1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Handles the Intel 27x USB Device Controller (UDC) 4 * 5 * Inspired by original driver by Frank Becker, David Brownell, and others. 6 * Copyright (C) 2008 Robert Jarzmik 7 */ 8 #include <linux/module.h> 9 #include <linux/kernel.h> 10 #include <linux/types.h> 11 #include <linux/errno.h> 12 #include <linux/err.h> 13 #include <linux/platform_device.h> 14 #include <linux/delay.h> 15 #include <linux/list.h> 16 #include <linux/interrupt.h> 17 #include <linux/proc_fs.h> 18 #include <linux/clk.h> 19 #include <linux/irq.h> 20 #include <linux/gpio.h> 21 #include <linux/gpio/consumer.h> 22 #include <linux/slab.h> 23 #include <linux/prefetch.h> 24 #include <linux/byteorder/generic.h> 25 #include <linux/platform_data/pxa2xx_udc.h> 26 #include <linux/of_device.h> 27 #include <linux/of_gpio.h> 28 29 #include <linux/usb.h> 30 #include <linux/usb/ch9.h> 31 #include <linux/usb/gadget.h> 32 #include <linux/usb/phy.h> 33 34 #include "pxa27x_udc.h" 35 36 /* 37 * This driver handles the USB Device Controller (UDC) in Intel's PXA 27x 38 * series processors. 39 * 40 * Such controller drivers work with a gadget driver. The gadget driver 41 * returns descriptors, implements configuration and data protocols used 42 * by the host to interact with this device, and allocates endpoints to 43 * the different protocol interfaces. The controller driver virtualizes 44 * usb hardware so that the gadget drivers will be more portable. 45 * 46 * This UDC hardware wants to implement a bit too much USB protocol. The 47 * biggest issues are: that the endpoints have to be set up before the 48 * controller can be enabled (minor, and not uncommon); and each endpoint 49 * can only have one configuration, interface and alternative interface 50 * number (major, and very unusual). Once set up, these cannot be changed 51 * without a controller reset. 52 * 53 * The workaround is to setup all combinations necessary for the gadgets which 54 * will work with this driver. This is done in pxa_udc structure, statically. 55 * See pxa_udc, udc_usb_ep versus pxa_ep, and matching function find_pxa_ep. 56 * (You could modify this if needed. Some drivers have a "fifo_mode" module 57 * parameter to facilitate such changes.) 58 * 59 * The combinations have been tested with these gadgets : 60 * - zero gadget 61 * - file storage gadget 62 * - ether gadget 63 * 64 * The driver doesn't use DMA, only IO access and IRQ callbacks. No use is 65 * made of UDC's double buffering either. USB "On-The-Go" is not implemented. 66 * 67 * All the requests are handled the same way : 68 * - the drivers tries to handle the request directly to the IO 69 * - if the IO fifo is not big enough, the remaining is send/received in 70 * interrupt handling. 71 */ 72 73 #define DRIVER_VERSION "2008-04-18" 74 #define DRIVER_DESC "PXA 27x USB Device Controller driver" 75 76 static const char driver_name[] = "pxa27x_udc"; 77 static struct pxa_udc *the_controller; 78 79 static void handle_ep(struct pxa_ep *ep); 80 81 /* 82 * Debug filesystem 83 */ 84 #ifdef CONFIG_USB_GADGET_DEBUG_FS 85 86 #include <linux/debugfs.h> 87 #include <linux/uaccess.h> 88 #include <linux/seq_file.h> 89 90 static int state_dbg_show(struct seq_file *s, void *p) 91 { 92 struct pxa_udc *udc = s->private; 93 u32 tmp; 94 95 if (!udc->driver) 96 return -ENODEV; 97 98 /* basic device status */ 99 seq_printf(s, DRIVER_DESC "\n" 100 "%s version: %s\n" 101 "Gadget driver: %s\n", 102 driver_name, DRIVER_VERSION, 103 udc->driver ? udc->driver->driver.name : "(none)"); 104 105 tmp = udc_readl(udc, UDCCR); 106 seq_printf(s, 107 "udccr=0x%0x(%s%s%s%s%s%s%s%s%s%s), con=%d,inter=%d,altinter=%d\n", 108 tmp, 109 (tmp & UDCCR_OEN) ? " oen":"", 110 (tmp & UDCCR_AALTHNP) ? " aalthnp":"", 111 (tmp & UDCCR_AHNP) ? " rem" : "", 112 (tmp & UDCCR_BHNP) ? " rstir" : "", 113 (tmp & UDCCR_DWRE) ? " dwre" : "", 114 (tmp & UDCCR_SMAC) ? " smac" : "", 115 (tmp & UDCCR_EMCE) ? " emce" : "", 116 (tmp & UDCCR_UDR) ? " udr" : "", 117 (tmp & UDCCR_UDA) ? " uda" : "", 118 (tmp & UDCCR_UDE) ? " ude" : "", 119 (tmp & UDCCR_ACN) >> UDCCR_ACN_S, 120 (tmp & UDCCR_AIN) >> UDCCR_AIN_S, 121 (tmp & UDCCR_AAISN) >> UDCCR_AAISN_S); 122 /* registers for device and ep0 */ 123 seq_printf(s, "udcicr0=0x%08x udcicr1=0x%08x\n", 124 udc_readl(udc, UDCICR0), udc_readl(udc, UDCICR1)); 125 seq_printf(s, "udcisr0=0x%08x udcisr1=0x%08x\n", 126 udc_readl(udc, UDCISR0), udc_readl(udc, UDCISR1)); 127 seq_printf(s, "udcfnr=%d\n", udc_readl(udc, UDCFNR)); 128 seq_printf(s, "irqs: reset=%lu, suspend=%lu, resume=%lu, reconfig=%lu\n", 129 udc->stats.irqs_reset, udc->stats.irqs_suspend, 130 udc->stats.irqs_resume, udc->stats.irqs_reconfig); 131 132 return 0; 133 } 134 DEFINE_SHOW_ATTRIBUTE(state_dbg); 135 136 static int queues_dbg_show(struct seq_file *s, void *p) 137 { 138 struct pxa_udc *udc = s->private; 139 struct pxa_ep *ep; 140 struct pxa27x_request *req; 141 int i, maxpkt; 142 143 if (!udc->driver) 144 return -ENODEV; 145 146 /* dump endpoint queues */ 147 for (i = 0; i < NR_PXA_ENDPOINTS; i++) { 148 ep = &udc->pxa_ep[i]; 149 maxpkt = ep->fifo_size; 150 seq_printf(s, "%-12s max_pkt=%d %s\n", 151 EPNAME(ep), maxpkt, "pio"); 152 153 if (list_empty(&ep->queue)) { 154 seq_puts(s, "\t(nothing queued)\n"); 155 continue; 156 } 157 158 list_for_each_entry(req, &ep->queue, queue) { 159 seq_printf(s, "\treq %p len %d/%d buf %p\n", 160 &req->req, req->req.actual, 161 req->req.length, req->req.buf); 162 } 163 } 164 165 return 0; 166 } 167 DEFINE_SHOW_ATTRIBUTE(queues_dbg); 168 169 static int eps_dbg_show(struct seq_file *s, void *p) 170 { 171 struct pxa_udc *udc = s->private; 172 struct pxa_ep *ep; 173 int i; 174 u32 tmp; 175 176 if (!udc->driver) 177 return -ENODEV; 178 179 ep = &udc->pxa_ep[0]; 180 tmp = udc_ep_readl(ep, UDCCSR); 181 seq_printf(s, "udccsr0=0x%03x(%s%s%s%s%s%s%s)\n", 182 tmp, 183 (tmp & UDCCSR0_SA) ? " sa" : "", 184 (tmp & UDCCSR0_RNE) ? " rne" : "", 185 (tmp & UDCCSR0_FST) ? " fst" : "", 186 (tmp & UDCCSR0_SST) ? " sst" : "", 187 (tmp & UDCCSR0_DME) ? " dme" : "", 188 (tmp & UDCCSR0_IPR) ? " ipr" : "", 189 (tmp & UDCCSR0_OPC) ? " opc" : ""); 190 for (i = 0; i < NR_PXA_ENDPOINTS; i++) { 191 ep = &udc->pxa_ep[i]; 192 tmp = i? udc_ep_readl(ep, UDCCR) : udc_readl(udc, UDCCR); 193 seq_printf(s, "%-12s: IN %lu(%lu reqs), OUT %lu(%lu reqs), irqs=%lu, udccr=0x%08x, udccsr=0x%03x, udcbcr=%d\n", 194 EPNAME(ep), 195 ep->stats.in_bytes, ep->stats.in_ops, 196 ep->stats.out_bytes, ep->stats.out_ops, 197 ep->stats.irqs, 198 tmp, udc_ep_readl(ep, UDCCSR), 199 udc_ep_readl(ep, UDCBCR)); 200 } 201 202 return 0; 203 } 204 DEFINE_SHOW_ATTRIBUTE(eps_dbg); 205 206 static void pxa_init_debugfs(struct pxa_udc *udc) 207 { 208 struct dentry *root; 209 210 root = debugfs_create_dir(udc->gadget.name, usb_debug_root); 211 debugfs_create_file("udcstate", 0400, root, udc, &state_dbg_fops); 212 debugfs_create_file("queues", 0400, root, udc, &queues_dbg_fops); 213 debugfs_create_file("epstate", 0400, root, udc, &eps_dbg_fops); 214 } 215 216 static void pxa_cleanup_debugfs(struct pxa_udc *udc) 217 { 218 debugfs_lookup_and_remove(udc->gadget.name, usb_debug_root); 219 } 220 221 #else 222 static inline void pxa_init_debugfs(struct pxa_udc *udc) 223 { 224 } 225 226 static inline void pxa_cleanup_debugfs(struct pxa_udc *udc) 227 { 228 } 229 #endif 230 231 /** 232 * is_match_usb_pxa - check if usb_ep and pxa_ep match 233 * @udc_usb_ep: usb endpoint 234 * @ep: pxa endpoint 235 * @config: configuration required in pxa_ep 236 * @interface: interface required in pxa_ep 237 * @altsetting: altsetting required in pxa_ep 238 * 239 * Returns 1 if all criteria match between pxa and usb endpoint, 0 otherwise 240 */ 241 static int is_match_usb_pxa(struct udc_usb_ep *udc_usb_ep, struct pxa_ep *ep, 242 int config, int interface, int altsetting) 243 { 244 if (usb_endpoint_num(&udc_usb_ep->desc) != ep->addr) 245 return 0; 246 if (usb_endpoint_dir_in(&udc_usb_ep->desc) != ep->dir_in) 247 return 0; 248 if (usb_endpoint_type(&udc_usb_ep->desc) != ep->type) 249 return 0; 250 if ((ep->config != config) || (ep->interface != interface) 251 || (ep->alternate != altsetting)) 252 return 0; 253 return 1; 254 } 255 256 /** 257 * find_pxa_ep - find pxa_ep structure matching udc_usb_ep 258 * @udc: pxa udc 259 * @udc_usb_ep: udc_usb_ep structure 260 * 261 * Match udc_usb_ep and all pxa_ep available, to see if one matches. 262 * This is necessary because of the strong pxa hardware restriction requiring 263 * that once pxa endpoints are initialized, their configuration is freezed, and 264 * no change can be made to their address, direction, or in which configuration, 265 * interface or altsetting they are active ... which differs from more usual 266 * models which have endpoints be roughly just addressable fifos, and leave 267 * configuration events up to gadget drivers (like all control messages). 268 * 269 * Note that there is still a blurred point here : 270 * - we rely on UDCCR register "active interface" and "active altsetting". 