1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * NVIDIA Tegra XUSB device mode controller
4  *
5  * Copyright (c) 2013-2022, NVIDIA CORPORATION.  All rights reserved.
6  * Copyright (c) 2015, Google Inc.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmapool.h>
14 #include <linux/interrupt.h>
15 #include <linux/iopoll.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/of_device.h>
20 #include <linux/phy/phy.h>
21 #include <linux/phy/tegra/xusb.h>
22 #include <linux/pm_domain.h>
23 #include <linux/platform_device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/reset.h>
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/otg.h>
30 #include <linux/usb/role.h>
31 #include <linux/usb/phy.h>
32 #include <linux/workqueue.h>
33 
34 /* XUSB_DEV registers */
35 #define DB 0x004
36 #define  DB_TARGET_MASK GENMASK(15, 8)
37 #define  DB_TARGET(x) (((x) << 8) & DB_TARGET_MASK)
38 #define  DB_STREAMID_MASK GENMASK(31, 16)
39 #define  DB_STREAMID(x) (((x) << 16) & DB_STREAMID_MASK)
40 #define ERSTSZ 0x008
41 #define  ERSTSZ_ERSTXSZ_SHIFT(x) ((x) * 16)
42 #define  ERSTSZ_ERSTXSZ_MASK GENMASK(15, 0)
43 #define ERSTXBALO(x) (0x010 + 8 * (x))
44 #define ERSTXBAHI(x) (0x014 + 8 * (x))
45 #define ERDPLO 0x020
46 #define  ERDPLO_EHB BIT(3)
47 #define ERDPHI 0x024
48 #define EREPLO 0x028
49 #define  EREPLO_ECS BIT(0)
50 #define  EREPLO_SEGI BIT(1)
51 #define EREPHI 0x02c
52 #define CTRL 0x030
53 #define  CTRL_RUN BIT(0)
54 #define  CTRL_LSE BIT(1)
55 #define  CTRL_IE BIT(4)
56 #define  CTRL_SMI_EVT BIT(5)
57 #define  CTRL_SMI_DSE BIT(6)
58 #define  CTRL_EWE BIT(7)
59 #define  CTRL_DEVADDR_MASK GENMASK(30, 24)
60 #define  CTRL_DEVADDR(x) (((x) << 24) & CTRL_DEVADDR_MASK)
61 #define  CTRL_ENABLE BIT(31)
62 #define ST 0x034
63 #define  ST_RC BIT(0)
64 #define  ST_IP BIT(4)
65 #define RT_IMOD	0x038
66 #define  RT_IMOD_IMODI_MASK GENMASK(15, 0)
67 #define  RT_IMOD_IMODI(x) ((x) & RT_IMOD_IMODI_MASK)
68 #define  RT_IMOD_IMODC_MASK GENMASK(31, 16)
69 #define  RT_IMOD_IMODC(x) (((x) << 16) & RT_IMOD_IMODC_MASK)
70 #define PORTSC 0x03c
71 #define  PORTSC_CCS BIT(0)
72 #define  PORTSC_PED BIT(1)
73 #define  PORTSC_PR BIT(4)
74 #define  PORTSC_PLS_SHIFT 5
75 #define  PORTSC_PLS_MASK GENMASK(8, 5)
76 #define  PORTSC_PLS_U0 0x0
77 #define  PORTSC_PLS_U2 0x2
78 #define  PORTSC_PLS_U3 0x3
79 #define  PORTSC_PLS_DISABLED 0x4
80 #define  PORTSC_PLS_RXDETECT 0x5
81 #define  PORTSC_PLS_INACTIVE 0x6
82 #define  PORTSC_PLS_RESUME 0xf
83 #define  PORTSC_PLS(x) (((x) << PORTSC_PLS_SHIFT) & PORTSC_PLS_MASK)
84 #define  PORTSC_PS_SHIFT 10
85 #define  PORTSC_PS_MASK GENMASK(13, 10)
86 #define  PORTSC_PS_UNDEFINED 0x0
87 #define  PORTSC_PS_FS 0x1
88 #define  PORTSC_PS_LS 0x2
89 #define  PORTSC_PS_HS 0x3
90 #define  PORTSC_PS_SS 0x4
91 #define  PORTSC_LWS BIT(16)
92 #define  PORTSC_CSC BIT(17)
93 #define  PORTSC_WRC BIT(19)
94 #define  PORTSC_PRC BIT(21)
95 #define  PORTSC_PLC BIT(22)
96 #define  PORTSC_CEC BIT(23)
97 #define  PORTSC_WPR BIT(30)
98 #define  PORTSC_CHANGE_MASK (PORTSC_CSC | PORTSC_WRC | PORTSC_PRC | \
99 			     PORTSC_PLC | PORTSC_CEC)
100 #define ECPLO 0x040
101 #define ECPHI 0x044
102 #define MFINDEX 0x048
103 #define  MFINDEX_FRAME_SHIFT 3
104 #define  MFINDEX_FRAME_MASK GENMASK(13, 3)
105 #define PORTPM 0x04c
106 #define  PORTPM_L1S_MASK GENMASK(1, 0)
107 #define  PORTPM_L1S_DROP 0x0
108 #define  PORTPM_L1S_ACCEPT 0x1
109 #define  PORTPM_L1S_NYET 0x2
110 #define  PORTPM_L1S_STALL 0x3
111 #define  PORTPM_L1S(x) ((x) & PORTPM_L1S_MASK)
112 #define  PORTPM_RWE BIT(3)
113 #define  PORTPM_U2TIMEOUT_MASK GENMASK(15, 8)
114 #define  PORTPM_U1TIMEOUT_MASK GENMASK(23, 16)
115 #define  PORTPM_FLA BIT(24)
116 #define  PORTPM_VBA BIT(25)
117 #define  PORTPM_WOC BIT(26)
118 #define  PORTPM_WOD BIT(27)
119 #define  PORTPM_U1E BIT(28)
120 #define  PORTPM_U2E BIT(29)
121 #define  PORTPM_FRWE BIT(30)
122 #define  PORTPM_PNG_CYA BIT(31)
123 #define EP_HALT 0x050
124 #define EP_PAUSE 0x054
125 #define EP_RELOAD 0x058
126 #define EP_STCHG 0x05c
127 #define DEVNOTIF_LO 0x064
128 #define  DEVNOTIF_LO_TRIG BIT(0)
129 #define  DEVNOTIF_LO_TYPE_MASK GENMASK(7, 4)
130 #define  DEVNOTIF_LO_TYPE(x) (((x) << 4)  & DEVNOTIF_LO_TYPE_MASK)
131 #define  DEVNOTIF_LO_TYPE_FUNCTION_WAKE 0x1
132 #define DEVNOTIF_HI 0x068
133 #define PORTHALT 0x06c
134 #define  PORTHALT_HALT_LTSSM BIT(0)
135 #define  PORTHALT_HALT_REJECT BIT(1)
136 #define  PORTHALT_STCHG_REQ BIT(20)
137 #define  PORTHALT_STCHG_INTR_EN BIT(24)
138 #define PORT_TM	0x070
139 #define EP_THREAD_ACTIVE 0x074
140 #define EP_STOPPED 0x078
141 #define HSFSPI_COUNT0 0x100
142 #define HSFSPI_COUNT13 0x134
143 #define  HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK GENMASK(29, 0)
144 #define  HSFSPI_COUNT13_U2_RESUME_K_DURATION(x) ((x) & \
145 				HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK)
146 #define BLCG 0x840
147 #define SSPX_CORE_CNT0 0x610
148 #define  SSPX_CORE_CNT0_PING_TBURST_MASK GENMASK(7, 0)
149 #define  SSPX_CORE_CNT0_PING_TBURST(x) ((x) & SSPX_CORE_CNT0_PING_TBURST_MASK)
150 #define SSPX_CORE_CNT30 0x688
151 #define  SSPX_CORE_CNT30_LMPITP_TIMER_MASK GENMASK(19, 0)
152 #define  SSPX_CORE_CNT30_LMPITP_TIMER(x) ((x) & \
153 					SSPX_CORE_CNT30_LMPITP_TIMER_MASK)
154 #define SSPX_CORE_CNT32 0x690
155 #define  SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK GENMASK(7, 0)
156 #define  SSPX_CORE_CNT32_POLL_TBURST_MAX(x) ((x) & \
157 					SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK)
158 #define SSPX_CORE_CNT56 0x6fc
159 #define  SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK GENMASK(19, 0)
160 #define  SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(x) ((x) & \
161 				SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK)
162 #define SSPX_CORE_CNT57 0x700
163 #define  SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK GENMASK(19, 0)
164 #define  SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(x) ((x) & \
165 				SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK)
166 #define SSPX_CORE_CNT65 0x720
167 #define  SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK GENMASK(19, 0)
168 #define  SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(x) ((x) & \
169 				SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK)
170 #define SSPX_CORE_CNT66 0x724
171 #define  SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK GENMASK(19, 0)
172 #define  SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(x) ((x) & \
173 				SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK)
174 #define SSPX_CORE_CNT67 0x728
175 #define  SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK GENMASK(19, 0)
176 #define  SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(x) ((x) & \
177 				SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK)
178 #define SSPX_CORE_CNT72 0x73c
179 #define  SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK GENMASK(19, 0)
180 #define  SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(x) ((x) & \
181 				SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK)
182 #define SSPX_CORE_PADCTL4 0x750
183 #define  SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK GENMASK(19, 0)
184 #define  SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(x) ((x) & \
185 				SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK)
186 #define  BLCG_DFPCI BIT(0)
187 #define  BLCG_UFPCI BIT(1)
188 #define  BLCG_FE BIT(2)
189 #define  BLCG_COREPLL_PWRDN BIT(8)
190 #define  BLCG_IOPLL_0_PWRDN BIT(9)
191 #define  BLCG_IOPLL_1_PWRDN BIT(10)
192 #define  BLCG_IOPLL_2_PWRDN BIT(11)
193 #define  BLCG_ALL 0x1ff
194 #define CFG_DEV_SSPI_XFER 0x858
195 #define  CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK GENMASK(31, 0)
196 #define  CFG_DEV_SSPI_XFER_ACKTIMEOUT(x) ((x) & \
197 					CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK)
198 #define CFG_DEV_FE 0x85c
199 #define  CFG_DEV_FE_PORTREGSEL_MASK GENMASK(1, 0)
200 #define  CFG_DEV_FE_PORTREGSEL_SS_PI 1
201 #define  CFG_DEV_FE_PORTREGSEL_HSFS_PI 2
202 #define  CFG_DEV_FE_PORTREGSEL(x) ((x) & CFG_DEV_FE_PORTREGSEL_MASK)
203 #define  CFG_DEV_FE_INFINITE_SS_RETRY BIT(29)
204 
205 /* FPCI registers */
206 #define XUSB_DEV_CFG_1 0x004
207 #define  XUSB_DEV_CFG_1_IO_SPACE_EN BIT(0)
208 #define  XUSB_DEV_CFG_1_MEMORY_SPACE_EN BIT(1)
209 #define  XUSB_DEV_CFG_1_BUS_MASTER_EN BIT(2)
210 #define XUSB_DEV_CFG_4 0x010
211 #define  XUSB_DEV_CFG_4_BASE_ADDR_MASK GENMASK(31, 15)
212 #define XUSB_DEV_CFG_5 0x014
213 
214 /* IPFS registers */
215 #define XUSB_DEV_CONFIGURATION_0 0x180
216 #define  XUSB_DEV_CONFIGURATION_0_EN_FPCI BIT(0)
217 #define XUSB_DEV_INTR_MASK_0 0x188
218 #define  XUSB_DEV_INTR_MASK_0_IP_INT_MASK BIT(16)
219 
220 struct tegra_xudc_ep_context {
221 	__le32 info0;
222 	__le32 info1;
223 	__le32 deq_lo;
224 	__le32 deq_hi;
225 	__le32 tx_info;
226 	__le32 rsvd[11];
227 };
228 
229 #define EP_STATE_DISABLED 0
230 #define EP_STATE_RUNNING 1
231 #define EP_STATE_HALTED 2
232 #define EP_STATE_STOPPED 3
233 #define EP_STATE_ERROR 4
234 
235 #define EP_TYPE_INVALID 0
236 #define EP_TYPE_ISOCH_OUT 1
237 #define EP_TYPE_BULK_OUT 2
238 #define EP_TYPE_INTERRUPT_OUT 3
239 #define EP_TYPE_CONTROL 4
240 #define EP_TYPE_ISCOH_IN 5
241 #define EP_TYPE_BULK_IN 6
242 #define EP_TYPE_INTERRUPT_IN 7
243 
244 #define BUILD_EP_CONTEXT_RW(name, member, shift, mask)			\
245 static inline u32 ep_ctx_read_##name(struct tegra_xudc_ep_context *ctx)	\
246 {									\
247 	return (le32_to_cpu(ctx->member) >> (shift)) & (mask);		\
248 }									\
249 static inline void							\
250 ep_ctx_write_##name(struct tegra_xudc_ep_context *ctx, u32 val)		\
251 {									\
252 	u32 tmp;							\
253 									\
254 	tmp = le32_to_cpu(ctx->member) & ~((mask) << (shift));		\
255 	tmp |= (val & (mask)) << (shift);				\
256 	ctx->member = cpu_to_le32(tmp);					\
257 }
258 
259 BUILD_EP_CONTEXT_RW(state, info0, 0, 0x7)
260 BUILD_EP_CONTEXT_RW(mult, info0, 8, 0x3)
261 BUILD_EP_CONTEXT_RW(max_pstreams, info0, 10, 0x1f)
262 BUILD_EP_CONTEXT_RW(lsa, info0, 15, 0x1)
263 BUILD_EP_CONTEXT_RW(interval, info0, 16, 0xff)
264 BUILD_EP_CONTEXT_RW(cerr, info1, 1, 0x3)
265 BUILD_EP_CONTEXT_RW(type, info1, 3, 0x7)
266 BUILD_EP_CONTEXT_RW(hid, info1, 7, 0x1)
267 BUILD_EP_CONTEXT_RW(max_burst_size, info1, 8, 0xff)
268 BUILD_EP_CONTEXT_RW(max_packet_size, info1, 16, 0xffff)
269 BUILD_EP_CONTEXT_RW(dcs, deq_lo, 0, 0x1)
270 BUILD_EP_CONTEXT_RW(deq_lo, deq_lo, 4, 0xfffffff)
271 BUILD_EP_CONTEXT_RW(deq_hi, deq_hi, 0, 0xffffffff)
272 BUILD_EP_CONTEXT_RW(avg_trb_len, tx_info, 0, 0xffff)
273 BUILD_EP_CONTEXT_RW(max_esit_payload, tx_info, 16, 0xffff)
274 BUILD_EP_CONTEXT_RW(edtla, rsvd[0], 0, 0xffffff)
275 BUILD_EP_CONTEXT_RW(rsvd, rsvd[0], 24, 0x1)
276 BUILD_EP_CONTEXT_RW(partial_td, rsvd[0], 25, 0x1)
277 BUILD_EP_CONTEXT_RW(splitxstate, rsvd[0], 26, 0x1)
278 BUILD_EP_CONTEXT_RW(seq_num, rsvd[0], 27, 0x1f)
279 BUILD_EP_CONTEXT_RW(cerrcnt, rsvd[1], 18, 0x3)
280 BUILD_EP_CONTEXT_RW(data_offset, rsvd[2], 0, 0x1ffff)
281 BUILD_EP_CONTEXT_RW(numtrbs, rsvd[2], 22, 0x1f)
282 BUILD_EP_CONTEXT_RW(devaddr, rsvd[6], 0, 0x7f)
283 
284 static inline u64 ep_ctx_read_deq_ptr(struct tegra_xudc_ep_context *ctx)
285 {
286 	return ((u64)ep_ctx_read_deq_hi(ctx) << 32) |
287 		(ep_ctx_read_deq_lo(ctx) << 4);
288 }
289 
290 static inline void
291 ep_ctx_write_deq_ptr(struct tegra_xudc_ep_context *ctx, u64 addr)
292 {
293 	ep_ctx_write_deq_lo(ctx, lower_32_bits(addr) >> 4);
294 	ep_ctx_write_deq_hi(ctx, upper_32_bits(addr));
295 }
296 
297 struct tegra_xudc_trb {
298 	__le32 data_lo;
299 	__le32 data_hi;
300 	__le32 status;
301 	__le32 control;
302 };
303 
304 #define TRB_TYPE_RSVD 0
305 #define TRB_TYPE_NORMAL 1
306 #define TRB_TYPE_SETUP_STAGE 2
307 #define TRB_TYPE_DATA_STAGE 3
308 #define TRB_TYPE_STATUS_STAGE 4
309 #define TRB_TYPE_ISOCH 5
310 #define TRB_TYPE_LINK 6
311 #define TRB_TYPE_TRANSFER_EVENT 32
312 #define TRB_TYPE_PORT_STATUS_CHANGE_EVENT 34
313 #define TRB_TYPE_STREAM 48
314 #define TRB_TYPE_SETUP_PACKET_EVENT 63
315 
316 #define TRB_CMPL_CODE_INVALID 0
317 #define TRB_CMPL_CODE_SUCCESS 1
318 #define TRB_CMPL_CODE_DATA_BUFFER_ERR 2
319 #define TRB_CMPL_CODE_BABBLE_DETECTED_ERR 3
320 #define TRB_CMPL_CODE_USB_TRANS_ERR 4
321 #define TRB_CMPL_CODE_TRB_ERR 5
322 #define TRB_CMPL_CODE_STALL 6
323 #define TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR 10
324 #define TRB_CMPL_CODE_SHORT_PACKET 13
325 #define TRB_CMPL_CODE_RING_UNDERRUN 14
326 #define TRB_CMPL_CODE_RING_OVERRUN 15
327 #define TRB_CMPL_CODE_EVENT_RING_FULL_ERR 21
328 #define TRB_CMPL_CODE_STOPPED 26
329 #define TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN 31
330 #define TRB_CMPL_CODE_STREAM_NUMP_ERROR 219
331 #define TRB_CMPL_CODE_PRIME_PIPE_RECEIVED 220
332 #define TRB_CMPL_CODE_HOST_REJECTED 221
333 #define TRB_CMPL_CODE_CTRL_DIR_ERR 222
334 #define TRB_CMPL_CODE_CTRL_SEQNUM_ERR 223
335 
336 #define BUILD_TRB_RW(name, member, shift, mask)				\
337 static inline u32 trb_read_##name(struct tegra_xudc_trb *trb)		\
338 {									\
339 	return (le32_to_cpu(trb->member) >> (shift)) & (mask);		\
340 }									\
341 static inline void							\
342 trb_write_##name(struct tegra_xudc_trb *trb, u32 val)			\
343 {									\
344 	u32 tmp;							\
345 									\
346 	tmp = le32_to_cpu(trb->member) & ~((mask) << (shift));		\
347 	tmp |= (val & (mask)) << (shift);				\
348 	trb->member = cpu_to_le32(tmp);					\
349 }
350 
351 BUILD_TRB_RW(data_lo, data_lo, 0, 0xffffffff)
352 BUILD_TRB_RW(data_hi, data_hi, 0, 0xffffffff)
353 BUILD_TRB_RW(seq_num, status, 0, 0xffff)
354 BUILD_TRB_RW(transfer_len, status, 0, 0xffffff)
355 BUILD_TRB_RW(td_size, status, 17, 0x1f)
356 BUILD_TRB_RW(cmpl_code, status, 24, 0xff)
357 BUILD_TRB_RW(cycle, control, 0, 0x1)
358 BUILD_TRB_RW(toggle_cycle, control, 1, 0x1)
359 BUILD_TRB_RW(isp, control, 2, 0x1)
360 BUILD_TRB_RW(chain, control, 4, 0x1)
361 BUILD_TRB_RW(ioc, control, 5, 0x1)
362 BUILD_TRB_RW(type, control, 10, 0x3f)
363 BUILD_TRB_RW(stream_id, control, 16, 0xffff)
364 BUILD_TRB_RW(endpoint_id, control, 16, 0x1f)
365 BUILD_TRB_RW(tlbpc, control, 16, 0xf)
366 BUILD_TRB_RW(data_stage_dir, control, 16, 0x1)
367 BUILD_TRB_RW(frame_id, control, 20, 0x7ff)
368 BUILD_TRB_RW(sia, control, 31, 0x1)
369 
370 static inline u64 trb_read_data_ptr(struct tegra_xudc_trb *trb)
371 {
372 	return ((u64)trb_read_data_hi(trb) << 32) |
373 		trb_read_data_lo(trb);
374 }
375 
376 static inline void trb_write_data_ptr(struct tegra_xudc_trb *trb, u64 addr)
377 {
378 	trb_write_data_lo(trb, lower_32_bits(addr));
379 	trb_write_data_hi(trb, upper_32_bits(addr));
380 }
381 
382 struct tegra_xudc_request {
383 	struct usb_request usb_req;
384 
385 	size_t buf_queued;
386 	unsigned int trbs_queued;
387 	unsigned int trbs_needed;
388 	bool need_zlp;
389 
390 	struct tegra_xudc_trb *first_trb;
391 	struct tegra_xudc_trb *last_trb;
392 
393 	struct list_head list;
394 };
395 
396 struct tegra_xudc_ep {
397 	struct tegra_xudc *xudc;
398 	struct usb_ep usb_ep;
399 	unsigned int index;
400 	char name[8];
401 
402 	struct tegra_xudc_ep_context *context;
403 
404 #define XUDC_TRANSFER_RING_SIZE 64
405 	struct tegra_xudc_trb *transfer_ring;
406 	dma_addr_t transfer_ring_phys;
407 
408 	unsigned int enq_ptr;
409 	unsigned int deq_ptr;
410 	bool pcs;
411 	bool ring_full;
412 	bool stream_rejected;
413 
414 	struct list_head queue;
415 	const struct usb_endpoint_descriptor *desc;
416 	const struct usb_ss_ep_comp_descriptor *comp_desc;
417 };
418 
419 struct tegra_xudc_sel_timing {
420 	__u8 u1sel;
421 	__u8 u1pel;
422 	__le16 u2sel;
423 	__le16 u2pel;
424 };
425 
426 enum tegra_xudc_setup_state {
427 	WAIT_FOR_SETUP,
428 	DATA_STAGE_XFER,
429 	DATA_STAGE_RECV,
430 	STATUS_STAGE_XFER,
431 	STATUS_STAGE_RECV,
432 };
433 
434 struct tegra_xudc_setup_packet {
435 	struct usb_ctrlrequest ctrl_req;
436 	unsigned int seq_num;
437 };
438 
439 struct tegra_xudc_save_regs {
440 	u32 ctrl;
441 	u32 portpm;
