2991 					   GFP_KERNEL,
2992 					   &ep->transfer_ring_phys);
2993 	if (!ep->transfer_ring)
2994 		return -ENOMEM;
2995 
2996 	if (index) {
2997 		snprintf(ep->name, sizeof(ep->name), "ep%u%s", index / 2,
2998 			 (index % 2 == 0) ? "out" : "in");
2999 		ep->usb_ep.name = ep->name;
3000 		usb_ep_set_maxpacket_limit(&ep->usb_ep, 1024);
3001 		ep->usb_ep.max_streams = 16;
3002 		ep->usb_ep.ops = &tegra_xudc_ep_ops;
3003 		ep->usb_ep.caps.type_bulk = true;
3004 		ep->usb_ep.caps.type_int = true;
3005 		if (index & 1)
3006 			ep->usb_ep.caps.dir_in = true;
3007 		else
3008 			ep->usb_ep.caps.dir_out = true;
3009 		list_add_tail(&ep->usb_ep.ep_list, &xudc->gadget.ep_list);
3010 	} else {
3011 		strscpy(ep->name, "ep0", 3);
3012 		ep->usb_ep.name = ep->name;
3013 		usb_ep_set_maxpacket_limit(&ep->usb_ep, 512);
3014 		ep->usb_ep.ops = &tegra_xudc_ep0_ops;
3015 		ep->usb_ep.caps.type_control = true;
3016 		ep->usb_ep.caps.dir_in = true;
3017 		ep->usb_ep.caps.dir_out = true;
3018 	}
3019 
3020 	return 0;
3021 }
3022 
3023 static void tegra_xudc_free_ep(struct tegra_xudc *xudc, unsigned int index)
3024 {
3025 	struct tegra_xudc_ep *ep = &xudc->ep[index];
3026 
3027 	/*
3028 	 * EP1 would be the input endpoint corresponding to EP0, but since
3029 	 * EP0 is bi-directional, EP1 is unused.
3030 	 */
3031 	if (index == 1)
3032 		return;
3033 
3034 	dma_pool_free(xudc->transfer_ring_pool, ep->transfer_ring,
3035 		      ep->transfer_ring_phys);
3036 }
3037 
3038 static int tegra_xudc_alloc_eps(struct tegra_xudc *xudc)
3039 {
3040 	struct usb_request *req;
3041 	unsigned int i;
3042 	int err;
3043 
3044 	xudc->ep_context =
3045 		dma_alloc_coherent(xudc->dev, XUDC_NR_EPS *
3046 				    sizeof(*xudc->ep_context),
3047 				    &xudc->ep_context_phys, GFP_KERNEL);
3048 	if (!xudc->ep_context)
3049 		return -ENOMEM;
3050 
3051 	xudc->transfer_ring_pool =
3052 		dmam_pool_create(dev_name(xudc->dev), xudc->dev,
3053 				 XUDC_TRANSFER_RING_SIZE *
3054 				 sizeof(struct tegra_xudc_trb),
3055 				 sizeof(struct tegra_xudc_trb), 0);
3056 	if (!xudc->transfer_ring_pool) {
3057 		err = -ENOMEM;
3058 		goto free_ep_context;
3059 	}
3060 
3061 	INIT_LIST_HEAD(&xudc->gadget.ep_list);
3062 	for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) {
3063 		err = tegra_xudc_alloc_ep(xudc, i);
3064 		if (err < 0)
3065 			goto free_eps;
3066 	}
3067 
3068 	req = tegra_xudc_ep_alloc_request(&xudc->ep[0].usb_ep, GFP_KERNEL);
3069 	if (!req) {
3070 		err = -ENOMEM;
3071 		goto free_eps;
3072 	}
3073 	xudc->ep0_req = to_xudc_req(req);
3074 
3075 	return 0;
3076 
3077 free_eps:
3078 	for (; i > 0; i--)
3079 		tegra_xudc_free_ep(xudc, i - 1);
3080 free_ep_context:
3081 	dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context),
3082 			  xudc->ep_context, xudc->ep_context_phys);
3083 	return err;
3084 }
3085 
3086 static void tegra_xudc_init_eps(struct tegra_xudc *xudc)
