1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Intel PXA25x and IXP4xx on-chip full speed USB device controllers 4 * 5 * Copyright (C) 2002 Intrinsyc, Inc. (Frank Becker) 6 * Copyright (C) 2003 Robert Schwebel, Pengutronix 7 * Copyright (C) 2003 Benedikt Spranger, Pengutronix 8 * Copyright (C) 2003 David Brownell 9 * Copyright (C) 2003 Joshua Wise 10 */ 11 12 /* #define VERBOSE_DEBUG */ 13 14 #include <linux/device.h> 15 #include <linux/gpio.h> 16 #include <linux/module.h> 17 #include <linux/kernel.h> 18 #include <linux/ioport.h> 19 #include <linux/types.h> 20 #include <linux/errno.h> 21 #include <linux/err.h> 22 #include <linux/delay.h> 23 #include <linux/slab.h> 24 #include <linux/timer.h> 25 #include <linux/list.h> 26 #include <linux/interrupt.h> 27 #include <linux/mm.h> 28 #include <linux/platform_data/pxa2xx_udc.h> 29 #include <linux/platform_device.h> 30 #include <linux/dma-mapping.h> 31 #include <linux/irq.h> 32 #include <linux/clk.h> 33 #include <linux/seq_file.h> 34 #include <linux/debugfs.h> 35 #include <linux/io.h> 36 #include <linux/prefetch.h> 37 38 #include <asm/byteorder.h> 39 #include <asm/dma.h> 40 #include <asm/mach-types.h> 41 #include <asm/unaligned.h> 42 43 #include <linux/usb/ch9.h> 44 #include <linux/usb/gadget.h> 45 #include <linux/usb/otg.h> 46 47 #define UDCCR 0x0000 /* UDC Control Register */ 48 #define UDC_RES1 0x0004 /* UDC Undocumented - Reserved1 */ 49 #define UDC_RES2 0x0008 /* UDC Undocumented - Reserved2 */ 50 #define UDC_RES3 0x000C /* UDC Undocumented - Reserved3 */ 51 #define UDCCS0 0x0010 /* UDC Endpoint 0 Control/Status Register */ 52 #define UDCCS1 0x0014 /* UDC Endpoint 1 (IN) Control/Status Register */ 53 #define UDCCS2 0x0018 /* UDC Endpoint 2 (OUT) Control/Status Register */ 54 #define UDCCS3 0x001C /* UDC Endpoint 3 (IN) Control/Status Register */ 55 #define UDCCS4 0x0020 /* UDC Endpoint 4 (OUT) Control/Status Register */ 56 #define UDCCS5 0x0024 /* UDC Endpoint 5 (Interrupt) Control/Status Register */ 57 #define UDCCS6 0x0028 /* UDC Endpoint 6 (IN) Control/Status Register */ 58 #define UDCCS7 0x002C /* UDC Endpoint 7 (OUT) Control/Status Register */ 59 #define UDCCS8 0x0030 /* UDC Endpoint 8 (IN) Control/Status Register */ 60 #define UDCCS9 0x0034 /* UDC Endpoint 9 (OUT) Control/Status Register */ 61 #define UDCCS10 0x0038 /* UDC Endpoint 10 (Interrupt) Control/Status Register */ 62 #define UDCCS11 0x003C /* UDC Endpoint 11 (IN) Control/Status Register */ 63 #define UDCCS12 0x0040 /* UDC Endpoint 12 (OUT) Control/Status Register */ 64 #define UDCCS13 0x0044 /* UDC Endpoint 13 (IN) Control/Status Register */ 65 #define UDCCS14 0x0048 /* UDC Endpoint 14 (OUT) Control/Status Register */ 66 #define UDCCS15 0x004C /* UDC Endpoint 15 (Interrupt) Control/Status Register */ 67 #define UFNRH 0x0060 /* UDC Frame Number Register High */ 68 #define UFNRL 0x0064 /* UDC Frame Number Register Low */ 69 #define UBCR2 0x0068 /* UDC Byte Count Reg 2 */ 70 #define UBCR4 0x006c /* UDC Byte Count Reg 4 */ 71 #define UBCR7 0x0070 /* UDC Byte Count Reg 7 */ 72 #define UBCR9 0x0074 /* UDC Byte Count Reg 9 */ 73 #define UBCR12 0x0078 /* UDC Byte Count Reg 12 */ 74 #define UBCR14 0x007c /* UDC Byte Count Reg 14 */ 75 #define UDDR0 0x0080 /* UDC Endpoint 0 Data Register */ 76 #define UDDR1 0x0100 /* UDC Endpoint 1 Data Register */ 77 #define UDDR2 0x0180 /* UDC Endpoint 2 Data Register */ 78 #define UDDR3 0x0200 /* UDC Endpoint 3 Data Register */ 79 #define UDDR4 0x0400 /* UDC Endpoint 4 Data Register */ 80 #define UDDR5 0x00A0 /* UDC Endpoint 5 Data Register */ 81 #define UDDR6 0x0600 /* UDC Endpoint 6 Data Register */ 82 #define UDDR7 0x0680 /* UDC Endpoint 7 Data Register */ 83 #define UDDR8 0x0700 /* UDC Endpoint 8 Data Register */ 84 #define UDDR9 0x0900 /* UDC Endpoint 9 Data Register */ 85 #define UDDR10 0x00C0 /* UDC Endpoint 10 Data Register */ 86 #define UDDR11 0x0B00 /* UDC Endpoint 11 Data Register */ 87 #define UDDR12 0x0B80 /* UDC Endpoint 12 Data Register */ 88 #define UDDR13 0x0C00 /* UDC Endpoint 13 Data Register */ 89 #define UDDR14 0x0E00 /* UDC Endpoint 14 Data Register */ 90 #define UDDR15 0x00E0 /* UDC Endpoint 