1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * NVIDIA Tegra XUSB device mode controller 4 * 5 * Copyright (c) 2013-2022, NVIDIA CORPORATION. All rights reserved. 6 * Copyright (c) 2015, Google Inc. 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/completion.h> 11 #include <linux/delay.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/dmapool.h> 14 #include <linux/interrupt.h> 15 #include <linux/iopoll.h> 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/of.h> 19 #include <linux/of_device.h> 20 #include <linux/phy/phy.h> 21 #include <linux/phy/tegra/xusb.h> 22 #include <linux/pm_domain.h> 23 #include <linux/platform_device.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/regulator/consumer.h> 26 #include <linux/reset.h> 27 #include <linux/usb/ch9.h> 28 #include <linux/usb/gadget.h> 29 #include <linux/usb/otg.h> 30 #include <linux/usb/role.h> 31 #include <linux/usb/phy.h> 32 #include <linux/workqueue.h> 33 34 /* XUSB_DEV registers */ 35 #define DB 0x004 36 #define DB_TARGET_MASK GENMASK(15, 8) 37 #define DB_TARGET(x) (((x) << 8) & DB_TARGET_MASK) 38 #define DB_STREAMID_MASK GENMASK(31, 16) 39 #define DB_STREAMID(x) (((x) << 16) & DB_STREAMID_MASK) 40 #define ERSTSZ 0x008 41 #define ERSTSZ_ERSTXSZ_SHIFT(x) ((x) * 16) 42 #define ERSTSZ_ERSTXSZ_MASK GENMASK(15, 0) 43 #define ERSTXBALO(x) (0x010 + 8 * (x)) 44 #define ERSTXBAHI(x) (0x014 + 8 * (x)) 45 #define ERDPLO 0x020 46 #define ERDPLO_EHB BIT(3) 47 #define ERDPHI 0x024 48 #define EREPLO 0x028 49 #define EREPLO_ECS BIT(0) 50 #define EREPLO_SEGI BIT(1) 51 #define EREPHI 0x02c 52 #define CTRL 0x030 53 #define CTRL_RUN BIT(0) 54 #define CTRL_LSE BIT(1) 55 #define CTRL_IE BIT(4) 56 #define CTRL_SMI_EVT BIT(5) 57 #define CTRL_SMI_DSE BIT(6) 58 #define CTRL_EWE BIT(7) 59 #define CTRL_DEVADDR_MASK GENMASK(30, 24) 60 #define CTRL_DEVADDR(x) (((x) << 24) & CTRL_DEVADDR_MASK) 61 #define CTRL_ENABLE BIT(31) 62 #define ST 0x034 63 #define ST_RC BIT(0) 64 #define ST_IP BIT(4) 65 #define RT_IMOD 0x038 66 #define RT_IMOD_IMODI_MASK GENMASK(15, 0) 67 #define RT_IMOD_IMODI(x) ((x) & RT_IMOD_IMODI_MASK) 68 #define RT_IMOD_IMODC_MASK GENMASK(31, 16) 69 #define RT_IMOD_IMODC(x) (((x) << 16) & RT_IMOD_IMODC_MASK) 70 #define PORTSC 0x03c 71 #define PORTSC_CCS BIT(0) 72 #define PORTSC_PED BIT(1) 73 #define PORTSC_PR BIT(4) 74 #define PORTSC_PLS_SHIFT 5 75 #define PORTSC_PLS_MASK GENMASK(8, 5) 76 #define PORTSC_PLS_U0 0x0 77 #define PORTSC_PLS_U2 0x2 78 #define PORTSC_PLS_U3 0x3 79 #define PORTSC_PLS_DISABLED 0x4 80 #define PORTSC_PLS_RXDETECT 0x5 81 #define PORTSC_PLS_INACTIVE 0x6 82 #define PORTSC_PLS_RESUME 0xf 83 #define PORTSC_PLS(x) (((x) << PORTSC_PLS_SHIFT) & PORTSC_PLS_MASK) 84 #define PORTSC_PS_SHIFT 10 85 #define PORTSC_PS_MASK GENMASK(13, 10) 86 #define PORTSC_PS_UNDEFINED 0x0 87 #define PORTSC_PS_FS 0x1 88 #define PORTSC_PS_LS 0x2 89 #define PORTSC_PS_HS 0x3 90 #define PORTSC_PS_SS 0x4 91 #define PORTSC_LWS BIT(16) 92 #define PORTSC_CSC BIT(17) 93 #define PORTSC_WRC BIT(19) 94 #define PORTSC_PRC BIT(21) 95 #define PORTSC_PLC BIT(22) 96 #define PORTSC_CEC BIT(23) 97 #define PORTSC_WPR BIT(30) 98 #define PORTSC_CHANGE_MASK (PORTSC_CSC | PORTSC_WRC | PORTSC_PRC | \ 99 PORTSC_PLC | PORTSC_CEC) 100 #define ECPLO 0x040 101 #define ECPHI 0x044 102 #define MFINDEX 0x048 103 #define MFINDEX_FRAME_SHIFT 3 104 #define MFINDEX_FRAME_MASK GENMASK(13, 3) 105 #define PORTPM 0x04c 106 #define PORTPM_L1S_MASK GENMASK(1, 0) 107 #define PORTPM_L1S_DROP 0x0 108 #define PORTPM_L1S_ACCEPT 0x1 109 #define PORTPM_L1S_NYET 0x2 110 #define PORTPM_L1S_STALL 0x3 111 #define PORTPM_L1S(x) ((x) & PORTPM_L1S_MASK) 112 #define PORTPM_RWE BIT(3) 113 #define PORTPM_U2TIMEOUT_MASK GENMASK(15, 8) 114 #define PORTPM_U1TIMEOUT_MASK GENMASK(23, 16) 115 #define PORTPM_FLA BIT(24) 116 #define PORTPM_VBA BIT(25) 117 #define PORTPM_WOC BIT(26) 118 #define PORTPM_WOD BIT(27) 119 #define PORTPM_U1E BIT(28) 120 #define PORTPM_U2E BIT(29) 121 #define PORTPM_FRWE BIT(30) 122 #define PORTPM_PNG_CYA BIT(31) 123 #define EP_HALT 0x050 124 #define EP_PAUSE 0x054 125 #define EP_RELOAD 0x058 126 #define EP_STCHG 0x05c 127 #define DEVNOTIF_LO 0x064 128 #define DEVNOTIF_LO_TRIG BIT(0) 129 #define DEVNOTIF_LO_TYPE_MASK GENMASK(7, 4) 130 #define DEVNOTIF_LO_TYPE(x) (((x) << 4) & DEVNOTIF_LO_TYPE_MASK) 131 #define DEVNOTIF_LO_TYPE_FUNCTION_WAKE 0x1 132 #define DEVNOTIF_HI 0x068 133 #define PORTHALT 0x06c 134 #define PORTHALT_HALT_LTSSM BIT(0) 135 #define PORTHALT_HALT_REJECT BIT(1) 136 #define PORTHALT_STCHG_REQ BIT(20) 137 #define PORTHALT_STCHG_INTR_EN BIT(24) 138 #define PORT_TM 0x070 139 #define EP_THREAD_ACTIVE 0x074 140 #define EP_STOPPED 0x078 141 #define HSFSPI_COUNT0 0x100 142 #define HSFSPI_COUNT13 0x134 143 #define HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK GENMASK(29, 0) 144 #define HSFSPI_COUNT13_U2_RESUME_K_DURATION(x) ((x) & \ 145 HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK) 146 #define BLCG 0x840 147 #define SSPX_CORE_CNT0 0x610 148 #define SSPX_CORE_CNT0_PING_TBURST_MASK GENMASK(7, 0) 149 #define SSPX_CORE_CNT0_PING_TBURST(x) ((x) & SSPX_CORE_CNT0_PING_TBURST_MASK) 150 #define SSPX_CORE_CNT30 0x688 151 #define SSPX_CORE_CNT30_LMPITP_TIMER_MASK GENMASK(19, 0) 152 #define SSPX_CORE_CNT30_LMPITP_TIMER(x) ((x) & \ 153 SSPX_CORE_CNT30_LMPITP_TIMER_MASK) 154 #define SSPX_CORE_CNT32 0x690 155 #define SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK GENMASK(7, 0) 156 #define SSPX_CORE_CNT32_POLL_TBURST_MAX(x) ((x) & \ 157 SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK) 158 #define SSPX_CORE_CNT56 0x6fc 159 #define SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK GENMASK(19, 0) 160 #define SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(x) ((x) & \ 161 SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK) 162 #define SSPX_CORE_CNT57 0x700 163 #define SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK GENMASK(19, 0) 164 #define SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(x) ((x) & \ 165 SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK) 166 #define SSPX_CORE_CNT65 0x720 167 #define SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK GENMASK(19, 0) 168 #define SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(x) ((x) & \ 169 SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK) 170 #define SSPX_CORE_CNT66 0x724 171 #define SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK GENMASK(19, 0) 172 #define SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(x) ((x) & \ 173 SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK) 174 #define SSPX_CORE_CNT67 0x728 175 #define SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK GENMASK(19, 0) 176 #define SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(x) ((x) & \ 177 SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK) 178 #define SSPX_CORE_CNT72 0x73c 179 #define SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK GENMASK(19, 0) 180 #define SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(x) ((x) & \ 181 SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK) 182 #define SSPX_CORE_PADCTL4 0x750 183 #define SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK GENMASK(19, 0) 184 #define SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(x) ((x) & \ 185 SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK) 186 #define BLCG_DFPCI BIT(0) 187 #define BLCG_UFPCI BIT(1) 188 #define BLCG_FE BIT(2) 189 #define BLCG_COREPLL_PWRDN BIT(8) 190 #define BLCG_IOPLL_0_PWRDN BIT(9) 191 #define BLCG_IOPLL_1_PWRDN BIT(10) 192 #define BLCG_IOPLL_2_PWRDN BIT(11) 193 #define BLCG_ALL 0x1ff 194 #define CFG_DEV_SSPI_XFER 0x858 195 #define CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK GENMASK(31, 0) 196 #define CFG_DEV_SSPI_XFER_ACKTIMEOUT(x) ((x) & \ 197 CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK) 198 #define CFG_DEV_FE 0x85c 199 #define CFG_DEV_FE_PORTREGSEL_MASK GENMASK(1, 0) 200 #define CFG_DEV_FE_PORTREGSEL_SS_PI 1 201 #define CFG_DEV_FE_PORTREGSEL_HSFS_PI 2 202 #define CFG_DEV_FE_PORTREGSEL(x) ((x) & CFG_DEV_FE_PORTREGSEL_MASK) 203 #define CFG_DEV_FE_INFINITE_SS_RETRY BIT(29) 204 205 /* FPCI registers */ 206 #define XUSB_DEV_CFG_1 0x004 207 #define XUSB_DEV_CFG_1_IO_SPACE_EN BIT(0) 208 #define XUSB_DEV_CFG_1_MEMORY_SPACE_EN BIT(1) 209 #define XUSB_DEV_CFG_1_BUS_MASTER_EN BIT(2) 210 #define XUSB_DEV_CFG_4 0x010 211 #define XUSB_DEV_CFG_4_BASE_ADDR_MASK GENMASK(31, 15) 212 #define XUSB_DEV_CFG_5 0x014 213 214 /* IPFS registers */ 215 #define XUSB_DEV_CONFIGURATION_0 0x180 216 #define XUSB_DEV_CONFIGURATION_0_EN_FPCI BIT(0) 217 #define XUSB_DEV_INTR_MASK_0 0x188 218 #define XUSB_DEV_INTR_MASK_0_IP_INT_MASK BIT(16) 219 220 struct tegra_xudc_ep_context { 221 __le32 info0; 222 __le32 info1; 223 __le32 deq_lo; 224 __le32 deq_hi; 225 __le32 tx_info; 226 __le32 rsvd[11]; 227 }; 228 229 #define EP_STATE_DISABLED 0 230 #define EP_STATE_RUNNING 1 231 #define EP_STATE_HALTED 2 232 #define EP_STATE_STOPPED 3 233 #define EP_STATE_ERROR 4 234 235 #define EP_TYPE_INVALID 0 236 #define EP_TYPE_ISOCH_OUT 1 237 #define EP_TYPE_BULK_OUT 2 238 #define EP_TYPE_INTERRUPT_OUT 3 239 #define EP_TYPE_CONTROL 4 240 #define EP_TYPE_ISCOH_IN 5 241 #define EP_TYPE_BULK_IN 6 242 #define EP_TYPE_INTERRUPT_IN 7 243 244 #define BUILD_EP_CONTEXT_RW(name, member, shift, mask) \ 245 static inline u32 ep_ctx_read_##name(struct tegra_xudc_ep_context *ctx) \ 246 { \ 247 return (le32_to_cpu(ctx->member) >> (shift)) & (mask); \ 248 } \ 249 static inline void \ 250 ep_ctx_write_##name(struct tegra_xudc_ep_context *ctx, u32 val) \ 251 { \ 252 u32 tmp; \ 253 \ 254 tmp = le32_to_cpu(ctx->member) & ~((mask) << (shift)); \ 255 tmp |= (val & (mask)) << (shift); \ 256 ctx->member = cpu_to_le32(tmp); \ 257 } 258 259 BUILD_EP_CONTEXT_RW(state, info0, 0, 0x7) 260 BUILD_EP_CONTEXT_RW(mult, info0, 8, 0x3) 261 BUILD_EP_CONTEXT_RW(max_pstreams, info0, 10, 0x1f) 262 BUILD_EP_CONTEXT_RW(lsa, info0, 15, 0x1) 263 BUILD_EP_CONTEXT_RW(interval, info0, 16, 0xff) 264 BUILD_EP_CONTEXT_RW(cerr, info1, 1, 0x3) 265 BUILD_EP_CONTEXT_RW(type, info1, 3, 0x7) 266 BUILD_EP_CONTEXT_RW(hid, info1, 7, 0x1) 267 BUILD_EP_CONTEXT_RW(max_burst_size, info1, 8, 0xff) 268 BUILD_EP_CONTEXT_RW(max_packet_size, info1, 16, 0xffff) 269 BUILD_EP_CONTEXT_RW(dcs, deq_lo, 0, 0x1) 270 BUILD_EP_CONTEXT_RW(deq_lo, deq_lo, 4, 0xfffffff) 271 BUILD_EP_CONTEXT_RW(deq_hi, deq_hi, 0, 0xffffffff) 272 BUILD_EP_CONTEXT_RW(avg_trb_len, tx_info, 0, 0xffff) 273 BUILD_EP_CONTEXT_RW(max_esit_payload, tx_info, 16, 0xffff) 274 BUILD_EP_CONTEXT_RW(edtla, rsvd[0], 0, 0xffffff) 275 BUILD_EP_CONTEXT_RW(rsvd, rsvd[0], 24, 0x1) 276 BUILD_EP_CONTEXT_RW(partial_td, rsvd[0], 25, 0x1) 277 BUILD_EP_CONTEXT_RW(splitxstate, rsvd[0], 26, 0x1) 278 BUILD_EP_CONTEXT_RW(seq_num, rsvd[0], 27, 0x1f) 279 BUILD_EP_CONTEXT_RW(cerrcnt, rsvd[1], 18, 0x3) 280 BUILD_EP_CONTEXT_RW(data_offset, rsvd[2], 0, 0x1ffff) 281 BUILD_EP_CONTEXT_RW(numtrbs, rsvd[2], 22, 0x1f) 282 BUILD_EP_CONTEXT_RW(devaddr, rsvd[6], 0, 0x7f) 283 284 static inline u64 ep_ctx_read_deq_ptr(struct tegra_xudc_ep_context *ctx) 285 { 286 return ((u64)ep_ctx_read_deq_hi(ctx) << 32) | 287 (ep_ctx_read_deq_lo(ctx) << 4); 288 } 289 290 static inline void 291 ep_ctx_write_deq_ptr(struct tegra_xudc_ep_context *ctx, u64 addr) 292 { 293 ep_ctx_write_deq_lo(ctx, lower_32_bits(addr) >> 4); 294 ep_ctx_write_deq_hi(ctx, upper_32_bits(addr)); 295 } 296 297 struct tegra_xudc_trb { 298 __le32 data_lo; 299 __le32 data_hi; 300 __le32 status; 301 __le32 control; 302 }; 303 304 #define TRB_TYPE_RSVD 0 305 #define TRB_TYPE_NORMAL 1 306 #define TRB_TYPE_SETUP_STAGE 2 307 #define TRB_TYPE_DATA_STAGE 3 308 #define TRB_TYPE_STATUS_STAGE 4 309 #define TRB_TYPE_ISOCH 5 310 #define TRB_TYPE_LINK 6 311 #define TRB_TYPE_TRANSFER_EVENT 32 312 #define TRB_TYPE_PORT_STATUS_CHANGE_EVENT 34 313 #define TRB_TYPE_STREAM 48 314 #define TRB_TYPE_SETUP_PACKET_EVENT 63 315 316 #define TRB_CMPL_CODE_INVALID 0 317 #define TRB_CMPL_CODE_SUCCESS 1 318 #define TRB_CMPL_CODE_DATA_BUFFER_ERR 2 319 #define TRB_CMPL_CODE_BABBLE_DETECTED_ERR 3 320 #define TRB_CMPL_CODE_USB_TRANS_ERR 4 321 #define TRB_CMPL_CODE_TRB_ERR 5 322 #define TRB_CMPL_CODE_STALL 6 323 #define TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR 10 324 #define TRB_CMPL_CODE_SHORT_PACKET 13 325 #define TRB_CMPL_CODE_RING_UNDERRUN 14 326 #define TRB_CMPL_CODE_RING_OVERRUN 15 327 #define TRB_CMPL_CODE_EVENT_RING_FULL_ERR 21 328 #define TRB_CMPL_CODE_STOPPED 26 329 #define TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN 31 330 #define TRB_CMPL_CODE_STREAM_NUMP_ERROR 219 331 #define TRB_CMPL_CODE_PRIME_PIPE_RECEIVED 220 332 #define TRB_CMPL_CODE_HOST_REJECTED 221 333 #define TRB_CMPL_CODE_CTRL_DIR_ERR 222 334 #define TRB_CMPL_CODE_CTRL_SEQNUM_ERR 223 335 336 #define BUILD_TRB_RW(name, member, shift, mask) \ 337 static inline u32 trb_read_##name(struct tegra_xudc_trb *trb) \ 338 { \ 339 return (le32_to_cpu(trb->member) >> (shift)) & (mask); \ 340 } \ 341 static inline void \ 342 trb_write_##name(struct tegra_xudc_trb *trb, u32 val) \ 343 { \ 344 u32 tmp; \ 345 \ 346 tmp = le32_to_cpu(trb->member) & ~((mask) << (shift)); \ 347 tmp |= (val & (mask)) << (shift); \ 348 trb->member = cpu_to_le32(tmp); \ 349 } 350 351 BUILD_TRB_RW(data_lo, data_lo, 0, 0xffffffff) 352 BUILD_TRB_RW(data_hi, data_hi, 0, 0xffffffff) 353 BUILD_TRB_RW(seq_num, status, 0, 0xffff) 354 BUILD_TRB_RW(transfer_len, status, 0, 0xffffff) 355 BUILD_TRB_RW(td_size, status, 17, 0x1f) 356 BUILD_TRB_RW(cmpl_code, status, 24, 0xff) 357 BUILD_TRB_RW(cycle, control, 0, 0x1) 358 BUILD_TRB_RW(toggle_cycle, control, 1, 0x1) 359 BUILD_TRB_RW(isp, control, 2, 0x1) 360 BUILD_TRB_RW(chain, control, 4, 0x1) 361 BUILD_TRB_RW(ioc, control, 5, 0x1) 362 BUILD_TRB_RW(type, control, 10, 0x3f) 363 BUILD_TRB_RW(stream_id, control, 16, 0xffff) 364 BUILD_TRB_RW(endpoint_id, control, 16, 0x1f) 365 BUILD_TRB_RW(tlbpc, control, 16, 0xf) 366 BUILD_TRB_RW(data_stage_dir, control, 16, 0x1) 367 BUILD_TRB_RW(frame_id, control, 20, 0x7ff) 368 BUILD_TRB_RW(sia, control, 31, 0x1) 369 370 static inline u64 trb_read_data_ptr(struct tegra_xudc_trb *trb) 371 { 372 return ((u64)trb_read_data_hi(trb) << 32) | 373 trb_read_data_lo(trb); 374 } 375 376 static inline void trb_write_data_ptr(struct tegra_xudc_trb *trb, u64 addr) 377 { 378 trb_write_data_lo(trb, lower_32_bits(addr)); 379 trb_write_data_hi(trb, upper_32_bits(addr)); 380 } 381 382 struct tegra_xudc_request { 383 struct usb_request usb_req; 384 385 size_t buf_queued; 386 unsigned int trbs_queued; 387 unsigned int trbs_needed; 388 bool need_zlp; 389 390 struct tegra_xudc_trb *first_trb; 391 struct tegra_xudc_trb *last_trb; 392 393 struct list_head list; 394 }; 395 396 struct tegra_xudc_ep { 397 struct tegra_xudc *xudc; 398 struct usb_ep usb_ep; 399 unsigned int index; 400 char name[8]; 401 402 struct tegra_xudc_ep_context *context; 403 404 #define