1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * NVIDIA Tegra XUSB device mode controller
4  *
5  * Copyright (c) 2013-2022, NVIDIA CORPORATION.  All rights reserved.
6  * Copyright (c) 2015, Google Inc.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmapool.h>
14 #include <linux/interrupt.h>
15 #include <linux/iopoll.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/of_device.h>
20 #include <linux/phy/phy.h>
21 #include <linux/phy/tegra/xusb.h>
22 #include <linux/pm_domain.h>
23 #include <linux/platform_device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/reset.h>
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/otg.h>
30 #include <linux/usb/role.h>
31 #include <linux/usb/phy.h>
32 #include <linux/workqueue.h>
33 
34 /* XUSB_DEV registers */
35 #define DB 0x004
36 #define  DB_TARGET_MASK GENMASK(15, 8)
37 #define  DB_TARGET(x) (((x) << 8) & DB_TARGET_MASK)
38 #define  DB_STREAMID_MASK GENMASK(31, 16)
39 #define  DB_STREAMID(x) (((x) << 16) & DB_STREAMID_MASK)
40 #define ERSTSZ 0x008
41 #define  ERSTSZ_ERSTXSZ_SHIFT(x) ((x) * 16)
42 #define  ERSTSZ_ERSTXSZ_MASK GENMASK(15, 0)
43 #define ERSTXBALO(x) (0x010 + 8 * (x))
44 #define ERSTXBAHI(x) (0x014 + 8 * (x))
45 #define ERDPLO 0x020
46 #define  ERDPLO_EHB BIT(3)
47 #define ERDPHI 0x024
48 #define EREPLO 0x028
49 #define  EREPLO_ECS BIT(0)
50 #define  EREPLO_SEGI BIT(1)
51 #define EREPHI 0x02c
52 #define CTRL 0x030
53 #define  CTRL_RUN BIT(0)
54 #define  CTRL_LSE BIT(1)
55 #define  CTRL_IE BIT(4)
56 #define  CTRL_SMI_EVT BIT(5)
57 #define  CTRL_SMI_DSE BIT(6)
58 #define  CTRL_EWE BIT(7)
59 #define  CTRL_DEVADDR_MASK GENMASK(30, 24)
60 #define  CTRL_DEVADDR(x) (((x) << 24) & CTRL_DEVADDR_MASK)
61 #define  CTRL_ENABLE BIT(31)
62 #define ST 0x034
63 #define  ST_RC BIT(0)
64 #define  ST_IP BIT(4)
65 #define RT_IMOD	0x038
66 #define  RT_IMOD_IMODI_MASK GENMASK(15, 0)
67 #define  RT_IMOD_IMODI(x) ((x) & RT_IMOD_IMODI_MASK)
68 #define  RT_IMOD_IMODC_MASK GENMASK(31, 16)
69 #define  RT_IMOD_IMODC(x) (((x) << 16) & RT_IMOD_IMODC_MASK)
70 #define PORTSC 0x03c
71 #define  PORTSC_CCS BIT(0)
72 #define  PORTSC_PED BIT(1)
73 #define  PORTSC_PR BIT(4)
74 #define  PORTSC_PLS_SHIFT 5
75 #define  PORTSC_PLS_MASK GENMASK(8, 5)
76 #define  PORTSC_PLS_U0 0x0
77 #define  PORTSC_PLS_U2 0x2
78 #define  PORTSC_PLS_U3 0x3
79 #define  PORTSC_PLS_DISABLED 0x4
80 #define  PORTSC_PLS_RXDETECT 0x5
81 #define  PORTSC_PLS_INACTIVE 0x6
82 #define  PORTSC_PLS_RESUME 0xf
83 #define  PORTSC_PLS(x) (((x) << PORTSC_PLS_SHIFT) & PORTSC_PLS_MASK)
84 #define  PORTSC_PS_SHIFT 10
85 #define  PORTSC_PS_MASK GENMASK(13, 10)
86 #define  PORTSC_PS_UNDEFINED 0x0
87 #define  PORTSC_PS_FS 0x1
88 #define  PORTSC_PS_LS 0x2
89 #define  PORTSC_PS_HS 0x3
90 #define  PORTSC_PS_SS 0x4
91 #define  PORTSC_LWS BIT(16)
92 #define  PORTSC_CSC BIT(17)
93 #define  PORTSC_WRC BIT(19)
94 #define  PORTSC_PRC BIT(21)
95 #define  PORTSC_PLC BIT(22)
96 #define  PORTSC_CEC BIT(23)
97 #define  PORTSC_WPR BIT(30)
98 #define  PORTSC_CHANGE_MASK (PORTSC_CSC | PORTSC_WRC | PORTSC_PRC | \
99 			     PORTSC_PLC | PORTSC_CEC)
100 #define ECPLO 0x040
101 #define ECPHI 0x044
102 #define MFINDEX 0x048
103 #define  MFINDEX_FRAME_SHIFT 3
104 #define  MFINDEX_FRAME_MASK GENMASK(13, 3)
105 #define PORTPM 0x04c
106 #define  PORTPM_L1S_MASK GENMASK(1, 0)
107 #define  PORTPM_L1S_DROP 0x0
108 #define  PORTPM_L1S_ACCEPT 0x1
109 #define  PORTPM_L1S_NYET 0x2
110 #define  PORTPM_L1S_STALL 0x3
111 #define  PORTPM_L1S(x) ((x) & PORTPM_L1S_MASK)
112 #define  PORTPM_RWE BIT(3)
113 #define  PORTPM_U2TIMEOUT_MASK GENMASK(15, 8)
114 #define  PORTPM_U1TIMEOUT_MASK GENMASK(23, 16)
115 #define  PORTPM_FLA BIT(24)
116 #define  PORTPM_VBA BIT(25)
117 #define  PORTPM_WOC BIT(26)
118 #define  PORTPM_WOD BIT(27)
119 #define  PORTPM_U1E BIT(28)
120 #define  PORTPM_U2E BIT(29)
121 #define  PORTPM_FRWE BIT(30)
122 #define  PORTPM_PNG_CYA BIT(31)
123 #define EP_HALT 0x050
124 #define EP_PAUSE 0x054
125 #define EP_RELOAD 0x058
126 #define EP_STCHG 0x05c
127 #define DEVNOTIF_LO 0x064
128 #define  DEVNOTIF_LO_TRIG BIT(0)
129 #define  DEVNOTIF_LO_TYPE_MASK GENMASK(7, 4)
130 #define  DEVNOTIF_LO_TYPE(x) (((x) << 4)  & DEVNOTIF_LO_TYPE_MASK)
131 #define  DEVNOTIF_LO_TYPE_FUNCTION_WAKE 0x1
132 #define DEVNOTIF_HI 0x068
133 #define PORTHALT 0x06c
134 #define  PORTHALT_HALT_LTSSM BIT(0)
135 #define  PORTHALT_HALT_REJECT BIT(1)
136 #define  PORTHALT_STCHG_REQ BIT(20)
137 #define  PORTHALT_STCHG_INTR_EN BIT(24)
138 #define PORT_TM	0x070
139 #define EP_THREAD_ACTIVE 0x074
140 #define EP_STOPPED 0x078
141 #define HSFSPI_COUNT0 0x100
142 #define HSFSPI_COUNT13 0x134
143 #define  HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK GENMASK(29, 0)
144 #define  HSFSPI_COUNT13_U2_RESUME_K_DURATION(x) ((x) & \
145 				HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK)
146 #define BLCG 0x840
147 #define SSPX_CORE_CNT0 0x610
148 #define  SSPX_CORE_CNT0_PING_TBURST_MASK GENMASK(7, 0)
149 #define  SSPX_CORE_CNT0_PING_TBURST(x) ((x) & SSPX_CORE_CNT0_PING_TBURST_MASK)
150 #define SSPX_CORE_CNT30 0x688
151 #define  SSPX_CORE_CNT30_LMPITP_TIMER_MASK GENMASK(19, 0)
152 #define  SSPX_CORE_CNT30_LMPITP_TIMER(x) ((x) & \
153 					SSPX_CORE_CNT30_LMPITP_TIMER_MASK)
154 #define SSPX_CORE_CNT32 0x690
155 #define  SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK GENMASK(7, 0)
156 #define  SSPX_CORE_CNT32_POLL_TBURST_MAX(x) ((x) & \
157 					SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK)
158 #define SSPX_CORE_CNT56 0x6fc
159 #define  SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK GENMASK(19, 0)
160 #define  SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(x) ((x) & \
161 				SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK)
162 #define SSPX_CORE_CNT57 0x700
163 #define  SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK GENMASK(19, 0)
164 #define  SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(x) ((x) & \
165 				SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK)
166 #define SSPX_CORE_CNT65 0x720
167 #define  SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK GENMASK(19, 0)
168 #define  SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(x) ((x) & \
169 				SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK)
170 #define SSPX_CORE_CNT66 0x724
171 #define  SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK GENMASK(19, 0)
172 #define  SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(x) ((x) & \
173 				SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK)
174 #define SSPX_CORE_CNT67 0x728
175 #define  SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK GENMASK(19, 0)
176 #define  SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(x) ((x) & \
177 				SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK)
178 #define SSPX_CORE_CNT72 0x73c
179 #define  SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK GENMASK(19, 0)
180 #define  SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(x) ((x) & \
181 				SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK)
182 #define SSPX_CORE_PADCTL4 0x750
183 #define  SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK GENMASK(19, 0)
184 #define  SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(x) ((x) & \
185 				SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK)
186 #define  BLCG_DFPCI BIT(0)
187 #define  BLCG_UFPCI BIT(1)
188 #define  BLCG_FE BIT(2)
189 #define  BLCG_COREPLL_PWRDN BIT(8)
190 #define  BLCG_IOPLL_0_PWRDN BIT(9)
191 #define  BLCG_IOPLL_1_PWRDN BIT(10)
192 #define  BLCG_IOPLL_2_PWRDN BIT(11)
193 #define  BLCG_ALL 0x1ff
194 #define CFG_DEV_SSPI_XFER 0x858
195 #define  CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK GENMASK(31, 0)
196 #define  CFG_DEV_SSPI_XFER_ACKTIMEOUT(x) ((x) & \
197 					CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK)
198 #define CFG_DEV_FE 0x85c
199 #define  CFG_DEV_FE_PORTREGSEL_MASK GENMASK(1, 0)
200 #define  CFG_DEV_FE_PORTREGSEL_SS_PI 1
201 #define  CFG_DEV_FE_PORTREGSEL_HSFS_PI 2
202 #define  CFG_DEV_FE_PORTREGSEL(x) ((x) & CFG_DEV_FE_PORTREGSEL_MASK)
203 #define  CFG_DEV_FE_INFINITE_SS_RETRY BIT(29)
204 
205 /* FPCI registers */
206 #define XUSB_DEV_CFG_1 0x004
207 #define  XUSB_DEV_CFG_1_IO_SPACE_EN BIT(0)
208 #define  XUSB_DEV_CFG_1_MEMORY_SPACE_EN BIT(1)
209 #define  XUSB_DEV_CFG_1_BUS_MASTER_EN BIT(2)
210 #define XUSB_DEV_CFG_4 0x010
211 #define  XUSB_DEV_CFG_4_BASE_ADDR_MASK GENMASK(31, 15)
212 #define XUSB_DEV_CFG_5 0x014
213 
214 /* IPFS registers */
215 #define XUSB_DEV_CONFIGURATION_0 0x180
216 #define  XUSB_DEV_CONFIGURATION_0_EN_FPCI BIT(0)
217 #define XUSB_DEV_INTR_MASK_0 0x188
218 #define  XUSB_DEV_INTR_MASK_0_IP_INT_MASK BIT(16)
219 
220 struct tegra_xudc_ep_context {
221 	__le32 info0;
222 	__le32 info1;
223 	__le32 deq_lo;
224 	__le32 deq_hi;
225 	__le32 tx_info;
226 	__le32 rsvd[11];
227 };
228 
229 #define EP_STATE_DISABLED 0
230 #define EP_STATE_RUNNING 1
231 #define EP_STATE_HALTED 2
232 #define EP_STATE_STOPPED 3
233 #define EP_STATE_ERROR 4
234 
235 #define EP_TYPE_INVALID 0
236 #define EP_TYPE_ISOCH_OUT 1
237 #define EP_TYPE_BULK_OUT 2
238 #define EP_TYPE_INTERRUPT_OUT 3
239 #define EP_TYPE_CONTROL 4
240 #define EP_TYPE_ISCOH_IN 5
241 #define EP_TYPE_BULK_IN 6
242 #define EP_TYPE_INTERRUPT_IN 7
243 
244 #define BUILD_EP_CONTEXT_RW(name, member, shift, mask)			\
245 static inline u32 ep_ctx_read_##name(struct tegra_xudc_ep_context *ctx)	\
246 {									\
247 	return (le32_to_cpu(ctx->member) >> (shift)) & (mask);		\
248 }									\
249 static inline void							\
250 ep_ctx_write_##name(struct tegra_xudc_ep_context *ctx, u32 val)		\
251 {									\
252 	u32 tmp;							\
253 									\
254 	tmp = le32_to_cpu(ctx->member) & ~((mask) << (shift));		\
255 	tmp |= (val & (mask)) << (shift);				\
256 	ctx->member = cpu_to_le32(tmp);					\
257 }
258 
259 BUILD_EP_CONTEXT_RW(state, info0, 0, 0x7)
260 BUILD_EP_CONTEXT_RW(mult, info0, 8, 0x3)
261 BUILD_EP_CONTEXT_RW(max_pstreams, info0, 10, 0x1f)
262 BUILD_EP_CONTEXT_RW(lsa, info0, 15, 0x1)
263 BUILD_EP_CONTEXT_RW(interval, info0, 16, 0xff)
264 BUILD_EP_CONTEXT_RW(cerr, info1, 1, 0x3)
265 BUILD_EP_CONTEXT_RW(type, info1, 3, 0x7)
266 BUILD_EP_CONTEXT_RW(hid, info1, 7, 0x1)
267 BUILD_EP_CONTEXT_RW(max_burst_size, info1, 8, 0xff)
268 BUILD_EP_CONTEXT_RW(max_packet_size, info1, 16, 0xffff)
269 BUILD_EP_CONTEXT_RW(dcs, deq_lo, 0, 0x1)
270 BUILD_EP_CONTEXT_RW(deq_lo, deq_lo, 4, 0xfffffff)
271 BUILD_EP_CONTEXT_RW(deq_hi, deq_hi, 0, 0xffffffff)
272 BUILD_EP_CONTEXT_RW(avg_trb_len, tx_info, 0, 0xffff)
273 BUILD_EP_CONTEXT_RW(max_esit_payload, tx_info, 16, 0xffff)
274 BUILD_EP_CONTEXT_RW(edtla, rsvd[0], 0, 0xffffff)
275 BUILD_EP_CONTEXT_RW(rsvd, rsvd[0], 24, 0x1)
276 BUILD_EP_CONTEXT_RW(partial_td, rsvd[0], 25, 0x1)
277 BUILD_EP_CONTEXT_RW(splitxstate, rsvd[0], 26, 0x1)
278 BUILD_EP_CONTEXT_RW(seq_num, rsvd[0], 27, 0x1f)
279 BUILD_EP_CONTEXT_RW(cerrcnt, rsvd[1], 18, 0x3)
280 BUILD_EP_CONTEXT_RW(data_offset, rsvd[2], 0, 0x1ffff)
281 BUILD_EP_CONTEXT_RW(numtrbs, rsvd[2], 22, 0x1f)
282 BUILD_EP_CONTEXT_RW(devaddr, rsvd[6], 0, 0x7f)
283 
284 static inline u64 ep_ctx_read_deq_ptr(struct tegra_xudc_ep_context *ctx)
285 {
286 	return ((u64)ep_ctx_read_deq_hi(ctx) << 32) |
287 		(ep_ctx_read_deq_lo(ctx) << 4);
288 }
289 
290 static inline void
291 ep_ctx_write_deq_ptr(struct tegra_xudc_ep_context *ctx, u64 addr)
292 {
293 	ep_ctx_write_deq_lo(ctx, lower_32_bits(addr) >> 4);
294 	ep_ctx_write_deq_hi(ctx, upper_32_bits(addr));
295 }
296 
297 struct tegra_xudc_trb {
298 	__le32 data_lo;
299 	__le32 data_hi;
300 	__le32 status;
301 	__le32 control;
302 };
303 
304 #define TRB_TYPE_RSVD 0
305 #define TRB_TYPE_NORMAL 1
306 #define TRB_TYPE_SETUP_STAGE 2
307 #define TRB_TYPE_DATA_STAGE 3
308 #define TRB_TYPE_STATUS_STAGE 4
309 #define TRB_TYPE_ISOCH 5
310 #define TRB_TYPE_LINK 6
311 #define TRB_TYPE_TRANSFER_EVENT 32
312 #define TRB_TYPE_PORT_STATUS_CHANGE_EVENT 34
313 #define TRB_TYPE_STREAM 48
314 #define TRB_TYPE_SETUP_PACKET_EVENT 63
315 
316 #define TRB_CMPL_CODE_INVALID 0
317 #define TRB_CMPL_CODE_SUCCESS 1
318 #define TRB_CMPL_CODE_DATA_BUFFER_ERR 2
319 #define TRB_CMPL_CODE_BABBLE_DETECTED_ERR 3
320 #define TRB_CMPL_CODE_USB_TRANS_ERR 4
321 #define TRB_CMPL_CODE_TRB_ERR 5
322 #define TRB_CMPL_CODE_STALL 6
323 #define TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR 10
324 #define TRB_CMPL_CODE_SHORT_PACKET 13
325 #define TRB_CMPL_CODE_RING_UNDERRUN 14
326 #define TRB_CMPL_CODE_RING_OVERRUN 15
327 #define TRB_CMPL_CODE_EVENT_RING_FULL_ERR 21
328 #define TRB_CMPL_CODE_STOPPED 26
329 #define TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN 31
330 #define TRB_CMPL_CODE_STREAM_NUMP_ERROR 219
331 #define TRB_CMPL_CODE_PRIME_PIPE_RECEIVED 220
332 #define TRB_CMPL_CODE_HOST_REJECTED 221
333 #define TRB_CMPL_CODE_CTRL_DIR_ERR 222
334 #define TRB_CMPL_CODE_CTRL_SEQNUM_ERR 223
335 
336 #define BUILD_TRB_RW(name, member, shift, mask)				\
337 static inline u32 trb_read_##name(struct tegra_xudc_trb *trb)		\
338 {									\
339 	return (le32_to_cpu(trb->member) >> (shift)) & (mask);		\
340 }									\
341 static inline void							\
342 trb_write_##name(struct tegra_xudc_trb *trb, u32 val)			\
343 {									\
344 	u32 tmp;							\
345 									\
346 	tmp = le32_to_cpu(trb->member) & ~((mask) << (shift));		\
347 	tmp |= (val & (mask)) << (shift);				\
348 	trb->member = cpu_to_le32(tmp);					\
349 }
350 
351 BUILD_TRB_RW(data_lo, data_lo, 0, 0xffffffff)
352 BUILD_TRB_RW(data_hi, data_hi, 0, 0xffffffff)
353 BUILD_TRB_RW(seq_num, status, 0, 0xffff)
354 BUILD_TRB_RW(transfer_len, status, 0, 0xffffff)
355 BUILD_TRB_RW(td_size, status, 17, 0x1f)
356 BUILD_TRB_RW(cmpl_code, status, 24, 0xff)
357 BUILD_TRB_RW(cycle, control, 0, 0x1)
358 BUILD_TRB_RW(toggle_cycle, control, 1, 0x1)
359 BUILD_TRB_RW(isp, control, 2, 0x1)
360 BUILD_TRB_RW(chain, control, 4, 0x1)
361 BUILD_TRB_RW(ioc, control, 5, 0x1)
362 BUILD_TRB_RW(type, control, 10, 0x3f)
363 BUILD_TRB_RW(stream_id, control, 16, 0xffff)
364 BUILD_TRB_RW(endpoint_id, control, 16, 0x1f)
365 BUILD_TRB_RW(tlbpc, control, 16, 0xf)
366 BUILD_TRB_RW(data_stage_dir, control, 16, 0x1)
367 BUILD_TRB_RW(frame_id, control, 20, 0x7ff)
368 BUILD_TRB_RW(sia, control, 31, 0x1)
369 
370 static inline u64 trb_read_data_ptr(struct tegra_xudc_trb *trb)
371 {
372 	return ((u64)trb_read_data_hi(trb) << 32) |
373 		trb_read_data_lo(trb);
374 }
375 
376 static inline void trb_write_data_ptr(struct tegra_xudc_trb *trb, u64 addr)
377 {
378 	trb_write_data_lo(trb, lower_32_bits(addr));
379 	trb_write_data_hi(trb, upper_32_bits(addr));
380 }
381 
382 struct tegra_xudc_request {
383 	struct usb_request usb_req;
384 
385 	size_t buf_queued;
386 	unsigned int trbs_queued;
387 	unsigned int trbs_needed;
388 	bool need_zlp;
389 
390 	struct tegra_xudc_trb *first_trb;
391 	struct tegra_xudc_trb *last_trb;
392 
393 	struct list_head list;
394 };
395 
396 struct tegra_xudc_ep {
397 	struct tegra_xudc *xudc;
398 	struct usb_ep usb_ep;
399 	unsigned int index;
400 	char name[8];
401 
402 	struct tegra_xudc_ep_context *context;
403 
404 #define XUDC_TRANSFER_RING_SIZE 64
405 	struct tegra_xudc_trb *transfer_ring;
406 	dma_addr_t transfer_ring_phys;
407 
408 	unsigned int enq_ptr;
409 	unsigned int deq_ptr;
410 	bool pcs;
411 	bool ring_full;
412 	bool stream_rejected;
413 
414 	struct list_head queue;
415 	const struct usb_endpoint_descriptor *desc;
416 	const struct usb_ss_ep_comp_descriptor *comp_desc;
417 };
418 
419 struct tegra_xudc_sel_timing {
420 	__u8 u1sel;
421 	__u8 u1pel;
422 	__le16 u2sel;
423 	__le16 u2pel;
424 };
425 
426 enum tegra_xudc_setup_state {
427 	WAIT_FOR_SETUP,
428 	DATA_STAGE_XFER,
429 	DATA_STAGE_RECV,
430 	STATUS_STAGE_XFER,
431 	STATUS_STAGE_RECV,
432 };
433 
434 struct tegra_xudc_setup_packet {
435 	struct usb_ctrlrequest ctrl_req;
436 	unsigned int seq_num;
437 };
438 
439 struct tegra_xudc_save_regs {
440 	u32 ctrl;
441 	u32 portpm;
442 };
443 
444 struct tegra_xudc {
445 	struct device *dev;
