1 /* 2 * Handles the Intel 27x USB Device Controller (UDC) 3 * 4 * Inspired by original driver by Frank Becker, David Brownell, and others. 5 * Copyright (C) 2008 Robert Jarzmik 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 */ 12 #include <linux/module.h> 13 #include <linux/kernel.h> 14 #include <linux/types.h> 15 #include <linux/errno.h> 16 #include <linux/err.h> 17 #include <linux/platform_device.h> 18 #include <linux/delay.h> 19 #include <linux/list.h> 20 #include <linux/interrupt.h> 21 #include <linux/proc_fs.h> 22 #include <linux/clk.h> 23 #include <linux/irq.h> 24 #include <linux/gpio.h> 25 #include <linux/slab.h> 26 #include <linux/prefetch.h> 27 #include <linux/byteorder/generic.h> 28 #include <linux/platform_data/pxa2xx_udc.h> 29 30 #include <linux/usb.h> 31 #include <linux/usb/ch9.h> 32 #include <linux/usb/gadget.h> 33 34 #include "pxa27x_udc.h" 35 36 /* 37 * This driver handles the USB Device Controller (UDC) in Intel's PXA 27x 38 * series processors. 39 * 40 * Such controller drivers work with a gadget driver. The gadget driver 41 * returns descriptors, implements configuration and data protocols used 42 * by the host to interact with this device, and allocates endpoints to 43 * the different protocol interfaces. The controller driver virtualizes 44 * usb hardware so that the gadget drivers will be more portable. 45 * 46 * This UDC hardware wants to implement a bit too much USB protocol. The 47 * biggest issues are: that the endpoints have to be set up before the 48 * controller can be enabled (minor, and not uncommon); and each endpoint 49 * can only have one configuration, interface and alternative interface 50 * number (major, and very unusual). Once set up, these cannot be changed 51 * without a controller reset. 52 * 53 * The workaround is to setup all combinations necessary for the gadgets which 54 * will work with this driver. This is done in pxa_udc structure, statically. 55 * See pxa_udc, udc_usb_ep versus pxa_ep, and matching function find_pxa_ep. 56 * (You could modify this if needed. Some drivers have a "fifo_mode" module 57 * parameter to facilitate such changes.) 58 * 59 * The combinations have been tested with these gadgets : 60 * - zero gadget 61 * - file storage gadget 62 * - ether gadget 63 * 64 * The driver doesn't use DMA, only IO access and IRQ callbacks. No use is 65 * made of UDC's double buffering either. USB "On-The-Go" is not implemented. 66 * 67 * All the requests are handled the same way : 68 * - the drivers tries to handle the request directly to the IO 69 * - if the IO fifo is not big enough, the remaining is send/received in 70 * interrupt handling. 71 */ 72 73 #define DRIVER_VERSION "2008-04-18" 74 #define DRIVER_DESC "PXA 27x USB Device Controller driver" 75 76 static const char driver_name[] = "pxa27x_udc"; 77 static struct pxa_udc *the_controller; 78 79 static void handle_ep(struct pxa_ep *ep); 80 81 /* 82 * Debug filesystem 83 */ 84 #ifdef CONFIG_USB_GADGET_DEBUG_FS 85 86 #include <linux/debugfs.h> 87 #include <linux/uaccess.h> 88 #include <linux/seq_file.h> 89 90 static int state_dbg_show(struct seq_file *s, void *p) 91 { 92 struct pxa_udc *udc = s->private; 93 int pos = 0, ret; 94 u32 tmp; 95 96 ret = -ENODEV; 97 if (!udc->driver) 98 goto out; 99 100 /* basic device status */ 101 pos += seq_printf(s, DRIVER_DESC "\n" 102 "%s version: %s\nGadget driver: %s\n", 103 driver_name, DRIVER_VERSION, 104 udc->driver ? udc->driver->driver.name : "(none)"); 105 106 tmp = udc_readl(udc, UDCCR); 107 pos += seq_printf(s, 108 "udccr=0x%0x(%s%s%s%s%s%s%s%s%s%s), " 109 "con=%d,inter=%d,altinter=%d\n", tmp, 110 (tmp & UDCCR_OEN) ? " oen":"", 111 (tmp & UDCCR_AALTHNP) ? " aalthnp":"", 112 (tmp & UDCCR_AHNP) ? " rem" : "", 113 (tmp & UDCCR_BHNP) ? " rstir" : "", 114 (tmp & UDCCR_DWRE) ? " dwre" : "", 115 (tmp & UDCCR_SMAC) ? " smac" : "", 116 (tmp & UDCCR_EMCE) ? " emce" : "", 117 (tmp & UDCCR_UDR) ? " udr" : "", 118 (tmp & UDCCR_UDA) ? " uda" : "", 119 (tmp & UDCCR_UDE) ? " ude" : "", 120 (tmp & UDCCR_ACN) >> UDCCR_ACN_S, 121 (tmp & UDCCR_AIN) >> UDCCR_AIN_S, 122 (tmp & UDCCR_AAISN) >> UDCCR_AAISN_S); 123 /* registers for device and ep0 */ 124 pos += seq_printf(s, "udcicr0=0x%08x udcicr1=0x%08x\n", 125 udc_readl(udc, UDCICR0), udc_readl(udc, UDCICR1)); 126 pos += seq_printf(s, "udcisr0=0x%08x udcisr1=0x%08x\n", 127 udc_readl(udc, UDCISR0), udc_readl(udc, UDCISR1)); 128 pos += seq_printf(s, "udcfnr=%d\n", udc_readl(udc, UDCFNR)); 129 pos += seq_printf(s, "irqs: reset=%lu, suspend=%lu, resume=%lu, " 130 "reconfig=%lu\n", 131 udc->stats.irqs_reset, udc->stats.irqs_suspend, 132 udc->stats.irqs_resume, udc->stats.irqs_reconfig); 133 134 ret = 0; 135 out: 136 return ret; 137 } 138 139 static int queues_dbg_show(struct seq_file *s, void *p) 140 { 141 struct pxa_udc *udc = s->private; 142 struct pxa_ep *ep; 143 struct pxa27x_request *req; 144 int pos = 0, i, maxpkt, ret; 145 146 ret = -ENODEV; 147 if (!udc->driver) 148 goto out; 149 150 /* dump endpoint queues */ 151 for (i = 0; i < NR_PXA_ENDPOINTS; i++) { 152 ep = &udc->pxa_ep[i]; 153 maxpkt = ep->fifo_size; 154 pos += seq_printf(s, "%-12s max_pkt=%d %s\n", 155 EPNAME(ep), maxpkt, "pio"); 156 157 if (list_empty(&ep->queue)) { 158 pos += seq_printf(s, "\t(nothing queued)\n"); 159 continue; 160 } 161 162 list_for_each_entry(req, &ep->queue, queue) { 163 pos += seq_printf(s, "\treq %p len %d/%d buf %p\n", 164 &req->req, req->req.actual, 165 req->req.length, req->req.buf); 166 } 167 } 168 169 ret = 0; 170 out: 171 return ret; 172 } 173 174 static int eps_dbg_show(struct seq_file *s, void *p) 175 { 176 struct pxa_udc *udc = s->private; 177 struct pxa_ep *ep; 178 int pos = 0, i, ret; 179 u32 tmp; 180 181 ret = -ENODEV; 182 if (!udc->driver) 183 goto out; 184 185 ep = &udc->pxa_ep[0]; 186 tmp = udc_ep_readl(ep, UDCCSR); 187 pos += seq_printf(s, "udccsr0=0x%03x(%s%s%s%s%s%s%s)\n", tmp, 188 (tmp & UDCCSR0_SA) ? " sa" : "", 189 (tmp & UDCCSR0_RNE) ? " rne" : "", 190 (tmp & UDCCSR0_FST) ? " fst" : "", 191 (tmp & UDCCSR0_SST) ? " sst" : "", 192 (tmp & UDCCSR0_DME) ? " dme" : "", 193 (tmp & UDCCSR0_IPR) ? " ipr" : "", 194 (tmp & UDCCSR0_OPC) ? " opc" : ""); 195 for (i = 0; i < NR_PXA_ENDPOINTS; i++) { 196 ep = &udc->pxa_ep[i]; 197 tmp = i? udc_ep_readl(ep, UDCCR) : udc_readl(udc, UDCCR); 198 pos += seq_printf(s, "%-12s: " 199 "IN %lu(%lu reqs), OUT %lu(%lu reqs), " 200 "irqs=%lu, udccr=0x%08x, udccsr=0x%03x, " 201 "udcbcr=%d\n", 202 EPNAME(ep), 203 ep->stats.in_bytes, ep->stats.in_ops, 204 ep->stats.out_bytes, ep->stats.out_ops, 205 ep->stats.irqs, 206 tmp, udc_ep_readl(ep, UDCCSR), 207 udc_ep_readl(ep, UDCBCR)); 208 } 209 210 ret = 0; 211 out: 212 return ret; 213 } 214 215 static int eps_dbg_open(struct inode *inode, struct file *file) 216 { 217 return single_open(file, eps_dbg_show, inode->i_private); 218 } 219 220 static int queues_dbg_open(struct inode *inode, struct file *file) 221 { 222 return single_open(file, queues_dbg_show, inode->i_private); 223 } 224 225 static int state_dbg_open(struct inode *inode, struct file *file) 226 { 227 return single_open(file, state_dbg_show, inode->i_private); 228 } 229 230 static const struct file_operations state_dbg_fops = { 231 .owner = THIS_MODULE, 232 .open = state_dbg_open, 233 .llseek = seq_lseek, 234 .read = seq_read, 235 .release = single_release, 236 }; 237 238 static const struct file_operations queues_dbg_fops = { 239 .owner = THIS_MODULE, 240 .open = queues_dbg_open, 241 .llseek = seq_lseek, 242 .read = seq_read, 243 .release = single_release, 244 }; 245 246 static const struct file_operations eps_dbg_fops = { 247 .owner = THIS_MODULE, 248 .open = eps_dbg_open, 249 .llseek = seq_lseek, 250 .read = seq_read, 251 .release = single_release, 252 }; 253 254 static void pxa_init_debugfs(struct pxa_udc *udc) 255 { 256 struct dentry *root, *state, *queues, *eps; 257 258 root = debugfs_create_dir(udc->gadget.name, NULL); 259 if (IS_ERR(root) || !root) 260 goto err_root; 261 262 state = debugfs_create_file("udcstate", 0400, root, udc, 263 &state_dbg_fops); 264 if (!state) 265 goto err_state; 266 queues = debugfs_create_file("queues", 0400, root, udc, 267 &queues_dbg_fops); 268 if (!queues) 269 goto err_queues; 270 eps = debugfs_create_file("epstate", 0400, root, udc, 271 &eps_dbg_fops); 272 if (!eps) 273 goto err_eps; 274 275 udc->debugfs_root = root; 276 udc->debugfs_state = state; 277 udc->debugfs_queues = queues; 278 udc->debugfs_eps = eps; 279 return; 280 err_eps: 281 debugfs_remove(eps); 282 err_queues: 283 debugfs_remove(queues); 284 err_state: 285 debugfs_remove(root); 286 err_root: 287 dev_err(udc->dev, "debugfs is not available\n"); 288 } 289 290 static void pxa_cleanup_debugfs(struct pxa_udc *udc) 291 { 292 debugfs_remove(udc->debugfs_eps); 293 debugfs_remove(udc->debugfs_queues); 294 debugfs_remove(udc->debugfs_state); 295 debugfs_remove(udc->debugfs_root); 296 udc->debugfs_eps = NULL; 297 udc->debugfs_queues = NULL; 298 udc->debugfs_state = NULL; 299 udc->debugfs_root = NULL; 300 } 301 302 #else 303 static inline void pxa_init_debugfs(struct pxa_udc *udc) 304 { 305 } 306 307 static inline void pxa_cleanup_debugfs(struct pxa_udc *udc) 308 { 309 } 310 #endif 311 312 /** 313 * is_match_usb_pxa - check if usb_ep and pxa_ep match 314 * @udc_usb_ep: usb endpoint 315 * @ep: pxa endpoint 316 * @config: configuration required in pxa_ep 317 * @interface: interface required in pxa_ep 318 * @altsetting: altsetting required in pxa_ep 319 * 320 * Returns 1 if all criteria match between pxa and usb endpoint, 0 otherwise 321 */ 322 static int is_match_usb_pxa(struct udc_usb_ep *udc_usb_ep, struct pxa_ep *ep, 323 int config, int interface, int altsetting) 324 { 325 if (usb_endpoint_num(&udc_usb_ep->desc) != ep->addr) 326 return 0; 327 if (usb_endpoint_dir_in(&udc_usb_ep->desc) != ep->dir_in) 328 return 0; 329 if (usb_endpoint_type(&udc_usb_ep->desc) != ep->type) 330 return 0; 331 if ((ep->config != config) || (ep->interface != interface) 332 || (ep->alternate != altsetting)) 333 return 0; 334 return 1; 335 } 336 337 /** 338 * find_pxa_ep - find pxa_ep structure matching udc_usb_ep 339 * @udc: pxa udc 340 * @udc_usb_ep: udc_usb_ep structure 341 * 342 * Match udc_usb_ep and all pxa_ep available, to see if one matches. 