XUDC_TRANSFER_RING_SIZE 64 405 struct tegra_xudc_trb *transfer_ring; 406 dma_addr_t transfer_ring_phys; 407 408 unsigned int enq_ptr; 409 unsigned int deq_ptr; 410 bool pcs; 411 bool ring_full; 412 bool stream_rejected; 413 414 struct list_head queue; 415 const struct usb_endpoint_descriptor *desc; 416 const struct usb_ss_ep_comp_descriptor *comp_desc; 417 }; 418 419 struct tegra_xudc_sel_timing { 420 __u8 u1sel; 421 __u8 u1pel; 422 __le16 u2sel; 423 __le16 u2pel; 424 }; 425 426 enum tegra_xudc_setup_state { 427 WAIT_FOR_SETUP, 428 DATA_STAGE_XFER, 429 DATA_STAGE_RECV, 430 STATUS_STAGE_XFER, 431 STATUS_STAGE_RECV, 432 }; 433 434 struct tegra_xudc_setup_packet { 435 struct usb_ctrlrequest ctrl_req; 436 unsigned int seq_num; 437 }; 438 439 struct tegra_xudc_save_regs { 440 u32 ctrl; 441 u32 portpm; 442 }; 443 444 struct tegra_xudc { 445 struct device *dev; 446 const struct tegra_xudc_soc *soc; 447 struct tegra_xusb_padctl *padctl; 448 449 spinlock_t lock; 450 451 struct usb_gadget gadget; 452 struct usb_gadget_driver *driver; 453 454 #define XUDC_NR_EVENT_RINGS 2 455 #define XUDC_EVENT_RING_SIZE 4096 456 struct tegra_xudc_trb *event_ring[XUDC_NR_EVENT_RINGS]; 457 dma_addr_t event_ring_phys[XUDC_NR_EVENT_RINGS]; 458 unsigned int event_ring_index; 459 unsigned int event_ring_deq_ptr; 460 bool ccs; 461 462 #define XUDC_NR_EPS 32 463 struct tegra_xudc_ep ep[XUDC_NR_EPS]; 464 struct tegra_xudc_ep_context *ep_context; 465 dma_addr_t ep_context_phys; 466 467 struct device *genpd_dev_device; 468 struct device *genpd_dev_ss; 469 struct device_link *genpd_dl_device; 470 struct device_link *genpd_dl_ss; 471 472 struct dma_pool *transfer_ring_pool; 473 474 bool queued_setup_packet; 475 struct tegra_xudc_setup_packet setup_packet; 476 enum tegra_xudc_setup_state setup_state; 477 u16 setup_seq_num; 478 479 u16 dev_addr; 480 u16 isoch_delay; 481 struct tegra_xudc_sel_timing sel_timing; 482 u8 test_mode_pattern; 483 u16 status_buf; 484 struct tegra_xudc_request *ep0_req; 485 486 bool pullup; 487 488 unsigned int nr_enabled_eps; 489 unsigned int nr_isoch_eps; 490 491 unsigned int device_state; 492 unsigned int resume_state; 493 494 int irq; 495 496 void __iomem *base; 497 resource_size_t phys_base; 498 void __iomem *ipfs; 499 void __iomem *fpci; 500 501 struct regulator_bulk_data *supplies; 502 503 struct clk_bulk_data *clks; 504 505 bool device_mode; 506 struct work_struct usb_role_sw_work; 507 508 struct phy **usb3_phy; 509 struct phy *curr_usb3_phy; 510 struct phy **utmi_phy; 511 struct phy *curr_utmi_phy; 512 513 struct tegra_xudc_save_regs saved_regs; 514 bool suspended; 515 bool powergated; 516 517 struct usb_phy **usbphy; 518 struct usb_phy *curr_usbphy; 519 struct notifier_block vbus_nb; 520 521 struct completion disconnect_complete; 522 523 bool selfpowered; 524 525 #define TOGGLE_VBUS_WAIT_MS 100 526 struct delayed_work plc_reset_work; 527 bool wait_csc; 528 529 struct delayed_work port_reset_war_work; 530 bool wait_for_sec_prc; 531 }; 532 533 #define XUDC_TRB_MAX_BUFFER_SIZE 65536 534 #define XUDC_MAX_ISOCH_EPS 4 535 #define XUDC_INTERRUPT_MODERATION_US 0 536 537 static struct usb_endpoint_descriptor tegra_xudc_ep0_desc = { 538 .bLength = USB_DT_ENDPOINT_SIZE, 539 .bDescriptorType = USB_DT_ENDPOINT, 540 .bEndpointAddress = 0, 541 .bmAttributes = USB_ENDPOINT_XFER_CONTROL, 542 .wMaxPacketSize = cpu_to_le16(64), 543 }; 544 545 struct tegra_xudc_soc { 546 const char * const *supply_names; 547 unsigned int num_supplies; 548 const char * const *clock_names; 549 unsigned int num_clks; 550 unsigned int num_phys; 551 bool u1_enable; 552 bool u2_enable; 553 bool lpm_enable; 554 bool invalid_seq_num; 555 bool pls_quirk; 556 bool port_reset_quirk; 557 bool port_speed_quirk; 558 bool has_ipfs; 559 }; 560 561 static inline u32 fpci_readl(struct tegra_xudc *xudc, unsigned int offset) 562 { 563 return readl(xudc->fpci + offset); 564 } 565 566 static inline void fpci_writel(struct tegra_xudc *xudc, u32 val, 567 unsigned int offset) 568 { 569 writel(val, xudc->fpci + offset); 570 } 571 572 static inline u32 ipfs_readl(struct tegra_xudc *xudc, unsigned int offset) 573 { 574 return readl(xudc->ipfs + offset); 575 } 576 577 static inline void ipfs_writel(struct tegra_xudc *xudc, u32 val, 578 unsigned int offset) 579 { 580 writel(val, xudc->ipfs + offset); 581 } 582 583 static inline u32 xudc_readl(struct tegra_xudc *xudc, unsigned int offset) 584 { 585 return readl(xudc->base + offset); 586 } 587 588 static inline void xudc_writel(struct tegra_xudc *xudc, u32 val, 589 unsigned int offset) 590 { 591 writel(val, xudc->base + offset); 592 } 593 594 static inline int xudc_readl_poll(struct tegra_xudc *xudc, 595 unsigned int offset, u32 mask, u32 val) 596 { 597 u32 regval; 598 599 return readl_poll_timeout_atomic(xudc->base + offset, regval, 600 (regval & mask) == val, 1, 100); 601 } 602 603 static inline struct tegra_xudc *to_xudc(struct usb_gadget *gadget) 604 { 605 return container_of(gadget, struct tegra_xudc, gadget); 606 } 607 608 static inline struct tegra_xudc_ep *to_xudc_ep(struct usb_ep *ep) 609 { 610 return container_of(ep, struct tegra_xudc_ep, usb_ep); 611 } 612 613 static inline struct tegra_xudc_request *to_xudc_req(struct usb_request *req) 614 { 615 return container_of(req, struct tegra_xudc_request, usb_req); 616 } 617 618 static inline void dump_trb(struct tegra_xudc *xudc, const char *type, 619 struct tegra_xudc_trb *trb) 620 { 621 dev_dbg(xudc->dev, 622 "%s: %p, lo = %#x, hi = %#x, status = %#x, control = %#x\n", 623 type, trb, trb->data_lo, trb->data_hi, trb->status, 624 trb->control); 625 } 626 627 static void tegra_xudc_limit_port_speed(struct tegra_xudc *xudc) 628 { 629 u32 val; 630 631 /* limit port speed to gen 1 */ 632 val = xudc_readl(xudc, SSPX_CORE_CNT56); 633 val &= ~(SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK); 634 val |= SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(0x260); 635 xudc_writel(xudc, val, SSPX_CORE_CNT56); 636 637 val = xudc_readl(xudc, SSPX_CORE_CNT57); 638 val &= ~(SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK); 639 val |= SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(0x6D6); 640 xudc_writel(xudc, val, SSPX_CORE_CNT57); 641 642 val = xudc_readl(xudc, SSPX_CORE_CNT65); 643 val &= ~(SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK); 644 val |= SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(0x4B0); 645 xudc_writel(xudc, val, SSPX_CORE_CNT66); 646 647 val = xudc_readl(xudc, SSPX_CORE_CNT66); 648 val &= ~(SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK); 649 val |= SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(0x4B0); 650 xudc_writel(xudc, val, SSPX_CORE_CNT66); 651 652 val = xudc_readl(xudc, SSPX_CORE_CNT67); 653 val &= ~(SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK); 654 val |= SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(0x4B0); 655 xudc_writel(xudc, val, SSPX_CORE_CNT67); 656 657 val = xudc_readl(xudc, SSPX_CORE_CNT72); 658 val &= ~(SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK); 659 val |= SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(0x10); 660 xudc_writel(xudc, val, SSPX_CORE_CNT72); 661 } 662 663 static void tegra_xudc_restore_port_speed(struct tegra_xudc *xudc) 664 { 665 u32 val; 666 667 /* restore port speed to gen2 */ 668 val = xudc_readl(xudc, SSPX_CORE_CNT56); 669 val &= ~(SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK); 670 val |= SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(0x438); 671 xudc_writel(xudc, val, SSPX_CORE_CNT56); 672 673 val = xudc_readl(xudc, SSPX_CORE_CNT57); 674 val &= ~(SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK); 675 val |= SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(0x528); 676 xudc_writel(xudc, val, SSPX_CORE_CNT57); 677 678 val = xudc_readl(xudc, SSPX_CORE_CNT65); 679 val &= ~(SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK); 680 val |= SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(0xE10); 681 xudc_writel(xudc, val, SSPX_CORE_CNT66); 682 683 val = xudc_readl(xudc, SSPX_CORE_CNT66); 684 val &= ~(SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK); 685 val |= SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(0x348); 686 xudc_writel(xudc, val, SSPX_CORE_CNT66); 687 688 val = xudc_readl(xudc, SSPX_CORE_CNT67); 689 val &= ~(SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK); 690 val |= SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(0x5a0); 691 xudc_writel(xudc, val, SSPX_CORE_CNT67); 692 693 val = xudc_readl(xudc, SSPX_CORE_CNT72); 694 val &= ~(SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK); 695 val |= SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(0x1c21); 696 xudc_writel(xudc, val, SSPX_CORE_CNT72); 697 } 698 699 static void tegra_xudc_device_mode_on(struct tegra_xudc *xudc) 700 { 701 int err; 702 703 pm_runtime_get_sync(xudc->dev); 704 705 tegra_phy_xusb_utmi_pad_power_on(xudc->curr_utmi_phy); 706 707 err = phy_power_on(xudc->curr_utmi_phy); 708 if (err < 0) 709 dev_err(xudc->dev, "UTMI power on failed: %d\n", err); 710 711 err = phy_power_on(xudc->curr_usb3_phy); 712 if (err < 0) 713 dev_err(xudc->dev, "USB3 PHY power on failed: %d\n", err); 714 715 dev_dbg(xudc->dev, "device mode on\n"); 716 717 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, 718 USB_ROLE_DEVICE); 719 } 720 721 static void tegra_xudc_device_mode_off(struct tegra_xudc *xudc) 722 { 723 bool connected = false; 724 u32 pls, val; 725 int err; 726 727 dev_dbg(xudc->dev, "device mode off\n"); 728 729 connected = !!(xudc_readl(xudc, PORTSC) & PORTSC_CCS); 730 731 reinit_completion(&xudc->disconnect_complete); 732 733 if (xudc->soc->port_speed_quirk) 734 tegra_xudc_restore_port_speed(xudc); 735 736 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, USB_ROLE_NONE); 737 738 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >> 739 PORTSC_PLS_SHIFT; 740 741 /* Direct link to U0 if disconnected in RESUME or U2. */ 742 if (xudc->soc->pls_quirk && xudc->gadget.speed == USB_SPEED_SUPER && 743 (pls == PORTSC_PLS_RESUME || pls == PORTSC_PLS_U2)) { 744 val = xudc_readl(xudc, PORTPM); 745 val |= PORTPM_FRWE; 746 xudc_writel(xudc, val, PORTPM); 747 748 val = xudc_readl(xudc, PORTSC); 749 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK); 750 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0); 751 xudc_writel(xudc, val, PORTSC); 752 } 753 754 /* Wait for disconnect event. */ 755 if (connected) 756 wait_for_completion(&xudc->disconnect_complete); 757 758 /* Make sure interrupt handler has completed before powergating. */ 759 synchronize_irq(xudc->irq); 760 761 tegra_phy_xusb_utmi_pad_power_down(xudc->curr_utmi_phy); 762 763 err = phy_power_off(xudc->curr_utmi_phy); 764 if (err < 0) 765 dev_err(xudc->dev, "UTMI PHY power off failed: %d\n", err); 766 767 err = phy_power_off(xudc->curr_usb3_phy); 768 if (err < 0) 769 dev_err(xudc->dev, "USB3 PHY power off failed: %d\n", err); 770 771 pm_runtime_put(xudc->dev); 772 } 773 774 static void tegra_xudc_usb_role_sw_work(struct work_struct *work) 775 { 776 struct tegra_xudc *xudc = container_of(work, struct tegra_xudc, 777 usb_role_sw_work); 778 779 if (xudc->device_mode) 780 tegra_xudc_device_mode_on(xudc); 781 else 782 tegra_xudc_device_mode_off(xudc); 783 } 784 785 static int tegra_xudc_get_phy_index(struct tegra_xudc *xudc, 786 struct usb_phy *usbphy) 787 { 788 unsigned int i; 789 790 for (i = 0; i < xudc->soc->num_phys; i++) { 791 if (xudc->usbphy[i] && usbphy == xudc->usbphy[i]) 792 return i; 793 } 794 795 dev_info(xudc->dev, "phy index could not be found for shared USB PHY"); 796 return -1; 797 } 798 799 static int tegra_xudc_vbus_notify(struct notifier_block *nb, 800 unsigned long action, void *data) 801 { 802 struct tegra_xudc *xudc = container_of(nb, struct tegra_xudc, 803 vbus_nb); 804 struct usb_phy *usbphy = (struct usb_phy *)data; 805 int phy_index; 806 807 dev_dbg(xudc->dev, "%s(): event is %d\n", __func__, usbphy->last_event); 808 809 if ((xudc->device_mode && usbphy->last_event == USB_EVENT_VBUS) || 810 (!xudc->device_mode && usbphy->last_event != USB_EVENT_VBUS)) { 811 dev_dbg(xudc->dev, "Same role(%d) received. Ignore", 812 xudc->device_mode); 813 return NOTIFY_OK; 814 } 815 816 xudc->device_mode = (usbphy->last_event == USB_EVENT_VBUS) ? true : 817 false; 818 819 phy_index = tegra_xudc_get_phy_index(xudc, usbphy); 820 dev_dbg(xudc->dev, "%s(): current phy index is %d\n", __func__, 821 phy_index); 822 823 if (!xudc->suspended && phy_index != -1) { 824 xudc->curr_utmi_phy = xudc->utmi_phy[phy_index]; 825 xudc->curr_usb3_phy = xudc->usb3_phy[phy_index]; 826 xudc->curr_usbphy = usbphy; 827 schedule_work(&xudc->usb_role_sw_work); 828 } 829 830 return NOTIFY_OK; 831 } 832 833 static void tegra_xudc_plc_reset_work(struct work_struct *work) 834 { 835 struct delayed_work *dwork = to_delayed_work(work); 836 struct tegra_xudc *xudc = container_of(dwork, struct tegra_xudc, 837 plc_reset_work); 838 unsigned long flags; 839 840 spin_lock_irqsave(&xudc->lock, flags); 841 842 if (xudc->wait_csc) { 843 u32 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >> 844 PORTSC_PLS_SHIFT; 845 846 if (pls == PORTSC_PLS_INACTIVE) { 847 dev_info(xudc->dev, "PLS = Inactive. Toggle VBUS\n"); 848 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, 849 USB_ROLE_NONE); 850 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, 851 USB_ROLE_DEVICE); 852 853 xudc->wait_csc = false; 854 } 855 } 856 857 spin_unlock_irqrestore(&xudc->lock, flags); 858 } 859 860 static void tegra_xudc_port_reset_war_work(struct work_struct *work) 861 { 862 struct delayed_work *dwork = to_delayed_work(work); 863 struct tegra_xudc *xudc = 864 container_of(dwork, struct tegra_xudc, port_reset_war_work); 865 unsigned long flags; 866 u32 pls; 867 int ret; 868 869 spin_lock_irqsave(&xudc->lock, flags); 870 871 if (xudc->device_mode && xudc->wait_for_sec_prc) { 872 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >> 873 PORTSC_PLS_SHIFT; 874 dev_dbg(xudc->dev, "pls = %x\n", pls); 875 876 if (pls == PORTSC_PLS_DISABLED) { 877 dev_dbg(xudc->dev, "toggle vbus\n"); 878 /* PRC doesn't complete in 100ms, toggle the vbus */ 879 ret = tegra_phy_xusb_utmi_port_reset( 880 xudc->curr_utmi_phy); 881 if (ret == 1) 882 xudc->wait_for_sec_prc = 0; 883 } 884 } 885 886 spin_unlock_irqrestore(&xudc->lock, flags); 887 } 888 889 static dma_addr_t trb_virt_to_phys(struct tegra_xudc_ep *ep, 890 struct tegra_xudc_trb *trb) 891 { 892 unsigned int index; 893 894 index = trb - ep->transfer_ring; 895 896 if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE)) 897 return 0; 898 899 return (ep->transfer_ring_phys + index * sizeof(*trb)); 900 } 901 902 static struct tegra_xudc_trb *trb_phys_to_virt(struct tegra_xudc_ep *ep, 903 dma_addr_t addr) 904 { 905 struct tegra_xudc_trb *trb; 906 unsigned int index; 907 908 index = (addr - ep->transfer_ring_phys) / sizeof(*trb); 909 910 if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE)) 911 return NULL; 912 913 trb = &ep->transfer_ring[index]; 914 915 return trb; 916 } 917 918 static void ep_reload(struct tegra_xudc *xudc, unsigned int ep) 919 { 920 xudc_writel(xudc, BIT(ep), EP_RELOAD); 921 xudc_readl_poll(xudc, EP_RELOAD, BIT(ep), 0); 922 } 923 924 static void ep_pause(struct tegra_xudc *xudc, unsigned int ep) 925 { 926 u32 val; 927 928 val = xudc_readl(xudc, EP_PAUSE); 929 if (val & BIT(ep)) 930 return; 931 val |= BIT(ep); 932 933 xudc_writel(xudc, val, EP_PAUSE); 934 935 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep)); 936 937 xudc_writel(xudc, BIT(ep), EP_STCHG); 938 } 939 940 static void ep_unpause(struct tegra_xudc *xudc, unsigned int ep) 941 { 942 u32 val; 943 944 val = xudc_readl(xudc, EP_PAUSE); 945 if (!