15 Data Register */ 91 92 #define UICR0 0x0050 /* UDC Interrupt Control Register 0 */ 93 #define UICR1 0x0054 /* UDC Interrupt Control Register 1 */ 94 95 #define USIR0 0x0058 /* UDC Status Interrupt Register 0 */ 96 #define USIR1 0x005C /* UDC Status Interrupt Register 1 */ 97 98 #define UDCCR_UDE (1 << 0) /* UDC enable */ 99 #define UDCCR_UDA (1 << 1) /* UDC active */ 100 #define UDCCR_RSM (1 << 2) /* Device resume */ 101 #define UDCCR_RESIR (1 << 3) /* Resume interrupt request */ 102 #define UDCCR_SUSIR (1 << 4) /* Suspend interrupt request */ 103 #define UDCCR_SRM (1 << 5) /* Suspend/resume interrupt mask */ 104 #define UDCCR_RSTIR (1 << 6) /* Reset interrupt request */ 105 #define UDCCR_REM (1 << 7) /* Reset interrupt mask */ 106 107 #define UDCCS0_OPR (1 << 0) /* OUT packet ready */ 108 #define UDCCS0_IPR (1 << 1) /* IN packet ready */ 109 #define UDCCS0_FTF (1 << 2) /* Flush Tx FIFO */ 110 #define UDCCS0_DRWF (1 << 3) /* Device remote wakeup feature */ 111 #define UDCCS0_SST (1 << 4) /* Sent stall */ 112 #define UDCCS0_FST (1 << 5) /* Force stall */ 113 #define UDCCS0_RNE (1 << 6) /* Receive FIFO no empty */ 114 #define UDCCS0_SA (1 << 7) /* Setup active */ 115 116 #define UDCCS_BI_TFS (1 << 0) /* Transmit FIFO service */ 117 #define UDCCS_BI_TPC (1 << 1) /* Transmit packet complete */ 118 #define UDCCS_BI_FTF (1 << 2) /* Flush Tx FIFO */ 119 #define UDCCS_BI_TUR (1 << 3) /* Transmit FIFO underrun */ 120 #define UDCCS_BI_SST (1 << 4) /* Sent stall */ 121 #define UDCCS_BI_FST (1 << 5) /* Force stall */ 122 #define UDCCS_BI_TSP (1 << 7) /* Transmit short packet */ 123 124 #define UDCCS_BO_RFS (1 << 0) /* Receive FIFO service */ 125 #define UDCCS_BO_RPC (1 << 1) /* Receive packet complete */ 126 #define UDCCS_BO_DME (1 << 3) /* DMA enable */ 127 #define UDCCS_BO_SST (1 << 4) /* Sent stall */ 128 #define UDCCS_BO_FST (1 << 5) /* Force stall */ 129 #define UDCCS_BO_RNE (1 << 6) /* Receive FIFO not empty */ 130 #define UDCCS_BO_RSP (1 << 7) /* Receive short packet */ 131 132 #define UDCCS_II_TFS (1 << 0) /* Transmit FIFO service */ 133 #define UDCCS_II_TPC (1 << 1) /* Transmit packet complete */ 134 #define UDCCS_II_FTF (1 << 2) /* Flush Tx FIFO */ 135 #define UDCCS_II_TUR (1 << 3) /* Transmit FIFO underrun */ 136 #define UDCCS_II_TSP (1 << 7) /* Transmit short packet */ 137 138 #define UDCCS_IO_RFS (1 << 0) /* Receive FIFO service */ 139 #define UDCCS_IO_RPC (1 << 1) /* Receive packet complete */ 140 #ifdef CONFIG_ARCH_IXP4XX /* FIXME: is this right?, datasheed says '2' */ 141 #define UDCCS_IO_ROF (1 << 3) /* Receive overflow */ 142 #endif 143 #ifdef CONFIG_ARCH_PXA 144 #define UDCCS_IO_ROF (1 << 2) /* Receive overflow */ 145 #endif 146 #define UDCCS_IO_DME (1 << 3) /* DMA enable */ 147 #define UDCCS_IO_RNE (1 << 6) /* Receive FIFO not empty */ 148 #define UDCCS_IO_RSP (1 << 7) /* Receive short packet */ 149 150 #define UDCCS_INT_TFS (1 << 0) /* Transmit FIFO service */ 151 #define UDCCS_INT_TPC (1 << 1) /* Transmit packet complete */ 152 #define UDCCS_INT_FTF (1 << 2) /* Flush Tx FIFO */ 153 #define UDCCS_INT_TUR (1 << 3) /* Transmit FIFO underrun */ 154 #define UDCCS_INT_SST (1 << 4) /* Sent stall */ 155 #define UDCCS_INT_FST (1 << 5) /* Force stall */ 156 #define UDCCS_INT_TSP (1 << 7) /* Transmit short packet */ 157 158 #define UICR0_IM0 (1 << 0) /* Interrupt mask ep 0 */ 159 #define UICR0_IM1 (1 << 1) /* Interrupt mask ep 1 */ 160 #define UICR0_IM2 (1 << 2) /* Interrupt mask ep 2 */ 161 #define UICR0_IM3 (1 << 3) /* Interrupt mask ep 3 */ 162 #define UICR0_IM4 (1 << 4) /* Interrupt mask ep 4 */ 163 #define UICR0_IM5 (1 << 5) /* Interrupt mask ep 5 */ 164 #define UICR0_IM6 (1 << 6) /* Interrupt mask ep 6 */ 165 #define UICR0_IM7 (1 << 7) /* Interrupt mask ep 7 */ 166 167 #define UICR1_IM8 (1 << 0) /* Interrupt mask ep 8 */ 168 #define UICR1_IM9 (1 << 1) /* Interrupt mask ep 9 */ 169 #define UICR1_IM10 (1 << 2) /* Interrupt mask ep 10 */ 170 #define UICR1_IM11 (1 << 3) /* Interrupt mask ep 11 */ 171 #define UICR1_IM12 (1 << 4) /* Interrupt mask ep 12 */ 172 #define UICR1_IM13 (1 << 5) /* Interrupt mask ep 13 */ 173 #define UICR1_IM14 (1 << 6) /* Interrupt