442 };
443 
444 struct tegra_xudc {
445 	struct device *dev;
446 	const struct tegra_xudc_soc *soc;
447 	struct tegra_xusb_padctl *padctl;
448 
449 	spinlock_t lock;
450 
451 	struct usb_gadget gadget;
452 	struct usb_gadget_driver *driver;
453 
454 #define XUDC_NR_EVENT_RINGS 2
455 #define XUDC_EVENT_RING_SIZE 4096
456 	struct tegra_xudc_trb *event_ring[XUDC_NR_EVENT_RINGS];
457 	dma_addr_t event_ring_phys[XUDC_NR_EVENT_RINGS];
458 	unsigned int event_ring_index;
459 	unsigned int event_ring_deq_ptr;
460 	bool ccs;
461 
462 #define XUDC_NR_EPS 32
463 	struct tegra_xudc_ep ep[XUDC_NR_EPS];
464 	struct tegra_xudc_ep_context *ep_context;
465 	dma_addr_t ep_context_phys;
466 
467 	struct device *genpd_dev_device;
468 	struct device *genpd_dev_ss;
469 	struct device_link *genpd_dl_device;
470 	struct device_link *genpd_dl_ss;
471 
472 	struct dma_pool *transfer_ring_pool;
473 
474 	bool queued_setup_packet;
475 	struct tegra_xudc_setup_packet setup_packet;
476 	enum tegra_xudc_setup_state setup_state;
477 	u16 setup_seq_num;
478 
479 	u16 dev_addr;
480 	u16 isoch_delay;
481 	struct tegra_xudc_sel_timing sel_timing;
482 	u8 test_mode_pattern;
483 	u16 status_buf;
484 	struct tegra_xudc_request *ep0_req;
485 
486 	bool pullup;
487 
488 	unsigned int nr_enabled_eps;
489 	unsigned int nr_isoch_eps;
490 
491 	unsigned int device_state;
492 	unsigned int resume_state;
493 
494 	int irq;
495 
496 	void __iomem *base;
497 	resource_size_t phys_base;
498 	void __iomem *ipfs;
499 	void __iomem *fpci;
500 
501 	struct regulator_bulk_data *supplies;
502 
503 	struct clk_bulk_data *clks;
504 
505 	bool device_mode;
506 	struct work_struct usb_role_sw_work;
507 
508 	struct phy **usb3_phy;
509 	struct phy *curr_usb3_phy;
510 	struct phy **utmi_phy;
511 	struct phy *curr_utmi_phy;
512 
513 	struct tegra_xudc_save_regs saved_regs;
514 	bool suspended;
515 	bool powergated;
516 
517 	struct usb_phy **usbphy;
518 	struct usb_phy *curr_usbphy;
519 	struct notifier_block vbus_nb;
520 
521 	struct completion disconnect_complete;
522 
523 	bool selfpowered;
524 
525 #define TOGGLE_VBUS_WAIT_MS 100
526 	struct delayed_work plc_reset_work;
527 	bool wait_csc;
528 
529 	struct delayed_work port_reset_war_work;
530 	bool wait_for_sec_prc;
531 };
532 
533 #define XUDC_TRB_MAX_BUFFER_SIZE 65536
534 #define XUDC_MAX_ISOCH_EPS 4
535 #define XUDC_INTERRUPT_MODERATION_US 0
536 
537 static struct usb_endpoint_descriptor tegra_xudc_ep0_desc = {
538 	.bLength = USB_DT_ENDPOINT_SIZE,
539 	.bDescriptorType = USB_DT_ENDPOINT,
540 	.bEndpointAddress = 0,
541 	.bmAttributes = USB_ENDPOINT_XFER_CONTROL,
542 	.wMaxPacketSize = cpu_to_le16(64),
543 };
544 
545 struct tegra_xudc_soc {
546 	const char * const *supply_names;
547 	unsigned int num_supplies;
548 	const char * const *clock_names;
549 	unsigned int num_clks;
550 	unsigned int num_phys;
551 	bool u1_enable;
552 	bool u2_enable;
553 	bool lpm_enable;
554 	bool invalid_seq_num;
555 	bool pls_quirk;
556 	bool port_reset_quirk;
557 	bool port_speed_quirk;
558 	bool has_ipfs;
559 };
560 
561 static inline u32 fpci_readl(struct tegra_xudc *xudc, unsigned int offset)
562 {
563 	return readl(xudc->fpci + offset);
564 }
565 
566 static inline void fpci_writel(struct tegra_xudc *xudc, u32 val,
567 			       unsigned int offset)
568 {
569 	writel(val, xudc->fpci + offset);
570 }
571 
572 static inline u32 ipfs_readl(struct tegra_xudc *xudc, unsigned int offset)
573 {
574 	return readl(xudc->ipfs + offset);
575 }
576 
577 static inline void ipfs_writel(struct tegra_xudc *xudc, u32 val,
578 			       unsigned int offset)
579 {
580 	writel(val, xudc->ipfs + offset);
581 }
582 
583 static inline u32 xudc_readl(struct tegra_xudc *xudc, unsigned int offset)
584 {
585 	return readl(xudc->base + offset);
586 }
587 
588 static inline void xudc_writel(struct tegra_xudc *xudc, u32 val,
589 			       unsigned int offset)
590 {
591 	writel(val, xudc->base + offset);
592 }
593 
594 static inline int xudc_readl_poll(struct tegra_xudc *xudc,
595 				  unsigned int offset, u32 mask, u32 val)
596 {
597 	u32 regval;
598 
599 	return readl_poll_timeout_atomic(xudc->base + offset, regval,
600 					 (regval & mask) == val, 1, 100);
601 }
602 
603 static inline struct tegra_xudc *to_xudc(struct usb_gadget *gadget)
604 {
605 	return container_of(gadget, struct tegra_xudc, gadget);
606 }
607 
608 static inline struct tegra_xudc_ep *to_xudc_ep(struct usb_ep *ep)
609 {
610 	return container_of(ep, struct tegra_xudc_ep, usb_ep);
611 }
612 
613 static inline struct tegra_xudc_request *to_xudc_req(struct usb_request *req)
614 {
615 	return container_of(req, struct tegra_xudc_request, usb_req);
616 }
617 
618 static inline void dump_trb(struct tegra_xudc *xudc, const char *type,
619 			    struct tegra_xudc_trb *trb)
620 {
621 	dev_dbg(xudc->dev,
622 		"%s: %p, lo = %#x, hi = %#x, status = %#x, control = %#x\n",
623 		type, trb, trb->data_lo, trb->data_hi, trb->status,
624 		trb->control);
625 }
626 
627 static void tegra_xudc_limit_port_speed(struct tegra_xudc *xudc)
628 {
629 	u32 val;
630 
631 	/* limit port speed to gen 1 */
632 	val = xudc_readl(xudc, SSPX_CORE_CNT56);
633 	val &= ~(SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK);
634 	val |= SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(0x260);
635 	xudc_writel(xudc, val, SSPX_CORE_CNT56);
636 
637 	val = xudc_readl(xudc, SSPX_CORE_CNT57);
638 	val &= ~(SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK);
639 	val |= SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(0x6D6);
640 	xudc_writel(xudc, val, SSPX_CORE_CNT57);
641 
642 	val = xudc_readl(xudc, SSPX_CORE_CNT65);
643 	val &= ~(SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK);
644 	val |= SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(0x4B0);
645 	xudc_writel(xudc, val, SSPX_CORE_CNT66);
646 
647 	val = xudc_readl(xudc, SSPX_CORE_CNT66);
648 	val &= ~(SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK);
649 	val |= SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(0x4B0);
650 	xudc_writel(xudc, val, SSPX_CORE_CNT66);
651 
652 	val = xudc_readl(xudc, SSPX_CORE_CNT67);
653 	val &= ~(SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK);
654 	val |= SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(0x4B0);
655 	xudc_writel(xudc, val, SSPX_CORE_CNT67);
656 
657 	val = xudc_readl(xudc, SSPX_CORE_CNT72);
658 	val &= ~(SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK);
659 	val |= SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(0x10);
660 	xudc_writel(xudc, val, SSPX_CORE_CNT72);
661 }
662 
663 static void tegra_xudc_restore_port_speed(struct tegra_xudc *xudc)
664 {
665 	u32 val;
666 
667 	/* restore port speed to gen2 */
668 	val = xudc_readl(xudc, SSPX_CORE_CNT56);
669 	val &= ~(SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK);
670 	val |= SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(0x438);
671 	xudc_writel(xudc, val, SSPX_CORE_CNT56);
672 
673 	val = xudc_readl(xudc, SSPX_CORE_CNT57);
674 	val &= ~(SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK);
675 	val |= SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(0x528);
676 	xudc_writel(xudc, val, SSPX_CORE_CNT57);
677 
678 	val = xudc_readl(xudc, SSPX_CORE_CNT65);
679 	val &= ~(SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK);
680 	val |= SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(0xE10);
681 	xudc_writel(xudc, val, SSPX_CORE_CNT66);
682 
683 	val = xudc_readl(xudc, SSPX_CORE_CNT66);
684 	val &= ~(SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK);
685 	val |= SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(0x348);
686 	xudc_writel(xudc, val, SSPX_CORE_CNT66);
687 
688 	val = xudc_readl(xudc, SSPX_CORE_CNT67);
689 	val &= ~(SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK);
690 	val |= SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(0x5a0);
691 	xudc_writel(xudc, val, SSPX_CORE_CNT67);
692 
693 	val = xudc_readl(xudc, SSPX_CORE_CNT72);
694 	val &= ~(SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK);
695 	val |= SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(0x1c21);
696 	xudc_writel(xudc, val, SSPX_CORE_CNT72);
697 }
698 
699 static void tegra_xudc_device_mode_on(struct tegra_xudc *xudc)
700 {
701 	int err;
702 
703 	pm_runtime_get_sync(xudc->dev);
704 
705 	tegra_phy_xusb_utmi_pad_power_on(xudc->curr_utmi_phy);
706 
707 	err = phy_power_on(xudc->curr_utmi_phy);
708 	if (err < 0)
709 		dev_err(xudc->dev, "UTMI power on failed: %d\n", err);
710 
711 	err = phy_power_on(xudc->curr_usb3_phy);
712 	if (err < 0)
713 		dev_err(xudc->dev, "USB3 PHY power on failed: %d\n", err);
714 
715 	dev_dbg(xudc->dev, "device mode on\n");
716 
717 	phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG,
718 			 USB_ROLE_DEVICE);
719 }
720 
721 static void tegra_xudc_device_mode_off(struct tegra_xudc *xudc)
722 {
723 	bool connected = false;
724 	u32 pls, val;
725 	int err;
726 
727 	dev_dbg(xudc->dev, "device mode off\n");
728 
729 	connected = !!(xudc_readl(xudc, PORTSC) & PORTSC_CCS);
730 
731 	reinit_completion(&xudc->disconnect_complete);
732 
733 	if (xudc->soc->port_speed_quirk)
734 		tegra_xudc_restore_port_speed(xudc);
735 
736 	phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, USB_ROLE_NONE);
737 
738 	pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >>
739 		PORTSC_PLS_SHIFT;
740 
741 	/* Direct link to U0 if disconnected in RESUME or U2. */
742 	if (xudc->soc->pls_quirk && xudc->gadget.speed == USB_SPEED_SUPER &&
743 	    (pls == PORTSC_PLS_RESUME || pls == PORTSC_PLS_U2)) {
744 		val = xudc_readl(xudc, PORTPM);
745 		val |= PORTPM_FRWE;
746 		xudc_writel(xudc, val, PORTPM);
747 
748 		val = xudc_readl(xudc, PORTSC);
749 		val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
750 		val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0);
751 		xudc_writel(xudc, val, PORTSC);
752 	}
753 
754 	/* Wait for disconnect event. */
755 	if (connected)
756 		wait_for_completion(&xudc->disconnect_complete);
757 
758 	/* Make sure interrupt handler has completed before powergating. */
759 	synchronize_irq(xudc->irq);
760 
761 	tegra_phy_xusb_utmi_pad_power_down(xudc->curr_utmi_phy);
762 
763 	err = phy_power_off(xudc->curr_utmi_phy);
764 	if (err < 0)
765 		dev_err(xudc->dev, "UTMI PHY power off failed: %d\n", err);
766 
767 	err = phy_power_off(xudc->curr_usb3_phy);
768 	if (err < 0)
769 		dev_err(xudc->dev, "USB3 PHY power off failed: %d\n", err);
770 
771 	pm_runtime_put(xudc->dev);
772 }
773 
774 static void tegra_xudc_usb_role_sw_work(struct work_struct *work)
775 {
776 	struct tegra_xudc *xudc = container_of(work, struct tegra_xudc,
777 					       usb_role_sw_work);
778 
779 	if (xudc->device_mode)
780 		tegra_xudc_device_mode_on(xudc);
781 	else
782 		tegra_xudc_device_mode_off(xudc);
783 }
784 
785 static int tegra_xudc_get_phy_index(struct tegra_xudc *xudc,
786 					      struct usb_phy *usbphy)
787 {
788 	unsigned int i;
789 
790 	for (i = 0; i < xudc->soc->num_phys; i++) {
791 		if (xudc->usbphy[i] && usbphy == xudc->usbphy[i])
792 			return i;
793 	}
794 
795 	dev_info(xudc->dev, "phy index could not be found for shared USB PHY");
796 	return -1;
797 }
798 
799 static int tegra_xudc_vbus_notify(struct notifier_block *nb,
800 					 unsigned long action, void *data)
801 {
802 	struct tegra_xudc *xudc = container_of(nb, struct tegra_xudc,
803 					       vbus_nb);
804 	struct usb_phy *usbphy = (struct usb_phy *)data;
805 	int phy_index;
806 
807 	dev_dbg(xudc->dev, "%s(): event is %d\n", __func__, usbphy->last_event);
808 
809 	if ((xudc->device_mode && usbphy->last_event == USB_EVENT_VBUS) ||
810 	    (!xudc->device_mode && usbphy->last_event != USB_EVENT_VBUS)) {
811 		dev_dbg(xudc->dev, "Same role(%d) received. Ignore",
812 			xudc->device_mode);
813 		return NOTIFY_OK;
814 	}
815 
816 	xudc->device_mode = (usbphy->last_event == USB_EVENT_VBUS) ? true :
817 								     false;
818 
819 	phy_index = tegra_xudc_get_phy_index(xudc, usbphy);
820 	dev_dbg(xudc->dev, "%s(): current phy index is %d\n", __func__,
821 		phy_index);
822 
823 	if (!xudc->suspended && phy_index != -1) {
824 		xudc->curr_utmi_phy = xudc->utmi_phy[phy_index];
825 		xudc->curr_usb3_phy = xudc->usb3_phy[phy_index];
826 		xudc->curr_usbphy = usbphy;
827 		schedule_work(&xudc->usb_role_sw_work);
828 	}
829 
830 	return NOTIFY_OK;
831 }
832 
833 static void tegra_xudc_plc_reset_work(struct work_struct *work)
834 {
835 	struct delayed_work *dwork = to_delayed_work(work);
836 	struct tegra_xudc *xudc = container_of(dwork, struct tegra_xudc,
837 					       plc_reset_work);
838 	unsigned long flags;
839 
840 	spin_lock_irqsave(&xudc->lock, flags);
841 
842 	if (xudc->wait_csc) {
843 		u32 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >>
844 			PORTSC_PLS_SHIFT;
845 
846 		if (pls == PORTSC_PLS_INACTIVE) {
847 			dev_info(xudc->dev, "PLS = Inactive. Toggle VBUS\n");
848 			phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG,
849 					 USB_ROLE_NONE);
850 			phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG,
851 					 USB_ROLE_DEVICE);
852 
853 			xudc->wait_csc = false;
854 		}
855 	}
856 
857 	spin_unlock_irqrestore(&xudc->lock, flags);
858 }
859 
860 static void tegra_xudc_port_reset_war_work(struct work_struct *work)
861 {
862 	struct delayed_work *dwork = to_delayed_work(work);
863 	struct tegra_xudc *xudc =
864 		container_of(dwork, struct tegra_xudc, port_reset_war_work);
865 	unsigned long flags;
866 	u32 pls;
867 	int ret;
868 
869 	spin_lock_irqsave(&xudc->lock, flags);
870 
871 	if (xudc->device_mode && xudc->wait_for_sec_prc) {
872 		pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >>
873 			PORTSC_PLS_SHIFT;
874 		dev_dbg(xudc->dev, "pls = %x\n", pls);
875 
876 		if (pls == PORTSC_PLS_DISABLED) {
877 			dev_dbg(xudc->dev, "toggle vbus\n");
878 			/* PRC doesn't complete in 100ms, toggle the vbus */
879 			ret = tegra_phy_xusb_utmi_port_reset(
880 				xudc->curr_utmi_phy);
881 			if (ret == 1)
882 				xudc->wait_for_sec_prc = 0;
883 		}
884 	}
885 
886 	spin_unlock_irqrestore(&xudc->lock, flags);
887 }
888 
889 static dma_addr_t trb_virt_to_phys(struct tegra_xudc_ep *ep,
890 				   struct tegra_xudc_trb *trb)
891 {
892 	unsigned int index;
893 
894 	index = trb - ep->transfer_ring;
895 
896 	if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE))
897 		return 0;
898 
899 	return (ep->transfer_ring_phys + index * sizeof(*trb));
900 }
901 
902 static struct tegra_xudc_trb *trb_phys_to_virt(struct tegra_xudc_ep *ep,
903 					       dma_addr_t addr)
904 {
905 	struct tegra_xudc_trb *trb;
906 	unsigned int index;
907 
908 	index = (addr - ep->transfer_ring_phys) / sizeof(*trb);
909 
910 	if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE))
911 		return NULL;
912 
913 	trb = &ep->transfer_ring[index];
914 
915 	return trb;
916 }
917 
918 static void ep_reload(struct tegra_xudc *xudc, unsigned int ep)
919 {
920 	xudc_writel(xudc, BIT(ep), EP_RELOAD);
921 	xudc_readl_poll(xudc, EP_RELOAD, BIT(ep), 0);
922 }
923 
924 static void ep_pause(struct tegra_xudc *xudc, unsigned int ep)
925 {
926 	u32 val;
927 
928 	val = xudc_readl(xudc, EP_PAUSE);
929 	if (val & BIT(ep))
930 		return;
931 	val |= BIT(ep);
932 
933 	xudc_writel(xudc, val, EP_PAUSE);
934 
935 	xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
936 
937 	xudc_writel(xudc, BIT(ep), EP_STCHG);
938 }
939 
940 static void ep_unpause(struct tegra_xudc *xudc, unsigned int ep)
941 {
942 	u32 val;
943 
944 	val = xudc_readl(xudc, EP_PAUSE);
945 	if (!(val & BIT(ep)))
946 		return;
947 	val &= ~BIT(ep);
948 
949 	xudc_writel(xudc, val, EP_PAUSE);
950 
951 	xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
952 
953 	xudc_writel(xudc, BIT(ep), EP_STCHG);
954 }
955 
956 static void ep_unpause_all(struct tegra_xudc *xudc)
957 {
958 	u32 val;
959 
960 	val = xudc_readl(xudc, EP_PAUSE);