446 	const struct tegra_xudc_soc *soc;
447 	struct tegra_xusb_padctl *padctl;
448 
449 	spinlock_t lock;
450 
451 	struct usb_gadget gadget;
452 	struct usb_gadget_driver *driver;
453 
454 #define XUDC_NR_EVENT_RINGS 2
455 #define XUDC_EVENT_RING_SIZE 4096
456 	struct tegra_xudc_trb *event_ring[XUDC_NR_EVENT_RINGS];
457 	dma_addr_t event_ring_phys[XUDC_NR_EVENT_RINGS];
458 	unsigned int event_ring_index;
459 	unsigned int event_ring_deq_ptr;
460 	bool ccs;
461 
462 #define XUDC_NR_EPS 32
463 	struct tegra_xudc_ep ep[XUDC_NR_EPS];
464 	struct tegra_xudc_ep_context *ep_context;
465 	dma_addr_t ep_context_phys;
466 
467 	struct device *genpd_dev_device;
468 	struct device *genpd_dev_ss;
469 	struct device_link *genpd_dl_device;
470 	struct device_link *genpd_dl_ss;
471 
472 	struct dma_pool *transfer_ring_pool;
473 
474 	bool queued_setup_packet;
475 	struct tegra_xudc_setup_packet setup_packet;
476 	enum tegra_xudc_setup_state setup_state;
477 	u16 setup_seq_num;
478 
479 	u16 dev_addr;
480 	u16 isoch_delay;
481 	struct tegra_xudc_sel_timing sel_timing;
482 	u8 test_mode_pattern;
483 	u16 status_buf;
484 	struct tegra_xudc_request *ep0_req;
485 
486 	bool pullup;
487 
488 	unsigned int nr_enabled_eps;
489 	unsigned int nr_isoch_eps;
490 
491 	unsigned int device_state;
492 	unsigned int resume_state;
493 
494 	int irq;
495 
496 	void __iomem *base;
497 	resource_size_t phys_base;
498 	void __iomem *ipfs;
499 	void __iomem *fpci;
500 
501 	struct regulator_bulk_data *supplies;
502 
503 	struct clk_bulk_data *clks;
504 
505 	bool device_mode;
506 	struct work_struct usb_role_sw_work;
507 
508 	struct phy **usb3_phy;
509 	struct phy *curr_usb3_phy;
510 	struct phy **utmi_phy;
511 	struct phy *curr_utmi_phy;
512 
513 	struct tegra_xudc_save_regs saved_regs;
514 	bool suspended;
515 	bool powergated;
516 
517 	struct usb_phy **usbphy;
518 	struct usb_phy *curr_usbphy;
519 	struct notifier_block vbus_nb;
520 
521 	struct completion disconnect_complete;
522 
523 	bool selfpowered;
524 
525 #define TOGGLE_VBUS_WAIT_MS 100
526 	struct delayed_work plc_reset_work;
527 	bool wait_csc;
528 
529 	struct delayed_work port_reset_war_work;
530 	bool wait_for_sec_prc;
531 };
532 
533 #define XUDC_TRB_MAX_BUFFER_SIZE 65536
534 #define XUDC_MAX_ISOCH_EPS 4
535 #define XUDC_INTERRUPT_MODERATION_US 0
536 
537 static struct usb_endpoint_descriptor tegra_xudc_ep0_desc = {
538 	.bLength = USB_DT_ENDPOINT_SIZE,
539 	.bDescriptorType = USB_DT_ENDPOINT,
540 	.bEndpointAddress = 0,
541 	.bmAttributes = USB_ENDPOINT_XFER_CONTROL,
542 	.wMaxPacketSize = cpu_to_le16(64),
543 };
544 
545 struct tegra_xudc_soc {
546 	const char * const *supply_names;
547 	unsigned int num_supplies;
548 	const char * const *clock_names;
549 	unsigned int num_clks;
550 	unsigned int num_phys;
551 	bool u1_enable;
552 	bool u2_enable;
553 	bool lpm_enable;
554 	bool invalid_seq_num;
555 	bool pls_quirk;
556 	bool port_reset_quirk;
557 	bool port_speed_quirk;
558 	bool has_ipfs;
559 };
560 
561 static inline u32 fpci_readl(struct tegra_xudc *xudc, unsigned int offset)
562 {
563 	return readl(xudc->fpci + offset);
564 }
565 
566 static inline void fpci_writel(struct tegra_xudc *xudc, u32 val,
567 			       unsigned int offset)
568 {
569 	writel(val, xudc->fpci + offset);
570 }
571 
572 static inline u32 ipfs_readl(struct tegra_xudc *xudc, unsigned int offset)
573 {
574 	return readl(xudc->ipfs + offset);
575 }
576 
577 static inline void ipfs_writel(struct tegra_xudc *xudc, u32 val,
578 			       unsigned int offset)
579 {
580 	writel(val, xudc->ipfs + offset);
581 }
582 
583 static inline u32 xudc_readl(struct tegra_xudc *xudc, unsigned int offset)
584 {
585 	return readl(xudc->base + offset);
586 }
587 
588 static inline void xudc_writel(struct tegra_xudc *xudc, u32 val,
589 			       unsigned int offset)
590 {
591 	writel(val, xudc->base + offset);
592 }
593 
594 static inline int xudc_readl_poll(struct tegra_xudc *xudc,
595 				  unsigned int offset, u32 mask, u32 val)
596 {
597 	u32 regval;
598 
599 	return readl_poll_timeout_atomic(xudc->base + offset, regval,
600 					 (regval & mask) == val, 1, 100);
601 }
602 
603 static inline struct tegra_xudc *to_xudc(struct usb_gadget *gadget)
604 {
605 	return container_of(gadget, struct tegra_xudc, gadget);
606 }
607 
608 static inline struct tegra_xudc_ep *to_xudc_ep(struct usb_ep *ep)
609 {
610 	return container_of(ep, struct tegra_xudc_ep, usb_ep);
611 }
612 
613 static inline struct tegra_xudc_request *to_xudc_req(struct usb_request *req)
614 {
615 	return container_of(req, struct tegra_xudc_request, usb_req);
616 }
617 
618 static inline void dump_trb(struct tegra_xudc *xudc, const char *type,
619 			    struct tegra_xudc_trb *trb)
620 {
621 	dev_dbg(xudc->dev,
622 		"%s: %p, lo = %#x, hi = %#x, status = %#x, control = %#x\n",
623 		type, trb, trb->data_lo, trb->data_hi, trb->status,
624 		trb->control);
625 }
626 
627 static void tegra_xudc_limit_port_speed(struct tegra_xudc *xudc)
628 {
629 	u32 val;
630 
631 	/* limit port speed to gen 1 */
632 	val = xudc_readl(xudc, SSPX_CORE_CNT56);
633 	val &= ~(SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK);
634 	val |= SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(0x260);
635 	xudc_writel(xudc, val, SSPX_CORE_CNT56);
636 
637 	val = xudc_readl(xudc, SSPX_CORE_CNT57);
638 	val &= ~(SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK);
639 	val |= SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(0x6D6);
640 	xudc_writel(xudc, val, SSPX_CORE_CNT57);
641 
642 	val = xudc_readl(xudc, SSPX_CORE_CNT65);
643 	val &= ~(SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK);
644 	val |= SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(0x4B0);
645 	xudc_writel(xudc, val, SSPX_CORE_CNT66);
646 
647 	val = xudc_readl(xudc, SSPX_CORE_CNT66);
648 	val &= ~(SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK);
649 	val |= SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(0x4B0);
650 	xudc_writel(xudc, val, SSPX_CORE_CNT66);
651 
652 	val = xudc_readl(xudc, SSPX_CORE_CNT67);
653 	val &= ~(SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK);
654 	val |= SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(0x4B0);
655 	xudc_writel(xudc, val, SSPX_CORE_CNT67);
656 
657 	val = xudc_readl(xudc, SSPX_CORE_CNT72);
658 	val &= ~(SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK);
659 	val |= SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(0x10);
660 	xudc_writel(xudc, val, SSPX_CORE_CNT72);
661 }
662 
663 static void tegra_xudc_restore_port_speed(struct tegra_xudc *xudc)
664 {
665 	u32 val;
666 
667 	/* restore port speed to gen2 */
668 	val = xudc_readl(xudc, SSPX_CORE_CNT56);
669 	val &= ~(SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK);
670 	val |= SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(0x438);
671 	xudc_writel(xudc, val, SSPX_CORE_CNT56);
672 
673 	val = xudc_readl(xudc, SSPX_CORE_CNT57);
674 	val &= ~(SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK);
675 	val |= SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(0x528);
676 	xudc_writel(xudc, val, SSPX_CORE_CNT57);
677 
678 	val = xudc_readl(xudc, SSPX_CORE_CNT65);
679 	val &= ~(SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK);
680 	val |= SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(0xE10);
681 	xudc_writel(xudc, val, SSPX_CORE_CNT66);
682 
683 	val = xudc_readl(xudc, SSPX_CORE_CNT66);
684 	val &= ~(SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK);
685 	val |= SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(0x348);
686 	xudc_writel(xudc, val, SSPX_CORE_CNT66);
687 
688 	val = xudc_readl(xudc, SSPX_CORE_CNT67);
689 	val &= ~(SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK);
690 	val |= SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(0x5a0);
691 	xudc_writel(xudc, val, SSPX_CORE_CNT67);
692 
693 	val = xudc_readl(xudc, SSPX_CORE_CNT72);
694 	val &= ~(SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK);
695 	val |= SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(0x1c21);
696 	xudc_writel(xudc, val, SSPX_CORE_CNT72);
697 }
698 
699 static void tegra_xudc_device_mode_on(struct tegra_xudc *xudc)
700 {
701 	int err;
702 
703 	pm_runtime_get_sync(xudc->dev);
704 
705 	tegra_phy_xusb_utmi_pad_power_on(xudc->curr_utmi_phy);
706 
707 	err = phy_power_on(xudc->curr_utmi_phy);
708 	if (err < 0)
709 		dev_err(xudc->dev, "UTMI power on failed: %d\n", err);
710 
711 	err = phy_power_on(xudc->curr_usb3_phy);
712 	if (err < 0)
713 		dev_err(xudc->dev, "USB3 PHY power on failed: %d\n", err);
714 
715 	dev_dbg(xudc->dev, "device mode on\n");
716 
717 	phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG,
718 			 USB_ROLE_DEVICE);
719 }
720 
721 static void tegra_xudc_device_mode_off(struct tegra_xudc *xudc)
722 {
723 	bool connected = false;
724 	u32 pls, val;
725 	int err;
726 
727 	dev_dbg(xudc->dev, "device mode off\n");
728 
729 	connected = !!(xudc_readl(xudc, PORTSC) & PORTSC_CCS);
730 
731 	reinit_completion(&xudc->disconnect_complete);
732 
733 	if (xudc->soc->port_speed_quirk)
734 		tegra_xudc_restore_port_speed(xudc);
735 
736 	phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, USB_ROLE_NONE);
737 
738 	pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >>
739 		PORTSC_PLS_SHIFT;
740 
741 	/* Direct link to U0 if disconnected in RESUME or U2. */
742 	if (xudc->soc->pls_quirk && xudc->gadget.speed == USB_SPEED_SUPER &&
743 	    (pls == PORTSC_PLS_RESUME || pls == PORTSC_PLS_U2)) {
744 		val = xudc_readl(xudc, PORTPM);
745 		val |= PORTPM_FRWE;
746 		xudc_writel(xudc, val, PORTPM);
747 
748 		val = xudc_readl(xudc, PORTSC);
749 		val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
750 		val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0);
751 		xudc_writel(xudc, val, PORTSC);
752 	}
753 
754 	/* Wait for disconnect event. */
755 	if (connected)
756 		wait_for_completion(&xudc->disconnect_complete);
757 
758 	/* Make sure interrupt handler has completed before powergating. */
759 	synchronize_irq(xudc->irq);
760 
761 	tegra_phy_xusb_utmi_pad_power_down(xudc->curr_utmi_phy);
762 
763 	err = phy_power_off(xudc->curr_utmi_phy);
764 	if (err < 0)
765 		dev_err(xudc->dev, "UTMI PHY power off failed: %d\n", err);
766 
767 	err = phy_power_off(xudc->curr_usb3_phy);
768 	if (err < 0)
769 		dev_err(xudc->dev, "USB3 PHY power off failed: %d\n", err);
770 
771 	pm_runtime_put(xudc->dev);
772 }
773 
774 static void tegra_xudc_usb_role_sw_work(struct work_struct *work)
775 {
776 	struct tegra_xudc *xudc = container_of(work, struct tegra_xudc,
777 					       usb_role_sw_work);
778 
779 	if (xudc->device_mode)
780 		tegra_xudc_device_mode_on(xudc);
781 	else
782 		tegra_xudc_device_mode_off(xudc);
783 }
784 
785 static int tegra_xudc_get_phy_index(struct tegra_xudc *xudc,
786 					      struct usb_phy *usbphy)
787 {
788 	unsigned int i;
789 
790 	for (i = 0; i < xudc->soc->num_phys; i++) {
791 		if (xudc->usbphy[i] && usbphy == xudc->usbphy[i])
792 			return i;
793 	}
794 
795 	dev_info(xudc->dev, "phy index could not be found for shared USB PHY");
796 	return -1;
797 }
798 
799 static void tegra_xudc_update_data_role(struct tegra_xudc *xudc,
800 					      struct usb_phy *usbphy)
801 {
802 	int phy_index;
803 
804 	if ((xudc->device_mode && usbphy->last_event == USB_EVENT_VBUS) ||
805 	    (!xudc->device_mode && usbphy->last_event != USB_EVENT_VBUS)) {
806 		dev_dbg(xudc->dev, "Same role(%d) received. Ignore",
807 			xudc->device_mode);
808 		return;
809 	}
810 
811 	xudc->device_mode = (usbphy->last_event == USB_EVENT_VBUS) ? true :
812 								     false;
813 
814 	phy_index = tegra_xudc_get_phy_index(xudc, usbphy);
815 	dev_dbg(xudc->dev, "%s(): current phy index is %d\n", __func__,
816 		phy_index);
817 
818 	if (!xudc->suspended && phy_index != -1) {
819 		xudc->curr_utmi_phy = xudc->utmi_phy[phy_index];
820 		xudc->curr_usb3_phy = xudc->usb3_phy[phy_index];
821 		xudc->curr_usbphy = usbphy;
822 		schedule_work(&xudc->usb_role_sw_work);
823 	}
824 }
825 
826 static int tegra_xudc_vbus_notify(struct notifier_block *nb,
827 					 unsigned long action, void *data)
828 {
829 	struct tegra_xudc *xudc = container_of(nb, struct tegra_xudc,
830 					       vbus_nb);
831 	struct usb_phy *usbphy = (struct usb_phy *)data;
832 
833 	dev_dbg(xudc->dev, "%s(): event is %d\n", __func__, usbphy->last_event);
834 
835 	tegra_xudc_update_data_role(xudc, usbphy);
836 
837 	return NOTIFY_OK;
838 }
839 
840 static void tegra_xudc_plc_reset_work(struct work_struct *work)
841 {
842 	struct delayed_work *dwork = to_delayed_work(work);
843 	struct tegra_xudc *xudc = container_of(dwork, struct tegra_xudc,
844 					       plc_reset_work);
845 	unsigned long flags;
846 
847 	spin_lock_irqsave(&xudc->lock, flags);
848 
849 	if (xudc->wait_csc) {
850 		u32 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >>
851 			PORTSC_PLS_SHIFT;
852 
853 		if (pls == PORTSC_PLS_INACTIVE) {
854 			dev_info(xudc->dev, "PLS = Inactive. Toggle VBUS\n");
855 			phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG,
856 					 USB_ROLE_NONE);
857 			phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG,
858 					 USB_ROLE_DEVICE);
859 
860 			xudc->wait_csc = false;
861 		}
862 	}
863 
864 	spin_unlock_irqrestore(&xudc->lock, flags);
865 }
866 
867 static void tegra_xudc_port_reset_war_work(struct work_struct *work)
868 {
869 	struct delayed_work *dwork = to_delayed_work(work);
870 	struct tegra_xudc *xudc =
871 		container_of(dwork, struct tegra_xudc, port_reset_war_work);
872 	unsigned long flags;
873 	u32 pls;
874 	int ret;
875 
876 	spin_lock_irqsave(&xudc->lock, flags);
877 
878 	if (xudc->device_mode && xudc->wait_for_sec_prc) {
879 		pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >>
880 			PORTSC_PLS_SHIFT;
881 		dev_dbg(xudc->dev, "pls = %x\n", pls);
882 
883 		if (pls == PORTSC_PLS_DISABLED) {
884 			dev_dbg(xudc->dev, "toggle vbus\n");
885 			/* PRC doesn't complete in 100ms, toggle the vbus */
886 			ret = tegra_phy_xusb_utmi_port_reset(
887 				xudc->curr_utmi_phy);
888 			if (ret == 1)
889 				xudc->wait_for_sec_prc = 0;
890 		}
891 	}
892 
893 	spin_unlock_irqrestore(&xudc->lock, flags);
894 }
895 
896 static dma_addr_t trb_virt_to_phys(struct tegra_xudc_ep *ep,
897 				   struct tegra_xudc_trb *trb)
898 {
899 	unsigned int index;
900 
901 	index = trb - ep->transfer_ring;
902 
903 	if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE))
904 		return 0;
905 
906 	return (ep->transfer_ring_phys + index * sizeof(*trb));
907 }
908 
909 static struct tegra_xudc_trb *trb_phys_to_virt(struct tegra_xudc_ep *ep,
910 					       dma_addr_t addr)
911 {
912 	struct tegra_xudc_trb *trb;
913 	unsigned int index;
914 
915 	index = (addr - ep->transfer_ring_phys) / sizeof(*trb);
916 
917 	if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE))
918 		return NULL;
919 
920 	trb = &ep->transfer_ring[index];
921 
922 	return trb;
923 }
924 
925 static void ep_reload(struct tegra_xudc *xudc, unsigned int ep)
926 {
927 	xudc_writel(xudc, BIT(ep), EP_RELOAD);
928 	xudc_readl_poll(xudc, EP_RELOAD, BIT(ep), 0);
929 }
930 
931 static void ep_pause(struct tegra_xudc *xudc, unsigned int ep)
932 {
933 	u32 val;
934 
935 	val = xudc_readl(xudc, EP_PAUSE);
936 	if (val & BIT(ep))
937 		return;
938 	val |= BIT(ep);
939 
940 	xudc_writel(xudc, val, EP_PAUSE);
941 
942 	xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
943 
944 	xudc_writel(xudc, BIT(ep), EP_STCHG);
945 }
946 
947 static void ep_unpause(struct tegra_xudc *xudc, unsigned int ep)
948 {
949 	u32 val;
950 
951 	val = xudc_readl(xudc, EP_PAUSE);
952 	if (!(val & BIT(ep)))
953 		return;
954 	val &= ~BIT(ep);
955 
956 	xudc_writel(xudc, val, EP_PAUSE);
957 
958 	xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
959 
960 	xudc_writel(xudc, BIT(ep), EP_STCHG);
961 }
962 
963 static void ep_unpause_all(struct tegra_xudc *xudc)
964 {
