1 /*
2  * Handles the Intel 27x USB Device Controller (UDC)
3  *
4  * Inspired by original driver by Frank Becker, David Brownell, and others.
5  * Copyright (C) 2008 Robert Jarzmik
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  */
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/errno.h>
16 #include <linux/err.h>
17 #include <linux/platform_device.h>
18 #include <linux/delay.h>
19 #include <linux/list.h>
20 #include <linux/interrupt.h>
21 #include <linux/proc_fs.h>
22 #include <linux/clk.h>
23 #include <linux/irq.h>
24 #include <linux/gpio.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/slab.h>
27 #include <linux/prefetch.h>
28 #include <linux/byteorder/generic.h>
29 #include <linux/platform_data/pxa2xx_udc.h>
30 #include <linux/of_device.h>
31 #include <linux/of_gpio.h>
32 
33 #include <linux/usb.h>
34 #include <linux/usb/ch9.h>
35 #include <linux/usb/gadget.h>
36 #include <linux/usb/phy.h>
37 
38 #include "pxa27x_udc.h"
39 
40 /*
41  * This driver handles the USB Device Controller (UDC) in Intel's PXA 27x
42  * series processors.
43  *
44  * Such controller drivers work with a gadget driver.  The gadget driver
45  * returns descriptors, implements configuration and data protocols used
46  * by the host to interact with this device, and allocates endpoints to
47  * the different protocol interfaces.  The controller driver virtualizes
48  * usb hardware so that the gadget drivers will be more portable.
49  *
50  * This UDC hardware wants to implement a bit too much USB protocol. The
51  * biggest issues are:  that the endpoints have to be set up before the
52  * controller can be enabled (minor, and not uncommon); and each endpoint
53  * can only have one configuration, interface and alternative interface
54  * number (major, and very unusual). Once set up, these cannot be changed
55  * without a controller reset.
56  *
57  * The workaround is to setup all combinations necessary for the gadgets which
58  * will work with this driver. This is done in pxa_udc structure, statically.
59  * See pxa_udc, udc_usb_ep versus pxa_ep, and matching function find_pxa_ep.
60  * (You could modify this if needed.  Some drivers have a "fifo_mode" module
61  * parameter to facilitate such changes.)
62  *
63  * The combinations have been tested with these gadgets :
64  *  - zero gadget
65  *  - file storage gadget
66  *  - ether gadget
67  *
68  * The driver doesn't use DMA, only IO access and IRQ callbacks. No use is
69  * made of UDC's double buffering either. USB "On-The-Go" is not implemented.
70  *
71  * All the requests are handled the same way :
72  *  - the drivers tries to handle the request directly to the IO
73  *  - if the IO fifo is not big enough, the remaining is send/received in
74  *    interrupt handling.
75  */
76 
77 #define	DRIVER_VERSION	"2008-04-18"
78 #define	DRIVER_DESC	"PXA 27x USB Device Controller driver"
79 
80 static const char driver_name[] = "pxa27x_udc";
81 static struct pxa_udc *the_controller;
82 
83 static void handle_ep(struct pxa_ep *ep);
84 
85 /*
86  * Debug filesystem
87  */
88 #ifdef CONFIG_USB_GADGET_DEBUG_FS
89 
90 #include <linux/debugfs.h>
91 #include <linux/uaccess.h>
92 #include <linux/seq_file.h>
93 
94 static int state_dbg_show(struct seq_file *s, void *p)
95 {
96 	struct pxa_udc *udc = s->private;
97 	u32 tmp;
98 
99 	if (!udc->driver)
100 		return -ENODEV;
101 
102 	/* basic device status */
103 	seq_printf(s, DRIVER_DESC "\n"
104 		   "%s version: %s\n"
105 		   "Gadget driver: %s\n",
106 		   driver_name, DRIVER_VERSION,
107 		   udc->driver ? udc->driver->driver.name : "(none)");
108 
109 	tmp = udc_readl(udc, UDCCR);
110 	seq_printf(s,
111 		   "udccr=0x%0x(%s%s%s%s%s%s%s%s%s%s), con=%d,inter=%d,altinter=%d\n",
112 		   tmp,
113 		   (tmp & UDCCR_OEN) ? " oen":"",
114 		   (tmp & UDCCR_AALTHNP) ? " aalthnp":"",
115 		   (tmp & UDCCR_AHNP) ? " rem" : "",
116 		   (tmp & UDCCR_BHNP) ? " rstir" : "",
117 		   (tmp & UDCCR_DWRE) ? " dwre" : "",
118 		   (tmp & UDCCR_SMAC) ? " smac" : "",
119 		   (tmp & UDCCR_EMCE) ? " emce" : "",
120 		   (tmp & UDCCR_UDR) ? " udr" : "",
121 		   (tmp & UDCCR_UDA) ? " uda" : "",
122 		   (tmp & UDCCR_UDE) ? " ude" : "",
123 		   (tmp & UDCCR_ACN) >> UDCCR_ACN_S,
124 		   (tmp & UDCCR_AIN) >> UDCCR_AIN_S,
125 		   (tmp & UDCCR_AAISN) >> UDCCR_AAISN_S);
126 	/* registers for device and ep0 */
127 	seq_printf(s, "udcicr0=0x%08x udcicr1=0x%08x\n",
128 		   udc_readl(udc, UDCICR0), udc_readl(udc, UDCICR1));
129 	seq_printf(s, "udcisr0=0x%08x udcisr1=0x%08x\n",
130 		   udc_readl(udc, UDCISR0), udc_readl(udc, UDCISR1));
131 	seq_printf(s, "udcfnr=%d\n", udc_readl(udc, UDCFNR));
132 	seq_printf(s, "irqs: reset=%lu, suspend=%lu, resume=%lu, reconfig=%lu\n",
133 		   udc->stats.irqs_reset, udc->stats.irqs_suspend,
134 		   udc->stats.irqs_resume, udc->stats.irqs_reconfig);
135 
136 	return 0;
137 }
138 
139 static int queues_dbg_show(struct seq_file *s, void *p)
140 {
141 	struct pxa_udc *udc = s->private;
142 	struct pxa_ep *ep;
143 	struct pxa27x_request *req;
144 	int i, maxpkt;
145 
146 	if (!udc->driver)
147 		return -ENODEV;
148 
149 	/* dump endpoint queues */
150 	for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
151 		ep = &udc->pxa_ep[i];
152 		maxpkt = ep->fifo_size;
153 		seq_printf(s,  "%-12s max_pkt=%d %s\n",
154 			   EPNAME(ep), maxpkt, "pio");
155 
156 		if (list_empty(&ep->queue)) {
157 			seq_puts(s, "\t(nothing queued)\n");
158 			continue;
159 		}
160 
161 		list_for_each_entry(req, &ep->queue, queue) {
162 			seq_printf(s,  "\treq %p len %d/%d buf %p\n",
163 				   &req->req, req->req.actual,
164 				   req->req.length, req->req.buf);
165 		}
166 	}
167 
168 	return 0;
169 }
170 
171 static int eps_dbg_show(struct seq_file *s, void *p)
172 {
173 	struct pxa_udc *udc = s->private;
174 	struct pxa_ep *ep;
175 	int i;
176 	u32 tmp;
177 
178 	if (!udc->driver)
179 		return -ENODEV;
180 
181 	ep = &udc->pxa_ep[0];
182 	tmp = udc_ep_readl(ep, UDCCSR);
183 	seq_printf(s, "udccsr0=0x%03x(%s%s%s%s%s%s%s)\n",
184 		   tmp,
185 		   (tmp & UDCCSR0_SA) ? " sa" : "",
186 		   (tmp & UDCCSR0_RNE) ? " rne" : "",
187 		   (tmp & UDCCSR0_FST) ? " fst" : "",
188 		   (tmp & UDCCSR0_SST) ? " sst" : "",
189 		   (tmp & UDCCSR0_DME) ? " dme" : "",
190 		   (tmp & UDCCSR0_IPR) ? " ipr" : "",
191 		   (tmp & UDCCSR0_OPC) ? " opc" : "");
192 	for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
193 		ep = &udc->pxa_ep[i];
194 		tmp = i? udc_ep_readl(ep, UDCCR) : udc_readl(udc, UDCCR);
195 		seq_printf(s, "%-12s: IN %lu(%lu reqs), OUT %lu(%lu reqs), irqs=%lu, udccr=0x%08x, udccsr=0x%03x, udcbcr=%d\n",
196 			   EPNAME(ep),
197 			   ep->stats.in_bytes, ep->stats.in_ops,
198 			   ep->stats.out_bytes, ep->stats.out_ops,
199 			   ep->stats.irqs,
200 			   tmp, udc_ep_readl(ep, UDCCSR),
201 			   udc_ep_readl(ep, UDCBCR));
202 	}
203 
204 	return 0;
205 }
206 
207 static int eps_dbg_open(struct inode *inode, struct file *file)
208 {
209 	return single_open(file, eps_dbg_show, inode->i_private);
210 }
211 
212 static int queues_dbg_open(struct inode *inode, struct file *file)
213 {
214 	return single_open(file, queues_dbg_show, inode->i_private);
215 }
216 
217 static int state_dbg_open(struct inode *inode, struct file *file)
218 {
219 	return single_open(file, state_dbg_show, inode->i_private);
220 }
221 
222 static const struct file_operations state_dbg_fops = {
223 	.owner		= THIS_MODULE,
224 	.open		= state_dbg_open,
225 	.llseek		= seq_lseek,
226 	.read		= seq_read,
227 	.release	= single_release,
228 };
229 
230 static const struct file_operations queues_dbg_fops = {
231 	.owner		= THIS_MODULE,
232 	.open		= queues_dbg_open,
233 	.llseek		= seq_lseek,
234 	.read		= seq_read,
235 	.release	= single_release,
236 };
237 
238 static const struct file_operations eps_dbg_fops = {
239 	.owner		= THIS_MODULE,
240 	.open		= eps_dbg_open,
241 	.llseek		= seq_lseek,
242 	.read		= seq_read,
243 	.release	= single_release,
244 };
245 
246 static void pxa_init_debugfs(struct pxa_udc *udc)
247 {
248 	struct dentry *root, *state, *queues, *eps;
249 
250 	root = debugfs_create_dir(udc->gadget.name, NULL);
251 	if (IS_ERR(root) || !root)
252 		goto err_root;
253 
254 	state = debugfs_create_file("udcstate", 0400, root, udc,
255 			&state_dbg_fops);
256 	if (!state)
257 		goto err_state;
258 	queues = debugfs_create_file("queues", 0400, root, udc,
259 			&queues_dbg_fops);
260 	if (!queues)
261 		goto err_queues;
262 	eps = debugfs_create_file("epstate", 0400, root, udc,
263 			&eps_dbg_fops);
264 	if (!eps)
265 		goto err_eps;
266 
267 	udc->debugfs_root = root;
268 	udc->debugfs_state = state;
269 	udc->debugfs_queues = queues;
270 	udc->debugfs_eps = eps;
271 	return;
272 err_eps:
273 	debugfs_remove(eps);
274 err_queues:
275 	debugfs_remove(queues);
276 err_state:
277 	debugfs_remove(root);
278 err_root:
279 	dev_err(udc->dev, "debugfs is not available\n");
280 }
281 
282 static void pxa_cleanup_debugfs(struct pxa_udc *udc)
283 {
284 	debugfs_remove(udc->debugfs_eps);
285 	debugfs_remove(udc->debugfs_queues);
286 	debugfs_remove(udc->debugfs_state);
287 	debugfs_remove(udc->debugfs_root);
288 	udc->debugfs_eps = NULL;
289 	udc->debugfs_queues = NULL;
290 	udc->debugfs_state = NULL;
291 	udc->debugfs_root = NULL;
292 }
293 
294 #else
295 static inline void pxa_init_debugfs(struct pxa_udc *udc)
296 {
297 }
298 
299 static inline void pxa_cleanup_debugfs(struct pxa_udc *udc)
300 {
301 }
302 #endif
303 
304 /**
305  * is_match_usb_pxa - check if usb_ep and pxa_ep match
306  * @udc_usb_ep: usb endpoint
307  * @ep: pxa endpoint
308  * @config: configuration required in pxa_ep
309  * @interface: interface required in pxa_ep
310  * @altsetting: altsetting required in pxa_ep
311  *
312  * Returns 1 if all criteria match between pxa and usb endpoint, 0 otherwise
313  */
314 static int is_match_usb_pxa(struct udc_usb_ep *udc_usb_ep, struct pxa_ep *ep,
315 		int config, int interface, int altsetting)
316 {
317 	if (usb_endpoint_num(&udc_usb_ep->desc) != ep->addr)
318 		return 0;
319 	if (usb_endpoint_dir_in(&udc_usb_ep->desc) != ep->dir_in)
320 		return 0;
321 	if (usb_endpoint_type(&udc_usb_ep->desc) != ep->type)
322 		return 0;
323 	if ((ep->config != config) || (ep->interface != interface)
324 			|| (ep->alternate != altsetting))
325 		return 0;
326 	return 1;
327 }
328 
329 /**
330  * find_pxa_ep - find pxa_ep structure matching udc_usb_ep
331  * @udc: pxa udc
332  * @udc_usb_ep: udc_usb_ep structure
333  *
334  * Match udc_usb_ep and all pxa_ep available, to see if one matches.