271 * This is a nonsense in regard of USB spec, where multiple interfaces are 272 * active at the same time. 273 * - if we knew for sure that the pxa can handle multiple interface at the 274 * same time, assuming Intel's Developer Guide is wrong, this function 275 * should be reviewed, and a cache of couples (iface, altsetting) should 276 * be kept in the pxa_udc structure. In this case this function would match 277 * against the cache of couples instead of the "last altsetting" set up. 278 * 279 * Returns the matched pxa_ep structure or NULL if none found 280 */ 281 static struct pxa_ep *find_pxa_ep(struct pxa_udc *udc, 282 struct udc_usb_ep *udc_usb_ep) 283 { 284 int i; 285 struct pxa_ep *ep; 286 int cfg = udc->config; 287 int iface = udc->last_interface; 288 int alt = udc->last_alternate; 289 290 if (udc_usb_ep == &udc->udc_usb_ep[0]) 291 return &udc->pxa_ep[0]; 292 293 for (i = 1; i < NR_PXA_ENDPOINTS; i++) { 294 ep = &udc->pxa_ep[i]; 295 if (is_match_usb_pxa(udc_usb_ep, ep, cfg, iface, alt)) 296 return ep; 297 } 298 return NULL; 299 } 300 301 /** 302 * update_pxa_ep_matches - update pxa_ep cached values in all udc_usb_ep 303 * @udc: pxa udc 304 * 305 * Context: interrupt handler 306 * 307 * Updates all pxa_ep fields in udc_usb_ep structures, if this field was 308 * previously set up (and is not NULL). The update is necessary is a 309 * configuration change or altsetting change was issued by the USB host. 310 */ 311 static void update_pxa_ep_matches(struct pxa_udc *udc) 312 { 313 int i; 314 struct udc_usb_ep *udc_usb_ep; 315 316 for (i = 1; i < NR_USB_ENDPOINTS; i++) { 317 udc_usb_ep = &udc->udc_usb_ep[i]; 318 if (udc_usb_ep->pxa_ep) 319 udc_usb_ep->pxa_ep = find_pxa_ep(udc, udc_usb_ep); 320 } 321 } 322 323 /** 324 * pio_irq_enable - Enables irq generation for one endpoint 325 * @ep: udc endpoint 326 */ 327 static void pio_irq_enable(struct pxa_ep *ep) 328 { 329 struct pxa_udc *udc = ep->dev; 330 int index = EPIDX(ep); 331 u32 udcicr0 = udc_readl(udc, UDCICR0); 332 u32 udcicr1 = udc_readl(udc, UDCICR1); 333 334 if (index < 16) 335 udc_writel(udc, UDCICR0, udcicr0 | (3 << (index * 2))); 336 else 337 udc_writel(udc, UDCICR1, udcicr1 | (3 << ((index - 16) * 2))); 338 } 339 340 /** 341 * pio_irq_disable - Disables irq generation for one endpoint 342 * @ep: udc endpoint 343 */ 344 static void pio_irq_disable(struct pxa_ep *ep) 345 { 346 struct pxa_udc *udc = ep->dev; 347 int index = EPIDX(ep); 348 u32 udcicr0 = udc_readl(udc, UDCICR0); 349 u32 udcicr1 = udc_readl(udc, UDCICR1); 350 351 if (index < 16) 352 udc_writel(udc, UDCICR0, udcicr0 & ~(3 << (index * 2))); 353 else 354 udc_writel(udc, UDCICR1, udcicr1 & ~(3 << ((index - 16) * 2))); 355 } 356 357 /** 358 * udc_set_mask_UDCCR - set bits in UDCCR 359 * @udc: udc device 360 * @mask: bits to set in UDCCR 361 * 362 * Sets bits in UDCCR, leaving DME and FST bits as they were. 363 */ 364 static inline void udc_set_mask_UDCCR(struct pxa_udc *udc, int mask) 365 { 366 u32 udccr = udc_readl(udc, UDCCR); 367 udc_writel(udc, UDCCR, 368 (udccr & UDCCR_MASK_BITS) | (mask & UDCCR_MASK_BITS)); 369 } 370 371 /** 372 * udc_clear_mask_UDCCR - clears bits in UDCCR 373 * @udc: udc device 374 * @mask: bit to clear in UDCCR 375 * 376 * Clears bits in UDCCR, leaving DME and FST bits as they were. 377 */ 378 static inline void udc_clear_mask_UDCCR(struct pxa_udc *udc, int mask) 379 { 380 u32 udccr = udc_readl(udc, UDCCR); 381 udc_writel(udc, UDCCR, 382 (udccr & UDCCR_MASK_BITS) & ~(mask & UDCCR_MASK_BITS)); 383 } 384 385 /** 386 * ep_write_UDCCSR - set bits in UDCCSR 387 * @ep: udc endpoint 388 * @mask: bits to set in UDCCR 389 * 390 * Sets bits in UDCCSR (UDCCSR0 and UDCCSR*). 391 * 392 * A specific case is applied to ep0 : the ACM bit is always set to 1, for 393 * SET_INTERFACE and SET_CONFIGURATION. 394 */ 395 static inline void ep_write_UDCCSR(struct pxa_ep *ep, int mask) 396 { 397 if (is_ep0(ep)) 398 mask |= UDCCSR0_ACM; 399 udc_ep_writel(ep, UDCCSR, mask); 400 } 401 402 /** 403 * ep_count_bytes_remain - get how many bytes in udc endpoint 404 * @ep: udc endpoint 405 * 406 * Returns number of bytes in OUT fifos. Broken for IN fifos (-EOPNOTSUPP) 407 */ 408 static int ep_count_bytes_remain(struct pxa_ep *ep) 409 { 410 if (ep->dir_in) 411 return -EOPNOTSUPP; 412 return udc_ep_readl(ep, UDCBCR) & 0x3ff; 413 } 414 415 /** 416 * ep_is_empty - checks if ep has byte ready for reading 417 * @ep: udc endpoint 418 * 419 * If endpoint is the control endpoint, checks if there are bytes in the 420 * control endpoint fifo. If endpoint is a data endpoint, checks if bytes 421 * are ready for reading on OUT endpoint. 422 * 423 * Returns 0 if ep not empty, 1 if ep empty, -EOPNOTSUPP if IN endpoint 424 */ 425 static int ep_is_empty(struct pxa_ep *ep) 426 { 427 int ret; 428 429 if (!is_ep0(ep) && ep->dir_in) 430 return -EOPNOTSUPP; 431 if (is_ep0(ep)) 432 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR0_RNE); 433 else 434 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNE); 435 return ret; 436 } 437 438 /** 439 * ep_is_full - checks if ep has place to write bytes 440 * @ep: udc endpoint 441 * 442 * If endpoint is not the control endpoint and is an IN endpoint, checks if 443 * there is place to write bytes into the endpoint. 444 * 445 * Returns 0 if ep not full, 1 if ep full, -EOPNOTSUPP if OUT endpoint 446 */ 447 static int ep_is_full(struct pxa_ep *ep) 448 { 449 if (is_ep0(ep)) 450 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_IPR); 451 if (!ep->dir_in) 452 return -EOPNOTSUPP; 453 return (!(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNF)); 454 } 455 456 /** 457 * epout_has_pkt - checks if OUT endpoint fifo has a packet available 458 * @ep: pxa endpoint 459 * 460 * Returns 1 if a complete packet is available, 0 if not, -EOPNOTSUPP for IN ep. 461 */ 462 static int epout_has_pkt(struct pxa_ep *ep) 463 { 464 if (!is_ep0(ep) && ep->dir_in) 465 return -EOPNOTSUPP; 466 if (is_ep0(ep)) 467 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_OPC); 468 return (udc_ep_readl(ep, UDCCSR) & UDCCSR_PC); 469 } 470 471 /** 472 * set_ep0state - Set ep0 automata state 473 * @udc: udc device 474 * @state: state 475 */ 476 static void set_ep0state(struct pxa_udc *udc, int state) 477 { 478 struct pxa_ep *ep = &udc->pxa_ep[0]; 479 char *old_stname = EP0_STNAME(udc); 480 481 udc->ep0state = state; 482 ep_dbg(ep, "state=%s->%s, udccsr0=0x%03x, udcbcr=%d\n", old_stname, 483 EP0_STNAME(udc), udc_ep_readl(ep, UDCCSR), 484 udc_ep_readl(ep, UDCBCR)); 485 } 486 487 /** 488 * ep0_idle - Put control endpoint into idle state 489 * @dev: udc device 490 */ 491 static void ep0_idle(struct pxa_udc *dev) 492 { 493 set_ep0state(dev, WAIT_FOR_SETUP); 494 } 495 496 /** 497 * inc_ep_stats_reqs - Update ep stats counts 498 * @ep: physical endpoint 499 * @is_in: ep direction (USB_DIR_IN or 0) 500 * 501 */ 502 static void inc_ep_stats_reqs(struct pxa_ep *ep, int is_in) 503 { 504 if (is_in) 505 ep->stats.in_ops++; 506 else 507 ep->stats.out_ops++; 508 } 509 510 /** 511 * inc_ep_stats_bytes - Update ep stats counts 512 * @ep: physical endpoint 513 * @count: bytes transferred on endpoint 514 * @is_in: ep direction (USB_DIR_IN or 0) 515 */ 516 static void inc_ep_stats_bytes(struct pxa_ep *ep, int count, int is_in) 517 { 518 if (is_in) 519 ep->stats.in_bytes += count; 520 else 521 ep->stats.out_bytes += count; 522 } 523 524 /** 525 * pxa_ep_setup - Sets up an usb physical endpoint 526 * @ep: pxa27x physical endpoint 527 * 528 * Find the physical pxa27x ep, and setup its UDCCR 529 */ 530 static void pxa_ep_setup(struct pxa_ep *ep) 531 { 532 u32 new_udccr; 533 534 new_udccr = ((ep->config << UDCCONR_CN_S) & UDCCONR_CN) 535 | ((ep->interface << UDCCONR_IN_S) & UDCCONR_IN) 536 | ((ep->alternate << UDCCONR_AISN_S) & UDCCONR_AISN) 537 | ((EPADDR(ep) << UDCCONR_EN_S) & UDCCONR_EN) 538 | ((EPXFERTYPE(ep) << UDCCONR_ET_S) & UDCCONR_ET) 539 | ((ep->dir_in) ? UDCCONR_ED : 0) 540 | ((ep->fifo_size << UDCCONR_MPS_S) & UDCCONR_MPS) 541 | UDCCONR_EE; 542 543 udc_ep_writel(ep, UDCCR, new_udccr); 544 } 545 546 /** 547 * pxa_eps_setup - Sets up all usb physical endpoints 548 * @dev: udc device 549 * 550 * Setup all pxa physical endpoints, except ep0 551 */ 552 static void pxa_eps_setup(struct pxa_udc *dev) 553 { 554 unsigned int i; 555 556 dev_dbg(dev->dev, "%s: dev=%p\n", __func__, dev); 557 558 for (i = 1; i < NR_PXA_ENDPOINTS; i++) 559 pxa_ep_setup(&dev->pxa_ep[i]); 560 } 561 562 /** 563 * pxa_ep_alloc_request - Allocate usb request 564 * @_ep: usb endpoint 565 * @gfp_flags: 566 * 567 * For the pxa27x, these can just wrap kmalloc/kfree. gadget drivers 568 * must still pass correctly initialized endpoints, since other controller 569 * drivers may care about how it's currently set up (dma issues etc). 570 */ 571 static struct usb_request * 572 pxa_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags) 573 { 574 struct pxa27x_request *req; 575 576 req = kzalloc(sizeof *req, gfp_flags); 577 if (!req) 578 return NULL; 579 580 INIT_LIST_HEAD(&req->queue); 581 req->in_use = 0; 582 req->udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 583 584 return &req->req; 585 } 586 587 /** 588 * pxa_ep_free_request - Free usb request 589 * @_ep: usb endpoint 590 * @_req: usb request 591 * 592 * Wrapper around kfree to free _req 593 */ 594 static void pxa_ep_free_request(struct usb_ep *_ep, struct usb_request *_req) 595 { 596 struct pxa27x_request *req; 597 598 req = container_of(_req, struct pxa27x_request, req); 599 WARN_ON(!list_empty(&req->queue)); 600 kfree(req); 601 } 602 603 /** 604 * ep_add_request - add a request to the endpoint's queue 605 * @ep: usb endpoint 606 * @req: usb request 607 * 608 * Context: ep->lock held 609 * 610 * Queues the request in the endpoint's queue, and enables the interrupts 611 * on the endpoint. 