3087 {
3088 	xudc_writel(xudc, lower_32_bits(xudc->ep_context_phys), ECPLO);
3089 	xudc_writel(xudc, upper_32_bits(xudc->ep_context_phys), ECPHI);
3090 }
3091 
3092 static void tegra_xudc_free_eps(struct tegra_xudc *xudc)
3093 {
3094 	unsigned int i;
3095 
3096 	tegra_xudc_ep_free_request(&xudc->ep[0].usb_ep,
3097 				   &xudc->ep0_req->usb_req);
3098 
3099 	for (i = 0; i < ARRAY_SIZE(xudc->ep); i++)
3100 		tegra_xudc_free_ep(xudc, i);
3101 
3102 	dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context),
3103 			  xudc->ep_context, xudc->ep_context_phys);
3104 }
3105 
3106 static int tegra_xudc_alloc_event_ring(struct tegra_xudc *xudc)
3107 {
3108 	unsigned int i;
3109 
3110 	for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) {
3111 		xudc->event_ring[i] =
3112 			dma_alloc_coherent(xudc->dev, XUDC_EVENT_RING_SIZE *
3113 					   sizeof(*xudc->event_ring[i]),
3114 					   &xudc->event_ring_phys[i],
3115 					   GFP_KERNEL);
3116 		if (!xudc->event_ring[i])
3117 			goto free_dma;
3118 	}
3119 
3120 	return 0;
3121 
3122 free_dma:
3123 	for (; i > 0; i--) {
3124 		dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE *
3125 				  sizeof(*xudc->event_ring[i - 1]),
3126 				  xudc->event_ring[i - 1],
3127 				  xudc->event_ring_phys[i - 1]);
3128 	}
3129 	return -ENOMEM;
3130 }
3131 
3132 static void tegra_xudc_init_event_ring(struct tegra_xudc *xudc)
3133 {
3134 	unsigned int i;
3135 	u32 val;
3136 
3137 	val = xudc_readl(xudc, SPARAM);
3138 	val &= ~(SPARAM_ERSTMAX_MASK);
3139 	val |= SPARAM_ERSTMAX(XUDC_NR_EVENT_RINGS);
3140 	xudc_writel(xudc, val, SPARAM);
3141 
3142 	for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) {
3143 		memset(xudc->event_ring[i], 0, XUDC_EVENT_RING_SIZE *
3144 		       sizeof(*xudc->event_ring[i]));
3145 
3146 		val = xudc_readl(xudc, ERSTSZ);
3147 		val &= ~(ERSTSZ_ERSTXSZ_MASK << ERSTSZ_ERSTXSZ_SHIFT(i));
3148 		val |= XUDC_EVENT_RING_SIZE << ERSTSZ_ERSTXSZ_SHIFT(i);
3149 		xudc_writel(xudc, val, ERSTSZ);
3150 
3151 		xudc_writel(xudc, lower_32_bits(xudc->event_ring_phys[i]),
3152 			    ERSTXBALO(i));
3153 		xudc_writel(xudc, upper_32_bits(xudc->event_ring_phys[i]),
3154 			    ERSTXBAHI(i));
3155 	}
3156 
3157 	val = lower_32_bits(xudc->event_ring_phys[0]);
3158 	xudc_writel(xudc, val, ERDPLO);
3159 	val |= EREPLO_ECS;
3160 	xudc_writel(xudc, val, EREPLO);
3161 
3162 	val = upper_32_bits(xudc->event_ring_phys[0]);
3163 	xudc_writel(xudc, val, ERDPHI);
3164 	xudc_writel(xudc, val, EREPHI);
3165 
3166 	xudc->ccs = true;
3167 	xudc->event_ring_index = 0;
3168 	xudc->event_ring_deq_ptr = 0;
3169 }
3170 
3171 static void tegra_xudc_free_event_ring(struct tegra_xudc *xudc)
3172 {
3173 	unsigned int i;
3174 
3175 	for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) {
3176 		dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE *
3177 				  sizeof(*xudc->event_ring[i]),
3178 				  xudc->event_ring[i],