mask ep 14 */ 174 #define UICR1_IM15 (1 << 7) /* Interrupt mask ep 15 */ 175 176 #define USIR0_IR0 (1 << 0) /* Interrupt request ep 0 */ 177 #define USIR0_IR1 (1 << 1) /* Interrupt request ep 1 */ 178 #define USIR0_IR2 (1 << 2) /* Interrupt request ep 2 */ 179 #define USIR0_IR3 (1 << 3) /* Interrupt request ep 3 */ 180 #define USIR0_IR4 (1 << 4) /* Interrupt request ep 4 */ 181 #define USIR0_IR5 (1 << 5) /* Interrupt request ep 5 */ 182 #define USIR0_IR6 (1 << 6) /* Interrupt request ep 6 */ 183 #define USIR0_IR7 (1 << 7) /* Interrupt request ep 7 */ 184 185 #define USIR1_IR8 (1 << 0) /* Interrupt request ep 8 */ 186 #define USIR1_IR9 (1 << 1) /* Interrupt request ep 9 */ 187 #define USIR1_IR10 (1 << 2) /* Interrupt request ep 10 */ 188 #define USIR1_IR11 (1 << 3) /* Interrupt request ep 11 */ 189 #define USIR1_IR12 (1 << 4) /* Interrupt request ep 12 */ 190 #define USIR1_IR13 (1 << 5) /* Interrupt request ep 13 */ 191 #define USIR1_IR14 (1 << 6) /* Interrupt request ep 14 */ 192 #define USIR1_IR15 (1 << 7) /* Interrupt request ep 15 */ 193 194 /* 195 * This driver handles the USB Device Controller (UDC) in Intel's PXA 25x 196 * series processors. The UDC for the IXP 4xx series is very similar. 197 * There are fifteen endpoints, in addition to ep0. 198 * 199 * Such controller drivers work with a gadget driver. The gadget driver 200 * returns descriptors, implements configuration and data protocols used 201 * by the host to interact with this device, and allocates endpoints to 202 * the different protocol interfaces. The controller driver virtualizes 203 * usb hardware so that the gadget drivers will be more portable. 204 * 205 * This UDC hardware wants to implement a bit too much USB protocol, so 206 * it constrains the sorts of USB configuration change events that work. 207 * The errata for these chips are misleading; some "fixed" bugs from 208 * pxa250 a0/a1 b0/b1/b2 sure act like they're still there. 209 * 210 * Note that the UDC hardware supports DMA (except on IXP) but that's 211 * not used here. IN-DMA (to host) is simple enough, when the data is 212 * suitably aligned (16 bytes) ... the network stack doesn't do that, 213 * other software can. OUT-DMA is buggy in most chip versions, as well 214 * as poorly designed (data toggle not automatic). So this driver won't 215 * bother using DMA. (Mostly-working IN-DMA support was available in 216 * kernels before 2.6.23, but was never enabled or well tested.) 217 */ 218 219 #define DRIVER_VERSION "30-June-2007" 220 #define DRIVER_DESC "PXA 25x USB Device Controller driver" 221 222 223 static const char driver_name [] = "pxa25x_udc"; 224 225 static const char ep0name [] = "ep0"; 226 227 228 #ifdef CONFIG_ARCH_IXP4XX 229 230 /* cpu-specific register addresses are compiled in to this code */ 231 #ifdef CONFIG_ARCH_PXA 232 #error "Can't configure both IXP and PXA" 233 #endif 234 235 /* IXP doesn't yet support <linux/clk.h> */ 236 #define clk_get(dev,name) NULL 237 #define clk_enable(clk) do { } while (0) 238 #define clk_disable(clk) do { } while (0) 239 #define clk_put(clk) do { } while (0) 240 241 #endif 242 243 #include "pxa25x_udc.h" 244 245 246 #ifdef CONFIG_USB_PXA25X_SMALL 247 #define SIZE_STR " (small)" 248 #else 249 #define SIZE_STR "" 250 #endif 251 252 /* --------------------------------------------------------------------------- 253 * endpoint related parts of the api to the usb controller hardware, 254 * used by gadget driver; and the inner talker-to-hardware core. 255 * --------------------------------------------------------------------------- 256 */ 257 258 static void pxa25x_ep_fifo_flush (struct usb_ep *ep); 259 static void nuke (struct pxa25x_ep *, int status); 260 261 /* one GPIO should control a D+ pullup, so host sees this device (or not) */ 262 static void pullup_off(void) 263 { 264 struct pxa2xx_udc_mach_info *mach = the_controller->mach; 265 int off_level = mach->gpio_pullup_inverted; 266 267 if (gpio_is_valid(mach->gpio_pullup)) 268 gpio_set_value(mach->gpio_pullup, off_level); 269 else if (mach->udc_command) 270 mach->udc_command(PXA2XX_UDC_CMD_DISCONNECT); 271 } 272 273 static void pullup_on(void) 274 { 275 struct pxa2xx_udc_mach_info *mach = the_controller->mach; 276 int on_level = !mach->gpio_pullup_inverted; 277 278 if (gpio_is_valid(mach->gpio_pullup)) 279 gpio_set_value(mach->gpio_pullup, on_level); 280 else if (mach->udc_command) 281 mach->udc_command(PXA2XX_UDC_CMD_CONNECT); 282 } 283 284 #if defined(CONFIG_CPU_BIG_ENDIAN) 285 /* 286 * IXP4xx has its buses wired up in a way that relies on never doing any 287 * byte swaps, independent of whether it runs in big-endian or little-endian 288 * mode, as explained by Krzysztof Hałasa. 