335  * This is necessary because of the strong pxa hardware restriction requiring
336  * that once pxa endpoints are initialized, their configuration is freezed, and
337  * no change can be made to their address, direction, or in which configuration,
338  * interface or altsetting they are active ... which differs from more usual
339  * models which have endpoints be roughly just addressable fifos, and leave
340  * configuration events up to gadget drivers (like all control messages).
341  *
342  * Note that there is still a blurred point here :
343  *   - we rely on UDCCR register "active interface" and "active altsetting".
344  *     This is a nonsense in regard of USB spec, where multiple interfaces are
345  *     active at the same time.
346  *   - if we knew for sure that the pxa can handle multiple interface at the
347  *     same time, assuming Intel's Developer Guide is wrong, this function
348  *     should be reviewed, and a cache of couples (iface, altsetting) should
349  *     be kept in the pxa_udc structure. In this case this function would match
350  *     against the cache of couples instead of the "last altsetting" set up.
351  *
352  * Returns the matched pxa_ep structure or NULL if none found
353  */
354 static struct pxa_ep *find_pxa_ep(struct pxa_udc *udc,
355 		struct udc_usb_ep *udc_usb_ep)
356 {
357 	int i;
358 	struct pxa_ep *ep;
359 	int cfg = udc->config;
360 	int iface = udc->last_interface;
361 	int alt = udc->last_alternate;
362 
363 	if (udc_usb_ep == &udc->udc_usb_ep[0])
364 		return &udc->pxa_ep[0];
365 
366 	for (i = 1; i < NR_PXA_ENDPOINTS; i++) {
367 		ep = &udc->pxa_ep[i];
368 		if (is_match_usb_pxa(udc_usb_ep, ep, cfg, iface, alt))
369 			return ep;
370 	}
371 	return NULL;
372 }
373 
374 /**
375  * update_pxa_ep_matches - update pxa_ep cached values in all udc_usb_ep
376  * @udc: pxa udc
377  *
378  * Context: in_interrupt()
379  *
380  * Updates all pxa_ep fields in udc_usb_ep structures, if this field was
381  * previously set up (and is not NULL). The update is necessary is a
382  * configuration change or altsetting change was issued by the USB host.
383  */
384 static void update_pxa_ep_matches(struct pxa_udc *udc)
385 {
386 	int i;
387 	struct udc_usb_ep *udc_usb_ep;
388 
389 	for (i = 1; i < NR_USB_ENDPOINTS; i++) {
390 		udc_usb_ep = &udc->udc_usb_ep[i];
391 		if (udc_usb_ep->pxa_ep)
392 			udc_usb_ep->pxa_ep = find_pxa_ep(udc, udc_usb_ep);
393 	}
394 }
395 
396 /**
397  * pio_irq_enable - Enables irq generation for one endpoint
398  * @ep: udc endpoint
399  */
400 static void pio_irq_enable(struct pxa_ep *ep)
401 {
402 	struct pxa_udc *udc = ep->dev;
403 	int index = EPIDX(ep);
404 	u32 udcicr0 = udc_readl(udc, UDCICR0);
405 	u32 udcicr1 = udc_readl(udc, UDCICR1);
406 
407 	if (index < 16)
408 		udc_writel(udc, UDCICR0, udcicr0 | (3 << (index * 2)));
409 	else
410 		udc_writel(udc, UDCICR1, udcicr1 | (3 << ((index - 16) * 2)));
411 }
412 
413 /**
414  * pio_irq_disable - Disables irq generation for one endpoint
415  * @ep: udc endpoint
416  */
417 static void pio_irq_disable(struct pxa_ep *ep)
418 {
419 	struct pxa_udc *udc = ep->dev;
420 	int index = EPIDX(ep);
421 	u32 udcicr0 = udc_readl(udc, UDCICR0);
422 	u32 udcicr1 = udc_readl(udc, UDCICR1);
423 
424 	if (index < 16)
425 		udc_writel(udc, UDCICR0, udcicr0 & ~(3 << (index * 2)));
426 	else
427 		udc_writel(udc, UDCICR1, udcicr1 & ~(3 << ((index - 16) * 2)));
428 }
429 
430 /**
431  * udc_set_mask_UDCCR - set bits in UDCCR
432  * @udc: udc device
433  * @mask: bits to set in UDCCR
434  *
435  * Sets bits in UDCCR, leaving DME and FST bits as they were.
436  */
437 static inline void udc_set_mask_UDCCR(struct pxa_udc *udc, int mask)
438 {
439 	u32 udccr = udc_readl(udc, UDCCR);
440 	udc_writel(udc, UDCCR,
441 			(udccr & UDCCR_MASK_BITS) | (mask & UDCCR_MASK_BITS));
442 }
443 
444 /**
445  * udc_clear_mask_UDCCR - clears bits in UDCCR
446  * @udc: udc device
447  * @mask: bit to clear in UDCCR
448  *
449  * Clears bits in UDCCR, leaving DME and FST bits as they were.
450  */
451 static inline void udc_clear_mask_UDCCR(struct pxa_udc *udc, int mask)
452 {
453 	u32 udccr = udc_readl(udc, UDCCR);
454 	udc_writel(udc, UDCCR,
455 			(udccr & UDCCR_MASK_BITS) & ~(mask & UDCCR_MASK_BITS));
456 }
457 
458 /**
459  * ep_write_UDCCSR - set bits in UDCCSR
460  * @udc: udc device
461  * @mask: bits to set in UDCCR
462  *
463  * Sets bits in UDCCSR (UDCCSR0 and UDCCSR*).
464  *
465  * A specific case is applied to ep0 : the ACM bit is always set to 1, for
466  * SET_INTERFACE and SET_CONFIGURATION.
467  */
468 static inline void ep_write_UDCCSR(struct pxa_ep *ep, int mask)
469 {
470 	if (is_ep0(ep))
471 		mask |= UDCCSR0_ACM;
472 	udc_ep_writel(ep, UDCCSR, mask);
473 }
474 
475 /**
476  * ep_count_bytes_remain - get how many bytes in udc endpoint
477  * @ep: udc endpoint
478  *
479  * Returns number of bytes in OUT fifos. Broken for IN fifos (-EOPNOTSUPP)
480  */
481 static int ep_count_bytes_remain(struct pxa_ep *ep)
482 {
483 	if (ep->dir_in)
484 		return -EOPNOTSUPP;
485 	return udc_ep_readl(ep, UDCBCR) & 0x3ff;
486 }
487 
488 /**
489  * ep_is_empty - checks if ep has byte ready for reading
490  * @ep: udc endpoint
491  *
492  * If endpoint is the control endpoint, checks if there are bytes in the
493  * control endpoint fifo. If endpoint is a data endpoint, checks if bytes
494  * are ready for reading on OUT endpoint.
495  *
496  * Returns 0 if ep not empty, 1 if ep empty, -EOPNOTSUPP if IN endpoint
497  */
498 static int ep_is_empty(struct pxa_ep *ep)
499 {
500 	int ret;
501 
502 	if (!is_ep0(ep) && ep->dir_in)
503 		return -EOPNOTSUPP;
504 	if (is_ep0(ep))
505 		ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR0_RNE);
506 	else
507 		ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNE);
508 	return ret;
509 }
510 
511 /**
512  * ep_is_full - checks if ep has place to write bytes
513  * @ep: udc endpoint
514  *
515  * If endpoint is not the control endpoint and is an IN endpoint, checks if
516  * there is place to write bytes into the endpoint.
517  *
518  * Returns 0 if ep not full, 1 if ep full, -EOPNOTSUPP if OUT endpoint
519  */
520 static int ep_is_full(struct pxa_ep *ep)
521 {
522 	if (is_ep0(ep))
523 		return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_IPR);
524 	if (!ep->dir_in)
525 		return -EOPNOTSUPP;
526 	return (!(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNF));
527 }
528 
529 /**
530  * epout_has_pkt - checks if OUT endpoint fifo has a packet available
531  * @ep: pxa endpoint
532  *
533  * Returns 1 if a complete packet is available, 0 if not, -EOPNOTSUPP for IN ep.
534  */
535 static int epout_has_pkt(struct pxa_ep *ep)
536 {
537 	if (!is_ep0(ep) && ep->dir_in)
538 		return -EOPNOTSUPP;
539 	if (is_ep0(ep))
540 		return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_OPC);
541 	return (udc_ep_readl(ep, UDCCSR) & UDCCSR_PC);
542 }
543 
544 /**
545  * set_ep0state - Set ep0 automata state
546  * @dev: udc device
547  * @state: state
548  */
549 static void set_ep0state(struct pxa_udc *udc, int state)
550 {
551 	struct pxa_ep *ep = &udc->pxa_ep[0];
552 	char *old_stname = EP0_STNAME(udc);
553 
554 	udc->ep0state = state;
555 	ep_dbg(ep, "state=%s->%s, udccsr0=0x%03x, udcbcr=%d\n", old_stname,
556 		EP0_STNAME(udc), udc_ep_readl(ep, UDCCSR),
557 		udc_ep_readl(ep, UDCBCR));
558 }
559 
560 /**
561  * ep0_idle - Put control endpoint into idle state
562  * @dev: udc device
563  */
564 static void ep0_idle(struct pxa_udc *dev)
565 {
566 	set_ep0state(dev, WAIT_FOR_SETUP);
567 }
568 
569 /**
570  * inc_ep_stats_reqs - Update ep stats counts
571  * @ep: physical endpoint
572  * @req: usb request
573  * @is_in: ep direction (USB_DIR_IN or 0)
574  *
575  */
576 static void inc_ep_stats_reqs(struct pxa_ep *ep, int is_in)
577 {
578 	if (is_in)
579 		ep->stats.in_ops++;
580 	else
581 		ep->stats.out_ops++;
582 }
583 
584 /**
585  * inc_ep_stats_bytes - Update ep stats counts
586  * @ep: physical endpoint
587  * @count: bytes transferred on endpoint
588  * @is_in: ep direction (USB_DIR_IN or 0)
589  */
590 static void inc_ep_stats_bytes(struct pxa_ep *ep, int count, int is_in)
591 {
592 	if (is_in)
593 		ep->stats.in_bytes += count;
594 	else
595 		ep->stats.out_bytes += count;
596 }
597 
598 /**
599  * pxa_ep_setup - Sets up an usb physical endpoint
600  * @ep: pxa27x physical endpoint
601  *
602  * Find the physical pxa27x ep, and setup its UDCCR
603  */
604 static void pxa_ep_setup(struct pxa_ep *ep)
605 {
606 	u32 new_udccr;
607 
608 	new_udccr = ((ep->config << UDCCONR_CN_S) & UDCCONR_CN)
609 		| ((ep->interface << UDCCONR_IN_S) & UDCCONR_IN)
610 		| ((ep->alternate << UDCCONR_AISN_S) & UDCCONR_AISN)
611 		| ((EPADDR(ep) << UDCCONR_EN_S) & UDCCONR_EN)
612 		| ((EPXFERTYPE(ep) << UDCCONR_ET_S) & UDCCONR_ET)
613 		| ((ep->dir_in) ? UDCCONR_ED : 0)
614 		| ((ep->fifo_size << UDCCONR_MPS_S) & UDCCONR_MPS)
615 		| UDCCONR_EE;
616 
617 	udc_ep_writel(ep, UDCCR, new_udccr);
618 }
619 
620 /**
621  * pxa_eps_setup - Sets up all usb physical endpoints
622  * @dev: udc device
623  *
624  * Setup all pxa physical endpoints, except ep0
625  */
626 static void pxa_eps_setup(struct pxa_udc *dev)
627 {
628 	unsigned int i;
629 
630 	dev_dbg(dev->dev, "%s: dev=%p\n", __func__, dev);
631 
632 	for (i = 1; i < NR_PXA_ENDPOINTS; i++)
633 		pxa_ep_setup(&dev->pxa_ep[i]);
634 }
635 
636 /**
637  * pxa_ep_alloc_request - Allocate usb request
638  * @_ep: usb endpoint
639  * @gfp_flags:
640  *
641  * For the pxa27x, these can just wrap kmalloc/kfree.  gadget drivers
642  * must still pass correctly initialized endpoints, since other controller
643  * drivers may care about how it's currently set up (dma issues etc).