965 	u32 val;
966 
967 	val = xudc_readl(xudc, EP_PAUSE);
968 
969 	xudc_writel(xudc, 0, EP_PAUSE);
970 
971 	xudc_readl_poll(xudc, EP_STCHG, val, val);
972 
973 	xudc_writel(xudc, val, EP_STCHG);
974 }
975 
976 static void ep_halt(struct tegra_xudc *xudc, unsigned int ep)
977 {
978 	u32 val;
979 
980 	val = xudc_readl(xudc, EP_HALT);
981 	if (val & BIT(ep))
982 		return;
983 	val |= BIT(ep);
984 	xudc_writel(xudc, val, EP_HALT);
985 
986 	xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
987 
988 	xudc_writel(xudc, BIT(ep), EP_STCHG);
989 }
990 
991 static void ep_unhalt(struct tegra_xudc *xudc, unsigned int ep)
992 {
993 	u32 val;
994 
995 	val = xudc_readl(xudc, EP_HALT);
996 	if (!(val & BIT(ep)))
997 		return;
998 	val &= ~BIT(ep);
999 	xudc_writel(xudc, val, EP_HALT);
1000 
1001 	xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
1002 
1003 	xudc_writel(xudc, BIT(ep), EP_STCHG);
1004 }
1005 
1006 static void ep_unhalt_all(struct tegra_xudc *xudc)
1007 {
1008 	u32 val;
1009 
1010 	val = xudc_readl(xudc, EP_HALT);
1011 	if (!val)
1012 		return;
1013 	xudc_writel(xudc, 0, EP_HALT);
1014 
1015 	xudc_readl_poll(xudc, EP_STCHG, val, val);
1016 
1017 	xudc_writel(xudc, val, EP_STCHG);
1018 }
1019 
1020 static void ep_wait_for_stopped(struct tegra_xudc *xudc, unsigned int ep)
1021 {
1022 	xudc_readl_poll(xudc, EP_STOPPED, BIT(ep), BIT(ep));
1023 	xudc_writel(xudc, BIT(ep), EP_STOPPED);
1024 }
1025 
1026 static void ep_wait_for_inactive(struct tegra_xudc *xudc, unsigned int ep)
1027 {
1028 	xudc_readl_poll(xudc, EP_THREAD_ACTIVE, BIT(ep), 0);
1029 }
1030 
1031 static void tegra_xudc_req_done(struct tegra_xudc_ep *ep,
1032 				struct tegra_xudc_request *req, int status)
1033 {
1034 	struct tegra_xudc *xudc = ep->xudc;
1035 
1036 	dev_dbg(xudc->dev, "completing request %p on EP %u with status %d\n",
1037 		 req, ep->index, status);
1038 
1039 	if (likely(req->usb_req.status == -EINPROGRESS))
1040 		req->usb_req.status = status;
1041 
1042 	list_del_init(&req->list);
1043 
1044 	if (usb_endpoint_xfer_control(ep->desc)) {
1045 		usb_gadget_unmap_request(&xudc->gadget, &req->usb_req,
1046 					 (xudc->setup_state ==
1047 					  DATA_STAGE_XFER));
1048 	} else {
1049 		usb_gadget_unmap_request(&xudc->gadget, &req->usb_req,
1050 					 usb_endpoint_dir_in(ep->desc));
1051 	}
1052 
1053 	spin_unlock(&xudc->lock);
1054 	usb_gadget_giveback_request(&ep->usb_ep, &req->usb_req);
1055 	spin_lock(&xudc->lock);
1056 }
1057 
1058 static void tegra_xudc_ep_nuke(struct tegra_xudc_ep *ep, int status)
1059 {
1060 	struct tegra_xudc_request *req;
1061 
1062 	while (!list_empty(&ep->queue)) {
1063 		req = list_first_entry(&ep->queue, struct tegra_xudc_request,
1064 				       list);
1065 		tegra_xudc_req_done(ep, req, status);
1066 	}
1067 }
1068 
1069 static unsigned int ep_available_trbs(struct tegra_xudc_ep *ep)
1070 {
1071 	if (ep->ring_full)
1072 		return 0;
1073 
1074 	if (ep->deq_ptr > ep->enq_ptr)
1075 		return ep->deq_ptr - ep->enq_ptr - 1;
1076 
1077 	return XUDC_TRANSFER_RING_SIZE - (ep->enq_ptr - ep->deq_ptr) - 2;
1078 }
1079 
1080 static void tegra_xudc_queue_one_trb(struct tegra_xudc_ep *ep,
1081 				     struct tegra_xudc_request *req,
1082 				     struct tegra_xudc_trb *trb,
1083 				     bool ioc)
1084 {
1085 	struct tegra_xudc *xudc = ep->xudc;
1086 	dma_addr_t buf_addr;
1087 	size_t len;
1088 
1089 	len = min_t(size_t, XUDC_TRB_MAX_BUFFER_SIZE, req->usb_req.length -
1090 		    req->buf_queued);
1091 	if (len > 0)
1092 		buf_addr = req->usb_req.dma + req->buf_queued;
1093 	else
1094 		buf_addr = 0;
1095 
1096 	trb_write_data_ptr(trb, buf_addr);
1097 
1098 	trb_write_transfer_len(trb, len);
1099 	trb_write_td_size(trb, req->trbs_needed - req->trbs_queued - 1);
1100 
1101 	if (req->trbs_queued == req->trbs_needed - 1 ||
1102 		(req->need_zlp && req->trbs_queued == req->trbs_needed - 2))
1103 		trb_write_chain(trb, 0);
1104 	else
1105 		trb_write_chain(trb, 1);
1106 
1107 	trb_write_ioc(trb, ioc);
1108 
1109 	if (usb_endpoint_dir_out(ep->desc) ||
1110 	    (usb_endpoint_xfer_control(ep->desc) &&
1111 	     (xudc->setup_state == DATA_STAGE_RECV)))
1112 		trb_write_isp(trb, 1);
1113 	else
1114 		trb_write_isp(trb, 0);
1115 
1116 	if (usb_endpoint_xfer_control(ep->desc)) {
1117 		if (xudc->setup_state == DATA_STAGE_XFER ||
1118 		    xudc->setup_state == DATA_STAGE_RECV)
1119 			trb_write_type(trb, TRB_TYPE_DATA_STAGE);
1120 		else
1121 			trb_write_type(trb, TRB_TYPE_STATUS_STAGE);
1122 
1123 		if (xudc->setup_state == DATA_STAGE_XFER ||
1124 		    xudc->setup_state == STATUS_STAGE_XFER)
1125 			trb_write_data_stage_dir(trb, 1);
1126 		else
1127 			trb_write_data_stage_dir(trb, 0);
1128 	} else if (usb_endpoint_xfer_isoc(ep->desc)) {
1129 		trb_write_type(trb, TRB_TYPE_ISOCH);
1130 		trb_write_sia(trb, 1);
1131 		trb_write_frame_id(trb, 0);
1132 		trb_write_tlbpc(trb, 0);
1133 	} else if (usb_ss_max_streams(ep->comp_desc)) {
1134 		trb_write_type(trb, TRB_TYPE_STREAM);
1135 		trb_write_stream_id(trb, req->usb_req.stream_id);
1136 	} else {
1137 		trb_write_type(trb, TRB_TYPE_NORMAL);
1138 		trb_write_stream_id(trb, 0);
1139 	}
1140 
1141 	trb_write_cycle(trb, ep->pcs);
1142 
1143 	req->trbs_queued++;
1144 	req->buf_queued += len;
1145 
1146 	dump_trb(xudc, "TRANSFER", trb);
1147 }
1148 
1149 static unsigned int tegra_xudc_queue_trbs(struct tegra_xudc_ep *ep,
1150 					  struct tegra_xudc_request *req)
1151 {
1152 	unsigned int i, count, available;
1153 	bool wait_td = false;
1154 
1155 	available = ep_available_trbs(ep);
1156 	count = req->trbs_needed - req->trbs_queued;
1157 	if (available < count) {
1158 		count = available;
1159 		ep->ring_full = true;
1160 	}
1161 
1162 	/*
1163 	 * To generate zero-length packet on USB bus, SW needs schedule a
1164 	 * standalone zero-length TD. According to HW's behavior, SW needs
1165 	 * to schedule TDs in different ways for different endpoint types.
1166 	 *
1167 	 * For control endpoint:
1168 	 * - Data stage TD (IOC = 1, CH = 0)
1169 	 * - Ring doorbell and wait transfer event
1170 	 * - Data stage TD for ZLP (IOC = 1, CH = 0)
1171 	 * - Ring doorbell
1172 	 *
1173 	 * For bulk and interrupt endpoints:
1174 	 * - Normal transfer TD (IOC = 0, CH = 0)
1175 	 * - Normal transfer TD for ZLP (IOC = 1, CH = 0)
1176 	 * - Ring doorbell
1177 	 */
1178 
1179 	if (req->need_zlp && usb_endpoint_xfer_control(ep->desc) && count > 1)
1180 		wait_td = true;
1181 
1182 	if (!req->first_trb)
1183 		req->first_trb = &ep->transfer_ring[ep->enq_ptr];
1184 
1185 	for (i = 0; i < count; i++) {
1186 		struct tegra_xudc_trb *trb = &ep->transfer_ring[ep->enq_ptr];
1187 		bool ioc = false;
1188 
1189 		if ((i == count - 1) || (wait_td && i == count - 2))
1190 			ioc = true;
1191 
1192 		tegra_xudc_queue_one_trb(ep, req, trb, ioc);
1193 		req->last_trb = trb;
1194 
1195 		ep->enq_ptr++;
1196 		if (ep->enq_ptr == XUDC_TRANSFER_RING_SIZE - 1) {
1197 			trb = &ep->transfer_ring[ep->enq_ptr];
1198 			trb_write_cycle(trb, ep->pcs);
1199 			ep->pcs = !ep->pcs;
1200 			ep->enq_ptr = 0;
1201 		}
1202 
1203 		if (ioc)
1204 			break;
1205 	}
1206 
1207 	return count;
1208 }
1209 
1210 static void tegra_xudc_ep_ring_doorbell(struct tegra_xudc_ep *ep)
1211 {
1212 	struct tegra_xudc *xudc = ep->xudc;
1213 	u32 val;
1214 
1215 	if (list_empty(&ep->queue))
1216 		return;
1217 
1218 	val = DB_TARGET(ep->index);
1219 	if (usb_endpoint_xfer_control(ep->desc)) {
1220 		val |= DB_STREAMID(xudc->setup_seq_num);
1221 	} else if (usb_ss_max_streams(ep->comp_desc) > 0) {
1222 		struct tegra_xudc_request *req;
1223 
1224 		/* Don't ring doorbell if the stream has been rejected. */
1225 		if (ep->stream_rejected)
1226 			return;
1227 
1228 		req = list_first_entry(&ep->queue, struct tegra_xudc_request,
1229 				       list);
1230 		val |= DB_STREAMID(req->usb_req.stream_id);
1231 	}
1232 
1233 	dev_dbg(xudc->dev, "ring doorbell: %#x\n", val);
1234 	xudc_writel(xudc, val, DB);
1235 }
1236 
1237 static void tegra_xudc_ep_kick_queue(struct tegra_xudc_ep *ep)
1238 {
1239 	struct tegra_xudc_request *req;
1240 	bool trbs_queued = false;
1241 
1242 	list_for_each_entry(req, &ep->queue, list) {
1243 		if (ep->ring_full)
1244 			break;
1245 
1246 		if (tegra_xudc_queue_trbs(ep, req) > 0)
1247 			trbs_queued = true;
1248 	}
1249 
1250 	if (trbs_queued)
1251 		tegra_xudc_ep_ring_doorbell(ep);
1252 }
1253 
1254 static int
1255 __tegra_xudc_ep_queue(struct tegra_xudc_ep *ep, struct tegra_xudc_request *req)
1256 {
1257 	struct tegra_xudc *xudc = ep->xudc;
1258 	int err;
1259 
1260 	if (usb_endpoint_xfer_control(ep->desc) && !list_empty(&ep->queue)) {
1261 		dev_err(xudc->dev, "control EP has pending transfers\n");
1262 		return -EINVAL;
1263 	}
1264 
1265 	if (usb_endpoint_xfer_control(ep->desc)) {
1266 		err = usb_gadget_map_request(&xudc->gadget, &req->usb_req,
1267 					     (xudc->setup_state ==
1268 					      DATA_STAGE_XFER));
1269 	} else {
1270 		err = usb_gadget_map_request(&xudc->gadget, &req->usb_req,
1271 					     usb_endpoint_dir_in(ep->desc));
1272 	}
1273 
1274 	if (err < 0) {
1275 		dev_err(xudc->dev, "failed to map request: %d\n", err);
1276 		return err;
1277 	}
1278 
1279 	req->first_trb = NULL;
1280 	req->last_trb = NULL;
1281 	req->buf_queued = 0;
1282 	req->trbs_queued = 0;
1283 	req->need_zlp = false;
1284 	req->trbs_needed = DIV_ROUND_UP(req->usb_req.length,
1285 					XUDC_TRB_MAX_BUFFER_SIZE);
1286 	if (req->usb_req.length == 0)
1287 		req->trbs_needed++;
1288 
1289 	if (!usb_endpoint_xfer_isoc(ep->desc) &&
1290 	    req->usb_req.zero && req->usb_req.length &&
1291 	    ((req->usb_req.length % ep->usb_ep.maxpacket) == 0)) {
1292 		req->trbs_needed++;
1293 		req->need_zlp = true;
1294 	}
1295 
1296 	req->usb_req.status = -EINPROGRESS;
1297 	req->usb_req.actual = 0;
1298 
1299 	list_add_tail(&req->list, &ep->queue);
1300 
1301 	tegra_xudc_ep_kick_queue(ep);
1302 
1303 	return 0;
1304 }
1305 
1306 static int
1307 tegra_xudc_ep_queue(struct usb_ep *usb_ep, struct usb_request *usb_req,
1308 		    gfp_t gfp)
1309 {
1310 	struct tegra_xudc_request *req;
1311 	struct tegra_xudc_ep *ep;
1312 	struct tegra_xudc *xudc;
1313 	unsigned long flags;
1314 	int ret;
1315 
1316 	if (!usb_ep || !usb_req)
1317 		return -EINVAL;
1318 
1319 	ep = to_xudc_ep(usb_ep);
1320 	req = to_xudc_req(usb_req);
1321 	xudc = ep->xudc;
1322 
1323 	spin_lock_irqsave(&xudc->lock, flags);
1324 	if (xudc->powergated || !ep->desc) {
1325 		ret = -ESHUTDOWN;
1326 		goto unlock;
1327 	}
1328 
1329 	ret = __tegra_xudc_ep_queue(ep, req);
1330 unlock:
1331 	spin_unlock_irqrestore(&xudc->lock, flags);
1332 
1333 	return ret;
1334 }
1335 
1336 static void squeeze_transfer_ring(struct tegra_xudc_ep *ep,
1337 				  struct tegra_xudc_request *req)
1338 {
1339 	struct tegra_xudc_trb *trb = req->first_trb;
1340 	bool pcs_enq = trb_read_cycle(trb);
1341 	bool pcs;
1342 
1343 	/*
1344 	 * Clear out all the TRBs part of or after the cancelled request,
1345 	 * and must correct trb cycle bit to the last un-enqueued state.
1346 	 */
1347 	while (trb != &ep->transfer_ring[ep->enq_ptr]) {
1348 		pcs = trb_read_cycle(trb);
1349 		memset(trb, 0, sizeof(*trb));
1350 		trb_write_cycle(trb, !pcs);
1351 		trb++;
1352 
1353 		if (trb_read_type(trb) == TRB_TYPE_LINK)
1354 			trb = ep->transfer_ring;
1355 	}
1356 
1357 	/* Requests will be re-queued at the start of the cancelled request. */
1358 	ep->enq_ptr = req->first_trb - ep->transfer_ring;
1359 	/*
1360 	 * Retrieve the correct cycle bit state from the first trb of
1361 	 * the cancelled request.
1362 	 */
1363 	ep->pcs = pcs_enq;
1364 	ep->ring_full = false;
1365 	list_for_each_entry_continue(req, &ep->queue, list) {
1366 		req->usb_req.status = -EINPROGRESS;
1367 		req->usb_req.actual = 0;
1368 
1369 		req->first_trb = NULL;
1370 		req->last_trb = NULL;
1371 		req->buf_queued = 0;
1372 		req->trbs_queued = 0;
1373 	}
1374 }
1375 
1376 /*
1377  * Determine if the given TRB is in the range [first trb, last trb] for the
1378  * given request.
1379  */
1380 static bool trb_in_request(struct tegra_xudc_ep *ep,
1381 			   struct tegra_xudc_request *req,
1382 			   struct tegra_xudc_trb *trb)
1383 {
1384 	dev_dbg(ep->xudc->dev, "%s: request %p -> %p; trb %p\n", __func__,
1385 		req->first_trb, req->last_trb, trb);
1386 
1387 	if (trb >= req->first_trb && (trb <= req->last_trb ||
1388 				      req->last_trb < req->first_trb))
1389 		return true;
1390 
1391 	if (trb < req->first_trb && trb <= req->last_trb &&
1392 	    req->last_trb < req->first_trb)
1393 		return true;
1394 
1395 	return false;
1396 }
1397 
1398 /*
1399  * Determine if the given TRB is in the range [EP enqueue pointer, first TRB)
1400  * for the given endpoint and request.
1401  */
1402 static bool trb_before_request(struct tegra_xudc_ep *ep,
1403 			       struct tegra_xudc_request *req,
1404 			       struct tegra_xudc_trb *trb)
1405 {
1406 	struct tegra_xudc_trb *enq_trb = &ep->transfer_ring[ep->enq_ptr];
1407 
1408 	dev_dbg(ep->xudc->dev, "%s: request %p -> %p; enq ptr: %p; trb %p\n",
1409 		__func__, req->first_trb, req->last_trb, enq_trb, trb);
1410 
1411 	if (trb < req->first_trb && (enq_trb <= trb ||
1412 				     req->first_trb < enq_trb))
1413 		return true;
1414 
1415 	if (trb > req->first_trb && req->first_trb < enq_trb && enq_trb <= trb)
1416 		return true;
1417 
1418 	return false;
1419 }
1420 
1421 static int
1422 __tegra_xudc_ep_dequeue(struct tegra_xudc_ep *ep,
1423 			struct tegra_xudc_request *req)
1424 {
1425 	struct tegra_xudc *xudc = ep->xudc;
1426 	struct tegra_xudc_request *r = NULL, *iter;
1427 	struct tegra_xudc_trb *deq_trb;
1428 	bool busy, kick_queue = false;
1429 	int ret = 0;
1430 
1431 	/* Make sure the request is actually queued to this endpoint. */
1432 	list_for_each_entry(iter, &ep->queue, list) {
1433 		if (iter != req)
1434 			continue;
1435 		r = iter;
1436 		break;
1437 	}
1438 
1439 	if (!r)
1440 		return -EINVAL;
1441 
1442 	/* Request hasn't been queued in the transfer ring yet. */
1443 	if (!req->trbs_queued) {
1444 		tegra_xudc_req_done(ep, req, -ECONNRESET);
1445 		return 0;
1446 	}
1447 
1448 	/* Halt DMA for this endpoint. */
1449 	if (ep_ctx_read_state(ep->context) == EP_STATE_RUNNING) {
1450 		ep_pause(xudc, ep->index);
1451 		ep_wait_for_inactive(xudc, ep->index);
1452 	}
1453 
1454 	deq_trb = trb_phys_to_virt(ep, ep_ctx_read_deq_ptr(ep->context));
1455 	/* Is the hardware processing the TRB at the dequeue pointer? */
1456 	busy = (trb_read_cycle(deq_trb) == ep_ctx_read_dcs(ep->context));
1457 
1458 	if (trb_in_request(ep, req, deq_trb) && busy) {
1459 		/*
1460 		 * Request has been partially completed or it hasn't
1461 		 * started processing yet.
1462 		 */
1463 		dma_addr_t deq_ptr;
1464 
1465 		squeeze_transfer_ring(ep, req);
1466 
1467 		req->usb_req.actual = ep_ctx_read_edtla(ep->context);
1468 		tegra_xudc_req_done(ep, req, -ECONNRESET);
1469 		kick_queue = true;
1470 
1471 		/* EDTLA is > 0: request has been partially completed */
1472 		if (req->usb_req.actual > 0) {
1473 			/*
1474 			 * Abort the pending transfer and update the dequeue
1475 			 * pointer
1476 			 */
1477 			ep_ctx_write_edtla(ep->context, 0);
1478 			ep_ctx_write_partial_td(ep->context, 0);
1479 			ep_ctx_write_data_offset(ep->context, 0);
1480 
1481 			deq_ptr = trb_virt_to_phys(ep,
1482 					&ep->transfer_ring[ep->enq_ptr]);
1483 
1484 			if (dma_mapping_error(xudc->dev, deq_ptr)) {
1485 				ret = -EINVAL;
1486 			} else {
1487 				ep_ctx_write_deq_ptr(ep->context, deq_ptr);
1488 				ep_ctx_write_dcs(ep->context, ep->pcs);
1489 				ep_reload(xudc, ep->index);
1490 			}
1491 		}
1492 	} else if (trb_before_request(ep, req, deq_trb) && busy) {
1493 		/* Request hasn't started processing yet. */
1494 		squeeze_transfer_ring(ep, req);
1495 
1496 		tegra_xudc_req_done(ep, req, -ECONNRESET);
1497 		kick_queue = true;
1498 	} else {
1499 		/*
1500 		 * Request has completed, but we haven't processed the
1501 		 * completion event yet.