289 * 290 * We only support pxa25x in little-endian mode, but it is very likely 291 * that it works the same way. 292 */ 293 static inline void udc_set_reg(struct pxa25x_udc *dev, u32 reg, u32 val) 294 { 295 iowrite32be(val, dev->regs + reg); 296 } 297 298 static inline u32 udc_get_reg(struct pxa25x_udc *dev, u32 reg) 299 { 300 return ioread32be(dev->regs + reg); 301 } 302 #else 303 static inline void udc_set_reg(struct pxa25x_udc *dev, u32 reg, u32 val) 304 { 305 writel(val, dev->regs + reg); 306 } 307 308 static inline u32 udc_get_reg(struct pxa25x_udc *dev, u32 reg) 309 { 310 return readl(dev->regs + reg); 311 } 312 #endif 313 314 static void pio_irq_enable(struct pxa25x_ep *ep) 315 { 316 u32 bEndpointAddress = ep->bEndpointAddress & 0xf; 317 318 if (bEndpointAddress < 8) 319 udc_set_reg(ep->dev, UICR0, udc_get_reg(ep->dev, UICR0) & 320 ~(1 << bEndpointAddress)); 321 else { 322 bEndpointAddress -= 8; 323 udc_set_reg(ep->dev, UICR1, udc_get_reg(ep->dev, UICR1) & 324 ~(1 << bEndpointAddress)); 325 } 326 } 327 328 static void pio_irq_disable(struct pxa25x_ep *ep) 329 { 330 u32 bEndpointAddress = ep->bEndpointAddress & 0xf; 331 332 if (bEndpointAddress < 8) 333 udc_set_reg(ep->dev, UICR0, udc_get_reg(ep->dev, UICR0) | 334 (1 << bEndpointAddress)); 335 else { 336 bEndpointAddress -= 8; 337 udc_set_reg(ep->dev, UICR1, udc_get_reg(ep->dev, UICR1) | 338 (1 << bEndpointAddress)); 339 } 340 } 341 342 /* The UDCCR reg contains mask and interrupt status bits, 343 * so using '|=' isn't safe as it may ack an interrupt. 344 */ 345 #define UDCCR_MASK_BITS (UDCCR_REM | UDCCR_SRM | UDCCR_UDE) 346 347 static inline void udc_set_mask_UDCCR(struct pxa25x_udc *dev, int mask) 348 { 349 u32 udccr = udc_get_reg(dev, UDCCR); 350 351 udc_set_reg(dev, (udccr & UDCCR_MASK_BITS) | (mask & UDCCR_MASK_BITS), UDCCR); 352 } 353 354 static inline void udc_clear_mask_UDCCR(struct pxa25x_udc *dev, int mask) 355 { 356 u32 udccr = udc_get_reg(dev, UDCCR); 357 358 udc_set_reg(dev, (udccr & UDCCR_MASK_BITS) & ~(mask & UDCCR_MASK_BITS), UDCCR); 359 } 360 361 static inline void udc_ack_int_UDCCR(struct pxa25x_udc *dev, int mask) 362 { 363 /* udccr contains the bits we dont want to change */ 364 u32 udccr = udc_get_reg(dev, UDCCR) & UDCCR_MASK_BITS; 365 366 udc_set_reg(dev, udccr | (mask & ~UDCCR_MASK_BITS), UDCCR); 367 } 368 369 static inline u32 udc_ep_get_UDCCS(struct pxa25x_ep *ep) 370 { 371 return udc_get_reg(ep->dev, ep->regoff_udccs); 372 } 373 374 static inline void udc_ep_set_UDCCS(struct pxa25x_ep *ep, u32 data) 375 { 376 udc_set_reg(ep->dev, data, ep->regoff_udccs); 377 } 378 379 static inline u32 udc_ep0_get_UDCCS(struct pxa25x_udc *dev) 380 { 381 return udc_get_reg(dev, UDCCS0); 382 } 383 384 static inline void udc_ep0_set_UDCCS(struct pxa25x_udc *dev, u32 data) 385 { 386 udc_set_reg(dev, data, UDCCS0); 387 } 388 389 static inline u32 udc_ep_get_UDDR(struct pxa25x_ep *ep) 390 { 391 return udc_get_reg(ep->dev, ep->regoff_uddr); 392 } 393 394 static inline void udc_ep_set_UDDR(struct pxa25x_ep *ep, u32 data) 395 { 396 udc_set_reg(ep->dev, data, ep->regoff_uddr); 397 } 398 399 static inline u32 udc_ep_get_UBCR(struct pxa25x_ep *ep) 400 { 401 return udc_get_reg(ep->dev, ep->regoff_ubcr); 402 } 403 404 /* 405 * endpoint enable/disable 406 * 407 * we need to verify the descriptors used to enable endpoints. since pxa25x 408 * endpoint configurations are fixed, and are pretty much always enabled, 409 * there's not a lot to manage here. 410 * 411 * because pxa25x can't selectively initialize bulk (or interrupt) endpoints, 412 * (resetting endpoint halt and toggle), SET_INTERFACE is unusable except 413 * for a single interface (with only the default altsetting) and for gadget 414 * drivers that don't halt endpoints (not reset by set_interface). that also 415 * means that if you use ISO, you must violate the USB spec rule that all 416 * iso endpoints must be in non-default altsettings. 