343 * This is necessary because of the strong pxa hardware restriction requiring 344 * that once pxa endpoints are initialized, their configuration is freezed, and 345 * no change can be made to their address, direction, or in which configuration, 346 * interface or altsetting they are active ... which differs from more usual 347 * models which have endpoints be roughly just addressable fifos, and leave 348 * configuration events up to gadget drivers (like all control messages). 349 * 350 * Note that there is still a blurred point here : 351 * - we rely on UDCCR register "active interface" and "active altsetting". 352 * This is a nonsense in regard of USB spec, where multiple interfaces are 353 * active at the same time. 354 * - if we knew for sure that the pxa can handle multiple interface at the 355 * same time, assuming Intel's Developer Guide is wrong, this function 356 * should be reviewed, and a cache of couples (iface, altsetting) should 357 * be kept in the pxa_udc structure. In this case this function would match 358 * against the cache of couples instead of the "last altsetting" set up. 359 * 360 * Returns the matched pxa_ep structure or NULL if none found 361 */ 362 static struct pxa_ep *find_pxa_ep(struct pxa_udc *udc, 363 struct udc_usb_ep *udc_usb_ep) 364 { 365 int i; 366 struct pxa_ep *ep; 367 int cfg = udc->config; 368 int iface = udc->last_interface; 369 int alt = udc->last_alternate; 370 371 if (udc_usb_ep == &udc->udc_usb_ep[0]) 372 return &udc->pxa_ep[0]; 373 374 for (i = 1; i < NR_PXA_ENDPOINTS; i++) { 375 ep = &udc->pxa_ep[i]; 376 if (is_match_usb_pxa(udc_usb_ep, ep, cfg, iface, alt)) 377 return ep; 378 } 379 return NULL; 380 } 381 382 /** 383 * update_pxa_ep_matches - update pxa_ep cached values in all udc_usb_ep 384 * @udc: pxa udc 385 * 386 * Context: in_interrupt() 387 * 388 * Updates all pxa_ep fields in udc_usb_ep structures, if this field was 389 * previously set up (and is not NULL). The update is necessary is a 390 * configuration change or altsetting change was issued by the USB host. 391 */ 392 static void update_pxa_ep_matches(struct pxa_udc *udc) 393 { 394 int i; 395 struct udc_usb_ep *udc_usb_ep; 396 397 for (i = 1; i < NR_USB_ENDPOINTS; i++) { 398 udc_usb_ep = &udc->udc_usb_ep[i]; 399 if (udc_usb_ep->pxa_ep) 400 udc_usb_ep->pxa_ep = find_pxa_ep(udc, udc_usb_ep); 401 } 402 } 403 404 /** 405 * pio_irq_enable - Enables irq generation for one endpoint 406 * @ep: udc endpoint 407 */ 408 static void pio_irq_enable(struct pxa_ep *ep) 409 { 410 struct pxa_udc *udc = ep->dev; 411 int index = EPIDX(ep); 412 u32 udcicr0 = udc_readl(udc, UDCICR0); 413 u32 udcicr1 = udc_readl(udc, UDCICR1); 414 415 if (index < 16) 416 udc_writel(udc, UDCICR0, udcicr0 | (3 << (index * 2))); 417 else 418 udc_writel(udc, UDCICR1, udcicr1 | (3 << ((index - 16) * 2))); 419 } 420 421 /** 422 * pio_irq_disable - Disables irq generation for one endpoint 423 * @ep: udc endpoint 424 */ 425 static void pio_irq_disable(struct pxa_ep *ep) 426 { 427 struct pxa_udc *udc = ep->dev; 428 int index = EPIDX(ep); 429 u32 udcicr0 = udc_readl(udc, UDCICR0); 430 u32 udcicr1 = udc_readl(udc, UDCICR1); 431 432 if (index < 16) 433 udc_writel(udc, UDCICR0, udcicr0 & ~(3 << (index * 2))); 434 else 435 udc_writel(udc, UDCICR1, udcicr1 & ~(3 << ((index - 16) * 2))); 436 } 437 438 /** 439 * udc_set_mask_UDCCR - set bits in UDCCR 440 * @udc: udc device 441 * @mask: bits to set in UDCCR 442 * 443 * Sets bits in UDCCR, leaving DME and FST bits as they were. 444 */ 445 static inline void udc_set_mask_UDCCR(struct pxa_udc *udc, int mask) 446 { 447 u32 udccr = udc_readl(udc, UDCCR); 448 udc_writel(udc, UDCCR, 449 (udccr & UDCCR_MASK_BITS) | (mask & UDCCR_MASK_BITS)); 450 } 451 452 /** 453 * udc_clear_mask_UDCCR - clears bits in UDCCR 454 * @udc: udc device 455 * @mask: bit to clear in UDCCR 456 * 457 * Clears bits in UDCCR, leaving DME and FST bits as they were. 458 */ 459 static inline void udc_clear_mask_UDCCR(struct pxa_udc *udc, int mask) 460 { 461 u32 udccr = udc_readl(udc, UDCCR); 462 udc_writel(udc, UDCCR, 463 (udccr & UDCCR_MASK_BITS) & ~(mask & UDCCR_MASK_BITS)); 464 } 465 466 /** 467 * ep_write_UDCCSR - set bits in UDCCSR 468 * @udc: udc device 469 * @mask: bits to set in UDCCR 470 * 471 * Sets bits in UDCCSR (UDCCSR0 and UDCCSR*). 472 * 473 * A specific case is applied to ep0 : the ACM bit is always set to 1, for 474 * SET_INTERFACE and SET_CONFIGURATION. 475 */ 476 static inline void ep_write_UDCCSR(struct pxa_ep *ep, int mask) 477 { 478 if (is_ep0(ep)) 479 mask |= UDCCSR0_ACM; 480 udc_ep_writel(ep, UDCCSR, mask); 481 } 482 483 /** 484 * ep_count_bytes_remain - get how many bytes in udc endpoint 485 * @ep: udc endpoint 486 * 487 * Returns number of bytes in OUT fifos. Broken for IN fifos (-EOPNOTSUPP) 488 */ 489 static int ep_count_bytes_remain(struct pxa_ep *ep) 490 { 491 if (ep->dir_in) 492 return -EOPNOTSUPP; 493 return udc_ep_readl(ep, UDCBCR) & 0x3ff; 494 } 495 496 /** 497 * ep_is_empty - checks if ep has byte ready for reading 498 * @ep: udc endpoint 499 * 500 * If endpoint is the control endpoint, checks if there are bytes in the 501 * control endpoint fifo. If endpoint is a data endpoint, checks if bytes 502 * are ready for reading on OUT endpoint. 503 * 504 * Returns 0 if ep not empty, 1 if ep empty, -EOPNOTSUPP if IN endpoint 505 */ 506 static int ep_is_empty(struct pxa_ep *ep) 507 { 508 int ret; 509 510 if (!is_ep0(ep) && ep->dir_in) 511 return -EOPNOTSUPP; 512 if (is_ep0(ep)) 513 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR0_RNE); 514 else 515 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNE); 516 return ret; 517 } 518 519 /** 520 * ep_is_full - checks if ep has place to write bytes 521 * @ep: udc endpoint 522 * 523 * If endpoint is not the control endpoint and is an IN endpoint, checks if 524 * there is place to write bytes into the endpoint. 525 * 526 * Returns 0 if ep not full, 1 if ep full, -EOPNOTSUPP if OUT endpoint 527 */ 528 static int ep_is_full(struct pxa_ep *ep) 529 { 530 if (is_ep0(ep)) 531 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_IPR); 532 if (!ep->dir_in) 533 return -EOPNOTSUPP; 534 return (!(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNF)); 535 } 536 537 /** 538 * epout_has_pkt - checks if OUT endpoint fifo has a packet available 539 * @ep: pxa endpoint 540 * 541 * Returns 1 if a complete packet is available, 0 if not, -EOPNOTSUPP for IN ep. 542 */ 543 static int epout_has_pkt(struct pxa_ep *ep) 544 { 545 if (!is_ep0(ep) && ep->dir_in) 546 return -EOPNOTSUPP; 547 if (is_ep0(ep)) 548 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_OPC); 549 return (udc_ep_readl(ep, UDCCSR) & UDCCSR_PC); 550 } 551 552 /** 553 * set_ep0state - Set ep0 automata state 554 * @dev: udc device 555 * @state: state 556 */ 557 static void set_ep0state(struct pxa_udc *udc, int state) 558 { 559 struct pxa_ep *ep = &udc->pxa_ep[0]; 560 char *old_stname = EP0_STNAME(udc); 561 562 udc->ep0state = state; 563 ep_dbg(ep, "state=%s->%s, udccsr0=0x%03x, udcbcr=%d\n", old_stname, 564 EP0_STNAME(udc), udc_ep_readl(ep, UDCCSR), 565 udc_ep_readl(ep, UDCBCR)); 566 } 567 568 /** 569 * ep0_idle - Put control endpoint into idle state 570 * @dev: udc device 571 */ 572 static void ep0_idle(struct pxa_udc *dev) 573 { 574 set_ep0state(dev, WAIT_FOR_SETUP); 575 } 576 577 /** 578 * inc_ep_stats_reqs - Update ep stats counts 579 * @ep: physical endpoint 580 * @req: usb request 581 * @is_in: ep direction (USB_DIR_IN or 0) 582 * 583 */ 584 static void inc_ep_stats_reqs(struct pxa_ep *ep, int is_in) 585 { 586 if (is_in) 587 ep->stats.in_ops++; 588 else 589 ep->stats.out_ops++; 590 } 591 592 /** 593 * inc_ep_stats_bytes - Update ep stats counts 594 * @ep: physical endpoint 595 * @count: bytes transferred on endpoint 596 * @is_in: ep direction (USB_DIR_IN or 0) 597 */ 598 static void inc_ep_stats_bytes(struct pxa_ep *ep, int count, int is_in) 599 { 600 if (is_in) 601 ep->stats.in_bytes += count; 602 else 603 ep->stats.out_bytes += count; 604 } 605 606 /** 607 * pxa_ep_setup - Sets up an usb physical endpoint 608 * @ep: pxa27x physical endpoint 609 * 610 * Find the physical pxa27x ep, and setup its UDCCR 611 */ 612 static void pxa_ep_setup(struct pxa_ep *ep) 613 { 614 u32 new_udccr; 615 616 new_udccr = ((ep->config << UDCCONR_CN_S) & UDCCONR_CN) 617 | ((ep->interface << UDCCONR_IN_S) & UDCCONR_IN) 618 | ((ep->alternate << UDCCONR_AISN_S) & UDCCONR_AISN) 619 | ((EPADDR(ep) << UDCCONR_EN_S) & UDCCONR_EN) 620 | ((EPXFERTYPE(ep) << UDCCONR_ET_S) & UDCCONR_ET) 621 | ((ep->dir_in) ? UDCCONR_ED : 0) 622 | ((ep->fifo_size << UDCCONR_MPS_S) & UDCCONR_MPS) 623 | UDCCONR_EE; 624 625 udc_ep_writel(ep, UDCCR, new_udccr); 626 } 627 628 /** 629 * pxa_eps_setup - Sets up all usb physical endpoints 630 * @dev: udc device 631 * 632 * Setup all pxa physical endpoints, except ep0 633 */ 634 static void pxa_eps_setup(struct pxa_udc *dev) 635 { 636 unsigned int i; 637 638 dev_dbg(dev->dev, "%s: dev=%p\n", __func__, dev); 639 640 for (i = 1; i < NR_PXA_ENDPOINTS; i++) 641 pxa_ep_setup(&dev->pxa_ep[i]); 642 } 643 644 /** 645 * pxa_ep_alloc_request - Allocate usb request 646 * @_ep: usb endpoint 647 * @gfp_flags: 648 * 649 * For the pxa27x, these can just wrap kmalloc/kfree. gadget drivers 650 * must still pass correctly initialized endpoints, since other controller 651 * drivers may care about how it's currently set up (dma issues etc). 