1502 		 */
1503 		tegra_xudc_req_done(ep, req, -ECONNRESET);
1504 		ret = -EINVAL;
1505 	}
1506 
1507 	/* Resume the endpoint. */
1508 	ep_unpause(xudc, ep->index);
1509 
1510 	if (kick_queue)
1511 		tegra_xudc_ep_kick_queue(ep);
1512 
1513 	return ret;
1514 }
1515 
1516 static int
1517 tegra_xudc_ep_dequeue(struct usb_ep *usb_ep, struct usb_request *usb_req)
1518 {
1519 	struct tegra_xudc_request *req;
1520 	struct tegra_xudc_ep *ep;
1521 	struct tegra_xudc *xudc;
1522 	unsigned long flags;
1523 	int ret;
1524 
1525 	if (!usb_ep || !usb_req)
1526 		return -EINVAL;
1527 
1528 	ep = to_xudc_ep(usb_ep);
1529 	req = to_xudc_req(usb_req);
1530 	xudc = ep->xudc;
1531 
1532 	spin_lock_irqsave(&xudc->lock, flags);
1533 
1534 	if (xudc->powergated || !ep->desc) {
1535 		ret = -ESHUTDOWN;
1536 		goto unlock;
1537 	}
1538 
1539 	ret = __tegra_xudc_ep_dequeue(ep, req);
1540 unlock:
1541 	spin_unlock_irqrestore(&xudc->lock, flags);
1542 
1543 	return ret;
1544 }
1545 
1546 static int __tegra_xudc_ep_set_halt(struct tegra_xudc_ep *ep, bool halt)
1547 {
1548 	struct tegra_xudc *xudc = ep->xudc;
1549 
1550 	if (!ep->desc)
1551 		return -EINVAL;
1552 
1553 	if (usb_endpoint_xfer_isoc(ep->desc)) {
1554 		dev_err(xudc->dev, "can't halt isochronous EP\n");
1555 		return -ENOTSUPP;
1556 	}
1557 
1558 	if (!!(xudc_readl(xudc, EP_HALT) & BIT(ep->index)) == halt) {
1559 		dev_dbg(xudc->dev, "EP %u already %s\n", ep->index,
1560 			halt ? "halted" : "not halted");
1561 		return 0;
1562 	}
1563 
1564 	if (halt) {
1565 		ep_halt(xudc, ep->index);
1566 	} else {
1567 		ep_ctx_write_state(ep->context, EP_STATE_DISABLED);
1568 
1569 		ep_reload(xudc, ep->index);
1570 
1571 		ep_ctx_write_state(ep->context, EP_STATE_RUNNING);
1572 		ep_ctx_write_rsvd(ep->context, 0);
1573 		ep_ctx_write_partial_td(ep->context, 0);
1574 		ep_ctx_write_splitxstate(ep->context, 0);
1575 		ep_ctx_write_seq_num(ep->context, 0);
1576 
1577 		ep_reload(xudc, ep->index);
1578 		ep_unpause(xudc, ep->index);
1579 		ep_unhalt(xudc, ep->index);
1580 
1581 		tegra_xudc_ep_ring_doorbell(ep);
1582 	}
1583 
1584 	return 0;
1585 }
1586 
1587 static int tegra_xudc_ep_set_halt(struct usb_ep *usb_ep, int value)
1588 {
1589 	struct tegra_xudc_ep *ep;
1590 	struct tegra_xudc *xudc;
1591 	unsigned long flags;
1592 	int ret;
1593 
1594 	if (!usb_ep)
1595 		return -EINVAL;
1596 
1597 	ep = to_xudc_ep(usb_ep);
1598 	xudc = ep->xudc;
1599 
1600 	spin_lock_irqsave(&xudc->lock, flags);
1601 	if (xudc->powergated) {
1602 		ret = -ESHUTDOWN;
1603 		goto unlock;
1604 	}
1605 
1606 	if (value && usb_endpoint_dir_in(ep->desc) &&
1607 	    !list_empty(&ep->queue)) {
1608 		dev_err(xudc->dev, "can't halt EP with requests pending\n");
1609 		ret = -EAGAIN;
1610 		goto unlock;
1611 	}
1612 
1613 	ret = __tegra_xudc_ep_set_halt(ep, value);
1614 unlock:
1615 	spin_unlock_irqrestore(&xudc->lock, flags);
1616 
1617 	return ret;
1618 }
1619 
1620 static void tegra_xudc_ep_context_setup(struct tegra_xudc_ep *ep)
1621 {
1622 	const struct usb_endpoint_descriptor *desc = ep->desc;
1623 	const struct usb_ss_ep_comp_descriptor *comp_desc = ep->comp_desc;
1624 	struct tegra_xudc *xudc = ep->xudc;
1625 	u16 maxpacket, maxburst = 0, esit = 0;
1626 	u32 val;
1627 
1628 	maxpacket = usb_endpoint_maxp(desc);
1629 	if (xudc->gadget.speed == USB_SPEED_SUPER) {
1630 		if (!usb_endpoint_xfer_control(desc))
1631 			maxburst = comp_desc->bMaxBurst;
1632 
1633 		if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc))
1634 			esit = le16_to_cpu(comp_desc->wBytesPerInterval);
1635 	} else if ((xudc->gadget.speed < USB_SPEED_SUPER) &&
1636 		   (usb_endpoint_xfer_int(desc) ||
1637 		    usb_endpoint_xfer_isoc(desc))) {
1638 		if (xudc->gadget.speed == USB_SPEED_HIGH) {
1639 			maxburst = usb_endpoint_maxp_mult(desc) - 1;
1640 			if (maxburst == 0x3) {
1641 				dev_warn(xudc->dev,
1642 					 "invalid endpoint maxburst\n");
1643 				maxburst = 0x2;
1644 			}
1645 		}
1646 		esit = maxpacket * (maxburst + 1);
1647 	}
1648 
1649 	memset(ep->context, 0, sizeof(*ep->context));
1650 
1651 	ep_ctx_write_state(ep->context, EP_STATE_RUNNING);
1652 	ep_ctx_write_interval(ep->context, desc->bInterval);
1653 	if (xudc->gadget.speed == USB_SPEED_SUPER) {
1654 		if (usb_endpoint_xfer_isoc(desc)) {
1655 			ep_ctx_write_mult(ep->context,
1656 					  comp_desc->bmAttributes & 0x3);
1657 		}
1658 
1659 		if (usb_endpoint_xfer_bulk(desc)) {
1660 			ep_ctx_write_max_pstreams(ep->context,
1661 						  comp_desc->bmAttributes &
1662 						  0x1f);
1663 			ep_ctx_write_lsa(ep->context, 1);
1664 		}
1665 	}
1666 
1667 	if (!usb_endpoint_xfer_control(desc) && usb_endpoint_dir_out(desc))
1668 		val = usb_endpoint_type(desc);
1669 	else
1670 		val = usb_endpoint_type(desc) + EP_TYPE_CONTROL;
1671 
1672 	ep_ctx_write_type(ep->context, val);
1673 	ep_ctx_write_cerr(ep->context, 0x3);
1674 	ep_ctx_write_max_packet_size(ep->context, maxpacket);
1675 	ep_ctx_write_max_burst_size(ep->context, maxburst);
1676 
1677 	ep_ctx_write_deq_ptr(ep->context, ep->transfer_ring_phys);
1678 	ep_ctx_write_dcs(ep->context, ep->pcs);
1679 
1680 	/* Select a reasonable average TRB length based on endpoint type. */
1681 	switch (usb_endpoint_type(desc)) {
1682 	case USB_ENDPOINT_XFER_CONTROL:
1683 		val = 8;
1684 		break;
1685 	case USB_ENDPOINT_XFER_INT:
1686 		val = 1024;
1687 		break;
1688 	case USB_ENDPOINT_XFER_BULK:
1689 	case USB_ENDPOINT_XFER_ISOC:
1690 	default:
1691 		val = 3072;
1692 		break;
1693 	}
1694 
1695 	ep_ctx_write_avg_trb_len(ep->context, val);
1696 	ep_ctx_write_max_esit_payload(ep->context, esit);
1697 
1698 	ep_ctx_write_cerrcnt(ep->context, 0x3);
1699 }
1700 
1701 static void setup_link_trb(struct tegra_xudc_ep *ep,
1702 			   struct tegra_xudc_trb *trb)
1703 {
1704 	trb_write_data_ptr(trb, ep->transfer_ring_phys);
1705 	trb_write_type(trb, TRB_TYPE_LINK);
1706 	trb_write_toggle_cycle(trb, 1);
1707 }
1708 
1709 static int __tegra_xudc_ep_disable(struct tegra_xudc_ep *ep)
1710 {
1711 	struct tegra_xudc *xudc = ep->xudc;
1712 
1713 	if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) {
1714 		dev_err(xudc->dev, "endpoint %u already disabled\n",
1715 			ep->index);
1716 		return -EINVAL;
1717 	}
1718 
1719 	ep_ctx_write_state(ep->context, EP_STATE_DISABLED);
1720 
1721 	ep_reload(xudc, ep->index);
1722 
1723 	tegra_xudc_ep_nuke(ep, -ESHUTDOWN);
1724 
1725 	xudc->nr_enabled_eps--;
1726 	if (usb_endpoint_xfer_isoc(ep->desc))
1727 		xudc->nr_isoch_eps--;
1728 
1729 	ep->desc = NULL;
1730 	ep->comp_desc = NULL;
1731 
1732 	memset(ep->context, 0, sizeof(*ep->context));
1733 
1734 	ep_unpause(xudc, ep->index);
1735 	ep_unhalt(xudc, ep->index);
1736 	if (xudc_readl(xudc, EP_STOPPED) & BIT(ep->index))
1737 		xudc_writel(xudc, BIT(ep->index), EP_STOPPED);
1738 
1739 	/*
1740 	 * If this is the last endpoint disabled in a de-configure request,
1741 	 * switch back to address state.
1742 	 */
1743 	if ((xudc->device_state == USB_STATE_CONFIGURED) &&
1744 	    (xudc->nr_enabled_eps == 1)) {
1745 		u32 val;
1746 
1747 		xudc->device_state = USB_STATE_ADDRESS;
1748 		usb_gadget_set_state(&xudc->gadget, xudc->device_state);
1749 
1750 		val = xudc_readl(xudc, CTRL);
1751 		val &= ~CTRL_RUN;
1752 		xudc_writel(xudc, val, CTRL);
1753 	}
1754 
1755 	dev_info(xudc->dev, "ep %u disabled\n", ep->index);
1756 
1757 	return 0;
1758 }
1759 
1760 static int tegra_xudc_ep_disable(struct usb_ep *usb_ep)
1761 {
1762 	struct tegra_xudc_ep *ep;
1763 	struct tegra_xudc *xudc;
1764 	unsigned long flags;
1765 	int ret;
1766 
1767 	if (!usb_ep)
1768 		return -EINVAL;
1769 
1770 	ep = to_xudc_ep(usb_ep);
1771 	xudc = ep->xudc;
1772 
1773 	spin_lock_irqsave(&xudc->lock, flags);
1774 	if (xudc->powergated) {
1775 		ret = -ESHUTDOWN;
1776 		goto unlock;
1777 	}
1778 
1779 	ret = __tegra_xudc_ep_disable(ep);
1780 unlock:
1781 	spin_unlock_irqrestore(&xudc->lock, flags);
1782 
1783 	return ret;
1784 }
1785 
1786 static int __tegra_xudc_ep_enable(struct tegra_xudc_ep *ep,
1787 				  const struct usb_endpoint_descriptor *desc)
1788 {
1789 	struct tegra_xudc *xudc = ep->xudc;
1790 	unsigned int i;
1791 	u32 val;
1792 
1793 	if (xudc->gadget.speed == USB_SPEED_SUPER &&
1794 		!usb_endpoint_xfer_control(desc) && !ep->usb_ep.comp_desc)
1795 		return -EINVAL;
1796 
1797 	/* Disable the EP if it is not disabled */
1798 	if (ep_ctx_read_state(ep->context) != EP_STATE_DISABLED)
1799 		__tegra_xudc_ep_disable(ep);
1800 
1801 	ep->desc = desc;
1802 	ep->comp_desc = ep->usb_ep.comp_desc;
1803 
1804 	if (usb_endpoint_xfer_isoc(desc)) {
1805 		if (xudc->nr_isoch_eps > XUDC_MAX_ISOCH_EPS) {
1806 			dev_err(xudc->dev, "too many isochronous endpoints\n");
1807 			return -EBUSY;
1808 		}
1809 		xudc->nr_isoch_eps++;
1810 	}
1811 
1812 	memset(ep->transfer_ring, 0, XUDC_TRANSFER_RING_SIZE *
1813 	       sizeof(*ep->transfer_ring));
1814 	setup_link_trb(ep, &ep->transfer_ring[XUDC_TRANSFER_RING_SIZE - 1]);
1815 
1816 	ep->enq_ptr = 0;
1817 	ep->deq_ptr = 0;
1818 	ep->pcs = true;
1819 	ep->ring_full = false;
1820 	xudc->nr_enabled_eps++;
1821 
1822 	tegra_xudc_ep_context_setup(ep);
1823 
1824 	/*
1825 	 * No need to reload and un-halt EP0.  This will be done automatically
1826 	 * once a valid SETUP packet is received.
1827 	 */
1828 	if (usb_endpoint_xfer_control(desc))
1829 		goto out;
1830 
1831 	/*
1832 	 * Transition to configured state once the first non-control
1833 	 * endpoint is enabled.
1834 	 */
1835 	if (xudc->device_state == USB_STATE_ADDRESS) {
1836 		val = xudc_readl(xudc, CTRL);
1837 		val |= CTRL_RUN;
1838 		xudc_writel(xudc, val, CTRL);
1839 
1840 		xudc->device_state = USB_STATE_CONFIGURED;
1841 		usb_gadget_set_state(&xudc->gadget, xudc->device_state);
1842 	}
1843 
1844 	if (usb_endpoint_xfer_isoc(desc)) {
1845 		/*
1846 		 * Pause all bulk endpoints when enabling an isoch endpoint
1847 		 * to ensure the isoch endpoint is allocated enough bandwidth.
1848 		 */
1849 		for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) {
1850 			if (xudc->ep[i].desc &&
1851 			    usb_endpoint_xfer_bulk(xudc->ep[i].desc))
1852 				ep_pause(xudc, i);
1853 		}
1854 	}
1855 
1856 	ep_reload(xudc, ep->index);
1857 	ep_unpause(xudc, ep->index);
1858 	ep_unhalt(xudc, ep->index);
1859 
1860 	if (usb_endpoint_xfer_isoc(desc)) {
1861 		for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) {
1862 			if (xudc->ep[i].desc &&
1863 			    usb_endpoint_xfer_bulk(xudc->ep[i].desc))
1864 				ep_unpause(xudc, i);
1865 		}
1866 	}
1867 
1868 out:
1869 	dev_info(xudc->dev, "EP %u (type: %s, dir: %s) enabled\n", ep->index,
1870 		 usb_ep_type_string(usb_endpoint_type(ep->desc)),
1871 		 usb_endpoint_dir_in(ep->desc) ? "in" : "out");
1872 
1873 	return 0;
1874 }
1875 
1876 static int tegra_xudc_ep_enable(struct usb_ep *usb_ep,
1877 				const struct usb_endpoint_descriptor *desc)
1878 {
1879 	struct tegra_xudc_ep *ep;
1880 	struct tegra_xudc *xudc;
1881 	unsigned long flags;
1882 	int ret;
1883 
1884 	if  (!usb_ep || !desc || (desc->bDescriptorType != USB_DT_ENDPOINT))
1885 		return -EINVAL;
1886 
1887 	ep = to_xudc_ep(usb_ep);
1888 	xudc = ep->xudc;
1889 
1890 	spin_lock_irqsave(&xudc->lock, flags);
1891 	if (xudc->powergated) {
1892 		ret = -ESHUTDOWN;
1893 		goto unlock;
1894 	}
1895 
1896 	ret = __tegra_xudc_ep_enable(ep, desc);
1897 unlock:
1898 	spin_unlock_irqrestore(&xudc->lock, flags);
1899 
1900 	return ret;
1901 }
1902 
1903 static struct usb_request *
1904 tegra_xudc_ep_alloc_request(struct usb_ep *usb_ep, gfp_t gfp)
1905 {
1906 	struct tegra_xudc_request *req;
1907 
1908 	req = kzalloc(sizeof(*req), gfp);
1909 	if (!req)
1910 		return NULL;
1911 
1912 	INIT_LIST_HEAD(&req->list);
1913 
1914 	return &req->usb_req;
1915 }
1916 
1917 static void tegra_xudc_ep_free_request(struct usb_ep *usb_ep,
1918 				       struct usb_request *usb_req)
1919 {
1920 	struct tegra_xudc_request *req = to_xudc_req(usb_req);
1921 
1922 	kfree(req);
1923 }
1924 
1925 static const struct usb_ep_ops tegra_xudc_ep_ops = {
1926 	.enable = tegra_xudc_ep_enable,
1927 	.disable = tegra_xudc_ep_disable,
1928 	.alloc_request = tegra_xudc_ep_alloc_request,
1929 	.free_request = tegra_xudc_ep_free_request,
1930 	.queue = tegra_xudc_ep_queue,
1931 	.dequeue = tegra_xudc_ep_dequeue,
1932 	.set_halt = tegra_xudc_ep_set_halt,
1933 };
1934 
1935 static int tegra_xudc_ep0_enable(struct usb_ep *usb_ep,
1936 				 const struct usb_endpoint_descriptor *desc)
1937 {
1938 	return -EBUSY;
1939 }
1940 
1941 static int tegra_xudc_ep0_disable(struct usb_ep *usb_ep)
1942 {
1943 	return -EBUSY;
1944 }
1945 
1946 static const struct usb_ep_ops tegra_xudc_ep0_ops = {
1947 	.enable = tegra_xudc_ep0_enable,
1948 	.disable = tegra_xudc_ep0_disable,
1949 	.alloc_request = tegra_xudc_ep_alloc_request,
1950 	.free_request = tegra_xudc_ep_free_request,
1951 	.queue = tegra_xudc_ep_queue,
1952 	.dequeue = tegra_xudc_ep_dequeue,
1953 	.set_halt = tegra_xudc_ep_set_halt,
1954 };
1955 
1956 static int tegra_xudc_gadget_get_frame(struct usb_gadget *gadget)
1957 {
1958 	struct tegra_xudc *xudc = to_xudc(gadget);
1959 	unsigned long flags;
1960 	int ret;
1961 
1962 	spin_lock_irqsave(&xudc->lock, flags);
1963 	if (xudc->powergated) {
1964 		ret = -ESHUTDOWN;
1965 		goto unlock;
1966 	}
1967 
1968 	ret = (xudc_readl(xudc, MFINDEX) & MFINDEX_FRAME_MASK) >>
1969 		MFINDEX_FRAME_SHIFT;
1970 unlock:
1971 	spin_unlock_irqrestore(&xudc->lock, flags);
1972 
1973 	return ret;
1974 }
1975 
1976 static void tegra_xudc_resume_device_state(struct tegra_xudc *xudc)
1977 {
1978 	unsigned int i;
1979 	u32 val;
1980 
1981 	ep_unpause_all(xudc);
1982 
1983 	/* Direct link to U0. */
1984 	val = xudc_readl(xudc, PORTSC);
1985 	if (((val & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT) != PORTSC_PLS_U0) {
1986 		val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
1987 		val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0);
1988 		xudc_writel(xudc, val, PORTSC);
1989 	}
1990 
1991 	if (xudc->device_state == USB_STATE_SUSPENDED) {
1992 		xudc->device_state = xudc->resume_state;
1993 		usb_gadget_set_state(&xudc->gadget, xudc->device_state);
1994 		xudc->resume_state = 0;
1995 	}
1996 
1997 	/*
1998 	 * Doorbells may be dropped if they are sent too soon (< ~200ns)
1999 	 * after unpausing the endpoint.  Wait for 500ns just to be safe.