644   */
645 static struct usb_request *
646 pxa_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
647 {
648 	struct pxa27x_request *req;
649 
650 	req = kzalloc(sizeof *req, gfp_flags);
651 	if (!req)
652 		return NULL;
653 
654 	INIT_LIST_HEAD(&req->queue);
655 	req->in_use = 0;
656 	req->udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
657 
658 	return &req->req;
659 }
660 
661 /**
662  * pxa_ep_free_request - Free usb request
663  * @_ep: usb endpoint
664  * @_req: usb request
665  *
666  * Wrapper around kfree to free _req
667  */
668 static void pxa_ep_free_request(struct usb_ep *_ep, struct usb_request *_req)
669 {
670 	struct pxa27x_request *req;
671 
672 	req = container_of(_req, struct pxa27x_request, req);
673 	WARN_ON(!list_empty(&req->queue));
674 	kfree(req);
675 }
676 
677 /**
678  * ep_add_request - add a request to the endpoint's queue
679  * @ep: usb endpoint
680  * @req: usb request
681  *
682  * Context: ep->lock held
683  *
684  * Queues the request in the endpoint's queue, and enables the interrupts
685  * on the endpoint.
686  */
687 static void ep_add_request(struct pxa_ep *ep, struct pxa27x_request *req)
688 {
689 	if (unlikely(!req))
690 		return;
691 	ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req,
692 		req->req.length, udc_ep_readl(ep, UDCCSR));
693 
694 	req->in_use = 1;
695 	list_add_tail(&req->queue, &ep->queue);
696 	pio_irq_enable(ep);
697 }
698 
699 /**
700  * ep_del_request - removes a request from the endpoint's queue
701  * @ep: usb endpoint
702  * @req: usb request
703  *
704  * Context: ep->lock held
705  *
706  * Unqueue the request from the endpoint's queue. If there are no more requests
707  * on the endpoint, and if it's not the control endpoint, interrupts are
708  * disabled on the endpoint.
709  */
710 static void ep_del_request(struct pxa_ep *ep, struct pxa27x_request *req)
711 {
712 	if (unlikely(!req))
713 		return;
714 	ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req,
715 		req->req.length, udc_ep_readl(ep, UDCCSR));
716 
717 	list_del_init(&req->queue);
718 	req->in_use = 0;
719 	if (!is_ep0(ep) && list_empty(&ep->queue))
720 		pio_irq_disable(ep);
721 }
722 
723 /**
724  * req_done - Complete an usb request
725  * @ep: pxa physical endpoint
726  * @req: pxa request
727  * @status: usb request status sent to gadget API
728  * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
729  *
730  * Context: ep->lock held if flags not NULL, else ep->lock released
731  *
732  * Retire a pxa27x usb request. Endpoint must be locked.
733  */
734 static void req_done(struct pxa_ep *ep, struct pxa27x_request *req, int status,
735 	unsigned long *pflags)
736 {
737 	unsigned long	flags;
738 
739 	ep_del_request(ep, req);
740 	if (likely(req->req.status == -EINPROGRESS))
741 		req->req.status = status;
742 	else
743 		status = req->req.status;
744 
745 	if (status && status != -ESHUTDOWN)
746 		ep_dbg(ep, "complete req %p stat %d len %u/%u\n",
747 			&req->req, status,
748 			req->req.actual, req->req.length);
749 
750 	if (pflags)
751 		spin_unlock_irqrestore(&ep->lock, *pflags);
752 	local_irq_save(flags);
753 	usb_gadget_giveback_request(&req->udc_usb_ep->usb_ep, &req->req);
754 	local_irq_restore(flags);
755 	if (pflags)
756 		spin_lock_irqsave(&ep->lock, *pflags);
757 }
758 
759 /**
760  * ep_end_out_req - Ends endpoint OUT request
761  * @ep: physical endpoint
762  * @req: pxa request
763  * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
764  *
765  * Context: ep->lock held or released (see req_done())
766  *
767  * Ends endpoint OUT request (completes usb request).
768  */
769 static void ep_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req,
770 	unsigned long *pflags)
771 {
772 	inc_ep_stats_reqs(ep, !USB_DIR_IN);
773 	req_done(ep, req, 0, pflags);
774 }
775 
776 /**
777  * ep0_end_out_req - Ends control endpoint OUT request (ends data stage)
778  * @ep: physical endpoint
779  * @req: pxa request
780  * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
781  *
782  * Context: ep->lock held or released (see req_done())
783  *
784  * Ends control endpoint OUT request (completes usb request), and puts
785  * control endpoint into idle state
786  */
787 static void ep0_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req,
788 	unsigned long *pflags)
789 {
790 	set_ep0state(ep->dev, OUT_STATUS_STAGE);
791 	ep_end_out_req(ep, req, pflags);
792 	ep0_idle(ep->dev);
793 }
794 
795 /**
796  * ep_end_in_req - Ends endpoint IN request
797  * @ep: physical endpoint
798  * @req: pxa request
799  * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
800  *
801  * Context: ep->lock held or released (see req_done())
802  *
803  * Ends endpoint IN request (completes usb request).
804  */
805 static void ep_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req,
806 	unsigned long *pflags)
807 {
808 	inc_ep_stats_reqs(ep, USB_DIR_IN);
809 	req_done(ep, req, 0, pflags);
810 }
811 
812 /**
813  * ep0_end_in_req - Ends control endpoint IN request (ends data stage)
814  * @ep: physical endpoint
815  * @req: pxa request
816  * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
817  *
818  * Context: ep->lock held or released (see req_done())
819  *
820  * Ends control endpoint IN request (completes usb request), and puts
821  * control endpoint into status state
822  */
823 static void ep0_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req,
824 	unsigned long *pflags)
825 {
826 	set_ep0state(ep->dev, IN_STATUS_STAGE);
827 	ep_end_in_req(ep, req, pflags);
828 }
829 
830 /**
831  * nuke - Dequeue all requests
832  * @ep: pxa endpoint
833  * @status: usb request status
834  *
835  * Context: ep->lock released
836  *
837  * Dequeues all requests on an endpoint. As a side effect, interrupts will be
838  * disabled on that endpoint (because no more requests).
839  */
840 static void nuke(struct pxa_ep *ep, int status)
841 {
842 	struct pxa27x_request	*req;
843 	unsigned long		flags;
844 
845 	spin_lock_irqsave(&ep->lock, flags);
846 	while (!list_empty(&ep->queue)) {
847 		req = list_entry(ep->queue.next, struct pxa27x_request, queue);
848 		req_done(ep, req, status, &flags);
849 	}
850 	spin_unlock_irqrestore(&ep->lock, flags);
851 }
852 
853 /**
854  * read_packet - transfer 1 packet from an OUT endpoint into request
855  * @ep: pxa physical endpoint
856  * @req: usb request
857  *
858  * Takes bytes from OUT endpoint and transfers them info the usb request.
859  * If there is less space in request than bytes received in OUT endpoint,
860  * bytes are left in the OUT endpoint.
861  *
862  * Returns how many bytes were actually transferred
863  */
864 static int read_packet(struct pxa_ep *ep, struct pxa27x_request *req)
865 {
866 	u32 *buf;
867 	int bytes_ep, bufferspace, count, i;
868 
869 	bytes_ep = ep_count_bytes_remain(ep);
870 	bufferspace = req->req.length - req->req.actual;
871 
872 	buf = (u32 *)(req->req.buf + req->req.actual);
873 	prefetchw(buf);
874 
875 	if (likely(!ep_is_empty(ep)))
876 		count = min(bytes_ep, bufferspace);
877 	else /* zlp */
878 		count = 0;
879 
880 	for (i = count; i > 0; i -= 4)
881 		*buf++ = udc_ep_readl(ep, UDCDR);
882 	req->req.actual += count;
883 
884 	ep_write_UDCCSR(ep, UDCCSR_PC);
885 
886 	return count;
887 }
888 
889 /**
890  * write_packet - transfer 1 packet from request into an IN endpoint
891  * @ep: pxa physical endpoint
892  * @req: usb request
893  * @max: max bytes that fit into endpoint
894  *
895  * Takes bytes from usb request, and transfers them into the physical
896  * endpoint. If there are no bytes to transfer, doesn't write anything
897  * to physical endpoint.
898  *
899  * Returns how many bytes were actually transferred.
900  */
901 static int write_packet(struct pxa_ep *ep, struct pxa27x_request *req,
902 			unsigned int max)
903 {
904 	int length, count, remain, i;
905 	u32 *buf;
906 	u8 *buf_8;
907 
908 	buf = (u32 *)(req->req.buf + req->req.actual);
909 	prefetch(buf);
910 
911 	length = min(req->req.length - req->req.actual, max);
912 	req->req.actual += length;
913 
914 	remain = length & 0x3;
915 	count = length & ~(0x3);
916 	for (i = count; i > 0 ; i -= 4)
917 		udc_ep_writel(ep, UDCDR, *buf++);
918 
919 	buf_8 = (u8 *)buf;
920 	for (i = remain; i > 0; i--)
921 		udc_ep_writeb(ep, UDCDR, *buf_8++);
922 
923 	ep_vdbg(ep, "length=%d+%d, udccsr=0x%03x\n", count, remain,
924 		udc_ep_readl(ep, UDCCSR));
925 
926 	return length;
927 }
928 
929 /**
930  * read_fifo - Transfer packets from OUT endpoint into usb request
931  * @ep: pxa physical endpoint
932  * @req: usb request
933  *
934  * Context: callable when in_interrupt()
935  *
936  * Unload as many packets as possible from the fifo we use for usb OUT
937  * transfers and put them into the request. Caller should have made sure
938  * there's at least one packet ready.
939  * Doesn't complete the request, that's the caller's job
940  *
941  * Returns 1 if the request completed, 0 otherwise
942  */
943 static int read_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
944 {
945 	int count, is_short, completed = 0;
946 
947 	while (epout_has_pkt(ep)) {
948 		count = read_packet(ep, req);
949 		inc_ep_stats_bytes(ep, count, !USB_DIR_IN);
950 
951 		is_short = (count < ep->fifo_size);
952 		ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n",
953 			udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "",
954 			&req->req, req->req.actual, req->req.length);
955 
956 		/* completion */
957 		if (is_short || req->req.actual == req->req.length) {
958 			completed = 1;
959 			break;
960 		}
961 		/* finished that packet.  the next one may be waiting... */
962 	}
963 	return completed;
964 }
965 
966 /**
967  * write_fifo - transfer packets from usb request into an IN endpoint
968  * @ep: pxa physical endpoint
969  * @req: pxa usb request
970  *
971  * Write to an IN endpoint fifo, as many packets as possible.
972  * irqs will use this to write the rest later.
973  * caller guarantees at least one packet buffer is ready (or a zlp).
974  * Doesn't complete the request, that's the caller's job
975  *
976  * Returns 1 if request fully transferred, 0 if partial transfer
977  */
978 static int write_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
979 {
980 	unsigned max;
981 	int count, is_short, is_last = 0, completed = 0, totcount = 0;
982 	u32 udccsr;
983 
984 	max = ep->fifo_size;
985 	do {
986 		is_short = 0;
987 
988 		udccsr = udc_ep_readl(ep, UDCCSR);
989 		if (udccsr & UDCCSR_PC) {
990 			ep_vdbg(ep, "Clearing Transmit Complete, udccsr=%x\n",
991 				udccsr);
992 			ep_write_UDCCSR(ep, UDCCSR_PC);
993 		}
994 		if (udccsr & UDCCSR_TRN) {
995 			ep_vdbg(ep, "Clearing Underrun on, udccsr=%x\n",
996 				udccsr);
997 			ep_write_UDCCSR(ep, UDCCSR_TRN);
998 		}
999 
1000 		count = write_packet(ep, req, max);
1001 		inc_ep_stats_bytes(ep, count, USB_DIR_IN);
1002 		totcount += count;
1003 
1004 		/* last packet is usually short (or a zlp) */
1005 		if (unlikely(count < max)) {
1006 			is_last = 1;
1007 			is_short = 1;
1008 		} else {
1009 			if (likely(req->req.length > req->req.actual)
1010 					|| req->req.zero)
1011 				is_last = 0;
1012 			else
1013 				is_last = 1;
1014 			/* interrupt/iso maxpacket may not fill the fifo */
1015 			is_short = unlikely(max < ep->fifo_size);
1016 		}
1017 
1018 		if (is_short)
1019 			ep_write_UDCCSR(ep, UDCCSR_SP);
1020 
1021 		/* requests complete when all IN data is in the FIFO */
1022 		if (is_last) {
1023 			completed = 1;
1024 			break;
1025 		}
1026 	} while (!ep_is_full(ep));
1027 
1028 	ep_dbg(ep, "wrote count:%d bytes%s%s, left:%d req=%p\n",
1029 			totcount, is_last ? "/L" : "", is_short ? "/S" : "",
1030 			req->req.length - req->req.actual, &req->req);
1031 
1032 	return completed;
1033 }
1034 
1035 /**
1036  * read_ep0_fifo - Transfer packets from control endpoint into usb request
1037  * @ep: control endpoint
1038  * @req: pxa usb request
1039  *
1040  * Special ep0 version of the above read_fifo. Reads as many bytes from control
1041  * endpoint as can be read, and stores them into usb request (limited by request
1042  * maximum length).