652 */ 653 static struct usb_request * 654 pxa_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags) 655 { 656 struct pxa27x_request *req; 657 658 req = kzalloc(sizeof *req, gfp_flags); 659 if (!req) 660 return NULL; 661 662 INIT_LIST_HEAD(&req->queue); 663 req->in_use = 0; 664 req->udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 665 666 return &req->req; 667 } 668 669 /** 670 * pxa_ep_free_request - Free usb request 671 * @_ep: usb endpoint 672 * @_req: usb request 673 * 674 * Wrapper around kfree to free _req 675 */ 676 static void pxa_ep_free_request(struct usb_ep *_ep, struct usb_request *_req) 677 { 678 struct pxa27x_request *req; 679 680 req = container_of(_req, struct pxa27x_request, req); 681 WARN_ON(!list_empty(&req->queue)); 682 kfree(req); 683 } 684 685 /** 686 * ep_add_request - add a request to the endpoint's queue 687 * @ep: usb endpoint 688 * @req: usb request 689 * 690 * Context: ep->lock held 691 * 692 * Queues the request in the endpoint's queue, and enables the interrupts 693 * on the endpoint. 694 */ 695 static void ep_add_request(struct pxa_ep *ep, struct pxa27x_request *req) 696 { 697 if (unlikely(!req)) 698 return; 699 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req, 700 req->req.length, udc_ep_readl(ep, UDCCSR)); 701 702 req->in_use = 1; 703 list_add_tail(&req->queue, &ep->queue); 704 pio_irq_enable(ep); 705 } 706 707 /** 708 * ep_del_request - removes a request from the endpoint's queue 709 * @ep: usb endpoint 710 * @req: usb request 711 * 712 * Context: ep->lock held 713 * 714 * Unqueue the request from the endpoint's queue. If there are no more requests 715 * on the endpoint, and if it's not the control endpoint, interrupts are 716 * disabled on the endpoint. 717 */ 718 static void ep_del_request(struct pxa_ep *ep, struct pxa27x_request *req) 719 { 720 if (unlikely(!req)) 721 return; 722 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req, 723 req->req.length, udc_ep_readl(ep, UDCCSR)); 724 725 list_del_init(&req->queue); 726 req->in_use = 0; 727 if (!is_ep0(ep) && list_empty(&ep->queue)) 728 pio_irq_disable(ep); 729 } 730 731 /** 732 * req_done - Complete an usb request 733 * @ep: pxa physical endpoint 734 * @req: pxa request 735 * @status: usb request status sent to gadget API 736 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held 737 * 738 * Context: ep->lock held if flags not NULL, else ep->lock released 739 * 740 * Retire a pxa27x usb request. Endpoint must be locked. 741 */ 742 static void req_done(struct pxa_ep *ep, struct pxa27x_request *req, int status, 743 unsigned long *pflags) 744 { 745 unsigned long flags; 746 747 ep_del_request(ep, req); 748 if (likely(req->req.status == -EINPROGRESS)) 749 req->req.status = status; 750 else 751 status = req->req.status; 752 753 if (status && status != -ESHUTDOWN) 754 ep_dbg(ep, "complete req %p stat %d len %u/%u\n", 755 &req->req, status, 756 req->req.actual, req->req.length); 757 758 if (pflags) 759 spin_unlock_irqrestore(&ep->lock, *pflags); 760 local_irq_save(flags); 761 req->req.complete(&req->udc_usb_ep->usb_ep, &req->req); 762 local_irq_restore(flags); 763 if (pflags) 764 spin_lock_irqsave(&ep->lock, *pflags); 765 } 766 767 /** 768 * ep_end_out_req - Ends endpoint OUT request 769 * @ep: physical endpoint 770 * @req: pxa request 771 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held 772 * 773 * Context: ep->lock held or released (see req_done()) 774 * 775 * Ends endpoint OUT request (completes usb request). 776 */ 777 static void ep_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req, 778 unsigned long *pflags) 779 { 780 inc_ep_stats_reqs(ep, !USB_DIR_IN); 781 req_done(ep, req, 0, pflags); 782 } 783 784 /** 785 * ep0_end_out_req - Ends control endpoint OUT request (ends data stage) 786 * @ep: physical endpoint 787 * @req: pxa request 788 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held 789 * 790 * Context: ep->lock held or released (see req_done()) 791 * 792 * Ends control endpoint OUT request (completes usb request), and puts 793 * control endpoint into idle state 794 */ 795 static void ep0_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req, 796 unsigned long *pflags) 797 { 798 set_ep0state(ep->dev, OUT_STATUS_STAGE); 799 ep_end_out_req(ep, req, pflags); 800 ep0_idle(ep->dev); 801 } 802 803 /** 804 * ep_end_in_req - Ends endpoint IN request 805 * @ep: physical endpoint 806 * @req: pxa request 807 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held 808 * 809 * Context: ep->lock held or released (see req_done()) 810 * 811 * Ends endpoint IN request (completes usb request). 812 */ 813 static void ep_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req, 814 unsigned long *pflags) 815 { 816 inc_ep_stats_reqs(ep, USB_DIR_IN); 817 req_done(ep, req, 0, pflags); 818 } 819 820 /** 821 * ep0_end_in_req - Ends control endpoint IN request (ends data stage) 822 * @ep: physical endpoint 823 * @req: pxa request 824 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held 825 * 826 * Context: ep->lock held or released (see req_done()) 827 * 828 * Ends control endpoint IN request (completes usb request), and puts 829 * control endpoint into status state 830 */ 831 static void ep0_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req, 832 unsigned long *pflags) 833 { 834 set_ep0state(ep->dev, IN_STATUS_STAGE); 835 ep_end_in_req(ep, req, pflags); 836 } 837 838 /** 839 * nuke - Dequeue all requests 840 * @ep: pxa endpoint 841 * @status: usb request status 842 * 843 * Context: ep->lock released 844 * 845 * Dequeues all requests on an endpoint. As a side effect, interrupts will be 846 * disabled on that endpoint (because no more requests). 847 */ 848 static void nuke(struct pxa_ep *ep, int status) 849 { 850 struct pxa27x_request *req; 851 unsigned long flags; 852 853 spin_lock_irqsave(&ep->lock, flags); 854 while (!list_empty(&ep->queue)) { 855 req = list_entry(ep->queue.next, struct pxa27x_request, queue); 856 req_done(ep, req, status, &flags); 857 } 858 spin_unlock_irqrestore(&ep->lock, flags); 859 } 860 861 /** 862 * read_packet - transfer 1 packet from an OUT endpoint into request 863 * @ep: pxa physical endpoint 864 * @req: usb request 865 * 866 * Takes bytes from OUT endpoint and transfers them info the usb request. 867 * If there is less space in request than bytes received in OUT endpoint, 868 * bytes are left in the OUT endpoint. 869 * 870 * Returns how many bytes were actually transferred 871 */ 872 static int read_packet(struct pxa_ep *ep, struct pxa27x_request *req) 873 { 874 u32 *buf; 875 int bytes_ep, bufferspace, count, i; 876 877 bytes_ep = ep_count_bytes_remain(ep); 878 bufferspace = req->req.length - req->req.actual; 879 880 buf = (u32 *)(req->req.buf + req->req.actual); 881 prefetchw(buf); 882 883 if (likely(!ep_is_empty(ep))) 884 count = min(bytes_ep, bufferspace); 885 else /* zlp */ 886 count = 0; 887 888 for (i = count; i > 0; i -= 4) 889 *buf++ = udc_ep_readl(ep, UDCDR); 890 req->req.actual += count; 891 892 ep_write_UDCCSR(ep, UDCCSR_PC); 893 894 return count; 895 } 896 897 /** 898 * write_packet - transfer 1 packet from request into an IN endpoint 899 * @ep: pxa physical endpoint 900 * @req: usb request 901 * @max: max bytes that fit into endpoint 902 * 903 * Takes bytes from usb request, and transfers them into the physical 904 * endpoint. If there are no bytes to transfer, doesn't write anything 905 * to physical endpoint. 906 * 907 * Returns how many bytes were actually transferred. 908 */ 909 static int write_packet(struct pxa_ep *ep, struct pxa27x_request *req, 910 unsigned int max) 911 { 912 int length, count, remain, i; 913 u32 *buf; 914 u8 *buf_8; 915 916 buf = (u32 *)(req->req.buf + req->req.actual); 917 prefetch(buf); 918 919 length = min(req->req.length - req->req.actual, max); 920 req->req.actual += length; 921 922 remain = length & 0x3; 923 count = length & ~(0x3); 924 for (i = count; i > 0 ; i -= 4) 925 udc_ep_writel(ep, UDCDR, *buf++); 926 927 buf_8 = (u8 *)buf; 928 for (i = remain; i > 0; i--) 929 udc_ep_writeb(ep, UDCDR, *buf_8++); 930 931 ep_vdbg(ep, "length=%d+%d, udccsr=0x%03x\n", count, remain, 932 udc_ep_readl(ep, UDCCSR)); 933 934 return length; 935 } 936 937 /** 938 * read_fifo - Transfer packets from OUT endpoint into usb request 939 * @ep: pxa physical endpoint 940 * @req: usb request 941 * 942 * Context: callable when in_interrupt() 943 * 944 * Unload as many packets as possible from the fifo we use for usb OUT 945 * transfers and put them into the request. Caller should have made sure 946 * there's at least one packet ready. 947 * Doesn't complete the request, that's the caller's job 948 * 949 * Returns 1 if the request completed, 0 otherwise 950 */ 951 static int read_fifo(struct pxa_ep *ep, struct pxa27x_request *req) 952 { 953 int count, is_short, completed = 0; 954 955 while (epout_has_pkt(ep)) { 956 count = read_packet(ep, req); 957 inc_ep_stats_bytes(ep, count, !USB_DIR_IN); 958 959 is_short = (count < ep->fifo_size); 960 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n", 961 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "", 962 &req->req, req->req.actual, req->req.length); 963 964 /* completion */ 965 if (is_short || req->req.actual == req->req.length) { 966 completed = 1; 967 break; 968 } 969 /* finished that packet. the next one may be waiting... */ 970 } 971 return completed; 972 } 973 974 /** 975 * write_fifo - transfer packets from usb request into an IN endpoint 976 * @ep: pxa physical endpoint 977 * @req: pxa usb request 978 * 979 * Write to an IN endpoint fifo, as many packets as possible. 