2000 	 */
2001 	ndelay(500);
2002 	for (i = 0; i < ARRAY_SIZE(xudc->ep); i++)
2003 		tegra_xudc_ep_ring_doorbell(&xudc->ep[i]);
2004 }
2005 
2006 static int tegra_xudc_gadget_wakeup(struct usb_gadget *gadget)
2007 {
2008 	struct tegra_xudc *xudc = to_xudc(gadget);
2009 	unsigned long flags;
2010 	int ret = 0;
2011 	u32 val;
2012 
2013 	spin_lock_irqsave(&xudc->lock, flags);
2014 
2015 	if (xudc->powergated) {
2016 		ret = -ESHUTDOWN;
2017 		goto unlock;
2018 	}
2019 	val = xudc_readl(xudc, PORTPM);
2020 	dev_dbg(xudc->dev, "%s: PORTPM=%#x, speed=%x\n", __func__,
2021 			val, gadget->speed);
2022 
2023 	if (((xudc->gadget.speed <= USB_SPEED_HIGH) &&
2024 	     (val & PORTPM_RWE)) ||
2025 	    ((xudc->gadget.speed == USB_SPEED_SUPER) &&
2026 	     (val & PORTPM_FRWE))) {
2027 		tegra_xudc_resume_device_state(xudc);
2028 
2029 		/* Send Device Notification packet. */
2030 		if (xudc->gadget.speed == USB_SPEED_SUPER) {
2031 			val = DEVNOTIF_LO_TYPE(DEVNOTIF_LO_TYPE_FUNCTION_WAKE)
2032 					     | DEVNOTIF_LO_TRIG;
2033 			xudc_writel(xudc, 0, DEVNOTIF_HI);
2034 			xudc_writel(xudc, val, DEVNOTIF_LO);
2035 		}
2036 	}
2037 
2038 unlock:
2039 	dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret);
2040 	spin_unlock_irqrestore(&xudc->lock, flags);
2041 
2042 	return ret;
2043 }
2044 
2045 static int tegra_xudc_gadget_pullup(struct usb_gadget *gadget, int is_on)
2046 {
2047 	struct tegra_xudc *xudc = to_xudc(gadget);
2048 	unsigned long flags;
2049 	u32 val;
2050 
2051 	pm_runtime_get_sync(xudc->dev);
2052 
2053 	spin_lock_irqsave(&xudc->lock, flags);
2054 
2055 	if (is_on != xudc->pullup) {
2056 		val = xudc_readl(xudc, CTRL);
2057 		if (is_on)
2058 			val |= CTRL_ENABLE;
2059 		else
2060 			val &= ~CTRL_ENABLE;
2061 		xudc_writel(xudc, val, CTRL);
2062 	}
2063 
2064 	xudc->pullup = is_on;
2065 	dev_dbg(xudc->dev, "%s: pullup:%d", __func__, is_on);
2066 
2067 	spin_unlock_irqrestore(&xudc->lock, flags);
2068 
2069 	pm_runtime_put(xudc->dev);
2070 
2071 	return 0;
2072 }
2073 
2074 static int tegra_xudc_gadget_start(struct usb_gadget *gadget,
2075 				   struct usb_gadget_driver *driver)
2076 {
2077 	struct tegra_xudc *xudc = to_xudc(gadget);
2078 	unsigned long flags;
2079 	u32 val;
2080 	int ret;
2081 	unsigned int i;
2082 
2083 	if (!driver)
2084 		return -EINVAL;
2085 
2086 	pm_runtime_get_sync(xudc->dev);
2087 
2088 	spin_lock_irqsave(&xudc->lock, flags);
2089 
2090 	if (xudc->driver) {
2091 		ret = -EBUSY;
2092 		goto unlock;
2093 	}
2094 
2095 	xudc->setup_state = WAIT_FOR_SETUP;
2096 	xudc->device_state = USB_STATE_DEFAULT;
2097 	usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2098 
2099 	ret = __tegra_xudc_ep_enable(&xudc->ep[0], &tegra_xudc_ep0_desc);
2100 	if (ret < 0)
2101 		goto unlock;
2102 
2103 	val = xudc_readl(xudc, CTRL);
2104 	val |= CTRL_IE | CTRL_LSE;
2105 	xudc_writel(xudc, val, CTRL);
2106 
2107 	val = xudc_readl(xudc, PORTHALT);
2108 	val |= PORTHALT_STCHG_INTR_EN;
2109 	xudc_writel(xudc, val, PORTHALT);
2110 
2111 	if (xudc->pullup) {
2112 		val = xudc_readl(xudc, CTRL);
2113 		val |= CTRL_ENABLE;
2114 		xudc_writel(xudc, val, CTRL);
2115 	}
2116 
2117 	for (i = 0; i < xudc->soc->num_phys; i++)
2118 		if (xudc->usbphy[i])
2119 			otg_set_peripheral(xudc->usbphy[i]->otg, gadget);
2120 
2121 	xudc->driver = driver;
2122 unlock:
2123 	dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret);
2124 	spin_unlock_irqrestore(&xudc->lock, flags);
2125 
2126 	pm_runtime_put(xudc->dev);
2127 
2128 	return ret;
2129 }
2130 
2131 static int tegra_xudc_gadget_stop(struct usb_gadget *gadget)
2132 {
2133 	struct tegra_xudc *xudc = to_xudc(gadget);
2134 	unsigned long flags;
2135 	u32 val;
2136 	unsigned int i;
2137 
2138 	pm_runtime_get_sync(xudc->dev);
2139 
2140 	spin_lock_irqsave(&xudc->lock, flags);
2141 
2142 	for (i = 0; i < xudc->soc->num_phys; i++)
2143 		if (xudc->usbphy[i])
2144 			otg_set_peripheral(xudc->usbphy[i]->otg, NULL);
2145 
2146 	val = xudc_readl(xudc, CTRL);
2147 	val &= ~(CTRL_IE | CTRL_ENABLE);
2148 	xudc_writel(xudc, val, CTRL);
2149 
2150 	__tegra_xudc_ep_disable(&xudc->ep[0]);
2151 
2152 	xudc->driver = NULL;
2153 	dev_dbg(xudc->dev, "Gadget stopped");
2154 
2155 	spin_unlock_irqrestore(&xudc->lock, flags);
2156 
2157 	pm_runtime_put(xudc->dev);
2158 
2159 	return 0;
2160 }
2161 
2162 static int tegra_xudc_gadget_vbus_draw(struct usb_gadget *gadget,
2163 						unsigned int m_a)
2164 {
2165 	struct tegra_xudc *xudc = to_xudc(gadget);
2166 
2167 	dev_dbg(xudc->dev, "%s: %u mA\n", __func__, m_a);
2168 
2169 	if (xudc->curr_usbphy && xudc->curr_usbphy->chg_type == SDP_TYPE)
2170 		return usb_phy_set_power(xudc->curr_usbphy, m_a);
2171 
2172 	return 0;
2173 }
2174 
2175 static int tegra_xudc_set_selfpowered(struct usb_gadget *gadget, int is_on)
2176 {
2177 	struct tegra_xudc *xudc = to_xudc(gadget);
2178 
2179 	dev_dbg(xudc->dev, "%s: %d\n", __func__, is_on);
2180 	xudc->selfpowered = !!is_on;
2181 
2182 	return 0;
2183 }
2184 
2185 static const struct usb_gadget_ops tegra_xudc_gadget_ops = {
2186 	.get_frame = tegra_xudc_gadget_get_frame,
2187 	.wakeup = tegra_xudc_gadget_wakeup,
2188 	.pullup = tegra_xudc_gadget_pullup,
2189 	.udc_start = tegra_xudc_gadget_start,
2190 	.udc_stop = tegra_xudc_gadget_stop,
2191 	.vbus_draw = tegra_xudc_gadget_vbus_draw,
2192 	.set_selfpowered = tegra_xudc_set_selfpowered,
2193 };
2194 
2195 static void no_op_complete(struct usb_ep *ep, struct usb_request *req)
2196 {
2197 }
2198 
2199 static int
2200 tegra_xudc_ep0_queue_status(struct tegra_xudc *xudc,
2201 		void (*cmpl)(struct usb_ep *, struct usb_request *))
2202 {
2203 	xudc->ep0_req->usb_req.buf = NULL;
2204 	xudc->ep0_req->usb_req.dma = 0;
2205 	xudc->ep0_req->usb_req.length = 0;
2206 	xudc->ep0_req->usb_req.complete = cmpl;
2207 	xudc->ep0_req->usb_req.context = xudc;
2208 
2209 	return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req);
2210 }
2211 
2212 static int
2213 tegra_xudc_ep0_queue_data(struct tegra_xudc *xudc, void *buf, size_t len,
2214 		void (*cmpl)(struct usb_ep *, struct usb_request *))
2215 {
2216 	xudc->ep0_req->usb_req.buf = buf;
2217 	xudc->ep0_req->usb_req.length = len;
2218 	xudc->ep0_req->usb_req.complete = cmpl;
2219 	xudc->ep0_req->usb_req.context = xudc;
2220 
2221 	return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req);
2222 }
2223 
2224 static void tegra_xudc_ep0_req_done(struct tegra_xudc *xudc)
2225 {
2226 	switch (xudc->setup_state) {
2227 	case DATA_STAGE_XFER:
2228 		xudc->setup_state = STATUS_STAGE_RECV;
2229 		tegra_xudc_ep0_queue_status(xudc, no_op_complete);
2230 		break;
2231 	case DATA_STAGE_RECV:
2232 		xudc->setup_state = STATUS_STAGE_XFER;
2233 		tegra_xudc_ep0_queue_status(xudc, no_op_complete);
2234 		break;
2235 	default:
2236 		xudc->setup_state = WAIT_FOR_SETUP;
2237 		break;
2238 	}
2239 }
2240 
2241 static int tegra_xudc_ep0_delegate_req(struct tegra_xudc *xudc,
2242 				       struct usb_ctrlrequest *ctrl)
2243 {
2244 	int ret;
2245 
2246 	spin_unlock(&xudc->lock);
2247 	ret = xudc->driver->setup(&xudc->gadget, ctrl);
2248 	spin_lock(&xudc->lock);
2249 
2250 	return ret;
2251 }
2252 
2253 static void set_feature_complete(struct usb_ep *ep, struct usb_request *req)
2254 {
2255 	struct tegra_xudc *xudc = req->context;
2256 
2257 	if (xudc->test_mode_pattern) {
2258 		xudc_writel(xudc, xudc->test_mode_pattern, PORT_TM);
2259 		xudc->test_mode_pattern = 0;
2260 	}
2261 }
2262 
2263 static int tegra_xudc_ep0_set_feature(struct tegra_xudc *xudc,
2264 				      struct usb_ctrlrequest *ctrl)
2265 {
2266 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
2267 	u32 feature = le16_to_cpu(ctrl->wValue);
2268 	u32 index = le16_to_cpu(ctrl->wIndex);
2269 	u32 val, ep;
2270 	int ret;
2271 
2272 	if (le16_to_cpu(ctrl->wLength) != 0)
2273 		return -EINVAL;
2274 
2275 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
2276 	case USB_RECIP_DEVICE:
2277 		switch (feature) {
2278 		case USB_DEVICE_REMOTE_WAKEUP:
2279 			if ((xudc->gadget.speed == USB_SPEED_SUPER) ||
2280 			    (xudc->device_state == USB_STATE_DEFAULT))
2281 				return -EINVAL;
2282 
2283 			val = xudc_readl(xudc, PORTPM);
2284 			if (set)
2285 				val |= PORTPM_RWE;
2286 			else
2287 				val &= ~PORTPM_RWE;
2288 
2289 			xudc_writel(xudc, val, PORTPM);
2290 			break;
2291 		case USB_DEVICE_U1_ENABLE:
2292 		case USB_DEVICE_U2_ENABLE:
2293 			if ((xudc->device_state != USB_STATE_CONFIGURED) ||
2294 			    (xudc->gadget.speed != USB_SPEED_SUPER))
2295 				return -EINVAL;
2296 
2297 			val = xudc_readl(xudc, PORTPM);
2298 			if ((feature == USB_DEVICE_U1_ENABLE) &&
2299 			     xudc->soc->u1_enable) {
2300 				if (set)
2301 					val |= PORTPM_U1E;
2302 				else
2303 					val &= ~PORTPM_U1E;
2304 			}
2305 
2306 			if ((feature == USB_DEVICE_U2_ENABLE) &&
2307 			     xudc->soc->u2_enable) {
2308 				if (set)
2309 					val |= PORTPM_U2E;
2310 				else
2311 					val &= ~PORTPM_U2E;
2312 			}
2313 
2314 			xudc_writel(xudc, val, PORTPM);
2315 			break;
2316 		case USB_DEVICE_TEST_MODE:
2317 			if (xudc->gadget.speed != USB_SPEED_HIGH)
2318 				return -EINVAL;
2319 
2320 			if (!set)
2321 				return -EINVAL;
2322 
2323 			xudc->test_mode_pattern = index >> 8;
2324 			break;
2325 		default:
2326 			return -EINVAL;
2327 		}
2328 
2329 		break;
2330 	case USB_RECIP_INTERFACE:
2331 		if (xudc->device_state != USB_STATE_CONFIGURED)
2332 			return -EINVAL;
2333 
2334 		switch (feature) {
2335 		case USB_INTRF_FUNC_SUSPEND:
2336 			if (set) {
2337 				val = xudc_readl(xudc, PORTPM);
2338 
2339 				if (index & USB_INTRF_FUNC_SUSPEND_RW)
2340 					val |= PORTPM_FRWE;
2341 				else
2342 					val &= ~PORTPM_FRWE;
2343 
2344 				xudc_writel(xudc, val, PORTPM);
2345 			}
2346 
2347 			return tegra_xudc_ep0_delegate_req(xudc, ctrl);
2348 		default:
2349 			return -EINVAL;
2350 		}
2351 
2352 		break;
2353 	case USB_RECIP_ENDPOINT:
2354 		ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 +
2355 			((index & USB_DIR_IN) ? 1 : 0);
2356 
2357 		if ((xudc->device_state == USB_STATE_DEFAULT) ||
2358 		    ((xudc->device_state == USB_STATE_ADDRESS) &&
2359 		     (index != 0)))
2360 			return -EINVAL;
2361 
2362 		ret = __tegra_xudc_ep_set_halt(&xudc->ep[ep], set);
2363 		if (ret < 0)
2364 			return ret;
2365 		break;
2366 	default:
2367 		return -EINVAL;
2368 	}
2369 
2370 	return tegra_xudc_ep0_queue_status(xudc, set_feature_complete);
2371 }
2372 
2373 static int tegra_xudc_ep0_get_status(struct tegra_xudc *xudc,
2374 				     struct usb_ctrlrequest *ctrl)
2375 {
2376 	struct tegra_xudc_ep_context *ep_ctx;
2377 	u32 val, ep, index = le16_to_cpu(ctrl->wIndex);
2378 	u16 status = 0;
2379 
2380 	if (!(ctrl->bRequestType & USB_DIR_IN))
2381 		return -EINVAL;
2382 
2383 	if ((le16_to_cpu(ctrl->wValue) != 0) ||
2384 	    (le16_to_cpu(ctrl->wLength) != 2))
2385 		return -EINVAL;
2386 
2387 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
2388 	case USB_RECIP_DEVICE:
2389 		val = xudc_readl(xudc, PORTPM);
2390 
2391 		if (xudc->selfpowered)
2392 			status |= BIT(USB_DEVICE_SELF_POWERED);
2393 
2394 		if ((xudc->gadget.speed < USB_SPEED_SUPER) &&
2395 		    (val & PORTPM_RWE))
2396 			status |= BIT(USB_DEVICE_REMOTE_WAKEUP);
2397 
2398 		if (xudc->gadget.speed == USB_SPEED_SUPER) {
2399 			if (val & PORTPM_U1E)
2400 				status |= BIT(USB_DEV_STAT_U1_ENABLED);
2401 			if (val & PORTPM_U2E)
2402 				status |= BIT(USB_DEV_STAT_U2_ENABLED);
2403 		}
2404 		break;
2405 	case USB_RECIP_INTERFACE:
2406 		if (xudc->gadget.speed == USB_SPEED_SUPER) {
2407 			status |= USB_INTRF_STAT_FUNC_RW_CAP;
2408 			val = xudc_readl(xudc, PORTPM);
2409 			if (val & PORTPM_FRWE)
2410 				status |= USB_INTRF_STAT_FUNC_RW;
2411 		}
2412 		break;
2413 	case USB_RECIP_ENDPOINT:
2414 		ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 +
2415 			((index & USB_DIR_IN) ? 1 : 0);
2416 		ep_ctx = &xudc->ep_context[ep];
2417 
2418 		if ((xudc->device_state != USB_STATE_CONFIGURED) &&
2419 		    ((xudc->device_state != USB_STATE_ADDRESS) || (ep != 0)))
2420 			return -EINVAL;
2421 
2422 		if (ep_ctx_read_state(ep_ctx) == EP_STATE_DISABLED)
2423 			return -EINVAL;
2424 
2425 		if (xudc_readl(xudc, EP_HALT) & BIT(ep))
2426 			status |= BIT(USB_ENDPOINT_HALT);
2427 		break;
2428 	default:
2429 		return -EINVAL;
2430 	}
2431 
2432 	xudc->status_buf = cpu_to_le16(status);
2433 	return tegra_xudc_ep0_queue_data(xudc, &xudc->status_buf,
2434 					 sizeof(xudc->status_buf),
2435 					 no_op_complete);
2436 }
2437 
2438 static void set_sel_complete(struct usb_ep *ep, struct usb_request *req)
2439 {
2440 	/* Nothing to do with SEL values */
2441 }
2442 
2443 static int tegra_xudc_ep0_set_sel(struct tegra_xudc *xudc,
2444 				  struct usb_ctrlrequest *ctrl)
2445 {
2446 	if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE |
2447 				     USB_TYPE_STANDARD))
2448 		return -EINVAL;
2449 
2450 	if (xudc->device_state == USB_STATE_DEFAULT)
2451 		return -EINVAL;
2452 
2453 	if ((le16_to_cpu(ctrl->wIndex) != 0) ||
2454 	    (le16_to_cpu(ctrl->wValue) != 0) ||
2455 	    (le16_to_cpu(ctrl->wLength) != 6))
2456 		return -EINVAL;
2457 
2458 	return tegra_xudc_ep0_queue_data(xudc, &xudc->sel_timing,
2459 					 sizeof(xudc->sel_timing),
2460 					 set_sel_complete);
2461 }
2462 
2463 static void set_isoch_delay_complete(struct usb_ep *ep, struct usb_request *req)
2464 {
2465 	/* Nothing to do with isoch delay */
2466 }
2467 
2468 static int tegra_xudc_ep0_set_isoch_delay(struct tegra_xudc *xudc,
2469 					  struct usb_ctrlrequest *ctrl)
2470 {
2471 	u32 delay = le16_to_cpu(ctrl->wValue);
2472 
2473 	if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE |
2474 				   USB_TYPE_STANDARD))
2475 		return -EINVAL;
2476 
2477 	if ((delay > 65535) || (le16_to_cpu(ctrl->wIndex) != 0) ||
2478 	    (le16_to_cpu(ctrl->wLength) != 0))
2479 		return -EINVAL;
2480 
2481 	xudc->isoch_delay = delay;
2482 
2483 	return tegra_xudc_ep0_queue_status(xudc, set_isoch_delay_complete);
2484 }
2485 
2486 static void set_address_complete(struct usb_ep *ep, struct usb_request *req)
2487 {
2488 	struct tegra_xudc *xudc = req->context;
2489 
2490 	if ((xudc->device_state == USB_STATE_DEFAULT) &&
2491 	    (xudc->dev_addr != 0)) {
2492 		xudc->device_state = USB_STATE_ADDRESS;
2493 		usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2494 	} else if ((xudc->device_state == USB_STATE_ADDRESS) &&
2495 		   (xudc->dev_addr == 0)) {
2496 		xudc->device_state = USB_STATE_DEFAULT;
2497 		usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2498 	}
2499 }
2500 
2501 static int tegra_xudc_ep0_set_address(struct tegra_xudc *xudc,
2502 				      struct usb_ctrlrequest *ctrl)
2503 {
2504 	struct tegra_xudc_ep *ep0 = &xudc->ep[0];
2505 	u32 val, addr = le16_to_cpu(ctrl->wValue);
2506 
2507 	if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE |
2508 				     USB_TYPE_STANDARD))
2509 		return -EINVAL;
2510 
2511 	if ((addr > 127) || (le16_to_cpu(ctrl->wIndex) != 0) ||
2512 	    (le16_to_cpu(ctrl->wLength) != 0))
2513 		return -EINVAL;
2514 
2515 	if (xudc->device_state == USB_STATE_CONFIGURED)
2516 		return -EINVAL;
2517 
2518 	dev_dbg(xudc->dev, "set address: %u\n", addr);
2519 
2520 	xudc->dev_addr = addr;
2521 	val = xudc_readl(xudc, CTRL);
2522 	val &= ~(CTRL_DEVADDR_MASK);
2523 	val |= CTRL_DEVADDR(addr);
2524 	xudc_writel(xudc, val, CTRL);
2525 
2526 	ep_ctx_write_devaddr(ep0->context, addr);
2527 
2528 	return tegra_xudc_ep0_queue_status(xudc, set_address_complete);
2529 }
2530 
2531 static int tegra_xudc_ep0_standard_req(struct tegra_xudc *xudc,
2532 				      struct usb_ctrlrequest *ctrl)
2533 {
2534 	int ret;
2535 
2536 	switch (ctrl->bRequest) {
2537 	case USB_REQ_GET_STATUS:
2538 		dev_dbg(xudc->dev, "USB_REQ_GET_STATUS\n");
2539 		ret = tegra_xudc_ep0_get_status(xudc, ctrl);
2540 		break;
2541 	case USB_REQ_SET_ADDRESS:
2542 		dev_dbg(xudc->dev, "USB_REQ_SET_ADDRESS\n");
2543 		ret = tegra_xudc_ep0_set_address(xudc, ctrl);
2544 		break;
2545 	case USB_REQ_SET_SEL:
2546 		dev_dbg(xudc->dev, "USB_REQ_SET_SEL\n");
2547 		ret = tegra_xudc_ep0_set_sel(xudc, ctrl);
2548 		break;
2549 	case USB_REQ_SET_ISOCH_DELAY:
2550 		dev_dbg(xudc->dev, "USB_REQ_SET_ISOCH_DELAY\n");
2551 		ret = tegra_xudc_ep0_set_isoch_delay(xudc, ctrl);
2552 		break;
2553 	case USB_REQ_CLEAR_FEATURE:
2554 	case USB_REQ_SET_FEATURE:
2555 		dev_dbg(xudc->dev, "USB_REQ_CLEAR/SET_FEATURE\n");
2556 		ret = tegra_xudc_ep0_set_feature(xudc, ctrl);
2557 		break;
2558 	case USB_REQ_SET_CONFIGURATION:
2559 		dev_dbg(xudc->dev, "USB_REQ_SET_CONFIGURATION\n");
2560 		/*
2561 		 * In theory we need to clear RUN bit before status stage of
2562 		 * deconfig request sent, but this seems to be causing problems.
2563 		 * Clear RUN once all endpoints are disabled instead.
2564 		 */
2565 		fallthrough;
2566 	default:
2567 		ret = tegra_xudc_ep0_delegate_req(xudc, ctrl);
2568 		break;
2569 	}
2570 
2571 	return ret;
2572 }
2573 
2574 static void tegra_xudc_handle_ep0_setup_packet(struct tegra_xudc *xudc,
2575 					       struct usb_ctrlrequest *ctrl,
2576 					       u16 seq_num)
2577 {
2578 	int ret;
2579 
2580 	xudc->setup_seq_num = seq_num;
2581 
2582 	/* Ensure EP0 is unhalted. */
2583 	ep_unhalt(xudc, 0);
2584 
2585 	/*
2586 	 * On Tegra210, setup packets with sequence numbers 0xfffe or 0xffff
2587 	 * are invalid.  Halt EP0 until we get a valid packet.