961 
962 	xudc_writel(xudc, 0, EP_PAUSE);
963 
964 	xudc_readl_poll(xudc, EP_STCHG, val, val);
965 
966 	xudc_writel(xudc, val, EP_STCHG);
967 }
968 
969 static void ep_halt(struct tegra_xudc *xudc, unsigned int ep)
970 {
971 	u32 val;
972 
973 	val = xudc_readl(xudc, EP_HALT);
974 	if (val & BIT(ep))
975 		return;
976 	val |= BIT(ep);
977 	xudc_writel(xudc, val, EP_HALT);
978 
979 	xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
980 
981 	xudc_writel(xudc, BIT(ep), EP_STCHG);
982 }
983 
984 static void ep_unhalt(struct tegra_xudc *xudc, unsigned int ep)
985 {
986 	u32 val;
987 
988 	val = xudc_readl(xudc, EP_HALT);
989 	if (!(val & BIT(ep)))
990 		return;
991 	val &= ~BIT(ep);
992 	xudc_writel(xudc, val, EP_HALT);
993 
994 	xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
995 
996 	xudc_writel(xudc, BIT(ep), EP_STCHG);
997 }
998 
999 static void ep_unhalt_all(struct tegra_xudc *xudc)
1000 {
1001 	u32 val;
1002 
1003 	val = xudc_readl(xudc, EP_HALT);
1004 	if (!val)
1005 		return;
1006 	xudc_writel(xudc, 0, EP_HALT);
1007 
1008 	xudc_readl_poll(xudc, EP_STCHG, val, val);
1009 
1010 	xudc_writel(xudc, val, EP_STCHG);
1011 }
1012 
1013 static void ep_wait_for_stopped(struct tegra_xudc *xudc, unsigned int ep)
1014 {
1015 	xudc_readl_poll(xudc, EP_STOPPED, BIT(ep), BIT(ep));
1016 	xudc_writel(xudc, BIT(ep), EP_STOPPED);
1017 }
1018 
1019 static void ep_wait_for_inactive(struct tegra_xudc *xudc, unsigned int ep)
1020 {
1021 	xudc_readl_poll(xudc, EP_THREAD_ACTIVE, BIT(ep), 0);
1022 }
1023 
1024 static void tegra_xudc_req_done(struct tegra_xudc_ep *ep,
1025 				struct tegra_xudc_request *req, int status)
1026 {
1027 	struct tegra_xudc *xudc = ep->xudc;
1028 
1029 	dev_dbg(xudc->dev, "completing request %p on EP %u with status %d\n",
1030 		 req, ep->index, status);
1031 
1032 	if (likely(req->usb_req.status == -EINPROGRESS))
1033 		req->usb_req.status = status;
1034 
1035 	list_del_init(&req->list);
1036 
1037 	if (usb_endpoint_xfer_control(ep->desc)) {
1038 		usb_gadget_unmap_request(&xudc->gadget, &req->usb_req,
1039 					 (xudc->setup_state ==
1040 					  DATA_STAGE_XFER));
1041 	} else {
1042 		usb_gadget_unmap_request(&xudc->gadget, &req->usb_req,
1043 					 usb_endpoint_dir_in(ep->desc));
1044 	}
1045 
1046 	spin_unlock(&xudc->lock);
1047 	usb_gadget_giveback_request(&ep->usb_ep, &req->usb_req);
1048 	spin_lock(&xudc->lock);
1049 }
1050 
1051 static void tegra_xudc_ep_nuke(struct tegra_xudc_ep *ep, int status)
1052 {
1053 	struct tegra_xudc_request *req;
1054 
1055 	while (!list_empty(&ep->queue)) {
1056 		req = list_first_entry(&ep->queue, struct tegra_xudc_request,
1057 				       list);
1058 		tegra_xudc_req_done(ep, req, status);
1059 	}
1060 }
1061 
1062 static unsigned int ep_available_trbs(struct tegra_xudc_ep *ep)
1063 {
1064 	if (ep->ring_full)
1065 		return 0;
1066 
1067 	if (ep->deq_ptr > ep->enq_ptr)
1068 		return ep->deq_ptr - ep->enq_ptr - 1;
1069 
1070 	return XUDC_TRANSFER_RING_SIZE - (ep->enq_ptr - ep->deq_ptr) - 2;
1071 }
1072 
1073 static void tegra_xudc_queue_one_trb(struct tegra_xudc_ep *ep,
1074 				     struct tegra_xudc_request *req,
1075 				     struct tegra_xudc_trb *trb,
1076 				     bool ioc)
1077 {
1078 	struct tegra_xudc *xudc = ep->xudc;
1079 	dma_addr_t buf_addr;
1080 	size_t len;
1081 
1082 	len = min_t(size_t, XUDC_TRB_MAX_BUFFER_SIZE, req->usb_req.length -
1083 		    req->buf_queued);
1084 	if (len > 0)
1085 		buf_addr = req->usb_req.dma + req->buf_queued;
1086 	else
1087 		buf_addr = 0;
1088 
1089 	trb_write_data_ptr(trb, buf_addr);
1090 
1091 	trb_write_transfer_len(trb, len);
1092 	trb_write_td_size(trb, req->trbs_needed - req->trbs_queued - 1);
1093 
1094 	if (req->trbs_queued == req->trbs_needed - 1 ||
1095 		(req->need_zlp && req->trbs_queued == req->trbs_needed - 2))
1096 		trb_write_chain(trb, 0);
1097 	else
1098 		trb_write_chain(trb, 1);
1099 
1100 	trb_write_ioc(trb, ioc);
1101 
1102 	if (usb_endpoint_dir_out(ep->desc) ||
1103 	    (usb_endpoint_xfer_control(ep->desc) &&
1104 	     (xudc->setup_state == DATA_STAGE_RECV)))
1105 		trb_write_isp(trb, 1);
1106 	else
1107 		trb_write_isp(trb, 0);
1108 
1109 	if (usb_endpoint_xfer_control(ep->desc)) {
1110 		if (xudc->setup_state == DATA_STAGE_XFER ||
1111 		    xudc->setup_state == DATA_STAGE_RECV)
1112 			trb_write_type(trb, TRB_TYPE_DATA_STAGE);
1113 		else
1114 			trb_write_type(trb, TRB_TYPE_STATUS_STAGE);
1115 
1116 		if (xudc->setup_state == DATA_STAGE_XFER ||
1117 		    xudc->setup_state == STATUS_STAGE_XFER)
1118 			trb_write_data_stage_dir(trb, 1);
1119 		else
1120 			trb_write_data_stage_dir(trb, 0);
1121 	} else if (usb_endpoint_xfer_isoc(ep->desc)) {
1122 		trb_write_type(trb, TRB_TYPE_ISOCH);
1123 		trb_write_sia(trb, 1);
1124 		trb_write_frame_id(trb, 0);
1125 		trb_write_tlbpc(trb, 0);
1126 	} else if (usb_ss_max_streams(ep->comp_desc)) {
1127 		trb_write_type(trb, TRB_TYPE_STREAM);
1128 		trb_write_stream_id(trb, req->usb_req.stream_id);
1129 	} else {
1130 		trb_write_type(trb, TRB_TYPE_NORMAL);
1131 		trb_write_stream_id(trb, 0);
1132 	}
1133 
1134 	trb_write_cycle(trb, ep->pcs);
1135 
1136 	req->trbs_queued++;
1137 	req->buf_queued += len;
1138 
1139 	dump_trb(xudc, "TRANSFER", trb);
1140 }
1141 
1142 static unsigned int tegra_xudc_queue_trbs(struct tegra_xudc_ep *ep,
1143 					  struct tegra_xudc_request *req)
1144 {
1145 	unsigned int i, count, available;
1146 	bool wait_td = false;
1147 
1148 	available = ep_available_trbs(ep);
1149 	count = req->trbs_needed - req->trbs_queued;
1150 	if (available < count) {
1151 		count = available;
1152 		ep->ring_full = true;
1153 	}
1154 
1155 	/*
1156 	 * To generate zero-length packet on USB bus, SW needs schedule a
1157 	 * standalone zero-length TD. According to HW's behavior, SW needs
1158 	 * to schedule TDs in different ways for different endpoint types.
1159 	 *
1160 	 * For control endpoint:
1161 	 * - Data stage TD (IOC = 1, CH = 0)
1162 	 * - Ring doorbell and wait transfer event
1163 	 * - Data stage TD for ZLP (IOC = 1, CH = 0)
1164 	 * - Ring doorbell
1165 	 *
1166 	 * For bulk and interrupt endpoints:
1167 	 * - Normal transfer TD (IOC = 0, CH = 0)
1168 	 * - Normal transfer TD for ZLP (IOC = 1, CH = 0)
1169 	 * - Ring doorbell
1170 	 */
1171 
1172 	if (req->need_zlp && usb_endpoint_xfer_control(ep->desc) && count > 1)
1173 		wait_td = true;
1174 
1175 	if (!req->first_trb)
1176 		req->first_trb = &ep->transfer_ring[ep->enq_ptr];
1177 
1178 	for (i = 0; i < count; i++) {
1179 		struct tegra_xudc_trb *trb = &ep->transfer_ring[ep->enq_ptr];
1180 		bool ioc = false;
1181 
1182 		if ((i == count - 1) || (wait_td && i == count - 2))
1183 			ioc = true;
1184 
1185 		tegra_xudc_queue_one_trb(ep, req, trb, ioc);
1186 		req->last_trb = trb;
1187 
1188 		ep->enq_ptr++;
1189 		if (ep->enq_ptr == XUDC_TRANSFER_RING_SIZE - 1) {
1190 			trb = &ep->transfer_ring[ep->enq_ptr];
1191 			trb_write_cycle(trb, ep->pcs);
1192 			ep->pcs = !ep->pcs;
1193 			ep->enq_ptr = 0;
1194 		}
1195 
1196 		if (ioc)
1197 			break;
1198 	}
1199 
1200 	return count;
1201 }
1202 
1203 static void tegra_xudc_ep_ring_doorbell(struct tegra_xudc_ep *ep)
1204 {
1205 	struct tegra_xudc *xudc = ep->xudc;
1206 	u32 val;
1207 
1208 	if (list_empty(&ep->queue))
1209 		return;
1210 
1211 	val = DB_TARGET(ep->index);
1212 	if (usb_endpoint_xfer_control(ep->desc)) {
1213 		val |= DB_STREAMID(xudc->setup_seq_num);
1214 	} else if (usb_ss_max_streams(ep->comp_desc) > 0) {
1215 		struct tegra_xudc_request *req;
1216 
1217 		/* Don't ring doorbell if the stream has been rejected. */
1218 		if (ep->stream_rejected)
1219 			return;
1220 
1221 		req = list_first_entry(&ep->queue, struct tegra_xudc_request,
1222 				       list);
1223 		val |= DB_STREAMID(req->usb_req.stream_id);
1224 	}
1225 
1226 	dev_dbg(xudc->dev, "ring doorbell: %#x\n", val);
1227 	xudc_writel(xudc, val, DB);
1228 }
1229 
1230 static void tegra_xudc_ep_kick_queue(struct tegra_xudc_ep *ep)
1231 {
1232 	struct tegra_xudc_request *req;
1233 	bool trbs_queued = false;
1234 
1235 	list_for_each_entry(req, &ep->queue, list) {
1236 		if (ep->ring_full)
1237 			break;
1238 
1239 		if (tegra_xudc_queue_trbs(ep, req) > 0)
1240 			trbs_queued = true;
1241 	}
1242 
1243 	if (trbs_queued)
1244 		tegra_xudc_ep_ring_doorbell(ep);
1245 }
1246 
1247 static int
1248 __tegra_xudc_ep_queue(struct tegra_xudc_ep *ep, struct tegra_xudc_request *req)
1249 {
1250 	struct tegra_xudc *xudc = ep->xudc;
1251 	int err;
1252 
1253 	if (usb_endpoint_xfer_control(ep->desc) && !list_empty(&ep->queue)) {
1254 		dev_err(xudc->dev, "control EP has pending transfers\n");
1255 		return -EINVAL;
1256 	}
1257 
1258 	if (usb_endpoint_xfer_control(ep->desc)) {
1259 		err = usb_gadget_map_request(&xudc->gadget, &req->usb_req,
1260 					     (xudc->setup_state ==
1261 					      DATA_STAGE_XFER));
1262 	} else {
1263 		err = usb_gadget_map_request(&xudc->gadget, &req->usb_req,
1264 					     usb_endpoint_dir_in(ep->desc));
1265 	}
1266 
1267 	if (err < 0) {
1268 		dev_err(xudc->dev, "failed to map request: %d\n", err);
1269 		return err;
1270 	}
1271 
1272 	req->first_trb = NULL;
1273 	req->last_trb = NULL;
1274 	req->buf_queued = 0;
1275 	req->trbs_queued = 0;
1276 	req->need_zlp = false;
1277 	req->trbs_needed = DIV_ROUND_UP(req->usb_req.length,
1278 					XUDC_TRB_MAX_BUFFER_SIZE);
1279 	if (req->usb_req.length == 0)
1280 		req->trbs_needed++;
1281 
1282 	if (!usb_endpoint_xfer_isoc(ep->desc) &&
1283 	    req->usb_req.zero && req->usb_req.length &&
1284 	    ((req->usb_req.length % ep->usb_ep.maxpacket) == 0)) {
1285 		req->trbs_needed++;
1286 		req->need_zlp = true;
1287 	}
1288 
1289 	req->usb_req.status = -EINPROGRESS;
1290 	req->usb_req.actual = 0;
1291 
1292 	list_add_tail(&req->list, &ep->queue);
1293 
1294 	tegra_xudc_ep_kick_queue(ep);
1295 
1296 	return 0;
1297 }
1298 
1299 static int
1300 tegra_xudc_ep_queue(struct usb_ep *usb_ep, struct usb_request *usb_req,
1301 		    gfp_t gfp)
1302 {
1303 	struct tegra_xudc_request *req;
1304 	struct tegra_xudc_ep *ep;
1305 	struct tegra_xudc *xudc;
1306 	unsigned long flags;
1307 	int ret;
1308 
1309 	if (!usb_ep || !usb_req)
1310 		return -EINVAL;
1311 
1312 	ep = to_xudc_ep(usb_ep);
1313 	req = to_xudc_req(usb_req);
1314 	xudc = ep->xudc;
1315 
1316 	spin_lock_irqsave(&xudc->lock, flags);
1317 	if (xudc->powergated || !ep->desc) {
1318 		ret = -ESHUTDOWN;
1319 		goto unlock;
1320 	}
1321 
1322 	ret = __tegra_xudc_ep_queue(ep, req);
1323 unlock:
1324 	spin_unlock_irqrestore(&xudc->lock, flags);
1325 
1326 	return ret;
1327 }
1328 
1329 static void squeeze_transfer_ring(struct tegra_xudc_ep *ep,
1330 				  struct tegra_xudc_request *req)
1331 {
1332 	struct tegra_xudc_trb *trb = req->first_trb;
1333 	bool pcs_enq = trb_read_cycle(trb);
1334 	bool pcs;
1335 
1336 	/*
1337 	 * Clear out all the TRBs part of or after the cancelled request,
1338 	 * and must correct trb cycle bit to the last un-enqueued state.
1339 	 */
1340 	while (trb != &ep->transfer_ring[ep->enq_ptr]) {
1341 		pcs = trb_read_cycle(trb);
1342 		memset(trb, 0, sizeof(*trb));
1343 		trb_write_cycle(trb, !pcs);
1344 		trb++;
1345 
1346 		if (trb_read_type(trb) == TRB_TYPE_LINK)
1347 			trb = ep->transfer_ring;
1348 	}
1349 
1350 	/* Requests will be re-queued at the start of the cancelled request. */
1351 	ep->enq_ptr = req->first_trb - ep->transfer_ring;
1352 	/*
1353 	 * Retrieve the correct cycle bit state from the first trb of
1354 	 * the cancelled request.
1355 	 */
1356 	ep->pcs = pcs_enq;
1357 	ep->ring_full = false;
1358 	list_for_each_entry_continue(req, &ep->queue, list) {
1359 		req->usb_req.status = -EINPROGRESS;
1360 		req->usb_req.actual = 0;
1361 
1362 		req->first_trb = NULL;
1363 		req->last_trb = NULL;
1364 		req->buf_queued = 0;
1365 		req->trbs_queued = 0;
1366 	}
1367 }
1368 
1369 /*
1370  * Determine if the given TRB is in the range [first trb, last trb] for the
1371  * given request.
1372  */
1373 static bool trb_in_request(struct tegra_xudc_ep *ep,
1374 			   struct tegra_xudc_request *req,
1375 			   struct tegra_xudc_trb *trb)
1376 {
1377 	dev_dbg(ep->xudc->dev, "%s: request %p -> %p; trb %p\n", __func__,
1378 		req->first_trb, req->last_trb, trb);
1379 
1380 	if (trb >= req->first_trb && (trb <= req->last_trb ||
1381 				      req->last_trb < req->first_trb))
1382 		return true;
1383 
1384 	if (trb < req->first_trb && trb <= req->last_trb &&
1385 	    req->last_trb < req->first_trb)
1386 		return true;
1387 
1388 	return false;
1389 }
1390 
1391 /*
1392  * Determine if the given TRB is in the range [EP enqueue pointer, first TRB)
1393  * for the given endpoint and request.
1394  */
1395 static bool trb_before_request(struct tegra_xudc_ep *ep,
1396 			       struct tegra_xudc_request *req,
1397 			       struct tegra_xudc_trb *trb)
1398 {
1399 	struct tegra_xudc_trb *enq_trb = &ep->transfer_ring[ep->enq_ptr];
1400 
1401 	dev_dbg(ep->xudc->dev, "%s: request %p -> %p; enq ptr: %p; trb %p\n",
1402 		__func__, req->first_trb, req->last_trb, enq_trb, trb);
1403 
1404 	if (trb < req->first_trb && (enq_trb <= trb ||
1405 				     req->first_trb < enq_trb))
1406 		return true;
1407 
1408 	if (trb > req->first_trb && req->first_trb < enq_trb && enq_trb <= trb)
1409 		return true;
1410 
1411 	return false;
1412 }
1413 
1414 static int
1415 __tegra_xudc_ep_dequeue(struct tegra_xudc_ep *ep,
1416 			struct tegra_xudc_request *req)
1417 {
1418 	struct tegra_xudc *xudc = ep->xudc;
1419 	struct tegra_xudc_request *r = NULL, *iter;
1420 	struct tegra_xudc_trb *deq_trb;
1421 	bool busy, kick_queue = false;
1422 	int ret = 0;
1423 
1424 	/* Make sure the request is actually queued to this endpoint. */
1425 	list_for_each_entry(iter, &ep->queue, list) {
1426 		if (iter != req)
1427 			continue;
1428 		r = iter;
1429 		break;
1430 	}
1431 
1432 	if (!r)
1433 		return -EINVAL;
1434 
1435 	/* Request hasn't been queued in the transfer ring yet. */
1436 	if (!req->trbs_queued) {
1437 		tegra_xudc_req_done(ep, req, -ECONNRESET);
1438 		return 0;
1439 	}
1440 
1441 	/* Halt DMA for this endpoint. */
1442 	if (ep_ctx_read_state(ep->context) == EP_STATE_RUNNING) {
1443 		ep_pause(xudc, ep->index);
1444 		ep_wait_for_inactive(xudc, ep->index);
1445 	}
1446 
1447 	deq_trb = trb_phys_to_virt(ep, ep_ctx_read_deq_ptr(ep->context));
1448 	/* Is the hardware processing the TRB at the dequeue pointer? */
1449 	busy = (trb_read_cycle(deq_trb) == ep_ctx_read_dcs(ep->context));
1450 
1451 	if (trb_in_request(ep, req, deq_trb) && busy) {
1452 		/*
1453 		 * Request has been partially completed or it hasn't
1454 		 * started processing yet.
1455 		 */
1456 		dma_addr_t deq_ptr;
1457 
1458 		squeeze_transfer_ring(ep, req);
1459 
1460 		req->usb_req.actual = ep_ctx_read_edtla(ep->context);
1461 		tegra_xudc_req_done(ep, req, -ECONNRESET);
1462 		kick_queue = true;
1463 
1464 		/* EDTLA is > 0: request has been partially completed */
1465 		if (req->usb_req.actual > 0) {
1466 			/*
1467 			 * Abort the pending transfer and update the dequeue
1468 			 * pointer
1469 			 */
1470 			ep_ctx_write_edtla(ep->context, 0);
1471 			ep_ctx_write_partial_td(ep->context, 0);
1472 			ep_ctx_write_data_offset(ep->context, 0);
1473 
1474 			deq_ptr = trb_virt_to_phys(ep,
1475 					&ep->transfer_ring[ep->enq_ptr]);
1476 
1477 			if (dma_mapping_error(xudc->dev, deq_ptr)) {
1478 				ret = -EINVAL;
1479 			} else {
1480 				ep_ctx_write_deq_ptr(ep->context, deq_ptr);
1481 				ep_ctx_write_dcs(ep->context, ep->pcs);
1482 				ep_reload(xudc, ep->index);
1483 			}
1484 		}
1485 	} else if (trb_before_request(ep, req, deq_trb) && busy) {
1486 		/* Request hasn't started processing yet. */
1487 		squeeze_transfer_ring(ep, req);
1488 
1489 		tegra_xudc_req_done(ep, req, -ECONNRESET);
1490 		kick_queue = true;
1491 	} else {
1492 		/*
1493 		 * Request has completed, but we haven't processed the
1494 		 * completion event yet.