980 * irqs will use this to write the rest later. 981 * caller guarantees at least one packet buffer is ready (or a zlp). 982 * Doesn't complete the request, that's the caller's job 983 * 984 * Returns 1 if request fully transferred, 0 if partial transfer 985 */ 986 static int write_fifo(struct pxa_ep *ep, struct pxa27x_request *req) 987 { 988 unsigned max; 989 int count, is_short, is_last = 0, completed = 0, totcount = 0; 990 u32 udccsr; 991 992 max = ep->fifo_size; 993 do { 994 is_short = 0; 995 996 udccsr = udc_ep_readl(ep, UDCCSR); 997 if (udccsr & UDCCSR_PC) { 998 ep_vdbg(ep, "Clearing Transmit Complete, udccsr=%x\n", 999 udccsr); 1000 ep_write_UDCCSR(ep, UDCCSR_PC); 1001 } 1002 if (udccsr & UDCCSR_TRN) { 1003 ep_vdbg(ep, "Clearing Underrun on, udccsr=%x\n", 1004 udccsr); 1005 ep_write_UDCCSR(ep, UDCCSR_TRN); 1006 } 1007 1008 count = write_packet(ep, req, max); 1009 inc_ep_stats_bytes(ep, count, USB_DIR_IN); 1010 totcount += count; 1011 1012 /* last packet is usually short (or a zlp) */ 1013 if (unlikely(count < max)) { 1014 is_last = 1; 1015 is_short = 1; 1016 } else { 1017 if (likely(req->req.length > req->req.actual) 1018 || req->req.zero) 1019 is_last = 0; 1020 else 1021 is_last = 1; 1022 /* interrupt/iso maxpacket may not fill the fifo */ 1023 is_short = unlikely(max < ep->fifo_size); 1024 } 1025 1026 if (is_short) 1027 ep_write_UDCCSR(ep, UDCCSR_SP); 1028 1029 /* requests complete when all IN data is in the FIFO */ 1030 if (is_last) { 1031 completed = 1; 1032 break; 1033 } 1034 } while (!ep_is_full(ep)); 1035 1036 ep_dbg(ep, "wrote count:%d bytes%s%s, left:%d req=%p\n", 1037 totcount, is_last ? "/L" : "", is_short ? "/S" : "", 1038 req->req.length - req->req.actual, &req->req); 1039 1040 return completed; 1041 } 1042 1043 /** 1044 * read_ep0_fifo - Transfer packets from control endpoint into usb request 1045 * @ep: control endpoint 1046 * @req: pxa usb request 1047 * 1048 * Special ep0 version of the above read_fifo. Reads as many bytes from control 1049 * endpoint as can be read, and stores them into usb request (limited by request 1050 * maximum length). 1051 * 1052 * Returns 0 if usb request only partially filled, 1 if fully filled 1053 */ 1054 static int read_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req) 1055 { 1056 int count, is_short, completed = 0; 1057 1058 while (epout_has_pkt(ep)) { 1059 count = read_packet(ep, req); 1060 ep_write_UDCCSR(ep, UDCCSR0_OPC); 1061 inc_ep_stats_bytes(ep, count, !USB_DIR_IN); 1062 1063 is_short = (count < ep->fifo_size); 1064 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n", 1065 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "", 1066 &req->req, req->req.actual, req->req.length); 1067 1068 if (is_short || req->req.actual >= req->req.length) { 1069 completed = 1; 1070 break; 1071 } 1072 } 1073 1074 return completed; 1075 } 1076 1077 /** 1078 * write_ep0_fifo - Send a request to control endpoint (ep0 in) 1079 * @ep: control endpoint 1080 * @req: request 1081 * 1082 * Context: callable when in_interrupt() 1083 * 1084 * Sends a request (or a part of the request) to the control endpoint (ep0 in). 1085 * If the request doesn't fit, the remaining part will be sent from irq. 1086 * The request is considered fully written only if either : 1087 * - last write transferred all remaining bytes, but fifo was not fully filled 1088 * - last write was a 0 length write 1089 * 1090 * Returns 1 if request fully written, 0 if request only partially sent 1091 */ 1092 static int write_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req) 1093 { 1094 unsigned count; 1095 int is_last, is_short; 1096 1097 count = write_packet(ep, req, EP0_FIFO_SIZE); 1098 inc_ep_stats_bytes(ep, count, USB_DIR_IN); 1099 1100 is_short = (count < EP0_FIFO_SIZE); 1101 is_last = ((count == 0) || (count < EP0_FIFO_SIZE)); 1102 1103 /* Sends either a short packet or a 0 length packet */ 1104 if (unlikely(is_short)) 1105 ep_write_UDCCSR(ep, UDCCSR0_IPR); 1106 1107 ep_dbg(ep, "in %d bytes%s%s, %d left, req=%p, udccsr0=0x%03x\n", 1108 count, is_short ? "/S" : "", is_last ? "/L" : "", 1109 req->req.length - req->req.actual, 1110 &req->req, udc_ep_readl(ep, UDCCSR)); 1111 1112 return is_last; 1113 } 1114 1115 /** 1116 * pxa_ep_queue - Queue a request into an IN endpoint 1117 * @_ep: usb endpoint 1118 * @_req: usb request 1119 * @gfp_flags: flags 1120 * 1121 * Context: normally called when !in_interrupt, but callable when in_interrupt() 1122 * in the special case of ep0 setup : 1123 * (irq->handle_ep0_ctrl_req->gadget_setup->pxa_ep_queue) 1124 * 1125 * Returns 0 if succedeed, error otherwise 1126 */ 1127 static int pxa_ep_queue(struct usb_ep *_ep, struct usb_request *_req, 1128 gfp_t gfp_flags) 1129 { 1130 struct udc_usb_ep *udc_usb_ep; 1131 struct pxa_ep *ep; 1132 struct pxa27x_request *req; 1133 struct pxa_udc *dev; 1134 unsigned long flags; 1135 int rc = 0; 1136 int is_first_req; 1137 unsigned length; 1138 int recursion_detected; 1139 1140 req = container_of(_req, struct pxa27x_request, req); 1141 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1142 1143 if (unlikely(!_req || !_req->complete || !_req->buf)) 1144 return -EINVAL; 1145 1146 if (unlikely(!_ep)) 1147 return -EINVAL; 1148 1149 dev = udc_usb_ep->dev; 1150 ep = udc_usb_ep->pxa_ep; 1151 if (unlikely(!ep)) 1152 return -EINVAL; 1153 1154 dev = ep->dev; 1155 if (unlikely(!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) { 1156 ep_dbg(ep, "bogus device state\n"); 1157 return -ESHUTDOWN; 1158 } 1159 1160 /* iso is always one packet per request, that's the only way 1161 * we can report per-packet status. that also helps with dma. 1162 */ 1163 if (unlikely(EPXFERTYPE_is_ISO(ep) 1164 && req->req.length > ep->fifo_size)) 1165 return -EMSGSIZE; 1166 1167 spin_lock_irqsave(&ep->lock, flags); 1168 recursion_detected = ep->in_handle_ep; 1169 1170 is_first_req = list_empty(&ep->queue); 1171 ep_dbg(ep, "queue req %p(first=%s), len %d buf %p\n", 1172 _req, is_first_req ? "yes" : "no", 1173 _req->length, _req->buf); 1174 1175 if (!ep->enabled) { 1176 _req->status = -ESHUTDOWN; 1177 rc = -ESHUTDOWN; 1178 goto out_locked; 1179 } 1180 1181 if (req->in_use) { 1182 ep_err(ep, "refusing to queue req %p (already queued)\n", req); 1183 goto out_locked; 1184 } 1185 1186 length = _req->length; 1187 _req->status = -EINPROGRESS; 1188 _req->actual = 0; 1189 1190 ep_add_request(ep, req); 1191 spin_unlock_irqrestore(&ep->lock, flags); 1192 1193 if (is_ep0(ep)) { 1194 switch (dev->ep0state) { 1195 case WAIT_ACK_SET_CONF_INTERF: 1196 if (length == 0) { 1197 ep_end_in_req(ep, req, NULL); 1198 } else { 1199 ep_err(ep, "got a request of %d bytes while" 1200 "in state WAIT_ACK_SET_CONF_INTERF\n", 1201 length); 1202 ep_del_request(ep, req); 1203 rc = -EL2HLT; 1204 } 1205 ep0_idle(ep->dev); 1206 break; 1207 case IN_DATA_STAGE: 1208 if (!ep_is_full(ep)) 1209 if (write_ep0_fifo(ep, req)) 1210 ep0_end_in_req(ep, req, NULL); 1211 break; 1212 case OUT_DATA_STAGE: 1213 if ((length == 0) || !epout_has_pkt(ep)) 1214 if (read_ep0_fifo(ep, req)) 1215 ep0_end_out_req(ep, req, NULL); 1216 break; 1217 default: 1218 ep_err(ep, "odd state %s to send me a request\n", 1219 EP0_STNAME(ep->dev)); 1220 ep_del_request(ep, req); 1221 rc = -EL2HLT; 1222 break; 1223 } 1224 } else { 1225 if (!recursion_detected) 1226 handle_ep(ep); 1227 } 1228 1229 out: 1230 return rc; 1231 out_locked: 1232 spin_unlock_irqrestore(&ep->lock, flags); 1233 goto out; 1234 } 1235 1236 /** 1237 * pxa_ep_dequeue - Dequeue one request 1238 * @_ep: usb endpoint 1239 * @_req: usb request 1240 * 1241 * Return 0 if no error, -EINVAL or -ECONNRESET otherwise 1242 */ 1243 static int pxa_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req) 1244 { 1245 struct pxa_ep *ep; 1246 struct udc_usb_ep *udc_usb_ep; 1247 struct pxa27x_request *req; 1248 unsigned long flags; 1249 int rc = -EINVAL; 1250 1251 if (!_ep) 1252 return rc; 1253 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1254 ep = udc_usb_ep->pxa_ep; 1255 if (!ep || is_ep0(ep)) 1256 return rc; 1257 1258 spin_lock_irqsave(&ep->lock, flags); 1259 1260 /* make sure it's actually queued on this endpoint */ 1261 list_for_each_entry(req, &ep->queue, queue) { 1262 if (&req->req == _req) { 1263 rc = 0; 1264 break; 1265 } 1266 } 1267 1268 spin_unlock_irqrestore(&ep->lock, flags); 1269 if (!rc) 1270 req_done(ep, req, -ECONNRESET, NULL); 1271 return rc; 1272 } 1273 1274 /** 1275 * pxa_ep_set_halt - Halts operations on one endpoint 1276 * @_ep: usb endpoint 1277 * @value: 1278 * 1279 * Returns 0 if no error, -EINVAL, -EROFS, -EAGAIN otherwise 1280 */ 1281 static int pxa_ep_set_halt(struct usb_ep *_ep, int value) 1282 { 1283 struct pxa_ep *ep; 1284 struct udc_usb_ep *udc_usb_ep; 1285 unsigned long flags; 1286 int rc; 1287 1288 1289 if (!_ep) 1290 return -EINVAL; 1291 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1292 ep = udc_usb_ep->pxa_ep; 1293 if (!ep || is_ep0(ep)) 1294 return -EINVAL; 1295 1296 if (value == 0) { 1297 /* 1298 * This path (reset toggle+halt) is needed to implement 1299 * SET_INTERFACE on normal hardware. but it can't be 1300 * done from software on the PXA UDC, and the hardware 1301 * forgets to do it as part of SET_INTERFACE automagic. 