3179 				  xudc->event_ring_phys[i]);
3180 	}
3181 }
3182 
3183 static void tegra_xudc_fpci_ipfs_init(struct tegra_xudc *xudc)
3184 {
3185 	u32 val;
3186 
3187 	if (xudc->soc->has_ipfs) {
3188 		val = ipfs_readl(xudc, XUSB_DEV_CONFIGURATION_0);
3189 		val |= XUSB_DEV_CONFIGURATION_0_EN_FPCI;
3190 		ipfs_writel(xudc, val, XUSB_DEV_CONFIGURATION_0);
3191 		usleep_range(10, 15);
3192 	}
3193 
3194 	/* Enable bus master */
3195 	val = XUSB_DEV_CFG_1_IO_SPACE_EN | XUSB_DEV_CFG_1_MEMORY_SPACE_EN |
3196 		XUSB_DEV_CFG_1_BUS_MASTER_EN;
3197 	fpci_writel(xudc, val, XUSB_DEV_CFG_1);
3198 
3199 	/* Program BAR0 space */
3200 	val = fpci_readl(xudc, XUSB_DEV_CFG_4);
3201 	val &= ~(XUSB_DEV_CFG_4_BASE_ADDR_MASK);
3202 	val |= xudc->phys_base & (XUSB_DEV_CFG_4_BASE_ADDR_MASK);
3203 
3204 	fpci_writel(xudc, val, XUSB_DEV_CFG_4);
3205 	fpci_writel(xudc, upper_32_bits(xudc->phys_base), XUSB_DEV_CFG_5);
3206 
3207 	usleep_range(100, 200);
3208 
3209 	if (xudc->soc->has_ipfs) {
3210 		/* Enable interrupt assertion */
3211 		val = ipfs_readl(xudc, XUSB_DEV_INTR_MASK_0);
3212 		val |= XUSB_DEV_INTR_MASK_0_IP_INT_MASK;
3213 		ipfs_writel(xudc, val, XUSB_DEV_INTR_MASK_0);
3214 	}
3215 }
3216 
3217 static void tegra_xudc_device_params_init(struct tegra_xudc *xudc)
3218 {
3219 	u32 val, imod;
3220 
3221 	if (xudc->soc->has_ipfs) {
3222 		val = xudc_readl(xudc, BLCG);
3223 		val |= BLCG_ALL;
3224 		val &= ~(BLCG_DFPCI | BLCG_UFPCI | BLCG_FE |
3225 				BLCG_COREPLL_PWRDN);
3226 		val |= BLCG_IOPLL_0_PWRDN;
3227 		val |= BLCG_IOPLL_1_PWRDN;
3228 		val |= BLCG_IOPLL_2_PWRDN;
3229 
3230 		xudc_writel(xudc, val, BLCG);
3231 	}
3232 
3233 	/* Set a reasonable U3 exit timer value. */
3234 	val = xudc_readl(xudc, SSPX_CORE_PADCTL4);
3235 	val &= ~(SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK);
3236 	val |= SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(0x5dc0);
3237 	xudc_writel(xudc, val, SSPX_CORE_PADCTL4);
3238 
3239 	/* Default ping LFPS tBurst is too large. */
3240 	val = xudc_readl(xudc, SSPX_CORE_CNT0);
3241 	val &= ~(SSPX_CORE_CNT0_PING_TBURST_MASK);
3242 	val |= SSPX_CORE_CNT0_PING_TBURST(0xa);
3243 	xudc_writel(xudc, val, SSPX_CORE_CNT0);
3244 
3245 	/* Default tPortConfiguration timeout is too small. */
3246 	val = xudc_readl(xudc, SSPX_CORE_CNT30);
3247 	val &= ~(SSPX_CORE_CNT30_LMPITP_TIMER_MASK);
3248 	val |= SSPX_CORE_CNT30_LMPITP_TIMER(0x978);
3249 	xudc_writel(xudc, val, SSPX_CORE_CNT30);
3250 
3251 	if (xudc->soc->lpm_enable) {
3252 		/* Set L1 resume duration to 95 us. */
3253 		val = xudc_readl(xudc, HSFSPI_COUNT13);
3254 		val &= ~(HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK);
3255 		val |= HSFSPI_COUNT13_U2_RESUME_K_DURATION(0x2c88);
3256 		xudc_writel(xudc, val, HSFSPI_COUNT13);
3257 	}
3258 
3259 	/*
3260 	 * Compliacne suite appears to be violating polling LFPS tBurst max
3261 	 * of 1.4us.  Send 1.45us instead.