(val & BIT(ep))) 946 return; 947 val &= ~BIT(ep); 948 949 xudc_writel(xudc, val, EP_PAUSE); 950 951 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep)); 952 953 xudc_writel(xudc, BIT(ep), EP_STCHG); 954 } 955 956 static void ep_unpause_all(struct tegra_xudc *xudc) 957 { 958 u32 val; 959 960 val = xudc_readl(xudc, EP_PAUSE); 961 962 xudc_writel(xudc, 0, EP_PAUSE); 963 964 xudc_readl_poll(xudc, EP_STCHG, val, val); 965 966 xudc_writel(xudc, val, EP_STCHG); 967 } 968 969 static void ep_halt(struct tegra_xudc *xudc, unsigned int ep) 970 { 971 u32 val; 972 973 val = xudc_readl(xudc, EP_HALT); 974 if (val & BIT(ep)) 975 return; 976 val |= BIT(ep); 977 xudc_writel(xudc, val, EP_HALT); 978 979 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep)); 980 981 xudc_writel(xudc, BIT(ep), EP_STCHG); 982 } 983 984 static void ep_unhalt(struct tegra_xudc *xudc, unsigned int ep) 985 { 986 u32 val; 987 988 val = xudc_readl(xudc, EP_HALT); 989 if (!(val & BIT(ep))) 990 return; 991 val &= ~BIT(ep); 992 xudc_writel(xudc, val, EP_HALT); 993 994 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep)); 995 996 xudc_writel(xudc, BIT(ep), EP_STCHG); 997 } 998 999 static void ep_unhalt_all(struct tegra_xudc *xudc) 1000 { 1001 u32 val; 1002 1003 val = xudc_readl(xudc, EP_HALT); 1004 if (!val) 1005 return; 1006 xudc_writel(xudc, 0, EP_HALT); 1007 1008 xudc_readl_poll(xudc, EP_STCHG, val, val); 1009 1010 xudc_writel(xudc, val, EP_STCHG); 1011 } 1012 1013 static void ep_wait_for_stopped(struct tegra_xudc *xudc, unsigned int ep) 1014 { 1015 xudc_readl_poll(xudc, EP_STOPPED, BIT(ep), BIT(ep)); 1016 xudc_writel(xudc, BIT(ep), EP_STOPPED); 1017 } 1018 1019 static void ep_wait_for_inactive(struct tegra_xudc *xudc, unsigned int ep) 1020 { 1021 xudc_readl_poll(xudc, EP_THREAD_ACTIVE, BIT(ep), 0); 1022 } 1023 1024 static void tegra_xudc_req_done(struct tegra_xudc_ep *ep, 1025 struct tegra_xudc_request *req, int status) 1026 { 1027 struct tegra_xudc *xudc = ep->xudc; 1028 1029 dev_dbg(xudc->dev, "completing request %p on EP %u with status %d\n", 1030 req, ep->index, status); 1031 1032 if (likely(req->usb_req.status == -EINPROGRESS)) 1033 req->usb_req.status = status; 1034 1035 list_del_init(&req->list); 1036 1037 if (usb_endpoint_xfer_control(ep->desc)) { 1038 usb_gadget_unmap_request(&xudc->gadget, &req->usb_req, 1039 (xudc->setup_state == 1040 DATA_STAGE_XFER)); 1041 } else { 1042 usb_gadget_unmap_request(&xudc->gadget, &req->usb_req, 1043 usb_endpoint_dir_in(ep->desc)); 1044 } 1045 1046 spin_unlock(&xudc->lock); 1047 usb_gadget_giveback_request(&ep->usb_ep, &req->usb_req); 1048 spin_lock(&xudc->lock); 1049 } 1050 1051 static void tegra_xudc_ep_nuke(struct tegra_xudc_ep *ep, int status) 1052 { 1053 struct tegra_xudc_request *req; 1054 1055 while (!list_empty(&ep->queue)) { 1056 req = list_first_entry(&ep->queue, struct tegra_xudc_request, 1057 list); 1058 tegra_xudc_req_done(ep, req, status); 1059 } 1060 } 1061 1062 static unsigned int ep_available_trbs(struct tegra_xudc_ep *ep) 1063 { 1064 if (ep->ring_full) 1065 return 0; 1066 1067 if (ep->deq_ptr > ep->enq_ptr) 1068 return ep->deq_ptr - ep->enq_ptr - 1; 1069 1070 return XUDC_TRANSFER_RING_SIZE - (ep->enq_ptr - ep->deq_ptr) - 2; 1071 } 1072 1073 static void tegra_xudc_queue_one_trb(struct tegra_xudc_ep *ep, 1074 struct tegra_xudc_request *req, 1075 struct tegra_xudc_trb *trb, 1076 bool ioc) 1077 { 1078 struct tegra_xudc *xudc = ep->xudc; 1079 dma_addr_t buf_addr; 1080 size_t len; 1081 1082 len = min_t(size_t, XUDC_TRB_MAX_BUFFER_SIZE, req->usb_req.length - 1083 req->buf_queued); 1084 if (len > 0) 1085 buf_addr = req->usb_req.dma + req->buf_queued; 1086 else 1087 buf_addr = 0; 1088 1089 trb_write_data_ptr(trb, buf_addr); 1090 1091 trb_write_transfer_len(trb, len); 1092 trb_write_td_size(trb, req->trbs_needed - req->trbs_queued - 1); 1093 1094 if (req->trbs_queued == req->trbs_needed - 1 || 1095 (req->need_zlp && req->trbs_queued == req->trbs_needed - 2)) 1096 trb_write_chain(trb, 0); 1097 else 1098 trb_write_chain(trb, 1); 1099 1100 trb_write_ioc(trb, ioc); 1101 1102 if (usb_endpoint_dir_out(ep->desc) || 1103 (usb_endpoint_xfer_control(ep->desc) && 1104 (xudc->setup_state == DATA_STAGE_RECV))) 1105 trb_write_isp(trb, 1); 1106 else 1107 trb_write_isp(trb, 0); 1108 1109 if (usb_endpoint_xfer_control(ep->desc)) { 1110 if (xudc->setup_state == DATA_STAGE_XFER || 1111 xudc->setup_state == DATA_STAGE_RECV) 1112 trb_write_type(trb, TRB_TYPE_DATA_STAGE); 1113 else 1114 trb_write_type(trb, TRB_TYPE_STATUS_STAGE); 1115 1116 if (xudc->setup_state == DATA_STAGE_XFER || 1117 xudc->setup_state == STATUS_STAGE_XFER) 1118 trb_write_data_stage_dir(trb, 1); 1119 else 1120 trb_write_data_stage_dir(trb, 0); 1121 } else if (usb_endpoint_xfer_isoc(ep->desc)) { 1122 trb_write_type(trb, TRB_TYPE_ISOCH); 1123 trb_write_sia(trb, 1); 1124 trb_write_frame_id(trb, 0); 1125 trb_write_tlbpc(trb, 0); 1126 } else if (usb_ss_max_streams(ep->comp_desc)) { 1127 trb_write_type(trb, TRB_TYPE_STREAM); 1128 trb_write_stream_id(trb, req->usb_req.stream_id); 1129 } else { 1130 trb_write_type(trb, TRB_TYPE_NORMAL); 1131 trb_write_stream_id(trb, 0); 1132 } 1133 1134 trb_write_cycle(trb, ep->pcs); 1135 1136 req->trbs_queued++; 1137 req->buf_queued += len; 1138 1139 dump_trb(xudc, "TRANSFER", trb); 1140 } 1141 1142 static unsigned int tegra_xudc_queue_trbs(struct tegra_xudc_ep *ep, 1143 struct tegra_xudc_request *req) 1144 { 1145 unsigned int i, count, available; 1146 bool wait_td = false; 1147 1148 available = ep_available_trbs(ep); 1149 count = req->trbs_needed - req->trbs_queued; 1150 if (available < count) { 1151 count = available; 1152 ep->ring_full = true; 1153 } 1154 1155 /* 1156 * To generate zero-length packet on USB bus, SW needs schedule a 1157 * standalone zero-length TD. According to HW's behavior, SW needs 1158 * to schedule TDs in different ways for different endpoint types. 1159 * 1160 * For control endpoint: 1161 * - Data stage TD (IOC = 1, CH = 0) 1162 * - Ring doorbell and wait transfer event 1163 * - Data stage TD for ZLP (IOC = 1, CH = 0) 1164 * - Ring doorbell 1165 * 1166 * For bulk and interrupt endpoints: 1167 * - Normal transfer TD (IOC = 0, CH = 0) 1168 * - Normal transfer TD for ZLP (IOC = 1, CH = 0) 1169 * - Ring doorbell 1170 */ 1171 1172 if (req->need_zlp && usb_endpoint_xfer_control(ep->desc) && count > 1) 1173 wait_td = true; 1174 1175 if (!req->first_trb) 1176 req->first_trb = &ep->transfer_ring[ep->enq_ptr]; 1177 1178 for (i = 0; i < count; i++) { 1179 struct tegra_xudc_trb *trb = &ep->transfer_ring[ep->enq_ptr]; 1180 bool ioc = false; 1181 1182 if ((i == count - 1) || (wait_td && i == count - 2)) 1183 ioc = true; 1184 1185 tegra_xudc_queue_one_trb(ep, req, trb, ioc); 1186 req->last_trb = trb; 1187 1188 ep->enq_ptr++; 1189 if (ep->enq_ptr == XUDC_TRANSFER_RING_SIZE - 1) { 1190 trb = &ep->transfer_ring[ep->enq_ptr]; 1191 trb_write_cycle(trb, ep->pcs); 1192 ep->pcs = !ep->pcs; 1193 ep->enq_ptr = 0; 1194 } 1195 1196 if (ioc) 1197 break; 1198 } 1199 1200 return count; 1201 } 1202 1203 static void tegra_xudc_ep_ring_doorbell(struct tegra_xudc_ep *ep) 1204 { 1205 struct tegra_xudc *xudc = ep->xudc; 1206 u32 val; 1207 1208 if (list_empty(&ep->queue)) 1209 return; 1210 1211 val = DB_TARGET(ep->index); 1212 if (usb_endpoint_xfer_control(ep->desc)) { 1213 val |= DB_STREAMID(xudc->setup_seq_num); 1214 } else if (usb_ss_max_streams(ep->comp_desc) > 0) { 1215 struct tegra_xudc_request *req; 1216 1217 /* Don't ring doorbell if the stream has been rejected. */ 1218 if (ep->stream_rejected) 1219 return; 1220 1221 req = list_first_entry(&ep->queue, struct tegra_xudc_request, 1222 list); 1223 val |= DB_STREAMID(req->usb_req.stream_id); 1224 } 1225 1226 dev_dbg(xudc->dev, "ring doorbell: %#x\n", val); 1227 xudc_writel(xudc, val, DB); 1228 } 1229 1230 static void tegra_xudc_ep_kick_queue(struct tegra_xudc_ep *ep) 1231 { 1232 struct tegra_xudc_request *req; 1233 bool trbs_queued = false; 1234 1235 list_for_each_entry(req, &ep->queue, list) { 1236 if (ep->ring_full) 1237 break; 1238 1239 if (tegra_xudc_queue_trbs(ep, req) > 0) 1240 trbs_queued = true; 1241 } 1242 1243 if (trbs_queued) 1244 tegra_xudc_ep_ring_doorbell(ep); 1245 } 1246 1247 static int 1248 __tegra_xudc_ep_queue(struct tegra_xudc_ep *ep, struct tegra_xudc_request *req) 1249 { 1250 struct tegra_xudc *xudc = ep->xudc; 1251 int err; 1252 1253 if (usb_endpoint_xfer_control(ep->desc) && !list_empty(&ep->queue)) { 1254 dev_err(xudc->dev, "control EP has pending transfers\n"); 1255 return -EINVAL; 1256 } 1257 1258 if (usb_endpoint_xfer_control(ep->desc)) { 1259 err = usb_gadget_map_request(&xudc->gadget, &req->usb_req, 1260 (xudc->setup_state == 1261 DATA_STAGE_XFER)); 1262 } else { 1263 err = usb_gadget_map_request(&xudc->gadget, &req->usb_req, 1264 usb_endpoint_dir_in(ep->desc)); 1265 } 1266 1267 if (err < 0) { 1268 dev_err(xudc->dev, "failed to map request: %d\n", err); 1269 return err; 1270 } 1271 1272 req->first_trb = NULL; 1273 req->last_trb = NULL; 1274 req->buf_queued = 0; 1275 req->trbs_queued = 0; 1276 req->need_zlp = false; 1277 req->trbs_needed = DIV_ROUND_UP(req->usb_req.length, 1278 XUDC_TRB_MAX_BUFFER_SIZE); 1279 if (req->usb_req.length == 0) 1280 req->trbs_needed++; 1281 1282 if (!usb_endpoint_xfer_isoc(ep->desc) && 1283 req->usb_req.zero && req->usb_req.length && 1284 ((req->usb_req.length % ep->usb_ep.maxpacket) == 0)) { 1285 req->trbs_needed++; 1286 req->need_zlp = true; 1287 } 1288 1289 req->usb_req.status = -EINPROGRESS; 1290 req->usb_req.actual = 0; 1291 1292 list_add_tail(&req->list, &ep->queue); 1293 1294 tegra_xudc_ep_kick_queue(ep); 1295 1296 return 0; 1297 } 1298 1299 static int 1300 tegra_xudc_ep_queue(struct usb_ep *usb_ep, struct usb_request *usb_req, 1301 gfp_t gfp) 1302 { 1303 struct tegra_xudc_request *req; 1304 struct tegra_xudc_ep *ep; 1305 struct tegra_xudc *xudc; 1306 unsigned long flags; 1307 int ret; 1308 1309 if (!usb_ep || !usb_req) 1310 return -EINVAL; 1311 1312 ep = to_xudc_ep(usb_ep); 1313 req = to_xudc_req(usb_req); 1314 xudc = ep->xudc; 1315 1316 spin_lock_irqsave(&xudc->lock, flags); 1317 if (xudc->powergated || !ep->desc) { 1318 ret = -ESHUTDOWN; 1319 goto unlock; 1320 } 1321 1322 ret = __tegra_xudc_ep_queue(ep, req); 1323 unlock: 1324 spin_unlock_irqrestore(&xudc->lock, flags); 1325 1326 return ret; 1327 } 1328 1329 static void squeeze_transfer_ring(struct tegra_xudc_ep *ep, 1330 struct tegra_xudc_request *req) 1331 { 1332 struct tegra_xudc_trb *trb = req->first_trb; 1333 bool pcs_enq = trb_read_cycle(trb); 1334 bool pcs; 1335 1336 /* 1337 * Clear out all the TRBs part of or after the cancelled request, 1338 * and must correct trb cycle bit to the last un-enqueued state. 1339 */ 1340 while (trb != &ep->transfer_ring[ep->enq_ptr]) { 1341 pcs = trb_read_cycle(trb); 1342 memset(trb, 0, sizeof(*trb)); 1343 trb_write_cycle(trb, !pcs); 1344 trb++; 1345 1346 if (trb_read_type(trb) == TRB_TYPE_LINK) 1347 trb = ep->transfer_ring; 1348 } 1349 1350 /* Requests will be re-queued at the start of the cancelled request. */ 1351 ep->enq_ptr = req->first_trb - ep->transfer_ring; 1352 /* 1353 * Retrieve the correct cycle bit state from the first trb of 1354 * the cancelled request. 1355 */ 1356 ep->pcs = pcs_enq; 1357 ep->ring_full = false; 1358 list_for_each_entry_continue(req, &ep->queue, list) { 1359 req->usb_req.status = -EINPROGRESS; 1360 req->usb_req.actual = 0; 1361 1362 req->first_trb = NULL; 1363 req->last_trb = NULL; 1364 req->buf_queued = 0; 1365 req->trbs_queued = 0; 1366 } 1367 } 1368 1369 /* 1370 * Determine if the given TRB is in the range [first trb, last trb] for the 1371 * given request. 1372 */ 1373 static bool trb_in_request(struct tegra_xudc_ep *ep, 1374 struct tegra_xudc_request *req, 1375 struct tegra_xudc_trb *trb) 1376 { 1377 dev_dbg(ep->xudc->dev, "%s: request %p -> %p; trb %p\n", __func__, 1378 req->first_trb, req->last_trb, trb); 1379 1380 if (trb >= req->first_trb && (trb <= req->last_trb || 1381 req->last_trb < req->first_trb)) 1382 return true; 1383 1384 if (trb < req->first_trb && trb <= req->last_trb && 1385 req->last_trb < req->first_trb) 1386 return true; 1387 1388 return false; 1389 } 1390 1391 /* 1392 * Determine if the given TRB is in the range [EP enqueue pointer, first TRB) 1393 * for the given endpoint and request. 