1495 		 */
1496 		tegra_xudc_req_done(ep, req, -ECONNRESET);
1497 		ret = -EINVAL;
1498 	}
1499 
1500 	/* Resume the endpoint. */
1501 	ep_unpause(xudc, ep->index);
1502 
1503 	if (kick_queue)
1504 		tegra_xudc_ep_kick_queue(ep);
1505 
1506 	return ret;
1507 }
1508 
1509 static int
1510 tegra_xudc_ep_dequeue(struct usb_ep *usb_ep, struct usb_request *usb_req)
1511 {
1512 	struct tegra_xudc_request *req;
1513 	struct tegra_xudc_ep *ep;
1514 	struct tegra_xudc *xudc;
1515 	unsigned long flags;
1516 	int ret;
1517 
1518 	if (!usb_ep || !usb_req)
1519 		return -EINVAL;
1520 
1521 	ep = to_xudc_ep(usb_ep);
1522 	req = to_xudc_req(usb_req);
1523 	xudc = ep->xudc;
1524 
1525 	spin_lock_irqsave(&xudc->lock, flags);
1526 
1527 	if (xudc->powergated || !ep->desc) {
1528 		ret = -ESHUTDOWN;
1529 		goto unlock;
1530 	}
1531 
1532 	ret = __tegra_xudc_ep_dequeue(ep, req);
1533 unlock:
1534 	spin_unlock_irqrestore(&xudc->lock, flags);
1535 
1536 	return ret;
1537 }
1538 
1539 static int __tegra_xudc_ep_set_halt(struct tegra_xudc_ep *ep, bool halt)
1540 {
1541 	struct tegra_xudc *xudc = ep->xudc;
1542 
1543 	if (!ep->desc)
1544 		return -EINVAL;
1545 
1546 	if (usb_endpoint_xfer_isoc(ep->desc)) {
1547 		dev_err(xudc->dev, "can't halt isochronous EP\n");
1548 		return -ENOTSUPP;
1549 	}
1550 
1551 	if (!!(xudc_readl(xudc, EP_HALT) & BIT(ep->index)) == halt) {
1552 		dev_dbg(xudc->dev, "EP %u already %s\n", ep->index,
1553 			halt ? "halted" : "not halted");
1554 		return 0;
1555 	}
1556 
1557 	if (halt) {
1558 		ep_halt(xudc, ep->index);
1559 	} else {
1560 		ep_ctx_write_state(ep->context, EP_STATE_DISABLED);
1561 
1562 		ep_reload(xudc, ep->index);
1563 
1564 		ep_ctx_write_state(ep->context, EP_STATE_RUNNING);
1565 		ep_ctx_write_rsvd(ep->context, 0);
1566 		ep_ctx_write_partial_td(ep->context, 0);
1567 		ep_ctx_write_splitxstate(ep->context, 0);
1568 		ep_ctx_write_seq_num(ep->context, 0);
1569 
1570 		ep_reload(xudc, ep->index);
1571 		ep_unpause(xudc, ep->index);
1572 		ep_unhalt(xudc, ep->index);
1573 
1574 		tegra_xudc_ep_ring_doorbell(ep);
1575 	}
1576 
1577 	return 0;
1578 }
1579 
1580 static int tegra_xudc_ep_set_halt(struct usb_ep *usb_ep, int value)
1581 {
1582 	struct tegra_xudc_ep *ep;
1583 	struct tegra_xudc *xudc;
1584 	unsigned long flags;
1585 	int ret;
1586 
1587 	if (!usb_ep)
1588 		return -EINVAL;
1589 
1590 	ep = to_xudc_ep(usb_ep);
1591 	xudc = ep->xudc;
1592 
1593 	spin_lock_irqsave(&xudc->lock, flags);
1594 	if (xudc->powergated) {
1595 		ret = -ESHUTDOWN;
1596 		goto unlock;
1597 	}
1598 
1599 	if (value && usb_endpoint_dir_in(ep->desc) &&
1600 	    !list_empty(&ep->queue)) {
1601 		dev_err(xudc->dev, "can't halt EP with requests pending\n");
1602 		ret = -EAGAIN;
1603 		goto unlock;
1604 	}
1605 
1606 	ret = __tegra_xudc_ep_set_halt(ep, value);
1607 unlock:
1608 	spin_unlock_irqrestore(&xudc->lock, flags);
1609 
1610 	return ret;
1611 }
1612 
1613 static void tegra_xudc_ep_context_setup(struct tegra_xudc_ep *ep)
1614 {
1615 	const struct usb_endpoint_descriptor *desc = ep->desc;
1616 	const struct usb_ss_ep_comp_descriptor *comp_desc = ep->comp_desc;
1617 	struct tegra_xudc *xudc = ep->xudc;
1618 	u16 maxpacket, maxburst = 0, esit = 0;
1619 	u32 val;
1620 
1621 	maxpacket = usb_endpoint_maxp(desc);
1622 	if (xudc->gadget.speed == USB_SPEED_SUPER) {
1623 		if (!usb_endpoint_xfer_control(desc))
1624 			maxburst = comp_desc->bMaxBurst;
1625 
1626 		if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc))
1627 			esit = le16_to_cpu(comp_desc->wBytesPerInterval);
1628 	} else if ((xudc->gadget.speed < USB_SPEED_SUPER) &&
1629 		   (usb_endpoint_xfer_int(desc) ||
1630 		    usb_endpoint_xfer_isoc(desc))) {
1631 		if (xudc->gadget.speed == USB_SPEED_HIGH) {
1632 			maxburst = usb_endpoint_maxp_mult(desc) - 1;
1633 			if (maxburst == 0x3) {
1634 				dev_warn(xudc->dev,
1635 					 "invalid endpoint maxburst\n");
1636 				maxburst = 0x2;
1637 			}
1638 		}
1639 		esit = maxpacket * (maxburst + 1);
1640 	}
1641 
1642 	memset(ep->context, 0, sizeof(*ep->context));
1643 
1644 	ep_ctx_write_state(ep->context, EP_STATE_RUNNING);
1645 	ep_ctx_write_interval(ep->context, desc->bInterval);
1646 	if (xudc->gadget.speed == USB_SPEED_SUPER) {
1647 		if (usb_endpoint_xfer_isoc(desc)) {
1648 			ep_ctx_write_mult(ep->context,
1649 					  comp_desc->bmAttributes & 0x3);
1650 		}
1651 
1652 		if (usb_endpoint_xfer_bulk(desc)) {
1653 			ep_ctx_write_max_pstreams(ep->context,
1654 						  comp_desc->bmAttributes &
1655 						  0x1f);
1656 			ep_ctx_write_lsa(ep->context, 1);
1657 		}
1658 	}
1659 
1660 	if (!usb_endpoint_xfer_control(desc) && usb_endpoint_dir_out(desc))
1661 		val = usb_endpoint_type(desc);
1662 	else
1663 		val = usb_endpoint_type(desc) + EP_TYPE_CONTROL;
1664 
1665 	ep_ctx_write_type(ep->context, val);
1666 	ep_ctx_write_cerr(ep->context, 0x3);
1667 	ep_ctx_write_max_packet_size(ep->context, maxpacket);
1668 	ep_ctx_write_max_burst_size(ep->context, maxburst);
1669 
1670 	ep_ctx_write_deq_ptr(ep->context, ep->transfer_ring_phys);
1671 	ep_ctx_write_dcs(ep->context, ep->pcs);
1672 
1673 	/* Select a reasonable average TRB length based on endpoint type. */
1674 	switch (usb_endpoint_type(desc)) {
1675 	case USB_ENDPOINT_XFER_CONTROL:
1676 		val = 8;
1677 		break;
1678 	case USB_ENDPOINT_XFER_INT:
1679 		val = 1024;
1680 		break;
1681 	case USB_ENDPOINT_XFER_BULK:
1682 	case USB_ENDPOINT_XFER_ISOC:
1683 	default:
1684 		val = 3072;
1685 		break;
1686 	}
1687 
1688 	ep_ctx_write_avg_trb_len(ep->context, val);
1689 	ep_ctx_write_max_esit_payload(ep->context, esit);
1690 
1691 	ep_ctx_write_cerrcnt(ep->context, 0x3);
1692 }
1693 
1694 static void setup_link_trb(struct tegra_xudc_ep *ep,
1695 			   struct tegra_xudc_trb *trb)
1696 {
1697 	trb_write_data_ptr(trb, ep->transfer_ring_phys);
1698 	trb_write_type(trb, TRB_TYPE_LINK);
1699 	trb_write_toggle_cycle(trb, 1);
1700 }
1701 
1702 static int __tegra_xudc_ep_disable(struct tegra_xudc_ep *ep)
1703 {
1704 	struct tegra_xudc *xudc = ep->xudc;
1705 
1706 	if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) {
1707 		dev_err(xudc->dev, "endpoint %u already disabled\n",
1708 			ep->index);
1709 		return -EINVAL;
1710 	}
1711 
1712 	ep_ctx_write_state(ep->context, EP_STATE_DISABLED);
1713 
1714 	ep_reload(xudc, ep->index);
1715 
1716 	tegra_xudc_ep_nuke(ep, -ESHUTDOWN);
1717 
1718 	xudc->nr_enabled_eps--;
1719 	if (usb_endpoint_xfer_isoc(ep->desc))
1720 		xudc->nr_isoch_eps--;
1721 
1722 	ep->desc = NULL;
1723 	ep->comp_desc = NULL;
1724 
1725 	memset(ep->context, 0, sizeof(*ep->context));
1726 
1727 	ep_unpause(xudc, ep->index);
1728 	ep_unhalt(xudc, ep->index);
1729 	if (xudc_readl(xudc, EP_STOPPED) & BIT(ep->index))
1730 		xudc_writel(xudc, BIT(ep->index), EP_STOPPED);
1731 
1732 	/*
1733 	 * If this is the last endpoint disabled in a de-configure request,
1734 	 * switch back to address state.
1735 	 */
1736 	if ((xudc->device_state == USB_STATE_CONFIGURED) &&
1737 	    (xudc->nr_enabled_eps == 1)) {
1738 		u32 val;
1739 
1740 		xudc->device_state = USB_STATE_ADDRESS;
1741 		usb_gadget_set_state(&xudc->gadget, xudc->device_state);
1742 
1743 		val = xudc_readl(xudc, CTRL);
1744 		val &= ~CTRL_RUN;
1745 		xudc_writel(xudc, val, CTRL);
1746 	}
1747 
1748 	dev_info(xudc->dev, "ep %u disabled\n", ep->index);
1749 
1750 	return 0;
1751 }
1752 
1753 static int tegra_xudc_ep_disable(struct usb_ep *usb_ep)
1754 {
1755 	struct tegra_xudc_ep *ep;
1756 	struct tegra_xudc *xudc;
1757 	unsigned long flags;
1758 	int ret;
1759 
1760 	if (!usb_ep)
1761 		return -EINVAL;
1762 
1763 	ep = to_xudc_ep(usb_ep);
1764 	xudc = ep->xudc;
1765 
1766 	spin_lock_irqsave(&xudc->lock, flags);
1767 	if (xudc->powergated) {
1768 		ret = -ESHUTDOWN;
1769 		goto unlock;
1770 	}
1771 
1772 	ret = __tegra_xudc_ep_disable(ep);
1773 unlock:
1774 	spin_unlock_irqrestore(&xudc->lock, flags);
1775 
1776 	return ret;
1777 }
1778 
1779 static int __tegra_xudc_ep_enable(struct tegra_xudc_ep *ep,
1780 				  const struct usb_endpoint_descriptor *desc)
1781 {
1782 	struct tegra_xudc *xudc = ep->xudc;
1783 	unsigned int i;
1784 	u32 val;
1785 
1786 	if (xudc->gadget.speed == USB_SPEED_SUPER &&
1787 		!usb_endpoint_xfer_control(desc) && !ep->usb_ep.comp_desc)
1788 		return -EINVAL;
1789 
1790 	/* Disable the EP if it is not disabled */
1791 	if (ep_ctx_read_state(ep->context) != EP_STATE_DISABLED)
1792 		__tegra_xudc_ep_disable(ep);
1793 
1794 	ep->desc = desc;
1795 	ep->comp_desc = ep->usb_ep.comp_desc;
1796 
1797 	if (usb_endpoint_xfer_isoc(desc)) {
1798 		if (xudc->nr_isoch_eps > XUDC_MAX_ISOCH_EPS) {
1799 			dev_err(xudc->dev, "too many isochronous endpoints\n");
1800 			return -EBUSY;
1801 		}
1802 		xudc->nr_isoch_eps++;
1803 	}
1804 
1805 	memset(ep->transfer_ring, 0, XUDC_TRANSFER_RING_SIZE *
1806 	       sizeof(*ep->transfer_ring));
1807 	setup_link_trb(ep, &ep->transfer_ring[XUDC_TRANSFER_RING_SIZE - 1]);
1808 
1809 	ep->enq_ptr = 0;
1810 	ep->deq_ptr = 0;
1811 	ep->pcs = true;
1812 	ep->ring_full = false;
1813 	xudc->nr_enabled_eps++;
1814 
1815 	tegra_xudc_ep_context_setup(ep);
1816 
1817 	/*
1818 	 * No need to reload and un-halt EP0.  This will be done automatically
1819 	 * once a valid SETUP packet is received.
1820 	 */
1821 	if (usb_endpoint_xfer_control(desc))
1822 		goto out;
1823 
1824 	/*
1825 	 * Transition to configured state once the first non-control
1826 	 * endpoint is enabled.
1827 	 */
1828 	if (xudc->device_state == USB_STATE_ADDRESS) {
1829 		val = xudc_readl(xudc, CTRL);
1830 		val |= CTRL_RUN;
1831 		xudc_writel(xudc, val, CTRL);
1832 
1833 		xudc->device_state = USB_STATE_CONFIGURED;
1834 		usb_gadget_set_state(&xudc->gadget, xudc->device_state);
1835 	}
1836 
1837 	if (usb_endpoint_xfer_isoc(desc)) {
1838 		/*
1839 		 * Pause all bulk endpoints when enabling an isoch endpoint
1840 		 * to ensure the isoch endpoint is allocated enough bandwidth.
1841 		 */
1842 		for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) {
1843 			if (xudc->ep[i].desc &&
1844 			    usb_endpoint_xfer_bulk(xudc->ep[i].desc))
1845 				ep_pause(xudc, i);
1846 		}
1847 	}
1848 
1849 	ep_reload(xudc, ep->index);
1850 	ep_unpause(xudc, ep->index);
1851 	ep_unhalt(xudc, ep->index);
1852 
1853 	if (usb_endpoint_xfer_isoc(desc)) {
1854 		for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) {
1855 			if (xudc->ep[i].desc &&
1856 			    usb_endpoint_xfer_bulk(xudc->ep[i].desc))
1857 				ep_unpause(xudc, i);
1858 		}
1859 	}
1860 
1861 out:
1862 	dev_info(xudc->dev, "EP %u (type: %s, dir: %s) enabled\n", ep->index,
1863 		 usb_ep_type_string(usb_endpoint_type(ep->desc)),
1864 		 usb_endpoint_dir_in(ep->desc) ? "in" : "out");
1865 
1866 	return 0;
1867 }
1868 
1869 static int tegra_xudc_ep_enable(struct usb_ep *usb_ep,
1870 				const struct usb_endpoint_descriptor *desc)
1871 {
1872 	struct tegra_xudc_ep *ep;
1873 	struct tegra_xudc *xudc;
1874 	unsigned long flags;
1875 	int ret;
1876 
1877 	if  (!usb_ep || !desc || (desc->bDescriptorType != USB_DT_ENDPOINT))
1878 		return -EINVAL;
1879 
1880 	ep = to_xudc_ep(usb_ep);
1881 	xudc = ep->xudc;
1882 
1883 	spin_lock_irqsave(&xudc->lock, flags);
1884 	if (xudc->powergated) {
1885 		ret = -ESHUTDOWN;
1886 		goto unlock;
1887 	}
1888 
1889 	ret = __tegra_xudc_ep_enable(ep, desc);
1890 unlock:
1891 	spin_unlock_irqrestore(&xudc->lock, flags);
1892 
1893 	return ret;
1894 }
1895 
1896 static struct usb_request *
1897 tegra_xudc_ep_alloc_request(struct usb_ep *usb_ep, gfp_t gfp)
1898 {
1899 	struct tegra_xudc_request *req;
1900 
1901 	req = kzalloc(sizeof(*req), gfp);
1902 	if (!req)
1903 		return NULL;
1904 
1905 	INIT_LIST_HEAD(&req->list);
1906 
1907 	return &req->usb_req;
1908 }
1909 
1910 static void tegra_xudc_ep_free_request(struct usb_ep *usb_ep,
1911 				       struct usb_request *usb_req)
1912 {
1913 	struct tegra_xudc_request *req = to_xudc_req(usb_req);
1914 
1915 	kfree(req);
1916 }
1917 
1918 static const struct usb_ep_ops tegra_xudc_ep_ops = {
1919 	.enable = tegra_xudc_ep_enable,
1920 	.disable = tegra_xudc_ep_disable,
1921 	.alloc_request = tegra_xudc_ep_alloc_request,
1922 	.free_request = tegra_xudc_ep_free_request,
1923 	.queue = tegra_xudc_ep_queue,
1924 	.dequeue = tegra_xudc_ep_dequeue,
1925 	.set_halt = tegra_xudc_ep_set_halt,
1926 };
1927 
1928 static int tegra_xudc_ep0_enable(struct usb_ep *usb_ep,
1929 				 const struct usb_endpoint_descriptor *desc)
1930 {
1931 	return -EBUSY;
1932 }
1933 
1934 static int tegra_xudc_ep0_disable(struct usb_ep *usb_ep)
1935 {
1936 	return -EBUSY;
1937 }
1938 
1939 static const struct usb_ep_ops tegra_xudc_ep0_ops = {
1940 	.enable = tegra_xudc_ep0_enable,
1941 	.disable = tegra_xudc_ep0_disable,
1942 	.alloc_request = tegra_xudc_ep_alloc_request,
1943 	.free_request = tegra_xudc_ep_free_request,
1944 	.queue = tegra_xudc_ep_queue,
1945 	.dequeue = tegra_xudc_ep_dequeue,
1946 	.set_halt = tegra_xudc_ep_set_halt,
1947 };
1948 
1949 static int tegra_xudc_gadget_get_frame(struct usb_gadget *gadget)
1950 {
1951 	struct tegra_xudc *xudc = to_xudc(gadget);
1952 	unsigned long flags;
1953 	int ret;
1954 
1955 	spin_lock_irqsave(&xudc->lock, flags);
1956 	if (xudc->powergated) {
1957 		ret = -ESHUTDOWN;
1958 		goto unlock;
1959 	}
1960 
1961 	ret = (xudc_readl(xudc, MFINDEX) & MFINDEX_FRAME_MASK) >>
1962 		MFINDEX_FRAME_SHIFT;
1963 unlock:
1964 	spin_unlock_irqrestore(&xudc->lock, flags);
1965 
1966 	return ret;
1967 }
1968 
1969 static void tegra_xudc_resume_device_state(struct tegra_xudc *xudc)
1970 {
1971 	unsigned int i;
1972 	u32 val;
1973 
1974 	ep_unpause_all(xudc);
1975 
1976 	/* Direct link to U0. */
1977 	val = xudc_readl(xudc, PORTSC);
1978 	if (((val & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT) != PORTSC_PLS_U0) {
1979 		val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
1980 		val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0);
1981 		xudc_writel(xudc, val, PORTSC);
1982 	}
1983 
1984 	if (xudc->device_state == USB_STATE_SUSPENDED) {
1985 		xudc->device_state = xudc->resume_state;
1986 		usb_gadget_set_state(&xudc->gadget, xudc->device_state);
1987 		xudc->resume_state = 0;
1988 	}
1989 
1990 	/*
1991 	 * Doorbells may be dropped if they are sent too soon (< ~200ns)
1992 	 * after unpausing the endpoint.  Wait for 500ns just to be safe.