1302 */ 1303 ep_dbg(ep, "only host can clear halt\n"); 1304 return -EROFS; 1305 } 1306 1307 spin_lock_irqsave(&ep->lock, flags); 1308 1309 rc = -EAGAIN; 1310 if (ep->dir_in && (ep_is_full(ep) || !list_empty(&ep->queue))) 1311 goto out; 1312 1313 /* FST, FEF bits are the same for control and non control endpoints */ 1314 rc = 0; 1315 ep_write_UDCCSR(ep, UDCCSR_FST | UDCCSR_FEF); 1316 if (is_ep0(ep)) 1317 set_ep0state(ep->dev, STALL); 1318 1319 out: 1320 spin_unlock_irqrestore(&ep->lock, flags); 1321 return rc; 1322 } 1323 1324 /** 1325 * pxa_ep_fifo_status - Get how many bytes in physical endpoint 1326 * @_ep: usb endpoint 1327 * 1328 * Returns number of bytes in OUT fifos. Broken for IN fifos. 1329 */ 1330 static int pxa_ep_fifo_status(struct usb_ep *_ep) 1331 { 1332 struct pxa_ep *ep; 1333 struct udc_usb_ep *udc_usb_ep; 1334 1335 if (!_ep) 1336 return -ENODEV; 1337 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1338 ep = udc_usb_ep->pxa_ep; 1339 if (!ep || is_ep0(ep)) 1340 return -ENODEV; 1341 1342 if (ep->dir_in) 1343 return -EOPNOTSUPP; 1344 if (ep->dev->gadget.speed == USB_SPEED_UNKNOWN || ep_is_empty(ep)) 1345 return 0; 1346 else 1347 return ep_count_bytes_remain(ep) + 1; 1348 } 1349 1350 /** 1351 * pxa_ep_fifo_flush - Flushes one endpoint 1352 * @_ep: usb endpoint 1353 * 1354 * Discards all data in one endpoint(IN or OUT), except control endpoint. 1355 */ 1356 static void pxa_ep_fifo_flush(struct usb_ep *_ep) 1357 { 1358 struct pxa_ep *ep; 1359 struct udc_usb_ep *udc_usb_ep; 1360 unsigned long flags; 1361 1362 if (!_ep) 1363 return; 1364 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1365 ep = udc_usb_ep->pxa_ep; 1366 if (!ep || is_ep0(ep)) 1367 return; 1368 1369 spin_lock_irqsave(&ep->lock, flags); 1370 1371 if (unlikely(!list_empty(&ep->queue))) 1372 ep_dbg(ep, "called while queue list not empty\n"); 1373 ep_dbg(ep, "called\n"); 1374 1375 /* for OUT, just read and discard the FIFO contents. */ 1376 if (!ep->dir_in) { 1377 while (!ep_is_empty(ep)) 1378 udc_ep_readl(ep, UDCDR); 1379 } else { 1380 /* most IN status is the same, but ISO can't stall */ 1381 ep_write_UDCCSR(ep, 1382 UDCCSR_PC | UDCCSR_FEF | UDCCSR_TRN 1383 | (EPXFERTYPE_is_ISO(ep) ? 0 : UDCCSR_SST)); 1384 } 1385 1386 spin_unlock_irqrestore(&ep->lock, flags); 1387 } 1388 1389 /** 1390 * pxa_ep_enable - Enables usb endpoint 1391 * @_ep: usb endpoint 1392 * @desc: usb endpoint descriptor 1393 * 1394 * Nothing much to do here, as ep configuration is done once and for all 1395 * before udc is enabled. After udc enable, no physical endpoint configuration 1396 * can be changed. 1397 * Function makes sanity checks and flushes the endpoint. 1398 */ 1399 static int pxa_ep_enable(struct usb_ep *_ep, 1400 const struct usb_endpoint_descriptor *desc) 1401 { 1402 struct pxa_ep *ep; 1403 struct udc_usb_ep *udc_usb_ep; 1404 struct pxa_udc *udc; 1405 1406 if (!_ep || !desc) 1407 return -EINVAL; 1408 1409 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1410 if (udc_usb_ep->pxa_ep) { 1411 ep = udc_usb_ep->pxa_ep; 1412 ep_warn(ep, "usb_ep %s already enabled, doing nothing\n", 1413 _ep->name); 1414 } else { 1415 ep = find_pxa_ep(udc_usb_ep->dev, udc_usb_ep); 1416 } 1417 1418 if (!ep || is_ep0(ep)) { 1419 dev_err(udc_usb_ep->dev->dev, 1420 "unable to match pxa_ep for ep %s\n", 1421 _ep->name); 1422 return -EINVAL; 1423 } 1424 1425 if ((desc->bDescriptorType != USB_DT_ENDPOINT) 1426 || (ep->type != usb_endpoint_type(desc))) { 1427 ep_err(ep, "type mismatch\n"); 1428 return -EINVAL; 1429 } 1430 1431 if (ep->fifo_size < usb_endpoint_maxp(desc)) { 1432 ep_err(ep, "bad maxpacket\n"); 1433 return -ERANGE; 1434 } 1435 1436 udc_usb_ep->pxa_ep = ep; 1437 udc = ep->dev; 1438 1439 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) { 1440 ep_err(ep, "bogus device state\n"); 1441 return -ESHUTDOWN; 1442 } 1443 1444 ep->enabled = 1; 1445 1446 /* flush fifo (mostly for OUT buffers) */ 1447 pxa_ep_fifo_flush(_ep); 1448 1449 ep_dbg(ep, "enabled\n"); 1450 return 0; 1451 } 1452 1453 /** 1454 * pxa_ep_disable - Disable usb endpoint 1455 * @_ep: usb endpoint 1456 * 1457 * Same as for pxa_ep_enable, no physical endpoint configuration can be 1458 * changed. 1459 * Function flushes the endpoint and related requests. 1460 */ 1461 static int pxa_ep_disable(struct usb_ep *_ep) 1462 { 1463 struct pxa_ep *ep; 1464 struct udc_usb_ep *udc_usb_ep; 1465 1466 if (!_ep) 1467 return -EINVAL; 1468 1469 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1470 ep = udc_usb_ep->pxa_ep; 1471 if (!ep || is_ep0(ep) || !list_empty(&ep->queue)) 1472 return -EINVAL; 1473 1474 ep->enabled = 0; 1475 nuke(ep, -ESHUTDOWN); 1476 1477 pxa_ep_fifo_flush(_ep); 1478 udc_usb_ep->pxa_ep = NULL; 1479 1480 ep_dbg(ep, "disabled\n"); 1481 return 0; 1482 } 1483 1484 static struct usb_ep_ops pxa_ep_ops = { 1485 .enable = pxa_ep_enable, 1486 .disable = pxa_ep_disable, 1487 1488 .alloc_request = pxa_ep_alloc_request, 1489 .free_request = pxa_ep_free_request, 1490 1491 .queue = pxa_ep_queue, 1492 .dequeue = pxa_ep_dequeue, 1493 1494 .set_halt = pxa_ep_set_halt, 1495 .fifo_status = pxa_ep_fifo_status, 1496 .fifo_flush = pxa_ep_fifo_flush, 1497 }; 1498 1499 /** 1500 * dplus_pullup - Connect or disconnect pullup resistor to D+ pin 1501 * @udc: udc device 1502 * @on: 0 if disconnect pullup resistor, 1 otherwise 1503 * Context: any 1504 * 1505 * Handle D+ pullup resistor, make the device visible to the usb bus, and 1506 * declare it as a full speed usb device 1507 */ 1508 static void dplus_pullup(struct pxa_udc *udc, int on) 1509 { 1510 if (on) { 1511 if (gpio_is_valid(udc->mach->gpio_pullup)) 1512 gpio_set_value(udc->mach->gpio_pullup, 1513 !udc->mach->gpio_pullup_inverted); 1514 if (udc->mach->udc_command) 1515 udc->mach->udc_command(PXA2XX_UDC_CMD_CONNECT); 1516 } else { 1517 if (gpio_is_valid(udc->mach->gpio_pullup)) 1518 gpio_set_value(udc->mach->gpio_pullup, 1519 udc->mach->gpio_pullup_inverted); 1520 if (udc->mach->udc_command) 1521 udc->mach->udc_command(PXA2XX_UDC_CMD_DISCONNECT); 1522 } 1523 udc->pullup_on = on; 1524 } 1525 1526 /** 1527 * pxa_udc_get_frame - Returns usb frame number 1528 * @_gadget: usb gadget 1529 */ 1530 static int pxa_udc_get_frame(struct usb_gadget *_gadget) 1531 { 1532 struct pxa_udc *udc = to_gadget_udc(_gadget); 1533 1534 return (udc_readl(udc, UDCFNR) & 0x7ff); 1535 } 1536 1537 /** 1538 * pxa_udc_wakeup - Force udc device out of suspend 1539 * @_gadget: usb gadget 1540 * 1541 * Returns 0 if successful, error code otherwise 1542 */ 1543 static int pxa_udc_wakeup(struct usb_gadget *_gadget) 1544 { 1545 struct pxa_udc *udc = to_gadget_udc(_gadget); 1546 1547 /* host may not have enabled remote wakeup */ 1548 if ((udc_readl(udc, UDCCR) & UDCCR_DWRE) == 0) 1549 return -EHOSTUNREACH; 1550 udc_set_mask_UDCCR(udc, UDCCR_UDR); 1551 return 0; 1552 } 1553 1554 static void udc_enable(struct pxa_udc *udc); 1555 static void udc_disable(struct pxa_udc *udc); 1556 1557 /** 1558 * should_enable_udc - Tells if UDC should be enabled 1559 * @udc: udc device 1560 * Context: any 1561 * 1562 * The UDC should be enabled if : 1563 1564 * - the pullup resistor is connected 1565 * - and a gadget driver is bound 1566 * - and vbus is sensed (or no vbus sense is available) 1567 * 1568 * Returns 1 if UDC should be enabled, 0 otherwise 1569 */ 1570 static int should_enable_udc(struct pxa_udc *udc) 1571 { 1572 int put_on; 1573 1574 put_on = ((udc->pullup_on) && (udc->driver)); 1575 put_on &= ((udc->vbus_sensed) || (IS_ERR_OR_NULL(udc->transceiver))); 1576 return put_on; 1577 } 1578 1579 /** 1580 * should_disable_udc - Tells if UDC should be disabled 1581 * @udc: udc device 1582 * Context: any 1583 * 1584 * The UDC should be disabled if : 1585 * - the pullup resistor is not connected 1586 * - or no gadget driver is bound 1587 * - or no vbus is sensed (when vbus sesing is available) 1588 * 1589 * Returns 1 if UDC should be disabled 1590 */ 1591 static int should_disable_udc(struct pxa_udc *udc) 1592 { 1593 int put_off; 1594 1595 put_off = ((!udc->pullup_on) || (!udc->driver)); 1596 put_off |= ((!udc->vbus_sensed) && (!IS_ERR_OR_NULL(udc->transceiver))); 1597 return put_off; 1598 } 1599 1600 /** 1601 * pxa_udc_pullup - Offer manual D+ pullup control 1602 * @_gadget: usb gadget using the control 1603 * @is_active: 0 if disconnect, else connect D+ pullup resistor 1604 * Context: !in_interrupt() 1605 * 1606 * Returns 0 if OK, -EOPNOTSUPP if udc driver doesn't handle D+ pullup 1607 */ 1608 static int pxa_udc_pullup(struct usb_gadget *_gadget, int is_active) 1609 { 1610 struct pxa_udc *udc = to_gadget_udc(_gadget); 1611 1612 if (!gpio_is_valid(udc->mach->gpio_pullup) && !udc->mach->udc_command) 1613 return -EOPNOTSUPP; 1614 1615 dplus_pullup(udc, is_active); 1616 1617 if (should_enable_udc(udc)) 1618 udc_enable(udc); 1619 if (should_disable_udc(udc)) 1620 udc_disable(udc); 1621 return 0; 1622 } 1623 1624 static void udc_enable(struct pxa_udc *udc); 1625 static void udc_disable(struct pxa_udc *udc); 1626 1627 /** 1628 * pxa_udc_vbus_session - Called by external transceiver to enable/disable udc 1629 * @_gadget: usb gadget 1630 * @is_active: 0 if should disable the udc, 1 if should enable 1631 * 1632 * Enables the udc, and optionnaly activates D+ pullup resistor. Or disables the 1633 * udc, and deactivates D+ pullup resistor. 