1394 */ 1395 static bool trb_before_request(struct tegra_xudc_ep *ep, 1396 struct tegra_xudc_request *req, 1397 struct tegra_xudc_trb *trb) 1398 { 1399 struct tegra_xudc_trb *enq_trb = &ep->transfer_ring[ep->enq_ptr]; 1400 1401 dev_dbg(ep->xudc->dev, "%s: request %p -> %p; enq ptr: %p; trb %p\n", 1402 __func__, req->first_trb, req->last_trb, enq_trb, trb); 1403 1404 if (trb < req->first_trb && (enq_trb <= trb || 1405 req->first_trb < enq_trb)) 1406 return true; 1407 1408 if (trb > req->first_trb && req->first_trb < enq_trb && enq_trb <= trb) 1409 return true; 1410 1411 return false; 1412 } 1413 1414 static int 1415 __tegra_xudc_ep_dequeue(struct tegra_xudc_ep *ep, 1416 struct tegra_xudc_request *req) 1417 { 1418 struct tegra_xudc *xudc = ep->xudc; 1419 struct tegra_xudc_request *r = NULL, *iter; 1420 struct tegra_xudc_trb *deq_trb; 1421 bool busy, kick_queue = false; 1422 int ret = 0; 1423 1424 /* Make sure the request is actually queued to this endpoint. */ 1425 list_for_each_entry(iter, &ep->queue, list) { 1426 if (iter != req) 1427 continue; 1428 r = iter; 1429 break; 1430 } 1431 1432 if (!r) 1433 return -EINVAL; 1434 1435 /* Request hasn't been queued in the transfer ring yet. */ 1436 if (!req->trbs_queued) { 1437 tegra_xudc_req_done(ep, req, -ECONNRESET); 1438 return 0; 1439 } 1440 1441 /* Halt DMA for this endpoint. */ 1442 if (ep_ctx_read_state(ep->context) == EP_STATE_RUNNING) { 1443 ep_pause(xudc, ep->index); 1444 ep_wait_for_inactive(xudc, ep->index); 1445 } 1446 1447 deq_trb = trb_phys_to_virt(ep, ep_ctx_read_deq_ptr(ep->context)); 1448 /* Is the hardware processing the TRB at the dequeue pointer? */ 1449 busy = (trb_read_cycle(deq_trb) == ep_ctx_read_dcs(ep->context)); 1450 1451 if (trb_in_request(ep, req, deq_trb) && busy) { 1452 /* 1453 * Request has been partially completed or it hasn't 1454 * started processing yet. 1455 */ 1456 dma_addr_t deq_ptr; 1457 1458 squeeze_transfer_ring(ep, req); 1459 1460 req->usb_req.actual = ep_ctx_read_edtla(ep->context); 1461 tegra_xudc_req_done(ep, req, -ECONNRESET); 1462 kick_queue = true; 1463 1464 /* EDTLA is > 0: request has been partially completed */ 1465 if (req->usb_req.actual > 0) { 1466 /* 1467 * Abort the pending transfer and update the dequeue 1468 * pointer 1469 */ 1470 ep_ctx_write_edtla(ep->context, 0); 1471 ep_ctx_write_partial_td(ep->context, 0); 1472 ep_ctx_write_data_offset(ep->context, 0); 1473 1474 deq_ptr = trb_virt_to_phys(ep, 1475 &ep->transfer_ring[ep->enq_ptr]); 1476 1477 if (dma_mapping_error(xudc->dev, deq_ptr)) { 1478 ret = -EINVAL; 1479 } else { 1480 ep_ctx_write_deq_ptr(ep->context, deq_ptr); 1481 ep_ctx_write_dcs(ep->context, ep->pcs); 1482 ep_reload(xudc, ep->index); 1483 } 1484 } 1485 } else if (trb_before_request(ep, req, deq_trb) && busy) { 1486 /* Request hasn't started processing yet. */ 1487 squeeze_transfer_ring(ep, req); 1488 1489 tegra_xudc_req_done(ep, req, -ECONNRESET); 1490 kick_queue = true; 1491 } else { 1492 /* 1493 * Request has completed, but we haven't processed the 1494 * completion event yet. 1495 */ 1496 tegra_xudc_req_done(ep, req, -ECONNRESET); 1497 ret = -EINVAL; 1498 } 1499 1500 /* Resume the endpoint. */ 1501 ep_unpause(xudc, ep->index); 1502 1503 if (kick_queue) 1504 tegra_xudc_ep_kick_queue(ep); 1505 1506 return ret; 1507 } 1508 1509 static int 1510 tegra_xudc_ep_dequeue(struct usb_ep *usb_ep, struct usb_request *usb_req) 1511 { 1512 struct tegra_xudc_request *req; 1513 struct tegra_xudc_ep *ep; 1514 struct tegra_xudc *xudc; 1515 unsigned long flags; 1516 int ret; 1517 1518 if (!usb_ep || !usb_req) 1519 return -EINVAL; 1520 1521 ep = to_xudc_ep(usb_ep); 1522 req = to_xudc_req(usb_req); 1523 xudc = ep->xudc; 1524 1525 spin_lock_irqsave(&xudc->lock, flags); 1526 1527 if (xudc->powergated || !ep->desc) { 1528 ret = -ESHUTDOWN; 1529 goto unlock; 1530 } 1531 1532 ret = __tegra_xudc_ep_dequeue(ep, req); 1533 unlock: 1534 spin_unlock_irqrestore(&xudc->lock, flags); 1535 1536 return ret; 1537 } 1538 1539 static int __tegra_xudc_ep_set_halt(struct tegra_xudc_ep *ep, bool halt) 1540 { 1541 struct tegra_xudc *xudc = ep->xudc; 1542 1543 if (!ep->desc) 1544 return -EINVAL; 1545 1546 if (usb_endpoint_xfer_isoc(ep->desc)) { 1547 dev_err(xudc->dev, "can't halt isochronous EP\n"); 1548 return -ENOTSUPP; 1549 } 1550 1551 if (!!(xudc_readl(xudc, EP_HALT) & BIT(ep->index)) == halt) { 1552 dev_dbg(xudc->dev, "EP %u already %s\n", ep->index, 1553 halt ? "halted" : "not halted"); 1554 return 0; 1555 } 1556 1557 if (halt) { 1558 ep_halt(xudc, ep->index); 1559 } else { 1560 ep_ctx_write_state(ep->context, EP_STATE_DISABLED); 1561 1562 ep_reload(xudc, ep->index); 1563 1564 ep_ctx_write_state(ep->context, EP_STATE_RUNNING); 1565 ep_ctx_write_rsvd(ep->context, 0); 1566 ep_ctx_write_partial_td(ep->context, 0); 1567 ep_ctx_write_splitxstate(ep->context, 0); 1568 ep_ctx_write_seq_num(ep->context, 0); 1569 1570 ep_reload(xudc, ep->index); 1571 ep_unpause(xudc, ep->index); 1572 ep_unhalt(xudc, ep->index); 1573 1574 tegra_xudc_ep_ring_doorbell(ep); 1575 } 1576 1577 return 0; 1578 } 1579 1580 static int tegra_xudc_ep_set_halt(struct usb_ep *usb_ep, int value) 1581 { 1582 struct tegra_xudc_ep *ep; 1583 struct tegra_xudc *xudc; 1584 unsigned long flags; 1585 int ret; 1586 1587 if (!usb_ep) 1588 return -EINVAL; 1589 1590 ep = to_xudc_ep(usb_ep); 1591 xudc = ep->xudc; 1592 1593 spin_lock_irqsave(&xudc->lock, flags); 1594 if (xudc->powergated) { 1595 ret = -ESHUTDOWN; 1596 goto unlock; 1597 } 1598 1599 if (value && usb_endpoint_dir_in(ep->desc) && 1600 !list_empty(&ep->queue)) { 1601 dev_err(xudc->dev, "can't halt EP with requests pending\n"); 1602 ret = -EAGAIN; 1603 goto unlock; 1604 } 1605 1606 ret = __tegra_xudc_ep_set_halt(ep, value); 1607 unlock: 1608 spin_unlock_irqrestore(&xudc->lock, flags); 1609 1610 return ret; 1611 } 1612 1613 static void tegra_xudc_ep_context_setup(struct tegra_xudc_ep *ep) 1614 { 1615 const struct usb_endpoint_descriptor *desc = ep->desc; 1616 const struct usb_ss_ep_comp_descriptor *comp_desc = ep->comp_desc; 1617 struct tegra_xudc *xudc = ep->xudc; 1618 u16 maxpacket, maxburst = 0, esit = 0; 1619 u32 val; 1620 1621 maxpacket = usb_endpoint_maxp(desc); 1622 if (xudc->gadget.speed == USB_SPEED_SUPER) { 1623 if (!usb_endpoint_xfer_control(desc)) 1624 maxburst = comp_desc->bMaxBurst; 1625 1626 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) 1627 esit = le16_to_cpu(comp_desc->wBytesPerInterval); 1628 } else if ((xudc->gadget.speed < USB_SPEED_SUPER) && 1629 (usb_endpoint_xfer_int(desc) || 1630 usb_endpoint_xfer_isoc(desc))) { 1631 if (xudc->gadget.speed == USB_SPEED_HIGH) { 1632 maxburst = usb_endpoint_maxp_mult(desc) - 1; 1633 if (maxburst == 0x3) { 1634 dev_warn(xudc->dev, 1635 "invalid endpoint maxburst\n"); 1636 maxburst = 0x2; 1637 } 1638 } 1639 esit = maxpacket * (maxburst + 1); 1640 } 1641 1642 memset(ep->context, 0, sizeof(*ep->context)); 1643 1644 ep_ctx_write_state(ep->context, EP_STATE_RUNNING); 1645 ep_ctx_write_interval(ep->context, desc->bInterval); 1646 if (xudc->gadget.speed == USB_SPEED_SUPER) { 1647 if (usb_endpoint_xfer_isoc(desc)) { 1648 ep_ctx_write_mult(ep->context, 1649 comp_desc->bmAttributes & 0x3); 1650 } 1651 1652 if (usb_endpoint_xfer_bulk(desc)) { 1653 ep_ctx_write_max_pstreams(ep->context, 1654 comp_desc->bmAttributes & 1655 0x1f); 1656 ep_ctx_write_lsa(ep->context, 1); 1657 } 1658 } 1659 1660 if (!usb_endpoint_xfer_control(desc) && usb_endpoint_dir_out(desc)) 1661 val = usb_endpoint_type(desc); 1662 else 1663 val = usb_endpoint_type(desc) + EP_TYPE_CONTROL; 1664 1665 ep_ctx_write_type(ep->context, val); 1666 ep_ctx_write_cerr(ep->context, 0x3); 1667 ep_ctx_write_max_packet_size(ep->context, maxpacket); 1668 ep_ctx_write_max_burst_size(ep->context, maxburst); 1669 1670 ep_ctx_write_deq_ptr(ep->context, ep->transfer_ring_phys); 1671 ep_ctx_write_dcs(ep->context, ep->pcs); 1672 1673 /* Select a reasonable average TRB length based on endpoint type. */ 1674 switch (usb_endpoint_type(desc)) { 1675 case USB_ENDPOINT_XFER_CONTROL: 1676 val = 8; 1677 break; 1678 case USB_ENDPOINT_XFER_INT: 1679 val = 1024; 1680 break; 1681 case USB_ENDPOINT_XFER_BULK: 1682 case USB_ENDPOINT_XFER_ISOC: 1683 default: 1684 val = 3072; 1685 break; 1686 } 1687 1688 ep_ctx_write_avg_trb_len(ep->context, val); 1689 ep_ctx_write_max_esit_payload(ep->context, esit); 1690 1691 ep_ctx_write_cerrcnt(ep->context, 0x3); 1692 } 1693 1694 static void setup_link_trb(struct tegra_xudc_ep *ep, 1695 struct tegra_xudc_trb *trb) 1696 { 1697 trb_write_data_ptr(trb, ep->transfer_ring_phys); 1698 trb_write_type(trb, TRB_TYPE_LINK); 1699 trb_write_toggle_cycle(trb, 1); 1700 } 1701 1702 static int __tegra_xudc_ep_disable(struct tegra_xudc_ep *ep) 1703 { 1704 struct tegra_xudc *xudc = ep->xudc; 1705 1706 if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) { 1707 dev_err(xudc->dev, "endpoint %u already disabled\n", 1708 ep->index); 1709 return -EINVAL; 1710 } 1711 1712 ep_ctx_write_state(ep->context, EP_STATE_DISABLED); 1713 1714 ep_reload(xudc, ep->index); 1715 1716 tegra_xudc_ep_nuke(ep, -ESHUTDOWN); 1717 1718 xudc->nr_enabled_eps--; 1719 if (usb_endpoint_xfer_isoc(ep->desc)) 1720 xudc->nr_isoch_eps--; 1721 1722 ep->desc = NULL; 1723 ep->comp_desc = NULL; 1724 1725 memset(ep->context, 0, sizeof(*ep->context)); 1726 1727 ep_unpause(xudc, ep->index); 1728 ep_unhalt(xudc, ep->index); 1729 if (xudc_readl(xudc, EP_STOPPED) & BIT(ep->index)) 1730 xudc_writel(xudc, BIT(ep->index), EP_STOPPED); 1731 1732 /* 1733 * If this is the last endpoint disabled in a de-configure request, 1734 * switch back to address state. 1735 */ 1736 if ((xudc->device_state == USB_STATE_CONFIGURED) && 1737 (xudc->nr_enabled_eps == 1)) { 1738 u32 val; 1739 1740 xudc->device_state = USB_STATE_ADDRESS; 1741 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 1742 1743 val = xudc_readl(xudc, CTRL); 1744 val &= ~CTRL_RUN; 1745 xudc_writel(xudc, val, CTRL); 1746 } 1747 1748 dev_info(xudc->dev, "ep %u disabled\n", ep->index); 1749 1750 return 0; 1751 } 1752 1753 static int tegra_xudc_ep_disable(struct usb_ep *usb_ep) 1754 { 1755 struct tegra_xudc_ep *ep; 1756 struct tegra_xudc *xudc; 1757 unsigned long flags; 1758 int ret; 1759 1760 if (!usb_ep) 1761 return -EINVAL; 1762 1763 ep = to_xudc_ep(usb_ep); 1764 xudc = ep->xudc; 1765 1766 spin_lock_irqsave(&xudc->lock, flags); 1767 if (xudc->powergated) { 1768 ret = -ESHUTDOWN; 1769 goto unlock; 1770 } 1771 1772 ret = __tegra_xudc_ep_disable(ep); 1773 unlock: 1774 spin_unlock_irqrestore(&xudc->lock, flags); 1775 1776 return ret; 1777 } 1778 1779 static int __tegra_xudc_ep_enable(struct tegra_xudc_ep *ep, 1780 const struct usb_endpoint_descriptor *desc) 1781 { 1782 struct tegra_xudc *xudc = ep->xudc; 1783 unsigned int i; 1784 u32 val; 1785 1786 if (xudc->gadget.speed == USB_SPEED_SUPER && 1787 !usb_endpoint_xfer_control(desc) && !ep->usb_ep.comp_desc) 1788 return -EINVAL; 1789 1790 /* Disable the EP if it is not disabled */ 1791 if (ep_ctx_read_state(ep->context) != EP_STATE_DISABLED) 1792 __tegra_xudc_ep_disable(ep); 1793 1794 ep->desc = desc; 1795 ep->comp_desc = ep->usb_ep.comp_desc; 1796 1797 if (usb_endpoint_xfer_isoc(desc)) { 1798 if (xudc->nr_isoch_eps > XUDC_MAX_ISOCH_EPS) { 1799 dev_err(xudc->dev, "too many isochronous endpoints\n"); 1800 return -EBUSY; 1801 } 1802 xudc->nr_isoch_eps++; 1803 } 1804 1805 memset(ep->transfer_ring, 0, XUDC_TRANSFER_RING_SIZE * 1806 sizeof(*ep->transfer_ring)); 1807 setup_link_trb(ep, &ep->transfer_ring[XUDC_TRANSFER_RING_SIZE - 1]); 1808 1809 ep->enq_ptr = 0; 1810 ep->deq_ptr = 0; 1811 ep->pcs = true; 1812 ep->ring_full = false; 1813 xudc->nr_enabled_eps++; 1814 1815 tegra_xudc_ep_context_setup(ep); 1816 1817 /* 1818 * No need to reload and un-halt EP0. This will be done automatically 1819 * once a valid SETUP packet is received. 1820 */ 1821 if (usb_endpoint_xfer_control(desc)) 1822 goto out; 1823 1824 /* 1825 * Transition to configured state once the first non-control 1826 * endpoint is enabled. 1827 */ 1828 if (xudc->device_state == USB_STATE_ADDRESS) { 1829 val = xudc_readl(xudc, CTRL); 1830 val |= CTRL_RUN; 1831 xudc_writel(xudc, val, CTRL); 1832 1833 xudc->device_state = USB_STATE_CONFIGURED; 1834 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 1835 } 1836 1837 if (usb_endpoint_xfer_isoc(desc)) { 1838 /* 1839 * Pause all bulk endpoints when enabling an isoch endpoint 1840 * to ensure the isoch endpoint is allocated enough bandwidth. 1841 */ 1842 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) { 1843 if (xudc->ep[i].desc && 1844 usb_endpoint_xfer_bulk(xudc->ep[i].desc)) 1845 ep_pause(xudc, i); 1846 } 1847 } 1848 1849 ep_reload(xudc, ep->index); 1850 ep_unpause(xudc, ep->index); 1851 ep_unhalt(xudc, ep->index); 1852 1853 if (usb_endpoint_xfer_isoc(desc)) { 1854 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) { 1855 if (xudc->ep[i].desc && 1856 usb_endpoint_xfer_bulk(xudc->ep[i].desc)) 1857 ep_unpause(xudc, i); 1858 } 1859 } 1860 1861 out: 1862 dev_info(xudc->dev, "EP %u (type: %s, dir: %s) enabled\n", ep->index, 1863 usb_ep_type_string(usb_endpoint_type(ep->desc)), 1864 usb_endpoint_dir_in(ep->desc) ? "in" : "out"); 1865 1866 return 0; 1867 } 1868 1869 static int tegra_xudc_ep_enable(struct usb_ep *usb_ep, 1870 const struct usb_endpoint_descriptor *desc) 1871 { 1872 struct tegra_xudc_ep *ep; 1873 struct tegra_xudc *xudc; 1874 unsigned long flags; 1875 int ret; 1876 1877 if (!usb_ep || !desc || (desc->bDescriptorType != USB_DT_ENDPOINT)) 1878 return -EINVAL; 1879 1880 ep = to_xudc_ep(usb_ep); 1881 xudc = ep->xudc; 1882 1883 spin_lock_irqsave(&xudc->lock, flags); 1884 if (xudc->powergated) { 1885 ret = -ESHUTDOWN; 1886 goto unlock; 1887 } 1888 1889 ret = __tegra_xudc_ep_enable(ep, desc); 1890 unlock: 1891 spin_unlock_irqrestore(&xudc->lock, flags); 1892 1893 return ret; 1894 } 1895 1896 static struct usb_request * 1897 tegra_xudc_ep_alloc_request(struct usb_ep *usb_ep, gfp_t gfp) 1898 { 1899 struct tegra_xudc_request *req; 1900 1901 req = kzalloc(sizeof(*req), gfp); 1902 if (!req) 1903 return NULL; 1904 1905 INIT_LIST_HEAD(&req->list); 1906 1907 return &req->usb_req; 1908 } 1909 1910 static void tegra_xudc_ep_free_request(struct usb_ep *usb_ep, 1911 struct usb_request *usb_req) 1912 { 1913 struct tegra_xudc_request *req = to_xudc_req(usb_req); 1914 1915 kfree(req); 1916 } 1917 1918 static const struct usb_ep_ops tegra_xudc_ep_ops = { 1919 .enable = tegra_xudc_ep_enable, 1920 .disable = tegra_xudc_ep_disable, 1921 .alloc_request = tegra_xudc_ep_alloc_request, 1922 .free_request = tegra_xudc_ep_free_request, 1923 .queue = tegra_xudc_ep_queue, 1924 .dequeue = tegra_xudc_ep_dequeue, 1925 .set_halt = tegra_xudc_ep_set_halt, 1926 }; 1927 1928 static int tegra_xudc_ep0_enable(struct usb_ep *usb_ep, 1929 const struct usb_endpoint_descriptor *desc) 1930 { 1931 return -EBUSY; 1932 } 1933 1934 static int tegra_xudc_ep0_disable(struct usb_ep *usb_ep) 1935 { 1936 return -EBUSY; 1937 } 1938 1939 static const struct usb_ep_ops tegra_xudc_ep0_ops = { 1940 .enable = tegra_xudc_ep0_enable, 1941 .disable = tegra_xudc_ep0_disable, 1942 .alloc_request = tegra_xudc_ep_alloc_request, 1943 .free_request = tegra_xudc_ep_free_request, 1944 .queue = tegra_xudc_ep_queue, 1945 .dequeue = tegra_xudc_ep_dequeue, 1946 .set_halt = tegra_xudc_ep_set_halt, 1947 }; 1948 1949 static int tegra_xudc_gadget_get_frame(struct usb_gadget *gadget) 1950 { 1951 struct tegra_xudc *xudc = to_xudc(gadget); 1952 unsigned long flags; 1953 int ret; 1954 1955 spin_lock_irqsave(&xudc->lock, flags); 1956 if (xudc->powergated) { 1957 ret = -ESHUTDOWN; 1958 goto unlock; 1959 } 1960 1961 ret = (xudc_readl(xudc, MFINDEX) & MFINDEX_FRAME_MASK) >> 1962 MFINDEX_FRAME_SHIFT; 1963 unlock: 1964 spin_unlock_irqrestore(&xudc->lock, flags); 1965 1966 return ret; 1967 } 1968 1969 static void tegra_xudc_resume_device_state(struct tegra_xudc *xudc) 1970 { 1971 unsigned int i; 1972 u32 val; 1973 1974 ep_unpause_all(xudc); 1975 1976 /* Direct link to U0. */ 1977 val = xudc_readl(xudc, PORTSC); 1978 if (((val & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT) != PORTSC_PLS_U0) { 1979 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK); 1980 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0); 1981 xudc_writel(xudc, val, PORTSC); 1982 } 1983 1984 if (xudc->device_state == USB_STATE_SUSPENDED) { 1985 xudc->device_state = xudc->resume_state; 1986 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 1987 xudc->resume_state = 0; 1988 } 1989 1990 /* 1991 * Doorbells may be dropped if they are sent too soon (< ~200ns) 1992 * after unpausing the endpoint. Wait for 500ns just to be safe. 1993 */ 1994 ndelay(500); 1995 