612 */ 613 static void ep_add_request(struct pxa_ep *ep, struct pxa27x_request *req) 614 { 615 if (unlikely(!req)) 616 return; 617 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req, 618 req->req.length, udc_ep_readl(ep, UDCCSR)); 619 620 req->in_use = 1; 621 list_add_tail(&req->queue, &ep->queue); 622 pio_irq_enable(ep); 623 } 624 625 /** 626 * ep_del_request - removes a request from the endpoint's queue 627 * @ep: usb endpoint 628 * @req: usb request 629 * 630 * Context: ep->lock held 631 * 632 * Unqueue the request from the endpoint's queue. If there are no more requests 633 * on the endpoint, and if it's not the control endpoint, interrupts are 634 * disabled on the endpoint. 635 */ 636 static void ep_del_request(struct pxa_ep *ep, struct pxa27x_request *req) 637 { 638 if (unlikely(!req)) 639 return; 640 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req, 641 req->req.length, udc_ep_readl(ep, UDCCSR)); 642 643 list_del_init(&req->queue); 644 req->in_use = 0; 645 if (!is_ep0(ep) && list_empty(&ep->queue)) 646 pio_irq_disable(ep); 647 } 648 649 /** 650 * req_done - Complete an usb request 651 * @ep: pxa physical endpoint 652 * @req: pxa request 653 * @status: usb request status sent to gadget API 654 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held 655 * 656 * Context: ep->lock held if flags not NULL, else ep->lock released 657 * 658 * Retire a pxa27x usb request. Endpoint must be locked. 659 */ 660 static void req_done(struct pxa_ep *ep, struct pxa27x_request *req, int status, 661 unsigned long *pflags) 662 { 663 unsigned long flags; 664 665 ep_del_request(ep, req); 666 if (likely(req->req.status == -EINPROGRESS)) 667 req->req.status = status; 668 else 669 status = req->req.status; 670 671 if (status && status != -ESHUTDOWN) 672 ep_dbg(ep, "complete req %p stat %d len %u/%u\n", 673 &req->req, status, 674 req->req.actual, req->req.length); 675 676 if (pflags) 677 spin_unlock_irqrestore(&ep->lock, *pflags); 678 local_irq_save(flags); 679 usb_gadget_giveback_request(&req->udc_usb_ep->usb_ep, &req->req); 680 local_irq_restore(flags); 681 if (pflags) 682 spin_lock_irqsave(&ep->lock, *pflags); 683 } 684 685 /** 686 * ep_end_out_req - Ends endpoint OUT request 687 * @ep: physical endpoint 688 * @req: pxa request 689 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held 690 * 691 * Context: ep->lock held or released (see req_done()) 692 * 693 * Ends endpoint OUT request (completes usb request). 694 */ 695 static void ep_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req, 696 unsigned long *pflags) 697 { 698 inc_ep_stats_reqs(ep, !USB_DIR_IN); 699 req_done(ep, req, 0, pflags); 700 } 701 702 /** 703 * ep0_end_out_req - Ends control endpoint OUT request (ends data stage) 704 * @ep: physical endpoint 705 * @req: pxa request 706 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held 707 * 708 * Context: ep->lock held or released (see req_done()) 709 * 710 * Ends control endpoint OUT request (completes usb request), and puts 711 * control endpoint into idle state 712 */ 713 static void ep0_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req, 714 unsigned long *pflags) 715 { 716 set_ep0state(ep->dev, OUT_STATUS_STAGE); 717 ep_end_out_req(ep, req, pflags); 718 ep0_idle(ep->dev); 719 } 720 721 /** 722 * ep_end_in_req - Ends endpoint IN request 723 * @ep: physical endpoint 724 * @req: pxa request 725 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held 726 * 727 * Context: ep->lock held or released (see req_done()) 728 * 729 * Ends endpoint IN request (completes usb request). 730 */ 731 static void ep_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req, 732 unsigned long *pflags) 733 { 734 inc_ep_stats_reqs(ep, USB_DIR_IN); 735 req_done(ep, req, 0, pflags); 736 } 737 738 /** 739 * ep0_end_in_req - Ends control endpoint IN request (ends data stage) 740 * @ep: physical endpoint 741 * @req: pxa request 742 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held 743 * 744 * Context: ep->lock held or released (see req_done()) 745 * 746 * Ends control endpoint IN request (completes usb request), and puts 747 * control endpoint into status state 748 */ 749 static void ep0_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req, 750 unsigned long *pflags) 751 { 752 set_ep0state(ep->dev, IN_STATUS_STAGE); 753 ep_end_in_req(ep, req, pflags); 754 } 755 756 /** 757 * nuke - Dequeue all requests 758 * @ep: pxa endpoint 759 * @status: usb request status 760 * 761 * Context: ep->lock released 762 * 763 * Dequeues all requests on an endpoint. As a side effect, interrupts will be 764 * disabled on that endpoint (because no more requests). 765 */ 766 static void nuke(struct pxa_ep *ep, int status) 767 { 768 struct pxa27x_request *req; 769 unsigned long flags; 770 771 spin_lock_irqsave(&ep->lock, flags); 772 while (!list_empty(&ep->queue)) { 773 req = list_entry(ep->queue.next, struct pxa27x_request, queue); 774 req_done(ep, req, status, &flags); 775 } 776 spin_unlock_irqrestore(&ep->lock, flags); 777 } 778 779 /** 780 * read_packet - transfer 1 packet from an OUT endpoint into request 781 * @ep: pxa physical endpoint 782 * @req: usb request 783 * 784 * Takes bytes from OUT endpoint and transfers them info the usb request. 785 * If there is less space in request than bytes received in OUT endpoint, 786 * bytes are left in the OUT endpoint. 787 * 788 * Returns how many bytes were actually transferred 789 */ 790 static int read_packet(struct pxa_ep *ep, struct pxa27x_request *req) 791 { 792 u32 *buf; 793 int bytes_ep, bufferspace, count, i; 794 795 bytes_ep = ep_count_bytes_remain(ep); 796 bufferspace = req->req.length - req->req.actual; 797 798 buf = (u32 *)(req->req.buf + req->req.actual); 799 prefetchw(buf); 800 801 if (likely(!ep_is_empty(ep))) 802 count = min(bytes_ep, bufferspace); 803 else /* zlp */ 804 count = 0; 805 806 for (i = count; i > 0; i -= 4) 807 *buf++ = udc_ep_readl(ep, UDCDR); 808 req->req.actual += count; 809 810 ep_write_UDCCSR(ep, UDCCSR_PC); 811 812 return count; 813 } 814 815 /** 816 * write_packet - transfer 1 packet from request into an IN endpoint 817 * @ep: pxa physical endpoint 818 * @req: usb request 819 * @max: max bytes that fit into endpoint 820 * 821 * Takes bytes from usb request, and transfers them into the physical 822 * endpoint. If there are no bytes to transfer, doesn't write anything 823 * to physical endpoint. 824 * 825 * Returns how many bytes were actually transferred. 826 */ 827 static int write_packet(struct pxa_ep *ep, struct pxa27x_request *req, 828 unsigned int max) 829 { 830 int length, count, remain, i; 831 u32 *buf; 832 u8 *buf_8; 833 834 buf = (u32 *)(req->req.buf + req->req.actual); 835 prefetch(buf); 836 837 length = min(req->req.length - req->req.actual, max); 838 req->req.actual += length; 839 840 remain = length & 0x3; 841 count = length & ~(0x3); 842 for (i = count; i > 0 ; i -= 4) 843 udc_ep_writel(ep, UDCDR, *buf++); 844 845 buf_8 = (u8 *)buf; 846 for (i = remain; i > 0; i--) 847 udc_ep_writeb(ep, UDCDR, *buf_8++); 848 849 ep_vdbg(ep, "length=%d+%d, udccsr=0x%03x\n", count, remain, 850 udc_ep_readl(ep, UDCCSR)); 851 852 return length; 853 } 854 855 /** 856 * read_fifo - Transfer packets from OUT endpoint into usb request 857 * @ep: pxa physical endpoint 858 * @req: usb request 859 * 860 * Context: interrupt handler 861 * 862 * Unload as many packets as possible from the fifo we use for usb OUT 863 * transfers and put them into the request. Caller should have made sure 864 * there's at least one packet ready. 865 * Doesn't complete the request, that's the caller's job 866 * 867 * Returns 1 if the request completed, 0 otherwise 868 */ 869 static int read_fifo(struct pxa_ep *ep, struct pxa27x_request *req) 870 { 871 int count, is_short, completed = 0; 872 873 while (epout_has_pkt(ep)) { 874 count = read_packet(ep, req); 875 inc_ep_stats_bytes(ep, count, !USB_DIR_IN); 876 877 is_short = (count < ep->fifo_size); 878 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n", 879 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "", 880 &req->req, req->req.actual, req->req.length); 881 882 /* completion */ 883 if (is_short || req->req.actual == req->req.length) { 884 completed = 1; 885 break; 886 } 887 /* finished that packet. the next one may be waiting... */ 888 } 889 return completed; 890 } 891 892 /** 893 * write_fifo - transfer packets from usb request into an IN endpoint 894 * @ep: pxa physical endpoint 895 * @req: pxa usb request 896 * 897 * Write to an IN endpoint fifo, as many packets as possible. 898 * irqs will use this to write the rest later. 899 * caller guarantees at least one packet buffer is ready (or a zlp). 