1043  *
1044  * Returns 0 if usb request only partially filled, 1 if fully filled
1045  */
1046 static int read_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
1047 {
1048 	int count, is_short, completed = 0;
1049 
1050 	while (epout_has_pkt(ep)) {
1051 		count = read_packet(ep, req);
1052 		ep_write_UDCCSR(ep, UDCCSR0_OPC);
1053 		inc_ep_stats_bytes(ep, count, !USB_DIR_IN);
1054 
1055 		is_short = (count < ep->fifo_size);
1056 		ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n",
1057 			udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "",
1058 			&req->req, req->req.actual, req->req.length);
1059 
1060 		if (is_short || req->req.actual >= req->req.length) {
1061 			completed = 1;
1062 			break;
1063 		}
1064 	}
1065 
1066 	return completed;
1067 }
1068 
1069 /**
1070  * write_ep0_fifo - Send a request to control endpoint (ep0 in)
1071  * @ep: control endpoint
1072  * @req: request
1073  *
1074  * Context: callable when in_interrupt()
1075  *
1076  * Sends a request (or a part of the request) to the control endpoint (ep0 in).
1077  * If the request doesn't fit, the remaining part will be sent from irq.
1078  * The request is considered fully written only if either :
1079  *   - last write transferred all remaining bytes, but fifo was not fully filled
1080  *   - last write was a 0 length write
1081  *
1082  * Returns 1 if request fully written, 0 if request only partially sent
1083  */
1084 static int write_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
1085 {
1086 	unsigned	count;
1087 	int		is_last, is_short;
1088 
1089 	count = write_packet(ep, req, EP0_FIFO_SIZE);
1090 	inc_ep_stats_bytes(ep, count, USB_DIR_IN);
1091 
1092 	is_short = (count < EP0_FIFO_SIZE);
1093 	is_last = ((count == 0) || (count < EP0_FIFO_SIZE));
1094 
1095 	/* Sends either a short packet or a 0 length packet */
1096 	if (unlikely(is_short))
1097 		ep_write_UDCCSR(ep, UDCCSR0_IPR);
1098 
1099 	ep_dbg(ep, "in %d bytes%s%s, %d left, req=%p, udccsr0=0x%03x\n",
1100 		count, is_short ? "/S" : "", is_last ? "/L" : "",
1101 		req->req.length - req->req.actual,
1102 		&req->req, udc_ep_readl(ep, UDCCSR));
1103 
1104 	return is_last;
1105 }
1106 
1107 /**
1108  * pxa_ep_queue - Queue a request into an IN endpoint
1109  * @_ep: usb endpoint
1110  * @_req: usb request
1111  * @gfp_flags: flags
1112  *
1113  * Context: normally called when !in_interrupt, but callable when in_interrupt()
1114  * in the special case of ep0 setup :
1115  *   (irq->handle_ep0_ctrl_req->gadget_setup->pxa_ep_queue)
1116  *
1117  * Returns 0 if succedeed, error otherwise
1118  */
1119 static int pxa_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
1120 			gfp_t gfp_flags)
1121 {
1122 	struct udc_usb_ep	*udc_usb_ep;
1123 	struct pxa_ep		*ep;
1124 	struct pxa27x_request	*req;
1125 	struct pxa_udc		*dev;
1126 	unsigned long		flags;
1127 	int			rc = 0;
1128 	int			is_first_req;
1129 	unsigned		length;
1130 	int			recursion_detected;
1131 
1132 	req = container_of(_req, struct pxa27x_request, req);
1133 	udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1134 
1135 	if (unlikely(!_req || !_req->complete || !_req->buf))
1136 		return -EINVAL;
1137 
1138 	if (unlikely(!_ep))
1139 		return -EINVAL;
1140 
1141 	dev = udc_usb_ep->dev;
1142 	ep = udc_usb_ep->pxa_ep;
1143 	if (unlikely(!ep))
1144 		return -EINVAL;
1145 
1146 	dev = ep->dev;
1147 	if (unlikely(!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) {
1148 		ep_dbg(ep, "bogus device state\n");
1149 		return -ESHUTDOWN;
1150 	}
1151 
1152 	/* iso is always one packet per request, that's the only way
1153 	 * we can report per-packet status.  that also helps with dma.
1154 	 */
1155 	if (unlikely(EPXFERTYPE_is_ISO(ep)
1156 			&& req->req.length > ep->fifo_size))
1157 		return -EMSGSIZE;
1158 
1159 	spin_lock_irqsave(&ep->lock, flags);
1160 	recursion_detected = ep->in_handle_ep;
1161 
1162 	is_first_req = list_empty(&ep->queue);
1163 	ep_dbg(ep, "queue req %p(first=%s), len %d buf %p\n",
1164 			_req, is_first_req ? "yes" : "no",
1165 			_req->length, _req->buf);
1166 
1167 	if (!ep->enabled) {
1168 		_req->status = -ESHUTDOWN;
1169 		rc = -ESHUTDOWN;
1170 		goto out_locked;
1171 	}
1172 
1173 	if (req->in_use) {
1174 		ep_err(ep, "refusing to queue req %p (already queued)\n", req);
1175 		goto out_locked;
1176 	}
1177 
1178 	length = _req->length;
1179 	_req->status = -EINPROGRESS;
1180 	_req->actual = 0;
1181 
1182 	ep_add_request(ep, req);
1183 	spin_unlock_irqrestore(&ep->lock, flags);
1184 
1185 	if (is_ep0(ep)) {
1186 		switch (dev->ep0state) {
1187 		case WAIT_ACK_SET_CONF_INTERF:
1188 			if (length == 0) {
1189 				ep_end_in_req(ep, req, NULL);
1190 			} else {
1191 				ep_err(ep, "got a request of %d bytes while"
1192 					"in state WAIT_ACK_SET_CONF_INTERF\n",
1193 					length);
1194 				ep_del_request(ep, req);
1195 				rc = -EL2HLT;
1196 			}
1197 			ep0_idle(ep->dev);
1198 			break;
1199 		case IN_DATA_STAGE:
1200 			if (!ep_is_full(ep))
1201 				if (write_ep0_fifo(ep, req))
1202 					ep0_end_in_req(ep, req, NULL);
1203 			break;
1204 		case OUT_DATA_STAGE:
1205 			if ((length == 0) || !epout_has_pkt(ep))
1206 				if (read_ep0_fifo(ep, req))
1207 					ep0_end_out_req(ep, req, NULL);
1208 			break;
1209 		default:
1210 			ep_err(ep, "odd state %s to send me a request\n",
1211 				EP0_STNAME(ep->dev));
1212 			ep_del_request(ep, req);
1213 			rc = -EL2HLT;
1214 			break;
1215 		}
1216 	} else {
1217 		if (!recursion_detected)
1218 			handle_ep(ep);
1219 	}
1220 
1221 out:
1222 	return rc;
1223 out_locked:
1224 	spin_unlock_irqrestore(&ep->lock, flags);
1225 	goto out;
1226 }
1227 
1228 /**
1229  * pxa_ep_dequeue - Dequeue one request
1230  * @_ep: usb endpoint
1231  * @_req: usb request
1232  *
1233  * Return 0 if no error, -EINVAL or -ECONNRESET otherwise
1234  */
1235 static int pxa_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1236 {
1237 	struct pxa_ep		*ep;
1238 	struct udc_usb_ep	*udc_usb_ep;
1239 	struct pxa27x_request	*req;
1240 	unsigned long		flags;
1241 	int			rc = -EINVAL;
1242 
1243 	if (!_ep)
1244 		return rc;
1245 	udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1246 	ep = udc_usb_ep->pxa_ep;
1247 	if (!ep || is_ep0(ep))
1248 		return rc;
1249 
1250 	spin_lock_irqsave(&ep->lock, flags);
1251 
1252 	/* make sure it's actually queued on this endpoint */
1253 	list_for_each_entry(req, &ep->queue, queue) {
1254 		if (&req->req == _req) {
1255 			rc = 0;
1256 			break;
1257 		}
1258 	}
1259 
1260 	spin_unlock_irqrestore(&ep->lock, flags);
1261 	if (!rc)
1262 		req_done(ep, req, -ECONNRESET, NULL);
1263 	return rc;
1264 }
1265 
1266 /**
1267  * pxa_ep_set_halt - Halts operations on one endpoint
1268  * @_ep: usb endpoint
1269  * @value:
1270  *
1271  * Returns 0 if no error, -EINVAL, -EROFS, -EAGAIN otherwise
1272  */
1273 static int pxa_ep_set_halt(struct usb_ep *_ep, int value)
1274 {
1275 	struct pxa_ep		*ep;
1276 	struct udc_usb_ep	*udc_usb_ep;
1277 	unsigned long flags;
1278 	int rc;
1279 
1280 
1281 	if (!_ep)
1282 		return -EINVAL;
1283 	udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1284 	ep = udc_usb_ep->pxa_ep;
1285 	if (!ep || is_ep0(ep))
1286 		return -EINVAL;
1287 
1288 	if (value == 0) {
1289 		/*
1290 		 * This path (reset toggle+halt) is needed to implement
1291 		 * SET_INTERFACE on normal hardware.  but it can't be
1292 		 * done from software on the PXA UDC, and the hardware
1293 		 * forgets to do it as part of SET_INTERFACE automagic.
1294 		 */
1295 		ep_dbg(ep, "only host can clear halt\n");
1296 		return -EROFS;
1297 	}
1298 
1299 	spin_lock_irqsave(&ep->lock, flags);
1300 
1301 	rc = -EAGAIN;
1302 	if (ep->dir_in	&& (ep_is_full(ep) || !list_empty(&ep->queue)))
1303 		goto out;
1304 
1305 	/* FST, FEF bits are the same for control and non control endpoints */
1306 	rc = 0;
1307 	ep_write_UDCCSR(ep, UDCCSR_FST | UDCCSR_FEF);
1308 	if (is_ep0(ep))
1309 		set_ep0state(ep->dev, STALL);
1310 
1311 out:
1312 	spin_unlock_irqrestore(&ep->lock, flags);
1313 	return rc;
1314 }
1315 
1316 /**
1317  * pxa_ep_fifo_status - Get how many bytes in physical endpoint
1318  * @_ep: usb endpoint
1319  *
1320  * Returns number of bytes in OUT fifos. Broken for IN fifos.
1321  */
1322 static int pxa_ep_fifo_status(struct usb_ep *_ep)
1323 {
1324 	struct pxa_ep		*ep;
1325 	struct udc_usb_ep	*udc_usb_ep;
1326 
1327 	if (!_ep)
1328 		return -ENODEV;
1329 	udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1330 	ep = udc_usb_ep->pxa_ep;
1331 	if (!ep || is_ep0(ep))
1332 		return -ENODEV;
1333 
1334 	if (ep->dir_in)
1335 		return -EOPNOTSUPP;
1336 	if (ep->dev->gadget.speed == USB_SPEED_UNKNOWN || ep_is_empty(ep))
1337 		return 0;
1338 	else
1339 		return ep_count_bytes_remain(ep) + 1;
1340 }
1341 
1342 /**
1343  * pxa_ep_fifo_flush - Flushes one endpoint
1344  * @_ep: usb endpoint
1345  *
1346  * Discards all data in one endpoint(IN or OUT), except control endpoint.
1347  */
1348 static void pxa_ep_fifo_flush(struct usb_ep *_ep)
1349 {
1350 	struct pxa_ep		*ep;
1351 	struct udc_usb_ep	*udc_usb_ep;
1352 	unsigned long		flags;
1353 
1354 	if (!_ep)
1355 		return;
1356 	udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1357 	ep = udc_usb_ep->pxa_ep;
1358 	if (!ep || is_ep0(ep))
1359 		return;
1360 
1361 	spin_lock_irqsave(&ep->lock, flags);
1362 
1363 	if (unlikely(!list_empty(&ep->queue)))
1364 		ep_dbg(ep, "called while queue list not empty\n");
1365 	ep_dbg(ep, "called\n");
1366 
1367 	/* for OUT, just read and discard the FIFO contents. */
1368 	if (!ep->dir_in) {
1369 		while (!ep_is_empty(ep))
1370 			udc_ep_readl(ep, UDCDR);
1371 	} else {
1372 		/* most IN status is the same, but ISO can't stall */
1373 		ep_write_UDCCSR(ep,
1374 				UDCCSR_PC | UDCCSR_FEF | UDCCSR_TRN
1375 				| (EPXFERTYPE_is_ISO(ep) ? 0 : UDCCSR_SST));
1376 	}
1377 
1378 	spin_unlock_irqrestore(&ep->lock, flags);
1379 }
1380 
1381 /**
1382  * pxa_ep_enable - Enables usb endpoint
1383  * @_ep: usb endpoint
1384  * @desc: usb endpoint descriptor
1385  *
1386  * Nothing much to do here, as ep configuration is done once and for all
1387  * before udc is enabled. After udc enable, no physical endpoint configuration
1388  * can be changed.