1993 	 */
1994 	ndelay(500);
1995 	for (i = 0; i < ARRAY_SIZE(xudc->ep); i++)
1996 		tegra_xudc_ep_ring_doorbell(&xudc->ep[i]);
1997 }
1998 
1999 static int tegra_xudc_gadget_wakeup(struct usb_gadget *gadget)
2000 {
2001 	struct tegra_xudc *xudc = to_xudc(gadget);
2002 	unsigned long flags;
2003 	int ret = 0;
2004 	u32 val;
2005 
2006 	spin_lock_irqsave(&xudc->lock, flags);
2007 
2008 	if (xudc->powergated) {
2009 		ret = -ESHUTDOWN;
2010 		goto unlock;
2011 	}
2012 	val = xudc_readl(xudc, PORTPM);
2013 	dev_dbg(xudc->dev, "%s: PORTPM=%#x, speed=%x\n", __func__,
2014 			val, gadget->speed);
2015 
2016 	if (((xudc->gadget.speed <= USB_SPEED_HIGH) &&
2017 	     (val & PORTPM_RWE)) ||
2018 	    ((xudc->gadget.speed == USB_SPEED_SUPER) &&
2019 	     (val & PORTPM_FRWE))) {
2020 		tegra_xudc_resume_device_state(xudc);
2021 
2022 		/* Send Device Notification packet. */
2023 		if (xudc->gadget.speed == USB_SPEED_SUPER) {
2024 			val = DEVNOTIF_LO_TYPE(DEVNOTIF_LO_TYPE_FUNCTION_WAKE)
2025 					     | DEVNOTIF_LO_TRIG;
2026 			xudc_writel(xudc, 0, DEVNOTIF_HI);
2027 			xudc_writel(xudc, val, DEVNOTIF_LO);
2028 		}
2029 	}
2030 
2031 unlock:
2032 	dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret);
2033 	spin_unlock_irqrestore(&xudc->lock, flags);
2034 
2035 	return ret;
2036 }
2037 
2038 static int tegra_xudc_gadget_pullup(struct usb_gadget *gadget, int is_on)
2039 {
2040 	struct tegra_xudc *xudc = to_xudc(gadget);
2041 	unsigned long flags;
2042 	u32 val;
2043 
2044 	pm_runtime_get_sync(xudc->dev);
2045 
2046 	spin_lock_irqsave(&xudc->lock, flags);
2047 
2048 	if (is_on != xudc->pullup) {
2049 		val = xudc_readl(xudc, CTRL);
2050 		if (is_on)
2051 			val |= CTRL_ENABLE;
2052 		else
2053 			val &= ~CTRL_ENABLE;
2054 		xudc_writel(xudc, val, CTRL);
2055 	}
2056 
2057 	xudc->pullup = is_on;
2058 	dev_dbg(xudc->dev, "%s: pullup:%d", __func__, is_on);
2059 
2060 	spin_unlock_irqrestore(&xudc->lock, flags);
2061 
2062 	pm_runtime_put(xudc->dev);
2063 
2064 	return 0;
2065 }
2066 
2067 static int tegra_xudc_gadget_start(struct usb_gadget *gadget,
2068 				   struct usb_gadget_driver *driver)
2069 {
2070 	struct tegra_xudc *xudc = to_xudc(gadget);
2071 	unsigned long flags;
2072 	u32 val;
2073 	int ret;
2074 	unsigned int i;
2075 
2076 	if (!driver)
2077 		return -EINVAL;
2078 
2079 	pm_runtime_get_sync(xudc->dev);
2080 
2081 	spin_lock_irqsave(&xudc->lock, flags);
2082 
2083 	if (xudc->driver) {
2084 		ret = -EBUSY;
2085 		goto unlock;
2086 	}
2087 
2088 	xudc->setup_state = WAIT_FOR_SETUP;
2089 	xudc->device_state = USB_STATE_DEFAULT;
2090 	usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2091 
2092 	ret = __tegra_xudc_ep_enable(&xudc->ep[0], &tegra_xudc_ep0_desc);
2093 	if (ret < 0)
2094 		goto unlock;
2095 
2096 	val = xudc_readl(xudc, CTRL);
2097 	val |= CTRL_IE | CTRL_LSE;
2098 	xudc_writel(xudc, val, CTRL);
2099 
2100 	val = xudc_readl(xudc, PORTHALT);
2101 	val |= PORTHALT_STCHG_INTR_EN;
2102 	xudc_writel(xudc, val, PORTHALT);
2103 
2104 	if (xudc->pullup) {
2105 		val = xudc_readl(xudc, CTRL);
2106 		val |= CTRL_ENABLE;
2107 		xudc_writel(xudc, val, CTRL);
2108 	}
2109 
2110 	for (i = 0; i < xudc->soc->num_phys; i++)
2111 		if (xudc->usbphy[i])
2112 			otg_set_peripheral(xudc->usbphy[i]->otg, gadget);
2113 
2114 	xudc->driver = driver;
2115 unlock:
2116 	dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret);
2117 	spin_unlock_irqrestore(&xudc->lock, flags);
2118 
2119 	pm_runtime_put(xudc->dev);
2120 
2121 	return ret;
2122 }
2123 
2124 static int tegra_xudc_gadget_stop(struct usb_gadget *gadget)
2125 {
2126 	struct tegra_xudc *xudc = to_xudc(gadget);
2127 	unsigned long flags;
2128 	u32 val;
2129 	unsigned int i;
2130 
2131 	pm_runtime_get_sync(xudc->dev);
2132 
2133 	spin_lock_irqsave(&xudc->lock, flags);
2134 
2135 	for (i = 0; i < xudc->soc->num_phys; i++)
2136 		if (xudc->usbphy[i])
2137 			otg_set_peripheral(xudc->usbphy[i]->otg, NULL);
2138 
2139 	val = xudc_readl(xudc, CTRL);
2140 	val &= ~(CTRL_IE | CTRL_ENABLE);
2141 	xudc_writel(xudc, val, CTRL);
2142 
2143 	__tegra_xudc_ep_disable(&xudc->ep[0]);
2144 
2145 	xudc->driver = NULL;
2146 	dev_dbg(xudc->dev, "Gadget stopped");
2147 
2148 	spin_unlock_irqrestore(&xudc->lock, flags);
2149 
2150 	pm_runtime_put(xudc->dev);
2151 
2152 	return 0;
2153 }
2154 
2155 static int tegra_xudc_gadget_vbus_draw(struct usb_gadget *gadget,
2156 						unsigned int m_a)
2157 {
2158 	int ret = 0;
2159 	struct tegra_xudc *xudc = to_xudc(gadget);
2160 
2161 	dev_dbg(xudc->dev, "%s: %u mA\n", __func__, m_a);
2162 
2163 	if (xudc->curr_usbphy->chg_type == SDP_TYPE)
2164 		ret = usb_phy_set_power(xudc->curr_usbphy, m_a);
2165 
2166 	return ret;
2167 }
2168 
2169 static int tegra_xudc_set_selfpowered(struct usb_gadget *gadget, int is_on)
2170 {
2171 	struct tegra_xudc *xudc = to_xudc(gadget);
2172 
2173 	dev_dbg(xudc->dev, "%s: %d\n", __func__, is_on);
2174 	xudc->selfpowered = !!is_on;
2175 
2176 	return 0;
2177 }
2178 
2179 static const struct usb_gadget_ops tegra_xudc_gadget_ops = {
2180 	.get_frame = tegra_xudc_gadget_get_frame,
2181 	.wakeup = tegra_xudc_gadget_wakeup,
2182 	.pullup = tegra_xudc_gadget_pullup,
2183 	.udc_start = tegra_xudc_gadget_start,
2184 	.udc_stop = tegra_xudc_gadget_stop,
2185 	.vbus_draw = tegra_xudc_gadget_vbus_draw,
2186 	.set_selfpowered = tegra_xudc_set_selfpowered,
2187 };
2188 
2189 static void no_op_complete(struct usb_ep *ep, struct usb_request *req)
2190 {
2191 }
2192 
2193 static int
2194 tegra_xudc_ep0_queue_status(struct tegra_xudc *xudc,
2195 		void (*cmpl)(struct usb_ep *, struct usb_request *))
2196 {
2197 	xudc->ep0_req->usb_req.buf = NULL;
2198 	xudc->ep0_req->usb_req.dma = 0;
2199 	xudc->ep0_req->usb_req.length = 0;
2200 	xudc->ep0_req->usb_req.complete = cmpl;
2201 	xudc->ep0_req->usb_req.context = xudc;
2202 
2203 	return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req);
2204 }
2205 
2206 static int
2207 tegra_xudc_ep0_queue_data(struct tegra_xudc *xudc, void *buf, size_t len,
2208 		void (*cmpl)(struct usb_ep *, struct usb_request *))
2209 {
2210 	xudc->ep0_req->usb_req.buf = buf;
2211 	xudc->ep0_req->usb_req.length = len;
2212 	xudc->ep0_req->usb_req.complete = cmpl;
2213 	xudc->ep0_req->usb_req.context = xudc;
2214 
2215 	return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req);
2216 }
2217 
2218 static void tegra_xudc_ep0_req_done(struct tegra_xudc *xudc)
2219 {
2220 	switch (xudc->setup_state) {
2221 	case DATA_STAGE_XFER:
2222 		xudc->setup_state = STATUS_STAGE_RECV;
2223 		tegra_xudc_ep0_queue_status(xudc, no_op_complete);
2224 		break;
2225 	case DATA_STAGE_RECV:
2226 		xudc->setup_state = STATUS_STAGE_XFER;
2227 		tegra_xudc_ep0_queue_status(xudc, no_op_complete);
2228 		break;
2229 	default:
2230 		xudc->setup_state = WAIT_FOR_SETUP;
2231 		break;
2232 	}
2233 }
2234 
2235 static int tegra_xudc_ep0_delegate_req(struct tegra_xudc *xudc,
2236 				       struct usb_ctrlrequest *ctrl)
2237 {
2238 	int ret;
2239 
2240 	spin_unlock(&xudc->lock);
2241 	ret = xudc->driver->setup(&xudc->gadget, ctrl);
2242 	spin_lock(&xudc->lock);
2243 
2244 	return ret;
2245 }
2246 
2247 static void set_feature_complete(struct usb_ep *ep, struct usb_request *req)
2248 {
2249 	struct tegra_xudc *xudc = req->context;
2250 
2251 	if (xudc->test_mode_pattern) {
2252 		xudc_writel(xudc, xudc->test_mode_pattern, PORT_TM);
2253 		xudc->test_mode_pattern = 0;
2254 	}
2255 }
2256 
2257 static int tegra_xudc_ep0_set_feature(struct tegra_xudc *xudc,
2258 				      struct usb_ctrlrequest *ctrl)
2259 {
2260 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
2261 	u32 feature = le16_to_cpu(ctrl->wValue);
2262 	u32 index = le16_to_cpu(ctrl->wIndex);
2263 	u32 val, ep;
2264 	int ret;
2265 
2266 	if (le16_to_cpu(ctrl->wLength) != 0)
2267 		return -EINVAL;
2268 
2269 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
2270 	case USB_RECIP_DEVICE:
2271 		switch (feature) {
2272 		case USB_DEVICE_REMOTE_WAKEUP:
2273 			if ((xudc->gadget.speed == USB_SPEED_SUPER) ||
2274 			    (xudc->device_state == USB_STATE_DEFAULT))
2275 				return -EINVAL;
2276 
2277 			val = xudc_readl(xudc, PORTPM);
2278 			if (set)
2279 				val |= PORTPM_RWE;
2280 			else
2281 				val &= ~PORTPM_RWE;
2282 
2283 			xudc_writel(xudc, val, PORTPM);
2284 			break;
2285 		case USB_DEVICE_U1_ENABLE:
2286 		case USB_DEVICE_U2_ENABLE:
2287 			if ((xudc->device_state != USB_STATE_CONFIGURED) ||
2288 			    (xudc->gadget.speed != USB_SPEED_SUPER))
2289 				return -EINVAL;
2290 
2291 			val = xudc_readl(xudc, PORTPM);
2292 			if ((feature == USB_DEVICE_U1_ENABLE) &&
2293 			     xudc->soc->u1_enable) {
2294 				if (set)
2295 					val |= PORTPM_U1E;
2296 				else
2297 					val &= ~PORTPM_U1E;
2298 			}
2299 
2300 			if ((feature == USB_DEVICE_U2_ENABLE) &&
2301 			     xudc->soc->u2_enable) {
2302 				if (set)
2303 					val |= PORTPM_U2E;
2304 				else
2305 					val &= ~PORTPM_U2E;
2306 			}
2307 
2308 			xudc_writel(xudc, val, PORTPM);
2309 			break;
2310 		case USB_DEVICE_TEST_MODE:
2311 			if (xudc->gadget.speed != USB_SPEED_HIGH)
2312 				return -EINVAL;
2313 
2314 			if (!set)
2315 				return -EINVAL;
2316 
2317 			xudc->test_mode_pattern = index >> 8;
2318 			break;
2319 		default:
2320 			return -EINVAL;
2321 		}
2322 
2323 		break;
2324 	case USB_RECIP_INTERFACE:
2325 		if (xudc->device_state != USB_STATE_CONFIGURED)
2326 			return -EINVAL;
2327 
2328 		switch (feature) {
2329 		case USB_INTRF_FUNC_SUSPEND:
2330 			if (set) {
2331 				val = xudc_readl(xudc, PORTPM);
2332 
2333 				if (index & USB_INTRF_FUNC_SUSPEND_RW)
2334 					val |= PORTPM_FRWE;
2335 				else
2336 					val &= ~PORTPM_FRWE;
2337 
2338 				xudc_writel(xudc, val, PORTPM);
2339 			}
2340 
2341 			return tegra_xudc_ep0_delegate_req(xudc, ctrl);
2342 		default:
2343 			return -EINVAL;
2344 		}
2345 
2346 		break;
2347 	case USB_RECIP_ENDPOINT:
2348 		ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 +
2349 			((index & USB_DIR_IN) ? 1 : 0);
2350 
2351 		if ((xudc->device_state == USB_STATE_DEFAULT) ||
2352 		    ((xudc->device_state == USB_STATE_ADDRESS) &&
2353 		     (index != 0)))
2354 			return -EINVAL;
2355 
2356 		ret = __tegra_xudc_ep_set_halt(&xudc->ep[ep], set);
2357 		if (ret < 0)
2358 			return ret;
2359 		break;
2360 	default:
2361 		return -EINVAL;
2362 	}
2363 
2364 	return tegra_xudc_ep0_queue_status(xudc, set_feature_complete);
2365 }
2366 
2367 static int tegra_xudc_ep0_get_status(struct tegra_xudc *xudc,
2368 				     struct usb_ctrlrequest *ctrl)
2369 {
2370 	struct tegra_xudc_ep_context *ep_ctx;
2371 	u32 val, ep, index = le16_to_cpu(ctrl->wIndex);
2372 	u16 status = 0;
2373 
2374 	if (!(ctrl->bRequestType & USB_DIR_IN))
2375 		return -EINVAL;
2376 
2377 	if ((le16_to_cpu(ctrl->wValue) != 0) ||
2378 	    (le16_to_cpu(ctrl->wLength) != 2))
2379 		return -EINVAL;
2380 
2381 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
2382 	case USB_RECIP_DEVICE:
2383 		val = xudc_readl(xudc, PORTPM);
2384 
2385 		if (xudc->selfpowered)
2386 			status |= BIT(USB_DEVICE_SELF_POWERED);
2387 
2388 		if ((xudc->gadget.speed < USB_SPEED_SUPER) &&
2389 		    (val & PORTPM_RWE))
2390 			status |= BIT(USB_DEVICE_REMOTE_WAKEUP);
2391 
2392 		if (xudc->gadget.speed == USB_SPEED_SUPER) {
2393 			if (val & PORTPM_U1E)
2394 				status |= BIT(USB_DEV_STAT_U1_ENABLED);
2395 			if (val & PORTPM_U2E)
2396 				status |= BIT(USB_DEV_STAT_U2_ENABLED);
2397 		}
2398 		break;
2399 	case USB_RECIP_INTERFACE:
2400 		if (xudc->gadget.speed == USB_SPEED_SUPER) {
2401 			status |= USB_INTRF_STAT_FUNC_RW_CAP;
2402 			val = xudc_readl(xudc, PORTPM);
2403 			if (val & PORTPM_FRWE)
2404 				status |= USB_INTRF_STAT_FUNC_RW;
2405 		}
2406 		break;
2407 	case USB_RECIP_ENDPOINT:
2408 		ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 +
2409 			((index & USB_DIR_IN) ? 1 : 0);
2410 		ep_ctx = &xudc->ep_context[ep];
2411 
2412 		if ((xudc->device_state != USB_STATE_CONFIGURED) &&
2413 		    ((xudc->device_state != USB_STATE_ADDRESS) || (ep != 0)))
2414 			return -EINVAL;
2415 
2416 		if (ep_ctx_read_state(ep_ctx) == EP_STATE_DISABLED)
2417 			return -EINVAL;
2418 
2419 		if (xudc_readl(xudc, EP_HALT) & BIT(ep))
2420 			status |= BIT(USB_ENDPOINT_HALT);
2421 		break;
2422 	default:
2423 		return -EINVAL;
2424 	}
2425 
2426 	xudc->status_buf = cpu_to_le16(status);
2427 	return tegra_xudc_ep0_queue_data(xudc, &xudc->status_buf,
2428 					 sizeof(xudc->status_buf),
2429 					 no_op_complete);
2430 }
2431 
2432 static void set_sel_complete(struct usb_ep *ep, struct usb_request *req)
2433 {
2434 	/* Nothing to do with SEL values */
2435 }
2436 
2437 static int tegra_xudc_ep0_set_sel(struct tegra_xudc *xudc,
2438 				  struct usb_ctrlrequest *ctrl)
2439 {
2440 	if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE |
2441 				     USB_TYPE_STANDARD))
2442 		return -EINVAL;
2443 
2444 	if (xudc->device_state == USB_STATE_DEFAULT)
2445 		return -EINVAL;
2446 
2447 	if ((le16_to_cpu(ctrl->wIndex) != 0) ||
2448 	    (le16_to_cpu(ctrl->wValue) != 0) ||
2449 	    (le16_to_cpu(ctrl->wLength) != 6))
2450 		return -EINVAL;
2451 
2452 	return tegra_xudc_ep0_queue_data(xudc, &xudc->sel_timing,
2453 					 sizeof(xudc->sel_timing),
2454 					 set_sel_complete);
2455 }
2456 
2457 static void set_isoch_delay_complete(struct usb_ep *ep, struct usb_request *req)
2458 {
2459 	/* Nothing to do with isoch delay */
2460 }
2461 
2462 static int tegra_xudc_ep0_set_isoch_delay(struct tegra_xudc *xudc,
2463 					  struct usb_ctrlrequest *ctrl)
2464 {
2465 	u32 delay = le16_to_cpu(ctrl->wValue);
2466 
2467 	if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE |
2468 				   USB_TYPE_STANDARD))
2469 		return -EINVAL;
2470 
2471 	if ((delay > 65535) || (le16_to_cpu(ctrl->wIndex) != 0) ||
2472 	    (le16_to_cpu(ctrl->wLength) != 0))
2473 		return -EINVAL;
2474 
2475 	xudc->isoch_delay = delay;
2476 
2477 	return tegra_xudc_ep0_queue_status(xudc, set_isoch_delay_complete);
2478 }
2479 
2480 static void set_address_complete(struct usb_ep *ep, struct usb_request *req)
2481 {
2482 	struct tegra_xudc *xudc = req->context;
2483 
2484 	if ((xudc->device_state == USB_STATE_DEFAULT) &&
2485 	    (xudc->dev_addr != 0)) {
2486 		xudc->device_state = USB_STATE_ADDRESS;
2487 		usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2488 	} else if ((xudc->device_state == USB_STATE_ADDRESS) &&
2489 		   (xudc->dev_addr == 0)) {
2490 		xudc->device_state = USB_STATE_DEFAULT;
2491 		usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2492 	}
2493 }
2494 
2495 static int tegra_xudc_ep0_set_address(struct tegra_xudc *xudc,
2496 				      struct usb_ctrlrequest *ctrl)
2497 {
2498 	struct tegra_xudc_ep *ep0 = &xudc->ep[0];
2499 	u32 val, addr = le16_to_cpu(ctrl->wValue);
2500 
2501 	if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE |
2502 				     USB_TYPE_STANDARD))
2503 		return -EINVAL;
2504 
2505 	if ((addr > 127) || (le16_to_cpu(ctrl->wIndex) != 0) ||
2506 	    (le16_to_cpu(ctrl->wLength) != 0))
2507 		return -EINVAL;
2508 
2509 	if (xudc->device_state == USB_STATE_CONFIGURED)
2510 		return -EINVAL;
2511 
2512 	dev_dbg(xudc->dev, "set address: %u\n", addr);
2513 
2514 	xudc->dev_addr = addr;
2515 	val = xudc_readl(xudc, CTRL);
2516 	val &= ~(CTRL_DEVADDR_MASK);
2517 	val |= CTRL_DEVADDR(addr);
2518 	xudc_writel(xudc, val, CTRL);
2519 
2520 	ep_ctx_write_devaddr(ep0->context, addr);
2521 
2522 	return tegra_xudc_ep0_queue_status(xudc, set_address_complete);
2523 }
2524 
2525 static int tegra_xudc_ep0_standard_req(struct tegra_xudc *xudc,
2526 				      struct usb_ctrlrequest *ctrl)
2527 {
2528 	int ret;
2529 
2530 	switch (ctrl->bRequest) {
2531 	case USB_REQ_GET_STATUS:
2532 		dev_dbg(xudc->dev, "USB_REQ_GET_STATUS\n");
2533 		ret = tegra_xudc_ep0_get_status(xudc, ctrl);
2534 		break;
2535 	case USB_REQ_SET_ADDRESS:
2536 		dev_dbg(xudc->dev, "USB_REQ_SET_ADDRESS\n");
2537 		ret = tegra_xudc_ep0_set_address(xudc, ctrl);
2538 		break;
2539 	case USB_REQ_SET_SEL:
2540 		dev_dbg(xudc->dev, "USB_REQ_SET_SEL\n");
2541 		ret = tegra_xudc_ep0_set_sel(xudc, ctrl);
2542 		break;
2543 	case USB_REQ_SET_ISOCH_DELAY:
2544 		dev_dbg(xudc->dev, "USB_REQ_SET_ISOCH_DELAY\n");
2545 		ret = tegra_xudc_ep0_set_isoch_delay(xudc, ctrl);
2546 		break;
2547 	case USB_REQ_CLEAR_FEATURE:
2548 	case USB_REQ_SET_FEATURE:
2549 		dev_dbg(xudc->dev, "USB_REQ_CLEAR/SET_FEATURE\n");
2550 		ret = tegra_xudc_ep0_set_feature(xudc, ctrl);
2551 		break;
2552 	case USB_REQ_SET_CONFIGURATION:
2553 		dev_dbg(xudc->dev, "USB_REQ_SET_CONFIGURATION\n");
2554 		/*
2555 		 * In theory we need to clear RUN bit before status stage of
2556 		 * deconfig request sent, but this seems to be causing problems.
2557 		 * Clear RUN once all endpoints are disabled instead.