900 * Doesn't complete the request, that's the caller's job 901 * 902 * Returns 1 if request fully transferred, 0 if partial transfer 903 */ 904 static int write_fifo(struct pxa_ep *ep, struct pxa27x_request *req) 905 { 906 unsigned max; 907 int count, is_short, is_last = 0, completed = 0, totcount = 0; 908 u32 udccsr; 909 910 max = ep->fifo_size; 911 do { 912 udccsr = udc_ep_readl(ep, UDCCSR); 913 if (udccsr & UDCCSR_PC) { 914 ep_vdbg(ep, "Clearing Transmit Complete, udccsr=%x\n", 915 udccsr); 916 ep_write_UDCCSR(ep, UDCCSR_PC); 917 } 918 if (udccsr & UDCCSR_TRN) { 919 ep_vdbg(ep, "Clearing Underrun on, udccsr=%x\n", 920 udccsr); 921 ep_write_UDCCSR(ep, UDCCSR_TRN); 922 } 923 924 count = write_packet(ep, req, max); 925 inc_ep_stats_bytes(ep, count, USB_DIR_IN); 926 totcount += count; 927 928 /* last packet is usually short (or a zlp) */ 929 if (unlikely(count < max)) { 930 is_last = 1; 931 is_short = 1; 932 } else { 933 if (likely(req->req.length > req->req.actual) 934 || req->req.zero) 935 is_last = 0; 936 else 937 is_last = 1; 938 /* interrupt/iso maxpacket may not fill the fifo */ 939 is_short = unlikely(max < ep->fifo_size); 940 } 941 942 if (is_short) 943 ep_write_UDCCSR(ep, UDCCSR_SP); 944 945 /* requests complete when all IN data is in the FIFO */ 946 if (is_last) { 947 completed = 1; 948 break; 949 } 950 } while (!ep_is_full(ep)); 951 952 ep_dbg(ep, "wrote count:%d bytes%s%s, left:%d req=%p\n", 953 totcount, is_last ? "/L" : "", is_short ? "/S" : "", 954 req->req.length - req->req.actual, &req->req); 955 956 return completed; 957 } 958 959 /** 960 * read_ep0_fifo - Transfer packets from control endpoint into usb request 961 * @ep: control endpoint 962 * @req: pxa usb request 963 * 964 * Special ep0 version of the above read_fifo. Reads as many bytes from control 965 * endpoint as can be read, and stores them into usb request (limited by request 966 * maximum length). 967 * 968 * Returns 0 if usb request only partially filled, 1 if fully filled 969 */ 970 static int read_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req) 971 { 972 int count, is_short, completed = 0; 973 974 while (epout_has_pkt(ep)) { 975 count = read_packet(ep, req); 976 ep_write_UDCCSR(ep, UDCCSR0_OPC); 977 inc_ep_stats_bytes(ep, count, !USB_DIR_IN); 978 979 is_short = (count < ep->fifo_size); 980 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n", 981 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "", 982 &req->req, req->req.actual, req->req.length); 983 984 if (is_short || req->req.actual >= req->req.length) { 985 completed = 1; 986 break; 987 } 988 } 989 990 return completed; 991 } 992 993 /** 994 * write_ep0_fifo - Send a request to control endpoint (ep0 in) 995 * @ep: control endpoint 996 * @req: request 997 * 998 * Context: interrupt handler 999 * 1000 * Sends a request (or a part of the request) to the control endpoint (ep0 in). 1001 * If the request doesn't fit, the remaining part will be sent from irq. 1002 * The request is considered fully written only if either : 1003 * - last write transferred all remaining bytes, but fifo was not fully filled 1004 * - last write was a 0 length write 1005 * 1006 * Returns 1 if request fully written, 0 if request only partially sent 1007 */ 1008 static int write_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req) 1009 { 1010 unsigned count; 1011 int is_last, is_short; 1012 1013 count = write_packet(ep, req, EP0_FIFO_SIZE); 1014 inc_ep_stats_bytes(ep, count, USB_DIR_IN); 1015 1016 is_short = (count < EP0_FIFO_SIZE); 1017 is_last = ((count == 0) || (count < EP0_FIFO_SIZE)); 1018 1019 /* Sends either a short packet or a 0 length packet */ 1020 if (unlikely(is_short)) 1021 ep_write_UDCCSR(ep, UDCCSR0_IPR); 1022 1023 ep_dbg(ep, "in %d bytes%s%s, %d left, req=%p, udccsr0=0x%03x\n", 1024 count, is_short ? "/S" : "", is_last ? "/L" : "", 1025 req->req.length - req->req.actual, 1026 &req->req, udc_ep_readl(ep, UDCCSR)); 1027 1028 return is_last; 1029 } 1030 1031 /** 1032 * pxa_ep_queue - Queue a request into an IN endpoint 1033 * @_ep: usb endpoint 1034 * @_req: usb request 1035 * @gfp_flags: flags 1036 * 1037 * Context: thread context or from the interrupt handler in the 1038 * special case of ep0 setup : 1039 * (irq->handle_ep0_ctrl_req->gadget_setup->pxa_ep_queue) 1040 * 1041 * Returns 0 if succedeed, error otherwise 1042 */ 1043 static int pxa_ep_queue(struct usb_ep *_ep, struct usb_request *_req, 1044 gfp_t gfp_flags) 1045 { 1046 struct udc_usb_ep *udc_usb_ep; 1047 struct pxa_ep *ep; 1048 struct pxa27x_request *req; 1049 struct pxa_udc *dev; 1050 unsigned long flags; 1051 int rc = 0; 1052 int is_first_req; 1053 unsigned length; 1054 int recursion_detected; 1055 1056 req = container_of(_req, struct pxa27x_request, req); 1057 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1058 1059 if (unlikely(!_req || !_req->complete || !_req->buf)) 1060 return -EINVAL; 1061 1062 if (unlikely(!_ep)) 1063 return -EINVAL; 1064 1065 ep = udc_usb_ep->pxa_ep; 1066 if (unlikely(!ep)) 1067 return -EINVAL; 1068 1069 dev = ep->dev; 1070 if (unlikely(!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) { 1071 ep_dbg(ep, "bogus device state\n"); 1072 return -ESHUTDOWN; 1073 } 1074 1075 /* iso is always one packet per request, that's the only way 1076 * we can report per-packet status. that also helps with dma. 1077 */ 1078 if (unlikely(EPXFERTYPE_is_ISO(ep) 1079 && req->req.length > ep->fifo_size)) 1080 return -EMSGSIZE; 1081 1082 spin_lock_irqsave(&ep->lock, flags); 1083 recursion_detected = ep->in_handle_ep; 1084 1085 is_first_req = list_empty(&ep->queue); 1086 ep_dbg(ep, "queue req %p(first=%s), len %d buf %p\n", 1087 _req, is_first_req ? "yes" : "no", 1088 _req->length, _req->buf); 1089 1090 if (!ep->enabled) { 1091 _req->status = -ESHUTDOWN; 1092 rc = -ESHUTDOWN; 1093 goto out_locked; 1094 } 1095 1096 if (req->in_use) { 1097 ep_err(ep, "refusing to queue req %p (already queued)\n", req); 1098 goto out_locked; 1099 } 1100 1101 length = _req->length; 1102 _req->status = -EINPROGRESS; 1103 _req->actual = 0; 1104 1105 ep_add_request(ep, req); 1106 spin_unlock_irqrestore(&ep->lock, flags); 1107 1108 if (is_ep0(ep)) { 1109 switch (dev->ep0state) { 1110 case WAIT_ACK_SET_CONF_INTERF: 1111 if (length == 0) { 1112 ep_end_in_req(ep, req, NULL); 1113 } else { 1114 ep_err(ep, "got a request of %d bytes while" 1115 "in state WAIT_ACK_SET_CONF_INTERF\n", 1116 length); 1117 ep_del_request(ep, req); 1118 rc = -EL2HLT; 1119 } 1120 ep0_idle(ep->dev); 1121 break; 1122 case IN_DATA_STAGE: 1123 if (!ep_is_full(ep)) 1124 if (write_ep0_fifo(ep, req)) 1125 ep0_end_in_req(ep, req, NULL); 1126 break; 1127 case OUT_DATA_STAGE: 1128 if ((length == 0) || !epout_has_pkt(ep)) 1129 if (read_ep0_fifo(ep, req)) 1130 ep0_end_out_req(ep, req, NULL); 1131 break; 1132 default: 1133 ep_err(ep, "odd state %s to send me a request\n", 1134 EP0_STNAME(ep->dev)); 1135 ep_del_request(ep, req); 1136 rc = -EL2HLT; 1137 break; 1138 } 1139 } else { 1140 if (!recursion_detected) 1141 handle_ep(ep); 1142 } 1143 1144 out: 1145 return rc; 1146 out_locked: 1147 spin_unlock_irqrestore(&ep->lock, flags); 1148 goto out; 1149 } 1150 1151 /** 1152 * pxa_ep_dequeue - Dequeue one request 1153 * @_ep: usb endpoint 1154 * @_req: usb request 1155 * 1156 * Return 0 if no error, -EINVAL or -ECONNRESET otherwise 1157 */ 1158 static int pxa_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req) 1159 { 1160 struct pxa_ep *ep; 1161 struct udc_usb_ep *udc_usb_ep; 1162 struct pxa27x_request *req = NULL, *iter; 1163 unsigned long flags; 1164 int rc = -EINVAL; 1165 1166 if (!_ep) 1167 return rc; 1168 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1169 ep = udc_usb_ep->pxa_ep; 1170 if (!ep || is_ep0(ep)) 1171 return rc; 1172 1173 spin_lock_irqsave(&ep->lock, flags); 1174 1175 /* make sure it's actually queued on this endpoint */ 1176 list_for_each_entry(iter, &ep->queue, queue) { 1177 if (&iter->req != _req) 1178 continue; 1179 req = iter; 1180 rc = 0; 1181 break; 1182 } 1183 1184 spin_unlock_irqrestore(&ep->lock, flags); 1185 if (!rc) 1186 req_done(ep, req, -ECONNRESET, NULL); 1187 return rc; 1188 } 1189 1190 /** 1191 * pxa_ep_set_halt - Halts operations on one endpoint 1192 * @_ep: usb endpoint 1193 * @value: 1194 * 1195 * Returns 0 if no error, -EINVAL, -EROFS, -EAGAIN otherwise 1196 */ 1197 static int pxa_ep_set_halt(struct usb_ep *_ep, int value) 1198 { 1199 struct pxa_ep *ep; 1200 struct udc_usb_ep *udc_usb_ep; 1201 unsigned long flags; 1202 int rc; 1203 1204 1205 if (!_ep) 1206 return -EINVAL; 1207 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1208 ep = udc_usb_ep->pxa_ep; 1209 if (!ep || is_ep0(ep)) 1210 return -EINVAL; 1211 1212 if (value == 0) { 1213 /* 1214 * This path (reset toggle+halt) is needed to implement 1215 * SET_INTERFACE on normal hardware. but it can't be 1216 * done from software on the PXA UDC, and the hardware 1217 * forgets to do it as part of SET_INTERFACE automagic. 1218 */ 1219 ep_dbg(ep, "only host can clear halt\n"); 1220 return -EROFS; 1221 } 1222 1223 spin_lock_irqsave(&ep->lock, flags); 1224 1225 rc = -EAGAIN; 1226 if (ep->dir_in && (ep_is_full(ep) || !list_empty(&ep->queue))) 1227 goto out; 1228 1229 /* FST, FEF bits are the same for control and non control endpoints */ 1230 rc = 0; 1231 ep_write_UDCCSR(ep, UDCCSR_FST | UDCCSR_FEF); 1232 if (is_ep0(ep)) 1233 set_ep0state(ep->dev, STALL); 1234 1235 out: 1236 spin_unlock_irqrestore(&ep->lock, flags); 1237 return rc; 1238 } 1239 1240 /** 1241 * pxa_ep_fifo_status - Get how many bytes in physical endpoint 1242 * @_ep: usb endpoint 1243 * 1244 * Returns number of bytes in OUT fifos. Broken for IN fifos. 1245 */ 1246 static int pxa_ep_fifo_status(struct usb_ep *_ep) 1247 { 1248 struct pxa_ep *ep; 1249 struct udc_usb_ep *udc_usb_ep; 1250 1251 if (!_ep) 1252 return -ENODEV; 1253 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1254 ep = udc_usb_ep->pxa_ep; 1255 if (!ep || is_ep0(ep)) 1256 return -ENODEV; 1257 1258 if (ep->dir_in) 1259 return -EOPNOTSUPP; 1260 if (ep->dev->gadget.speed == USB_SPEED_UNKNOWN || ep_is_empty(ep)) 1261 return 0; 1262 else 1263 return ep_count_bytes_remain(ep) + 1; 1264 } 1265 1266 /** 1267 * pxa_ep_fifo_flush - Flushes one endpoint 1268 * @_ep: usb endpoint 1269 * 1270 * Discards all data in one endpoint(IN or OUT), except control endpoint. 