1389  * Function makes sanity checks and flushes the endpoint.
1390  */
1391 static int pxa_ep_enable(struct usb_ep *_ep,
1392 	const struct usb_endpoint_descriptor *desc)
1393 {
1394 	struct pxa_ep		*ep;
1395 	struct udc_usb_ep	*udc_usb_ep;
1396 	struct pxa_udc		*udc;
1397 
1398 	if (!_ep || !desc)
1399 		return -EINVAL;
1400 
1401 	udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1402 	if (udc_usb_ep->pxa_ep) {
1403 		ep = udc_usb_ep->pxa_ep;
1404 		ep_warn(ep, "usb_ep %s already enabled, doing nothing\n",
1405 			_ep->name);
1406 	} else {
1407 		ep = find_pxa_ep(udc_usb_ep->dev, udc_usb_ep);
1408 	}
1409 
1410 	if (!ep || is_ep0(ep)) {
1411 		dev_err(udc_usb_ep->dev->dev,
1412 			"unable to match pxa_ep for ep %s\n",
1413 			_ep->name);
1414 		return -EINVAL;
1415 	}
1416 
1417 	if ((desc->bDescriptorType != USB_DT_ENDPOINT)
1418 			|| (ep->type != usb_endpoint_type(desc))) {
1419 		ep_err(ep, "type mismatch\n");
1420 		return -EINVAL;
1421 	}
1422 
1423 	if (ep->fifo_size < usb_endpoint_maxp(desc)) {
1424 		ep_err(ep, "bad maxpacket\n");
1425 		return -ERANGE;
1426 	}
1427 
1428 	udc_usb_ep->pxa_ep = ep;
1429 	udc = ep->dev;
1430 
1431 	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1432 		ep_err(ep, "bogus device state\n");
1433 		return -ESHUTDOWN;
1434 	}
1435 
1436 	ep->enabled = 1;
1437 
1438 	/* flush fifo (mostly for OUT buffers) */
1439 	pxa_ep_fifo_flush(_ep);
1440 
1441 	ep_dbg(ep, "enabled\n");
1442 	return 0;
1443 }
1444 
1445 /**
1446  * pxa_ep_disable - Disable usb endpoint
1447  * @_ep: usb endpoint
1448  *
1449  * Same as for pxa_ep_enable, no physical endpoint configuration can be
1450  * changed.
1451  * Function flushes the endpoint and related requests.
1452  */
1453 static int pxa_ep_disable(struct usb_ep *_ep)
1454 {
1455 	struct pxa_ep		*ep;
1456 	struct udc_usb_ep	*udc_usb_ep;
1457 
1458 	if (!_ep)
1459 		return -EINVAL;
1460 
1461 	udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1462 	ep = udc_usb_ep->pxa_ep;
1463 	if (!ep || is_ep0(ep) || !list_empty(&ep->queue))
1464 		return -EINVAL;
1465 
1466 	ep->enabled = 0;
1467 	nuke(ep, -ESHUTDOWN);
1468 
1469 	pxa_ep_fifo_flush(_ep);
1470 	udc_usb_ep->pxa_ep = NULL;
1471 
1472 	ep_dbg(ep, "disabled\n");
1473 	return 0;
1474 }
1475 
1476 static const struct usb_ep_ops pxa_ep_ops = {
1477 	.enable		= pxa_ep_enable,
1478 	.disable	= pxa_ep_disable,
1479 
1480 	.alloc_request	= pxa_ep_alloc_request,
1481 	.free_request	= pxa_ep_free_request,
1482 
1483 	.queue		= pxa_ep_queue,
1484 	.dequeue	= pxa_ep_dequeue,
1485 
1486 	.set_halt	= pxa_ep_set_halt,
1487 	.fifo_status	= pxa_ep_fifo_status,
1488 	.fifo_flush	= pxa_ep_fifo_flush,
1489 };
1490 
1491 /**
1492  * dplus_pullup - Connect or disconnect pullup resistor to D+ pin
1493  * @udc: udc device
1494  * @on: 0 if disconnect pullup resistor, 1 otherwise
1495  * Context: any
1496  *
1497  * Handle D+ pullup resistor, make the device visible to the usb bus, and
1498  * declare it as a full speed usb device
1499  */
1500 static void dplus_pullup(struct pxa_udc *udc, int on)
1501 {
1502 	if (udc->gpiod) {
1503 		gpiod_set_value(udc->gpiod, on);
1504 	} else if (udc->udc_command) {
1505 		if (on)
1506 			udc->udc_command(PXA2XX_UDC_CMD_CONNECT);
1507 		else
1508 			udc->udc_command(PXA2XX_UDC_CMD_DISCONNECT);
1509 	}
1510 	udc->pullup_on = on;
1511 }
1512 
1513 /**
1514  * pxa_udc_get_frame - Returns usb frame number
1515  * @_gadget: usb gadget
1516  */
1517 static int pxa_udc_get_frame(struct usb_gadget *_gadget)
1518 {
1519 	struct pxa_udc *udc = to_gadget_udc(_gadget);
1520 
1521 	return (udc_readl(udc, UDCFNR) & 0x7ff);
1522 }
1523 
1524 /**
1525  * pxa_udc_wakeup - Force udc device out of suspend
1526  * @_gadget: usb gadget
1527  *
1528  * Returns 0 if successful, error code otherwise
1529  */
1530 static int pxa_udc_wakeup(struct usb_gadget *_gadget)
1531 {
1532 	struct pxa_udc *udc = to_gadget_udc(_gadget);
1533 
1534 	/* host may not have enabled remote wakeup */
1535 	if ((udc_readl(udc, UDCCR) & UDCCR_DWRE) == 0)
1536 		return -EHOSTUNREACH;
1537 	udc_set_mask_UDCCR(udc, UDCCR_UDR);
1538 	return 0;
1539 }
1540 
1541 static void udc_enable(struct pxa_udc *udc);
1542 static void udc_disable(struct pxa_udc *udc);
1543 
1544 /**
1545  * should_enable_udc - Tells if UDC should be enabled
1546  * @udc: udc device
1547  * Context: any
1548  *
1549  * The UDC should be enabled if :
1550 
1551  *  - the pullup resistor is connected
1552  *  - and a gadget driver is bound
1553  *  - and vbus is sensed (or no vbus sense is available)
1554  *
1555  * Returns 1 if UDC should be enabled, 0 otherwise
1556  */
1557 static int should_enable_udc(struct pxa_udc *udc)
1558 {
1559 	int put_on;
1560 
1561 	put_on = ((udc->pullup_on) && (udc->driver));
1562 	put_on &= ((udc->vbus_sensed) || (IS_ERR_OR_NULL(udc->transceiver)));
1563 	return put_on;
1564 }
1565 
1566 /**
1567  * should_disable_udc - Tells if UDC should be disabled
1568  * @udc: udc device
1569  * Context: any
1570  *
1571  * The UDC should be disabled if :
1572  *  - the pullup resistor is not connected
1573  *  - or no gadget driver is bound
1574  *  - or no vbus is sensed (when vbus sesing is available)
1575  *
1576  * Returns 1 if UDC should be disabled
1577  */
1578 static int should_disable_udc(struct pxa_udc *udc)
1579 {
1580 	int put_off;
1581 
1582 	put_off = ((!udc->pullup_on) || (!udc->driver));
1583 	put_off |= ((!udc->vbus_sensed) && (!IS_ERR_OR_NULL(udc->transceiver)));
1584 	return put_off;
1585 }
1586 
1587 /**
1588  * pxa_udc_pullup - Offer manual D+ pullup control
1589  * @_gadget: usb gadget using the control
1590  * @is_active: 0 if disconnect, else connect D+ pullup resistor
1591  * Context: !in_interrupt()
1592  *
1593  * Returns 0 if OK, -EOPNOTSUPP if udc driver doesn't handle D+ pullup
1594  */
1595 static int pxa_udc_pullup(struct usb_gadget *_gadget, int is_active)
1596 {
1597 	struct pxa_udc *udc = to_gadget_udc(_gadget);
1598 
1599 	if (!udc->gpiod && !udc->udc_command)
1600 		return -EOPNOTSUPP;
1601 
1602 	dplus_pullup(udc, is_active);
1603 
1604 	if (should_enable_udc(udc))
1605 		udc_enable(udc);
1606 	if (should_disable_udc(udc))
1607 		udc_disable(udc);
1608 	return 0;
1609 }
1610 
1611 /**
1612  * pxa_udc_vbus_session - Called by external transceiver to enable/disable udc
1613  * @_gadget: usb gadget
1614  * @is_active: 0 if should disable the udc, 1 if should enable
1615  *
1616  * Enables the udc, and optionnaly activates D+ pullup resistor. Or disables the
1617  * udc, and deactivates D+ pullup resistor.
1618  *
1619  * Returns 0
1620  */
1621 static int pxa_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1622 {
1623 	struct pxa_udc *udc = to_gadget_udc(_gadget);
1624 
1625 	udc->vbus_sensed = is_active;
1626 	if (should_enable_udc(udc))
1627 		udc_enable(udc);
1628 	if (should_disable_udc(udc))
1629 		udc_disable(udc);
1630 
1631 	return 0;
1632 }
1633 
1634 /**
1635  * pxa_udc_vbus_draw - Called by gadget driver after SET_CONFIGURATION completed
1636  * @_gadget: usb gadget
1637  * @mA: current drawn
1638  *
1639  * Context: !in_interrupt()
1640  *
1641  * Called after a configuration was chosen by a USB host, to inform how much
1642  * current can be drawn by the device from VBus line.
1643  *
1644  * Returns 0 or -EOPNOTSUPP if no transceiver is handling the udc
1645  */
1646 static int pxa_udc_vbus_draw(struct usb_gadget *_gadget, unsigned mA)
1647 {
1648 	struct pxa_udc *udc;
1649 
1650 	udc = to_gadget_udc(_gadget);
1651 	if (!IS_ERR_OR_NULL(udc->transceiver))
1652 		return usb_phy_set_power(udc->transceiver, mA);
1653 	return -EOPNOTSUPP;
1654 }
1655 
1656 /**
1657  * pxa_udc_phy_event - Called by phy upon VBus event
1658  * @nb: notifier block
1659  * @action: phy action, is vbus connect or disconnect
1660  * @data: the usb_gadget structure in pxa_udc
1661  *
1662  * Called by the USB Phy when a cable connect or disconnect is sensed.
1663  *
1664  * Returns 0
1665  */
1666 static int pxa_udc_phy_event(struct notifier_block *nb, unsigned long action,
1667 			     void *data)
1668 {
1669 	struct usb_gadget *gadget = data;
1670 
1671 	switch (action) {
1672 	case USB_EVENT_VBUS:
1673 		usb_gadget_vbus_connect(gadget);
1674 		return NOTIFY_OK;
1675 	case USB_EVENT_NONE:
1676 		usb_gadget_vbus_disconnect(gadget);
1677 		return NOTIFY_OK;
1678 	default:
1679 		return NOTIFY_DONE;
1680 	}
1681 }
1682 
1683 static struct notifier_block pxa27x_udc_phy = {
1684 	.notifier_call = pxa_udc_phy_event,
1685 };
1686 
1687 static int pxa27x_udc_start(struct usb_gadget *g,
1688 		struct usb_gadget_driver *driver);
1689 static int pxa27x_udc_stop(struct usb_gadget *g);
1690 
1691 static const struct usb_gadget_ops pxa_udc_ops = {
1692 	.get_frame	= pxa_udc_get_frame,
1693 	.wakeup		= pxa_udc_wakeup,
1694 	.pullup		= pxa_udc_pullup,
1695 	.vbus_session	= pxa_udc_vbus_session,
1696 	.vbus_draw	= pxa_udc_vbus_draw,
1697 	.udc_start	= pxa27x_udc_start,
1698 	.udc_stop	= pxa27x_udc_stop,
1699 };
1700 
1701 /**
1702  * udc_disable - disable udc device controller
1703  * @udc: udc device
1704  * Context: any
1705  *
1706  * Disables the udc device : disables clocks, udc interrupts, control endpoint
1707  * interrupts.
1708  */
1709 static void udc_disable(struct pxa_udc *udc)
1710 {
1711 	if (!udc->enabled)
1712 		return;
1713 
1714 	udc_writel(udc, UDCICR0, 0);
1715 	udc_writel(udc, UDCICR1, 0);
1716 
1717 	udc_clear_mask_UDCCR(udc, UDCCR_UDE);
1718 
1719 	ep0_idle(udc);
1720 	udc->gadget.speed = USB_SPEED_UNKNOWN;
1721 	clk_disable(udc->clk);
1722 
1723 	udc->enabled = 0;
1724 }
1725 
1726 /**
1727  * udc_init_data - Initialize udc device data structures
1728  * @dev: udc device
1729  *
1730  * Initializes gadget endpoint list, endpoints locks. No action is taken
1731  * on the hardware.