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) 1996 tegra_xudc_ep_ring_doorbell(&xudc->ep[i]); 1997 } 1998 1999 static int tegra_xudc_gadget_wakeup(struct usb_gadget *gadget) 2000 { 2001 struct tegra_xudc *xudc = to_xudc(gadget); 2002 unsigned long flags; 2003 int ret = 0; 2004 u32 val; 2005 2006 spin_lock_irqsave(&xudc->lock, flags); 2007 2008 if (xudc->powergated) { 2009 ret = -ESHUTDOWN; 2010 goto unlock; 2011 } 2012 val = xudc_readl(xudc, PORTPM); 2013 dev_dbg(xudc->dev, "%s: PORTPM=%#x, speed=%x\n", __func__, 2014 val, gadget->speed); 2015 2016 if (((xudc->gadget.speed <= USB_SPEED_HIGH) && 2017 (val & PORTPM_RWE)) || 2018 ((xudc->gadget.speed == USB_SPEED_SUPER) && 2019 (val & PORTPM_FRWE))) { 2020 tegra_xudc_resume_device_state(xudc); 2021 2022 /* Send Device Notification packet. */ 2023 if (xudc->gadget.speed == USB_SPEED_SUPER) { 2024 val = DEVNOTIF_LO_TYPE(DEVNOTIF_LO_TYPE_FUNCTION_WAKE) 2025 | DEVNOTIF_LO_TRIG; 2026 xudc_writel(xudc, 0, DEVNOTIF_HI); 2027 xudc_writel(xudc, val, DEVNOTIF_LO); 2028 } 2029 } 2030 2031 unlock: 2032 dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret); 2033 spin_unlock_irqrestore(&xudc->lock, flags); 2034 2035 return ret; 2036 } 2037 2038 static int tegra_xudc_gadget_pullup(struct usb_gadget *gadget, int is_on) 2039 { 2040 struct tegra_xudc *xudc = to_xudc(gadget); 2041 unsigned long flags; 2042 u32 val; 2043 2044 pm_runtime_get_sync(xudc->dev); 2045 2046 spin_lock_irqsave(&xudc->lock, flags); 2047 2048 if (is_on != xudc->pullup) { 2049 val = xudc_readl(xudc, CTRL); 2050 if (is_on) 2051 val |= CTRL_ENABLE; 2052 else 2053 val &= ~CTRL_ENABLE; 2054 xudc_writel(xudc, val, CTRL); 2055 } 2056 2057 xudc->pullup = is_on; 2058 dev_dbg(xudc->dev, "%s: pullup:%d", __func__, is_on); 2059 2060 spin_unlock_irqrestore(&xudc->lock, flags); 2061 2062 pm_runtime_put(xudc->dev); 2063 2064 return 0; 2065 } 2066 2067 static int tegra_xudc_gadget_start(struct usb_gadget *gadget, 2068 struct usb_gadget_driver *driver) 2069 { 2070 struct tegra_xudc *xudc = to_xudc(gadget); 2071 unsigned long flags; 2072 u32 val; 2073 int ret; 2074 unsigned int i; 2075 2076 if (!driver) 2077 return -EINVAL; 2078 2079 pm_runtime_get_sync(xudc->dev); 2080 2081 spin_lock_irqsave(&xudc->lock, flags); 2082 2083 if (xudc->driver) { 2084 ret = -EBUSY; 2085 goto unlock; 2086 } 2087 2088 xudc->setup_state = WAIT_FOR_SETUP; 2089 xudc->device_state = USB_STATE_DEFAULT; 2090 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2091 2092 ret = __tegra_xudc_ep_enable(&xudc->ep[0], &tegra_xudc_ep0_desc); 2093 if (ret < 0) 2094 goto unlock; 2095 2096 val = xudc_readl(xudc, CTRL); 2097 val |= CTRL_IE | CTRL_LSE; 2098 xudc_writel(xudc, val, CTRL); 2099 2100 val = xudc_readl(xudc, PORTHALT); 2101 val |= PORTHALT_STCHG_INTR_EN; 2102 xudc_writel(xudc, val, PORTHALT); 2103 2104 if (xudc->pullup) { 2105 val = xudc_readl(xudc, CTRL); 2106 val |= CTRL_ENABLE; 2107 xudc_writel(xudc, val, CTRL); 2108 } 2109 2110 for (i = 0; i < xudc->soc->num_phys; i++) 2111 if (xudc->usbphy[i]) 2112 otg_set_peripheral(xudc->usbphy[i]->otg, gadget); 2113 2114 xudc->driver = driver; 2115 unlock: 2116 dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret); 2117 spin_unlock_irqrestore(&xudc->lock, flags); 2118 2119 pm_runtime_put(xudc->dev); 2120 2121 return ret; 2122 } 2123 2124 static int tegra_xudc_gadget_stop(struct usb_gadget *gadget) 2125 { 2126 struct tegra_xudc *xudc = to_xudc(gadget); 2127 unsigned long flags; 2128 u32 val; 2129 unsigned int i; 2130 2131 pm_runtime_get_sync(xudc->dev); 2132 2133 spin_lock_irqsave(&xudc->lock, flags); 2134 2135 for (i = 0; i < xudc->soc->num_phys; i++) 2136 if (xudc->usbphy[i]) 2137 otg_set_peripheral(xudc->usbphy[i]->otg, NULL); 2138 2139 val = xudc_readl(xudc, CTRL); 2140 val &= ~(CTRL_IE | CTRL_ENABLE); 2141 xudc_writel(xudc, val, CTRL); 2142 2143 __tegra_xudc_ep_disable(&xudc->ep[0]); 2144 2145 xudc->driver = NULL; 2146 dev_dbg(xudc->dev, "Gadget stopped"); 2147 2148 spin_unlock_irqrestore(&xudc->lock, flags); 2149 2150 pm_runtime_put(xudc->dev); 2151 2152 return 0; 2153 } 2154 2155 static int tegra_xudc_gadget_vbus_draw(struct usb_gadget *gadget, 2156 unsigned int m_a) 2157 { 2158 int ret = 0; 2159 struct tegra_xudc *xudc = to_xudc(gadget); 2160 2161 dev_dbg(xudc->dev, "%s: %u mA\n", __func__, m_a); 2162 2163 if (xudc->curr_usbphy->chg_type == SDP_TYPE) 2164 ret = usb_phy_set_power(xudc->curr_usbphy, m_a); 2165 2166 return ret; 2167 } 2168 2169 static int tegra_xudc_set_selfpowered(struct usb_gadget *gadget, int is_on) 2170 { 2171 struct tegra_xudc *xudc = to_xudc(gadget); 2172 2173 dev_dbg(xudc->dev, "%s: %d\n", __func__, is_on); 2174 xudc->selfpowered = !!is_on; 2175 2176 return 0; 2177 } 2178 2179 static const struct usb_gadget_ops tegra_xudc_gadget_ops = { 2180 .get_frame = tegra_xudc_gadget_get_frame, 2181 .wakeup = tegra_xudc_gadget_wakeup, 2182 .pullup = tegra_xudc_gadget_pullup, 2183 .udc_start = tegra_xudc_gadget_start, 2184 .udc_stop = tegra_xudc_gadget_stop, 2185 .vbus_draw = tegra_xudc_gadget_vbus_draw, 2186 .set_selfpowered = tegra_xudc_set_selfpowered, 2187 }; 2188 2189 static void no_op_complete(struct usb_ep *ep, struct usb_request *req) 2190 { 2191 } 2192 2193 static int 2194 tegra_xudc_ep0_queue_status(struct tegra_xudc *xudc, 2195 void (*cmpl)(struct usb_ep *, struct usb_request *)) 2196 { 2197 xudc->ep0_req->usb_req.buf = NULL; 2198 xudc->ep0_req->usb_req.dma = 0; 2199 xudc->ep0_req->usb_req.length = 0; 2200 xudc->ep0_req->usb_req.complete = cmpl; 2201 xudc->ep0_req->usb_req.context = xudc; 2202 2203 return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req); 2204 } 2205 2206 static int 2207 tegra_xudc_ep0_queue_data(struct tegra_xudc *xudc, void *buf, size_t len, 2208 void (*cmpl)(struct usb_ep *, struct usb_request *)) 2209 { 2210 xudc->ep0_req->usb_req.buf = buf; 2211 xudc->ep0_req->usb_req.length = len; 2212 xudc->ep0_req->usb_req.complete = cmpl; 2213 xudc->ep0_req->usb_req.context = xudc; 2214 2215 return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req); 2216 } 2217 2218 static void tegra_xudc_ep0_req_done(struct tegra_xudc *xudc) 2219 { 2220 switch (xudc->setup_state) { 2221 case DATA_STAGE_XFER: 2222 xudc->setup_state = STATUS_STAGE_RECV; 2223 tegra_xudc_ep0_queue_status(xudc, no_op_complete); 2224 break; 2225 case DATA_STAGE_RECV: 2226 xudc->setup_state = STATUS_STAGE_XFER; 2227 tegra_xudc_ep0_queue_status(xudc, no_op_complete); 2228 break; 2229 default: 2230 xudc->setup_state = WAIT_FOR_SETUP; 2231 break; 2232 } 2233 } 2234 2235 static int tegra_xudc_ep0_delegate_req(struct tegra_xudc *xudc, 2236 struct usb_ctrlrequest *ctrl) 2237 { 2238 int ret; 2239 2240 spin_unlock(&xudc->lock); 2241 ret = xudc->driver->setup(&xudc->gadget, ctrl); 2242 spin_lock(&xudc->lock); 2243 2244 return ret; 2245 } 2246 2247 static void set_feature_complete(struct usb_ep *ep, struct usb_request *req) 2248 { 2249 struct tegra_xudc *xudc = req->context; 2250 2251 if (xudc->test_mode_pattern) { 2252 xudc_writel(xudc, xudc->test_mode_pattern, PORT_TM); 2253 xudc->test_mode_pattern = 0; 2254 } 2255 } 2256 2257 static int tegra_xudc_ep0_set_feature(struct tegra_xudc *xudc, 2258 struct usb_ctrlrequest *ctrl) 2259 { 2260 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 2261 u32 feature = le16_to_cpu(ctrl->wValue); 2262 u32 index = le16_to_cpu(ctrl->wIndex); 2263 u32 val, ep; 2264 int ret; 2265 2266 if (le16_to_cpu(ctrl->wLength) != 0) 2267 return -EINVAL; 2268 2269 switch (ctrl->bRequestType & USB_RECIP_MASK) { 2270 case USB_RECIP_DEVICE: 2271 switch (feature) { 2272 case USB_DEVICE_REMOTE_WAKEUP: 2273 if ((xudc->gadget.speed == USB_SPEED_SUPER) || 2274 (xudc->device_state == USB_STATE_DEFAULT)) 2275 return -EINVAL; 2276 2277 val = xudc_readl(xudc, PORTPM); 2278 if (set) 2279 val |= PORTPM_RWE; 2280 else 2281 val &= ~PORTPM_RWE; 2282 2283 xudc_writel(xudc, val, PORTPM); 2284 break; 2285 case USB_DEVICE_U1_ENABLE: 2286 case USB_DEVICE_U2_ENABLE: 2287 if ((xudc->device_state != USB_STATE_CONFIGURED) || 2288 (xudc->gadget.speed != USB_SPEED_SUPER)) 2289 return -EINVAL; 2290 2291 val = xudc_readl(xudc, PORTPM); 2292 if ((feature == USB_DEVICE_U1_ENABLE) && 2293 xudc->soc->u1_enable) { 2294 if (set) 2295 val |= PORTPM_U1E; 2296 else 2297 val &= ~PORTPM_U1E; 2298 } 2299 2300 if ((feature == USB_DEVICE_U2_ENABLE) && 2301 xudc->soc->u2_enable) { 2302 if (set) 2303 val |= PORTPM_U2E; 2304 else 2305 val &= ~PORTPM_U2E; 2306 } 2307 2308 xudc_writel(xudc, val, PORTPM); 2309 break; 2310 case USB_DEVICE_TEST_MODE: 2311 if (xudc->gadget.speed != USB_SPEED_HIGH) 2312 return -EINVAL; 2313 2314 if (!set) 2315 return -EINVAL; 2316 2317 xudc->test_mode_pattern = index >> 8; 2318 break; 2319 default: 2320 return -EINVAL; 2321 } 2322 2323 break; 2324 case USB_RECIP_INTERFACE: 2325 if (xudc->device_state != USB_STATE_CONFIGURED) 2326 return -EINVAL; 2327 2328 switch (feature) { 2329 case USB_INTRF_FUNC_SUSPEND: 2330 if (set) { 2331 val = xudc_readl(xudc, PORTPM); 2332 2333 if (index & USB_INTRF_FUNC_SUSPEND_RW) 2334 val |= PORTPM_FRWE; 2335 else 2336 val &= ~PORTPM_FRWE; 2337 2338 xudc_writel(xudc, val, PORTPM); 2339 } 2340 2341 return tegra_xudc_ep0_delegate_req(xudc, ctrl); 2342 default: 2343 return -EINVAL; 2344 } 2345 2346 break; 2347 case USB_RECIP_ENDPOINT: 2348 ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 + 2349 ((index & USB_DIR_IN) ? 1 : 0); 2350 2351 if ((xudc->device_state == USB_STATE_DEFAULT) || 2352 ((xudc->device_state == USB_STATE_ADDRESS) && 2353 (index != 0))) 2354 return -EINVAL; 2355 2356 ret = __tegra_xudc_ep_set_halt(&xudc->ep[ep], set); 2357 if (ret < 0) 2358 return ret; 2359 break; 2360 default: 2361 return -EINVAL; 2362 } 2363 2364 return tegra_xudc_ep0_queue_status(xudc, set_feature_complete); 2365 } 2366 2367 static int tegra_xudc_ep0_get_status(struct tegra_xudc *xudc, 2368 struct usb_ctrlrequest *ctrl) 2369 { 2370 struct tegra_xudc_ep_context *ep_ctx; 2371 u32 val, ep, index = le16_to_cpu(ctrl->wIndex); 2372 u16 status = 0; 2373 2374 if (!(ctrl->bRequestType & USB_DIR_IN)) 2375 return -EINVAL; 2376 2377 if ((le16_to_cpu(ctrl->wValue) != 0) || 2378 (le16_to_cpu(ctrl->wLength) != 2)) 2379 return -EINVAL; 2380 2381 switch (ctrl->bRequestType & USB_RECIP_MASK) { 2382 case USB_RECIP_DEVICE: 2383 val = xudc_readl(xudc, PORTPM); 2384 2385 if (xudc->selfpowered) 2386 status |= BIT(USB_DEVICE_SELF_POWERED); 2387 2388 if ((xudc->gadget.speed < USB_SPEED_SUPER) && 2389 (val & PORTPM_RWE)) 2390 status |= BIT(USB_DEVICE_REMOTE_WAKEUP); 2391 2392 if (xudc->gadget.speed == USB_SPEED_SUPER) { 2393 if (val & PORTPM_U1E) 2394 status |= BIT(USB_DEV_STAT_U1_ENABLED); 2395 if (val & PORTPM_U2E) 2396 status |= BIT(USB_DEV_STAT_U2_ENABLED); 2397 } 2398 break; 2399 case USB_RECIP_INTERFACE: 2400 if (xudc->gadget.speed == USB_SPEED_SUPER) { 2401 status |= USB_INTRF_STAT_FUNC_RW_CAP; 2402 val = xudc_readl(xudc, PORTPM); 2403 if (val & PORTPM_FRWE) 2404 status |= USB_INTRF_STAT_FUNC_RW; 2405 } 2406 break; 2407 case USB_RECIP_ENDPOINT: 2408 ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 + 2409 ((index & USB_DIR_IN) ? 1 : 0); 2410 ep_ctx = &xudc->ep_context[ep]; 2411 2412 if ((xudc->device_state != USB_STATE_CONFIGURED) && 2413 ((xudc->device_state != USB_STATE_ADDRESS) || (ep != 0))) 2414 return -EINVAL; 2415 2416 if (ep_ctx_read_state(ep_ctx) == EP_STATE_DISABLED) 2417 return -EINVAL; 2418 2419 if (xudc_readl(xudc, EP_HALT) & BIT(ep)) 2420 status |= BIT(USB_ENDPOINT_HALT); 2421 break; 2422 default: 2423 return -EINVAL; 2424 } 2425 2426 xudc->status_buf = cpu_to_le16(status); 2427 return tegra_xudc_ep0_queue_data(xudc, &xudc->status_buf, 2428 sizeof(xudc->status_buf), 2429 no_op_complete); 2430 } 2431 2432 static void set_sel_complete(struct usb_ep *ep, struct usb_request *req) 2433 { 2434 /* Nothing to do with SEL values */ 2435 } 2436 2437 static int tegra_xudc_ep0_set_sel(struct tegra_xudc *xudc, 2438 struct usb_ctrlrequest *ctrl) 2439 { 2440 if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE | 2441 USB_TYPE_STANDARD)) 2442 return -EINVAL; 2443 2444 if (xudc->device_state == USB_STATE_DEFAULT) 2445 return -EINVAL; 2446 2447 if ((le16_to_cpu(ctrl->wIndex) != 0) || 2448 (le16_to_cpu(ctrl->wValue) != 0) || 2449 (le16_to_cpu(ctrl->wLength) != 6)) 2450 return -EINVAL; 2451 2452 return tegra_xudc_ep0_queue_data(xudc, &xudc->sel_timing, 2453 sizeof(xudc->sel_timing), 2454 set_sel_complete); 2455 } 2456 2457 static void set_isoch_delay_complete(struct usb_ep *ep, struct usb_request *req) 2458 { 2459 /* Nothing to do with isoch delay */ 2460 } 2461 2462 static int tegra_xudc_ep0_set_isoch_delay(struct tegra_xudc *xudc, 2463 struct usb_ctrlrequest *ctrl) 2464 { 2465 u32 delay = le16_to_cpu(ctrl->wValue); 2466 2467 if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE | 2468 USB_TYPE_STANDARD)) 2469 return -EINVAL; 2470 2471 if ((delay > 65535) || (le16_to_cpu(ctrl->wIndex) != 0) || 2472 (le16_to_cpu(ctrl->wLength) != 0)) 2473 return -EINVAL; 2474 2475 xudc->isoch_delay = delay; 2476 2477 return tegra_xudc_ep0_queue_status(xudc, set_isoch_delay_complete); 2478 } 2479 2480 static void set_address_complete(struct usb_ep *ep, struct usb_request *req) 2481 { 2482 struct tegra_xudc *xudc = req->context; 2483 2484 if ((xudc->device_state == USB_STATE_DEFAULT) && 2485 (xudc->dev_addr != 0)) { 2486 xudc->device_state = USB_STATE_ADDRESS; 2487 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2488 } else if ((xudc->device_state == USB_STATE_ADDRESS) && 2489 (xudc->dev_addr == 0)) { 2490 xudc->device_state = USB_STATE_DEFAULT; 2491 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2492 } 2493 } 2494 2495 static int tegra_xudc_ep0_set_address(struct tegra_xudc *xudc, 2496 struct usb_ctrlrequest *ctrl) 2497 { 2498 struct tegra_xudc_ep *ep0 = &xudc->ep[0]; 2499 u32 val, addr = le16_to_cpu(ctrl->wValue); 2500 2501 if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE | 2502 USB_TYPE_STANDARD)) 2503 return -EINVAL; 2504 2505 if ((addr > 127) || (le16_to_cpu(ctrl->wIndex) != 0) || 2506 (le16_to_cpu(ctrl->wLength) != 0)) 2507 return -EINVAL; 2508 2509 if (xudc->device_state == USB_STATE_CONFIGURED) 2510 return -EINVAL; 2511 2512 dev_dbg(xudc->dev, "set address: %u\n", addr); 2513 2514 xudc->dev_addr = addr; 2515 val = xudc_readl(xudc, CTRL); 2516 val &= ~(CTRL_DEVADDR_MASK); 2517 val |= CTRL_DEVADDR(addr); 2518 xudc_writel(xudc, val, CTRL); 2519 2520 ep_ctx_write_devaddr(ep0->context, addr); 2521 2522 return tegra_xudc_ep0_queue_status(xudc, set_address_complete); 2523 } 2524 2525 static int tegra_xudc_ep0_standard_req(struct tegra_xudc *xudc, 2526 struct usb_ctrlrequest *ctrl) 2527 { 2528 int ret; 2529 2530 switch (ctrl->bRequest) { 2531 case USB_REQ_GET_STATUS: 2532 dev_dbg(xudc->dev, "USB_REQ_GET_STATUS\n"); 2533 ret = tegra_xudc_ep0_get_status(xudc, ctrl); 2534 break; 2535 case USB_REQ_SET_ADDRESS: 2536 dev_dbg(xudc->dev, "USB_REQ_SET_ADDRESS\n"); 2537 ret = tegra_xudc_ep0_set_address(xudc, ctrl); 2538 break; 2539 case USB_REQ_SET_SEL: 2540 dev_dbg(xudc->dev, "USB_REQ_SET_SEL\n"); 2541 ret = tegra_xudc_ep0_set_sel(xudc, ctrl); 2542 break; 2543 case USB_REQ_SET_ISOCH_DELAY: 2544 dev_dbg(xudc->dev, "USB_REQ_SET_ISOCH_DELAY\n"); 2545 ret = tegra_xudc_ep0_set_isoch_delay(xudc, ctrl); 2546 break; 2547 case USB_REQ_CLEAR_FEATURE: 2548 case USB_REQ_SET_FEATURE: 2549 dev_dbg(xudc->dev, "USB_REQ_CLEAR/SET_FEATURE\n"); 2550 ret = tegra_xudc_ep0_set_feature(xudc, ctrl); 2551 break; 2552 case USB_REQ_SET_CONFIGURATION: 2553 dev_dbg(xudc->dev, "USB_REQ_SET_CONFIGURATION\n"); 2554 /* 2555 * In theory we need to clear RUN bit before status stage of 2556 * deconfig request sent, but this seems to be causing problems. 