2588 	 */
2589 	if (xudc->soc->invalid_seq_num &&
2590 	    (seq_num == 0xfffe || seq_num == 0xffff)) {
2591 		dev_warn(xudc->dev, "invalid sequence number detected\n");
2592 		ep_halt(xudc, 0);
2593 		return;
2594 	}
2595 
2596 	if (ctrl->wLength)
2597 		xudc->setup_state = (ctrl->bRequestType & USB_DIR_IN) ?
2598 			DATA_STAGE_XFER :  DATA_STAGE_RECV;
2599 	else
2600 		xudc->setup_state = STATUS_STAGE_XFER;
2601 
2602 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD)
2603 		ret = tegra_xudc_ep0_standard_req(xudc, ctrl);
2604 	else
2605 		ret = tegra_xudc_ep0_delegate_req(xudc, ctrl);
2606 
2607 	if (ret < 0) {
2608 		dev_warn(xudc->dev, "setup request failed: %d\n", ret);
2609 		xudc->setup_state = WAIT_FOR_SETUP;
2610 		ep_halt(xudc, 0);
2611 	}
2612 }
2613 
2614 static void tegra_xudc_handle_ep0_event(struct tegra_xudc *xudc,
2615 					struct tegra_xudc_trb *event)
2616 {
2617 	struct usb_ctrlrequest *ctrl = (struct usb_ctrlrequest *)event;
2618 	u16 seq_num = trb_read_seq_num(event);
2619 
2620 	if (xudc->setup_state != WAIT_FOR_SETUP) {
2621 		/*
2622 		 * The controller is in the process of handling another
2623 		 * setup request.  Queue subsequent requests and handle
2624 		 * the last one once the controller reports a sequence
2625 		 * number error.
2626 		 */
2627 		memcpy(&xudc->setup_packet.ctrl_req, ctrl, sizeof(*ctrl));
2628 		xudc->setup_packet.seq_num = seq_num;
2629 		xudc->queued_setup_packet = true;
2630 	} else {
2631 		tegra_xudc_handle_ep0_setup_packet(xudc, ctrl, seq_num);
2632 	}
2633 }
2634 
2635 static struct tegra_xudc_request *
2636 trb_to_request(struct tegra_xudc_ep *ep, struct tegra_xudc_trb *trb)
2637 {
2638 	struct tegra_xudc_request *req;
2639 
2640 	list_for_each_entry(req, &ep->queue, list) {
2641 		if (!req->trbs_queued)
2642 			break;
2643 
2644 		if (trb_in_request(ep, req, trb))
2645 			return req;
2646 	}
2647 
2648 	return NULL;
2649 }
2650 
2651 static void tegra_xudc_handle_transfer_completion(struct tegra_xudc *xudc,
2652 						  struct tegra_xudc_ep *ep,
2653 						  struct tegra_xudc_trb *event)
2654 {
2655 	struct tegra_xudc_request *req;
2656 	struct tegra_xudc_trb *trb;
2657 	bool short_packet;
2658 
2659 	short_packet = (trb_read_cmpl_code(event) ==
2660 			TRB_CMPL_CODE_SHORT_PACKET);
2661 
2662 	trb = trb_phys_to_virt(ep, trb_read_data_ptr(event));
2663 	req = trb_to_request(ep, trb);
2664 
2665 	/*
2666 	 * TDs are complete on short packet or when the completed TRB is the
2667 	 * last TRB in the TD (the CHAIN bit is unset).
2668 	 */
2669 	if (req && (short_packet || (!trb_read_chain(trb) &&
2670 		(req->trbs_needed == req->trbs_queued)))) {
2671 		struct tegra_xudc_trb *last = req->last_trb;
2672 		unsigned int residual;
2673 
2674 		residual = trb_read_transfer_len(event);
2675 		req->usb_req.actual = req->usb_req.length - residual;
2676 
2677 		dev_dbg(xudc->dev, "bytes transferred %u / %u\n",
2678 			req->usb_req.actual, req->usb_req.length);
2679 
2680 		tegra_xudc_req_done(ep, req, 0);
2681 
2682 		if (ep->desc && usb_endpoint_xfer_control(ep->desc))
2683 			tegra_xudc_ep0_req_done(xudc);
2684 
2685 		/*
2686 		 * Advance the dequeue pointer past the end of the current TD
2687 		 * on short packet completion.
2688 		 */
2689 		if (short_packet) {
2690 			ep->deq_ptr = (last - ep->transfer_ring) + 1;
2691 			if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1)
2692 				ep->deq_ptr = 0;
2693 		}
2694 	} else if (!req) {
2695 		dev_warn(xudc->dev, "transfer event on dequeued request\n");
2696 	}
2697 
2698 	if (ep->desc)
2699 		tegra_xudc_ep_kick_queue(ep);
2700 }
2701 
2702 static void tegra_xudc_handle_transfer_event(struct tegra_xudc *xudc,
2703 					     struct tegra_xudc_trb *event)
2704 {
2705 	unsigned int ep_index = trb_read_endpoint_id(event);
2706 	struct tegra_xudc_ep *ep = &xudc->ep[ep_index];
2707 	struct tegra_xudc_trb *trb;
2708 	u16 comp_code;
2709 
2710 	if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) {
2711 		dev_warn(xudc->dev, "transfer event on disabled EP %u\n",
2712 			 ep_index);
2713 		return;
2714 	}
2715 
2716 	/* Update transfer ring dequeue pointer. */
2717 	trb = trb_phys_to_virt(ep, trb_read_data_ptr(event));
2718 	comp_code = trb_read_cmpl_code(event);
2719 	if (comp_code != TRB_CMPL_CODE_BABBLE_DETECTED_ERR) {
2720 		ep->deq_ptr = (trb - ep->transfer_ring) + 1;
2721 
2722 		if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1)
2723 			ep->deq_ptr = 0;
2724 		ep->ring_full = false;
2725 	}
2726 
2727 	switch (comp_code) {
2728 	case TRB_CMPL_CODE_SUCCESS:
2729 	case TRB_CMPL_CODE_SHORT_PACKET:
2730 		tegra_xudc_handle_transfer_completion(xudc, ep, event);
2731 		break;
2732 	case TRB_CMPL_CODE_HOST_REJECTED:
2733 		dev_info(xudc->dev, "stream rejected on EP %u\n", ep_index);
2734 
2735 		ep->stream_rejected = true;
2736 		break;
2737 	case TRB_CMPL_CODE_PRIME_PIPE_RECEIVED:
2738 		dev_info(xudc->dev, "prime pipe received on EP %u\n", ep_index);
2739 
2740 		if (ep->stream_rejected) {
2741 			ep->stream_rejected = false;
2742 			/*
2743 			 * An EP is stopped when a stream is rejected.  Wait
2744 			 * for the EP to report that it is stopped and then
2745 			 * un-stop it.
2746 			 */
2747 			ep_wait_for_stopped(xudc, ep_index);
2748 		}
2749 		tegra_xudc_ep_ring_doorbell(ep);
2750 		break;
2751 	case TRB_CMPL_CODE_BABBLE_DETECTED_ERR:
2752 		/*
2753 		 * Wait for the EP to be stopped so the controller stops
2754 		 * processing doorbells.
2755 		 */
2756 		ep_wait_for_stopped(xudc, ep_index);
2757 		ep->enq_ptr = ep->deq_ptr;
2758 		tegra_xudc_ep_nuke(ep, -EIO);
2759 		fallthrough;
2760 	case TRB_CMPL_CODE_STREAM_NUMP_ERROR:
2761 	case TRB_CMPL_CODE_CTRL_DIR_ERR:
2762 	case TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR:
2763 	case TRB_CMPL_CODE_RING_UNDERRUN:
2764 	case TRB_CMPL_CODE_RING_OVERRUN:
2765 	case TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN:
2766 	case TRB_CMPL_CODE_USB_TRANS_ERR:
2767 	case TRB_CMPL_CODE_TRB_ERR:
2768 		dev_err(xudc->dev, "completion error %#x on EP %u\n",
2769 			comp_code, ep_index);
2770 
2771 		ep_halt(xudc, ep_index);
2772 		break;
2773 	case TRB_CMPL_CODE_CTRL_SEQNUM_ERR:
2774 		dev_info(xudc->dev, "sequence number error\n");
2775 
2776 		/*
2777 		 * Kill any queued control request and skip to the last
2778 		 * setup packet we received.
2779 		 */
2780 		tegra_xudc_ep_nuke(ep, -EINVAL);
2781 		xudc->setup_state = WAIT_FOR_SETUP;
2782 		if (!xudc->queued_setup_packet)
2783 			break;
2784 
2785 		tegra_xudc_handle_ep0_setup_packet(xudc,
2786 						   &xudc->setup_packet.ctrl_req,
2787 						   xudc->setup_packet.seq_num);
2788 		xudc->queued_setup_packet = false;
2789 		break;
2790 	case TRB_CMPL_CODE_STOPPED:
2791 		dev_dbg(xudc->dev, "stop completion code on EP %u\n",
2792 			ep_index);
2793 
2794 		/* Disconnected. */
2795 		tegra_xudc_ep_nuke(ep, -ECONNREFUSED);
2796 		break;
2797 	default:
2798 		dev_dbg(xudc->dev, "completion event %#x on EP %u\n",
2799 			comp_code, ep_index);
2800 		break;
2801 	}
2802 }
2803 
2804 static void tegra_xudc_reset(struct tegra_xudc *xudc)
2805 {
2806 	struct tegra_xudc_ep *ep0 = &xudc->ep[0];
2807 	dma_addr_t deq_ptr;
2808 	unsigned int i;
2809 
2810 	xudc->setup_state = WAIT_FOR_SETUP;
2811 	xudc->device_state = USB_STATE_DEFAULT;
2812 	usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2813 
2814 	ep_unpause_all(xudc);
2815 
2816 	for (i = 0; i < ARRAY_SIZE(xudc->ep); i++)
2817 		tegra_xudc_ep_nuke(&xudc->ep[i], -ESHUTDOWN);
2818 
2819 	/*
2820 	 * Reset sequence number and dequeue pointer to flush the transfer
2821 	 * ring.
2822 	 */
2823 	ep0->deq_ptr = ep0->enq_ptr;
2824 	ep0->ring_full = false;
2825 
2826 	xudc->setup_seq_num = 0;
2827 	xudc->queued_setup_packet = false;
2828 
2829 	ep_ctx_write_rsvd(ep0->context, 0);
2830 	ep_ctx_write_partial_td(ep0->context, 0);
2831 	ep_ctx_write_splitxstate(ep0->context, 0);
2832 	ep_ctx_write_seq_num(ep0->context, 0);
2833 
2834 	deq_ptr = trb_virt_to_phys(ep0, &ep0->transfer_ring[ep0->deq_ptr]);
2835 
2836 	if (!dma_mapping_error(xudc->dev, deq_ptr)) {
2837 		ep_ctx_write_deq_ptr(ep0->context, deq_ptr);
2838 		ep_ctx_write_dcs(ep0->context, ep0->pcs);
2839 	}
2840 
2841 	ep_unhalt_all(xudc);
2842 	ep_reload(xudc, 0);
2843 	ep_unpause(xudc, 0);
2844 }
2845 
2846 static void tegra_xudc_port_connect(struct tegra_xudc *xudc)
2847 {
2848 	struct tegra_xudc_ep *ep0 = &xudc->ep[0];
2849 	u16 maxpacket;
2850 	u32 val;
2851 
2852 	val = (xudc_readl(xudc, PORTSC) & PORTSC_PS_MASK) >> PORTSC_PS_SHIFT;
2853 	switch (val) {
2854 	case PORTSC_PS_LS:
2855 		xudc->gadget.speed = USB_SPEED_LOW;
2856 		break;
2857 	case PORTSC_PS_FS:
2858 		xudc->gadget.speed = USB_SPEED_FULL;
2859 		break;
2860 	case PORTSC_PS_HS:
2861 		xudc->gadget.speed = USB_SPEED_HIGH;
2862 		break;
2863 	case PORTSC_PS_SS:
2864 		xudc->gadget.speed = USB_SPEED_SUPER;
2865 		break;
2866 	default:
2867 		xudc->gadget.speed = USB_SPEED_UNKNOWN;
2868 		break;
2869 	}
2870 
2871 	xudc->device_state = USB_STATE_DEFAULT;
2872 	usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2873 
2874 	xudc->setup_state = WAIT_FOR_SETUP;
2875 
2876 	if (xudc->gadget.speed == USB_SPEED_SUPER)
2877 		maxpacket = 512;
2878 	else
2879 		maxpacket = 64;
2880 
2881 	ep_ctx_write_max_packet_size(ep0->context, maxpacket);
2882 	tegra_xudc_ep0_desc.wMaxPacketSize = cpu_to_le16(maxpacket);
2883 	usb_ep_set_maxpacket_limit(&ep0->usb_ep, maxpacket);
2884 
2885 	if (!xudc->soc->u1_enable) {
2886 		val = xudc_readl(xudc, PORTPM);
2887 		val &= ~(PORTPM_U1TIMEOUT_MASK);
2888 		xudc_writel(xudc, val, PORTPM);
2889 	}
2890 
2891 	if (!xudc->soc->u2_enable) {
2892 		val = xudc_readl(xudc, PORTPM);
2893 		val &= ~(PORTPM_U2TIMEOUT_MASK);
2894 		xudc_writel(xudc, val, PORTPM);
2895 	}
2896 
2897 	if (xudc->gadget.speed <= USB_SPEED_HIGH) {
2898 		val = xudc_readl(xudc, PORTPM);
2899 		val &= ~(PORTPM_L1S_MASK);
2900 		if (xudc->soc->lpm_enable)
2901 			val |= PORTPM_L1S(PORTPM_L1S_ACCEPT);
2902 		else
2903 			val |= PORTPM_L1S(PORTPM_L1S_NYET);
2904 		xudc_writel(xudc, val, PORTPM);
2905 	}
2906 
2907 	val = xudc_readl(xudc, ST);
2908 	if (val & ST_RC)
2909 		xudc_writel(xudc, ST_RC, ST);
2910 }
2911 
2912 static void tegra_xudc_port_disconnect(struct tegra_xudc *xudc)
2913 {
2914 	tegra_xudc_reset(xudc);
2915 
2916 	if (xudc->driver && xudc->driver->disconnect) {
2917 		spin_unlock(&xudc->lock);
2918 		xudc->driver->disconnect(&xudc->gadget);
2919 		spin_lock(&xudc->lock);
2920 	}
2921 
2922 	xudc->device_state = USB_STATE_NOTATTACHED;
2923 	usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2924 
2925 	complete(&xudc->disconnect_complete);
2926 }
2927 
2928 static void tegra_xudc_port_reset(struct tegra_xudc *xudc)
2929 {
2930 	tegra_xudc_reset(xudc);
2931 
2932 	if (xudc->driver) {
2933 		spin_unlock(&xudc->lock);
2934 		usb_gadget_udc_reset(&xudc->gadget, xudc->driver);
2935 		spin_lock(&xudc->lock);
2936 	}
2937 
2938 	tegra_xudc_port_connect(xudc);
2939 }
2940 
2941 static void tegra_xudc_port_suspend(struct tegra_xudc *xudc)
2942 {
2943 	dev_dbg(xudc->dev, "port suspend\n");
2944 
2945 	xudc->resume_state = xudc->device_state;
2946 	xudc->device_state = USB_STATE_SUSPENDED;
2947 	usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2948 
2949 	if (xudc->driver->suspend) {
2950 		spin_unlock(&xudc->lock);
2951 		xudc->driver->suspend(&xudc->gadget);
2952 		spin_lock(&xudc->lock);
2953 	}
2954 }
2955 
2956 static void tegra_xudc_port_resume(struct tegra_xudc *xudc)
2957 {
2958 	dev_dbg(xudc->dev, "port resume\n");
2959 
2960 	tegra_xudc_resume_device_state(xudc);
2961 
2962 	if (xudc->driver->resume) {
2963 		spin_unlock(&xudc->lock);
2964 		xudc->driver->resume(&xudc->gadget);
2965 		spin_lock(&xudc->lock);
2966 	}
2967 }
2968 
2969 static inline void clear_port_change(struct tegra_xudc *xudc, u32 flag)
2970 {
2971 	u32 val;
2972 
2973 	val = xudc_readl(xudc, PORTSC);
2974 	val &= ~PORTSC_CHANGE_MASK;
2975 	val |= flag;
2976 	xudc_writel(xudc, val, PORTSC);
2977 }
2978 
2979 static void __tegra_xudc_handle_port_status(struct tegra_xudc *xudc)
2980 {
2981 	u32 portsc, porthalt;
2982 
2983 	porthalt = xudc_readl(xudc, PORTHALT);
2984 	if ((porthalt & PORTHALT_STCHG_REQ) &&
2985 	    (porthalt & PORTHALT_HALT_LTSSM)) {
2986 		dev_dbg(xudc->dev, "STCHG_REQ, PORTHALT = %#x\n", porthalt);
2987 		porthalt &= ~PORTHALT_HALT_LTSSM;
2988 		xudc_writel(xudc, porthalt, PORTHALT);
2989 	}
2990 
2991 	portsc = xudc_readl(xudc, PORTSC);
2992 	if ((portsc & PORTSC_PRC) && (portsc & PORTSC_PR)) {
2993 		dev_dbg(xudc->dev, "PRC, PR, PORTSC = %#x\n", portsc);
2994 		clear_port_change(xudc, PORTSC_PRC | PORTSC_PED);
2995 #define TOGGLE_VBUS_WAIT_MS 100
2996 		if (xudc->soc->port_reset_quirk) {
2997 			schedule_delayed_work(&xudc->port_reset_war_work,
2998 				msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS));
2999 			xudc->wait_for_sec_prc = 1;
3000 		}
3001 	}
3002 
3003 	if ((portsc & PORTSC_PRC) && !(portsc & PORTSC_PR)) {
3004 		dev_dbg(xudc->dev, "PRC, Not PR, PORTSC = %#x\n", portsc);
3005 		clear_port_change(xudc, PORTSC_PRC | PORTSC_PED);
3006 		tegra_xudc_port_reset(xudc);
3007 		cancel_delayed_work(&xudc->port_reset_war_work);
3008 		xudc->wait_for_sec_prc = 0;
3009 	}
3010 
3011 	portsc = xudc_readl(xudc, PORTSC);
3012 	if (portsc & PORTSC_WRC) {
3013 		dev_dbg(xudc->dev, "WRC, PORTSC = %#x\n", portsc);
3014 		clear_port_change(xudc, PORTSC_WRC | PORTSC_PED);
3015 		if (!(xudc_readl(xudc, PORTSC) & PORTSC_WPR))
3016 			tegra_xudc_port_reset(xudc);
3017 	}
3018 
3019 	portsc = xudc_readl(xudc, PORTSC);
3020 	if (portsc & PORTSC_CSC) {
3021 		dev_dbg(xudc->dev, "CSC, PORTSC = %#x\n", portsc);
3022 		clear_port_change(xudc, PORTSC_CSC);
3023 
3024 		if (portsc & PORTSC_CCS)
3025 			tegra_xudc_port_connect(xudc);
3026 		else
3027 			tegra_xudc_port_disconnect(xudc);
3028 
3029 		if (xudc->wait_csc) {
3030 			cancel_delayed_work(&xudc->plc_reset_work);
3031 			xudc->wait_csc = false;
3032 		}
3033 	}
3034 
3035 	portsc = xudc_readl(xudc, PORTSC);
3036 	if (portsc & PORTSC_PLC) {
3037 		u32 pls = (portsc & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT;
3038 
3039 		dev_dbg(xudc->dev, "PLC, PORTSC = %#x\n", portsc);
3040 		clear_port_change(xudc, PORTSC_PLC);
3041 		switch (pls) {
3042 		case PORTSC_PLS_U3:
3043 			tegra_xudc_port_suspend(xudc);
3044 			break;
3045 		case PORTSC_PLS_U0:
3046 			if (xudc->gadget.speed < USB_SPEED_SUPER)
3047 				tegra_xudc_port_resume(xudc);
3048 			break;
3049 		case PORTSC_PLS_RESUME:
3050 			if (xudc->gadget.speed == USB_SPEED_SUPER)
3051 				tegra_xudc_port_resume(xudc);
3052 			break;
3053 		case PORTSC_PLS_INACTIVE:
3054 			schedule_delayed_work(&xudc->plc_reset_work,
3055 					msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS));
3056 			xudc->wait_csc = true;
3057 			break;
3058 		default:
3059 			break;
3060 		}
3061 	}
3062 
3063 	if (portsc & PORTSC_CEC) {
3064 		dev_warn(xudc->dev, "CEC, PORTSC = %#x\n", portsc);
3065 		clear_port_change(xudc, PORTSC_CEC);
3066 	}
3067 
3068 	dev_dbg(xudc->dev, "PORTSC = %#x\n", xudc_readl(xudc, PORTSC));
3069 }
3070 
3071 static void tegra_xudc_handle_port_status(struct tegra_xudc *xudc)
3072 {
3073 	while ((xudc_readl(xudc, PORTSC) & PORTSC_CHANGE_MASK) ||
3074 	       (xudc_readl(xudc, PORTHALT) & PORTHALT_STCHG_REQ))
3075 		__tegra_xudc_handle_port_status(xudc);
3076 }
3077 
3078 static void tegra_xudc_handle_event(struct tegra_xudc *xudc,
3079 				    struct tegra_xudc_trb *event)
3080 {
3081 	u32 type = trb_read_type(event);
3082 
3083 	dump_trb(xudc, "EVENT", event);
3084 
3085 	switch (type) {
3086 	case TRB_TYPE_PORT_STATUS_CHANGE_EVENT:
3087 		tegra_xudc_handle_port_status(xudc);
3088 		break;
3089 	case TRB_TYPE_TRANSFER_EVENT:
3090 		tegra_xudc_handle_transfer_event(xudc, event);
3091 		break;
3092 	case TRB_TYPE_SETUP_PACKET_EVENT:
3093 		tegra_xudc_handle_ep0_event(xudc, event);
3094 		break;
3095 	default:
3096 		dev_info(xudc->dev, "Unrecognized TRB type = %#x\n", type);
3097 		break;
3098 	}
3099 }
3100 
3101 static void tegra_xudc_process_event_ring(struct tegra_xudc *xudc)
3102 {
3103 	struct tegra_xudc_trb *event;
3104 	dma_addr_t erdp;
3105 
3106 	while (true) {
3107 		event = xudc->event_ring[xudc->event_ring_index] +
3108 			xudc->event_ring_deq_ptr;
3109 
3110 		if (trb_read_cycle(event) != xudc->ccs)
3111 			break;
3112 
3113 		tegra_xudc_handle_event(xudc, event);
3114 
3115 		xudc->event_ring_deq_ptr++;
3116 		if (xudc->event_ring_deq_ptr == XUDC_EVENT_RING_SIZE) {
3117 			xudc->event_ring_deq_ptr = 0;
3118 			xudc->event_ring_index++;
3119 		}
3120 
3121 		if (xudc->event_ring_index == XUDC_NR_EVENT_RINGS) {
3122 			xudc->event_ring_index = 0;
3123 			xudc->ccs = !xudc->ccs;
3124 		}
3125 	}
3126 
3127 	erdp = xudc->event_ring_phys[xudc->event_ring_index] +
3128 		xudc->event_ring_deq_ptr * sizeof(*event);
3129 
3130 	xudc_writel(xudc, upper_32_bits(erdp), ERDPHI);
3131 	xudc_writel(xudc, lower_32_bits(erdp) | ERDPLO_EHB, ERDPLO);
3132 }
3133 
3134 static irqreturn_t tegra_xudc_irq(int irq, void *data)
3135 {
3136 	struct tegra_xudc *xudc = data;
3137 	unsigned long flags;
3138 	u32 val;
3139 
3140 	val = xudc_readl(xudc, ST);
3141 	if (!(val & ST_IP))
3142 		return IRQ_NONE;
3143 	xudc_writel(xudc, ST_IP, ST);
3144 
3145 	spin_lock_irqsave(&xudc->lock, flags);
3146 	tegra_xudc_process_event_ring(xudc);
3147 	spin_unlock_irqrestore(&xudc->lock, flags);
3148 
3149 	return IRQ_HANDLED;
3150 }
3151 
3152 static int tegra_xudc_alloc_ep(struct tegra_xudc *xudc, unsigned int index)
3153 {
3154 	struct tegra_xudc_ep *ep = &xudc->ep[index];
3155 
3156 	ep->xudc = xudc;
3157 	ep->index = index;
3158 	ep->context = &xudc->ep_context[index];
3159 	INIT_LIST_HEAD(&ep->queue);
3160 
3161 	/*
3162 	 * EP1 would be the input endpoint corresponding to EP0, but since
3163 	 * EP0 is bi-directional, EP1 is unused.