1732  */
1733 static void udc_init_data(struct pxa_udc *dev)
1734 {
1735 	int i;
1736 	struct pxa_ep *ep;
1737 
1738 	/* device/ep0 records init */
1739 	INIT_LIST_HEAD(&dev->gadget.ep_list);
1740 	INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1741 	dev->udc_usb_ep[0].pxa_ep = &dev->pxa_ep[0];
1742 	dev->gadget.quirk_altset_not_supp = 1;
1743 	ep0_idle(dev);
1744 
1745 	/* PXA endpoints init */
1746 	for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
1747 		ep = &dev->pxa_ep[i];
1748 
1749 		ep->enabled = is_ep0(ep);
1750 		INIT_LIST_HEAD(&ep->queue);
1751 		spin_lock_init(&ep->lock);
1752 	}
1753 
1754 	/* USB endpoints init */
1755 	for (i = 1; i < NR_USB_ENDPOINTS; i++) {
1756 		list_add_tail(&dev->udc_usb_ep[i].usb_ep.ep_list,
1757 				&dev->gadget.ep_list);
1758 		usb_ep_set_maxpacket_limit(&dev->udc_usb_ep[i].usb_ep,
1759 					   dev->udc_usb_ep[i].usb_ep.maxpacket);
1760 	}
1761 }
1762 
1763 /**
1764  * udc_enable - Enables the udc device
1765  * @dev: udc device
1766  *
1767  * Enables the udc device : enables clocks, udc interrupts, control endpoint
1768  * interrupts, sets usb as UDC client and setups endpoints.
1769  */
1770 static void udc_enable(struct pxa_udc *udc)
1771 {
1772 	if (udc->enabled)
1773 		return;
1774 
1775 	clk_enable(udc->clk);
1776 	udc_writel(udc, UDCICR0, 0);
1777 	udc_writel(udc, UDCICR1, 0);
1778 	udc_clear_mask_UDCCR(udc, UDCCR_UDE);
1779 
1780 	ep0_idle(udc);
1781 	udc->gadget.speed = USB_SPEED_FULL;
1782 	memset(&udc->stats, 0, sizeof(udc->stats));
1783 
1784 	pxa_eps_setup(udc);
1785 	udc_set_mask_UDCCR(udc, UDCCR_UDE);
1786 	ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_ACM);
1787 	udelay(2);
1788 	if (udc_readl(udc, UDCCR) & UDCCR_EMCE)
1789 		dev_err(udc->dev, "Configuration errors, udc disabled\n");
1790 
1791 	/*
1792 	 * Caller must be able to sleep in order to cope with startup transients
1793 	 */
1794 	msleep(100);
1795 
1796 	/* enable suspend/resume and reset irqs */
1797 	udc_writel(udc, UDCICR1,
1798 			UDCICR1_IECC | UDCICR1_IERU
1799 			| UDCICR1_IESU | UDCICR1_IERS);
1800 
1801 	/* enable ep0 irqs */
1802 	pio_irq_enable(&udc->pxa_ep[0]);
1803 
1804 	udc->enabled = 1;
1805 }
1806 
1807 /**
1808  * pxa27x_start - Register gadget driver
1809  * @driver: gadget driver
1810  * @bind: bind function
1811  *
1812  * When a driver is successfully registered, it will receive control requests
1813  * including set_configuration(), which enables non-control requests.  Then
1814  * usb traffic follows until a disconnect is reported.  Then a host may connect
1815  * again, or the driver might get unbound.
1816  *
1817  * Note that the udc is not automatically enabled. Check function
1818  * should_enable_udc().
1819  *
1820  * Returns 0 if no error, -EINVAL, -ENODEV, -EBUSY otherwise
1821  */
1822 static int pxa27x_udc_start(struct usb_gadget *g,
1823 		struct usb_gadget_driver *driver)
1824 {
1825 	struct pxa_udc *udc = to_pxa(g);
1826 	int retval;
1827 
1828 	/* first hook up the driver ... */
1829 	udc->driver = driver;
1830 
1831 	if (!IS_ERR_OR_NULL(udc->transceiver)) {
1832 		retval = otg_set_peripheral(udc->transceiver->otg,
1833 						&udc->gadget);
1834 		if (retval) {
1835 			dev_err(udc->dev, "can't bind to transceiver\n");
1836 			goto fail;
1837 		}
1838 	}
1839 
1840 	if (should_enable_udc(udc))
1841 		udc_enable(udc);
1842 	return 0;
1843 
1844 fail:
1845 	udc->driver = NULL;
1846 	return retval;
1847 }
1848 
1849 /**
1850  * stop_activity - Stops udc endpoints
1851  * @udc: udc device
1852  * @driver: gadget driver
1853  *
1854  * Disables all udc endpoints (even control endpoint), report disconnect to
1855  * the gadget user.
1856  */
1857 static void stop_activity(struct pxa_udc *udc)
1858 {
1859 	int i;
1860 
1861 	udc->gadget.speed = USB_SPEED_UNKNOWN;
1862 
1863 	for (i = 0; i < NR_USB_ENDPOINTS; i++)
1864 		pxa_ep_disable(&udc->udc_usb_ep[i].usb_ep);
1865 }
1866 
1867 /**
1868  * pxa27x_udc_stop - Unregister the gadget driver
1869  * @driver: gadget driver
1870  *
1871  * Returns 0 if no error, -ENODEV, -EINVAL otherwise
1872  */
1873 static int pxa27x_udc_stop(struct usb_gadget *g)
1874 {
1875 	struct pxa_udc *udc = to_pxa(g);
1876 
1877 	stop_activity(udc);
1878 	udc_disable(udc);
1879 
1880 	udc->driver = NULL;
1881 
1882 	if (!IS_ERR_OR_NULL(udc->transceiver))
1883 		return otg_set_peripheral(udc->transceiver->otg, NULL);
1884 	return 0;
1885 }
1886 
1887 /**
1888  * handle_ep0_ctrl_req - handle control endpoint control request
1889  * @udc: udc device
1890  * @req: control request
1891  */
1892 static void handle_ep0_ctrl_req(struct pxa_udc *udc,
1893 				struct pxa27x_request *req)
1894 {
1895 	struct pxa_ep *ep = &udc->pxa_ep[0];
1896 	union {
1897 		struct usb_ctrlrequest	r;
1898 		u32			word[2];
1899 	} u;
1900 	int i;
1901 	int have_extrabytes = 0;
1902 	unsigned long flags;
1903 
1904 	nuke(ep, -EPROTO);
1905 	spin_lock_irqsave(&ep->lock, flags);
1906 
1907 	/*
1908 	 * In the PXA320 manual, in the section about Back-to-Back setup
1909 	 * packets, it describes this situation.  The solution is to set OPC to
1910 	 * get rid of the status packet, and then continue with the setup
1911 	 * packet. Generalize to pxa27x CPUs.
1912 	 */
1913 	if (epout_has_pkt(ep) && (ep_count_bytes_remain(ep) == 0))
1914 		ep_write_UDCCSR(ep, UDCCSR0_OPC);
1915 
1916 	/* read SETUP packet */
1917 	for (i = 0; i < 2; i++) {
1918 		if (unlikely(ep_is_empty(ep)))
1919 			goto stall;
1920 		u.word[i] = udc_ep_readl(ep, UDCDR);
1921 	}
1922 
1923 	have_extrabytes = !ep_is_empty(ep);
1924 	while (!ep_is_empty(ep)) {
1925 		i = udc_ep_readl(ep, UDCDR);
1926 		ep_err(ep, "wrong to have extra bytes for setup : 0x%08x\n", i);
1927 	}
1928 
1929 	ep_dbg(ep, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1930 		u.r.bRequestType, u.r.bRequest,
1931 		le16_to_cpu(u.r.wValue), le16_to_cpu(u.r.wIndex),
1932 		le16_to_cpu(u.r.wLength));
1933 	if (unlikely(have_extrabytes))
1934 		goto stall;
1935 
1936 	if (u.r.bRequestType & USB_DIR_IN)
1937 		set_ep0state(udc, IN_DATA_STAGE);
1938 	else
1939 		set_ep0state(udc, OUT_DATA_STAGE);
1940 
1941 	/* Tell UDC to enter Data Stage */
1942 	ep_write_UDCCSR(ep, UDCCSR0_SA | UDCCSR0_OPC);
1943 
1944 	spin_unlock_irqrestore(&ep->lock, flags);
1945 	i = udc->driver->setup(&udc->gadget, &u.r);
1946 	spin_lock_irqsave(&ep->lock, flags);
1947 	if (i < 0)
1948 		goto stall;
1949 out:
1950 	spin_unlock_irqrestore(&ep->lock, flags);
1951 	return;
1952 stall:
1953 	ep_dbg(ep, "protocol STALL, udccsr0=%03x err %d\n",
1954 		udc_ep_readl(ep, UDCCSR), i);
1955 	ep_write_UDCCSR(ep, UDCCSR0_FST | UDCCSR0_FTF);
1956 	set_ep0state(udc, STALL);
1957 	goto out;
1958 }
1959 
1960 /**
1961  * handle_ep0 - Handle control endpoint data transfers
1962  * @udc: udc device
1963  * @fifo_irq: 1 if triggered by fifo service type irq
1964  * @opc_irq: 1 if triggered by output packet complete type irq
1965  *
1966  * Context : when in_interrupt() or with ep->lock held
1967  *
1968  * Tries to transfer all pending request data into the endpoint and/or
1969  * transfer all pending data in the endpoint into usb requests.
1970  * Handles states of ep0 automata.
1971  *
1972  * PXA27x hardware handles several standard usb control requests without
1973  * driver notification.  The requests fully handled by hardware are :
1974  *  SET_ADDRESS, SET_FEATURE, CLEAR_FEATURE, GET_CONFIGURATION, GET_INTERFACE,
1975  *  GET_STATUS
1976  * The requests handled by hardware, but with irq notification are :
1977  *  SYNCH_FRAME, SET_CONFIGURATION, SET_INTERFACE
1978  * The remaining standard requests really handled by handle_ep0 are :
1979  *  GET_DESCRIPTOR, SET_DESCRIPTOR, specific requests.
1980  * Requests standardized outside of USB 2.0 chapter 9 are handled more
1981  * uniformly, by gadget drivers.
1982  *
1983  * The control endpoint state machine is _not_ USB spec compliant, it's even
1984  * hardly compliant with Intel PXA270 developers guide.
1985  * The key points which inferred this state machine are :
1986  *   - on every setup token, bit UDCCSR0_SA is raised and held until cleared by
1987  *     software.
1988  *   - on every OUT packet received, UDCCSR0_OPC is raised and held until
1989  *     cleared by software.
1990  *   - clearing UDCCSR0_OPC always flushes ep0. If in setup stage, never do it
1991  *     before reading ep0.
1992  *     This is true only for PXA27x. This is not true anymore for PXA3xx family
1993  *     (check Back-to-Back setup packet in developers guide).
1994  *   - irq can be called on a "packet complete" event (opc_irq=1), while
1995  *     UDCCSR0_OPC is not yet raised (delta can be as big as 100ms
1996  *     from experimentation).
1997  *   - as UDCCSR0_SA can be activated while in irq handling, and clearing
1998  *     UDCCSR0_OPC would flush the setup data, we almost never clear UDCCSR0_OPC
1999  *     => we never actually read the "status stage" packet of an IN data stage
2000  *     => this is not documented in Intel documentation
2001  *   - hardware as no idea of STATUS STAGE, it only handle SETUP STAGE and DATA
2002  *     STAGE. The driver add STATUS STAGE to send last zero length packet in
2003  *     OUT_STATUS_STAGE.
2004  *   - special attention was needed for IN_STATUS_STAGE. If a packet complete
2005  *     event is detected, we terminate the status stage without ackowledging the
2006  *     packet (not to risk to loose a potential SETUP packet)
2007  */
2008 static void handle_ep0(struct pxa_udc *udc, int fifo_irq, int opc_irq)
2009 {
2010 	u32			udccsr0;
2011 	struct pxa_ep		*ep = &udc->pxa_ep[0];
2012 	struct pxa27x_request	*req = NULL;
2013 	int			completed = 0;
2014 
2015 	if (!list_empty(&ep->queue))
2016 		req = list_entry(ep->queue.next, struct pxa27x_request, queue);
2017 
2018 	udccsr0 = udc_ep_readl(ep, UDCCSR);
2019 	ep_dbg(ep, "state=%s, req=%p, udccsr0=0x%03x, udcbcr=%d, irq_msk=%x\n",
2020 		EP0_STNAME(udc), req, udccsr0, udc_ep_readl(ep, UDCBCR),
2021 		(fifo_irq << 1 | opc_irq));
2022 
2023 	if (udccsr0 & UDCCSR0_SST) {
2024 		ep_dbg(ep, "clearing stall status\n");
2025 		nuke(ep, -EPIPE);
2026 		ep_write_UDCCSR(ep, UDCCSR0_SST);
2027 		ep0_idle(udc);
2028 	}
2029 
2030 	if (udccsr0 & UDCCSR0_SA) {
2031 		nuke(ep, 0);
2032 		set_ep0state(udc, SETUP_STAGE);
2033 	}
2034 
2035 	switch (udc->ep0state) {
2036 	case WAIT_FOR_SETUP:
2037 		/*
2038 		 * Hardware bug : beware, we cannot clear OPC, since we would
2039 		 * miss a potential OPC irq for a setup packet.