2558 		 */
2559 		fallthrough;
2560 	default:
2561 		ret = tegra_xudc_ep0_delegate_req(xudc, ctrl);
2562 		break;
2563 	}
2564 
2565 	return ret;
2566 }
2567 
2568 static void tegra_xudc_handle_ep0_setup_packet(struct tegra_xudc *xudc,
2569 					       struct usb_ctrlrequest *ctrl,
2570 					       u16 seq_num)
2571 {
2572 	int ret;
2573 
2574 	xudc->setup_seq_num = seq_num;
2575 
2576 	/* Ensure EP0 is unhalted. */
2577 	ep_unhalt(xudc, 0);
2578 
2579 	/*
2580 	 * On Tegra210, setup packets with sequence numbers 0xfffe or 0xffff
2581 	 * are invalid.  Halt EP0 until we get a valid packet.
2582 	 */
2583 	if (xudc->soc->invalid_seq_num &&
2584 	    (seq_num == 0xfffe || seq_num == 0xffff)) {
2585 		dev_warn(xudc->dev, "invalid sequence number detected\n");
2586 		ep_halt(xudc, 0);
2587 		return;
2588 	}
2589 
2590 	if (ctrl->wLength)
2591 		xudc->setup_state = (ctrl->bRequestType & USB_DIR_IN) ?
2592 			DATA_STAGE_XFER :  DATA_STAGE_RECV;
2593 	else
2594 		xudc->setup_state = STATUS_STAGE_XFER;
2595 
2596 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD)
2597 		ret = tegra_xudc_ep0_standard_req(xudc, ctrl);
2598 	else
2599 		ret = tegra_xudc_ep0_delegate_req(xudc, ctrl);
2600 
2601 	if (ret < 0) {
2602 		dev_warn(xudc->dev, "setup request failed: %d\n", ret);
2603 		xudc->setup_state = WAIT_FOR_SETUP;
2604 		ep_halt(xudc, 0);
2605 	}
2606 }
2607 
2608 static void tegra_xudc_handle_ep0_event(struct tegra_xudc *xudc,
2609 					struct tegra_xudc_trb *event)
2610 {
2611 	struct usb_ctrlrequest *ctrl = (struct usb_ctrlrequest *)event;
2612 	u16 seq_num = trb_read_seq_num(event);
2613 
2614 	if (xudc->setup_state != WAIT_FOR_SETUP) {
2615 		/*
2616 		 * The controller is in the process of handling another
2617 		 * setup request.  Queue subsequent requests and handle
2618 		 * the last one once the controller reports a sequence
2619 		 * number error.
2620 		 */
2621 		memcpy(&xudc->setup_packet.ctrl_req, ctrl, sizeof(*ctrl));
2622 		xudc->setup_packet.seq_num = seq_num;
2623 		xudc->queued_setup_packet = true;
2624 	} else {
2625 		tegra_xudc_handle_ep0_setup_packet(xudc, ctrl, seq_num);
2626 	}
2627 }
2628 
2629 static struct tegra_xudc_request *
2630 trb_to_request(struct tegra_xudc_ep *ep, struct tegra_xudc_trb *trb)
2631 {
2632 	struct tegra_xudc_request *req;
2633 
2634 	list_for_each_entry(req, &ep->queue, list) {
2635 		if (!req->trbs_queued)
2636 			break;
2637 
2638 		if (trb_in_request(ep, req, trb))
2639 			return req;
2640 	}
2641 
2642 	return NULL;
2643 }
2644 
2645 static void tegra_xudc_handle_transfer_completion(struct tegra_xudc *xudc,
2646 						  struct tegra_xudc_ep *ep,
2647 						  struct tegra_xudc_trb *event)
2648 {
2649 	struct tegra_xudc_request *req;
2650 	struct tegra_xudc_trb *trb;
2651 	bool short_packet;
2652 
2653 	short_packet = (trb_read_cmpl_code(event) ==
2654 			TRB_CMPL_CODE_SHORT_PACKET);
2655 
2656 	trb = trb_phys_to_virt(ep, trb_read_data_ptr(event));
2657 	req = trb_to_request(ep, trb);
2658 
2659 	/*
2660 	 * TDs are complete on short packet or when the completed TRB is the
2661 	 * last TRB in the TD (the CHAIN bit is unset).
2662 	 */
2663 	if (req && (short_packet || (!trb_read_chain(trb) &&
2664 		(req->trbs_needed == req->trbs_queued)))) {
2665 		struct tegra_xudc_trb *last = req->last_trb;
2666 		unsigned int residual;
2667 
2668 		residual = trb_read_transfer_len(event);
2669 		req->usb_req.actual = req->usb_req.length - residual;
2670 
2671 		dev_dbg(xudc->dev, "bytes transferred %u / %u\n",
2672 			req->usb_req.actual, req->usb_req.length);
2673 
2674 		tegra_xudc_req_done(ep, req, 0);
2675 
2676 		if (ep->desc && usb_endpoint_xfer_control(ep->desc))
2677 			tegra_xudc_ep0_req_done(xudc);
2678 
2679 		/*
2680 		 * Advance the dequeue pointer past the end of the current TD
2681 		 * on short packet completion.
2682 		 */
2683 		if (short_packet) {
2684 			ep->deq_ptr = (last - ep->transfer_ring) + 1;
2685 			if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1)
2686 				ep->deq_ptr = 0;
2687 		}
2688 	} else if (!req) {
2689 		dev_warn(xudc->dev, "transfer event on dequeued request\n");
2690 	}
2691 
2692 	if (ep->desc)
2693 		tegra_xudc_ep_kick_queue(ep);
2694 }
2695 
2696 static void tegra_xudc_handle_transfer_event(struct tegra_xudc *xudc,
2697 					     struct tegra_xudc_trb *event)
2698 {
2699 	unsigned int ep_index = trb_read_endpoint_id(event);
2700 	struct tegra_xudc_ep *ep = &xudc->ep[ep_index];
2701 	struct tegra_xudc_trb *trb;
2702 	u16 comp_code;
2703 
2704 	if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) {
2705 		dev_warn(xudc->dev, "transfer event on disabled EP %u\n",
2706 			 ep_index);
2707 		return;
2708 	}
2709 
2710 	/* Update transfer ring dequeue pointer. */
2711 	trb = trb_phys_to_virt(ep, trb_read_data_ptr(event));
2712 	comp_code = trb_read_cmpl_code(event);
2713 	if (comp_code != TRB_CMPL_CODE_BABBLE_DETECTED_ERR) {
2714 		ep->deq_ptr = (trb - ep->transfer_ring) + 1;
2715 
2716 		if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1)
2717 			ep->deq_ptr = 0;
2718 		ep->ring_full = false;
2719 	}
2720 
2721 	switch (comp_code) {
2722 	case TRB_CMPL_CODE_SUCCESS:
2723 	case TRB_CMPL_CODE_SHORT_PACKET:
2724 		tegra_xudc_handle_transfer_completion(xudc, ep, event);
2725 		break;
2726 	case TRB_CMPL_CODE_HOST_REJECTED:
2727 		dev_info(xudc->dev, "stream rejected on EP %u\n", ep_index);
2728 
2729 		ep->stream_rejected = true;
2730 		break;
2731 	case TRB_CMPL_CODE_PRIME_PIPE_RECEIVED:
2732 		dev_info(xudc->dev, "prime pipe received on EP %u\n", ep_index);
2733 
2734 		if (ep->stream_rejected) {
2735 			ep->stream_rejected = false;
2736 			/*
2737 			 * An EP is stopped when a stream is rejected.  Wait
2738 			 * for the EP to report that it is stopped and then
2739 			 * un-stop it.
2740 			 */
2741 			ep_wait_for_stopped(xudc, ep_index);
2742 		}
2743 		tegra_xudc_ep_ring_doorbell(ep);
2744 		break;
2745 	case TRB_CMPL_CODE_BABBLE_DETECTED_ERR:
2746 		/*
2747 		 * Wait for the EP to be stopped so the controller stops
2748 		 * processing doorbells.
2749 		 */
2750 		ep_wait_for_stopped(xudc, ep_index);
2751 		ep->enq_ptr = ep->deq_ptr;
2752 		tegra_xudc_ep_nuke(ep, -EIO);
2753 		fallthrough;
2754 	case TRB_CMPL_CODE_STREAM_NUMP_ERROR:
2755 	case TRB_CMPL_CODE_CTRL_DIR_ERR:
2756 	case TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR:
2757 	case TRB_CMPL_CODE_RING_UNDERRUN:
2758 	case TRB_CMPL_CODE_RING_OVERRUN:
2759 	case TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN:
2760 	case TRB_CMPL_CODE_USB_TRANS_ERR:
2761 	case TRB_CMPL_CODE_TRB_ERR:
2762 		dev_err(xudc->dev, "completion error %#x on EP %u\n",
2763 			comp_code, ep_index);
2764 
2765 		ep_halt(xudc, ep_index);
2766 		break;
2767 	case TRB_CMPL_CODE_CTRL_SEQNUM_ERR:
2768 		dev_info(xudc->dev, "sequence number error\n");
2769 
2770 		/*
2771 		 * Kill any queued control request and skip to the last
2772 		 * setup packet we received.
2773 		 */
2774 		tegra_xudc_ep_nuke(ep, -EINVAL);
2775 		xudc->setup_state = WAIT_FOR_SETUP;
2776 		if (!xudc->queued_setup_packet)
2777 			break;
2778 
2779 		tegra_xudc_handle_ep0_setup_packet(xudc,
2780 						   &xudc->setup_packet.ctrl_req,
2781 						   xudc->setup_packet.seq_num);
2782 		xudc->queued_setup_packet = false;
2783 		break;
2784 	case TRB_CMPL_CODE_STOPPED:
2785 		dev_dbg(xudc->dev, "stop completion code on EP %u\n",
2786 			ep_index);
2787 
2788 		/* Disconnected. */
2789 		tegra_xudc_ep_nuke(ep, -ECONNREFUSED);
2790 		break;
2791 	default:
2792 		dev_dbg(xudc->dev, "completion event %#x on EP %u\n",
2793 			comp_code, ep_index);
2794 		break;
2795 	}
2796 }
2797 
2798 static void tegra_xudc_reset(struct tegra_xudc *xudc)
2799 {
2800 	struct tegra_xudc_ep *ep0 = &xudc->ep[0];
2801 	dma_addr_t deq_ptr;
2802 	unsigned int i;
2803 
2804 	xudc->setup_state = WAIT_FOR_SETUP;
2805 	xudc->device_state = USB_STATE_DEFAULT;
2806 	usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2807 
2808 	ep_unpause_all(xudc);
2809 
2810 	for (i = 0; i < ARRAY_SIZE(xudc->ep); i++)
2811 		tegra_xudc_ep_nuke(&xudc->ep[i], -ESHUTDOWN);
2812 
2813 	/*
2814 	 * Reset sequence number and dequeue pointer to flush the transfer
2815 	 * ring.
2816 	 */
2817 	ep0->deq_ptr = ep0->enq_ptr;
2818 	ep0->ring_full = false;
2819 
2820 	xudc->setup_seq_num = 0;
2821 	xudc->queued_setup_packet = false;
2822 
2823 	ep_ctx_write_rsvd(ep0->context, 0);
2824 	ep_ctx_write_partial_td(ep0->context, 0);
2825 	ep_ctx_write_splitxstate(ep0->context, 0);
2826 	ep_ctx_write_seq_num(ep0->context, 0);
2827 
2828 	deq_ptr = trb_virt_to_phys(ep0, &ep0->transfer_ring[ep0->deq_ptr]);
2829 
2830 	if (!dma_mapping_error(xudc->dev, deq_ptr)) {
2831 		ep_ctx_write_deq_ptr(ep0->context, deq_ptr);
2832 		ep_ctx_write_dcs(ep0->context, ep0->pcs);
2833 	}
2834 
2835 	ep_unhalt_all(xudc);
2836 	ep_reload(xudc, 0);
2837 	ep_unpause(xudc, 0);
2838 }
2839 
2840 static void tegra_xudc_port_connect(struct tegra_xudc *xudc)
2841 {
2842 	struct tegra_xudc_ep *ep0 = &xudc->ep[0];
2843 	u16 maxpacket;
2844 	u32 val;
2845 
2846 	val = (xudc_readl(xudc, PORTSC) & PORTSC_PS_MASK) >> PORTSC_PS_SHIFT;
2847 	switch (val) {
2848 	case PORTSC_PS_LS:
2849 		xudc->gadget.speed = USB_SPEED_LOW;
2850 		break;
2851 	case PORTSC_PS_FS:
2852 		xudc->gadget.speed = USB_SPEED_FULL;
2853 		break;
2854 	case PORTSC_PS_HS:
2855 		xudc->gadget.speed = USB_SPEED_HIGH;
2856 		break;
2857 	case PORTSC_PS_SS:
2858 		xudc->gadget.speed = USB_SPEED_SUPER;
2859 		break;
2860 	default:
2861 		xudc->gadget.speed = USB_SPEED_UNKNOWN;
2862 		break;
2863 	}
2864 
2865 	xudc->device_state = USB_STATE_DEFAULT;
2866 	usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2867 
2868 	xudc->setup_state = WAIT_FOR_SETUP;
2869 
2870 	if (xudc->gadget.speed == USB_SPEED_SUPER)
2871 		maxpacket = 512;
2872 	else
2873 		maxpacket = 64;
2874 
2875 	ep_ctx_write_max_packet_size(ep0->context, maxpacket);
2876 	tegra_xudc_ep0_desc.wMaxPacketSize = cpu_to_le16(maxpacket);
2877 	usb_ep_set_maxpacket_limit(&ep0->usb_ep, maxpacket);
2878 
2879 	if (!xudc->soc->u1_enable) {
2880 		val = xudc_readl(xudc, PORTPM);
2881 		val &= ~(PORTPM_U1TIMEOUT_MASK);
2882 		xudc_writel(xudc, val, PORTPM);
2883 	}
2884 
2885 	if (!xudc->soc->u2_enable) {
2886 		val = xudc_readl(xudc, PORTPM);
2887 		val &= ~(PORTPM_U2TIMEOUT_MASK);
2888 		xudc_writel(xudc, val, PORTPM);
2889 	}
2890 
2891 	if (xudc->gadget.speed <= USB_SPEED_HIGH) {
2892 		val = xudc_readl(xudc, PORTPM);
2893 		val &= ~(PORTPM_L1S_MASK);
2894 		if (xudc->soc->lpm_enable)
2895 			val |= PORTPM_L1S(PORTPM_L1S_ACCEPT);
2896 		else
2897 			val |= PORTPM_L1S(PORTPM_L1S_NYET);
2898 		xudc_writel(xudc, val, PORTPM);
2899 	}
2900 
2901 	val = xudc_readl(xudc, ST);
2902 	if (val & ST_RC)
2903 		xudc_writel(xudc, ST_RC, ST);
2904 }
2905 
2906 static void tegra_xudc_port_disconnect(struct tegra_xudc *xudc)
2907 {
2908 	tegra_xudc_reset(xudc);
2909 
2910 	if (xudc->driver && xudc->driver->disconnect) {
2911 		spin_unlock(&xudc->lock);
2912 		xudc->driver->disconnect(&xudc->gadget);
2913 		spin_lock(&xudc->lock);
2914 	}
2915 
2916 	xudc->device_state = USB_STATE_NOTATTACHED;
2917 	usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2918 
2919 	complete(&xudc->disconnect_complete);
2920 }
2921 
2922 static void tegra_xudc_port_reset(struct tegra_xudc *xudc)
2923 {
2924 	tegra_xudc_reset(xudc);
2925 
2926 	if (xudc->driver) {
2927 		spin_unlock(&xudc->lock);
2928 		usb_gadget_udc_reset(&xudc->gadget, xudc->driver);
2929 		spin_lock(&xudc->lock);
2930 	}
2931 
2932 	tegra_xudc_port_connect(xudc);
2933 }
2934 
2935 static void tegra_xudc_port_suspend(struct tegra_xudc *xudc)
2936 {
2937 	dev_dbg(xudc->dev, "port suspend\n");
2938 
2939 	xudc->resume_state = xudc->device_state;
2940 	xudc->device_state = USB_STATE_SUSPENDED;
2941 	usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2942 
2943 	if (xudc->driver->suspend) {
2944 		spin_unlock(&xudc->lock);
2945 		xudc->driver->suspend(&xudc->gadget);
2946 		spin_lock(&xudc->lock);
2947 	}
2948 }
2949 
2950 static void tegra_xudc_port_resume(struct tegra_xudc *xudc)
2951 {
2952 	dev_dbg(xudc->dev, "port resume\n");
2953 
2954 	tegra_xudc_resume_device_state(xudc);
2955 
2956 	if (xudc->driver->resume) {
2957 		spin_unlock(&xudc->lock);
2958 		xudc->driver->resume(&xudc->gadget);
2959 		spin_lock(&xudc->lock);
2960 	}
2961 }
2962 
2963 static inline void clear_port_change(struct tegra_xudc *xudc, u32 flag)
2964 {
2965 	u32 val;
2966 
2967 	val = xudc_readl(xudc, PORTSC);
2968 	val &= ~PORTSC_CHANGE_MASK;
2969 	val |= flag;
2970 	xudc_writel(xudc, val, PORTSC);
2971 }
2972 
2973 static void __tegra_xudc_handle_port_status(struct tegra_xudc *xudc)
2974 {
2975 	u32 portsc, porthalt;
2976 
2977 	porthalt = xudc_readl(xudc, PORTHALT);
2978 	if ((porthalt & PORTHALT_STCHG_REQ) &&
2979 	    (porthalt & PORTHALT_HALT_LTSSM)) {
2980 		dev_dbg(xudc->dev, "STCHG_REQ, PORTHALT = %#x\n", porthalt);
2981 		porthalt &= ~PORTHALT_HALT_LTSSM;
2982 		xudc_writel(xudc, porthalt, PORTHALT);
2983 	}
2984 
2985 	portsc = xudc_readl(xudc, PORTSC);
2986 	if ((portsc & PORTSC_PRC) && (portsc & PORTSC_PR)) {
2987 		dev_dbg(xudc->dev, "PRC, PR, PORTSC = %#x\n", portsc);
2988 		clear_port_change(xudc, PORTSC_PRC | PORTSC_PED);
2989 #define TOGGLE_VBUS_WAIT_MS 100
2990 		if (xudc->soc->port_reset_quirk) {
2991 			schedule_delayed_work(&xudc->port_reset_war_work,
2992 				msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS));
2993 			xudc->wait_for_sec_prc = 1;
2994 		}
2995 	}
2996 
2997 	if ((portsc & PORTSC_PRC) && !(portsc & PORTSC_PR)) {
2998 		dev_dbg(xudc->dev, "PRC, Not PR, PORTSC = %#x\n", portsc);
2999 		clear_port_change(xudc, PORTSC_PRC | PORTSC_PED);
3000 		tegra_xudc_port_reset(xudc);
3001 		cancel_delayed_work(&xudc->port_reset_war_work);
3002 		xudc->wait_for_sec_prc = 0;
3003 	}
3004 
3005 	portsc = xudc_readl(xudc, PORTSC);
3006 	if (portsc & PORTSC_WRC) {
3007 		dev_dbg(xudc->dev, "WRC, PORTSC = %#x\n", portsc);
3008 		clear_port_change(xudc, PORTSC_WRC | PORTSC_PED);
3009 		if (!(xudc_readl(xudc, PORTSC) & PORTSC_WPR))
3010 			tegra_xudc_port_reset(xudc);
3011 	}
3012 
3013 	portsc = xudc_readl(xudc, PORTSC);
3014 	if (portsc & PORTSC_CSC) {
3015 		dev_dbg(xudc->dev, "CSC, PORTSC = %#x\n", portsc);
3016 		clear_port_change(xudc, PORTSC_CSC);
3017 
3018 		if (portsc & PORTSC_CCS)
3019 			tegra_xudc_port_connect(xudc);
3020 		else
3021 			tegra_xudc_port_disconnect(xudc);
3022 
3023 		if (xudc->wait_csc) {
3024 			cancel_delayed_work(&xudc->plc_reset_work);
3025 			xudc->wait_csc = false;
3026 		}
3027 	}
3028 
3029 	portsc = xudc_readl(xudc, PORTSC);
3030 	if (portsc & PORTSC_PLC) {
3031 		u32 pls = (portsc & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT;
3032 
3033 		dev_dbg(xudc->dev, "PLC, PORTSC = %#x\n", portsc);
3034 		clear_port_change(xudc, PORTSC_PLC);
3035 		switch (pls) {
3036 		case PORTSC_PLS_U3:
3037 			tegra_xudc_port_suspend(xudc);
3038 			break;
3039 		case PORTSC_PLS_U0:
3040 			if (xudc->gadget.speed < USB_SPEED_SUPER)
3041 				tegra_xudc_port_resume(xudc);
3042 			break;
3043 		case PORTSC_PLS_RESUME:
3044 			if (xudc->gadget.speed == USB_SPEED_SUPER)
3045 				tegra_xudc_port_resume(xudc);
3046 			break;
3047 		case PORTSC_PLS_INACTIVE:
3048 			schedule_delayed_work(&xudc->plc_reset_work,
3049 					msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS));
3050 			xudc->wait_csc = true;
3051 			break;
3052 		default:
3053 			break;
3054 		}
3055 	}
3056 
3057 	if (portsc & PORTSC_CEC) {
3058 		dev_warn(xudc->dev, "CEC, PORTSC = %#x\n", portsc);
3059 		clear_port_change(xudc, PORTSC_CEC);
3060 	}
3061 
3062 	dev_dbg(xudc->dev, "PORTSC = %#x\n", xudc_readl(xudc, PORTSC));
3063 }
3064 
3065 static void tegra_xudc_handle_port_status(struct tegra_xudc *xudc)
3066 {
3067 	while ((xudc_readl(xudc, PORTSC) & PORTSC_CHANGE_MASK) ||
3068 	       (xudc_readl(xudc, PORTHALT) & PORTHALT_STCHG_REQ))
3069 		__tegra_xudc_handle_port_status(xudc);
3070 }
3071 
3072 static void tegra_xudc_handle_event(struct tegra_xudc *xudc,
3073 				    struct tegra_xudc_trb *event)
3074 {
3075 	u32 type = trb_read_type(event);
3076 
3077 	dump_trb(xudc, "EVENT", event);
3078 
3079 	switch (type) {
3080 	case TRB_TYPE_PORT_STATUS_CHANGE_EVENT:
3081 		tegra_xudc_handle_port_status(xudc);
3082 		break;
3083 	case TRB_TYPE_TRANSFER_EVENT:
3084 		tegra_xudc_handle_transfer_event(xudc, event);
3085 		break;
3086 	case TRB_TYPE_SETUP_PACKET_EVENT:
3087 		tegra_xudc_handle_ep0_event(xudc, event);
3088 		break;
3089 	default:
3090 		dev_info(xudc->dev, "Unrecognized TRB type = %#x\n", type);
3091 		break;
3092 	}
3093 }
3094 
3095 static void tegra_xudc_process_event_ring(struct tegra_xudc *xudc)
3096 {
3097 	struct tegra_xudc_trb *event;
3098 	dma_addr_t erdp;
3099 
3100 	while (true) {
3101 		event = xudc->event_ring[xudc->event_ring_index] +
3102 			xudc->event_ring_deq_ptr;
3103 
3104 		if (trb_read_cycle(event) != xudc->ccs)
3105 			break;
3106 
3107 		tegra_xudc_handle_event(xudc, event);
3108 
3109 		xudc->event_ring_deq_ptr++;
3110 		if (xudc->event_ring_deq_ptr == XUDC_EVENT_RING_SIZE) {
3111 			xudc->event_ring_deq_ptr = 0;
3112 			xudc->event_ring_index++;
3113 		}
3114 
3115 		if (xudc->event_ring_index == XUDC_NR_EVENT_RINGS) {
3116 			xudc->event_ring_index = 0;
3117 			xudc->ccs = !xudc->ccs;
3118 		}
3119 	}
3120 
3121 	erdp = xudc->event_ring_phys[xudc->event_ring_index] +
3122 		xudc->event_ring_deq_ptr * sizeof(*event);
3123 
3124 	xudc_writel(xudc, upper_32_bits(erdp), ERDPHI);
3125 	xudc_writel(xudc, lower_32_bits(erdp) | ERDPLO_EHB, ERDPLO);
3126 }
3127 
3128 static irqreturn_t tegra_xudc_irq(int irq, void *data)
3129 {
3130 	struct tegra_xudc *xudc = data;
3131 	unsigned long flags;
3132 	u32 val;
3133 
3134 	val = xudc_readl(xudc, ST);
3135 	if (!(val & ST_IP))
3136 		return IRQ_NONE;
3137 	xudc_writel(xudc, ST_IP, ST);
3138 
3139 	spin_lock_irqsave(&xudc->lock, flags);
3140 	tegra_xudc_process_event_ring(xudc);
3141 	spin_unlock_irqrestore(&xudc->lock, flags);
3142 
3143 	return IRQ_HANDLED;
3144 }
3145 
3146 static int tegra_xudc_alloc_ep(struct tegra_xudc *xudc, unsigned int index)
3147 {
3148 	struct tegra_xudc_ep *ep = &xudc->ep[index];
3149 
3150 	ep->xudc = xudc;
3151 	ep->index = index;
3152 	ep->context = &xudc->ep_context[index];
3153 	INIT_LIST_HEAD(&ep->queue);
3154 
3155 	/*
3156 	 * EP1 would be the input endpoint corresponding to EP0, but since
3157 	 * EP0 is bi-directional, EP1 is unused.