417 */ 418 static int pxa25x_ep_enable (struct usb_ep *_ep, 419 const struct usb_endpoint_descriptor *desc) 420 { 421 struct pxa25x_ep *ep; 422 struct pxa25x_udc *dev; 423 424 ep = container_of (_ep, struct pxa25x_ep, ep); 425 if (!_ep || !desc || _ep->name == ep0name 426 || desc->bDescriptorType != USB_DT_ENDPOINT 427 || ep->bEndpointAddress != desc->bEndpointAddress 428 || ep->fifo_size < usb_endpoint_maxp (desc)) { 429 DMSG("%s, bad ep or descriptor\n", __func__); 430 return -EINVAL; 431 } 432 433 /* xfer types must match, except that interrupt ~= bulk */ 434 if (ep->bmAttributes != desc->bmAttributes 435 && ep->bmAttributes != USB_ENDPOINT_XFER_BULK 436 && desc->bmAttributes != USB_ENDPOINT_XFER_INT) { 437 DMSG("%s, %s type mismatch\n", __func__, _ep->name); 438 return -EINVAL; 439 } 440 441 /* hardware _could_ do smaller, but driver doesn't */ 442 if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK 443 && usb_endpoint_maxp (desc) 444 != BULK_FIFO_SIZE) 445 || !desc->wMaxPacketSize) { 446 DMSG("%s, bad %s maxpacket\n", __func__, _ep->name); 447 return -ERANGE; 448 } 449 450 dev = ep->dev; 451 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN) { 452 DMSG("%s, bogus device state\n", __func__); 453 return -ESHUTDOWN; 454 } 455 456 ep->ep.desc = desc; 457 ep->stopped = 0; 458 ep->pio_irqs = 0; 459 ep->ep.maxpacket = usb_endpoint_maxp (desc); 460 461 /* flush fifo (mostly for OUT buffers) */ 462 pxa25x_ep_fifo_flush (_ep); 463 464 /* ... reset halt state too, if we could ... */ 465 466 DBG(DBG_VERBOSE, "enabled %s\n", _ep->name); 467 return 0; 468 } 469 470 static int pxa25x_ep_disable (struct usb_ep *_ep) 471 { 472 struct pxa25x_ep *ep; 473 unsigned long flags; 474 475 ep = container_of (_ep, struct pxa25x_ep, ep); 476 if (!_ep || !ep->ep.desc) { 477 DMSG("%s, %s not enabled\n", __func__, 478 _ep ? ep->ep.name : NULL); 479 return -EINVAL; 480 } 481 local_irq_save(flags); 482 483 nuke (ep, -ESHUTDOWN); 484 485 /* flush fifo (mostly for IN buffers) */ 486 pxa25x_ep_fifo_flush (_ep); 487 488 ep->ep.desc = NULL; 489 ep->stopped = 1; 490 491 local_irq_restore(flags); 492 DBG(DBG_VERBOSE, "%s disabled\n", _ep->name); 493 return 0; 494 } 495 496 /*-------------------------------------------------------------------------*/ 497 498 /* for the pxa25x, these can just wrap kmalloc/kfree. gadget drivers 499 * must still pass correctly initialized endpoints, since other controller 500 * drivers may care about how it's currently set up (dma issues etc). 501 */ 502 503 /* 504 * pxa25x_ep_alloc_request - allocate a request data structure 505 */ 506 static struct usb_request * 507 pxa25x_ep_alloc_request (struct usb_ep *_ep, gfp_t gfp_flags) 508 { 509 struct pxa25x_request *req; 510 511 req = kzalloc(sizeof(*req), gfp_flags); 512 if (!req) 513 return NULL; 514 515 INIT_LIST_HEAD (&req->queue); 516 return &req->req; 517 } 518 519 520 /* 521 * pxa25x_ep_free_request - deallocate a request data structure 522 */ 523 static void 524 pxa25x_ep_free_request (struct usb_ep *_ep, struct usb_request *_req) 525 { 526 struct pxa25x_request *req; 527 528 req = container_of (_req, struct pxa25x_request, req); 529 WARN_ON(!list_empty (&req->queue)); 530 kfree(req); 531 } 532 533 /*-------------------------------------------------------------------------*/ 534 535 /* 536 * done - retire a request; caller blocked irqs 537 */ 538 static void done(struct pxa25x_ep *ep, struct pxa25x_request *req, int status) 539 { 540 unsigned stopped = ep->stopped; 541 542 list_del_init(&req->queue); 543 544 if (likely (req->req.status == -EINPROGRESS)) 545 req->req.status = status; 546 else 547 status = req->req.status; 548 549 if (status && status != -ESHUTDOWN) 550 DBG(DBG_VERBOSE, "complete %s req %p stat %d len %u/%u\n", 551 ep->ep.name, &req->req, status, 