2040 		 * So, we only do ... nothing, and hope for a next irq with
2041 		 * UDCCSR0_SA set.
2042 		 */
2043 		break;
2044 	case SETUP_STAGE:
2045 		udccsr0 &= UDCCSR0_CTRL_REQ_MASK;
2046 		if (likely(udccsr0 == UDCCSR0_CTRL_REQ_MASK))
2047 			handle_ep0_ctrl_req(udc, req);
2048 		break;
2049 	case IN_DATA_STAGE:			/* GET_DESCRIPTOR */
2050 		if (epout_has_pkt(ep))
2051 			ep_write_UDCCSR(ep, UDCCSR0_OPC);
2052 		if (req && !ep_is_full(ep))
2053 			completed = write_ep0_fifo(ep, req);
2054 		if (completed)
2055 			ep0_end_in_req(ep, req, NULL);
2056 		break;
2057 	case OUT_DATA_STAGE:			/* SET_DESCRIPTOR */
2058 		if (epout_has_pkt(ep) && req)
2059 			completed = read_ep0_fifo(ep, req);
2060 		if (completed)
2061 			ep0_end_out_req(ep, req, NULL);
2062 		break;
2063 	case STALL:
2064 		ep_write_UDCCSR(ep, UDCCSR0_FST);
2065 		break;
2066 	case IN_STATUS_STAGE:
2067 		/*
2068 		 * Hardware bug : beware, we cannot clear OPC, since we would
2069 		 * miss a potential PC irq for a setup packet.
2070 		 * So, we only put the ep0 into WAIT_FOR_SETUP state.
2071 		 */
2072 		if (opc_irq)
2073 			ep0_idle(udc);
2074 		break;
2075 	case OUT_STATUS_STAGE:
2076 	case WAIT_ACK_SET_CONF_INTERF:
2077 		ep_warn(ep, "should never get in %s state here!!!\n",
2078 				EP0_STNAME(ep->dev));
2079 		ep0_idle(udc);
2080 		break;
2081 	}
2082 }
2083 
2084 /**
2085  * handle_ep - Handle endpoint data tranfers
2086  * @ep: pxa physical endpoint
2087  *
2088  * Tries to transfer all pending request data into the endpoint and/or
2089  * transfer all pending data in the endpoint into usb requests.
2090  *
2091  * Is always called when in_interrupt() and with ep->lock released.
2092  */
2093 static void handle_ep(struct pxa_ep *ep)
2094 {
2095 	struct pxa27x_request	*req;
2096 	int completed;
2097 	u32 udccsr;
2098 	int is_in = ep->dir_in;
2099 	int loop = 0;
2100 	unsigned long		flags;
2101 
2102 	spin_lock_irqsave(&ep->lock, flags);
2103 	if (ep->in_handle_ep)
2104 		goto recursion_detected;
2105 	ep->in_handle_ep = 1;
2106 
2107 	do {
2108 		completed = 0;
2109 		udccsr = udc_ep_readl(ep, UDCCSR);
2110 
2111 		if (likely(!list_empty(&ep->queue)))
2112 			req = list_entry(ep->queue.next,
2113 					struct pxa27x_request, queue);
2114 		else
2115 			req = NULL;
2116 
2117 		ep_dbg(ep, "req:%p, udccsr 0x%03x loop=%d\n",
2118 				req, udccsr, loop++);
2119 
2120 		if (unlikely(udccsr & (UDCCSR_SST | UDCCSR_TRN)))
2121 			udc_ep_writel(ep, UDCCSR,
2122 					udccsr & (UDCCSR_SST | UDCCSR_TRN));
2123 		if (!req)
2124 			break;
2125 
2126 		if (unlikely(is_in)) {
2127 			if (likely(!ep_is_full(ep)))
2128 				completed = write_fifo(ep, req);
2129 		} else {
2130 			if (likely(epout_has_pkt(ep)))
2131 				completed = read_fifo(ep, req);
2132 		}
2133 
2134 		if (completed) {
2135 			if (is_in)
2136 				ep_end_in_req(ep, req, &flags);
2137 			else
2138 				ep_end_out_req(ep, req, &flags);
2139 		}
2140 	} while (completed);
2141 
2142 	ep->in_handle_ep = 0;
2143 recursion_detected:
2144 	spin_unlock_irqrestore(&ep->lock, flags);
2145 }
2146 
2147 /**
2148  * pxa27x_change_configuration - Handle SET_CONF usb request notification
2149  * @udc: udc device
2150  * @config: usb configuration
2151  *
2152  * Post the request to upper level.
2153  * Don't use any pxa specific harware configuration capabilities
2154  */
2155 static void pxa27x_change_configuration(struct pxa_udc *udc, int config)
2156 {
2157 	struct usb_ctrlrequest req ;
2158 
2159 	dev_dbg(udc->dev, "config=%d\n", config);
2160 
2161 	udc->config = config;
2162 	udc->last_interface = 0;
2163 	udc->last_alternate = 0;
2164 
2165 	req.bRequestType = 0;
2166 	req.bRequest = USB_REQ_SET_CONFIGURATION;
2167 	req.wValue = config;
2168 	req.wIndex = 0;
2169 	req.wLength = 0;
2170 
2171 	set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF);
2172 	udc->driver->setup(&udc->gadget, &req);
2173 	ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN);
2174 }
2175 
2176 /**
2177  * pxa27x_change_interface - Handle SET_INTERF usb request notification
2178  * @udc: udc device
2179  * @iface: interface number
2180  * @alt: alternate setting number
2181  *
2182  * Post the request to upper level.
2183  * Don't use any pxa specific harware configuration capabilities
2184  */
2185 static void pxa27x_change_interface(struct pxa_udc *udc, int iface, int alt)
2186 {
2187 	struct usb_ctrlrequest  req;
2188 
2189 	dev_dbg(udc->dev, "interface=%d, alternate setting=%d\n", iface, alt);
2190 
2191 	udc->last_interface = iface;
2192 	udc->last_alternate = alt;
2193 
2194 	req.bRequestType = USB_RECIP_INTERFACE;
2195 	req.bRequest = USB_REQ_SET_INTERFACE;
2196 	req.wValue = alt;
2197 	req.wIndex = iface;
2198 	req.wLength = 0;
2199 
2200 	set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF);
2201 	udc->driver->setup(&udc->gadget, &req);
2202 	ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN);
2203 }
2204 
2205 /*
2206  * irq_handle_data - Handle data transfer
2207  * @irq: irq IRQ number
2208  * @udc: dev pxa_udc device structure
2209  *
2210  * Called from irq handler, transferts data to or from endpoint to queue
2211  */
2212 static void irq_handle_data(int irq, struct pxa_udc *udc)
2213 {
2214 	int i;
2215 	struct pxa_ep *ep;
2216 	u32 udcisr0 = udc_readl(udc, UDCISR0) & UDCCISR0_EP_MASK;
2217 	u32 udcisr1 = udc_readl(udc, UDCISR1) & UDCCISR1_EP_MASK;
2218 
2219 	if (udcisr0 & UDCISR_INT_MASK) {
2220 		udc->pxa_ep[0].stats.irqs++;
2221 		udc_writel(udc, UDCISR0, UDCISR_INT(0, UDCISR_INT_MASK));
2222 		handle_ep0(udc, !!(udcisr0 & UDCICR_FIFOERR),
2223 				!!(udcisr0 & UDCICR_PKTCOMPL));
2224 	}
2225 
2226 	udcisr0 >>= 2;
2227 	for (i = 1; udcisr0 != 0 && i < 16; udcisr0 >>= 2, i++) {
2228 		if (!(udcisr0 & UDCISR_INT_MASK))
2229 			continue;
2230 
2231 		udc_writel(udc, UDCISR0, UDCISR_INT(i, UDCISR_INT_MASK));
2232 
2233 		WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep));
2234 		if (i < ARRAY_SIZE(udc->pxa_ep)) {
2235 			ep = &udc->pxa_ep[i];
2236 			ep->stats.irqs++;
2237 			handle_ep(ep);
2238 		}
2239 	}
2240 
2241 	for (i = 16; udcisr1 != 0 && i < 24; udcisr1 >>= 2, i++) {
2242 		udc_writel(udc, UDCISR1, UDCISR_INT(i - 16, UDCISR_INT_MASK));
2243 		if (!(udcisr1 & UDCISR_INT_MASK))
2244 			continue;
2245 
2246 		WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep));
2247 		if (i < ARRAY_SIZE(udc->pxa_ep)) {
2248 			ep = &udc->pxa_ep[i];
2249 			ep->stats.irqs++;
2250 			handle_ep(ep);
2251 		}
2252 	}
2253 
2254 }
2255 
2256 /**
2257  * irq_udc_suspend - Handle IRQ "UDC Suspend"
2258  * @udc: udc device
2259  */
2260 static void irq_udc_suspend(struct pxa_udc *udc)
2261 {
2262 	udc_writel(udc, UDCISR1, UDCISR1_IRSU);
2263 	udc->stats.irqs_suspend++;
2264 
2265 	if (udc->gadget.speed != USB_SPEED_UNKNOWN
2266 			&& udc->driver && udc->driver->suspend)
2267 		udc->driver->suspend(&udc->gadget);
2268 	ep0_idle(udc);
2269 }
2270 
2271 /**
2272   * irq_udc_resume - Handle IRQ "UDC Resume"
2273   * @udc: udc device
2274   */
2275 static void irq_udc_resume(struct pxa_udc *udc)
2276 {
2277 	udc_writel(udc, UDCISR1, UDCISR1_IRRU);
2278 	udc->stats.irqs_resume++;
2279 
2280 	if (udc->gadget.speed != USB_SPEED_UNKNOWN
2281 			&& udc->driver && udc->driver->resume)
2282 		udc->driver->resume(&udc->gadget);
2283 }
2284 
2285 /**
2286  * irq_udc_reconfig - Handle IRQ "UDC Change Configuration"
2287  * @udc: udc device
2288  */
2289 static void irq_udc_reconfig(struct pxa_udc *udc)
2290 {
2291 	unsigned config, interface, alternate, config_change;
2292 	u32 udccr = udc_readl(udc, UDCCR);
2293 
2294 	udc_writel(udc, UDCISR1, UDCISR1_IRCC);
2295 	udc->stats.irqs_reconfig++;
2296 
2297 	config = (udccr & UDCCR_ACN) >> UDCCR_ACN_S;
2298 	config_change = (config != udc->config);
2299 	pxa27x_change_configuration(udc, config);
2300 
2301 	interface = (udccr & UDCCR_AIN) >> UDCCR_AIN_S;
2302 	alternate = (udccr & UDCCR_AAISN) >> UDCCR_AAISN_S;
2303 	pxa27x_change_interface(udc, interface, alternate);
2304 
2305 	if (config_change)
2306 		update_pxa_ep_matches(udc);
2307 	udc_set_mask_UDCCR(udc, UDCCR_SMAC);
2308 }
2309 
2310 /**
2311  * irq_udc_reset - Handle IRQ "UDC Reset"
2312  * @udc: udc device
2313  */
2314 static void irq_udc_reset(struct pxa_udc *udc)
2315 {
2316 	u32 udccr = udc_readl(udc, UDCCR);
2317 	struct pxa_ep *ep = &udc->pxa_ep[0];
2318 
2319 	dev_info(udc->dev, "USB reset\n");
2320 	udc_writel(udc, UDCISR1, UDCISR1_IRRS);
2321 	udc->stats.irqs_reset++;
2322 
2323 	if ((udccr & UDCCR_UDA) == 0) {
2324 		dev_dbg(udc->dev, "USB reset start\n");
2325 		stop_activity(udc);
2326 	}
2327 	udc->gadget.speed = USB_SPEED_FULL;
2328 	memset(&udc->stats, 0, sizeof udc->stats);
2329 
2330 	nuke(ep, -EPROTO);
2331 	ep_write_UDCCSR(ep, UDCCSR0_FTF | UDCCSR0_OPC);
2332 	ep0_idle(udc);
2333 }
2334 
2335 /**
2336  * pxa_udc_irq - Main irq handler
2337  * @irq: irq number
2338  * @_dev: udc device
2339  *
2340  * Handles all udc interrupts
2341  */
2342 static irqreturn_t pxa_udc_irq(int irq, void *_dev)
2343 {
2344 	struct pxa_udc *udc = _dev;
2345 	u32 udcisr0 = udc_readl(udc, UDCISR0);
2346 	u32 udcisr1 = udc_readl(udc, UDCISR1);
2347 	u32 udccr = udc_readl(udc, UDCCR);
2348 	u32 udcisr1_spec;
2349 
2350 	dev_vdbg(udc->dev, "Interrupt, UDCISR0:0x%08x, UDCISR1:0x%08x, "
2351 		 "UDCCR:0x%08x\n", udcisr0, udcisr1, udccr);
2352 
2353 	udcisr1_spec = udcisr1 & 0xf8000000;
2354 	if (unlikely(udcisr1_spec & UDCISR1_IRSU))
2355 		irq_udc_suspend(udc);
2356 	if (unlikely(udcisr1_spec & UDCISR1_IRRU))
2357 		irq_udc_resume(udc);
2358 	if (unlikely(udcisr1_spec & UDCISR1_IRCC))
2359 		irq_udc_reconfig(udc);
2360 	if (unlikely(udcisr1_spec & UDCISR1_IRRS))
2361 		irq_udc_reset(udc);
2362 
2363 	if ((udcisr0 & UDCCISR0_EP_MASK) | (udcisr1 & UDCCISR1_EP_MASK))
2364 		irq_handle_data(irq, udc);
2365 
2366 	return IRQ_HANDLED;
2367 }
2368 
2369 static struct pxa_udc memory = {
2370 	.gadget = {
2371 		.ops		= &pxa_udc_ops,
2372 		.ep0		= &memory.udc_usb_ep[0].usb_ep,
2373 		.name		= driver_name,
2374 		.dev = {
2375 			.init_name	= "gadget",
2376 		},
2377 	},
2378 
2379 	.udc_usb_ep = {
2380 		USB_EP_CTRL,
2381 		USB_EP_OUT_BULK(1),
2382 		USB_EP_IN_BULK(2),
2383 		USB_EP_IN_ISO(3),
2384 		USB_EP_OUT_ISO(4),
2385 		USB_EP_IN_INT(5),
2386 	},
2387 
2388 	.pxa_ep = {
2389 		PXA_EP_CTRL,
2390 		/* Endpoints for gadget zero */
2391 		PXA_EP_OUT_BULK(1, 1, 3, 0, 0),
2392 		PXA_EP_IN_BULK(2,  2, 3, 0, 0),
2393 		/* Endpoints for ether gadget, file storage gadget */
2394 		PXA_EP_OUT_BULK(3, 1, 1, 0, 0),
2395 		PXA_EP_IN_BULK(4,  2, 1, 0, 0),
2396 		PXA_EP_IN_ISO(5,   3, 1, 0, 0),
2397 		PXA_EP_OUT_ISO(6,  4, 1, 0, 0),
2398 		PXA_EP_IN_INT(7,   5, 1, 0, 0),
2399 		/* Endpoints for RNDIS, serial */
2400 		PXA_EP_OUT_BULK(8, 1, 2, 0, 0),
2401 		PXA_EP_IN_BULK(9,  2, 2, 0, 0),
2402 		PXA_EP_IN_INT(10,  5, 2, 0, 0),
2403 		/*
2404 		 * All the following endpoints are only for completion.  They
2405 		 * won't never work, as multiple interfaces are really broken on
2406 		 * the pxa.