3158 	 */
3159 	if (index == 1)
3160 		return 0;
3161 
3162 	ep->transfer_ring = dma_pool_alloc(xudc->transfer_ring_pool,
3163 					   GFP_KERNEL,
3164 					   &ep->transfer_ring_phys);
3165 	if (!ep->transfer_ring)
3166 		return -ENOMEM;
3167 
3168 	if (index) {
3169 		snprintf(ep->name, sizeof(ep->name), "ep%u%s", index / 2,
3170 			 (index % 2 == 0) ? "out" : "in");
3171 		ep->usb_ep.name = ep->name;
3172 		usb_ep_set_maxpacket_limit(&ep->usb_ep, 1024);
3173 		ep->usb_ep.max_streams = 16;
3174 		ep->usb_ep.ops = &tegra_xudc_ep_ops;
3175 		ep->usb_ep.caps.type_bulk = true;
3176 		ep->usb_ep.caps.type_int = true;
3177 		if (index & 1)
3178 			ep->usb_ep.caps.dir_in = true;
3179 		else
3180 			ep->usb_ep.caps.dir_out = true;
3181 		list_add_tail(&ep->usb_ep.ep_list, &xudc->gadget.ep_list);
3182 	} else {
3183 		strscpy(ep->name, "ep0", 3);
3184 		ep->usb_ep.name = ep->name;
3185 		usb_ep_set_maxpacket_limit(&ep->usb_ep, 512);
3186 		ep->usb_ep.ops = &tegra_xudc_ep0_ops;
3187 		ep->usb_ep.caps.type_control = true;
3188 		ep->usb_ep.caps.dir_in = true;
3189 		ep->usb_ep.caps.dir_out = true;
3190 	}
3191 
3192 	return 0;
3193 }
3194 
3195 static void tegra_xudc_free_ep(struct tegra_xudc *xudc, unsigned int index)
3196 {
3197 	struct tegra_xudc_ep *ep = &xudc->ep[index];
3198 
3199 	/*
3200 	 * EP1 would be the input endpoint corresponding to EP0, but since
3201 	 * EP0 is bi-directional, EP1 is unused.
3202 	 */
3203 	if (index == 1)
3204 		return;
3205 
3206 	dma_pool_free(xudc->transfer_ring_pool, ep->transfer_ring,
3207 		      ep->transfer_ring_phys);
3208 }
3209 
3210 static int tegra_xudc_alloc_eps(struct tegra_xudc *xudc)
3211 {
3212 	struct usb_request *req;
3213 	unsigned int i;
3214 	int err;
3215 
3216 	xudc->ep_context =
3217 		dma_alloc_coherent(xudc->dev, XUDC_NR_EPS *
3218 				    sizeof(*xudc->ep_context),
3219 				    &xudc->ep_context_phys, GFP_KERNEL);
3220 	if (!xudc->ep_context)
3221 		return -ENOMEM;
3222 
3223 	xudc->transfer_ring_pool =
3224 		dmam_pool_create(dev_name(xudc->dev), xudc->dev,
3225 				 XUDC_TRANSFER_RING_SIZE *
3226 				 sizeof(struct tegra_xudc_trb),
3227 				 sizeof(struct tegra_xudc_trb), 0);
3228 	if (!xudc->transfer_ring_pool) {
3229 		err = -ENOMEM;
3230 		goto free_ep_context;
3231 	}
3232 
3233 	INIT_LIST_HEAD(&xudc->gadget.ep_list);
3234 	for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) {
3235 		err = tegra_xudc_alloc_ep(xudc, i);
3236 		if (err < 0)
3237 			goto free_eps;
3238 	}
3239 
3240 	req = tegra_xudc_ep_alloc_request(&xudc->ep[0].usb_ep, GFP_KERNEL);
3241 	if (!req) {
3242 		err = -ENOMEM;
3243 		goto free_eps;
3244 	}
3245 	xudc->ep0_req = to_xudc_req(req);
3246 
3247 	return 0;
3248 
3249 free_eps:
3250 	for (; i > 0; i--)
3251 		tegra_xudc_free_ep(xudc, i - 1);
3252 free_ep_context:
3253 	dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context),
3254 			  xudc->ep_context, xudc->ep_context_phys);
3255 	return err;
3256 }
3257 
3258 static void tegra_xudc_init_eps(struct tegra_xudc *xudc)
3259 {
3260 	xudc_writel(xudc, lower_32_bits(xudc->ep_context_phys), ECPLO);
3261 	xudc_writel(xudc, upper_32_bits(xudc->ep_context_phys), ECPHI);
3262 }
3263 
3264 static void tegra_xudc_free_eps(struct tegra_xudc *xudc)
3265 {
3266 	unsigned int i;
3267 
3268 	tegra_xudc_ep_free_request(&xudc->ep[0].usb_ep,
3269 				   &xudc->ep0_req->usb_req);
3270 
3271 	for (i = 0; i < ARRAY_SIZE(xudc->ep); i++)
3272 		tegra_xudc_free_ep(xudc, i);
3273 
3274 	dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context),
3275 			  xudc->ep_context, xudc->ep_context_phys);
3276 }
3277 
3278 static int tegra_xudc_alloc_event_ring(struct tegra_xudc *xudc)
3279 {
3280 	unsigned int i;
3281 
3282 	for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) {
3283 		xudc->event_ring[i] =
3284 			dma_alloc_coherent(xudc->dev, XUDC_EVENT_RING_SIZE *
3285 					   sizeof(*xudc->event_ring[i]),
3286 					   &xudc->event_ring_phys[i],
3287 					   GFP_KERNEL);
3288 		if (!xudc->event_ring[i])
3289 			goto free_dma;
3290 	}
3291 
3292 	return 0;
3293 
3294 free_dma:
3295 	for (; i > 0; i--) {
3296 		dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE *
3297 				  sizeof(*xudc->event_ring[i - 1]),
3298 				  xudc->event_ring[i - 1],
3299 				  xudc->event_ring_phys[i - 1]);
3300 	}
3301 	return -ENOMEM;
3302 }
3303 
3304 static void tegra_xudc_init_event_ring(struct tegra_xudc *xudc)
3305 {
3306 	unsigned int i;
3307 	u32 val;
3308 
3309 	for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) {
3310 		memset(xudc->event_ring[i], 0, XUDC_EVENT_RING_SIZE *
3311 		       sizeof(*xudc->event_ring[i]));
3312 
3313 		val = xudc_readl(xudc, ERSTSZ);
3314 		val &= ~(ERSTSZ_ERSTXSZ_MASK << ERSTSZ_ERSTXSZ_SHIFT(i));
3315 		val |= XUDC_EVENT_RING_SIZE << ERSTSZ_ERSTXSZ_SHIFT(i);
3316 		xudc_writel(xudc, val, ERSTSZ);
3317 
3318 		xudc_writel(xudc, lower_32_bits(xudc->event_ring_phys[i]),
3319 			    ERSTXBALO(i));
3320 		xudc_writel(xudc, upper_32_bits(xudc->event_ring_phys[i]),
3321 			    ERSTXBAHI(i));
3322 	}
3323 
3324 	val = lower_32_bits(xudc->event_ring_phys[0]);
3325 	xudc_writel(xudc, val, ERDPLO);
3326 	val |= EREPLO_ECS;
3327 	xudc_writel(xudc, val, EREPLO);
3328 
3329 	val = upper_32_bits(xudc->event_ring_phys[0]);
3330 	xudc_writel(xudc, val, ERDPHI);
3331 	xudc_writel(xudc, val, EREPHI);
3332 
3333 	xudc->ccs = true;
3334 	xudc->event_ring_index = 0;
3335 	xudc->event_ring_deq_ptr = 0;
3336 }
3337 
3338 static void tegra_xudc_free_event_ring(struct tegra_xudc *xudc)
3339 {
3340 	unsigned int i;
3341 
3342 	for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) {
3343 		dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE *
3344 				  sizeof(*xudc->event_ring[i]),
3345 				  xudc->event_ring[i],
3346 				  xudc->event_ring_phys[i]);
3347 	}
3348 }
3349 
3350 static void tegra_xudc_fpci_ipfs_init(struct tegra_xudc *xudc)
3351 {
3352 	u32 val;
3353 
3354 	if (xudc->soc->has_ipfs) {
3355 		val = ipfs_readl(xudc, XUSB_DEV_CONFIGURATION_0);
3356 		val |= XUSB_DEV_CONFIGURATION_0_EN_FPCI;
3357 		ipfs_writel(xudc, val, XUSB_DEV_CONFIGURATION_0);
3358 		usleep_range(10, 15);
3359 	}
3360 
3361 	/* Enable bus master */
3362 	val = XUSB_DEV_CFG_1_IO_SPACE_EN | XUSB_DEV_CFG_1_MEMORY_SPACE_EN |
3363 		XUSB_DEV_CFG_1_BUS_MASTER_EN;
3364 	fpci_writel(xudc, val, XUSB_DEV_CFG_1);
3365 
3366 	/* Program BAR0 space */
3367 	val = fpci_readl(xudc, XUSB_DEV_CFG_4);
3368 	val &= ~(XUSB_DEV_CFG_4_BASE_ADDR_MASK);
3369 	val |= xudc->phys_base & (XUSB_DEV_CFG_4_BASE_ADDR_MASK);
3370 
3371 	fpci_writel(xudc, val, XUSB_DEV_CFG_4);
3372 	fpci_writel(xudc, upper_32_bits(xudc->phys_base), XUSB_DEV_CFG_5);
3373 
3374 	usleep_range(100, 200);
3375 
3376 	if (xudc->soc->has_ipfs) {
3377 		/* Enable interrupt assertion */
3378 		val = ipfs_readl(xudc, XUSB_DEV_INTR_MASK_0);
3379 		val |= XUSB_DEV_INTR_MASK_0_IP_INT_MASK;
3380 		ipfs_writel(xudc, val, XUSB_DEV_INTR_MASK_0);
3381 	}
3382 }
3383 
3384 static void tegra_xudc_device_params_init(struct tegra_xudc *xudc)
3385 {
3386 	u32 val, imod;
3387 
3388 	if (xudc->soc->has_ipfs) {
3389 		val = xudc_readl(xudc, BLCG);
3390 		val |= BLCG_ALL;
3391 		val &= ~(BLCG_DFPCI | BLCG_UFPCI | BLCG_FE |
3392 				BLCG_COREPLL_PWRDN);
3393 		val |= BLCG_IOPLL_0_PWRDN;
3394 		val |= BLCG_IOPLL_1_PWRDN;
3395 		val |= BLCG_IOPLL_2_PWRDN;
3396 
3397 		xudc_writel(xudc, val, BLCG);
3398 	}
3399 
3400 	if (xudc->soc->port_speed_quirk)
3401 		tegra_xudc_limit_port_speed(xudc);
3402 
3403 	/* Set a reasonable U3 exit timer value. */
3404 	val = xudc_readl(xudc, SSPX_CORE_PADCTL4);
3405 	val &= ~(SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK);
3406 	val |= SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(0x5dc0);
3407 	xudc_writel(xudc, val, SSPX_CORE_PADCTL4);
3408 
3409 	/* Default ping LFPS tBurst is too large. */
3410 	val = xudc_readl(xudc, SSPX_CORE_CNT0);
3411 	val &= ~(SSPX_CORE_CNT0_PING_TBURST_MASK);
3412 	val |= SSPX_CORE_CNT0_PING_TBURST(0xa);
3413 	xudc_writel(xudc, val, SSPX_CORE_CNT0);
3414 
3415 	/* Default tPortConfiguration timeout is too small. */
3416 	val = xudc_readl(xudc, SSPX_CORE_CNT30);
3417 	val &= ~(SSPX_CORE_CNT30_LMPITP_TIMER_MASK);
3418 	val |= SSPX_CORE_CNT30_LMPITP_TIMER(0x978);
3419 	xudc_writel(xudc, val, SSPX_CORE_CNT30);
3420 
3421 	if (xudc->soc->lpm_enable) {
3422 		/* Set L1 resume duration to 95 us. */
3423 		val = xudc_readl(xudc, HSFSPI_COUNT13);
3424 		val &= ~(HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK);
3425 		val |= HSFSPI_COUNT13_U2_RESUME_K_DURATION(0x2c88);
3426 		xudc_writel(xudc, val, HSFSPI_COUNT13);
3427 	}
3428 
3429 	/*
3430 	 * Compliance suite appears to be violating polling LFPS tBurst max
3431 	 * of 1.4us.  Send 1.45us instead.
3432 	 */
3433 	val = xudc_readl(xudc, SSPX_CORE_CNT32);
3434 	val &= ~(SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK);
3435 	val |= SSPX_CORE_CNT32_POLL_TBURST_MAX(0xb0);
3436 	xudc_writel(xudc, val, SSPX_CORE_CNT32);
3437 
3438 	/* Direct HS/FS port instance to RxDetect. */
3439 	val = xudc_readl(xudc, CFG_DEV_FE);
3440 	val &= ~(CFG_DEV_FE_PORTREGSEL_MASK);
3441 	val |= CFG_DEV_FE_PORTREGSEL(CFG_DEV_FE_PORTREGSEL_HSFS_PI);
3442 	xudc_writel(xudc, val, CFG_DEV_FE);
3443 
3444 	val = xudc_readl(xudc, PORTSC);
3445 	val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
3446 	val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT);
3447 	xudc_writel(xudc, val, PORTSC);
3448 
3449 	/* Direct SS port instance to RxDetect. */
3450 	val = xudc_readl(xudc, CFG_DEV_FE);
3451 	val &= ~(CFG_DEV_FE_PORTREGSEL_MASK);
3452 	val |= CFG_DEV_FE_PORTREGSEL_SS_PI & CFG_DEV_FE_PORTREGSEL_MASK;
3453 	xudc_writel(xudc, val, CFG_DEV_FE);
3454 
3455 	val = xudc_readl(xudc, PORTSC);
3456 	val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
3457 	val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT);
3458 	xudc_writel(xudc, val, PORTSC);
3459 
3460 	/* Restore port instance. */
3461 	val = xudc_readl(xudc, CFG_DEV_FE);
3462 	val &= ~(CFG_DEV_FE_PORTREGSEL_MASK);
3463 	xudc_writel(xudc, val, CFG_DEV_FE);
3464 
3465 	/*
3466 	 * Enable INFINITE_SS_RETRY to prevent device from entering
3467 	 * Disabled.Error when attached to buggy SuperSpeed hubs.