3262 	 */
3263 	val = xudc_readl(xudc, SSPX_CORE_CNT32);
3264 	val &= ~(SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK);
3265 	val |= SSPX_CORE_CNT32_POLL_TBURST_MAX(0xb0);
3266 	xudc_writel(xudc, val, SSPX_CORE_CNT32);
3267 
3268 	/* Direct HS/FS port instance to RxDetect. */
3269 	val = xudc_readl(xudc, CFG_DEV_FE);
3270 	val &= ~(CFG_DEV_FE_PORTREGSEL_MASK);
3271 	val |= CFG_DEV_FE_PORTREGSEL(CFG_DEV_FE_PORTREGSEL_HSFS_PI);
3272 	xudc_writel(xudc, val, CFG_DEV_FE);
3273 
3274 	val = xudc_readl(xudc, PORTSC);
3275 	val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
3276 	val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT);
3277 	xudc_writel(xudc, val, PORTSC);
3278 
3279 	/* Direct SS port instance to RxDetect. */
3280 	val = xudc_readl(xudc, CFG_DEV_FE);
3281 	val &= ~(CFG_DEV_FE_PORTREGSEL_MASK);
3282 	val |= CFG_DEV_FE_PORTREGSEL_SS_PI & CFG_DEV_FE_PORTREGSEL_MASK;
3283 	xudc_writel(xudc, val, CFG_DEV_FE);
3284 
3285 	val = xudc_readl(xudc, PORTSC);
3286 	val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
3287 	val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT);
3288 	xudc_writel(xudc, val, PORTSC);
3289 
3290 	/* Restore port instance. */
3291 	val = xudc_readl(xudc, CFG_DEV_FE);
3292 	val &= ~(CFG_DEV_FE_PORTREGSEL_MASK);
3293 	xudc_writel(xudc, val, CFG_DEV_FE);
3294 
3295 	/*
3296 	 * Enable INFINITE_SS_RETRY to prevent device from entering
3297 	 * Disabled.Error when attached to buggy SuperSpeed hubs.
3298 	 */
3299 	val = xudc_readl(xudc, CFG_DEV_FE);
3300 	val |= CFG_DEV_FE_INFINITE_SS_RETRY;
3301 	xudc_writel(xudc, val, CFG_DEV_FE);
3302 
3303 	/* Set interrupt moderation. */
3304 	imod = XUDC_INTERRUPT_MODERATION_US * 4;
3305 	val = xudc_readl(xudc, RT_IMOD);
3306 	val &= ~((RT_IMOD_IMODI_MASK) | (RT_IMOD_IMODC_MASK));
3307 	val |= (RT_IMOD_IMODI(imod) | RT_IMOD_IMODC(imod));
3308 	xudc_writel(xudc, val, RT_IMOD);
3309 
3310 	/* increase SSPI transaction timeout from 32us to 512us */
3311 	val = xudc_readl(xudc, CFG_DEV_SSPI_XFER);
3312 	val &= ~(CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK);
3313 	val |= CFG_DEV_SSPI_XFER_ACKTIMEOUT(0xf000);
3314 	xudc_writel(xudc, val, CFG_DEV_SSPI_XFER);
3315 }
3316 
3317 static int tegra_xudc_phy_init(struct tegra_xudc *xudc)
3318 {
3319 	int err;
3320 
3321 	err = phy_init(xudc->utmi_phy);
3322 	if (err < 0) {
3323 		dev_err(xudc->dev, "utmi phy init failed: %d\n", err);
3324 		return err;
3325 	}
3326 
3327 	err = phy_init(xudc->usb3_phy);
3328 	if (err < 0) {
3329 		dev_err(xudc->dev, "usb3 phy init failed: %d\n", err);
3330 		goto exit_utmi_phy;
3331 	}
3332 
3333 	return 0;
3334 
3335 exit_utmi_phy:
3336 	phy_exit(xudc->utmi_phy);
3337 	return err;
3338 }
3339 
3340 static void tegra_xudc_phy_exit(struct tegra_xudc *xudc)
3341 {
3342 	phy_exit(xudc->usb3_phy);
3343 	phy_exit(xudc->utmi_phy);
3344 }
3345 
3346 static const char * const tegra210_xudc_supply_names[] = {
3347 	"hvdd-usb",
3348 	"avddio-usb",
3349 };
3350 
3351 static const char * const tegra210_xudc_clock_names[] = {
3352 	"dev",
3353 	"ss",
3354 	"ss_src",
3355 	"hs_src",
3356 	"fs_src",
3357 };
3358 
3359 static const char * const tegra186_xudc_clock_names[] = {
3360 	"dev",
3361 	"ss",
3362 	"ss_src",
3363 	"fs_src",
3364 };
3365 
3366 static struct tegra_xudc_soc tegra210_xudc_soc_data = {