2557 * Clear RUN once all endpoints are disabled instead. 2558 */ 2559 fallthrough; 2560 default: 2561 ret = tegra_xudc_ep0_delegate_req(xudc, ctrl); 2562 break; 2563 } 2564 2565 return ret; 2566 } 2567 2568 static void tegra_xudc_handle_ep0_setup_packet(struct tegra_xudc *xudc, 2569 struct usb_ctrlrequest *ctrl, 2570 u16 seq_num) 2571 { 2572 int ret; 2573 2574 xudc->setup_seq_num = seq_num; 2575 2576 /* Ensure EP0 is unhalted. */ 2577 ep_unhalt(xudc, 0); 2578 2579 /* 2580 * On Tegra210, setup packets with sequence numbers 0xfffe or 0xffff 2581 * are invalid. Halt EP0 until we get a valid packet. 2582 */ 2583 if (xudc->soc->invalid_seq_num && 2584 (seq_num == 0xfffe || seq_num == 0xffff)) { 2585 dev_warn(xudc->dev, "invalid sequence number detected\n"); 2586 ep_halt(xudc, 0); 2587 return; 2588 } 2589 2590 if (ctrl->wLength) 2591 xudc->setup_state = (ctrl->bRequestType & USB_DIR_IN) ? 2592 DATA_STAGE_XFER : DATA_STAGE_RECV; 2593 else 2594 xudc->setup_state = STATUS_STAGE_XFER; 2595 2596 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) 2597 ret = tegra_xudc_ep0_standard_req(xudc, ctrl); 2598 else 2599 ret = tegra_xudc_ep0_delegate_req(xudc, ctrl); 2600 2601 if (ret < 0) { 2602 dev_warn(xudc->dev, "setup request failed: %d\n", ret); 2603 xudc->setup_state = WAIT_FOR_SETUP; 2604 ep_halt(xudc, 0); 2605 } 2606 } 2607 2608 static void tegra_xudc_handle_ep0_event(struct tegra_xudc *xudc, 2609 struct tegra_xudc_trb *event) 2610 { 2611 struct usb_ctrlrequest *ctrl = (struct usb_ctrlrequest *)event; 2612 u16 seq_num = trb_read_seq_num(event); 2613 2614 if (xudc->setup_state != WAIT_FOR_SETUP) { 2615 /* 2616 * The controller is in the process of handling another 2617 * setup request. Queue subsequent requests and handle 2618 * the last one once the controller reports a sequence 2619 * number error. 2620 */ 2621 memcpy(&xudc->setup_packet.ctrl_req, ctrl, sizeof(*ctrl)); 2622 xudc->setup_packet.seq_num = seq_num; 2623 xudc->queued_setup_packet = true; 2624 } else { 2625 tegra_xudc_handle_ep0_setup_packet(xudc, ctrl, seq_num); 2626 } 2627 } 2628 2629 static struct tegra_xudc_request * 2630 trb_to_request(struct tegra_xudc_ep *ep, struct tegra_xudc_trb *trb) 2631 { 2632 struct tegra_xudc_request *req; 2633 2634 list_for_each_entry(req, &ep->queue, list) { 2635 if (!req->trbs_queued) 2636 break; 2637 2638 if (trb_in_request(ep, req, trb)) 2639 return req; 2640 } 2641 2642 return NULL; 2643 } 2644 2645 static void tegra_xudc_handle_transfer_completion(struct tegra_xudc *xudc, 2646 struct tegra_xudc_ep *ep, 2647 struct tegra_xudc_trb *event) 2648 { 2649 struct tegra_xudc_request *req; 2650 struct tegra_xudc_trb *trb; 2651 bool short_packet; 2652 2653 short_packet = (trb_read_cmpl_code(event) == 2654 TRB_CMPL_CODE_SHORT_PACKET); 2655 2656 trb = trb_phys_to_virt(ep, trb_read_data_ptr(event)); 2657 req = trb_to_request(ep, trb); 2658 2659 /* 2660 * TDs are complete on short packet or when the completed TRB is the 2661 * last TRB in the TD (the CHAIN bit is unset). 2662 */ 2663 if (req && (short_packet || (!trb_read_chain(trb) && 2664 (req->trbs_needed == req->trbs_queued)))) { 2665 struct tegra_xudc_trb *last = req->last_trb; 2666 unsigned int residual; 2667 2668 residual = trb_read_transfer_len(event); 2669 req->usb_req.actual = req->usb_req.length - residual; 2670 2671 dev_dbg(xudc->dev, "bytes transferred %u / %u\n", 2672 req->usb_req.actual, req->usb_req.length); 2673 2674 tegra_xudc_req_done(ep, req, 0); 2675 2676 if (ep->desc && usb_endpoint_xfer_control(ep->desc)) 2677 tegra_xudc_ep0_req_done(xudc); 2678 2679 /* 2680 * Advance the dequeue pointer past the end of the current TD 2681 * on short packet completion. 2682 */ 2683 if (short_packet) { 2684 ep->deq_ptr = (last - ep->transfer_ring) + 1; 2685 if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1) 2686 ep->deq_ptr = 0; 2687 } 2688 } else if (!req) { 2689 dev_warn(xudc->dev, "transfer event on dequeued request\n"); 2690 } 2691 2692 if (ep->desc) 2693 tegra_xudc_ep_kick_queue(ep); 2694 } 2695 2696 static void tegra_xudc_handle_transfer_event(struct tegra_xudc *xudc, 2697 struct tegra_xudc_trb *event) 2698 { 2699 unsigned int ep_index = trb_read_endpoint_id(event); 2700 struct tegra_xudc_ep *ep = &xudc->ep[ep_index]; 2701 struct tegra_xudc_trb *trb; 2702 u16 comp_code; 2703 2704 if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) { 2705 dev_warn(xudc->dev, "transfer event on disabled EP %u\n", 2706 ep_index); 2707 return; 2708 } 2709 2710 /* Update transfer ring dequeue pointer. */ 2711 trb = trb_phys_to_virt(ep, trb_read_data_ptr(event)); 2712 comp_code = trb_read_cmpl_code(event); 2713 if (comp_code != TRB_CMPL_CODE_BABBLE_DETECTED_ERR) { 2714 ep->deq_ptr = (trb - ep->transfer_ring) + 1; 2715 2716 if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1) 2717 ep->deq_ptr = 0; 2718 ep->ring_full = false; 2719 } 2720 2721 switch (comp_code) { 2722 case TRB_CMPL_CODE_SUCCESS: 2723 case TRB_CMPL_CODE_SHORT_PACKET: 2724 tegra_xudc_handle_transfer_completion(xudc, ep, event); 2725 break; 2726 case TRB_CMPL_CODE_HOST_REJECTED: 2727 dev_info(xudc->dev, "stream rejected on EP %u\n", ep_index); 2728 2729 ep->stream_rejected = true; 2730 break; 2731 case TRB_CMPL_CODE_PRIME_PIPE_RECEIVED: 2732 dev_info(xudc->dev, "prime pipe received on EP %u\n", ep_index); 2733 2734 if (ep->stream_rejected) { 2735 ep->stream_rejected = false; 2736 /* 2737 * An EP is stopped when a stream is rejected. Wait 2738 * for the EP to report that it is stopped and then 2739 * un-stop it. 2740 */ 2741 ep_wait_for_stopped(xudc, ep_index); 2742 } 2743 tegra_xudc_ep_ring_doorbell(ep); 2744 break; 2745 case TRB_CMPL_CODE_BABBLE_DETECTED_ERR: 2746 /* 2747 * Wait for the EP to be stopped so the controller stops 2748 * processing doorbells. 2749 */ 2750 ep_wait_for_stopped(xudc, ep_index); 2751 ep->enq_ptr = ep->deq_ptr; 2752 tegra_xudc_ep_nuke(ep, -EIO); 2753 fallthrough; 2754 case TRB_CMPL_CODE_STREAM_NUMP_ERROR: 2755 case TRB_CMPL_CODE_CTRL_DIR_ERR: 2756 case TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR: 2757 case TRB_CMPL_CODE_RING_UNDERRUN: 2758 case TRB_CMPL_CODE_RING_OVERRUN: 2759 case TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN: 2760 case TRB_CMPL_CODE_USB_TRANS_ERR: 2761 case TRB_CMPL_CODE_TRB_ERR: 2762 dev_err(xudc->dev, "completion error %#x on EP %u\n", 2763 comp_code, ep_index); 2764 2765 ep_halt(xudc, ep_index); 2766 break; 2767 case TRB_CMPL_CODE_CTRL_SEQNUM_ERR: 2768 dev_info(xudc->dev, "sequence number error\n"); 2769 2770 /* 2771 * Kill any queued control request and skip to the last 2772 * setup packet we received. 2773 */ 2774 tegra_xudc_ep_nuke(ep, -EINVAL); 2775 xudc->setup_state = WAIT_FOR_SETUP; 2776 if (!xudc->queued_setup_packet) 2777 break; 2778 2779 tegra_xudc_handle_ep0_setup_packet(xudc, 2780 &xudc->setup_packet.ctrl_req, 2781 xudc->setup_packet.seq_num); 2782 xudc->queued_setup_packet = false; 2783 break; 2784 case TRB_CMPL_CODE_STOPPED: 2785 dev_dbg(xudc->dev, "stop completion code on EP %u\n", 2786 ep_index); 2787 2788 /* Disconnected. */ 2789 tegra_xudc_ep_nuke(ep, -ECONNREFUSED); 2790 break; 2791 default: 2792 dev_dbg(xudc->dev, "completion event %#x on EP %u\n", 2793 comp_code, ep_index); 2794 break; 2795 } 2796 } 2797 2798 static void tegra_xudc_reset(struct tegra_xudc *xudc) 2799 { 2800 struct tegra_xudc_ep *ep0 = &xudc->ep[0]; 2801 dma_addr_t deq_ptr; 2802 unsigned int i; 2803 2804 xudc->setup_state = WAIT_FOR_SETUP; 2805 xudc->device_state = USB_STATE_DEFAULT; 2806 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2807 2808 ep_unpause_all(xudc); 2809 2810 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) 2811 tegra_xudc_ep_nuke(&xudc->ep[i], -ESHUTDOWN); 2812 2813 /* 2814 * Reset sequence number and dequeue pointer to flush the transfer 2815 * ring. 2816 */ 2817 ep0->deq_ptr = ep0->enq_ptr; 2818 ep0->ring_full = false; 2819 2820 xudc->setup_seq_num = 0; 2821 xudc->queued_setup_packet = false; 2822 2823 ep_ctx_write_rsvd(ep0->context, 0); 2824 ep_ctx_write_partial_td(ep0->context, 0); 2825 ep_ctx_write_splitxstate(ep0->context, 0); 2826 ep_ctx_write_seq_num(ep0->context, 0); 2827 2828 deq_ptr = trb_virt_to_phys(ep0, &ep0->transfer_ring[ep0->deq_ptr]); 2829 2830 if (!dma_mapping_error(xudc->dev, deq_ptr)) { 2831 ep_ctx_write_deq_ptr(ep0->context, deq_ptr); 2832 ep_ctx_write_dcs(ep0->context, ep0->pcs); 2833 } 2834 2835 ep_unhalt_all(xudc); 2836 ep_reload(xudc, 0); 2837 ep_unpause(xudc, 0); 2838 } 2839 2840 static void tegra_xudc_port_connect(struct tegra_xudc *xudc) 2841 { 2842 struct tegra_xudc_ep *ep0 = &xudc->ep[0]; 2843 u16 maxpacket; 2844 u32 val; 2845 2846 val = (xudc_readl(xudc, PORTSC) & PORTSC_PS_MASK) >> PORTSC_PS_SHIFT; 2847 switch (val) { 2848 case PORTSC_PS_LS: 2849 xudc->gadget.speed = USB_SPEED_LOW; 2850 break; 2851 case PORTSC_PS_FS: 2852 xudc->gadget.speed = USB_SPEED_FULL; 2853 break; 2854 case PORTSC_PS_HS: 2855 xudc->gadget.speed = USB_SPEED_HIGH; 2856 break; 2857 case PORTSC_PS_SS: 2858 xudc->gadget.speed = USB_SPEED_SUPER; 2859 break; 2860 default: 2861 xudc->gadget.speed = USB_SPEED_UNKNOWN; 2862 break; 2863 } 2864 2865 xudc->device_state = USB_STATE_DEFAULT; 2866 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2867 2868 xudc->setup_state = WAIT_FOR_SETUP; 2869 2870 if (xudc->gadget.speed == USB_SPEED_SUPER) 2871 maxpacket = 512; 2872 else 2873 maxpacket = 64; 2874 2875 ep_ctx_write_max_packet_size(ep0->context, maxpacket); 2876 tegra_xudc_ep0_desc.wMaxPacketSize = cpu_to_le16(maxpacket); 2877 usb_ep_set_maxpacket_limit(&ep0->usb_ep, maxpacket); 2878 2879 if (!xudc->soc->u1_enable) { 2880 val = xudc_readl(xudc, PORTPM); 2881 val &= ~(PORTPM_U1TIMEOUT_MASK); 2882 xudc_writel(xudc, val, PORTPM); 2883 } 2884 2885 if (!xudc->soc->u2_enable) { 2886 val = xudc_readl(xudc, PORTPM); 2887 val &= ~(PORTPM_U2TIMEOUT_MASK); 2888 xudc_writel(xudc, val, PORTPM); 2889 } 2890 2891 if (xudc->gadget.speed <= USB_SPEED_HIGH) { 2892 val = xudc_readl(xudc, PORTPM); 2893 val &= ~(PORTPM_L1S_MASK); 2894 if (xudc->soc->lpm_enable) 2895 val |= PORTPM_L1S(PORTPM_L1S_ACCEPT); 2896 else 2897 val |= PORTPM_L1S(PORTPM_L1S_NYET); 2898 xudc_writel(xudc, val, PORTPM); 2899 } 2900 2901 val = xudc_readl(xudc, ST); 2902 if (val & ST_RC) 2903 xudc_writel(xudc, ST_RC, ST); 2904 } 2905 2906 static void tegra_xudc_port_disconnect(struct tegra_xudc *xudc) 2907 { 2908 tegra_xudc_reset(xudc); 2909 2910 if (xudc->driver && xudc->driver->disconnect) { 2911 spin_unlock(&xudc->lock); 2912 xudc->driver->disconnect(&xudc->gadget); 2913 spin_lock(&xudc->lock); 2914 } 2915 2916 xudc->device_state = USB_STATE_NOTATTACHED; 2917 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2918 2919 complete(&xudc->disconnect_complete); 2920 } 2921 2922 static void tegra_xudc_port_reset(struct tegra_xudc *xudc) 2923 { 2924 tegra_xudc_reset(xudc); 2925 2926 if (xudc->driver) { 2927 spin_unlock(&xudc->lock); 2928 usb_gadget_udc_reset(&xudc->gadget, xudc->driver); 2929 spin_lock(&xudc->lock); 2930 } 2931 2932 tegra_xudc_port_connect(xudc); 2933 } 2934 2935 static void tegra_xudc_port_suspend(struct tegra_xudc *xudc) 2936 { 2937 dev_dbg(xudc->dev, "port suspend\n"); 2938 2939 xudc->resume_state = xudc->device_state; 2940 xudc->device_state = USB_STATE_SUSPENDED; 2941 usb_gadget_set_state(&xudc->gadget, xudc->device_state); 2942 2943 if (xudc->driver->suspend) { 2944 spin_unlock(&xudc->lock); 2945 xudc->driver->suspend(&xudc->gadget); 2946 spin_lock(&xudc->lock); 2947 } 2948 } 2949 2950 static void tegra_xudc_port_resume(struct tegra_xudc *xudc) 2951 { 2952 dev_dbg(xudc->dev, "port resume\n"); 2953 2954 tegra_xudc_resume_device_state(xudc); 2955 2956 if (xudc->driver->resume) { 2957 spin_unlock(&xudc->lock); 2958 xudc->driver->resume(&xudc->gadget); 2959 spin_lock(&xudc->lock); 2960 } 2961 } 2962 2963 static inline void clear_port_change(struct tegra_xudc *xudc, u32 flag) 2964 { 2965 u32 val; 2966 2967 val = xudc_readl(xudc, PORTSC); 2968 val &= ~PORTSC_CHANGE_MASK; 2969 val |= flag; 2970 xudc_writel(xudc, val, PORTSC); 2971 } 2972 2973 static void __tegra_xudc_handle_port_status(struct tegra_xudc *xudc) 2974 { 2975 u32 portsc, porthalt; 2976 2977 porthalt = xudc_readl(xudc, PORTHALT); 2978 if ((porthalt & PORTHALT_STCHG_REQ) && 2979 (porthalt & PORTHALT_HALT_LTSSM)) { 2980 dev_dbg(xudc->dev, "STCHG_REQ, PORTHALT = %#x\n", porthalt); 2981 porthalt &= ~PORTHALT_HALT_LTSSM; 2982 xudc_writel(xudc, porthalt, PORTHALT); 2983 } 2984 2985 portsc = xudc_readl(xudc, PORTSC); 2986 if ((portsc & PORTSC_PRC) && (portsc & PORTSC_PR)) { 2987 dev_dbg(xudc->dev, "PRC, PR, PORTSC = %#x\n", portsc); 2988 clear_port_change(xudc, PORTSC_PRC | PORTSC_PED); 2989 #define TOGGLE_VBUS_WAIT_MS 100 2990 if (xudc->soc->port_reset_quirk) { 2991 schedule_delayed_work(&xudc->port_reset_war_work, 2992 msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS)); 2993 xudc->wait_for_sec_prc = 1; 2994 } 2995 } 2996 2997 if ((portsc & PORTSC_PRC) && !(portsc & PORTSC_PR)) { 2998 dev_dbg(xudc->dev, "PRC, Not PR, PORTSC = %#x\n", portsc); 2999 clear_port_change(xudc, PORTSC_PRC | PORTSC_PED); 3000 tegra_xudc_port_reset(xudc); 3001 cancel_delayed_work(&xudc->port_reset_war_work); 3002 xudc->wait_for_sec_prc = 0; 3003 } 3004 3005 portsc = xudc_readl(xudc, PORTSC); 3006 if (portsc & PORTSC_WRC) { 3007 dev_dbg(xudc->dev, "WRC, PORTSC = %#x\n", portsc); 3008 clear_port_change(xudc, PORTSC_WRC | PORTSC_PED); 3009 if (!