1271 */ 1272 static void pxa_ep_fifo_flush(struct usb_ep *_ep) 1273 { 1274 struct pxa_ep *ep; 1275 struct udc_usb_ep *udc_usb_ep; 1276 unsigned long flags; 1277 1278 if (!_ep) 1279 return; 1280 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1281 ep = udc_usb_ep->pxa_ep; 1282 if (!ep || is_ep0(ep)) 1283 return; 1284 1285 spin_lock_irqsave(&ep->lock, flags); 1286 1287 if (unlikely(!list_empty(&ep->queue))) 1288 ep_dbg(ep, "called while queue list not empty\n"); 1289 ep_dbg(ep, "called\n"); 1290 1291 /* for OUT, just read and discard the FIFO contents. */ 1292 if (!ep->dir_in) { 1293 while (!ep_is_empty(ep)) 1294 udc_ep_readl(ep, UDCDR); 1295 } else { 1296 /* most IN status is the same, but ISO can't stall */ 1297 ep_write_UDCCSR(ep, 1298 UDCCSR_PC | UDCCSR_FEF | UDCCSR_TRN 1299 | (EPXFERTYPE_is_ISO(ep) ? 0 : UDCCSR_SST)); 1300 } 1301 1302 spin_unlock_irqrestore(&ep->lock, flags); 1303 } 1304 1305 /** 1306 * pxa_ep_enable - Enables usb endpoint 1307 * @_ep: usb endpoint 1308 * @desc: usb endpoint descriptor 1309 * 1310 * Nothing much to do here, as ep configuration is done once and for all 1311 * before udc is enabled. After udc enable, no physical endpoint configuration 1312 * can be changed. 1313 * Function makes sanity checks and flushes the endpoint. 1314 */ 1315 static int pxa_ep_enable(struct usb_ep *_ep, 1316 const struct usb_endpoint_descriptor *desc) 1317 { 1318 struct pxa_ep *ep; 1319 struct udc_usb_ep *udc_usb_ep; 1320 struct pxa_udc *udc; 1321 1322 if (!_ep || !desc) 1323 return -EINVAL; 1324 1325 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1326 if (udc_usb_ep->pxa_ep) { 1327 ep = udc_usb_ep->pxa_ep; 1328 ep_warn(ep, "usb_ep %s already enabled, doing nothing\n", 1329 _ep->name); 1330 } else { 1331 ep = find_pxa_ep(udc_usb_ep->dev, udc_usb_ep); 1332 } 1333 1334 if (!ep || is_ep0(ep)) { 1335 dev_err(udc_usb_ep->dev->dev, 1336 "unable to match pxa_ep for ep %s\n", 1337 _ep->name); 1338 return -EINVAL; 1339 } 1340 1341 if ((desc->bDescriptorType != USB_DT_ENDPOINT) 1342 || (ep->type != usb_endpoint_type(desc))) { 1343 ep_err(ep, "type mismatch\n"); 1344 return -EINVAL; 1345 } 1346 1347 if (ep->fifo_size < usb_endpoint_maxp(desc)) { 1348 ep_err(ep, "bad maxpacket\n"); 1349 return -ERANGE; 1350 } 1351 1352 udc_usb_ep->pxa_ep = ep; 1353 udc = ep->dev; 1354 1355 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) { 1356 ep_err(ep, "bogus device state\n"); 1357 return -ESHUTDOWN; 1358 } 1359 1360 ep->enabled = 1; 1361 1362 /* flush fifo (mostly for OUT buffers) */ 1363 pxa_ep_fifo_flush(_ep); 1364 1365 ep_dbg(ep, "enabled\n"); 1366 return 0; 1367 } 1368 1369 /** 1370 * pxa_ep_disable - Disable usb endpoint 1371 * @_ep: usb endpoint 1372 * 1373 * Same as for pxa_ep_enable, no physical endpoint configuration can be 1374 * changed. 1375 * Function flushes the endpoint and related requests. 1376 */ 1377 static int pxa_ep_disable(struct usb_ep *_ep) 1378 { 1379 struct pxa_ep *ep; 1380 struct udc_usb_ep *udc_usb_ep; 1381 1382 if (!_ep) 1383 return -EINVAL; 1384 1385 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1386 ep = udc_usb_ep->pxa_ep; 1387 if (!ep || is_ep0(ep) || !list_empty(&ep->queue)) 1388 return -EINVAL; 1389 1390 ep->enabled = 0; 1391 nuke(ep, -ESHUTDOWN); 1392 1393 pxa_ep_fifo_flush(_ep); 1394 udc_usb_ep->pxa_ep = NULL; 1395 1396 ep_dbg(ep, "disabled\n"); 1397 return 0; 1398 } 1399 1400 static const struct usb_ep_ops pxa_ep_ops = { 1401 .enable = pxa_ep_enable, 1402 .disable = pxa_ep_disable, 1403 1404 .alloc_request = pxa_ep_alloc_request, 1405 .free_request = pxa_ep_free_request, 1406 1407 .queue = pxa_ep_queue, 1408 .dequeue = pxa_ep_dequeue, 1409 1410 .set_halt = pxa_ep_set_halt, 1411 .fifo_status = pxa_ep_fifo_status, 1412 .fifo_flush = pxa_ep_fifo_flush, 1413 }; 1414 1415 /** 1416 * dplus_pullup - Connect or disconnect pullup resistor to D+ pin 1417 * @udc: udc device 1418 * @on: 0 if disconnect pullup resistor, 1 otherwise 1419 * Context: any 1420 * 1421 * Handle D+ pullup resistor, make the device visible to the usb bus, and 1422 * declare it as a full speed usb device 1423 */ 1424 static void dplus_pullup(struct pxa_udc *udc, int on) 1425 { 1426 if (udc->gpiod) { 1427 gpiod_set_value(udc->gpiod, on); 1428 } else if (udc->udc_command) { 1429 if (on) 1430 udc->udc_command(PXA2XX_UDC_CMD_CONNECT); 1431 else 1432 udc->udc_command(PXA2XX_UDC_CMD_DISCONNECT); 1433 } 1434 udc->pullup_on = on; 1435 } 1436 1437 /** 1438 * pxa_udc_get_frame - Returns usb frame number 1439 * @_gadget: usb gadget 1440 */ 1441 static int pxa_udc_get_frame(struct usb_gadget *_gadget) 1442 { 1443 struct pxa_udc *udc = to_gadget_udc(_gadget); 1444 1445 return (udc_readl(udc, UDCFNR) & 0x7ff); 1446 } 1447 1448 /** 1449 * pxa_udc_wakeup - Force udc device out of suspend 1450 * @_gadget: usb gadget 1451 * 1452 * Returns 0 if successful, error code otherwise 1453 */ 1454 static int pxa_udc_wakeup(struct usb_gadget *_gadget) 1455 { 1456 struct pxa_udc *udc = to_gadget_udc(_gadget); 1457 1458 /* host may not have enabled remote wakeup */ 1459 if ((udc_readl(udc, UDCCR) & UDCCR_DWRE) == 0) 1460 return -EHOSTUNREACH; 1461 udc_set_mask_UDCCR(udc, UDCCR_UDR); 1462 return 0; 1463 } 1464 1465 static void udc_enable(struct pxa_udc *udc); 1466 static void udc_disable(struct pxa_udc *udc); 1467 1468 /** 1469 * should_enable_udc - Tells if UDC should be enabled 1470 * @udc: udc device 1471 * Context: any 1472 * 1473 * The UDC should be enabled if : 1474 * - the pullup resistor is connected 1475 * - and a gadget driver is bound 1476 * - and vbus is sensed (or no vbus sense is available) 1477 * 1478 * Returns 1 if UDC should be enabled, 0 otherwise 1479 */ 1480 static int should_enable_udc(struct pxa_udc *udc) 1481 { 1482 int put_on; 1483 1484 put_on = ((udc->pullup_on) && (udc->driver)); 1485 put_on &= ((udc->vbus_sensed) || (IS_ERR_OR_NULL(udc->transceiver))); 1486 return put_on; 1487 } 1488 1489 /** 1490 * should_disable_udc - Tells if UDC should be disabled 1491 * @udc: udc device 1492 * Context: any 1493 * 1494 * The UDC should be disabled if : 1495 * - the pullup resistor is not connected 1496 * - or no gadget driver is bound 1497 * - or no vbus is sensed (when vbus sesing is available) 1498 * 1499 * Returns 1 if UDC should be disabled 1500 */ 1501 static int should_disable_udc(struct pxa_udc *udc) 1502 { 1503 int put_off; 1504 1505 put_off = ((!udc->pullup_on) || (!udc->driver)); 1506 put_off |= ((!udc->vbus_sensed) && (!IS_ERR_OR_NULL(udc->transceiver))); 1507 return put_off; 1508 } 1509 1510 /** 1511 * pxa_udc_pullup - Offer manual D+ pullup control 1512 * @_gadget: usb gadget using the control 1513 * @is_active: 0 if disconnect, else connect D+ pullup resistor 1514 * 1515 * Context: task context, might sleep 1516 * 1517 * Returns 0 if OK, -EOPNOTSUPP if udc driver doesn't handle D+ pullup 1518 */ 1519 static int pxa_udc_pullup(struct usb_gadget *_gadget, int is_active) 1520 { 1521 struct pxa_udc *udc = to_gadget_udc(_gadget); 1522 1523 if (!udc->gpiod && !udc->udc_command) 1524 return -EOPNOTSUPP; 1525 1526 dplus_pullup(udc, is_active); 1527 1528 if (should_enable_udc(udc)) 1529 udc_enable(udc); 1530 if (should_disable_udc(udc)) 1531 udc_disable(udc); 1532 return 0; 1533 } 1534 1535 /** 1536 * pxa_udc_vbus_session - Called by external transceiver to enable/disable udc 1537 * @_gadget: usb gadget 1538 * @is_active: 0 if should disable the udc, 1 if should enable 1539 * 1540 * Enables the udc, and optionnaly activates D+ pullup resistor. Or disables the 1541 * udc, and deactivates D+ pullup resistor. 1542 * 1543 * Returns 0 1544 */ 1545 static int pxa_udc_vbus_session(struct usb_gadget *_gadget, int is_active) 1546 { 1547 struct pxa_udc *udc = to_gadget_udc(_gadget); 1548 1549 udc->vbus_sensed = is_active; 1550 if (should_enable_udc(udc)) 1551 udc_enable(udc); 1552 if (should_disable_udc(udc)) 1553 udc_disable(udc); 1554 1555 return 0; 1556 } 1557 1558 /** 1559 * pxa_udc_vbus_draw - Called by gadget driver after SET_CONFIGURATION completed 1560 * @_gadget: usb gadget 1561 * @mA: current drawn 1562 * 1563 * Context: task context, might sleep 1564 * 1565 * Called after a configuration was chosen by a USB host, to inform how much 1566 * current can be drawn by the device from VBus line. 1567 * 1568 * Returns 0 or -EOPNOTSUPP if no transceiver is handling the udc 1569 */ 1570 static int pxa_udc_vbus_draw(struct usb_gadget *_gadget, unsigned mA) 1571 { 1572 struct pxa_udc *udc; 1573 1574 udc = to_gadget_udc(_gadget); 1575 if (!IS_ERR_OR_NULL(udc->transceiver)) 1576 return usb_phy_set_power(udc->transceiver, mA); 1577 return -EOPNOTSUPP; 1578 } 1579 1580 /** 1581 * pxa_udc_phy_event - Called by phy upon VBus event 1582 * @nb: notifier block 1583 * @action: phy action, is vbus connect or disconnect 1584 * @data: the usb_gadget structure in pxa_udc 1585 * 1586 * Called by the USB Phy when a cable connect or disconnect is sensed. 