1634 * 1635 * Returns 0 1636 */ 1637 static int pxa_udc_vbus_session(struct usb_gadget *_gadget, int is_active) 1638 { 1639 struct pxa_udc *udc = to_gadget_udc(_gadget); 1640 1641 udc->vbus_sensed = is_active; 1642 if (should_enable_udc(udc)) 1643 udc_enable(udc); 1644 if (should_disable_udc(udc)) 1645 udc_disable(udc); 1646 1647 return 0; 1648 } 1649 1650 /** 1651 * pxa_udc_vbus_draw - Called by gadget driver after SET_CONFIGURATION completed 1652 * @_gadget: usb gadget 1653 * @mA: current drawn 1654 * 1655 * Context: !in_interrupt() 1656 * 1657 * Called after a configuration was chosen by a USB host, to inform how much 1658 * current can be drawn by the device from VBus line. 1659 * 1660 * Returns 0 or -EOPNOTSUPP if no transceiver is handling the udc 1661 */ 1662 static int pxa_udc_vbus_draw(struct usb_gadget *_gadget, unsigned mA) 1663 { 1664 struct pxa_udc *udc; 1665 1666 udc = to_gadget_udc(_gadget); 1667 if (!IS_ERR_OR_NULL(udc->transceiver)) 1668 return usb_phy_set_power(udc->transceiver, mA); 1669 return -EOPNOTSUPP; 1670 } 1671 1672 static int pxa27x_udc_start(struct usb_gadget *g, 1673 struct usb_gadget_driver *driver); 1674 static int pxa27x_udc_stop(struct usb_gadget *g, 1675 struct usb_gadget_driver *driver); 1676 1677 static const struct usb_gadget_ops pxa_udc_ops = { 1678 .get_frame = pxa_udc_get_frame, 1679 .wakeup = pxa_udc_wakeup, 1680 .pullup = pxa_udc_pullup, 1681 .vbus_session = pxa_udc_vbus_session, 1682 .vbus_draw = pxa_udc_vbus_draw, 1683 .udc_start = pxa27x_udc_start, 1684 .udc_stop = pxa27x_udc_stop, 1685 }; 1686 1687 /** 1688 * udc_disable - disable udc device controller 1689 * @udc: udc device 1690 * Context: any 1691 * 1692 * Disables the udc device : disables clocks, udc interrupts, control endpoint 1693 * interrupts. 1694 */ 1695 static void udc_disable(struct pxa_udc *udc) 1696 { 1697 if (!udc->enabled) 1698 return; 1699 1700 udc_writel(udc, UDCICR0, 0); 1701 udc_writel(udc, UDCICR1, 0); 1702 1703 udc_clear_mask_UDCCR(udc, UDCCR_UDE); 1704 clk_disable(udc->clk); 1705 1706 ep0_idle(udc); 1707 udc->gadget.speed = USB_SPEED_UNKNOWN; 1708 1709 udc->enabled = 0; 1710 } 1711 1712 /** 1713 * udc_init_data - Initialize udc device data structures 1714 * @dev: udc device 1715 * 1716 * Initializes gadget endpoint list, endpoints locks. No action is taken 1717 * on the hardware. 1718 */ 1719 static void udc_init_data(struct pxa_udc *dev) 1720 { 1721 int i; 1722 struct pxa_ep *ep; 1723 1724 /* device/ep0 records init */ 1725 INIT_LIST_HEAD(&dev->gadget.ep_list); 1726 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list); 1727 dev->udc_usb_ep[0].pxa_ep = &dev->pxa_ep[0]; 1728 ep0_idle(dev); 1729 1730 /* PXA endpoints init */ 1731 for (i = 0; i < NR_PXA_ENDPOINTS; i++) { 1732 ep = &dev->pxa_ep[i]; 1733 1734 ep->enabled = is_ep0(ep); 1735 INIT_LIST_HEAD(&ep->queue); 1736 spin_lock_init(&ep->lock); 1737 } 1738 1739 /* USB endpoints init */ 1740 for (i = 1; i < NR_USB_ENDPOINTS; i++) { 1741 list_add_tail(&dev->udc_usb_ep[i].usb_ep.ep_list, 1742 &dev->gadget.ep_list); 1743 usb_ep_set_maxpacket_limit(&dev->udc_usb_ep[i].usb_ep, 1744 dev->udc_usb_ep[i].usb_ep.maxpacket); 1745 } 1746 } 1747 1748 /** 1749 * udc_enable - Enables the udc device 1750 * @dev: udc device 1751 * 1752 * Enables the udc device : enables clocks, udc interrupts, control endpoint 1753 * interrupts, sets usb as UDC client and setups endpoints. 1754 */ 1755 static void udc_enable(struct pxa_udc *udc) 1756 { 1757 if (udc->enabled) 1758 return; 1759 1760 udc_writel(udc, UDCICR0, 0); 1761 udc_writel(udc, UDCICR1, 0); 1762 udc_clear_mask_UDCCR(udc, UDCCR_UDE); 1763 1764 clk_enable(udc->clk); 1765 1766 ep0_idle(udc); 1767 udc->gadget.speed = USB_SPEED_FULL; 1768 memset(&udc->stats, 0, sizeof(udc->stats)); 1769 1770 udc_set_mask_UDCCR(udc, UDCCR_UDE); 1771 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_ACM); 1772 udelay(2); 1773 if (udc_readl(udc, UDCCR) & UDCCR_EMCE) 1774 dev_err(udc->dev, "Configuration errors, udc disabled\n"); 1775 1776 /* 1777 * Caller must be able to sleep in order to cope with startup transients 1778 */ 1779 msleep(100); 1780 1781 /* enable suspend/resume and reset irqs */ 1782 udc_writel(udc, UDCICR1, 1783 UDCICR1_IECC | UDCICR1_IERU 1784 | UDCICR1_IESU | UDCICR1_IERS); 1785 1786 /* enable ep0 irqs */ 1787 pio_irq_enable(&udc->pxa_ep[0]); 1788 1789 udc->enabled = 1; 1790 } 1791 1792 /** 1793 * pxa27x_start - Register gadget driver 1794 * @driver: gadget driver 1795 * @bind: bind function 1796 * 1797 * When a driver is successfully registered, it will receive control requests 1798 * including set_configuration(), which enables non-control requests. Then 1799 * usb traffic follows until a disconnect is reported. Then a host may connect 1800 * again, or the driver might get unbound. 1801 * 1802 * Note that the udc is not automatically enabled. Check function 1803 * should_enable_udc(). 1804 * 1805 * Returns 0 if no error, -EINVAL, -ENODEV, -EBUSY otherwise 1806 */ 1807 static int pxa27x_udc_start(struct usb_gadget *g, 1808 struct usb_gadget_driver *driver) 1809 { 1810 struct pxa_udc *udc = to_pxa(g); 1811 int retval; 1812 1813 /* first hook up the driver ... */ 1814 udc->driver = driver; 1815 dplus_pullup(udc, 1); 1816 1817 if (!IS_ERR_OR_NULL(udc->transceiver)) { 1818 retval = otg_set_peripheral(udc->transceiver->otg, 1819 &udc->gadget); 1820 if (retval) { 1821 dev_err(udc->dev, "can't bind to transceiver\n"); 1822 goto fail; 1823 } 1824 } 1825 1826 if (should_enable_udc(udc)) 1827 udc_enable(udc); 1828 return 0; 1829 1830 fail: 1831 udc->driver = NULL; 1832 return retval; 1833 } 1834 1835 /** 1836 * stop_activity - Stops udc endpoints 1837 * @udc: udc device 1838 * @driver: gadget driver 1839 * 1840 * Disables all udc endpoints (even control endpoint), report disconnect to 1841 * the gadget user. 1842 */ 1843 static void stop_activity(struct pxa_udc *udc, struct usb_gadget_driver *driver) 1844 { 1845 int i; 1846 1847 /* don't disconnect drivers more than once */ 1848 if (udc->gadget.speed == USB_SPEED_UNKNOWN) 1849 driver = NULL; 1850 udc->gadget.speed = USB_SPEED_UNKNOWN; 1851 1852 for (i = 0; i < NR_USB_ENDPOINTS; i++) 1853 pxa_ep_disable(&udc->udc_usb_ep[i].usb_ep); 1854 } 1855 1856 /** 1857 * pxa27x_udc_stop - Unregister the gadget driver 1858 * @driver: gadget driver 1859 * 1860 * Returns 0 if no error, -ENODEV, -EINVAL otherwise 1861 */ 1862 static int pxa27x_udc_stop(struct usb_gadget *g, 1863 struct usb_gadget_driver *driver) 1864 { 1865 struct pxa_udc *udc = to_pxa(g); 1866 1867 stop_activity(udc, driver); 1868 udc_disable(udc); 1869 dplus_pullup(udc, 0); 1870 1871 udc->driver = NULL; 1872 1873 if (!IS_ERR_OR_NULL(udc->transceiver)) 1874 return otg_set_peripheral(udc->transceiver->otg, NULL); 1875 return 0; 1876 } 1877 1878 /** 1879 * handle_ep0_ctrl_req - handle control endpoint control request 1880 * @udc: udc device 1881 * @req: control request 1882 */ 1883 static void handle_ep0_ctrl_req(struct pxa_udc *udc, 1884 struct pxa27x_request *req) 1885 { 1886 struct pxa_ep *ep = &udc->pxa_ep[0]; 1887 union { 1888 struct usb_ctrlrequest r; 1889 u32 word[2]; 1890 } u; 1891 int i; 1892 int have_extrabytes = 0; 1893 unsigned long flags; 1894 1895 nuke(ep, -EPROTO); 1896 spin_lock_irqsave(&ep->lock, flags); 1897 1898 /* 1899 * In the PXA320 manual, in the section about Back-to-Back setup 1900 * packets, it describes this situation. The solution is to set OPC to 1901 * get rid of the status packet, and then continue with the setup 1902 * packet. Generalize to pxa27x CPUs. 1903 */ 1904 if (epout_has_pkt(ep) && (ep_count_bytes_remain(ep) == 0)) 1905 ep_write_UDCCSR(ep, UDCCSR0_OPC); 1906 1907 /* read SETUP packet */ 1908 for (i = 0; i < 2; i++) { 1909 if (unlikely(ep_is_empty(ep))) 1910 goto stall; 1911 u.word[i] = udc_ep_readl(ep, UDCDR); 1912 } 1913 1914 have_extrabytes = !ep_is_empty(ep); 1915 while (!ep_is_empty(ep)) { 1916 i = udc_ep_readl(ep, UDCDR); 1917 ep_err(ep, "wrong to have extra bytes for setup : 0x%08x\n", i); 1918 } 1919 1920 ep_dbg(ep, "SETUP %02x.%02x v%04x i%04x l%04x\n", 1921 u.r.bRequestType, u.r.bRequest, 1922 le16_to_cpu(u.r.wValue), le16_to_cpu(u.r.wIndex), 1923 le16_to_cpu(u.r.wLength)); 1924 if (unlikely(have_extrabytes)) 1925 goto stall; 1926 1927 if (u.r.bRequestType & USB_DIR_IN) 1928 set_ep0state(udc, IN_DATA_STAGE); 1929 else 1930 set_ep0state(udc, OUT_DATA_STAGE); 1931 1932 /* Tell UDC to enter Data Stage */ 1933 ep_write_UDCCSR(ep, UDCCSR0_SA | UDCCSR0_OPC); 1934 1935 spin_unlock_irqrestore(&ep->lock, flags); 1936 i = udc->driver->setup(&udc->gadget, &u.r); 1937 spin_lock_irqsave(&ep->lock, flags); 1938 if (i < 0) 1939 goto stall; 1940 out: 1941 spin_unlock_irqrestore(&ep->lock, flags); 1942 return; 1943 stall: 1944 ep_dbg(ep, "protocol STALL, udccsr0=%03x err %d\n", 1945 udc_ep_readl(ep, UDCCSR), i); 1946 ep_write_UDCCSR(ep, UDCCSR0_FST | UDCCSR0_FTF); 1947 set_ep0state(udc, STALL); 1948 goto out; 1949 } 1950 1951 /** 1952 * handle_ep0 - Handle control endpoint data transfers 1953 * @udc: udc device 1954 * @fifo_irq: 1 if triggered by fifo service type irq 1955 * @opc_irq: 1 if triggered by output packet complete type irq 1956 * 1957 * Context : when in_interrupt() or with ep->lock held 1958 * 1959 * Tries to transfer all pending request data into the endpoint and/or 1960 * transfer all pending data in the endpoint into usb requests. 1961 * Handles states of ep0 automata. 1962 * 1963 * PXA27x hardware handles several standard usb control requests without 1964 * driver notification. The requests fully handled by hardware are : 1965 * SET_ADDRESS, SET_FEATURE, CLEAR_FEATURE, GET_CONFIGURATION, GET_INTERFACE, 1966 * GET_STATUS 1967 * The requests handled by hardware, but with irq notification are : 1968 * SYNCH_FRAME, SET_CONFIGURATION, SET_INTERFACE 1969 * The remaining standard requests really handled by handle_ep0 are : 1970 * GET_DESCRIPTOR, SET_DESCRIPTOR, specific requests. 1971 * Requests standardized outside of USB 2.0 chapter 9 are handled more 1972 * uniformly, by gadget drivers. 