(xudc_readl(xudc, PORTSC) & PORTSC_WPR)) 3010 tegra_xudc_port_reset(xudc); 3011 } 3012 3013 portsc = xudc_readl(xudc, PORTSC); 3014 if (portsc & PORTSC_CSC) { 3015 dev_dbg(xudc->dev, "CSC, PORTSC = %#x\n", portsc); 3016 clear_port_change(xudc, PORTSC_CSC); 3017 3018 if (portsc & PORTSC_CCS) 3019 tegra_xudc_port_connect(xudc); 3020 else 3021 tegra_xudc_port_disconnect(xudc); 3022 3023 if (xudc->wait_csc) { 3024 cancel_delayed_work(&xudc->plc_reset_work); 3025 xudc->wait_csc = false; 3026 } 3027 } 3028 3029 portsc = xudc_readl(xudc, PORTSC); 3030 if (portsc & PORTSC_PLC) { 3031 u32 pls = (portsc & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT; 3032 3033 dev_dbg(xudc->dev, "PLC, PORTSC = %#x\n", portsc); 3034 clear_port_change(xudc, PORTSC_PLC); 3035 switch (pls) { 3036 case PORTSC_PLS_U3: 3037 tegra_xudc_port_suspend(xudc); 3038 break; 3039 case PORTSC_PLS_U0: 3040 if (xudc->gadget.speed < USB_SPEED_SUPER) 3041 tegra_xudc_port_resume(xudc); 3042 break; 3043 case PORTSC_PLS_RESUME: 3044 if (xudc->gadget.speed == USB_SPEED_SUPER) 3045 tegra_xudc_port_resume(xudc); 3046 break; 3047 case PORTSC_PLS_INACTIVE: 3048 schedule_delayed_work(&xudc->plc_reset_work, 3049 msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS)); 3050 xudc->wait_csc = true; 3051 break; 3052 default: 3053 break; 3054 } 3055 } 3056 3057 if (portsc & PORTSC_CEC) { 3058 dev_warn(xudc->dev, "CEC, PORTSC = %#x\n", portsc); 3059 clear_port_change(xudc, PORTSC_CEC); 3060 } 3061 3062 dev_dbg(xudc->dev, "PORTSC = %#x\n", xudc_readl(xudc, PORTSC)); 3063 } 3064 3065 static void tegra_xudc_handle_port_status(struct tegra_xudc *xudc) 3066 { 3067 while ((xudc_readl(xudc, PORTSC) & PORTSC_CHANGE_MASK) || 3068 (xudc_readl(xudc, PORTHALT) & PORTHALT_STCHG_REQ)) 3069 __tegra_xudc_handle_port_status(xudc); 3070 } 3071 3072 static void tegra_xudc_handle_event(struct tegra_xudc *xudc, 3073 struct tegra_xudc_trb *event) 3074 { 3075 u32 type = trb_read_type(event); 3076 3077 dump_trb(xudc, "EVENT", event); 3078 3079 switch (type) { 3080 case TRB_TYPE_PORT_STATUS_CHANGE_EVENT: 3081 tegra_xudc_handle_port_status(xudc); 3082 break; 3083 case TRB_TYPE_TRANSFER_EVENT: 3084 tegra_xudc_handle_transfer_event(xudc, event); 3085 break; 3086 case TRB_TYPE_SETUP_PACKET_EVENT: 3087 tegra_xudc_handle_ep0_event(xudc, event); 3088 break; 3089 default: 3090 dev_info(xudc->dev, "Unrecognized TRB type = %#x\n", type); 3091 break; 3092 } 3093 } 3094 3095 static void tegra_xudc_process_event_ring(struct tegra_xudc *xudc) 3096 { 3097 struct tegra_xudc_trb *event; 3098 dma_addr_t erdp; 3099 3100 while (true) { 3101 event = xudc->event_ring[xudc->event_ring_index] + 3102 xudc->event_ring_deq_ptr; 3103 3104 if (trb_read_cycle(event) != xudc->ccs) 3105 break; 3106 3107 tegra_xudc_handle_event(xudc, event); 3108 3109 xudc->event_ring_deq_ptr++; 3110 if (xudc->event_ring_deq_ptr == XUDC_EVENT_RING_SIZE) { 3111 xudc->event_ring_deq_ptr = 0; 3112 xudc->event_ring_index++; 3113 } 3114 3115 if (xudc->event_ring_index == XUDC_NR_EVENT_RINGS) { 3116 xudc->event_ring_index = 0; 3117 xudc->ccs = !xudc->ccs; 3118 } 3119 } 3120 3121 erdp = xudc->event_ring_phys[xudc->event_ring_index] + 3122 xudc->event_ring_deq_ptr * sizeof(*event); 3123 3124 xudc_writel(xudc, upper_32_bits(erdp), ERDPHI); 3125 xudc_writel(xudc, lower_32_bits(erdp) | ERDPLO_EHB, ERDPLO); 3126 } 3127 3128 static irqreturn_t tegra_xudc_irq(int irq, void *data) 3129 { 3130 struct tegra_xudc *xudc = data; 3131 unsigned long flags; 3132 u32 val; 3133 3134 val = xudc_readl(xudc, ST); 3135 if (!(val & ST_IP)) 3136 return IRQ_NONE; 3137 xudc_writel(xudc, ST_IP, ST); 3138 3139 spin_lock_irqsave(&xudc->lock, flags); 3140 tegra_xudc_process_event_ring(xudc); 3141 spin_unlock_irqrestore(&xudc->lock, flags); 3142 3143 return IRQ_HANDLED; 3144 } 3145 3146 static int tegra_xudc_alloc_ep(struct tegra_xudc *xudc, unsigned int index) 3147 { 3148 struct tegra_xudc_ep *ep = &xudc->ep[index]; 3149 3150 ep->xudc = xudc; 3151 ep->index = index; 3152 ep->context = &xudc->ep_context[index]; 3153 INIT_LIST_HEAD(&ep->queue); 3154 3155 /* 3156 * EP1 would be the input endpoint corresponding to EP0, but since 3157 * EP0 is bi-directional, EP1 is unused. 3158 */ 3159 if (index == 1) 3160 return 0; 3161 3162 ep->transfer_ring = dma_pool_alloc(xudc->transfer_ring_pool, 3163 GFP_KERNEL, 3164 &ep->transfer_ring_phys); 3165 if (!ep->transfer_ring) 3166 return -ENOMEM; 3167 3168 if (index) { 3169 snprintf(ep->name, sizeof(ep->name), "ep%u%s", index / 2, 3170 (index % 2 == 0) ? "out" : "in"); 3171 ep->usb_ep.name = ep->name; 3172 usb_ep_set_maxpacket_limit(&ep->usb_ep, 1024); 3173 ep->usb_ep.max_streams = 16; 3174 ep->usb_ep.ops = &tegra_xudc_ep_ops; 3175 ep->usb_ep.caps.type_bulk = true; 3176 ep->usb_ep.caps.type_int = true; 3177 if (index & 1) 3178 ep->usb_ep.caps.dir_in = true; 3179 else 3180 ep->usb_ep.caps.dir_out = true; 3181 list_add_tail(&ep->usb_ep.ep_list, &xudc->gadget.ep_list); 3182 } else { 3183 strscpy(ep->name, "ep0", 3); 3184 ep->usb_ep.name = ep->name; 3185 usb_ep_set_maxpacket_limit(&ep->usb_ep, 512); 3186 ep->usb_ep.ops = &tegra_xudc_ep0_ops; 3187 ep->usb_ep.caps.type_control = true; 3188 ep->usb_ep.caps.dir_in = true; 3189 ep->usb_ep.caps.dir_out = true; 3190 } 3191 3192 return 0; 3193 } 3194 3195 static void tegra_xudc_free_ep(struct tegra_xudc *xudc, unsigned int index) 3196 { 3197 struct tegra_xudc_ep *ep = &xudc->ep[index]; 3198 3199 /* 3200 * EP1 would be the input endpoint corresponding to EP0, but since 3201 * EP0 is bi-directional, EP1 is unused. 3202 */ 3203 if (index == 1) 3204 return; 3205 3206 dma_pool_free(xudc->transfer_ring_pool, ep->transfer_ring, 3207 ep->transfer_ring_phys); 3208 } 3209 3210 static int tegra_xudc_alloc_eps(struct tegra_xudc *xudc) 3211 { 3212 struct usb_request *req; 3213 unsigned int i; 3214 int err; 3215 3216 xudc->ep_context = 3217 dma_alloc_coherent(xudc->dev, XUDC_NR_EPS * 3218 sizeof(*xudc->ep_context), 3219 &xudc->ep_context_phys, GFP_KERNEL); 3220 if (!xudc->ep_context) 3221 return -ENOMEM; 3222 3223 xudc->transfer_ring_pool = 3224 dmam_pool_create(dev_name(xudc->dev), xudc->dev, 3225 XUDC_TRANSFER_RING_SIZE * 3226 sizeof(struct tegra_xudc_trb), 3227 sizeof(struct tegra_xudc_trb), 0); 3228 if (!xudc->transfer_ring_pool) { 3229 err = -ENOMEM; 3230 goto free_ep_context; 3231 } 3232 3233 INIT_LIST_HEAD(&xudc->gadget.ep_list); 3234 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) { 3235 err = tegra_xudc_alloc_ep(xudc, i); 3236 if (err < 0) 3237 goto free_eps; 3238 } 3239 3240 req = tegra_xudc_ep_alloc_request(&xudc->ep[0].usb_ep, GFP_KERNEL); 3241 if (!req) { 3242 err = -ENOMEM; 3243 goto free_eps; 3244 } 3245 xudc->ep0_req = to_xudc_req(req); 3246 3247 return 0; 3248 3249 free_eps: 3250 for (; i > 0; i--) 3251 tegra_xudc_free_ep(xudc, i - 1); 3252 free_ep_context: 3253 dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context), 3254 xudc->ep_context, xudc->ep_context_phys); 3255 return err; 3256 } 3257 3258 static void tegra_xudc_init_eps(struct tegra_xudc *xudc) 3259 { 3260 xudc_writel(xudc, lower_32_bits(xudc->ep_context_phys), ECPLO); 3261 xudc_writel(xudc, upper_32_bits(xudc->ep_context_phys), ECPHI); 3262 } 3263 3264 static void tegra_xudc_free_eps(struct tegra_xudc *xudc) 3265 { 3266 unsigned int i; 3267 3268 tegra_xudc_ep_free_request(&xudc->ep[0].usb_ep, 3269 &xudc->ep0_req->usb_req); 3270 3271 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) 3272 tegra_xudc_free_ep(xudc, i); 3273 3274 dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context), 3275 xudc->ep_context, xudc->ep_context_phys); 3276 } 3277 3278 static int tegra_xudc_alloc_event_ring(struct tegra_xudc *xudc) 3279 { 3280 unsigned int i; 3281 3282 for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) { 3283 xudc->event_ring[i] = 3284 dma_alloc_coherent(xudc->dev, XUDC_EVENT_RING_SIZE * 3285 sizeof(*xudc->event_ring[i]), 3286 &xudc->event_ring_phys[i], 3287 GFP_KERNEL); 3288 if (!xudc->event_ring[i]) 3289 goto free_dma; 3290 } 3291 3292 return 0; 3293 3294 free_dma: 3295 for (; i > 0; i--) { 3296 dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE * 3297 sizeof(*xudc->event_ring[i - 1]), 3298 xudc->event_ring[i - 1], 3299 xudc->event_ring_phys[i - 1]); 3300 } 3301 return -ENOMEM; 3302 } 3303 3304 static void tegra_xudc_init_event_ring(struct tegra_xudc *xudc) 3305 { 3306 unsigned int i; 3307 u32 val; 3308 3309 for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) { 3310 memset(xudc->event_ring[i], 0, XUDC_EVENT_RING_SIZE * 3311 sizeof(*xudc->event_ring[i])); 3312 3313 val = xudc_readl(xudc, ERSTSZ); 3314 val &= ~(ERSTSZ_ERSTXSZ_MASK << ERSTSZ_ERSTXSZ_SHIFT(i)); 3315 val |= XUDC_EVENT_RING_SIZE << ERSTSZ_ERSTXSZ_SHIFT(i); 3316 xudc_writel(xudc, val, ERSTSZ); 3317 3318 xudc_writel(xudc, lower_32_bits(xudc->event_ring_phys[i]), 3319 ERSTXBALO(i)); 3320 xudc_writel(xudc, upper_32_bits(xudc->event_ring_phys[i]), 3321 ERSTXBAHI(i)); 3322 } 3323 3324 val = lower_32_bits(xudc->event_ring_phys[0]); 3325 xudc_writel(xudc, val, ERDPLO); 3326 val |= EREPLO_ECS; 3327 xudc_writel(xudc, val, EREPLO); 3328 3329 val = upper_32_bits(xudc->event_ring_phys[0]); 3330 xudc_writel(xudc, val, ERDPHI); 3331 xudc_writel(xudc, val, EREPHI); 3332 3333 xudc->ccs = true; 3334 xudc->event_ring_index = 0; 3335 xudc->event_ring_deq_ptr = 0; 3336 } 3337 3338 static void tegra_xudc_free_event_ring(struct tegra_xudc *xudc) 3339 { 3340 unsigned int i; 3341 3342 for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) { 3343 dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE * 3344 sizeof(*xudc->event_ring[i]), 3345 xudc->event_ring[i], 3346 xudc->event_ring_phys[i]); 3347 } 3348 } 3349 3350 static void tegra_xudc_fpci_ipfs_init(struct tegra_xudc *xudc) 3351 { 3352 u32 val; 3353 3354 if (xudc->soc->has_ipfs) { 3355 val = ipfs_readl(xudc, XUSB_DEV_CONFIGURATION_0); 3356 val |= XUSB_DEV_CONFIGURATION_0_EN_FPCI; 3357 ipfs_writel(xudc, val, XUSB_DEV_CONFIGURATION_0); 3358 usleep_range(10, 15); 3359 } 3360 3361 /* Enable bus master */ 3362 val = XUSB_DEV_CFG_1_IO_SPACE_EN | XUSB_DEV_CFG_1_MEMORY_SPACE_EN | 3363 XUSB_DEV_CFG_1_BUS_MASTER_EN; 3364 fpci_writel(xudc, val, XUSB_DEV_CFG_1); 3365 3366 /* Program BAR0 space */ 3367 val = fpci_readl(xudc, XUSB_DEV_CFG_4); 3368 val &= ~(XUSB_DEV_CFG_4_BASE_ADDR_MASK); 3369 val |= xudc->phys_base & (XUSB_DEV_CFG_4_BASE_ADDR_MASK); 3370 3371 fpci_writel(xudc, val, XUSB_DEV_CFG_4); 3372 fpci_writel(xudc, upper_32_bits(xudc->phys_base), XUSB_DEV_CFG_5); 3373 3374 usleep_range(100, 200); 3375 3376 if (xudc->soc->has_ipfs) { 3377 /* Enable interrupt assertion */ 3378 val = ipfs_readl(xudc, XUSB_DEV_INTR_MASK_0); 3379 val |= XUSB_DEV_INTR_MASK_0_IP_INT_MASK; 3380 ipfs_writel(xudc, val, XUSB_DEV_INTR_MASK_0); 3381 } 3382 } 3383 3384 static void tegra_xudc_device_params_init(struct tegra_xudc *xudc) 3385 { 3386 u32 val, imod; 3387 3388 if (xudc->soc->has_ipfs) { 3389 val = xudc_readl(xudc, BLCG); 3390 val |= BLCG_ALL; 3391 val &= ~(BLCG_DFPCI | BLCG_UFPCI | BLCG_FE | 3392 BLCG_COREPLL_PWRDN); 3393 val |= BLCG_IOPLL_0_PWRDN; 3394 val |= BLCG_IOPLL_1_PWRDN; 3395 val |= BLCG_IOPLL_2_PWRDN; 3396 3397 xudc_writel(xudc, val, BLCG); 3398 } 3399 3400 if (xudc->soc->port_speed_quirk) 3401 tegra_xudc_limit_port_speed(xudc); 3402 3403 /* Set a reasonable U3 exit timer value. */ 3404 val = xudc_readl(xudc, SSPX_CORE_PADCTL4); 3405 val &= ~(SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK); 3406 val |= SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(0x5dc0); 3407 xudc_writel(xudc, val, SSPX_CORE_PADCTL4); 3408 3409 /* Default ping LFPS tBurst is too large. */ 3410 val = xudc_readl(xudc, SSPX_CORE_CNT0); 3411 val &= ~(SSPX_CORE_CNT0_PING_TBURST_MASK); 3412 val |= SSPX_CORE_CNT0_PING_TBURST(0xa); 3413 xudc_writel(xudc, val, SSPX_CORE_CNT0); 3414 3415 /* Default tPortConfiguration timeout is too small. */ 3416 val = xudc_readl(xudc, SSPX_CORE_CNT30); 3417 val &= ~(SSPX_CORE_CNT30_LMPITP_TIMER_MASK); 3418 val |= SSPX_CORE_CNT30_LMPITP_TIMER(0x978); 3419 xudc_writel(xudc, val, SSPX_CORE_CNT30); 3420 3421 if (xudc->soc->lpm_enable) { 3422 /* Set L1 resume duration to 95 us. */ 3423 val = xudc_readl(xudc, HSFSPI_COUNT13); 3424 val &= ~(HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK); 3425 val |= HSFSPI_COUNT13_U2_RESUME_K_DURATION(0x2c88); 3426 xudc_writel(xudc, val, HSFSPI_COUNT13); 3427 } 3428 3429 /* 3430 * Compliance suite appears to be violating polling LFPS tBurst max 3431 * of 1.4us. Send 1.45us instead. 3432 */ 3433 val = xudc_readl(xudc, SSPX_CORE_CNT32); 3434 val &= ~(SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK); 3435 val |= SSPX_CORE_CNT32_POLL_TBURST_MAX(0xb0); 3436 xudc_writel(xudc, val, SSPX_CORE_CNT32); 3437 3438 /* Direct HS/FS port instance to RxDetect. */ 3439 val = xudc_readl(xudc, CFG_DEV_FE); 3440 val &= ~(CFG_DEV_FE_PORTREGSEL_MASK); 3441 val |= CFG_DEV_FE_PORTREGSEL(CFG_DEV_FE_PORTREGSEL_HSFS_PI); 3442 xudc_writel(xudc, val, CFG_DEV_FE); 3443 3444 val = xudc_readl(xudc, PORTSC); 3445 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK); 3446 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT); 3447 xudc_writel(xudc, val, PORTSC); 3448 3449 /* Direct SS port instance to RxDetect. */ 3450 val = xudc_readl(xudc, CFG_DEV_FE); 3451 val &= ~(CFG_DEV_FE_PORTREGSEL_MASK); 3452 val |= CFG_DEV_FE_PORTREGSEL_SS_PI & CFG_DEV_FE_PORTREGSEL_MASK; 3453 xudc_writel(xudc, val, CFG_DEV_FE); 3454 3455 val = xudc_readl(xudc, PORTSC); 3456 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK); 3457 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT); 3458 xudc_writel(xudc, val, PORTSC); 3459 3460 /* Restore port instance. */ 3461 val = xudc_readl(xudc, CFG_DEV_FE); 3462 val &= ~(CFG_DEV_FE_PORTREGSEL_MASK); 3463 xudc_writel(xudc, val, CFG_DEV_FE); 3464 3465 /* 3466 * Enable INFINITE_SS_RETRY to prevent device from entering 3467 * Disabled.Error when attached to buggy SuperSpeed hubs. 3468 */ 3469 val = xudc_readl(xudc, CFG_DEV_FE); 3470 val |= CFG_DEV_FE_INFINITE_SS_RETRY; 3471 xudc_writel(xudc, val, CFG_DEV_FE); 3472 3473 /* Set interrupt moderation. */ 3474 imod = XUDC_INTERRUPT_MODERATION_US * 4; 3475 val = xudc_readl(xudc, RT_IMOD); 3476 val &= ~((RT_IMOD_IMODI_MASK) | (RT_IMOD_IMODC_MASK)); 3477 val |= (RT_IMOD_IMODI(imod) | RT_IMOD_IMODC(imod)); 3478 xudc_writel(xudc, val, RT_IMOD); 3479 3480 /* increase SSPI transaction timeout from 32us to 512us */ 3481 val = xudc_readl(xudc, CFG_DEV_SSPI_XFER); 3482 val &= ~(CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK); 3483 val |= CFG_DEV_SSPI_XFER_ACKTIMEOUT(0xf000); 3484 xudc_writel(xudc, val, CFG_DEV_SSPI_XFER); 3485 } 3486 3487 static int tegra_xudc_phy_get(struct tegra_xudc *xudc) 3488 { 3489 int err = 0, usb3; 3490 unsigned int i; 3491 3492 xudc->utmi_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys, 3493 sizeof(*xudc->utmi_phy), GFP_KERNEL); 3494 if (!xudc->utmi_phy) 3495 return -ENOMEM; 3496 3497 xudc->usb3_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys, 3498 sizeof(*xudc->usb3_phy), GFP_KERNEL); 3499 if (!xudc->usb3_phy) 3500 return -ENOMEM; 3501 3502 xudc->usbphy = devm_kcalloc(xudc->dev, xudc->soc->num_phys, 3503 sizeof(*xudc->usbphy), GFP_KERNEL); 3504 if (!xudc->usbphy) 3505 return -ENOMEM; 3506 3507 xudc->vbus_nb.notifier_call = tegra_xudc_vbus_notify; 3508 3509 for (i = 0; i < xudc->soc->num_phys; i++) { 3510 char phy_name[] = "usb.