1587 * 1588 * Returns 0 1589 */ 1590 static int pxa_udc_phy_event(struct notifier_block *nb, unsigned long action, 1591 void *data) 1592 { 1593 struct usb_gadget *gadget = data; 1594 1595 switch (action) { 1596 case USB_EVENT_VBUS: 1597 usb_gadget_vbus_connect(gadget); 1598 return NOTIFY_OK; 1599 case USB_EVENT_NONE: 1600 usb_gadget_vbus_disconnect(gadget); 1601 return NOTIFY_OK; 1602 default: 1603 return NOTIFY_DONE; 1604 } 1605 } 1606 1607 static struct notifier_block pxa27x_udc_phy = { 1608 .notifier_call = pxa_udc_phy_event, 1609 }; 1610 1611 static int pxa27x_udc_start(struct usb_gadget *g, 1612 struct usb_gadget_driver *driver); 1613 static int pxa27x_udc_stop(struct usb_gadget *g); 1614 1615 static const struct usb_gadget_ops pxa_udc_ops = { 1616 .get_frame = pxa_udc_get_frame, 1617 .wakeup = pxa_udc_wakeup, 1618 .pullup = pxa_udc_pullup, 1619 .vbus_session = pxa_udc_vbus_session, 1620 .vbus_draw = pxa_udc_vbus_draw, 1621 .udc_start = pxa27x_udc_start, 1622 .udc_stop = pxa27x_udc_stop, 1623 }; 1624 1625 /** 1626 * udc_disable - disable udc device controller 1627 * @udc: udc device 1628 * Context: any 1629 * 1630 * Disables the udc device : disables clocks, udc interrupts, control endpoint 1631 * interrupts. 1632 */ 1633 static void udc_disable(struct pxa_udc *udc) 1634 { 1635 if (!udc->enabled) 1636 return; 1637 1638 udc_writel(udc, UDCICR0, 0); 1639 udc_writel(udc, UDCICR1, 0); 1640 1641 udc_clear_mask_UDCCR(udc, UDCCR_UDE); 1642 1643 ep0_idle(udc); 1644 udc->gadget.speed = USB_SPEED_UNKNOWN; 1645 clk_disable(udc->clk); 1646 1647 udc->enabled = 0; 1648 } 1649 1650 /** 1651 * udc_init_data - Initialize udc device data structures 1652 * @dev: udc device 1653 * 1654 * Initializes gadget endpoint list, endpoints locks. No action is taken 1655 * on the hardware. 1656 */ 1657 static void udc_init_data(struct pxa_udc *dev) 1658 { 1659 int i; 1660 struct pxa_ep *ep; 1661 1662 /* device/ep0 records init */ 1663 INIT_LIST_HEAD(&dev->gadget.ep_list); 1664 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list); 1665 dev->udc_usb_ep[0].pxa_ep = &dev->pxa_ep[0]; 1666 dev->gadget.quirk_altset_not_supp = 1; 1667 ep0_idle(dev); 1668 1669 /* PXA endpoints init */ 1670 for (i = 0; i < NR_PXA_ENDPOINTS; i++) { 1671 ep = &dev->pxa_ep[i]; 1672 1673 ep->enabled = is_ep0(ep); 1674 INIT_LIST_HEAD(&ep->queue); 1675 spin_lock_init(&ep->lock); 1676 } 1677 1678 /* USB endpoints init */ 1679 for (i = 1; i < NR_USB_ENDPOINTS; i++) { 1680 list_add_tail(&dev->udc_usb_ep[i].usb_ep.ep_list, 1681 &dev->gadget.ep_list); 1682 usb_ep_set_maxpacket_limit(&dev->udc_usb_ep[i].usb_ep, 1683 dev->udc_usb_ep[i].usb_ep.maxpacket); 1684 } 1685 } 1686 1687 /** 1688 * udc_enable - Enables the udc device 1689 * @udc: udc device 1690 * 1691 * Enables the udc device : enables clocks, udc interrupts, control endpoint 1692 * interrupts, sets usb as UDC client and setups endpoints. 1693 */ 1694 static void udc_enable(struct pxa_udc *udc) 1695 { 1696 if (udc->enabled) 1697 return; 1698 1699 clk_enable(udc->clk); 1700 udc_writel(udc, UDCICR0, 0); 1701 udc_writel(udc, UDCICR1, 0); 1702 udc_clear_mask_UDCCR(udc, UDCCR_UDE); 1703 1704 ep0_idle(udc); 1705 udc->gadget.speed = USB_SPEED_FULL; 1706 memset(&udc->stats, 0, sizeof(udc->stats)); 1707 1708 pxa_eps_setup(udc); 1709 udc_set_mask_UDCCR(udc, UDCCR_UDE); 1710 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_ACM); 1711 udelay(2); 1712 if (udc_readl(udc, UDCCR) & UDCCR_EMCE) 1713 dev_err(udc->dev, "Configuration errors, udc disabled\n"); 1714 1715 /* 1716 * Caller must be able to sleep in order to cope with startup transients 1717 */ 1718 msleep(100); 1719 1720 /* enable suspend/resume and reset irqs */ 1721 udc_writel(udc, UDCICR1, 1722 UDCICR1_IECC | UDCICR1_IERU 1723 | UDCICR1_IESU | UDCICR1_IERS); 1724 1725 /* enable ep0 irqs */ 1726 pio_irq_enable(&udc->pxa_ep[0]); 1727 1728 udc->enabled = 1; 1729 } 1730 1731 /** 1732 * pxa27x_udc_start - Register gadget driver 1733 * @g: gadget 1734 * @driver: gadget driver 1735 * 1736 * When a driver is successfully registered, it will receive control requests 1737 * including set_configuration(), which enables non-control requests. Then 1738 * usb traffic follows until a disconnect is reported. Then a host may connect 1739 * again, or the driver might get unbound. 1740 * 1741 * Note that the udc is not automatically enabled. Check function 1742 * should_enable_udc(). 1743 * 1744 * Returns 0 if no error, -EINVAL, -ENODEV, -EBUSY otherwise 1745 */ 1746 static int pxa27x_udc_start(struct usb_gadget *g, 1747 struct usb_gadget_driver *driver) 1748 { 1749 struct pxa_udc *udc = to_pxa(g); 1750 int retval; 1751 1752 /* first hook up the driver ... */ 1753 udc->driver = driver; 1754 1755 if (!IS_ERR_OR_NULL(udc->transceiver)) { 1756 retval = otg_set_peripheral(udc->transceiver->otg, 1757 &udc->gadget); 1758 if (retval) { 1759 dev_err(udc->dev, "can't bind to transceiver\n"); 1760 goto fail; 1761 } 1762 } 1763 1764 if (should_enable_udc(udc)) 1765 udc_enable(udc); 1766 return 0; 1767 1768 fail: 1769 udc->driver = NULL; 1770 return retval; 1771 } 1772 1773 /** 1774 * stop_activity - Stops udc endpoints 1775 * @udc: udc device 1776 * 1777 * Disables all udc endpoints (even control endpoint), report disconnect to 1778 * the gadget user. 1779 */ 1780 static void stop_activity(struct pxa_udc *udc) 1781 { 1782 int i; 1783 1784 udc->gadget.speed = USB_SPEED_UNKNOWN; 1785 1786 for (i = 0; i < NR_USB_ENDPOINTS; i++) 1787 pxa_ep_disable(&udc->udc_usb_ep[i].usb_ep); 1788 } 1789 1790 /** 1791 * pxa27x_udc_stop - Unregister the gadget driver 1792 * @g: gadget 1793 * 1794 * Returns 0 if no error, -ENODEV, -EINVAL otherwise 1795 */ 1796 static int pxa27x_udc_stop(struct usb_gadget *g) 1797 { 1798 struct pxa_udc *udc = to_pxa(g); 1799 1800 stop_activity(udc); 1801 udc_disable(udc); 1802 1803 udc->driver = NULL; 1804 1805 if (!IS_ERR_OR_NULL(udc->transceiver)) 1806 return otg_set_peripheral(udc->transceiver->otg, NULL); 1807 return 0; 1808 } 1809 1810 /** 1811 * handle_ep0_ctrl_req - handle control endpoint control request 1812 * @udc: udc device 1813 * @req: control request 1814 */ 1815 static void handle_ep0_ctrl_req(struct pxa_udc *udc, 1816 struct pxa27x_request *req) 1817 { 1818 struct pxa_ep *ep = &udc->pxa_ep[0]; 1819 union { 1820 struct usb_ctrlrequest r; 1821 u32 word[2]; 1822 } u; 1823 int i; 1824 int have_extrabytes = 0; 1825 unsigned long flags; 1826 1827 nuke(ep, -EPROTO); 1828 spin_lock_irqsave(&ep->lock, flags); 1829 1830 /* 1831 * In the PXA320 manual, in the section about Back-to-Back setup 1832 * packets, it describes this situation. The solution is to set OPC to 1833 * get rid of the status packet, and then continue with the setup 1834 * packet. Generalize to pxa27x CPUs. 1835 */ 1836 if (epout_has_pkt(ep) && (ep_count_bytes_remain(ep) == 0)) 1837 ep_write_UDCCSR(ep, UDCCSR0_OPC); 1838 1839 /* read SETUP packet */ 1840 for (i = 0; i < 2; i++) { 1841 if (unlikely(ep_is_empty(ep))) 1842 goto stall; 1843 u.word[i] = udc_ep_readl(ep, UDCDR); 1844 } 1845 1846 have_extrabytes = !ep_is_empty(ep); 1847 while (!ep_is_empty(ep)) { 1848 i = udc_ep_readl(ep, UDCDR); 1849 ep_err(ep, "wrong to have extra bytes for setup : 0x%08x\n", i); 1850 } 1851 1852 ep_dbg(ep, "SETUP %02x.%02x v%04x i%04x l%04x\n", 1853 u.r.bRequestType, u.r.bRequest, 1854 le16_to_cpu(u.r.wValue), le16_to_cpu(u.r.wIndex), 1855 le16_to_cpu(u.r.wLength)); 1856 if (unlikely(have_extrabytes)) 1857 goto stall; 1858 1859 if (u.r.bRequestType & USB_DIR_IN) 1860 set_ep0state(udc, IN_DATA_STAGE); 1861 else 1862 set_ep0state(udc, OUT_DATA_STAGE); 1863 1864 /* Tell UDC to enter Data Stage */ 1865 ep_write_UDCCSR(ep, UDCCSR0_SA | UDCCSR0_OPC); 1866 1867 spin_unlock_irqrestore(&ep->lock, flags); 1868 i = udc->driver->setup(&udc->gadget, &u.r); 1869 spin_lock_irqsave(&ep->lock, flags); 1870 if (i < 0) 1871 goto stall; 1872 out: 1873 spin_unlock_irqrestore(&ep->lock, flags); 1874 return; 1875 stall: 1876 ep_dbg(ep, "protocol STALL, udccsr0=%03x err %d\n", 1877 udc_ep_readl(ep, UDCCSR), i); 1878 ep_write_UDCCSR(ep, UDCCSR0_FST | UDCCSR0_FTF); 1879 set_ep0state(udc, STALL); 1880 goto out; 1881 } 1882 1883 /** 1884 * handle_ep0 - Handle control endpoint data transfers 1885 * @udc: udc device 1886 * @fifo_irq: 1 if triggered by fifo service type irq 1887 * @opc_irq: 1 if triggered by output packet complete type irq 1888 * 1889 * Context : interrupt handler 1890 * 1891 * Tries to transfer all pending request data into the endpoint and/or 1892 * transfer all pending data in the endpoint into usb requests. 1893 * Handles states of ep0 automata. 1894 * 1895 * PXA27x hardware handles several standard usb control requests without 1896 * driver notification. The requests fully handled by hardware are : 1897 * SET_ADDRESS, SET_FEATURE, CLEAR_FEATURE, GET_CONFIGURATION, GET_INTERFACE, 1898 * GET_STATUS 1899 * The requests handled by hardware, but with irq notification are : 1900 * SYNCH_FRAME, SET_CONFIGURATION, SET_INTERFACE 1901 * The remaining standard requests really handled by handle_ep0 are : 1902 * GET_DESCRIPTOR, SET_DESCRIPTOR, specific requests. 1903 * Requests standardized outside of USB 2.0 chapter 9 are handled more 1904 * uniformly, by gadget drivers. 1905 * 1906 * The control endpoint state machine is _not_ USB spec compliant, it's even 1907 * hardly compliant with Intel PXA270 developers guide. 1908 * The key points which inferred this state machine are : 1909 * - on every setup token, bit UDCCSR0_SA is raised and held until cleared by 1910 * software. 1911 * - on every OUT packet received, UDCCSR0_OPC is raised and held until 1912 * cleared by software. 1913 * - clearing UDCCSR0_OPC always flushes ep0. If in setup stage, never do it 1914 * before reading ep0. 