1973 * 1974 * The control endpoint state machine is _not_ USB spec compliant, it's even 1975 * hardly compliant with Intel PXA270 developers guide. 1976 * The key points which inferred this state machine are : 1977 * - on every setup token, bit UDCCSR0_SA is raised and held until cleared by 1978 * software. 1979 * - on every OUT packet received, UDCCSR0_OPC is raised and held until 1980 * cleared by software. 1981 * - clearing UDCCSR0_OPC always flushes ep0. If in setup stage, never do it 1982 * before reading ep0. 1983 * This is true only for PXA27x. This is not true anymore for PXA3xx family 1984 * (check Back-to-Back setup packet in developers guide). 1985 * - irq can be called on a "packet complete" event (opc_irq=1), while 1986 * UDCCSR0_OPC is not yet raised (delta can be as big as 100ms 1987 * from experimentation). 1988 * - as UDCCSR0_SA can be activated while in irq handling, and clearing 1989 * UDCCSR0_OPC would flush the setup data, we almost never clear UDCCSR0_OPC 1990 * => we never actually read the "status stage" packet of an IN data stage 1991 * => this is not documented in Intel documentation 1992 * - hardware as no idea of STATUS STAGE, it only handle SETUP STAGE and DATA 1993 * STAGE. The driver add STATUS STAGE to send last zero length packet in 1994 * OUT_STATUS_STAGE. 1995 * - special attention was needed for IN_STATUS_STAGE. If a packet complete 1996 * event is detected, we terminate the status stage without ackowledging the 1997 * packet (not to risk to loose a potential SETUP packet) 1998 */ 1999 static void handle_ep0(struct pxa_udc *udc, int fifo_irq, int opc_irq) 2000 { 2001 u32 udccsr0; 2002 struct pxa_ep *ep = &udc->pxa_ep[0]; 2003 struct pxa27x_request *req = NULL; 2004 int completed = 0; 2005 2006 if (!list_empty(&ep->queue)) 2007 req = list_entry(ep->queue.next, struct pxa27x_request, queue); 2008 2009 udccsr0 = udc_ep_readl(ep, UDCCSR); 2010 ep_dbg(ep, "state=%s, req=%p, udccsr0=0x%03x, udcbcr=%d, irq_msk=%x\n", 2011 EP0_STNAME(udc), req, udccsr0, udc_ep_readl(ep, UDCBCR), 2012 (fifo_irq << 1 | opc_irq)); 2013 2014 if (udccsr0 & UDCCSR0_SST) { 2015 ep_dbg(ep, "clearing stall status\n"); 2016 nuke(ep, -EPIPE); 2017 ep_write_UDCCSR(ep, UDCCSR0_SST); 2018 ep0_idle(udc); 2019 } 2020 2021 if (udccsr0 & UDCCSR0_SA) { 2022 nuke(ep, 0); 2023 set_ep0state(udc, SETUP_STAGE); 2024 } 2025 2026 switch (udc->ep0state) { 2027 case WAIT_FOR_SETUP: 2028 /* 2029 * Hardware bug : beware, we cannot clear OPC, since we would 2030 * miss a potential OPC irq for a setup packet. 2031 * So, we only do ... nothing, and hope for a next irq with 2032 * UDCCSR0_SA set. 2033 */ 2034 break; 2035 case SETUP_STAGE: 2036 udccsr0 &= UDCCSR0_CTRL_REQ_MASK; 2037 if (likely(udccsr0 == UDCCSR0_CTRL_REQ_MASK)) 2038 handle_ep0_ctrl_req(udc, req); 2039 break; 2040 case IN_DATA_STAGE: /* GET_DESCRIPTOR */ 2041 if (epout_has_pkt(ep)) 2042 ep_write_UDCCSR(ep, UDCCSR0_OPC); 2043 if (req && !ep_is_full(ep)) 2044 completed = write_ep0_fifo(ep, req); 2045 if (completed) 2046 ep0_end_in_req(ep, req, NULL); 2047 break; 2048 case OUT_DATA_STAGE: /* SET_DESCRIPTOR */ 2049 if (epout_has_pkt(ep) && req) 2050 completed = read_ep0_fifo(ep, req); 2051 if (completed) 2052 ep0_end_out_req(ep, req, NULL); 2053 break; 2054 case STALL: 2055 ep_write_UDCCSR(ep, UDCCSR0_FST); 2056 break; 2057 case IN_STATUS_STAGE: 2058 /* 2059 * Hardware bug : beware, we cannot clear OPC, since we would 2060 * miss a potential PC irq for a setup packet. 2061 * So, we only put the ep0 into WAIT_FOR_SETUP state. 2062 */ 2063 if (opc_irq) 2064 ep0_idle(udc); 2065 break; 2066 case OUT_STATUS_STAGE: 2067 case WAIT_ACK_SET_CONF_INTERF: 2068 ep_warn(ep, "should never get in %s state here!!!\n", 2069 EP0_STNAME(ep->dev)); 2070 ep0_idle(udc); 2071 break; 2072 } 2073 } 2074 2075 /** 2076 * handle_ep - Handle endpoint data tranfers 2077 * @ep: pxa physical endpoint 2078 * 2079 * Tries to transfer all pending request data into the endpoint and/or 2080 * transfer all pending data in the endpoint into usb requests. 2081 * 2082 * Is always called when in_interrupt() and with ep->lock released. 2083 */ 2084 static void handle_ep(struct pxa_ep *ep) 2085 { 2086 struct pxa27x_request *req; 2087 int completed; 2088 u32 udccsr; 2089 int is_in = ep->dir_in; 2090 int loop = 0; 2091 unsigned long flags; 2092 2093 spin_lock_irqsave(&ep->lock, flags); 2094 if (ep->in_handle_ep) 2095 goto recursion_detected; 2096 ep->in_handle_ep = 1; 2097 2098 do { 2099 completed = 0; 2100 udccsr = udc_ep_readl(ep, UDCCSR); 2101 2102 if (likely(!list_empty(&ep->queue))) 2103 req = list_entry(ep->queue.next, 2104 struct pxa27x_request, queue); 2105 else 2106 req = NULL; 2107 2108 ep_dbg(ep, "req:%p, udccsr 0x%03x loop=%d\n", 2109 req, udccsr, loop++); 2110 2111 if (unlikely(udccsr & (UDCCSR_SST | UDCCSR_TRN))) 2112 udc_ep_writel(ep, UDCCSR, 2113 udccsr & (UDCCSR_SST | UDCCSR_TRN)); 2114 if (!req) 2115 break; 2116 2117 if (unlikely(is_in)) { 2118 if (likely(!ep_is_full(ep))) 2119 completed = write_fifo(ep, req); 2120 } else { 2121 if (likely(epout_has_pkt(ep))) 2122 completed = read_fifo(ep, req); 2123 } 2124 2125 if (completed) { 2126 if (is_in) 2127 ep_end_in_req(ep, req, &flags); 2128 else 2129 ep_end_out_req(ep, req, &flags); 2130 } 2131 } while (completed); 2132 2133 ep->in_handle_ep = 0; 2134 recursion_detected: 2135 spin_unlock_irqrestore(&ep->lock, flags); 2136 } 2137 2138 /** 2139 * pxa27x_change_configuration - Handle SET_CONF usb request notification 2140 * @udc: udc device 2141 * @config: usb configuration 2142 * 2143 * Post the request to upper level. 2144 * Don't use any pxa specific harware configuration capabilities 2145 */ 2146 static void pxa27x_change_configuration(struct pxa_udc *udc, int config) 2147 { 2148 struct usb_ctrlrequest req ; 2149 2150 dev_dbg(udc->dev, "config=%d\n", config); 2151 2152 udc->config = config; 2153 udc->last_interface = 0; 2154 udc->last_alternate = 0; 2155 2156 req.bRequestType = 0; 2157 req.bRequest = USB_REQ_SET_CONFIGURATION; 2158 req.wValue = config; 2159 req.wIndex = 0; 2160 req.wLength = 0; 2161 2162 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF); 2163 udc->driver->setup(&udc->gadget, &req); 2164 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN); 2165 } 2166 2167 /** 2168 * pxa27x_change_interface - Handle SET_INTERF usb request notification 2169 * @udc: udc device 2170 * @iface: interface number 2171 * @alt: alternate setting number 2172 * 2173 * Post the request to upper level. 2174 * Don't use any pxa specific harware configuration capabilities 2175 */ 2176 static void pxa27x_change_interface(struct pxa_udc *udc, int iface, int alt) 2177 { 2178 struct usb_ctrlrequest req; 2179 2180 dev_dbg(udc->dev, "interface=%d, alternate setting=%d\n", iface, alt); 2181 2182 udc->last_interface = iface; 2183 udc->last_alternate = alt; 2184 2185 req.bRequestType = USB_RECIP_INTERFACE; 2186 req.bRequest = USB_REQ_SET_INTERFACE; 2187 req.wValue = alt; 2188 req.wIndex = iface; 2189 req.wLength = 0; 2190 2191 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF); 2192 udc->driver->setup(&udc->gadget, &req); 2193 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN); 2194 } 2195 2196 /* 2197 * irq_handle_data - Handle data transfer 2198 * @irq: irq IRQ number 2199 * @udc: dev pxa_udc device structure 2200 * 2201 * Called from irq handler, transferts data to or from endpoint to queue 2202 */ 2203 static void irq_handle_data(int irq, struct pxa_udc *udc) 2204 { 2205 int i; 2206 struct pxa_ep *ep; 2207 u32 udcisr0 = udc_readl(udc, UDCISR0) & UDCCISR0_EP_MASK; 2208 u32 udcisr1 = udc_readl(udc, UDCISR1) & UDCCISR1_EP_MASK; 2209 2210 if (udcisr0 & UDCISR_INT_MASK) { 2211 udc->pxa_ep[0].stats.irqs++; 2212 udc_writel(udc, UDCISR0, UDCISR_INT(0, UDCISR_INT_MASK)); 2213 handle_ep0(udc, !!(udcisr0 & UDCICR_FIFOERR), 2214 !!(udcisr0 & UDCICR_PKTCOMPL)); 2215 } 2216 2217 udcisr0 >>= 2; 2218 for (i = 1; udcisr0 != 0 && i < 16; udcisr0 >>= 2, i++) { 2219 if (!(udcisr0 & UDCISR_INT_MASK)) 2220 continue; 2221 2222 udc_writel(udc, UDCISR0, UDCISR_INT(i, UDCISR_INT_MASK)); 2223 2224 WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep)); 2225 if (i < ARRAY_SIZE(udc->pxa_ep)) { 2226 ep = &udc->pxa_ep[i]; 2227 ep->stats.irqs++; 2228 handle_ep(ep); 2229 } 2230 } 2231 2232 for (i = 16; udcisr1 != 0 && i < 24; udcisr1 >>= 2, i++) { 2233 udc_writel(udc, UDCISR1, UDCISR_INT(i - 16, UDCISR_INT_MASK)); 2234 if (!