-."; 3511 3512 /* Get USB2 phy */ 3513 snprintf(phy_name, sizeof(phy_name), "usb2-%d", i); 3514 xudc->utmi_phy[i] = devm_phy_optional_get(xudc->dev, phy_name); 3515 if (IS_ERR(xudc->utmi_phy[i])) { 3516 err = PTR_ERR(xudc->utmi_phy[i]); 3517 dev_err_probe(xudc->dev, err, 3518 "failed to get usb2-%d PHY\n", i); 3519 goto clean_up; 3520 } else if (xudc->utmi_phy[i]) { 3521 /* Get usb-phy, if utmi phy is available */ 3522 xudc->usbphy[i] = devm_usb_get_phy_by_node(xudc->dev, 3523 xudc->utmi_phy[i]->dev.of_node, 3524 &xudc->vbus_nb); 3525 if (IS_ERR(xudc->usbphy[i])) { 3526 err = PTR_ERR(xudc->usbphy[i]); 3527 dev_err_probe(xudc->dev, err, 3528 "failed to get usbphy-%d\n", i); 3529 goto clean_up; 3530 } 3531 } else if (!xudc->utmi_phy[i]) { 3532 /* if utmi phy is not available, ignore USB3 phy get */ 3533 continue; 3534 } 3535 3536 /* Get USB3 phy */ 3537 usb3 = tegra_xusb_padctl_get_usb3_companion(xudc->padctl, i); 3538 if (usb3 < 0) 3539 continue; 3540 3541 snprintf(phy_name, sizeof(phy_name), "usb3-%d", usb3); 3542 xudc->usb3_phy[i] = devm_phy_optional_get(xudc->dev, phy_name); 3543 if (IS_ERR(xudc->usb3_phy[i])) { 3544 err = PTR_ERR(xudc->usb3_phy[i]); 3545 dev_err_probe(xudc->dev, err, 3546 "failed to get usb3-%d PHY\n", usb3); 3547 goto clean_up; 3548 } else if (xudc->usb3_phy[i]) 3549 dev_dbg(xudc->dev, "usb3-%d PHY registered", usb3); 3550 } 3551 3552 return err; 3553 3554 clean_up: 3555 for (i = 0; i < xudc->soc->num_phys; i++) { 3556 xudc->usb3_phy[i] = NULL; 3557 xudc->utmi_phy[i] = NULL; 3558 xudc->usbphy[i] = NULL; 3559 } 3560 3561 return err; 3562 } 3563 3564 static void tegra_xudc_phy_exit(struct tegra_xudc *xudc) 3565 { 3566 unsigned int i; 3567 3568 for (i = 0; i < xudc->soc->num_phys; i++) { 3569 phy_exit(xudc->usb3_phy[i]); 3570 phy_exit(xudc->utmi_phy[i]); 3571 } 3572 } 3573 3574 static int tegra_xudc_phy_init(struct tegra_xudc *xudc) 3575 { 3576 int err; 3577 unsigned int i; 3578 3579 for (i = 0; i < xudc->soc->num_phys; i++) { 3580 err = phy_init(xudc->utmi_phy[i]); 3581 if (err < 0) { 3582 dev_err(xudc->dev, "UTMI PHY #%u initialization failed: %d\n", i, err); 3583 goto exit_phy; 3584 } 3585 3586 err = phy_init(xudc->usb3_phy[i]); 3587 if (err < 0) { 3588 dev_err(xudc->dev, "USB3 PHY #%u initialization failed: %d\n", i, err); 3589 goto exit_phy; 3590 } 3591 } 3592 return 0; 3593 3594 exit_phy: 3595 tegra_xudc_phy_exit(xudc); 3596 return err; 3597 } 3598 3599 static const char * const tegra210_xudc_supply_names[] = { 3600 "hvdd-usb", 3601 "avddio-usb", 3602 }; 3603 3604 static const char * const tegra210_xudc_clock_names[] = { 3605 "dev", 3606 "ss", 3607 "ss_src", 3608 "hs_src", 3609 "fs_src", 3610 }; 3611 3612 static const char * const tegra186_xudc_clock_names[] = { 3613 "dev", 3614 "ss", 3615 "ss_src", 3616 "fs_src", 3617 }; 3618 3619 static struct tegra_xudc_soc tegra210_xudc_soc_data = { 3620 .supply_names = tegra210_xudc_supply_names, 3621 .num_supplies = ARRAY_SIZE(tegra210_xudc_supply_names), 3622 .clock_names = tegra210_xudc_clock_names, 3623 .num_clks = ARRAY_SIZE(tegra210_xudc_clock_names), 3624 .num_phys = 4, 3625 .u1_enable = false, 3626 .u2_enable = true, 3627 .lpm_enable = false, 3628 .invalid_seq_num = true, 3629 .pls_quirk = true, 3630 .port_reset_quirk = true, 3631 .port_speed_quirk = false, 3632 .has_ipfs = true, 3633 }; 3634 3635 static struct tegra_xudc_soc tegra186_xudc_soc_data = { 3636 .clock_names = tegra186_xudc_clock_names, 3637 .num_clks = ARRAY_SIZE(tegra186_xudc_clock_names), 3638 .num_phys = 4, 3639 .u1_enable = true, 3640 .u2_enable = true, 3641 .lpm_enable = false, 3642 .invalid_seq_num = false, 3643 .pls_quirk = false, 3644 .port_reset_quirk = false, 3645 .port_speed_quirk = false, 3646 .has_ipfs = false, 3647 }; 3648 3649 static struct tegra_xudc_soc tegra194_xudc_soc_data = { 3650 .clock_names = tegra186_xudc_clock_names, 3651 .num_clks = ARRAY_SIZE(tegra186_xudc_clock_names), 3652 .num_phys = 4, 3653 .u1_enable = true, 3654 .u2_enable = true, 3655 .lpm_enable = true, 3656 .invalid_seq_num = false, 3657 .pls_quirk = false, 3658 .port_reset_quirk = false, 3659 .port_speed_quirk = true, 3660 .has_ipfs = false, 3661 }; 3662 3663 static const struct of_device_id tegra_xudc_of_match[] = { 3664 { 3665 .compatible = "nvidia,tegra210-xudc", 3666 .data = &tegra210_xudc_soc_data 3667 }, 3668 { 3669 .compatible = "nvidia,tegra186-xudc", 3670 .data = &tegra186_xudc_soc_data 3671 }, 3672 { 3673 .compatible = "nvidia,tegra194-xudc", 3674 .data = &tegra194_xudc_soc_data 3675 }, 3676 { } 3677 }; 3678 MODULE_DEVICE_TABLE(of, tegra_xudc_of_match); 3679 3680 static void tegra_xudc_powerdomain_remove(struct tegra_xudc *xudc) 3681 { 3682 if (xudc->genpd_dl_ss) 3683 device_link_del(xudc->genpd_dl_ss); 3684 if (xudc->genpd_dl_device) 3685 device_link_del(xudc->genpd_dl_device); 3686 if (xudc->genpd_dev_ss) 3687 dev_pm_domain_detach(xudc->genpd_dev_ss, true); 3688 if (xudc->genpd_dev_device) 3689 dev_pm_domain_detach(xudc->genpd_dev_device, true); 3690 } 3691 3692 static int tegra_xudc_powerdomain_init(struct tegra_xudc *xudc) 3693 { 3694 struct device *dev = xudc->dev; 3695 int err; 3696 3697 xudc->genpd_dev_device = dev_pm_domain_attach_by_name(dev, "dev"); 3698 if (IS_ERR_OR_NULL(xudc->genpd_dev_device)) { 3699 err = PTR_ERR(xudc->genpd_dev_device) ? : -ENODATA; 3700 dev_err(dev, "failed to get device power domain: %d\n", err); 3701 return err; 3702 } 3703 3704 xudc->genpd_dev_ss = dev_pm_domain_attach_by_name(dev, "ss"); 3705 if (IS_ERR_OR_NULL(xudc->genpd_dev_ss)) { 3706 err = PTR_ERR(xudc->genpd_dev_ss) ? : -ENODATA; 3707 dev_err(dev, "failed to get SuperSpeed power domain: %d\n", err); 3708 return err; 3709 } 3710 3711 xudc->genpd_dl_device = device_link_add(dev, xudc->genpd_dev_device, 3712 DL_FLAG_PM_RUNTIME | 3713 DL_FLAG_STATELESS); 3714 if (!xudc->genpd_dl_device) { 3715 dev_err(dev, "failed to add USB device link\n"); 3716 return -ENODEV; 3717 } 3718 3719 xudc->genpd_dl_ss = device_link_add(dev, xudc->genpd_dev_ss, 3720 DL_FLAG_PM_RUNTIME | 3721 DL_FLAG_STATELESS); 3722 if (!xudc->genpd_dl_ss) { 3723 dev_err(dev, "failed to add SuperSpeed device link\n"); 3724 return -ENODEV; 3725 } 3726 3727 return 0; 3728 } 3729 3730 static int tegra_xudc_probe(struct platform_device *pdev) 3731 { 3732 struct tegra_xudc *xudc; 3733 struct resource *res; 3734 unsigned int i; 3735 int err; 3736 3737 xudc = devm_kzalloc(&pdev->dev, sizeof(*xudc), GFP_KERNEL); 3738 if (!xudc) 3739 return -ENOMEM; 3740 3741 xudc->dev = &pdev->dev; 3742 platform_set_drvdata(pdev, xudc); 3743 3744 xudc->soc = of_device_get_match_data(&pdev->dev); 3745 if (!xudc->soc) 3746 return -ENODEV; 3747 3748 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base"); 3749 xudc->base = devm_ioremap_resource(&pdev->dev, res); 3750 if (IS_ERR(xudc->base)) 3751 return PTR_ERR(xudc->base); 3752 xudc->phys_base = res->start; 3753 3754 xudc->fpci = devm_platform_ioremap_resource_byname(pdev, "fpci"); 3755 if (IS_ERR(xudc->fpci)) 3756 return PTR_ERR(xudc->fpci); 3757 3758 if (xudc->soc->has_ipfs) { 3759 xudc->ipfs = devm_platform_ioremap_resource_byname(pdev, "ipfs"); 3760 if (IS_ERR(xudc->ipfs)) 3761 return PTR_ERR(xudc->ipfs); 3762 } 3763 3764 xudc->irq = platform_get_irq(pdev, 0); 3765 if (xudc->irq < 0) 3766 return xudc->irq; 3767 3768 err = devm_request_irq(&pdev->dev, xudc->irq, tegra_xudc_irq, 0, 3769 dev_name(&pdev->dev), xudc); 3770 if (err < 0) { 3771 dev_err(xudc->dev, "failed to claim IRQ#%u: %d\n", xudc->irq, 3772 err); 3773 return err; 3774 } 3775 3776 xudc->clks = devm_kcalloc(&pdev->dev, xudc->soc->num_clks, sizeof(*xudc->clks), 3777 GFP_KERNEL); 3778 if (!xudc->clks) 3779 return -ENOMEM; 3780 3781 for (i = 0; i < xudc->soc->num_clks; i++) 3782 xudc->clks[i].id = xudc->soc->clock_names[i]; 3783 3784 err = devm_clk_bulk_get(&pdev->dev, xudc->soc->num_clks, xudc->clks); 3785 if (err) { 3786 dev_err_probe(xudc->dev, err, "failed to request clocks\n"); 3787 return err; 3788 } 3789 3790 xudc->supplies = devm_kcalloc(&pdev->dev, xudc->soc->num_supplies, 3791 sizeof(*xudc->supplies), GFP_KERNEL); 3792 if (!xudc->supplies) 3793 return -ENOMEM; 3794 3795 for (i = 0; i < xudc->soc->num_supplies; i++) 3796 xudc->supplies[i].supply = xudc->soc->supply_names[i]; 3797 3798 err = devm_regulator_bulk_get(&pdev->dev, xudc->soc->num_supplies, 3799 xudc->supplies); 3800 if (err) { 3801 dev_err_probe(xudc->dev, err, "failed to request regulators\n"); 3802 return err; 3803 } 3804 3805 xudc->padctl = tegra_xusb_padctl_get(&pdev->dev); 3806 if (IS_ERR(xudc->padctl)) 3807 return PTR_ERR(xudc->padctl); 3808 3809 err = regulator_bulk_enable(xudc->soc->num_supplies, xudc->supplies); 3810 if (err) { 3811 dev_err(xudc->dev, "failed to enable regulators: %d\n", err); 3812 goto put_padctl; 3813 } 3814 3815 err = tegra_xudc_phy_get(xudc); 3816 if (err) 3817 goto disable_regulator; 3818 3819 err = tegra_xudc_powerdomain_init(xudc); 3820 if (err) 3821 goto put_powerdomains; 3822 3823 err = tegra_xudc_phy_init(xudc); 3824 if (err) 3825 goto put_powerdomains; 3826 3827 err = tegra_xudc_alloc_event_ring(xudc); 3828 if (err) 3829 goto disable_phy; 3830 3831 err = tegra_xudc_alloc_eps(xudc); 3832 if (err) 3833 goto free_event_ring; 3834 3835 spin_lock_init(&xudc->lock); 3836 3837 init_completion(&xudc->disconnect_complete); 3838 3839 INIT_WORK(&xudc->usb_role_sw_work, tegra_xudc_usb_role_sw_work); 3840 3841 INIT_DELAYED_WORK(&xudc->plc_reset_work, tegra_xudc_plc_reset_work); 3842 3843 INIT_DELAYED_WORK(&xudc->port_reset_war_work, 3844 tegra_xudc_port_reset_war_work); 3845 3846 pm_runtime_enable(&pdev->dev); 3847 3848 xudc->gadget.ops = &tegra_xudc_gadget_ops; 3849 xudc->gadget.ep0 = &xudc->ep[0].usb_ep; 3850 xudc->gadget.name = "tegra-xudc"; 3851 xudc->gadget.max_speed = USB_SPEED_SUPER; 3852 3853 err = usb_add_gadget_udc(&pdev->dev, &xudc->gadget); 3854 if (err) { 3855 dev_err(&pdev->dev, "failed to add USB gadget: %d\n", err); 3856 goto free_eps; 3857 } 3858 3859 return 0; 3860 3861 free_eps: 3862 pm_runtime_disable(&pdev->dev); 3863 tegra_xudc_free_eps(xudc); 3864 free_event_ring: 3865 tegra_xudc_free_event_ring(xudc); 3866 disable_phy: 3867 tegra_xudc_phy_exit(xudc); 3868 put_powerdomains: 3869 tegra_xudc_powerdomain_remove(xudc); 3870 disable_regulator: 3871 regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies); 3872 put_padctl: 3873 tegra_xusb_padctl_put(xudc->padctl); 3874 3875 return err; 3876 } 3877 3878 static int tegra_xudc_remove(struct platform_device *pdev) 3879 { 3880 struct tegra_xudc *xudc = platform_get_drvdata(pdev); 3881 unsigned int i; 3882 3883 pm_runtime_get_sync(xudc->dev); 3884 3885 cancel_delayed_work_sync(&xudc->plc_reset_work); 3886 cancel_work_sync(&xudc->usb_role_sw_work); 3887 3888 usb_del_gadget_udc(&xudc->gadget); 3889 3890 tegra_xudc_free_eps(xudc); 3891 tegra_xudc_free_event_ring(xudc); 3892 3893 tegra_xudc_powerdomain_remove(xudc); 3894 3895 regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies); 3896 3897 for (i = 0; i < xudc->soc->num_phys; i++) { 3898 phy_power_off(xudc->utmi_phy[i]); 3899 phy_power_off(xudc->usb3_phy[i]); 3900 } 3901 3902 tegra_xudc_phy_exit(xudc); 3903 3904 pm_runtime_disable(xudc->dev); 3905 pm_runtime_put(xudc->dev); 3906 3907 tegra_xusb_padctl_put(xudc->padctl); 3908 3909 return 0; 3910 } 3911 3912 static int __maybe_unused tegra_xudc_powergate(struct tegra_xudc *xudc) 3913 { 3914 unsigned long flags; 3915 3916 dev_dbg(xudc->dev, "entering ELPG\n"); 3917 3918 spin_lock_irqsave(&xudc->lock, flags); 3919 3920 xudc->powergated = true; 3921 xudc->saved_regs.ctrl = xudc_readl(xudc, CTRL); 3922 xudc->saved_regs.portpm = xudc_readl(xudc, PORTPM); 3923 xudc_writel(xudc, 0, CTRL); 3924 3925 spin_unlock_irqrestore(&xudc->lock, flags); 3926 3927 clk_bulk_disable_unprepare(xudc->soc->num_clks, xudc->clks); 3928 3929 regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies); 3930 3931 dev_dbg(xudc->dev, "entering ELPG done\n"); 3932 return 0; 3933 } 3934 3935 static int __maybe_unused tegra_xudc_unpowergate(struct tegra_xudc *xudc) 3936 { 3937 unsigned long flags; 3938 int err; 3939 3940 dev_dbg(xudc->dev, "exiting ELPG\n"); 3941 3942 err = regulator_bulk_enable(xudc->soc->num_supplies, 3943 xudc->supplies); 3944 if (err < 0) 3945 return err; 3946 3947 err = clk_bulk_prepare_enable(xudc->soc->num_clks, xudc->clks); 3948 if (err < 0) 3949 return err; 3950 3951 tegra_xudc_fpci_ipfs_init(xudc); 3952 3953 tegra_xudc_device_params_init(xudc); 3954 3955 tegra_xudc_init_event_ring(xudc); 3956 3957 tegra_xudc_init_eps(xudc); 3958 3959 xudc_writel(xudc, xudc->saved_regs.portpm, PORTPM); 3960 xudc_writel(xudc, xudc->saved_regs.ctrl, CTRL); 3961 3962 spin_lock_irqsave(&xudc->lock, flags); 3963 xudc->powergated = false; 3964 spin_unlock_irqrestore(&xudc->lock, flags); 3965 3966 dev_dbg(xudc->dev, "exiting ELPG done\n"); 3967 return 0; 3968 } 3969 3970 static int __maybe_unused tegra_xudc_suspend(struct device *dev) 3971 { 3972 struct tegra_xudc *xudc = dev_get_drvdata(dev); 3973 unsigned long flags; 3974 3975 spin_lock_irqsave(&xudc->lock, flags); 3976 xudc->suspended = true; 3977 spin_unlock_irqrestore(&xudc->lock, flags); 3978 3979 flush_work(&xudc->usb_role_sw_work); 3980 3981 if (!pm_runtime_status_suspended(dev)) { 3982 /* Forcibly disconnect before powergating. */ 3983 tegra_xudc_device_mode_off(xudc); 3984 tegra_xudc_powergate(xudc); 3985 } 3986 3987 pm_runtime_disable(dev); 3988 3989 return 0; 3990 } 3991 3992 static int __maybe_unused tegra_xudc_resume(struct device *dev) 3993 { 3994 struct tegra_xudc *xudc = dev_get_drvdata(dev); 3995 unsigned long flags; 3996 int err; 3997 3998 err = tegra_xudc_unpowergate(xudc); 3999 if (err < 0) 4000 return err; 4001 4002 spin_lock_irqsave(&xudc->lock, flags); 4003 xudc->suspended = false; 4004 spin_unlock_irqrestore(&xudc->lock, flags); 4005 4006 schedule_work(&xudc->usb_role_sw_work); 4007 4008 pm_runtime_enable(dev); 4009 4010 return 0; 4011 } 4012 4013 static int __maybe_unused tegra_xudc_runtime_suspend(struct device *dev) 4014 { 4015 struct tegra_xudc *xudc = dev_get_drvdata(dev); 4016 4017 return tegra_xudc_powergate(xudc); 4018 } 4019 4020 static int __maybe_unused tegra_xudc_runtime_resume(struct device *dev) 4021 { 4022 struct tegra_xudc *xudc = dev_get_drvdata(dev); 4023 4024 return tegra_xudc_unpowergate(xudc); 4025 } 4026 4027 static const struct dev_pm_ops tegra_xudc_pm_ops = { 4028 SET_SYSTEM_SLEEP_PM_OPS(tegra_xudc_suspend, tegra_xudc_resume) 4029 SET_RUNTIME_PM_OPS(tegra_xudc_runtime_suspend, 4030 tegra_xudc_runtime_resume, NULL) 4031 }; 4032 4033 static struct platform_driver tegra_xudc_driver = { 4034 .probe = tegra_xudc_probe, 4035 .remove = tegra_xudc_remove, 4036 .driver = { 4037 .name = "tegra-xudc", 4038 .pm = &tegra_xudc_pm_ops, 4039 .of_match_table = tegra_xudc_of_match, 4040 }, 4041 }; 4042 module_platform_driver(tegra_xudc_driver); 4043 4044 MODULE_DESCRIPTION("NVIDIA Tegra XUSB Device Controller"); 4045 MODULE_AUTHOR("Andrew Bresticker <abrestic@chromium.org>"); 4046 MODULE_AUTHOR("Hui Fu <hfu@nvidia.com>"); 4047 MODULE_AUTHOR("Nagarjuna Kristam <nkristam@nvidia.com>"); 4048 MODULE_LICENSE("GPL v2"); 4049