1915 * This is true only for PXA27x. This is not true anymore for PXA3xx family 1916 * (check Back-to-Back setup packet in developers guide). 1917 * - irq can be called on a "packet complete" event (opc_irq=1), while 1918 * UDCCSR0_OPC is not yet raised (delta can be as big as 100ms 1919 * from experimentation). 1920 * - as UDCCSR0_SA can be activated while in irq handling, and clearing 1921 * UDCCSR0_OPC would flush the setup data, we almost never clear UDCCSR0_OPC 1922 * => we never actually read the "status stage" packet of an IN data stage 1923 * => this is not documented in Intel documentation 1924 * - hardware as no idea of STATUS STAGE, it only handle SETUP STAGE and DATA 1925 * STAGE. The driver add STATUS STAGE to send last zero length packet in 1926 * OUT_STATUS_STAGE. 1927 * - special attention was needed for IN_STATUS_STAGE. If a packet complete 1928 * event is detected, we terminate the status stage without ackowledging the 1929 * packet (not to risk to loose a potential SETUP packet) 1930 */ 1931 static void handle_ep0(struct pxa_udc *udc, int fifo_irq, int opc_irq) 1932 { 1933 u32 udccsr0; 1934 struct pxa_ep *ep = &udc->pxa_ep[0]; 1935 struct pxa27x_request *req = NULL; 1936 int completed = 0; 1937 1938 if (!list_empty(&ep->queue)) 1939 req = list_entry(ep->queue.next, struct pxa27x_request, queue); 1940 1941 udccsr0 = udc_ep_readl(ep, UDCCSR); 1942 ep_dbg(ep, "state=%s, req=%p, udccsr0=0x%03x, udcbcr=%d, irq_msk=%x\n", 1943 EP0_STNAME(udc), req, udccsr0, udc_ep_readl(ep, UDCBCR), 1944 (fifo_irq << 1 | opc_irq)); 1945 1946 if (udccsr0 & UDCCSR0_SST) { 1947 ep_dbg(ep, "clearing stall status\n"); 1948 nuke(ep, -EPIPE); 1949 ep_write_UDCCSR(ep, UDCCSR0_SST); 1950 ep0_idle(udc); 1951 } 1952 1953 if (udccsr0 & UDCCSR0_SA) { 1954 nuke(ep, 0); 1955 set_ep0state(udc, SETUP_STAGE); 1956 } 1957 1958 switch (udc->ep0state) { 1959 case WAIT_FOR_SETUP: 1960 /* 1961 * Hardware bug : beware, we cannot clear OPC, since we would 1962 * miss a potential OPC irq for a setup packet. 1963 * So, we only do ... nothing, and hope for a next irq with 1964 * UDCCSR0_SA set. 1965 */ 1966 break; 1967 case SETUP_STAGE: 1968 udccsr0 &= UDCCSR0_CTRL_REQ_MASK; 1969 if (likely(udccsr0 == UDCCSR0_CTRL_REQ_MASK)) 1970 handle_ep0_ctrl_req(udc, req); 1971 break; 1972 case IN_DATA_STAGE: /* GET_DESCRIPTOR */ 1973 if (epout_has_pkt(ep)) 1974 ep_write_UDCCSR(ep, UDCCSR0_OPC); 1975 if (req && !ep_is_full(ep)) 1976 completed = write_ep0_fifo(ep, req); 1977 if (completed) 1978 ep0_end_in_req(ep, req, NULL); 1979 break; 1980 case OUT_DATA_STAGE: /* SET_DESCRIPTOR */ 1981 if (epout_has_pkt(ep) && req) 1982 completed = read_ep0_fifo(ep, req); 1983 if (completed) 1984 ep0_end_out_req(ep, req, NULL); 1985 break; 1986 case STALL: 1987 ep_write_UDCCSR(ep, UDCCSR0_FST); 1988 break; 1989 case IN_STATUS_STAGE: 1990 /* 1991 * Hardware bug : beware, we cannot clear OPC, since we would 1992 * miss a potential PC irq for a setup packet. 1993 * So, we only put the ep0 into WAIT_FOR_SETUP state. 1994 */ 1995 if (opc_irq) 1996 ep0_idle(udc); 1997 break; 1998 case OUT_STATUS_STAGE: 1999 case WAIT_ACK_SET_CONF_INTERF: 2000 ep_warn(ep, "should never get in %s state here!!!\n", 2001 EP0_STNAME(ep->dev)); 2002 ep0_idle(udc); 2003 break; 2004 } 2005 } 2006 2007 /** 2008 * handle_ep - Handle endpoint data tranfers 2009 * @ep: pxa physical endpoint 2010 * 2011 * Tries to transfer all pending request data into the endpoint and/or 2012 * transfer all pending data in the endpoint into usb requests. 2013 * 2014 * Is always called from the interrupt handler. ep->lock must not be held. 2015 */ 2016 static void handle_ep(struct pxa_ep *ep) 2017 { 2018 struct pxa27x_request *req; 2019 int completed; 2020 u32 udccsr; 2021 int is_in = ep->dir_in; 2022 int loop = 0; 2023 unsigned long flags; 2024 2025 spin_lock_irqsave(&ep->lock, flags); 2026 if (ep->in_handle_ep) 2027 goto recursion_detected; 2028 ep->in_handle_ep = 1; 2029 2030 do { 2031 completed = 0; 2032 udccsr = udc_ep_readl(ep, UDCCSR); 2033 2034 if (likely(!list_empty(&ep->queue))) 2035 req = list_entry(ep->queue.next, 2036 struct pxa27x_request, queue); 2037 else 2038 req = NULL; 2039 2040 ep_dbg(ep, "req:%p, udccsr 0x%03x loop=%d\n", 2041 req, udccsr, loop++); 2042 2043 if (unlikely(udccsr & (UDCCSR_SST | UDCCSR_TRN))) 2044 udc_ep_writel(ep, UDCCSR, 2045 udccsr & (UDCCSR_SST | UDCCSR_TRN)); 2046 if (!req) 2047 break; 2048 2049 if (unlikely(is_in)) { 2050 if (likely(!ep_is_full(ep))) 2051 completed = write_fifo(ep, req); 2052 } else { 2053 if (likely(epout_has_pkt(ep))) 2054 completed = read_fifo(ep, req); 2055 } 2056 2057 if (completed) { 2058 if (is_in) 2059 ep_end_in_req(ep, req, &flags); 2060 else 2061 ep_end_out_req(ep, req, &flags); 2062 } 2063 } while (completed); 2064 2065 ep->in_handle_ep = 0; 2066 recursion_detected: 2067 spin_unlock_irqrestore(&ep->lock, flags); 2068 } 2069 2070 /** 2071 * pxa27x_change_configuration - Handle SET_CONF usb request notification 2072 * @udc: udc device 2073 * @config: usb configuration 2074 * 2075 * Post the request to upper level. 2076 * Don't use any pxa specific harware configuration capabilities 2077 */ 2078 static void pxa27x_change_configuration(struct pxa_udc *udc, int config) 2079 { 2080 struct usb_ctrlrequest req ; 2081 2082 dev_dbg(udc->dev, "config=%d\n", config); 2083 2084 udc->config = config; 2085 udc->last_interface = 0; 2086 udc->last_alternate = 0; 2087 2088 req.bRequestType = 0; 2089 req.bRequest = USB_REQ_SET_CONFIGURATION; 2090 req.wValue = config; 2091 req.wIndex = 0; 2092 req.wLength = 0; 2093 2094 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF); 2095 udc->driver->setup(&udc->gadget, &req); 2096 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN); 2097 } 2098 2099 /** 2100 * pxa27x_change_interface - Handle SET_INTERF usb request notification 2101 * @udc: udc device 2102 * @iface: interface number 2103 * @alt: alternate setting number 2104 * 2105 * Post the request to upper level. 2106 * Don't use any pxa specific harware configuration capabilities 2107 */ 2108 static void pxa27x_change_interface(struct pxa_udc *udc, int iface, int alt) 2109 { 2110 struct usb_ctrlrequest req; 2111 2112 dev_dbg(udc->dev, "interface=%d, alternate setting=%d\n", iface, alt); 2113 2114 udc->last_interface = iface; 2115 udc->last_alternate = alt; 2116 2117 req.bRequestType = USB_RECIP_INTERFACE; 2118 req.bRequest = USB_REQ_SET_INTERFACE; 2119 req.wValue = alt; 2120 req.wIndex = iface; 2121 req.wLength = 0; 2122 2123 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF); 2124 udc->driver->setup(&udc->gadget, &req); 2125 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN); 2126 } 2127 2128 /* 2129 * irq_handle_data - Handle data transfer 2130 * @irq: irq IRQ number 2131 * @udc: dev pxa_udc device structure 2132 * 2133 * Called from irq handler, transferts data to or from endpoint to queue 2134 */ 2135 static void irq_handle_data(int irq, struct pxa_udc *udc) 2136 { 2137 int i; 2138 struct pxa_ep *ep; 2139 u32 udcisr0 = udc_readl(udc, UDCISR0) & UDCCISR0_EP_MASK; 2140 u32 udcisr1 = udc_readl(udc, UDCISR1) & UDCCISR1_EP_MASK; 2141 2142 if (udcisr0 & UDCISR_INT_MASK) { 2143 udc->pxa_ep[0].stats.irqs++; 2144 udc_writel(udc, UDCISR0, UDCISR_INT(0, UDCISR_INT_MASK)); 2145 handle_ep0(udc, !!(udcisr0 & UDCICR_FIFOERR), 2146 !!(udcisr0 & UDCICR_PKTCOMPL)); 2147 } 2148 2149 udcisr0 >>= 2; 2150 for (i = 1; udcisr0 != 0 && i < 16; udcisr0 >>= 2, i++) { 2151 if (!(udcisr0 & UDCISR_INT_MASK)) 2152 continue; 2153 2154 udc_writel(udc, UDCISR0, UDCISR_INT(i, UDCISR_INT_MASK)); 2155 2156 WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep)); 2157 if (i < ARRAY_SIZE(udc->pxa_ep)) { 2158 ep = &udc->pxa_ep[i]; 2159 ep->stats.irqs++; 2160 handle_ep(ep); 2161 } 2162 } 2163 2164 for (i = 16; udcisr1 != 0 && i < 24; udcisr1 >>= 2, i++) { 2165 udc_writel(udc, UDCISR1, UDCISR_INT(i - 16, UDCISR_INT_MASK)); 2166 if (!(udcisr1 & UDCISR_INT_MASK)) 2167 continue; 2168 2169 WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep)); 2170 if (i < ARRAY_SIZE(udc->pxa_ep)) { 2171 ep = &udc->pxa_ep[i]; 2172 ep->stats.irqs++; 2173 handle_ep(ep); 2174 } 2175 } 2176 2177 } 2178 2179 /** 2180 * irq_udc_suspend - Handle IRQ "UDC Suspend" 2181 * @udc: udc device 2182 */ 2183 static void irq_udc_suspend(struct pxa_udc *udc) 2184 { 2185 udc_writel(udc, UDCISR1, UDCISR1_IRSU); 2186 udc->stats.irqs_suspend++; 2187 2188 if (udc->gadget.speed != USB_SPEED_UNKNOWN 2189 && udc->driver && udc->driver->suspend) 2190 udc->driver->suspend(&udc->gadget); 2191 ep0_idle(udc); 2192 } 2193 2194 /** 2195 * irq_udc_resume - Handle IRQ "UDC Resume" 2196 * @udc: udc device 2197 */ 2198 static void irq_udc_resume(struct pxa_udc *udc) 2199 { 2200 udc_writel(udc, UDCISR1, UDCISR1_IRRU); 2201 udc->stats.irqs_resume++; 2202 2203 if (udc->gadget.speed != USB_SPEED_UNKNOWN 2204 && udc->driver && udc->driver->resume) 2205 udc->driver->resume(&udc->gadget); 2206 } 2207 2208 /** 2209 * irq_udc_reconfig - Handle IRQ "UDC Change Configuration" 2210 * @udc: udc device 2211 */ 2212 static void irq_udc_reconfig(struct pxa_udc *udc) 2213 { 2214 unsigned config, interface, alternate, config_change; 2215 u32 udccr = udc_readl(udc, UDCCR); 2216 2217 udc_writel(udc, UDCISR1, UDCISR1_IRCC); 2218 udc->stats.irqs_reconfig++; 2219 2220 config = (udccr & UDCCR_ACN) >> UDCCR_ACN_S; 2221 