3164 	 */
3165 	if (index == 1)
3166 		return 0;
3167 
3168 	ep->transfer_ring = dma_pool_alloc(xudc->transfer_ring_pool,
3169 					   GFP_KERNEL,
3170 					   &ep->transfer_ring_phys);
3171 	if (!ep->transfer_ring)
3172 		return -ENOMEM;
3173 
3174 	if (index) {
3175 		snprintf(ep->name, sizeof(ep->name), "ep%u%s", index / 2,
3176 			 (index % 2 == 0) ? "out" : "in");
3177 		ep->usb_ep.name = ep->name;
3178 		usb_ep_set_maxpacket_limit(&ep->usb_ep, 1024);
3179 		ep->usb_ep.max_streams = 16;
3180 		ep->usb_ep.ops = &tegra_xudc_ep_ops;
3181 		ep->usb_ep.caps.type_bulk = true;
3182 		ep->usb_ep.caps.type_int = true;
3183 		if (index & 1)
3184 			ep->usb_ep.caps.dir_in = true;
3185 		else
3186 			ep->usb_ep.caps.dir_out = true;
3187 		list_add_tail(&ep->usb_ep.ep_list, &xudc->gadget.ep_list);
3188 	} else {
3189 		strscpy(ep->name, "ep0", 3);
3190 		ep->usb_ep.name = ep->name;
3191 		usb_ep_set_maxpacket_limit(&ep->usb_ep, 512);
3192 		ep->usb_ep.ops = &tegra_xudc_ep0_ops;
3193 		ep->usb_ep.caps.type_control = true;
3194 		ep->usb_ep.caps.dir_in = true;
3195 		ep->usb_ep.caps.dir_out = true;
3196 	}
3197 
3198 	return 0;
3199 }
3200 
3201 static void tegra_xudc_free_ep(struct tegra_xudc *xudc, unsigned int index)
3202 {
3203 	struct tegra_xudc_ep *ep = &xudc->ep[index];
3204 
3205 	/*
3206 	 * EP1 would be the input endpoint corresponding to EP0, but since
3207 	 * EP0 is bi-directional, EP1 is unused.
3208 	 */
3209 	if (index == 1)
3210 		return;
3211 
3212 	dma_pool_free(xudc->transfer_ring_pool, ep->transfer_ring,
3213 		      ep->transfer_ring_phys);
3214 }
3215 
3216 static int tegra_xudc_alloc_eps(struct tegra_xudc *xudc)
3217 {
3218 	struct usb_request *req;
3219 	unsigned int i;
3220 	int err;
3221 
3222 	xudc->ep_context =
3223 		dma_alloc_coherent(xudc->dev, XUDC_NR_EPS *
3224 				    sizeof(*xudc->ep_context),
3225 				    &xudc->ep_context_phys, GFP_KERNEL);
3226 	if (!xudc->ep_context)
3227 		return -ENOMEM;
3228 
3229 	xudc->transfer_ring_pool =
3230 		dmam_pool_create(dev_name(xudc->dev), xudc->dev,
3231 				 XUDC_TRANSFER_RING_SIZE *
3232 				 sizeof(struct tegra_xudc_trb),
3233 				 sizeof(struct tegra_xudc_trb), 0);
3234 	if (!xudc->transfer_ring_pool) {
3235 		err = -ENOMEM;
3236 		goto free_ep_context;
3237 	}
3238 
3239 	INIT_LIST_HEAD(&xudc->gadget.ep_list);
3240 	for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) {
3241 		err = tegra_xudc_alloc_ep(xudc, i);
3242 		if (err < 0)
3243 			goto free_eps;
3244 	}
3245 
3246 	req = tegra_xudc_ep_alloc_request(&xudc->ep[0].usb_ep, GFP_KERNEL);
3247 	if (!req) {
3248 		err = -ENOMEM;
3249 		goto free_eps;
3250 	}
3251 	xudc->ep0_req = to_xudc_req(req);
3252 
3253 	return 0;
3254 
3255 free_eps:
3256 	for (; i > 0; i--)
3257 		tegra_xudc_free_ep(xudc, i - 1);
3258 free_ep_context:
3259 	dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context),
3260 			  xudc->ep_context, xudc->ep_context_phys);
3261 	return err;
3262 }
3263 
3264 static void tegra_xudc_init_eps(struct tegra_xudc *xudc)
3265 {
3266 	xudc_writel(xudc, lower_32_bits(xudc->ep_context_phys), ECPLO);
3267 	xudc_writel(xudc, upper_32_bits(xudc->ep_context_phys), ECPHI);
3268 }
3269 
3270 static void tegra_xudc_free_eps(struct tegra_xudc *xudc)
3271 {
3272 	unsigned int i;
3273 
3274 	tegra_xudc_ep_free_request(&xudc->ep[0].usb_ep,
3275 				   &xudc->ep0_req->usb_req);
3276 
3277 	for (i = 0; i < ARRAY_SIZE(xudc->ep); i++)
3278 		tegra_xudc_free_ep(xudc, i);
3279 
3280 	dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context),
3281 			  xudc->ep_context, xudc->ep_context_phys);
3282 }
3283 
3284 static int tegra_xudc_alloc_event_ring(struct tegra_xudc *xudc)
3285 {
3286 	unsigned int i;
3287 
3288 	for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) {
3289 		xudc->event_ring[i] =
3290 			dma_alloc_coherent(xudc->dev, XUDC_EVENT_RING_SIZE *
3291 					   sizeof(*xudc->event_ring[i]),
3292 					   &xudc->event_ring_phys[i],
3293 					   GFP_KERNEL);
3294 		if (!xudc->event_ring[i])
3295 			goto free_dma;
3296 	}
3297 
3298 	return 0;
3299 
3300 free_dma:
3301 	for (; i > 0; i--) {
3302 		dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE *
3303 				  sizeof(*xudc->event_ring[i - 1]),
3304 				  xudc->event_ring[i - 1],
3305 				  xudc->event_ring_phys[i - 1]);
3306 	}
3307 	return -ENOMEM;
3308 }
3309 
3310 static void tegra_xudc_init_event_ring(struct tegra_xudc *xudc)
3311 {
3312 	unsigned int i;
3313 	u32 val;
3314 
3315 	for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) {
3316 		memset(xudc->event_ring[i], 0, XUDC_EVENT_RING_SIZE *
3317 		       sizeof(*xudc->event_ring[i]));
3318 
3319 		val = xudc_readl(xudc, ERSTSZ);
3320 		val &= ~(ERSTSZ_ERSTXSZ_MASK << ERSTSZ_ERSTXSZ_SHIFT(i));
3321 		val |= XUDC_EVENT_RING_SIZE << ERSTSZ_ERSTXSZ_SHIFT(i);
3322 		xudc_writel(xudc, val, ERSTSZ);
3323 
3324 		xudc_writel(xudc, lower_32_bits(xudc->event_ring_phys[i]),
3325 			    ERSTXBALO(i));
3326 		xudc_writel(xudc, upper_32_bits(xudc->event_ring_phys[i]),
3327 			    ERSTXBAHI(i));
3328 	}
3329 
3330 	val = lower_32_bits(xudc->event_ring_phys[0]);
3331 	xudc_writel(xudc, val, ERDPLO);
3332 	val |= EREPLO_ECS;
3333 	xudc_writel(xudc, val, EREPLO);
3334 
3335 	val = upper_32_bits(xudc->event_ring_phys[0]);
3336 	xudc_writel(xudc, val, ERDPHI);
3337 	xudc_writel(xudc, val, EREPHI);
3338 
3339 	xudc->ccs = true;
3340 	xudc->event_ring_index = 0;
3341 	xudc->event_ring_deq_ptr = 0;
3342 }
3343 
3344 static void tegra_xudc_free_event_ring(struct tegra_xudc *xudc)
3345 {
3346 	unsigned int i;
3347 
3348 	for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) {
3349 		dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE *
3350 				  sizeof(*xudc->event_ring[i]),
3351 				  xudc->event_ring[i],
3352 				  xudc->event_ring_phys[i]);
3353 	}
3354 }
3355 
3356 static void tegra_xudc_fpci_ipfs_init(struct tegra_xudc *xudc)
3357 {
3358 	u32 val;
3359 
3360 	if (xudc->soc->has_ipfs) {
3361 		val = ipfs_readl(xudc, XUSB_DEV_CONFIGURATION_0);
3362 		val |= XUSB_DEV_CONFIGURATION_0_EN_FPCI;
3363 		ipfs_writel(xudc, val, XUSB_DEV_CONFIGURATION_0);
3364 		usleep_range(10, 15);
3365 	}
3366 
3367 	/* Enable bus master */
3368 	val = XUSB_DEV_CFG_1_IO_SPACE_EN | XUSB_DEV_CFG_1_MEMORY_SPACE_EN |
3369 		XUSB_DEV_CFG_1_BUS_MASTER_EN;
3370 	fpci_writel(xudc, val, XUSB_DEV_CFG_1);
3371 
3372 	/* Program BAR0 space */
3373 	val = fpci_readl(xudc, XUSB_DEV_CFG_4);
3374 	val &= ~(XUSB_DEV_CFG_4_BASE_ADDR_MASK);
3375 	val |= xudc->phys_base & (XUSB_DEV_CFG_4_BASE_ADDR_MASK);
3376 
3377 	fpci_writel(xudc, val, XUSB_DEV_CFG_4);
3378 	fpci_writel(xudc, upper_32_bits(xudc->phys_base), XUSB_DEV_CFG_5);
3379 
3380 	usleep_range(100, 200);
3381 
3382 	if (xudc->soc->has_ipfs) {
3383 		/* Enable interrupt assertion */
3384 		val = ipfs_readl(xudc, XUSB_DEV_INTR_MASK_0);
3385 		val |= XUSB_DEV_INTR_MASK_0_IP_INT_MASK;
3386 		ipfs_writel(xudc, val, XUSB_DEV_INTR_MASK_0);
3387 	}
3388 }
3389 
3390 static void tegra_xudc_device_params_init(struct tegra_xudc *xudc)
3391 {
3392 	u32 val, imod;
3393 
3394 	if (xudc->soc->has_ipfs) {
3395 		val = xudc_readl(xudc, BLCG);
3396 		val |= BLCG_ALL;
3397 		val &= ~(BLCG_DFPCI | BLCG_UFPCI | BLCG_FE |
3398 				BLCG_COREPLL_PWRDN);
3399 		val |= BLCG_IOPLL_0_PWRDN;
3400 		val |= BLCG_IOPLL_1_PWRDN;
3401 		val |= BLCG_IOPLL_2_PWRDN;
3402 
3403 		xudc_writel(xudc, val, BLCG);
3404 	}
3405 
3406 	if (xudc->soc->port_speed_quirk)
3407 		tegra_xudc_limit_port_speed(xudc);
3408 
3409 	/* Set a reasonable U3 exit timer value. */
3410 	val = xudc_readl(xudc, SSPX_CORE_PADCTL4);
3411 	val &= ~(SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK);
3412 	val |= SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(0x5dc0);
3413 	xudc_writel(xudc, val, SSPX_CORE_PADCTL4);
3414 
3415 	/* Default ping LFPS tBurst is too large. */
3416 	val = xudc_readl(xudc, SSPX_CORE_CNT0);
3417 	val &= ~(SSPX_CORE_CNT0_PING_TBURST_MASK);
3418 	val |= SSPX_CORE_CNT0_PING_TBURST(0xa);
3419 	xudc_writel(xudc, val, SSPX_CORE_CNT0);
3420 
3421 	/* Default tPortConfiguration timeout is too small. */
3422 	val = xudc_readl(xudc, SSPX_CORE_CNT30);
3423 	val &= ~(SSPX_CORE_CNT30_LMPITP_TIMER_MASK);
3424 	val |= SSPX_CORE_CNT30_LMPITP_TIMER(0x978);
3425 	xudc_writel(xudc, val, SSPX_CORE_CNT30);
3426 
3427 	if (xudc->soc->lpm_enable) {
3428 		/* Set L1 resume duration to 95 us. */
3429 		val = xudc_readl(xudc, HSFSPI_COUNT13);
3430 		val &= ~(HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK);
3431 		val |= HSFSPI_COUNT13_U2_RESUME_K_DURATION(0x2c88);
3432 		xudc_writel(xudc, val, HSFSPI_COUNT13);
3433 	}
3434 
3435 	/*
3436 	 * Compliance suite appears to be violating polling LFPS tBurst max
3437 	 * of 1.4us.  Send 1.45us instead.
3438 	 */
3439 	val = xudc_readl(xudc, SSPX_CORE_CNT32);
3440 	val &= ~(SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK);
3441 	val |= SSPX_CORE_CNT32_POLL_TBURST_MAX(0xb0);
3442 	xudc_writel(xudc, val, SSPX_CORE_CNT32);
3443 
3444 	/* Direct HS/FS port instance to RxDetect. */
3445 	val = xudc_readl(xudc, CFG_DEV_FE);
3446 	val &= ~(CFG_DEV_FE_PORTREGSEL_MASK);
3447 	val |= CFG_DEV_FE_PORTREGSEL(CFG_DEV_FE_PORTREGSEL_HSFS_PI);
3448 	xudc_writel(xudc, val, CFG_DEV_FE);
3449 
3450 	val = xudc_readl(xudc, PORTSC);
3451 	val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
3452 	val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT);
3453 	xudc_writel(xudc, val, PORTSC);
3454 
3455 	/* Direct SS port instance to RxDetect. */
3456 	val = xudc_readl(xudc, CFG_DEV_FE);
3457 	val &= ~(CFG_DEV_FE_PORTREGSEL_MASK);
3458 	val |= CFG_DEV_FE_PORTREGSEL_SS_PI & CFG_DEV_FE_PORTREGSEL_MASK;
3459 	xudc_writel(xudc, val, CFG_DEV_FE);
3460 
3461 	val = xudc_readl(xudc, PORTSC);
3462 	val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
3463 	val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT);
3464 	xudc_writel(xudc, val, PORTSC);
3465 
3466 	/* Restore port instance. */
3467 	val = xudc_readl(xudc, CFG_DEV_FE);
3468 	val &= ~(CFG_DEV_FE_PORTREGSEL_MASK);
3469 	xudc_writel(xudc, val, CFG_DEV_FE);
3470 
3471 	/*
3472 	 * Enable INFINITE_SS_RETRY to prevent device from entering
3473 	 * Disabled.Error when attached to buggy SuperSpeed hubs.