3367 	.supply_names = tegra210_xudc_supply_names,
3368 	.num_supplies = ARRAY_SIZE(tegra210_xudc_supply_names),
3369 	.clock_names = tegra210_xudc_clock_names,
3370 	.num_clks = ARRAY_SIZE(tegra210_xudc_clock_names),
3371 	.u1_enable = false,
3372 	.u2_enable = true,
3373 	.lpm_enable = false,
3374 	.invalid_seq_num = true,
3375 	.pls_quirk = true,
3376 	.port_reset_quirk = true,
3377 	.has_ipfs = true,
3378 };
3379 
3380 static struct tegra_xudc_soc tegra186_xudc_soc_data = {
3381 	.clock_names = tegra186_xudc_clock_names,
3382 	.num_clks = ARRAY_SIZE(tegra186_xudc_clock_names),
3383 	.u1_enable = true,
3384 	.u2_enable = true,
3385 	.lpm_enable = false,
3386 	.invalid_seq_num = false,
3387 	.pls_quirk = false,
3388 	.port_reset_quirk = false,
3389 	.has_ipfs = false,
3390 };
3391 
3392 static const struct of_device_id tegra_xudc_of_match[] = {
3393 	{
3394 		.compatible = "nvidia,tegra210-xudc",
3395 		.data = &tegra210_xudc_soc_data
3396 	},
3397 	{
3398 		.compatible = "nvidia,tegra186-xudc",
3399 		.data = &tegra186_xudc_soc_data
3400 	},
3401 	{ }
3402 };
3403 MODULE_DEVICE_TABLE(of, tegra_xudc_of_match);
3404 
3405 static void tegra_xudc_powerdomain_remove(struct tegra_xudc *xudc)
3406 {
3407 	if (xudc->genpd_dl_ss)
3408 		device_link_del(xudc->genpd_dl_ss);
3409 	if (xudc->genpd_dl_device)
3410 		device_link_del(xudc->genpd_dl_device);
3411 	if (xudc->genpd_dev_ss)
3412 		dev_pm_domain_detach(xudc->genpd_dev_ss, true);
3413 	if (xudc->genpd_dev_device)
3414 		dev_pm_domain_detach(xudc->genpd_dev_device, true);
3415 }
3416 
3417 static int tegra_xudc_powerdomain_init(struct tegra_xudc *xudc)
3418 {
3419 	struct device *dev = xudc->dev;
3420 	int err;
3421 
3422 	xudc->genpd_dev_device = dev_pm_domain_attach_by_name(dev,
3423 								"dev");
3424 	if (IS_ERR(xudc->genpd_dev_device)) {
3425 		err = PTR_ERR(xudc->genpd_dev_device);
3426 		dev_err(dev, "failed to get dev pm-domain: %d\n", err);
3427 		return err;
3428 	}
3429 
3430 	xudc->genpd_dev_ss = dev_pm_domain_attach_by_name(dev, "ss");
3431 	if (IS_ERR(xudc->genpd_dev_ss)) {
3432 		err = PTR_ERR(xudc->genpd_dev_ss);
3433 		dev_err(dev, "failed to get superspeed pm-domain: %d\n", err);
3434 		return err;
3435 	}
3436 
3437 	xudc->genpd_dl_device = device_link_add(dev, xudc->genpd_dev_device,
3438 					       DL_FLAG_PM_RUNTIME |
3439 					       DL_FLAG_STATELESS);
3440 	if (!xudc->genpd_dl_device) {
3441 		dev_err(dev, "adding usb device device link failed!\n");
3442 		return -ENODEV;
3443 	}
3444 
3445 	xudc->genpd_dl_ss = device_link_add(dev, xudc->genpd_dev_ss,
3446 					     DL_FLAG_PM_RUNTIME |
3447 					     DL_FLAG_STATELESS);
3448 	if (!xudc->genpd_dl_ss) {
3449 		dev_err(dev, "adding superspeed device link failed!\n");
3450 		return -ENODEV;
3451 	}
3452 
3453 	return 0;
3454 }
3455 
3456 static int tegra_xudc_probe(struct platform_device *pdev)
3457 {
3458 	struct tegra_xudc *xudc;
3459 	struct resource *res;
3460 	struct usb_role_switch_desc role_sx_desc = { 0 };
3461 	unsigned int i;
3462 	int err;
3463 
3464 	xudc = devm_kzalloc(&pdev->dev, sizeof(*xudc), GFP_ATOMIC);
3465 	if (!xudc)
3466 		return -ENOMEM;
3467 
3468 	xudc->dev = &pdev->dev;
3469 	platform_set_drvdata(pdev, xudc);
3470 
3471 	xudc->soc = of_device_get_match_data(&pdev->dev);
3472 	if (!xudc->soc)
3473 		return -ENODEV;
3474 