(udcisr1 & UDCISR_INT_MASK)) 2235 continue; 2236 2237 WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep)); 2238 if (i < ARRAY_SIZE(udc->pxa_ep)) { 2239 ep = &udc->pxa_ep[i]; 2240 ep->stats.irqs++; 2241 handle_ep(ep); 2242 } 2243 } 2244 2245 } 2246 2247 /** 2248 * irq_udc_suspend - Handle IRQ "UDC Suspend" 2249 * @udc: udc device 2250 */ 2251 static void irq_udc_suspend(struct pxa_udc *udc) 2252 { 2253 udc_writel(udc, UDCISR1, UDCISR1_IRSU); 2254 udc->stats.irqs_suspend++; 2255 2256 if (udc->gadget.speed != USB_SPEED_UNKNOWN 2257 && udc->driver && udc->driver->suspend) 2258 udc->driver->suspend(&udc->gadget); 2259 ep0_idle(udc); 2260 } 2261 2262 /** 2263 * irq_udc_resume - Handle IRQ "UDC Resume" 2264 * @udc: udc device 2265 */ 2266 static void irq_udc_resume(struct pxa_udc *udc) 2267 { 2268 udc_writel(udc, UDCISR1, UDCISR1_IRRU); 2269 udc->stats.irqs_resume++; 2270 2271 if (udc->gadget.speed != USB_SPEED_UNKNOWN 2272 && udc->driver && udc->driver->resume) 2273 udc->driver->resume(&udc->gadget); 2274 } 2275 2276 /** 2277 * irq_udc_reconfig - Handle IRQ "UDC Change Configuration" 2278 * @udc: udc device 2279 */ 2280 static void irq_udc_reconfig(struct pxa_udc *udc) 2281 { 2282 unsigned config, interface, alternate, config_change; 2283 u32 udccr = udc_readl(udc, UDCCR); 2284 2285 udc_writel(udc, UDCISR1, UDCISR1_IRCC); 2286 udc->stats.irqs_reconfig++; 2287 2288 config = (udccr & UDCCR_ACN) >> UDCCR_ACN_S; 2289 config_change = (config != udc->config); 2290 pxa27x_change_configuration(udc, config); 2291 2292 interface = (udccr & UDCCR_AIN) >> UDCCR_AIN_S; 2293 alternate = (udccr & UDCCR_AAISN) >> UDCCR_AAISN_S; 2294 pxa27x_change_interface(udc, interface, alternate); 2295 2296 if (config_change) 2297 update_pxa_ep_matches(udc); 2298 udc_set_mask_UDCCR(udc, UDCCR_SMAC); 2299 } 2300 2301 /** 2302 * irq_udc_reset - Handle IRQ "UDC Reset" 2303 * @udc: udc device 2304 */ 2305 static void irq_udc_reset(struct pxa_udc *udc) 2306 { 2307 u32 udccr = udc_readl(udc, UDCCR); 2308 struct pxa_ep *ep = &udc->pxa_ep[0]; 2309 2310 dev_info(udc->dev, "USB reset\n"); 2311 udc_writel(udc, UDCISR1, UDCISR1_IRRS); 2312 udc->stats.irqs_reset++; 2313 2314 if ((udccr & UDCCR_UDA) == 0) { 2315 dev_dbg(udc->dev, "USB reset start\n"); 2316 stop_activity(udc, udc->driver); 2317 } 2318 udc->gadget.speed = USB_SPEED_FULL; 2319 memset(&udc->stats, 0, sizeof udc->stats); 2320 2321 nuke(ep, -EPROTO); 2322 ep_write_UDCCSR(ep, UDCCSR0_FTF | UDCCSR0_OPC); 2323 ep0_idle(udc); 2324 } 2325 2326 /** 2327 * pxa_udc_irq - Main irq handler 2328 * @irq: irq number 2329 * @_dev: udc device 2330 * 2331 * Handles all udc interrupts 2332 */ 2333 static irqreturn_t pxa_udc_irq(int irq, void *_dev) 2334 { 2335 struct pxa_udc *udc = _dev; 2336 u32 udcisr0 = udc_readl(udc, UDCISR0); 2337 u32 udcisr1 = udc_readl(udc, UDCISR1); 2338 u32 udccr = udc_readl(udc, UDCCR); 2339 u32 udcisr1_spec; 2340 2341 dev_vdbg(udc->dev, "Interrupt, UDCISR0:0x%08x, UDCISR1:0x%08x, " 2342 "UDCCR:0x%08x\n", udcisr0, udcisr1, udccr); 2343 2344 udcisr1_spec = udcisr1 & 0xf8000000; 2345 if (unlikely(udcisr1_spec & UDCISR1_IRSU)) 2346 irq_udc_suspend(udc); 2347 if (unlikely(udcisr1_spec & UDCISR1_IRRU)) 2348 irq_udc_resume(udc); 2349 if (unlikely(udcisr1_spec & UDCISR1_IRCC)) 2350 irq_udc_reconfig(udc); 2351 if (unlikely(udcisr1_spec & UDCISR1_IRRS)) 2352 irq_udc_reset(udc); 2353 2354 if ((udcisr0 & UDCCISR0_EP_MASK) | (udcisr1 & UDCCISR1_EP_MASK)) 2355 irq_handle_data(irq, udc); 2356 2357 return IRQ_HANDLED; 2358 } 2359 2360 static struct pxa_udc memory = { 2361 .gadget = { 2362 .ops = &pxa_udc_ops, 2363 .ep0 = &memory.udc_usb_ep[0].usb_ep, 2364 .name = driver_name, 2365 .dev = { 2366 .init_name = "gadget", 2367 }, 2368 }, 2369 2370 .udc_usb_ep = { 2371 USB_EP_CTRL, 2372 USB_EP_OUT_BULK(1), 2373 USB_EP_IN_BULK(2), 2374 USB_EP_IN_ISO(3), 2375 USB_EP_OUT_ISO(4), 2376 USB_EP_IN_INT(5), 2377 }, 2378 2379 .pxa_ep = { 2380 PXA_EP_CTRL, 2381 /* Endpoints for gadget zero */ 2382 PXA_EP_OUT_BULK(1, 1, 3, 0, 0), 2383 PXA_EP_IN_BULK(2, 2, 3, 0, 0), 2384 /* Endpoints for ether gadget, file storage gadget */ 2385 PXA_EP_OUT_BULK(3, 1, 1, 0, 0), 2386 PXA_EP_IN_BULK(4, 2, 1, 0, 0), 2387 PXA_EP_IN_ISO(5, 3, 1, 0, 0), 2388 PXA_EP_OUT_ISO(6, 4, 1, 0, 0), 2389 PXA_EP_IN_INT(7, 5, 1, 0, 0), 2390 /* Endpoints for RNDIS, serial */ 2391 PXA_EP_OUT_BULK(8, 1, 2, 0, 0), 2392 PXA_EP_IN_BULK(9, 2, 2, 0, 0), 2393 PXA_EP_IN_INT(10, 5, 2, 0, 0), 2394 /* 2395 * All the following endpoints are only for completion. They 2396 * won't never work, as multiple interfaces are really broken on 2397 * the pxa. 2398 */ 2399 PXA_EP_OUT_BULK(11, 1, 2, 1, 0), 2400 PXA_EP_IN_BULK(12, 2, 2, 1, 0), 2401 /* Endpoint for CDC Ether */ 2402 PXA_EP_OUT_BULK(13, 1, 1, 1, 1), 2403 PXA_EP_IN_BULK(14, 2, 1, 1, 1), 2404 } 2405 }; 2406 2407 /** 2408 * pxa_udc_probe - probes the udc device 2409 * @_dev: platform device 2410 * 2411 * Perform basic init : allocates udc clock, creates sysfs files, requests 2412 * irq. 2413 */ 2414 static int pxa_udc_probe(struct platform_device *pdev) 2415 { 2416 struct resource *regs; 2417 struct pxa_udc *udc = &memory; 2418 int retval = 0, gpio; 2419 2420 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2421 if (!regs) 2422 return -ENXIO; 2423 udc->irq = platform_get_irq(pdev, 0); 2424 if (udc->irq < 0) 2425 return udc->irq; 2426 2427 udc->dev = &pdev->dev; 2428 udc->mach = dev_get_platdata(&pdev->dev); 2429 udc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2); 2430 2431 gpio = udc->mach->gpio_pullup; 2432 if (gpio_is_valid(gpio)) { 2433 retval = gpio_request(gpio, "USB D+ pullup"); 2434 if (retval == 0) 2435 gpio_direction_output(gpio, 2436 udc->mach->gpio_pullup_inverted); 2437 } 2438 if (retval) { 2439 dev_err(&pdev->dev, "Couldn't request gpio %d : %d\n", 2440 gpio, retval); 2441 return retval; 2442 } 2443 2444 udc->clk = clk_get(&pdev->dev, NULL); 2445 if (IS_ERR(udc->clk)) { 2446 retval = PTR_ERR(udc->clk); 2447 goto err_clk; 2448 } 2449 retval = clk_prepare(udc->clk); 2450 if (retval) 2451 goto err_clk_prepare; 2452 2453 retval = -ENOMEM; 2454 udc->regs = ioremap(regs->start, resource_size(regs)); 2455 if (!udc->regs) { 2456 dev_err(&pdev->dev, "Unable to map UDC I/O memory\n"); 2457 goto err_map; 2458 } 2459 2460 udc->vbus_sensed = 0; 2461 2462 the_controller = udc; 2463 platform_set_drvdata(pdev, udc); 2464 udc_init_data(udc); 2465 pxa_eps_setup(udc); 2466 2467 /* irq setup after old hardware state is cleaned up */ 2468 retval = request_irq(udc->irq, pxa_udc_irq, 2469 IRQF_SHARED, driver_name, udc); 2470 if (retval != 0) { 2471 dev_err(udc->dev, "%s: can't get irq %i, err %d\n", 2472 driver_name, udc->irq, retval); 2473 goto err_irq; 2474 } 2475 2476 retval = usb_add_gadget_udc(&pdev->dev, &udc->gadget); 2477 if (retval) 2478 goto err_add_udc; 2479 2480 pxa_init_debugfs(udc); 2481 2482 return 0; 2483 2484 err_add_udc: 2485 free_irq(udc->irq, udc); 2486 err_irq: 2487 iounmap(udc->regs); 2488 err_map: 2489 clk_unprepare(udc->clk); 2490 err_clk_prepare: 2491 clk_put(udc->clk); 2492 udc->clk = NULL; 2493 err_clk: 2494 return retval; 2495 } 2496 2497 /** 2498 * pxa_udc_remove - removes the udc device driver 2499 * @_dev: platform device 2500 */ 2501 static int pxa_udc_remove(struct platform_device *_dev) 2502 { 2503 struct pxa_udc *udc = platform_get_drvdata(_dev); 2504 int gpio = udc->mach->gpio_pullup; 2505 2506 usb_del_gadget_udc(&udc->gadget); 2507 usb_gadget_unregister_driver(udc->driver); 2508 free_irq(udc->irq, udc); 2509 pxa_cleanup_debugfs(udc); 2510 if (gpio_is_valid(gpio)) 2511 gpio_free(gpio); 2512 2513 usb_put_phy(udc->transceiver); 2514 2515 udc->transceiver = NULL; 2516 the_controller = NULL; 2517 clk_unprepare(udc->clk); 2518 clk_put(udc->clk); 2519 iounmap(udc->regs); 2520 2521 return 0; 2522 } 2523 2524 static void pxa_udc_shutdown(struct platform_device *_dev) 2525 { 2526 struct pxa_udc *udc = platform_get_drvdata(_dev); 2527 2528 if (udc_readl(udc, UDCCR) & UDCCR_UDE) 2529 udc_disable(udc); 2530 } 2531 2532 #ifdef CONFIG_PXA27x 2533 extern void pxa27x_clear_otgph(void); 2534 #else 2535 #define pxa27x_clear_otgph() do {} while (0) 2536 #endif 2537 2538 #ifdef CONFIG_PM 2539 /** 2540 * pxa_udc_suspend - Suspend udc device 2541 * @_dev: platform device 2542 * @state: suspend state 2543 * 2544 * Suspends udc : saves configuration registers (UDCCR*), then disables the udc 2545 * device. 2546 */ 2547 static int pxa_udc_suspend(struct platform_device *_dev, pm_message_t state) 2548 { 2549 int i; 2550 struct pxa_udc *udc = platform_get_drvdata(_dev); 2551 struct pxa_ep *ep; 2552 2553 ep = &udc->pxa_ep[0]; 2554 udc->udccsr0 = udc_ep_readl(ep, UDCCSR); 2555 for (i = 1; i < NR_PXA_ENDPOINTS; i++) { 2556 ep = &udc->pxa_ep[i]; 2557 ep->udccsr_value = udc_ep_readl(ep, UDCCSR); 2558 ep->udccr_value = udc_ep_readl(ep, UDCCR); 2559 ep_dbg(ep, "udccsr:0x%03x, udccr:0x%x\n", 2560 ep->udccsr_value, ep->udccr_value); 2561 } 2562 2563 udc_disable(udc); 2564 udc->pullup_resume = udc->pullup_on; 2565 dplus_pullup(udc, 0); 2566 2567 return 0; 2568 } 2569 2570 /** 2571 * pxa_udc_resume - Resume udc device 2572 * @_dev: platform device 2573 * 2574 * Resumes udc : restores configuration registers (UDCCR*), then enables the udc 2575 * device. 2576 */ 2577 static int pxa_udc_resume(struct platform_device *_dev) 2578 { 2579 int i; 2580 struct pxa_udc *udc = platform_get_drvdata(_dev); 2581 struct pxa_ep *ep; 2582 2583 ep = &udc->pxa_ep[0]; 2584 udc_ep_writel(ep, UDCCSR, udc->udccsr0 & (UDCCSR0_FST | UDCCSR0_DME)); 2585 for (i = 1; i < NR_PXA_ENDPOINTS; i++) { 2586 ep = &udc->pxa_ep[i]; 2587 udc_ep_writel(ep, UDCCSR, ep->udccsr_value); 2588 udc_ep_writel(ep, UDCCR, ep->udccr_value); 2589 ep_dbg(ep, "udccsr:0x%03x, udccr:0x%x\n", 2590 ep->udccsr_value, ep->udccr_value); 2591 } 2592 2593 dplus_pullup(udc, udc->pullup_resume); 2594 if (should_enable_udc(udc)) 2595 udc_enable(udc); 2596 /* 2597 * We do not handle OTG yet. 2598 * 2599 * OTGPH bit is set when sleep mode is entered. 2600 * it indicates that OTG pad is retaining its state. 2601 * Upon exit from sleep mode and before clearing OTGPH, 2602 * Software must configure the USB OTG pad, UDC, and UHC 2603 * to the state they were in before entering sleep mode. 2604 */ 2605 pxa27x_clear_otgph(); 2606 2607 return 0; 2608 } 2609 #endif 2610 2611 /* work with hotplug and coldplug */ 2612 MODULE_ALIAS("platform:pxa27x-udc"); 2613 2614 static struct platform_driver udc_driver = { 2615 .driver = { 2616 .name = "pxa27x-udc", 2617 .owner = THIS_MODULE, 2618 }, 2619 .probe = pxa_udc_probe, 2620 .remove = pxa_udc_remove, 2621 .shutdown = pxa_udc_shutdown, 2622 #ifdef CONFIG_PM 2623 .suspend = pxa_udc_suspend, 2624 .resume = pxa_udc_resume 2625 #endif 2626 }; 2627 2628 module_platform_driver(udc_driver); 2629 2630 MODULE_DESCRIPTION(DRIVER_DESC); 2631 MODULE_AUTHOR("Robert Jarzmik"); 2632 MODULE_LICENSE("GPL"); 2633