3474 	 */
3475 	val = xudc_readl(xudc, CFG_DEV_FE);
3476 	val |= CFG_DEV_FE_INFINITE_SS_RETRY;
3477 	xudc_writel(xudc, val, CFG_DEV_FE);
3478 
3479 	/* Set interrupt moderation. */
3480 	imod = XUDC_INTERRUPT_MODERATION_US * 4;
3481 	val = xudc_readl(xudc, RT_IMOD);
3482 	val &= ~((RT_IMOD_IMODI_MASK) | (RT_IMOD_IMODC_MASK));
3483 	val |= (RT_IMOD_IMODI(imod) | RT_IMOD_IMODC(imod));
3484 	xudc_writel(xudc, val, RT_IMOD);
3485 
3486 	/* increase SSPI transaction timeout from 32us to 512us */
3487 	val = xudc_readl(xudc, CFG_DEV_SSPI_XFER);
3488 	val &= ~(CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK);
3489 	val |= CFG_DEV_SSPI_XFER_ACKTIMEOUT(0xf000);
3490 	xudc_writel(xudc, val, CFG_DEV_SSPI_XFER);
3491 }
3492 
3493 static int tegra_xudc_phy_get(struct tegra_xudc *xudc)
3494 {
3495 	int err = 0, usb3;
3496 	unsigned int i;
3497 
3498 	xudc->utmi_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys,
3499 					   sizeof(*xudc->utmi_phy), GFP_KERNEL);
3500 	if (!xudc->utmi_phy)
3501 		return -ENOMEM;
3502 
3503 	xudc->usb3_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys,
3504 					   sizeof(*xudc->usb3_phy), GFP_KERNEL);
3505 	if (!xudc->usb3_phy)
3506 		return -ENOMEM;
3507 
3508 	xudc->usbphy = devm_kcalloc(xudc->dev, xudc->soc->num_phys,
3509 					   sizeof(*xudc->usbphy), GFP_KERNEL);
3510 	if (!xudc->usbphy)
3511 		return -ENOMEM;
3512 
3513 	xudc->vbus_nb.notifier_call = tegra_xudc_vbus_notify;
3514 
3515 	for (i = 0; i < xudc->soc->num_phys; i++) {
3516 		char phy_name[] = "usb.-.";
3517 
3518 		/* Get USB2 phy */
3519 		snprintf(phy_name, sizeof(phy_name), "usb2-%d", i);
3520 		xudc->utmi_phy[i] = devm_phy_optional_get(xudc->dev, phy_name);
3521 		if (IS_ERR(xudc->utmi_phy[i])) {
3522 			err = PTR_ERR(xudc->utmi_phy[i]);
3523 			dev_err_probe(xudc->dev, err,
3524 				      "failed to get usb2-%d PHY\n", i);
3525 			goto clean_up;
3526 		} else if (xudc->utmi_phy[i]) {
3527 			/* Get usb-phy, if utmi phy is available */
3528 			xudc->usbphy[i] = devm_usb_get_phy_by_node(xudc->dev,
3529 						xudc->utmi_phy[i]->dev.of_node,
3530 						NULL);
3531 			if (IS_ERR(xudc->usbphy[i])) {
3532 				err = PTR_ERR(xudc->usbphy[i]);
3533 				dev_err_probe(xudc->dev, err,
3534 					      "failed to get usbphy-%d\n", i);
3535 				goto clean_up;
3536 			}
3537 		} else if (!xudc->utmi_phy[i]) {
3538 			/* if utmi phy is not available, ignore USB3 phy get */
3539 			continue;
3540 		}
3541 
3542 		/* Get USB3 phy */
3543 		usb3 = tegra_xusb_padctl_get_usb3_companion(xudc->padctl, i);
3544 		if (usb3 < 0)
3545 			continue;
3546 
3547 		snprintf(phy_name, sizeof(phy_name), "usb3-%d", usb3);
3548 		xudc->usb3_phy[i] = devm_phy_optional_get(xudc->dev, phy_name);
3549 		if (IS_ERR(xudc->usb3_phy[i])) {
3550 			err = PTR_ERR(xudc->usb3_phy[i]);
3551 			dev_err_probe(xudc->dev, err,
3552 				      "failed to get usb3-%d PHY\n", usb3);
3553 			goto clean_up;
3554 		} else if (xudc->usb3_phy[i])
3555 			dev_dbg(xudc->dev, "usb3-%d PHY registered", usb3);
3556 	}
3557 
3558 	return err;
3559 
3560 clean_up:
3561 	for (i = 0; i < xudc->soc->num_phys; i++) {
3562 		xudc->usb3_phy[i] = NULL;
3563 		xudc->utmi_phy[i] = NULL;
3564 		xudc->usbphy[i] = NULL;
3565 	}
3566 
3567 	return err;
3568 }
3569 
3570 static void tegra_xudc_phy_exit(struct tegra_xudc *xudc)
3571 {
3572 	unsigned int i;
3573 
3574 	for (i = 0; i < xudc->soc->num_phys; i++) {
3575 		phy_exit(xudc->usb3_phy[i]);
3576 		phy_exit(xudc->utmi_phy[i]);
3577 	}
3578 }
3579 
3580 static int tegra_xudc_phy_init(struct tegra_xudc *xudc)
3581 {
3582 	int err;
3583 	unsigned int i;
3584 
3585 	for (i = 0; i < xudc->soc->num_phys; i++) {
3586 		err = phy_init(xudc->utmi_phy[i]);
3587 		if (err < 0) {
3588 			dev_err(xudc->dev, "UTMI PHY #%u initialization failed: %d\n", i, err);
3589 			goto exit_phy;
3590 		}
3591 
3592 		err = phy_init(xudc->usb3_phy[i]);
3593 		if (err < 0) {
3594 			dev_err(xudc->dev, "USB3 PHY #%u initialization failed: %d\n", i, err);
3595 			goto exit_phy;
3596 		}
3597 	}
3598 	return 0;
3599 
3600 exit_phy:
3601 	tegra_xudc_phy_exit(xudc);
3602 	return err;
3603 }
3604 
3605 static const char * const tegra210_xudc_supply_names[] = {
3606 	"hvdd-usb",
3607 	"avddio-usb",
3608 };
3609 
3610 static const char * const tegra210_xudc_clock_names[] = {
3611 	"dev",
3612 	"ss",
3613 	"ss_src",
3614 	"hs_src",
3615 	"fs_src",
3616 };
3617 
3618 static const char * const tegra186_xudc_clock_names[] = {
3619 	"dev",
3620 	"ss",
3621 	"ss_src",
3622 	"fs_src",
3623 };
3624 
3625 static struct tegra_xudc_soc tegra210_xudc_soc_data = {
3626 	.supply_names = tegra210_xudc_supply_names,
3627 	.num_supplies = ARRAY_SIZE(tegra210_xudc_supply_names),
3628 	.clock_names = tegra210_xudc_clock_names,
3629 	.num_clks = ARRAY_SIZE(tegra210_xudc_clock_names),
3630 	.num_phys = 4,
3631 	.u1_enable = false,
3632 	.u2_enable = true,
3633 	.lpm_enable = false,
3634 	.invalid_seq_num = true,
3635 	.pls_quirk = true,
3636 	.port_reset_quirk = true,
3637 	.port_speed_quirk = false,
3638 	.has_ipfs = true,
3639 };
3640 
3641 static struct tegra_xudc_soc tegra186_xudc_soc_data = {
3642 	.clock_names = tegra186_xudc_clock_names,
3643 	.num_clks = ARRAY_SIZE(tegra186_xudc_clock_names),
3644 	.num_phys = 4,
3645 	.u1_enable = true,
3646 	.u2_enable = true,
3647 	.lpm_enable = false,
3648 	.invalid_seq_num = false,
3649 	.pls_quirk = false,
3650 	.port_reset_quirk = false,
3651 	.port_speed_quirk = false,
3652 	.has_ipfs = false,
3653 };
3654 
3655 static struct tegra_xudc_soc tegra194_xudc_soc_data = {
3656 	.clock_names = tegra186_xudc_clock_names,
3657 	.num_clks = ARRAY_SIZE(tegra186_xudc_clock_names),
3658 	.num_phys = 4,
3659 	.u1_enable = true,
3660 	.u2_enable = true,
3661 	.lpm_enable = true,
3662 	.invalid_seq_num = false,
3663 	.pls_quirk = false,
3664 	.port_reset_quirk = false,
3665 	.port_speed_quirk = true,
3666 	.has_ipfs = false,
3667 };
3668 
3669 static struct tegra_xudc_soc tegra234_xudc_soc_data = {
3670 	.clock_names = tegra186_xudc_clock_names,
3671 	.num_clks = ARRAY_SIZE(tegra186_xudc_clock_names),
3672 	.num_phys = 4,
3673 	.u1_enable = true,
3674 	.u2_enable = true,
3675 	.lpm_enable = true,
3676 	.invalid_seq_num = false,
3677 	.pls_quirk = false,
3678 	.port_reset_quirk = false,
3679 	.has_ipfs = false,
3680 };
3681 
3682 static const struct of_device_id tegra_xudc_of_match[] = {
3683 	{
3684 		.compatible = "nvidia,tegra210-xudc",
3685 		.data = &tegra210_xudc_soc_data
3686 	},
3687 	{
3688 		.compatible = "nvidia,tegra186-xudc",
3689 		.data = &tegra186_xudc_soc_data
3690 	},
3691 	{
3692 		.compatible = "nvidia,tegra194-xudc",
3693 		.data = &tegra194_xudc_soc_data
3694 	},
3695 	{
3696 		.compatible = "nvidia,tegra234-xudc",
3697 		.data = &tegra234_xudc_soc_data
3698 	},
3699 	{ }
3700 };
3701 MODULE_DEVICE_TABLE(of, tegra_xudc_of_match);
3702 
3703 static void tegra_xudc_powerdomain_remove(struct tegra_xudc *xudc)
3704 {
3705 	if (xudc->genpd_dl_ss)
3706 		device_link_del(xudc->genpd_dl_ss);
3707 	if (xudc->genpd_dl_device)
3708 		device_link_del(xudc->genpd_dl_device);
3709 	if (xudc->genpd_dev_ss)
3710 		dev_pm_domain_detach(xudc->genpd_dev_ss, true);
3711 	if (xudc->genpd_dev_device)
3712 		dev_pm_domain_detach(xudc->genpd_dev_device, true);
3713 }
3714 
3715 static int tegra_xudc_powerdomain_init(struct tegra_xudc *xudc)
3716 {
3717 	struct device *dev = xudc->dev;
3718 	int err;
3719 
3720 	xudc->genpd_dev_device = dev_pm_domain_attach_by_name(dev, "dev");
3721 	if (IS_ERR(xudc->genpd_dev_device)) {
3722 		err = PTR_ERR(xudc->genpd_dev_device);
3723 		dev_err(dev, "failed to get device power domain: %d\n", err);
3724 		return err;
3725 	}
3726 
3727 	xudc->genpd_dev_ss = dev_pm_domain_attach_by_name(dev, "ss");
3728 	if (IS_ERR(xudc->genpd_dev_ss)) {
3729 		err = PTR_ERR(xudc->genpd_dev_ss);
3730 		dev_err(dev, "failed to get SuperSpeed power domain: %d\n", err);
3731 		return err;
3732 	}
3733 
3734 	xudc->genpd_dl_device = device_link_add(dev, xudc->genpd_dev_device,
3735 						DL_FLAG_PM_RUNTIME |
3736 						DL_FLAG_STATELESS);
3737 	if (!xudc->genpd_dl_device) {
3738 		dev_err(dev, "failed to add USB device link\n");
3739 		return -ENODEV;
3740 	}
3741 
3742 	xudc->genpd_dl_ss = device_link_add(dev, xudc->genpd_dev_ss,
3743 					    DL_FLAG_PM_RUNTIME |
3744 					    DL_FLAG_STATELESS);
3745 	if (!xudc->genpd_dl_ss) {
3746 		dev_err(dev, "failed to add SuperSpeed device link\n");
3747 		return -ENODEV;
3748 	}
3749 
3750 	return 0;
3751 }
3752 
3753 static int tegra_xudc_probe(struct platform_device *pdev)
3754 {
3755 	struct tegra_xudc *xudc;
3756 	struct resource *res;
3757 	unsigned int i;
3758 	int err;
3759 
3760 	xudc = devm_kzalloc(&pdev->dev, sizeof(*xudc), GFP_KERNEL);
3761 	if (!xudc)
3762 		return -ENOMEM;
3763 
3764 	xudc->dev = &pdev->dev;
3765 	platform_set_drvdata(pdev, xudc);
3766 
3767 	xudc->soc = of_device_get_match_data(&pdev->dev);
3768 	if (!xudc->soc)
3769 		return -ENODEV;
3770 
3771 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3772 	xudc->base = devm_ioremap_resource(&pdev->dev, res);
3773 	if (IS_ERR(xudc->base))
3774 		return PTR_ERR(xudc->base);
3775 	xudc->phys_base = res->start;
3776 
3777 	xudc->fpci = devm_platform_ioremap_resource_byname(pdev, "fpci");
3778 	if (IS_ERR(xudc->fpci))
3779 		return PTR_ERR(xudc->fpci);
3780 
3781 	if (xudc->soc->has_ipfs) {
3782 		xudc->ipfs = devm_platform_ioremap_resource_byname(pdev, "ipfs");
3783 		if (IS_ERR(xudc->ipfs))
3784 			return PTR_ERR(xudc->ipfs);
3785 	}
3786 
3787 	xudc->irq = platform_get_irq(pdev, 0);
3788 	if (xudc->irq < 0)
3789 		return xudc->irq;
3790 
3791 	err = devm_request_irq(&pdev->dev, xudc->irq, tegra_xudc_irq, 0,
3792 			       dev_name(&pdev->dev), xudc);
3793 	if (err < 0) {
3794 		dev_err(xudc->dev, "failed to claim IRQ#%u: %d\n", xudc->irq,
3795 			err);
3796 		return err;
3797 	}
3798 
3799 	xudc->clks = devm_kcalloc(&pdev->dev, xudc->soc->num_clks, sizeof(*xudc->clks),
3800 				  GFP_KERNEL);
3801 	if (!xudc->clks)
3802 		return -ENOMEM;
3803 
3804 	for (i = 0; i < xudc->soc->num_clks; i++)
3805 		xudc->clks[i].id = xudc->soc->clock_names[i];
3806 
3807 	err = devm_clk_bulk_get(&pdev->dev, xudc->soc->num_clks, xudc->clks);
3808 	if (err) {
3809 		dev_err_probe(xudc->dev, err, "failed to request clocks\n");
3810 		return err;
3811 	}
3812 
3813 	xudc->supplies = devm_kcalloc(&pdev->dev, xudc->soc->num_supplies,
3814 				      sizeof(*xudc->supplies), GFP_KERNEL);
3815 	if (!xudc->supplies)
3816 		return -ENOMEM;
3817 
3818 	for (i = 0; i < xudc->soc->num_supplies; i++)
3819 		xudc->supplies[i].supply = xudc->soc->supply_names[i];
3820 
3821 	err = devm_regulator_bulk_get(&pdev->dev, xudc->soc->num_supplies,
3822 				      xudc->supplies);
3823 	if (err) {
3824 		dev_err_probe(xudc->dev, err, "failed to request regulators\n");
3825 		return err;
3826 	}
3827 
3828 	xudc->padctl = tegra_xusb_padctl_get(&pdev->dev);
3829 	if (IS_ERR(xudc->padctl))
3830 		return PTR_ERR(xudc->padctl);
3831 
3832 	err = regulator_bulk_enable(xudc->soc->num_supplies, xudc->supplies);
3833 	if (err) {
3834 		dev_err(xudc->dev, "failed to enable regulators: %d\n", err);
3835 		goto put_padctl;
3836 	}
3837 
3838 	err = tegra_xudc_phy_get(xudc);
3839 	if (err)
3840 		goto disable_regulator;
3841 
3842 	err = tegra_xudc_powerdomain_init(xudc);
3843 	if (err)
3844 		goto put_powerdomains;
3845 
3846 	err = tegra_xudc_phy_init(xudc);
3847 	if (err)
3848 		goto put_powerdomains;
3849 
3850 	err = tegra_xudc_alloc_event_ring(xudc);
3851 	if (err)
3852 		goto disable_phy;
3853 
3854 	err = tegra_xudc_alloc_eps(xudc);
3855 	if (err)
3856 		goto free_event_ring;
3857 
3858 	spin_lock_init(&xudc->lock);
3859 
3860 	init_completion(&xudc->disconnect_complete);
3861 
3862 	INIT_WORK(&xudc->usb_role_sw_work, tegra_xudc_usb_role_sw_work);
3863 
3864 	INIT_DELAYED_WORK(&xudc->plc_reset_work, tegra_xudc_plc_reset_work);
3865 
3866 	INIT_DELAYED_WORK(&xudc->port_reset_war_work,
3867 				tegra_xudc_port_reset_war_work);
3868 
3869 	pm_runtime_enable(&pdev->dev);
3870 
3871 	xudc->gadget.ops = &tegra_xudc_gadget_ops;
3872 	xudc->gadget.ep0 = &xudc->ep[0].usb_ep;
3873 	xudc->gadget.name = "tegra-xudc";
3874 	xudc->gadget.max_speed = USB_SPEED_SUPER;
3875 
3876 	err = usb_add_gadget_udc(&pdev->dev, &xudc->gadget);
3877 	if (err) {
3878 		dev_err(&pdev->dev, "failed to add USB gadget: %d\n", err);
3879 		goto free_eps;
3880 	}
3881 
3882 	for (i = 0; i < xudc->soc->num_phys; i++) {
3883 		if (!xudc->usbphy[i])
3884 			continue;
3885 
3886 		usb_register_notifier(xudc->usbphy[i], &xudc->vbus_nb);
3887 		tegra_xudc_update_data_role(xudc, xudc->usbphy[i]);
3888 	}
3889 
3890 	return 0;
3891 
3892 free_eps:
3893 	pm_runtime_disable(&pdev->dev);
3894 	tegra_xudc_free_eps(xudc);
3895 free_event_ring:
3896 	tegra_xudc_free_event_ring(xudc);
3897 disable_phy:
3898 	tegra_xudc_phy_exit(xudc);
3899 put_powerdomains:
3900 	tegra_xudc_powerdomain_remove(xudc);
3901 disable_regulator:
3902 	regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies);
3903 put_padctl:
3904 	tegra_xusb_padctl_put(xudc->padctl);
3905 
3906 	return err;
3907 }
3908 
3909 static void tegra_xudc_remove(struct platform_device *pdev)
3910 {
3911 	struct tegra_xudc *xudc = platform_get_drvdata(pdev);
3912 	unsigned int i;
3913 
3914 	pm_runtime_get_sync(xudc->dev);
3915 
3916 	cancel_delayed_work_sync(&xudc->plc_reset_work);
3917 	cancel_work_sync(&xudc->usb_role_sw_work);
3918 
3919 	usb_del_gadget_udc(&xudc->gadget);
3920 
3921 	tegra_xudc_free_eps(xudc);
3922 	tegra_xudc_free_event_ring(xudc);
3923 
3924 	tegra_xudc_powerdomain_remove(xudc);
3925 
3926 	regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies);
3927 
3928 	for (i = 0; i < xudc->soc->num_phys; i++) {
3929 		phy_power_off(xudc->utmi_phy[i]);
3930 		phy_power_off(xudc->usb3_phy[i]);
3931 	}
3932 
3933 	tegra_xudc_phy_exit(xudc);
3934 
3935 	pm_runtime_disable(xudc->dev);
3936 	pm_runtime_put(xudc->dev);
3937 
3938 	tegra_xusb_padctl_put(xudc->padctl);
3939 }
3940 
3941 static int __maybe_unused tegra_xudc_powergate(struct tegra_xudc *xudc)
3942 {
3943 	unsigned long flags;
3944 
3945 	dev_dbg(xudc->dev, "entering ELPG\n");
3946 
3947 	spin_lock_irqsave(&xudc->lock, flags);
3948 
3949 	xudc->powergated = true;
3950 	xudc->saved_regs.ctrl = xudc_readl(xudc, CTRL);
3951 	xudc->saved_regs.portpm = xudc_readl(xudc, PORTPM);
3952 	xudc_writel(xudc, 0, CTRL);
3953 
3954 	spin_unlock_irqrestore(&xudc->lock, flags);
3955 
3956 	clk_bulk_disable_unprepare(xudc->soc->num_clks, xudc->clks);
3957 
3958 	regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies);
3959 
3960 	dev_dbg(xudc->dev, "entering ELPG done\n");
3961 	return 0;
3962 }
3963 
3964 static int __maybe_unused tegra_xudc_unpowergate(struct tegra_xudc *xudc)
3965 {
3966 	unsigned long flags;
3967 	int err;
3968 
3969 	dev_dbg(xudc->dev, "exiting ELPG\n");
3970 
3971 	err = regulator_bulk_enable(xudc->soc->num_supplies,
3972 			xudc->supplies);
3973 	if (err < 0)
3974 		return err;
3975 
3976 	err = clk_bulk_prepare_enable(xudc->soc->num_clks, xudc->clks);
3977 	if (err < 0)
3978 		return err;
3979 
3980 	tegra_xudc_fpci_ipfs_init(xudc);
3981 
3982 	tegra_xudc_device_params_init(xudc);
3983 
3984 	tegra_xudc_init_event_ring(xudc);
3985 
3986 	tegra_xudc_init_eps(xudc);
3987 
3988 	xudc_writel(xudc, xudc->saved_regs.portpm, PORTPM);
3989 	xudc_writel(xudc, xudc->saved_regs.ctrl, CTRL);
3990 
3991 	spin_lock_irqsave(&xudc->lock, flags);
3992 	xudc->powergated = false;
3993 	spin_unlock_irqrestore(&xudc->lock, flags);
3994 
3995 	dev_dbg(xudc->dev, "exiting ELPG done\n");
3996 	return 0;
3997 }
3998 
3999 static int __maybe_unused tegra_xudc_suspend(struct device *dev)
4000 {
4001 	struct tegra_xudc *xudc = dev_get_drvdata(dev);
4002 	unsigned long flags;
4003 
4004 	spin_lock_irqsave(&xudc->lock, flags);
4005 	xudc->suspended = true;
4006 	spin_unlock_irqrestore(&xudc->lock, flags);
4007 
4008 	flush_work(&xudc->usb_role_sw_work);
4009 
4010 	if (!pm_runtime_status_suspended(dev)) {
4011 		/* Forcibly disconnect before powergating. */
4012 		tegra_xudc_device_mode_off(xudc);
4013 		tegra_xudc_powergate(xudc);
4014 	}
4015 
4016 	pm_runtime_disable(dev);
4017 
4018 	return 0;
4019 }
4020 
4021 static int __maybe_unused tegra_xudc_resume(struct device *dev)
4022 {
4023 	struct tegra_xudc *xudc = dev_get_drvdata(dev);
4024 	unsigned long flags;
4025 	int err;
4026 
4027 	err = tegra_xudc_unpowergate(xudc);
4028 	if (err < 0)
4029 		return err;
4030 
4031 	spin_lock_irqsave(&xudc->lock, flags);
4032 	xudc->suspended = false;
4033 	spin_unlock_irqrestore(&xudc->lock, flags);
4034 
4035 	schedule_work(&xudc->usb_role_sw_work);
4036 
4037 	pm_runtime_enable(dev);
4038 
4039 	return 0;
4040 }
4041 
4042 static int __maybe_unused tegra_xudc_runtime_suspend(struct device *dev)
4043 {
4044 	struct tegra_xudc *xudc = dev_get_drvdata(dev);
4045 
4046 	return tegra_xudc_powergate(xudc);
4047 }
4048 
4049 static int __maybe_unused tegra_xudc_runtime_resume(struct device *dev)
4050 {
4051 	struct tegra_xudc *xudc = dev_get_drvdata(dev);
4052 
4053 	return tegra_xudc_unpowergate(xudc);
4054 }
4055 
4056 static const struct dev_pm_ops tegra_xudc_pm_ops = {
4057 	SET_SYSTEM_SLEEP_PM_OPS(tegra_xudc_suspend, tegra_xudc_resume)
4058 	SET_RUNTIME_PM_OPS(tegra_xudc_runtime_suspend,
4059 			   tegra_xudc_runtime_resume, NULL)
4060 };
4061 
4062 static struct platform_driver tegra_xudc_driver = {
4063 	.probe = tegra_xudc_probe,
4064 	.remove_new = tegra_xudc_remove,
4065 	.driver = {
4066 		.name = "tegra-xudc",
4067 		.pm = &tegra_xudc_pm_ops,
4068 		.of_match_table = tegra_xudc_of_match,
4069 	},
4070 };
4071 module_platform_driver(tegra_xudc_driver);
4072 
4073 MODULE_DESCRIPTION("NVIDIA Tegra XUSB Device Controller");
4074 MODULE_AUTHOR("Andrew Bresticker <abrestic@chromium.org>");
4075 MODULE_AUTHOR("Hui Fu <hfu@nvidia.com>");
4076 MODULE_AUTHOR("Nagarjuna Kristam <nkristam@nvidia.com>");
4077 MODULE_LICENSE("GPL v2");
4078