3475 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3476 	xudc->base = devm_ioremap_resource(&pdev->dev, res);
3477 	if (IS_ERR(xudc->base))
3478 		return PTR_ERR(xudc->base);
3479 	xudc->phys_base = res->start;
3480 
3481 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fpci");
3482 	xudc->fpci = devm_ioremap_resource(&pdev->dev, res);
3483 	if (IS_ERR(xudc->fpci))
3484 		return PTR_ERR(xudc->fpci);
3485 
3486 	if (xudc->soc->has_ipfs) {
3487 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3488 						   "ipfs");
3489 		xudc->ipfs = devm_ioremap_resource(&pdev->dev, res);
3490 		if (IS_ERR(xudc->ipfs))
3491 			return PTR_ERR(xudc->ipfs);
3492 	}
3493 
3494 	xudc->irq = platform_get_irq(pdev, 0);
3495 	if (xudc->irq < 0) {
3496 		dev_err(xudc->dev, "failed to get IRQ: %d\n",
3497 				xudc->irq);
3498 		return xudc->irq;
3499 	}
3500 
3501 	err = devm_request_irq(&pdev->dev, xudc->irq, tegra_xudc_irq, 0,
3502 			       dev_name(&pdev->dev), xudc);
3503 	if (err < 0) {
3504 		dev_err(xudc->dev, "failed to claim IRQ#%u: %d\n", xudc->irq,
3505 			err);
3506 		return err;
3507 	}
3508 
3509 	xudc->clks = devm_kcalloc(&pdev->dev, xudc->soc->num_clks,
3510 				      sizeof(*xudc->clks), GFP_KERNEL);
3511 	if (!xudc->clks)
3512 		return -ENOMEM;
3513 
3514 	for (i = 0; i < xudc->soc->num_clks; i++)
3515 		xudc->clks[i].id = xudc->soc->clock_names[i];
3516 
3517 	err = devm_clk_bulk_get(&pdev->dev, xudc->soc->num_clks,
3518 				      xudc->clks);
3519 	if (err) {
3520 		dev_err(xudc->dev, "failed to request clks %d\n", err);
3521 		return err;
3522 	}
3523 
3524 	xudc->supplies = devm_kcalloc(&pdev->dev, xudc->soc->num_supplies,
3525 				      sizeof(*xudc->supplies), GFP_KERNEL);
3526 	if (!xudc->supplies)
3527 		return -ENOMEM;
3528 
3529 	for (i = 0; i < xudc->soc->num_supplies; i++)
3530 		xudc->supplies[i].supply = xudc->soc->supply_names[i];
3531 
3532 	err = devm_regulator_bulk_get(&pdev->dev, xudc->soc->num_supplies,
3533 				      xudc->supplies);
3534 	if (err) {
3535 		dev_err(xudc->dev, "failed to request regulators %d\n", err);
3536 		return err;
3537 	}
3538 
3539 	xudc->padctl = tegra_xusb_padctl_get(&pdev->dev);
3540 	if (IS_ERR(xudc->padctl))
3541 		return PTR_ERR(xudc->padctl);
3542 
3543 	err = regulator_bulk_enable(xudc->soc->num_supplies, xudc->supplies);
3544 	if (err) {
3545 		dev_err(xudc->dev, "failed to enable regulators %d\n", err);
3546 		goto put_padctl;
3547 	}
3548 
3549 	xudc->usb3_phy = devm_phy_optional_get(&pdev->dev, "usb3");
3550 	if (IS_ERR(xudc->usb3_phy)) {
3551 		err = PTR_ERR(xudc->usb3_phy);
3552 		dev_err(xudc->dev, "failed to get usb3 phy: %d\n", err);
3553 		goto disable_regulator;
3554 	}
3555 
3556 	xudc->utmi_phy = devm_phy_optional_get(&pdev->dev, "usb2");
3557 	if (IS_ERR(xudc->utmi_phy)) {
3558 		err = PTR_ERR(xudc->utmi_phy);
3559 		dev_err(xudc->dev, "failed to get usb2 phy: %d\n", err);
3560 		goto disable_regulator;
3561 	}
3562 
3563 	err = tegra_xudc_powerdomain_init(xudc);
3564 	if (err)
3565 		goto put_powerdomains;
3566 
3567 	err = tegra_xudc_phy_init(xudc);
3568 	if (err)
3569 		goto put_powerdomains;
3570 
3571 	err = tegra_xudc_alloc_event_ring(xudc);
3572 	if (err)
3573 		goto disable_phy;
3574 
3575 	err = tegra_xudc_alloc_eps(xudc);
3576 	if (err)
3577 		goto free_event_ring;
3578 
3579 	spin_lock_init(&xudc->lock);
3580 
3581 	init_completion(&xudc->disconnect_complete);