552 req->req.actual, req->req.length); 553 554 /* don't modify queue heads during completion callback */ 555 ep->stopped = 1; 556 usb_gadget_giveback_request(&ep->ep, &req->req); 557 ep->stopped = stopped; 558 } 559 560 561 static inline void ep0_idle (struct pxa25x_udc *dev) 562 { 563 dev->ep0state = EP0_IDLE; 564 } 565 566 static int 567 write_packet(struct pxa25x_ep *ep, struct pxa25x_request *req, unsigned max) 568 { 569 u8 *buf; 570 unsigned length, count; 571 572 buf = req->req.buf + req->req.actual; 573 prefetch(buf); 574 575 /* how big will this packet be? */ 576 length = min(req->req.length - req->req.actual, max); 577 req->req.actual += length; 578 579 count = length; 580 while (likely(count--)) 581 udc_ep_set_UDDR(ep, *buf++); 582 583 return length; 584 } 585 586 /* 587 * write to an IN endpoint fifo, as many packets as possible. 588 * irqs will use this to write the rest later. 589 * caller guarantees at least one packet buffer is ready (or a zlp). 590 */ 591 static int 592 write_fifo (struct pxa25x_ep *ep, struct pxa25x_request *req) 593 { 594 unsigned max; 595 596 max = usb_endpoint_maxp(ep->ep.desc); 597 do { 598 unsigned count; 599 int is_last, is_short; 600 601 count = write_packet(ep, req, max); 602 603 /* last packet is usually short (or a zlp) */ 604 if (unlikely (count != max)) 605 is_last = is_short = 1; 606 else { 607 if (likely(req->req.length != req->req.actual) 608 || req->req.zero) 609 is_last = 0; 610 else 611 is_last = 1; 612 /* interrupt/iso maxpacket may not fill the fifo */ 613 is_short = unlikely (max < ep->fifo_size); 614 } 615 616 DBG(DBG_VERY_NOISY, "wrote %s %d bytes%s%s %d left %p\n", 617 ep->ep.name, count, 618 is_last ? "/L" : "", is_short ? "/S" : "", 619 req->req.length - req->req.actual, req); 620 621 /* let loose that packet. maybe try writing another one, 622 * double buffering might work. TSP, TPC, and TFS 623 * bit values are the same for all normal IN endpoints. 624 */ 625 udc_ep_set_UDCCS(ep, UDCCS_BI_TPC); 626 if (is_short) 627 udc_ep_set_UDCCS(ep, UDCCS_BI_TSP); 628 629 /* requests complete when all IN data is in the FIFO */ 630 if (is_last) { 631 done (ep, req, 0); 632 if (list_empty(&ep->queue)) 633 pio_irq_disable(ep); 634 return 1; 635 } 636 637 // TODO experiment: how robust can fifo mode tweaking be? 638 // double buffering is off in the default fifo mode, which 639 // prevents TFS from being set here. 640 641 } while (udc_ep_get_UDCCS(ep) & UDCCS_BI_TFS); 642 return 0; 643 } 644 645 /* caller asserts req->pending (ep0 irq status nyet cleared); starts 646 * ep0 data stage. these chips want very simple state transitions. 647 */ 648 static inline 649 void ep0start(struct pxa25x_udc *dev, u32 flags, const char *tag) 650 { 651 udc_ep0_set_UDCCS(dev, flags|UDCCS0_SA|UDCCS0_OPR); 652 udc_set_reg(dev, USIR0, USIR0_IR0); 653 dev->req_pending = 0; 654 DBG(DBG_VERY_NOISY, "%s %s, %02x/%02x\n", 655 __func__, tag, udc_ep0_get_UDCCS(dev), flags); 656 } 657 658 static int 659 write_ep0_fifo (struct pxa25x_ep *ep, struct pxa25x_request *req) 660 { 661 struct pxa25x_udc *dev = ep->dev; 662 unsigned count; 663 int is_short; 664 665 count = write_packet(&dev->ep[0], req, EP0_FIFO_SIZE); 666 ep->dev->stats.write.bytes += count; 667 668 /* last packet "must be" short (or a zlp) */ 669 is_short = (count != EP0_FIFO_SIZE); 670 671 DBG(DBG_VERY_NOISY, "ep0in %d bytes %d left %p\n", count, 672 req->req.length - req->req.actual, req); 673 674 if (unlikely (is_short)) { 675 if (ep->dev->req_pending) 676 ep0start(ep->dev, UDCCS0_IPR, "short IN"); 677 else 678 udc_ep0_set_UDCCS(dev, UDCCS0_IPR); 679 680 count = req->req.length; 681 done (ep, req, 0); 682 ep0_idle(ep->dev); 683 #ifndef CONFIG_ARCH_IXP4XX 684 #if 1 685 /* This seems to get rid of lost status irqs in some cases: 686 * host responds quickly, or next request involves config 687 * change automagic, or should have been hidden, or ... 688 * 689 * FIXME get rid of all udelays possible... 