config_change = (config != udc->config); 2222 pxa27x_change_configuration(udc, config); 2223 2224 interface = (udccr & UDCCR_AIN) >> UDCCR_AIN_S; 2225 alternate = (udccr & UDCCR_AAISN) >> UDCCR_AAISN_S; 2226 pxa27x_change_interface(udc, interface, alternate); 2227 2228 if (config_change) 2229 update_pxa_ep_matches(udc); 2230 udc_set_mask_UDCCR(udc, UDCCR_SMAC); 2231 } 2232 2233 /** 2234 * irq_udc_reset - Handle IRQ "UDC Reset" 2235 * @udc: udc device 2236 */ 2237 static void irq_udc_reset(struct pxa_udc *udc) 2238 { 2239 u32 udccr = udc_readl(udc, UDCCR); 2240 struct pxa_ep *ep = &udc->pxa_ep[0]; 2241 2242 dev_info(udc->dev, "USB reset\n"); 2243 udc_writel(udc, UDCISR1, UDCISR1_IRRS); 2244 udc->stats.irqs_reset++; 2245 2246 if ((udccr & UDCCR_UDA) == 0) { 2247 dev_dbg(udc->dev, "USB reset start\n"); 2248 stop_activity(udc); 2249 } 2250 udc->gadget.speed = USB_SPEED_FULL; 2251 memset(&udc->stats, 0, sizeof udc->stats); 2252 2253 nuke(ep, -EPROTO); 2254 ep_write_UDCCSR(ep, UDCCSR0_FTF | UDCCSR0_OPC); 2255 ep0_idle(udc); 2256 } 2257 2258 /** 2259 * pxa_udc_irq - Main irq handler 2260 * @irq: irq number 2261 * @_dev: udc device 2262 * 2263 * Handles all udc interrupts 2264 */ 2265 static irqreturn_t pxa_udc_irq(int irq, void *_dev) 2266 { 2267 struct pxa_udc *udc = _dev; 2268 u32 udcisr0 = udc_readl(udc, UDCISR0); 2269 u32 udcisr1 = udc_readl(udc, UDCISR1); 2270 u32 udccr = udc_readl(udc, UDCCR); 2271 u32 udcisr1_spec; 2272 2273 dev_vdbg(udc->dev, "Interrupt, UDCISR0:0x%08x, UDCISR1:0x%08x, " 2274 "UDCCR:0x%08x\n", udcisr0, udcisr1, udccr); 2275 2276 udcisr1_spec = udcisr1 & 0xf8000000; 2277 if (unlikely(udcisr1_spec & UDCISR1_IRSU)) 2278 irq_udc_suspend(udc); 2279 if (unlikely(udcisr1_spec & UDCISR1_IRRU)) 2280 irq_udc_resume(udc); 2281 if (unlikely(udcisr1_spec & UDCISR1_IRCC)) 2282 irq_udc_reconfig(udc); 2283 if (unlikely(udcisr1_spec & UDCISR1_IRRS)) 2284 irq_udc_reset(udc); 2285 2286 if ((udcisr0 & UDCCISR0_EP_MASK) | (udcisr1 & UDCCISR1_EP_MASK)) 2287 irq_handle_data(irq, udc); 2288 2289 return IRQ_HANDLED; 2290 } 2291 2292 static struct pxa_udc memory = { 2293 .gadget = { 2294 .ops = &pxa_udc_ops, 2295 .ep0 = &memory.udc_usb_ep[0].usb_ep, 2296 .name = driver_name, 2297 .dev = { 2298 .init_name = "gadget", 2299 }, 2300 }, 2301 2302 .udc_usb_ep = { 2303 USB_EP_CTRL, 2304 USB_EP_OUT_BULK(1), 2305 USB_EP_IN_BULK(2), 2306 USB_EP_IN_ISO(3), 2307 USB_EP_OUT_ISO(4), 2308 USB_EP_IN_INT(5), 2309 }, 2310 2311 .pxa_ep = { 2312 PXA_EP_CTRL, 2313 /* Endpoints for gadget zero */ 2314 PXA_EP_OUT_BULK(1, 1, 3, 0, 0), 2315 PXA_EP_IN_BULK(2, 2, 3, 0, 0), 2316 /* Endpoints for ether gadget, file storage gadget */ 2317 PXA_EP_OUT_BULK(3, 1, 1, 0, 0), 2318 PXA_EP_IN_BULK(4, 2, 1, 0, 0), 2319 PXA_EP_IN_ISO(5, 3, 1, 0, 0), 2320 PXA_EP_OUT_ISO(6, 4, 1, 0, 0), 2321 PXA_EP_IN_INT(7, 5, 1, 0, 0), 2322 /* Endpoints for RNDIS, serial */ 2323 PXA_EP_OUT_BULK(8, 1, 2, 0, 0), 2324 PXA_EP_IN_BULK(9, 2, 2, 0, 0), 2325 PXA_EP_IN_INT(10, 5, 2, 0, 0), 2326 /* 2327 * All the following endpoints are only for completion. They 2328 * won't never work, as multiple interfaces are really broken on 2329 * the pxa. 2330 */ 2331 PXA_EP_OUT_BULK(11, 1, 2, 1, 0), 2332 PXA_EP_IN_BULK(12, 2, 2, 1, 0), 2333 /* Endpoint for CDC Ether */ 2334 PXA_EP_OUT_BULK(13, 1, 1, 1, 1), 2335 PXA_EP_IN_BULK(14, 2, 1, 1, 1), 2336 } 2337 }; 2338 2339 #if defined(CONFIG_OF) 2340 static const struct of_device_id udc_pxa_dt_ids[] = { 2341 { .compatible = "marvell,pxa270-udc" }, 2342 {} 2343 }; 2344 MODULE_DEVICE_TABLE(of, udc_pxa_dt_ids); 2345 #endif 2346 2347 /** 2348 * pxa_udc_probe - probes the udc device 2349 * @pdev: platform device 2350 * 2351 * Perform basic init : allocates udc clock, creates sysfs files, requests 2352 * irq. 2353 */ 2354 static int pxa_udc_probe(struct platform_device *pdev) 2355 { 2356 struct pxa_udc *udc = &memory; 2357 int retval = 0, gpio; 2358 struct pxa2xx_udc_mach_info *mach = dev_get_platdata(&pdev->dev); 2359 unsigned long gpio_flags; 2360 2361 if (mach) { 2362 gpio_flags = mach->gpio_pullup_inverted ? GPIOF_ACTIVE_LOW : 0; 2363 gpio = mach->gpio_pullup; 2364 if (gpio_is_valid(gpio)) { 2365 retval = devm_gpio_request_one(&pdev->dev, gpio, 2366 gpio_flags, 2367 "USB D+ pullup"); 2368 if (retval) 2369 return retval; 2370 udc->gpiod = gpio_to_desc(mach->gpio_pullup); 2371 } 2372 udc->udc_command = mach->udc_command; 2373 } else { 2374 udc->gpiod = devm_gpiod_get(&pdev->dev, NULL, GPIOD_ASIS); 2375 } 2376 2377 udc->regs = devm_platform_ioremap_resource(pdev, 0); 2378 if (IS_ERR(udc->regs)) 2379 return PTR_ERR(udc->regs); 2380 udc->irq = platform_get_irq(pdev, 0); 2381 if (udc->irq < 0) 2382 return udc->irq; 2383 2384 udc->dev = &pdev->dev; 2385 if (of_have_populated_dt()) { 2386 udc->transceiver = 2387 devm_usb_get_phy_by_phandle(udc->dev, "phys", 0); 2388 if (IS_ERR(udc->transceiver)) 2389 return PTR_ERR(udc->transceiver); 2390 } else { 2391 udc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2); 2392 } 2393 2394 if (IS_ERR(udc->gpiod)) { 2395 dev_err(&pdev->dev, "Couldn't find or request D+ gpio : %ld\n", 2396 PTR_ERR(udc->gpiod)); 2397 return PTR_ERR(udc->gpiod); 2398 } 2399 if (udc->gpiod) 2400 gpiod_direction_output(udc->gpiod, 0); 2401 2402 udc->clk = devm_clk_get(&pdev->dev, NULL); 2403 if (IS_ERR(udc->clk)) 2404 return PTR_ERR(udc->clk); 2405 2406 retval = clk_prepare(udc->clk); 2407 if (retval) 2408 return retval; 2409 2410 udc->vbus_sensed = 0; 2411 2412 the_controller = udc; 2413 platform_set_drvdata(pdev, udc); 2414 udc_init_data(udc); 2415 2416 /* irq setup after old hardware state is cleaned up */ 2417 retval = devm_request_irq(&pdev->dev, udc->irq, pxa_udc_irq, 2418 IRQF_SHARED, driver_name, udc); 2419 if (retval != 0) { 2420 dev_err(udc->dev, "%s: can't get irq %i, err %d\n", 2421 driver_name, udc->irq, retval); 2422 goto err; 2423 } 2424 2425 if (!IS_ERR_OR_NULL(udc->transceiver)) 2426 usb_register_notifier(udc->transceiver, &pxa27x_udc_phy); 2427 retval = usb_add_gadget_udc(&pdev->dev, &udc->gadget); 2428 if (retval) 2429 goto err_add_gadget; 2430 2431 pxa_init_debugfs(udc); 2432 if (should_enable_udc(udc)) 2433 udc_enable(udc); 2434 return 0; 2435 2436 err_add_gadget: 2437 if (!IS_ERR_OR_NULL(udc->transceiver)) 2438 usb_unregister_notifier(udc->transceiver, &pxa27x_udc_phy); 2439 err: 2440 clk_unprepare(udc->clk); 2441 return retval; 2442 } 2443 2444 /** 2445 * pxa_udc_remove - removes the udc device driver 2446 * @_dev: platform device 2447 */ 2448 static void pxa_udc_remove(struct platform_device *_dev) 2449 { 2450 struct pxa_udc *udc = platform_get_drvdata(_dev); 2451 2452 usb_del_gadget_udc(&udc->gadget); 2453 pxa_cleanup_debugfs(udc); 2454 2455 if (!IS_ERR_OR_NULL(udc->transceiver)) { 2456 usb_unregister_notifier(udc->transceiver, &pxa27x_udc_phy); 2457 usb_put_phy(udc->transceiver); 2458 } 2459 2460 udc->transceiver = NULL; 2461 the_controller = NULL; 2462 clk_unprepare(udc->clk); 2463 } 2464 2465 static void pxa_udc_shutdown(struct platform_device *_dev) 2466 { 2467 struct pxa_udc *udc = platform_get_drvdata(_dev); 2468 2469 if (udc_readl(udc, UDCCR) & UDCCR_UDE) 2470 udc_disable(udc); 2471 } 2472 2473 #ifdef CONFIG_PM 2474 /** 2475 * pxa_udc_suspend - Suspend udc device 2476 * @_dev: platform device 2477 * @state: suspend state 2478 * 2479 * Suspends udc : saves configuration registers (UDCCR*), then disables the udc 2480 * device. 2481 */ 2482 static int pxa_udc_suspend(struct platform_device *_dev, pm_message_t state) 2483 { 2484 struct pxa_udc *udc = platform_get_drvdata(_dev); 2485 struct pxa_ep *ep; 2486 2487 ep = &udc->pxa_ep[0]; 2488 udc->udccsr0 = udc_ep_readl(ep, UDCCSR); 2489 2490 udc_disable(udc); 2491 udc->pullup_resume = udc->pullup_on; 2492 dplus_pullup(udc, 0); 2493 2494 if (udc->driver) 2495 udc->driver->disconnect(&udc->gadget); 2496 2497 return 0; 2498 } 2499 2500 /** 2501 * pxa_udc_resume - Resume udc device 2502 * @_dev: platform device 2503 * 2504 * Resumes udc : restores configuration registers (UDCCR*), then enables the udc 2505 * device. 2506 */ 2507 static int pxa_udc_resume(struct platform_device *_dev) 2508 { 2509 struct pxa_udc *udc = platform_get_drvdata(_dev); 2510 struct pxa_ep *ep; 2511 2512 ep = &udc->pxa_ep[0]; 2513 udc_ep_writel(ep, UDCCSR, udc->udccsr0 & (UDCCSR0_FST | UDCCSR0_DME)); 2514 2515 dplus_pullup(udc, udc->pullup_resume); 2516 if (should_enable_udc(udc)) 2517 udc_enable(udc); 2518 /* 2519 * We do not handle OTG yet. 2520 * 2521 * OTGPH bit is set when sleep mode is entered. 2522 * it indicates that OTG pad is retaining its state. 2523 * Upon exit from sleep mode and before clearing OTGPH, 2524 * Software must configure the USB OTG pad, UDC, and UHC 2525 * to the state they were in before entering sleep mode. 2526 */ 2527 pxa27x_clear_otgph(); 2528 2529 return 0; 2530 } 2531 #endif 2532 2533 /* work with hotplug and coldplug */ 2534 MODULE_ALIAS("platform:pxa27x-udc"); 2535 2536 static struct platform_driver udc_driver = { 2537 .driver = { 2538 .name = "pxa27x-udc", 2539 .of_match_table = of_match_ptr(udc_pxa_dt_ids), 2540 }, 2541 .probe = pxa_udc_probe, 2542 .remove_new = pxa_udc_remove, 2543 .shutdown = pxa_udc_shutdown, 2544 #ifdef CONFIG_PM 2545 .suspend = pxa_udc_suspend, 2546 .resume = pxa_udc_resume 2547 #endif 2548 }; 2549 2550 module_platform_driver(udc_driver); 2551 2552 MODULE_DESCRIPTION(DRIVER_DESC); 2553 MODULE_AUTHOR("Robert Jarzmik"); 2554 MODULE_LICENSE("GPL"); 2555