3582 
3583 	INIT_WORK(&xudc->usb_role_sw_work, tegra_xudc_usb_role_sw_work);
3584 
3585 	INIT_DELAYED_WORK(&xudc->plc_reset_work, tegra_xudc_plc_reset_work);
3586 
3587 	INIT_DELAYED_WORK(&xudc->port_reset_war_work,
3588 				tegra_xudc_port_reset_war_work);
3589 
3590 	if (of_property_read_bool(xudc->dev->of_node, "usb-role-switch")) {
3591 		role_sx_desc.set = tegra_xudc_usb_role_sw_set;
3592 		role_sx_desc.fwnode = dev_fwnode(xudc->dev);
3593 
3594 		xudc->usb_role_sw = usb_role_switch_register(xudc->dev,
3595 							&role_sx_desc);
3596 		if (IS_ERR(xudc->usb_role_sw)) {
3597 			err = PTR_ERR(xudc->usb_role_sw);
3598 			dev_err(xudc->dev, "Failed to register USB role SW: %d",
3599 					   err);
3600 			goto free_eps;
3601 		}
3602 	} else {
3603 		/* Set the mode as device mode and this keeps phy always ON */
3604 		dev_info(xudc->dev, "Set usb role to device mode always");
3605 		schedule_work(&xudc->usb_role_sw_work);
3606 	}
3607 
3608 	pm_runtime_enable(&pdev->dev);
3609 
3610 	xudc->gadget.ops = &tegra_xudc_gadget_ops;
3611 	xudc->gadget.ep0 = &xudc->ep[0].usb_ep;
3612 	xudc->gadget.name = "tegra-xudc";
3613 	xudc->gadget.max_speed = USB_SPEED_SUPER;
3614 
3615 	err = usb_add_gadget_udc(&pdev->dev, &xudc->gadget);
3616 	if (err) {
3617 		dev_err(&pdev->dev, "failed to add USB gadget: %d\n", err);
3618 		goto free_eps;
3619 	}
3620 
3621 	return 0;
3622 
3623 free_eps:
3624 	tegra_xudc_free_eps(xudc);
3625 free_event_ring:
3626 	tegra_xudc_free_event_ring(xudc);
3627 disable_phy:
3628 	tegra_xudc_phy_exit(xudc);
3629 put_powerdomains:
3630 	tegra_xudc_powerdomain_remove(xudc);
3631 disable_regulator:
3632 	regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies);
3633 put_padctl:
3634 	tegra_xusb_padctl_put(xudc->padctl);
3635 
3636 	return err;
3637 }
3638 
3639 static int tegra_xudc_remove(struct platform_device *pdev)
3640 {
3641 	struct tegra_xudc *xudc = platform_get_drvdata(pdev);
3642 
3643 	pm_runtime_get_sync(xudc->dev);
3644 
3645 	cancel_delayed_work(&xudc->plc_reset_work);
3646 
3647 	if (xudc->usb_role_sw) {
3648 		usb_role_switch_unregister(xudc->usb_role_sw);
3649 		cancel_work_sync(&xudc->usb_role_sw_work);
3650 	}
3651 
3652 	usb_del_gadget_udc(&xudc->gadget);
3653 
3654 	tegra_xudc_free_eps(xudc);
3655 	tegra_xudc_free_event_ring(xudc);
3656 
3657 	tegra_xudc_powerdomain_remove(xudc);
3658 
3659 	regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies);
3660 
3661 	phy_power_off(xudc->utmi_phy);
3662 	phy_power_off(xudc->usb3_phy);
3663 
3664 	tegra_xudc_phy_exit(xudc);
3665 
3666 	pm_runtime_disable(xudc->dev);
3667 	pm_runtime_put(xudc->dev);
3668 
3669 	tegra_xusb_padctl_put(xudc->padctl);
3670 
3671 	return 0;
3672 }
3673 
3674 static int __maybe_unused tegra_xudc_powergate(struct tegra_xudc *xudc)
3675 {
3676 	unsigned long flags;
3677 
3678 	dev_dbg(xudc->dev, "entering ELPG\n");
3679 
3680 	spin_lock_irqsave(&xudc->lock, flags);
3681 
3682 	xudc->powergated = true;
3683 	xudc->saved_regs.ctrl = xudc_readl(xudc, CTRL);
3684 	xudc->saved_regs.portpm = xudc_readl(xudc, PORTPM);
3685 	xudc_writel(xudc, 0, CTRL);
3686 
3687 	spin_unlock_irqrestore(&xudc->lock, flags);
3688 
3689 	clk_bulk_disable_unprepare(xudc->soc->num_clks, xudc->clks);
3690 
3691 	regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies);
3692 