690 */ 691 if (count >= EP0_FIFO_SIZE) { 692 count = 100; 693 do { 694 if ((udc_ep0_get_UDCCS(dev) & UDCCS0_OPR) != 0) { 695 /* clear OPR, generate ack */ 696 udc_ep0_set_UDCCS(dev, UDCCS0_OPR); 697 break; 698 } 699 count--; 700 udelay(1); 701 } while (count); 702 } 703 #endif 704 #endif 705 } else if (ep->dev->req_pending) 706 ep0start(ep->dev, 0, "IN"); 707 return is_short; 708 } 709 710 711 /* 712 * read_fifo - unload packet(s) from the fifo we use for usb OUT 713 * transfers and put them into the request. caller should have made 714 * sure there's at least one packet ready. 715 * 716 * returns true if the request completed because of short packet or the 717 * request buffer having filled (and maybe overran till end-of-packet). 718 */ 719 static int 720 read_fifo (struct pxa25x_ep *ep, struct pxa25x_request *req) 721 { 722 for (;;) { 723 u32 udccs; 724 u8 *buf; 725 unsigned bufferspace, count, is_short; 726 727 /* make sure there's a packet in the FIFO. 728 * UDCCS_{BO,IO}_RPC are all the same bit value. 729 * UDCCS_{BO,IO}_RNE are all the same bit value. 730 */ 731 udccs = udc_ep_get_UDCCS(ep); 732 if (unlikely ((udccs & UDCCS_BO_RPC) == 0)) 733 break; 734 buf = req->req.buf + req->req.actual; 735 prefetchw(buf); 736 bufferspace = req->req.length - req->req.actual; 737 738 /* read all bytes from this packet */ 739 if (likely (udccs & UDCCS_BO_RNE)) { 740 count = 1 + (0x0ff & udc_ep_get_UBCR(ep)); 741 req->req.actual += min (count, bufferspace); 742 } else /* zlp */ 743 count = 0; 744 is_short = (count < ep->ep.maxpacket); 745 DBG(DBG_VERY_NOISY, "read %s %02x, %d bytes%s req %p %d/%d\n", 746 ep->ep.name, udccs, count, 747 is_short ? "/S" : "", 748 req, req->req.actual, req->req.length); 749 while (likely (count-- != 0)) { 750 u8 byte = (u8) udc_ep_get_UDDR(ep); 751 752 if (unlikely (bufferspace == 0)) { 753 /* this happens when the driver's buffer 754 * is smaller than what the host sent. 755 * discard the extra data. 756 */ 757 if (req->req.status != -EOVERFLOW) 758 DMSG("%s overflow %d\n", 759 ep->ep.name, count); 760 req->req.status = -EOVERFLOW; 761 } else { 762 *buf++ = byte; 763 bufferspace--; 764 } 765 } 766 udc_ep_set_UDCCS(ep, UDCCS_BO_RPC); 767 /* RPC/RSP/RNE could now reflect the other packet buffer */ 768 769 /* iso is one request per packet */ 770 if (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC) { 771 if (udccs & UDCCS_IO_ROF) 772 req->req.status = -EHOSTUNREACH; 773 /* more like "is_done" */ 774 is_short = 1; 775 } 776 777 /* completion */ 778 if (is_short || req->req.actual == req->req.length) { 779 done (ep, req, 0); 780 if (list_empty(&ep->queue)) 781 pio_irq_disable(ep); 782 return 1; 783 } 784 785 /* finished that packet. the next one may be waiting... */ 786 } 787 return 0; 788 } 789 790 /* 791 * special ep0 version of the above. no UBCR0 or double buffering; status 792 * handshaking is magic. most device protocols don't need control-OUT. 793 * CDC vendor commands (and RNDIS), mass storage CB/CBI, and some other 794 * protocols do use them. 795 */ 796 static int 797 read_ep0_fifo (struct pxa25x_ep *ep, struct pxa25x_request *req) 798 { 799 u8 *buf, byte; 800 unsigned bufferspace; 801 802 buf = req->req.buf + req->req.actual; 803 bufferspace = req->req.length - req->req.actual; 804 805 while (udc_ep_get_UDCCS(ep) & UDCCS0_RNE) { 806 byte = (u8) UDDR0; 807 808 if (unlikely (bufferspace == 0)) { 809 /* this happens when the driver's buffer 810 * is smaller than what the host sent. 811 * discard the extra data. 812 */ 813 if (req->req.status != -EOVERFLOW) 814 DMSG("%s overflow\n", ep->ep.name); 815 req->req.status = -EOVERFLOW; 816 } else { 817 *buf++ = byte; 818 req->req.actual++; 819 bufferspace--; 820 } 821 } 822 823 udc_ep_set_UDCCS(ep, UDCCS0_OPR | UDCCS0_IPR); 824 825 /* completion */ 826 if (req->req.actual >= req->req.length) 827 return 1; 828 829 /* finished that packet. the next one may be waiting... */ 830 return 0; 831 } 832 833 /*-------------------------------------------------------------------------*/ 834 835 static int 836 pxa25x_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags) 837 { 838 struct pxa25x_request *req; 839 struct pxa25x_ep *ep; 840 struct pxa25x_udc *dev; 841 unsigned long flags; 842 843 req = container_of(_req, struct pxa25x_request, req); 844 if (unlikely (!_req || !