3468 	 */
3469 	val = xudc_readl(xudc, CFG_DEV_FE);
3470 	val |= CFG_DEV_FE_INFINITE_SS_RETRY;
3471 	xudc_writel(xudc, val, CFG_DEV_FE);
3472 
3473 	/* Set interrupt moderation. */
3474 	imod = XUDC_INTERRUPT_MODERATION_US * 4;
3475 	val = xudc_readl(xudc, RT_IMOD);
3476 	val &= ~((RT_IMOD_IMODI_MASK) | (RT_IMOD_IMODC_MASK));
3477 	val |= (RT_IMOD_IMODI(imod) | RT_IMOD_IMODC(imod));
3478 	xudc_writel(xudc, val, RT_IMOD);
3479 
3480 	/* increase SSPI transaction timeout from 32us to 512us */
3481 	val = xudc_readl(xudc, CFG_DEV_SSPI_XFER);
3482 	val &= ~(CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK);
3483 	val |= CFG_DEV_SSPI_XFER_ACKTIMEOUT(0xf000);
3484 	xudc_writel(xudc, val, CFG_DEV_SSPI_XFER);
3485 }
3486 
3487 static int tegra_xudc_phy_get(struct tegra_xudc *xudc)
3488 {
3489 	int err = 0, usb3;
3490 	unsigned int i;
3491 
3492 	xudc->utmi_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys,
3493 					   sizeof(*xudc->utmi_phy), GFP_KERNEL);
3494 	if (!xudc->utmi_phy)
3495 		return -ENOMEM;
3496 
3497 	xudc->usb3_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys,
3498 					   sizeof(*xudc->usb3_phy), GFP_KERNEL);
3499 	if (!xudc->usb3_phy)
3500 		return -ENOMEM;
3501 
3502 	xudc->usbphy = devm_kcalloc(xudc->dev, xudc->soc->num_phys,
3503 					   sizeof(*xudc->usbphy), GFP_KERNEL);
3504 	if (!xudc->usbphy)
3505 		return -ENOMEM;
3506 
3507 	xudc->vbus_nb.notifier_call = tegra_xudc_vbus_notify;
3508 
3509 	for (i = 0; i < xudc->soc->num_phys; i++) {
3510 		char phy_name[] = "usb.-.";
3511 
3512 		/* Get USB2 phy */
3513 		snprintf(phy_name, sizeof(phy_name), "usb2-%d", i);
3514 		xudc->utmi_phy[i] = devm_phy_optional_get(xudc->dev, phy_name);
3515 		if (IS_ERR(xudc->utmi_phy[i])) {
3516 			err = PTR_ERR(xudc->utmi_phy[i]);
3517 			dev_err_probe(xudc->dev, err,
3518 				      "failed to get usb2-%d PHY\n", i);
3519 			goto clean_up;
3520 		} else if (xudc->utmi_phy[i]) {
3521 			/* Get usb-phy, if utmi phy is available */
3522 			xudc->usbphy[i] = devm_usb_get_phy_by_node(xudc->dev,
3523 						xudc->utmi_phy[i]->dev.of_node,
3524 						&xudc->vbus_nb);
3525 			if (IS_ERR(xudc->usbphy[i])) {
3526 				err = PTR_ERR(xudc->usbphy[i]);
3527 				dev_err_probe(xudc->dev, err,
3528 					      "failed to get usbphy-%d\n", i);
3529 				goto clean_up;
3530 			}
3531 		} else if (!xudc->utmi_phy[i]) {
3532 			/* if utmi phy is not available, ignore USB3 phy get */
3533 			continue;
3534 		}
3535 
3536 		/* Get USB3 phy */
3537 		usb3 = tegra_xusb_padctl_get_usb3_companion(xudc->padctl, i);
3538 		if (usb3 < 0)
3539 			continue;
3540 
3541 		snprintf(phy_name, sizeof(phy_name), "usb3-%d", usb3);
3542 		xudc->usb3_phy[i] = devm_phy_optional_get(xudc->dev, phy_name);
3543 		if (IS_ERR(xudc->usb3_phy[i])) {
3544 			err = PTR_ERR(xudc->usb3_phy[i]);
3545 			dev_err_probe(xudc->dev, err,
3546 				      "failed to get usb3-%d PHY\n", usb3);
3547 			goto clean_up;
3548 		} else if (xudc->usb3_phy[i])
3549 			dev_dbg(xudc->dev, "usb3-%d PHY registered", usb3);
3550 	}
3551 
3552 	return err;
3553 
3554 clean_up:
3555 	for (i = 0; i < xudc->soc->num_phys; i++) {
3556 		xudc->usb3_phy[i] = NULL;
3557 		xudc->utmi_phy[i] = NULL;
3558 		xudc->usbphy[i] = NULL;
3559 	}
3560 
3561 	return err;
3562 }
3563 
3564 static void tegra_xudc_phy_exit(struct tegra_xudc *xudc)
3565 {
3566 	unsigned int i;
3567 
3568 	for (i = 0; i < xudc->soc->num_phys; i++) {
3569 		phy_exit(xudc->usb3_phy[i]);
3570 		phy_exit(xudc->utmi_phy[i]);
3571 	}
3572 }
3573 
3574 static int tegra_xudc_phy_init(struct tegra_xudc *xudc)
3575 {
3576 	int err;
3577 	unsigned int i;
3578 
3579 	for (i = 0; i < xudc->soc->num_phys; i++) {
3580 		err = phy_init(xudc->utmi_phy[i]);
3581 		if (err < 0) {
3582 			dev_err(xudc->dev, "UTMI PHY #%u initialization failed: %d\n", i, err);
3583 			goto exit_phy;
3584 		}
3585 
3586 		err = phy_init(xudc->usb3_phy[i]);
3587 		if (err < 0) {
3588 			dev_err(xudc->dev, "USB3 PHY #%u initialization failed: %d\n", i, err);
3589 			goto exit_phy;
3590 		}
3591 	}
3592 	return 0;
3593 
3594 exit_phy:
3595 	tegra_xudc_phy_exit(xudc);
3596 	return err;
3597 }
3598 
3599 static const char * const tegra210_xudc_supply_names[] = {
3600 	"hvdd-usb",
3601 	"avddio-usb",
3602 };
3603 
3604 static const char * const tegra210_xudc_clock_names[] = {
3605 	"dev",
3606 	"ss",
3607 	"ss_src",
3608 	"hs_src",
3609 	"fs_src",
3610 };
3611 
3612 static const char * const tegra186_xudc_clock_names[] = {
3613 	"dev",
3614 	"ss",
3615 	"ss_src",
3616 	"fs_src",
3617 };
3618 
3619 static struct tegra_xudc_soc tegra210_xudc_soc_data = {
3620 	.supply_names = tegra210_xudc_supply_names,
3621 	.num_supplies = ARRAY_SIZE(tegra210_xudc_supply_names),
3622 	.clock_names = tegra210_xudc_clock_names,
3623 	.num_clks = ARRAY_SIZE(tegra210_xudc_clock_names),
3624 	.num_phys = 4,
3625 	.u1_enable = false,
3626 	.u2_enable = true,
3627 	.lpm_enable = false,
3628 	.invalid_seq_num = true,
3629 	.pls_quirk = true,
3630 	.port_reset_quirk = true,
3631 	.port_speed_quirk = false,
3632 	.has_ipfs = true,
3633 };
3634 
3635 static struct tegra_xudc_soc tegra186_xudc_soc_data = {
3636 	.clock_names = tegra186_xudc_clock_names,
3637 	.num_clks = ARRAY_SIZE(tegra186_xudc_clock_names),
3638 	.num_phys = 4,
3639 	.u1_enable = true,
3640 	.u2_enable = true,
3641 	.lpm_enable = false,
3642 	.invalid_seq_num = false,
3643 	.pls_quirk = false,
3644 	.port_reset_quirk = false,
3645 	.port_speed_quirk = false,
3646 	.has_ipfs = false,
3647 };
3648 
3649 static struct tegra_xudc_soc tegra194_xudc_soc_data = {
3650 	.clock_names = tegra186_xudc_clock_names,
3651 	.num_clks = ARRAY_SIZE(tegra186_xudc_clock_names),
3652 	.num_phys = 4,
3653 	.u1_enable = true,
3654 	.u2_enable = true,
3655 	.lpm_enable = true,
3656 	.invalid_seq_num = false,
3657 	.pls_quirk = false,
3658 	.port_reset_quirk = false,
3659 	.port_speed_quirk = true,
3660 	.has_ipfs = false,
3661 };
3662 
3663 static const struct of_device_id tegra_xudc_of_match[] = {
3664 	{
3665 		.compatible = "nvidia,tegra210-xudc",
3666 		.data = &tegra210_xudc_soc_data
3667 	},
3668 	{
3669 		.compatible = "nvidia,tegra186-xudc",
3670 		.data = &tegra186_xudc_soc_data
3671 	},
3672 	{
3673 		.compatible = "nvidia,tegra194-xudc",
3674 		.data = &tegra194_xudc_soc_data
3675 	},
3676 	{ }
3677 };
3678 MODULE_DEVICE_TABLE(of, tegra_xudc_of_match);
3679 
3680 static void tegra_xudc_powerdomain_remove(struct tegra_xudc *xudc)
3681 {
3682 	if (xudc->genpd_dl_ss)
3683 		device_link_del(xudc->genpd_dl_ss);
3684 	if (xudc->genpd_dl_device)
3685 		device_link_del(xudc->genpd_dl_device);
3686 	if (xudc->genpd_dev_ss)
3687 		dev_pm_domain_detach(xudc->genpd_dev_ss, true);
3688 	if (xudc->genpd_dev_device)
3689 		dev_pm_domain_detach(xudc->genpd_dev_device, true);
3690 }
3691 
3692 static int tegra_xudc_powerdomain_init(struct tegra_xudc *xudc)
3693 {
3694 	struct device *dev = xudc->dev;
3695 	int err;
3696 
3697 	xudc->genpd_dev_device = dev_pm_domain_attach_by_name(dev, "dev");
3698 	if (IS_ERR_OR_NULL(xudc->genpd_dev_device)) {
3699 		err = PTR_ERR(xudc->genpd_dev_device) ? : -ENODATA;
3700 		dev_err(dev, "failed to get device power domain: %d\n", err);
3701 		return err;
3702 	}
3703 
3704 	xudc->genpd_dev_ss = dev_pm_domain_attach_by_name(dev, "ss");
3705 	if (IS_ERR_OR_NULL(xudc->genpd_dev_ss)) {
3706 		err = PTR_ERR(xudc->genpd_dev_ss) ? : -ENODATA;
3707 		dev_err(dev, "failed to get SuperSpeed power domain: %d\n", err);
3708 		return err;
3709 	}
3710 
3711 	xudc->genpd_dl_device = device_link_add(dev, xudc->genpd_dev_device,
3712 						DL_FLAG_PM_RUNTIME |
3713 						DL_FLAG_STATELESS);
3714 	if (!xudc->genpd_dl_device) {
3715 		dev_err(dev, "failed to add USB device link\n");
3716 		return -ENODEV;
3717 	}
3718 
3719 	xudc->genpd_dl_ss = device_link_add(dev, xudc->genpd_dev_ss,
3720 					    DL_FLAG_PM_RUNTIME |
3721 					    DL_FLAG_STATELESS);
3722 	if (!xudc->genpd_dl_ss) {
3723 		dev_err(dev, "failed to add SuperSpeed device link\n");
3724 		return -ENODEV;
3725 	}
3726 
3727 	return 0;
3728 }
3729 
3730 static int tegra_xudc_probe(struct platform_device *pdev)
3731 {
3732 	struct tegra_xudc *xudc;
3733 	struct resource *res;
3734 	unsigned int i;
3735 	int err;
3736 
3737 	xudc = devm_kzalloc(&pdev->dev, sizeof(*xudc), GFP_KERNEL);
3738 	if (!xudc)
3739 		return -ENOMEM;
3740 
3741 	xudc->dev = &pdev->dev;
3742 	platform_set_drvdata(pdev, xudc);
3743 
3744 	xudc->soc = of_device_get_match_data(&pdev->dev);
3745 	if (!xudc->soc)
3746 		return -ENODEV;
3747 
3748 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3749 	xudc->base = devm_ioremap_resource(&pdev->dev, res);
3750 	if (IS_ERR(xudc->base))
3751 		return PTR_ERR(xudc->base);
3752 	xudc->phys_base = res->start;
3753 
3754 	xudc->fpci = devm_platform_ioremap_resource_byname(pdev, "fpci");
3755 	if (IS_ERR(xudc->fpci))
3756 		return PTR_ERR(xudc->fpci);
3757 
3758 	if (xudc->soc->has_ipfs) {
3759 		xudc->ipfs = devm_platform_ioremap_resource_byname(pdev, "ipfs");
3760 		if (IS_ERR(xudc->ipfs))
3761 			return PTR_ERR(xudc->ipfs);
3762 	}
3763 
3764 	xudc->irq = platform_get_irq(pdev, 0);
3765 	if (xudc->irq < 0)
3766 		return xudc->irq;
3767 
3768 	err = devm_request_irq(&pdev->dev, xudc->irq, tegra_xudc_irq, 0,
3769 			       dev_name(&pdev->dev), xudc);
3770 	if (err < 0) {
3771 		dev_err(xudc->dev, "failed to claim IRQ#%u: %d\n", xudc->irq,
3772 			err);
3773 		return err;
3774 	}
3775 
3776 	xudc->clks = devm_kcalloc(&pdev->dev, xudc->soc->num_clks, sizeof(*xudc->clks),
3777 				  GFP_KERNEL);
3778 	if (!xudc->clks)
3779 		return -ENOMEM;
3780 
3781 	for (i = 0; i < xudc->soc->num_clks; i++)
3782 		xudc->clks[i].id = xudc->soc->clock_names[i];
3783 
3784 	err = devm_clk_bulk_get(&pdev->dev, xudc->soc->num_clks, xudc->clks);
3785 	if (err) {
3786 		dev_err_probe(xudc->dev, err, "failed to request clocks\n");
3787 		return err;
3788 	}
3789 
3790 	xudc->supplies = devm_kcalloc(&pdev->dev, xudc->soc->num_supplies,
3791 				      sizeof(*xudc->supplies), GFP_KERNEL);
3792 	if (!xudc->supplies)
3793 		return -ENOMEM;
3794 
3795 	for (i = 0; i < xudc->soc->num_supplies; i++)
3796 		xudc->supplies[i].supply = xudc->soc->supply_names[i];
3797 
3798 	err = devm_regulator_bulk_get(&pdev->dev, xudc->soc->num_supplies,
3799 				      xudc->supplies);
3800 	if (err) {
3801 		dev_err_probe(xudc->dev, err, "failed to request regulators\n");
3802 		return err;
3803 	}
3804 
3805 	xudc->padctl = tegra_xusb_padctl_get(&pdev->dev);
3806 	if (IS_ERR(xudc->padctl))
3807 		return PTR_ERR(xudc->padctl);
3808 
3809 	err = regulator_bulk_enable(xudc->soc->num_supplies, xudc->supplies);
3810 	if (err) {
3811 		dev_err(xudc->dev, "failed to enable regulators: %d\n", err);
3812 		goto put_padctl;
3813 	}
3814 
3815 	err = tegra_xudc_phy_get(xudc);
3816 	if (err)
3817 		goto disable_regulator;
3818 
3819 	err = tegra_xudc_powerdomain_init(xudc);
3820 	if (err)
3821 		goto put_powerdomains;
3822 
3823 	err = tegra_xudc_phy_init(xudc);
3824 	if (err)
3825 		goto put_powerdomains;
3826 
3827 	err = tegra_xudc_alloc_event_ring(xudc);
3828 	if (err)
3829 		goto disable_phy;
3830 
3831 	err = tegra_xudc_alloc_eps(xudc);
3832 	if (err)
3833 		goto free_event_ring;
3834 
3835 	spin_lock_init(&xudc->lock);
3836 
3837 	init_completion(&xudc->disconnect_complete);
3838 
3839 	INIT_WORK(&xudc->usb_role_sw_work, tegra_xudc_usb_role_sw_work);
3840 
3841 	INIT_DELAYED_WORK(&xudc->plc_reset_work, tegra_xudc_plc_reset_work);
3842 
3843 	INIT_DELAYED_WORK(&xudc->port_reset_war_work,
3844 				tegra_xudc_port_reset_war_work);
3845 
3846 	pm_runtime_enable(&pdev->dev);
3847 
3848 	xudc->gadget.ops = &tegra_xudc_gadget_ops;
3849 	xudc->gadget.ep0 = &xudc->ep[0].usb_ep;
3850 	xudc->gadget.name = "tegra-xudc";
3851 	xudc->gadget.max_speed = USB_SPEED_SUPER;
3852 
3853 	err = usb_add_gadget_udc(&pdev->dev, &xudc->gadget);
3854 	if (err) {
3855 		dev_err(&pdev->dev, "failed to add USB gadget: %d\n", err);
3856 		goto free_eps;
3857 	}
3858 
3859 	return 0;
3860 
3861 free_eps:
3862 	pm_runtime_disable(&pdev->dev);
3863 	tegra_xudc_free_eps(xudc);
3864 free_event_ring:
3865 	tegra_xudc_free_event_ring(xudc);
3866 disable_phy:
3867 	tegra_xudc_phy_exit(xudc);
3868 put_powerdomains:
3869 	tegra_xudc_powerdomain_remove(xudc);
3870 disable_regulator:
3871 	regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies);
3872 put_padctl:
3873 	tegra_xusb_padctl_put(xudc->padctl);
3874 
3875 	return err;
3876 }
3877 
3878 static int tegra_xudc_remove(struct platform_device *pdev)
3879 {
3880 	struct tegra_xudc *xudc = platform_get_drvdata(pdev);
3881 	unsigned int i;
3882 
3883 	pm_runtime_get_sync(xudc->dev);
3884 
3885 	cancel_delayed_work_sync(&xudc->plc_reset_work);
3886 	cancel_work_sync(&xudc->usb_role_sw_work);
3887 
3888 	usb_del_gadget_udc(&xudc->gadget);
3889 
3890 	tegra_xudc_free_eps(xudc);
3891 	tegra_xudc_free_event_ring(xudc);
3892 
3893 	tegra_xudc_powerdomain_remove(xudc);
3894 
3895 	regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies);
3896 
3897 	for (i = 0; i < xudc->soc->num_phys; i++) {
3898 		phy_power_off(xudc->utmi_phy[i]);
3899 		phy_power_off(xudc->usb3_phy[i]);
3900 	}
3901 
3902 	tegra_xudc_phy_exit(xudc);
3903 
3904 	pm_runtime_disable(xudc->dev);
3905 	pm_runtime_put(xudc->dev);
3906 
3907 	tegra_xusb_padctl_put(xudc->padctl);
3908 
3909 	return 0;
3910 }
3911 
3912 static int __maybe_unused tegra_xudc_powergate(struct tegra_xudc *xudc)
3913 {
3914 	unsigned long flags;
3915 
3916 	dev_dbg(xudc->dev, "entering ELPG\n");
3917 
3918 	spin_lock_irqsave(&xudc->lock, flags);
3919 
3920 	xudc->powergated = true;
3921 	xudc->saved_regs.ctrl = xudc_readl(xudc, CTRL);
3922 	xudc->saved_regs.portpm = xudc_readl(xudc, PORTPM);
3923 	xudc_writel(xudc, 0, CTRL);
3924 
3925 	spin_unlock_irqrestore(&xudc->lock, flags);
3926 
3927 	clk_bulk_disable_unprepare(xudc->soc->num_clks, xudc->clks);
3928 
3929 	regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies);
3930 
3931 	dev_dbg(xudc->dev, "entering ELPG done\n");
3932 	return 0;
3933 }
3934 
3935 static int __maybe_unused tegra_xudc_unpowergate(struct tegra_xudc *xudc)
3936 {
3937 	unsigned long flags;
3938 	int err;
3939 
3940 	dev_dbg(xudc->dev, "exiting ELPG\n");
3941 
3942 	err = regulator_bulk_enable(xudc->soc->num_supplies,
3943 			xudc->supplies);
3944 	if (err < 0)
3945 		return err;
3946 
3947 	err = clk_bulk_prepare_enable(xudc->soc->num_clks, xudc->clks);
3948 	if (err < 0)
3949 		return err;
3950 
3951 	tegra_xudc_fpci_ipfs_init(xudc);
3952 
3953 	tegra_xudc_device_params_init(xudc);
3954 
3955 	tegra_xudc_init_event_ring(xudc);
3956 
3957 	tegra_xudc_init_eps(xudc);
3958 
3959 	xudc_writel(xudc, xudc->saved_regs.portpm, PORTPM);
3960 	xudc_writel(xudc, xudc->saved_regs.ctrl, CTRL);
3961 
3962 	spin_lock_irqsave(&xudc->lock, flags);
3963 	xudc->powergated = false;
3964 	spin_unlock_irqrestore(&xudc->lock, flags);
3965 
3966 	dev_dbg(xudc->dev, "exiting ELPG done\n");
3967 	return 0;
3968 }
3969 
3970 static int __maybe_unused tegra_xudc_suspend(struct device *dev)
3971 {
3972 	struct tegra_xudc *xudc = dev_get_drvdata(dev);
3973 	unsigned long flags;
3974 
3975 	spin_lock_irqsave(&xudc->lock, flags);
3976 	xudc->suspended = true;
3977 	spin_unlock_irqrestore(&xudc->lock, flags);
3978 
3979 	flush_work(&xudc->usb_role_sw_work);
3980 
3981 	if (!pm_runtime_status_suspended(dev)) {
3982 		/* Forcibly disconnect before powergating. */
3983 		tegra_xudc_device_mode_off(xudc);
3984 		tegra_xudc_powergate(xudc);
3985 	}
3986 
3987 	pm_runtime_disable(dev);
3988 
3989 	return 0;
3990 }
3991 
3992 static int __maybe_unused tegra_xudc_resume(struct device *dev)
3993 {
3994 	struct tegra_xudc *xudc = dev_get_drvdata(dev);
3995 	unsigned long flags;
3996 	int err;
3997 
3998 	err = tegra_xudc_unpowergate(xudc);
3999 	if (err < 0)
4000 		return err;
4001 
4002 	spin_lock_irqsave(&xudc->lock, flags);
4003 	xudc->suspended = false;
4004 	spin_unlock_irqrestore(&xudc->lock, flags);
4005 
4006 	schedule_work(&xudc->usb_role_sw_work);
4007 
4008 	pm_runtime_enable(dev);
4009 
4010 	return 0;
4011 }
4012 
4013 static int __maybe_unused tegra_xudc_runtime_suspend(struct device *dev)
4014 {
4015 	struct tegra_xudc *xudc = dev_get_drvdata(dev);
4016 
4017 	return tegra_xudc_powergate(xudc);
4018 }
4019 
4020 static int __maybe_unused tegra_xudc_runtime_resume(struct device *dev)
4021 {
4022 	struct tegra_xudc *xudc = dev_get_drvdata(dev);
4023 
4024 	return tegra_xudc_unpowergate(xudc);
4025 }
4026 
4027 static const struct dev_pm_ops tegra_xudc_pm_ops = {
4028 	SET_SYSTEM_SLEEP_PM_OPS(tegra_xudc_suspend, tegra_xudc_resume)
4029 	SET_RUNTIME_PM_OPS(tegra_xudc_runtime_suspend,
4030 			   tegra_xudc_runtime_resume, NULL)
4031 };
4032 
4033 static struct platform_driver tegra_xudc_driver = {
4034 	.probe = tegra_xudc_probe,
4035 	.remove = tegra_xudc_remove,
4036 	.driver = {
4037 		.name = "tegra-xudc",
4038 		.pm = &tegra_xudc_pm_ops,
4039 		.of_match_table = tegra_xudc_of_match,
4040 	},
4041 };
4042 module_platform_driver(tegra_xudc_driver);
4043 
4044 MODULE_DESCRIPTION("NVIDIA Tegra XUSB Device Controller");
4045 MODULE_AUTHOR("Andrew Bresticker <abrestic@chromium.org>");
4046 MODULE_AUTHOR("Hui Fu <hfu@nvidia.com>");
4047 MODULE_AUTHOR("Nagarjuna Kristam <nkristam@nvidia.com>");
4048 MODULE_LICENSE("GPL v2");
4049