2407 		*/
2408 		PXA_EP_OUT_BULK(11, 1, 2, 1, 0),
2409 		PXA_EP_IN_BULK(12,  2, 2, 1, 0),
2410 		/* Endpoint for CDC Ether */
2411 		PXA_EP_OUT_BULK(13, 1, 1, 1, 1),
2412 		PXA_EP_IN_BULK(14,  2, 1, 1, 1),
2413 	}
2414 };
2415 
2416 #if defined(CONFIG_OF)
2417 static const struct of_device_id udc_pxa_dt_ids[] = {
2418 	{ .compatible = "marvell,pxa270-udc" },
2419 	{}
2420 };
2421 MODULE_DEVICE_TABLE(of, udc_pxa_dt_ids);
2422 #endif
2423 
2424 /**
2425  * pxa_udc_probe - probes the udc device
2426  * @_dev: platform device
2427  *
2428  * Perform basic init : allocates udc clock, creates sysfs files, requests
2429  * irq.
2430  */
2431 static int pxa_udc_probe(struct platform_device *pdev)
2432 {
2433 	struct resource *regs;
2434 	struct pxa_udc *udc = &memory;
2435 	int retval = 0, gpio;
2436 	struct pxa2xx_udc_mach_info *mach = dev_get_platdata(&pdev->dev);
2437 	unsigned long gpio_flags;
2438 
2439 	if (mach) {
2440 		gpio_flags = mach->gpio_pullup_inverted ? GPIOF_ACTIVE_LOW : 0;
2441 		gpio = mach->gpio_pullup;
2442 		if (gpio_is_valid(gpio)) {
2443 			retval = devm_gpio_request_one(&pdev->dev, gpio,
2444 						       gpio_flags,
2445 						       "USB D+ pullup");
2446 			if (retval)
2447 				return retval;
2448 			udc->gpiod = gpio_to_desc(mach->gpio_pullup);
2449 		}
2450 		udc->udc_command = mach->udc_command;
2451 	} else {
2452 		udc->gpiod = devm_gpiod_get(&pdev->dev, NULL, GPIOD_ASIS);
2453 	}
2454 
2455 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2456 	udc->regs = devm_ioremap_resource(&pdev->dev, regs);
2457 	if (IS_ERR(udc->regs))
2458 		return PTR_ERR(udc->regs);
2459 	udc->irq = platform_get_irq(pdev, 0);
2460 	if (udc->irq < 0)
2461 		return udc->irq;
2462 
2463 	udc->dev = &pdev->dev;
2464 	if (of_have_populated_dt()) {
2465 		udc->transceiver =
2466 			devm_usb_get_phy_by_phandle(udc->dev, "phys", 0);
2467 		if (IS_ERR(udc->transceiver))
2468 			return PTR_ERR(udc->transceiver);
2469 	} else {
2470 		udc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2);
2471 	}
2472 
2473 	if (IS_ERR(udc->gpiod)) {
2474 		dev_err(&pdev->dev, "Couldn't find or request D+ gpio : %ld\n",
2475 			PTR_ERR(udc->gpiod));
2476 		return PTR_ERR(udc->gpiod);
2477 	}
2478 	if (udc->gpiod)
2479 		gpiod_direction_output(udc->gpiod, 0);
2480 
2481 	udc->clk = devm_clk_get(&pdev->dev, NULL);
2482 	if (IS_ERR(udc->clk))
2483 		return PTR_ERR(udc->clk);
2484 
2485 	retval = clk_prepare(udc->clk);
2486 	if (retval)
2487 		return retval;
2488 
2489 	udc->vbus_sensed = 0;
2490 
2491 	the_controller = udc;
2492 	platform_set_drvdata(pdev, udc);
2493 	udc_init_data(udc);
2494 
2495 	/* irq setup after old hardware state is cleaned up */
2496 	retval = devm_request_irq(&pdev->dev, udc->irq, pxa_udc_irq,
2497 				  IRQF_SHARED, driver_name, udc);
2498 	if (retval != 0) {
2499 		dev_err(udc->dev, "%s: can't get irq %i, err %d\n",
2500 			driver_name, udc->irq, retval);
2501 		goto err;
2502 	}
2503 
2504 	if (!IS_ERR_OR_NULL(udc->transceiver))
2505 		usb_register_notifier(udc->transceiver, &pxa27x_udc_phy);
2506 	retval = usb_add_gadget_udc(&pdev->dev, &udc->gadget);
2507 	if (retval)
2508 		goto err_add_gadget;
2509 
2510 	pxa_init_debugfs(udc);
2511 	if (should_enable_udc(udc))
2512 		udc_enable(udc);
2513 	return 0;
2514 
2515 err_add_gadget:
2516 	if (!IS_ERR_OR_NULL(udc->transceiver))
2517 		usb_unregister_notifier(udc->transceiver, &pxa27x_udc_phy);
2518 err:
2519 	clk_unprepare(udc->clk);
2520 	return retval;
2521 }
2522 
2523 /**
2524  * pxa_udc_remove - removes the udc device driver
2525  * @_dev: platform device
2526  */
2527 static int pxa_udc_remove(struct platform_device *_dev)
2528 {
2529 	struct pxa_udc *udc = platform_get_drvdata(_dev);
2530 
2531 	usb_del_gadget_udc(&udc->gadget);
2532 	pxa_cleanup_debugfs(udc);
2533 
2534 	if (!IS_ERR_OR_NULL(udc->transceiver)) {
2535 		usb_unregister_notifier(udc->transceiver, &pxa27x_udc_phy);
2536 		usb_put_phy(udc->transceiver);
2537 	}
2538 
2539 	udc->transceiver = NULL;
2540 	the_controller = NULL;
2541 	clk_unprepare(udc->clk);
2542 
2543 	return 0;
2544 }
2545 
2546 static void pxa_udc_shutdown(struct platform_device *_dev)
2547 {
2548 	struct pxa_udc *udc = platform_get_drvdata(_dev);
2549 
2550 	if (udc_readl(udc, UDCCR) & UDCCR_UDE)
2551 		udc_disable(udc);
2552 }
2553 
2554 #ifdef CONFIG_PXA27x
2555 extern void pxa27x_clear_otgph(void);
2556 #else
2557 #define pxa27x_clear_otgph()   do {} while (0)
2558 #endif
2559 
2560 #ifdef CONFIG_PM
2561 /**
2562  * pxa_udc_suspend - Suspend udc device
2563  * @_dev: platform device
2564  * @state: suspend state
2565  *
2566  * Suspends udc : saves configuration registers (UDCCR*), then disables the udc
2567  * device.
2568  */
2569 static int pxa_udc_suspend(struct platform_device *_dev, pm_message_t state)
2570 {
2571 	struct pxa_udc *udc = platform_get_drvdata(_dev);
2572 	struct pxa_ep *ep;
2573 
2574 	ep = &udc->pxa_ep[0];
2575 	udc->udccsr0 = udc_ep_readl(ep, UDCCSR);
2576 
2577 	udc_disable(udc);
2578 	udc->pullup_resume = udc->pullup_on;
2579 	dplus_pullup(udc, 0);
2580 
2581 	if (udc->driver)
2582 		udc->driver->disconnect(&udc->gadget);
2583 
2584 	return 0;
2585 }
2586 
2587 /**
2588  * pxa_udc_resume - Resume udc device
2589  * @_dev: platform device
2590  *
2591  * Resumes udc : restores configuration registers (UDCCR*), then enables the udc
2592  * device.
2593  */
2594 static int pxa_udc_resume(struct platform_device *_dev)
2595 {
2596 	struct pxa_udc *udc = platform_get_drvdata(_dev);
2597 	struct pxa_ep *ep;
2598 
2599 	ep = &udc->pxa_ep[0];
2600 	udc_ep_writel(ep, UDCCSR, udc->udccsr0 & (UDCCSR0_FST | UDCCSR0_DME));
2601 
2602 	dplus_pullup(udc, udc->pullup_resume);
2603 	if (should_enable_udc(udc))
2604 		udc_enable(udc);
2605 	/*
2606 	 * We do not handle OTG yet.
2607 	 *
2608 	 * OTGPH bit is set when sleep mode is entered.
2609 	 * it indicates that OTG pad is retaining its state.
2610 	 * Upon exit from sleep mode and before clearing OTGPH,
2611 	 * Software must configure the USB OTG pad, UDC, and UHC
2612 	 * to the state they were in before entering sleep mode.
2613 	 */
2614 	pxa27x_clear_otgph();
2615 
2616 	return 0;
2617 }
2618 #endif
2619 
2620 /* work with hotplug and coldplug */
2621 MODULE_ALIAS("platform:pxa27x-udc");
2622 
2623 static struct platform_driver udc_driver = {
2624 	.driver		= {
2625 		.name	= "pxa27x-udc",
2626 		.of_match_table = of_match_ptr(udc_pxa_dt_ids),
2627 	},
2628 	.probe		= pxa_udc_probe,
2629 	.remove		= pxa_udc_remove,
2630 	.shutdown	= pxa_udc_shutdown,
2631 #ifdef CONFIG_PM
2632 	.suspend	= pxa_udc_suspend,
2633 	.resume		= pxa_udc_resume
2634 #endif
2635 };
2636 
2637 module_platform_driver(udc_driver);
2638 
2639 MODULE_DESCRIPTION(DRIVER_DESC);
2640 MODULE_AUTHOR("Robert Jarzmik");
2641 MODULE_LICENSE("GPL");
2642