3693 	dev_dbg(xudc->dev, "entering ELPG done\n");
3694 	return 0;
3695 }
3696 
3697 static int __maybe_unused tegra_xudc_unpowergate(struct tegra_xudc *xudc)
3698 {
3699 	unsigned long flags;
3700 	int err;
3701 
3702 	dev_dbg(xudc->dev, "exiting ELPG\n");
3703 
3704 	err = regulator_bulk_enable(xudc->soc->num_supplies,
3705 			xudc->supplies);
3706 	if (err < 0)
3707 		return err;
3708 
3709 	err = clk_bulk_prepare_enable(xudc->soc->num_clks, xudc->clks);
3710 	if (err < 0)
3711 		return err;
3712 
3713 	tegra_xudc_fpci_ipfs_init(xudc);
3714 
3715 	tegra_xudc_device_params_init(xudc);
3716 
3717 	tegra_xudc_init_event_ring(xudc);
3718 
3719 	tegra_xudc_init_eps(xudc);
3720 
3721 	xudc_writel(xudc, xudc->saved_regs.portpm, PORTPM);
3722 	xudc_writel(xudc, xudc->saved_regs.ctrl, CTRL);
3723 
3724 	spin_lock_irqsave(&xudc->lock, flags);
3725 	xudc->powergated = false;
3726 	spin_unlock_irqrestore(&xudc->lock, flags);
3727 
3728 	dev_dbg(xudc->dev, "exiting ELPG done\n");
3729 	return 0;
3730 }
3731 
3732 static int __maybe_unused tegra_xudc_suspend(struct device *dev)
3733 {
3734 	struct tegra_xudc *xudc = dev_get_drvdata(dev);
3735 	unsigned long flags;
3736 
3737 	spin_lock_irqsave(&xudc->lock, flags);
3738 	xudc->suspended = true;
3739 	spin_unlock_irqrestore(&xudc->lock, flags);
3740 
3741 	flush_work(&xudc->usb_role_sw_work);
3742 
3743 	/* Forcibly disconnect before powergating. */
3744 	tegra_xudc_device_mode_off(xudc);
3745 
3746 	if (!pm_runtime_status_suspended(dev))
3747 		tegra_xudc_powergate(xudc);
3748 
3749 	pm_runtime_disable(dev);
3750 
3751 	return 0;
3752 }
3753 
3754 static int __maybe_unused tegra_xudc_resume(struct device *dev)
3755 {
3756 	struct tegra_xudc *xudc = dev_get_drvdata(dev);
3757 	unsigned long flags;
3758 	int err;
3759 
3760 	err = tegra_xudc_unpowergate(xudc);
3761 	if (err < 0)
3762 		return err;
3763 
3764 	spin_lock_irqsave(&xudc->lock, flags);
3765 	xudc->suspended = false;
3766 	spin_unlock_irqrestore(&xudc->lock, flags);
3767 
3768 	schedule_work(&xudc->usb_role_sw_work);
3769 
3770 	pm_runtime_enable(dev);
3771 
3772 	return 0;
3773 }
3774 
3775 static int __maybe_unused tegra_xudc_runtime_suspend(struct device *dev)
3776 {
3777 	struct tegra_xudc *xudc = dev_get_drvdata(dev);
3778 
3779 	return tegra_xudc_powergate(xudc);
3780 }
3781 
3782 static int __maybe_unused tegra_xudc_runtime_resume(struct device *dev)
3783 {
3784 	struct tegra_xudc *xudc = dev_get_drvdata(dev);
3785 
3786 	return tegra_xudc_unpowergate(xudc);
3787 }
3788 
3789 static const struct dev_pm_ops tegra_xudc_pm_ops = {
3790 	SET_SYSTEM_SLEEP_PM_OPS(tegra_xudc_suspend, tegra_xudc_resume)
3791 	SET_RUNTIME_PM_OPS(tegra_xudc_runtime_suspend,
3792 			   tegra_xudc_runtime_resume, NULL)
3793 };
3794 
3795 static struct platform_driver tegra_xudc_driver = {
3796 	.probe = tegra_xudc_probe,
3797 	.remove = tegra_xudc_remove,
3798 	.driver = {
3799 		.name = "tegra-xudc",
3800 		.pm = &tegra_xudc_pm_ops,
3801 		.of_match_table = tegra_xudc_of_match,
3802 	},
3803 };
3804 module_platform_driver(tegra_xudc_driver);
3805 
3806 MODULE_DESCRIPTION("NVIDIA Tegra XUSB Device Controller");
3807 MODULE_AUTHOR("Andrew Bresticker <abrestic@chromium.org>");
3808 MODULE_AUTHOR("Hui Fu <hfu@nvidia.com>");
3809 MODULE_AUTHOR("Nagarjuna Kristam <nkristam@nvidia.com>");
3810 MODULE_LICENSE("GPL v2");
3811