_req->complete || !_req->buf 845 || !list_empty(&req->queue))) { 846 DMSG("%s, bad params\n", __func__); 847 return -EINVAL; 848 } 849 850 ep = container_of(_ep, struct pxa25x_ep, ep); 851 if (unlikely(!_ep || (!ep->ep.desc && ep->ep.name != ep0name))) { 852 DMSG("%s, bad ep\n", __func__); 853 return -EINVAL; 854 } 855 856 dev = ep->dev; 857 if (unlikely (!dev->driver 858 || dev->gadget.speed == USB_SPEED_UNKNOWN)) { 859 DMSG("%s, bogus device state\n", __func__); 860 return -ESHUTDOWN; 861 } 862 863 /* iso is always one packet per request, that's the only way 864 * we can report per-packet status. that also helps with dma. 865 */ 866 if (unlikely (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC 867 && req->req.length > usb_endpoint_maxp(ep->ep.desc))) 868 return -EMSGSIZE; 869 870 DBG(DBG_NOISY, "%s queue req %p, len %d buf %p\n", 871 _ep->name, _req, _req->length, _req->buf); 872 873 local_irq_save(flags); 874 875 _req->status = -EINPROGRESS; 876 _req->actual = 0; 877 878 /* kickstart this i/o queue? */ 879 if (list_empty(&ep->queue) && !ep->stopped) { 880 if (ep->ep.desc == NULL/* ep0 */) { 881 unsigned length = _req->length; 882 883 switch (dev->ep0state) { 884 case EP0_IN_DATA_PHASE: 885 dev->stats.write.ops++; 886 if (write_ep0_fifo(ep, req)) 887 req = NULL; 888 break; 889 890 case EP0_OUT_DATA_PHASE: 891 dev->stats.read.ops++; 892 /* messy ... */ 893 if (dev->req_config) { 894 DBG(DBG_VERBOSE, "ep0 config ack%s\n", 895 dev->has_cfr ? "" : " raced"); 896 if (dev->has_cfr) 897 udc_set_reg(dev, UDCCFR, UDCCFR_AREN | 898 UDCCFR_ACM | UDCCFR_MB1); 899 done(ep, req, 0); 900 dev->ep0state = EP0_END_XFER; 901 local_irq_restore (flags); 902 return 0; 903 } 904 if (dev->req_pending) 905 ep0start(dev, UDCCS0_IPR, "OUT"); 906 if (length == 0 || ((udc_ep0_get_UDCCS(dev) & UDCCS0_RNE) != 0 907 && read_ep0_fifo(ep, req))) { 908 ep0_idle(dev); 909 done(ep, req, 0); 910 req = NULL; 911 } 912 break; 913 914 default: 915 DMSG("ep0 i/o, odd state %d\n", dev->ep0state); 916 local_irq_restore (flags); 917 return -EL2HLT; 918 } 919 /* can the FIFO can satisfy the request immediately? */ 920 } else if ((ep->bEndpointAddress & USB_DIR_IN) != 0) { 921 if ((udc_ep_get_UDCCS(ep) & UDCCS_BI_TFS) != 0 922 && write_fifo(ep, req)) 923 req = NULL; 924 } else if ((udc_ep_get_UDCCS(ep) & UDCCS_BO_RFS) != 0 925 && read_fifo(ep, req)) { 926 req = NULL; 927 } 928 929 if (likely(req && ep->ep.desc)) 930 pio_irq_enable(ep); 931 } 932 933 /* pio or dma irq handler advances the queue. */ 934 if (likely(req != NULL)) 935 list_add_tail(&req->queue, &ep->queue); 936 local_irq_restore(flags); 937 938 return 0; 939 } 940 941 942 /* 943 * nuke - dequeue ALL requests 944 */ 945 static void nuke(struct pxa25x_ep *ep, int status) 946 { 947 struct pxa25x_request *req; 948 949 /* called with irqs blocked */ 950 while (!list_empty(&ep->queue)) { 951 req = list_entry(ep->queue.next, 952 struct pxa25x_request, 953 queue); 954 done(ep, req, status); 955 } 956 if (ep->ep.desc) 957 pio_irq_disable(ep); 958 } 959 960 961 /* dequeue JUST ONE request */ 962 static int pxa25x_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req) 963 { 964 struct pxa25x_ep *ep; 965 struct pxa25x_request *req = NULL; 966 struct pxa25x_request *iter; 967 unsigned long flags; 968 969 ep = container_of(_ep, struct pxa25x_ep, ep); 970 if (!_ep || ep->ep.name == ep0name) 971 return -EINVAL; 972 973 local_irq_save(flags); 974 975 /* make sure it's actually queued on this endpoint */ 976 list_for_each_entry(iter, &ep->queue, queue) { 977 if (&iter->req != _req) 978 continue; 979 req = iter; 980 break; 981 } 982 if (!req) { 983 local_irq_restore(flags); 984 return -EINVAL; 985 } 986 987 done(ep, req, -ECONNRESET); 988 989 local_irq_restore(flags); 990 return 0; 991 } 992 993 /*-------------------------------------------------------------------------*/ 994 995 static int pxa25x_ep_set_halt(struct usb_ep *_ep, int value) 996 { 997 struct pxa25x_ep *ep; 998 unsigned long flags; 999 1000 ep = container_of(_ep, struct pxa25x_ep, ep); 1001 if (unlikely (!_ep 1002 || (!ep->ep.desc && ep->ep.name != ep0name)) 1003 || ep->bmAttributes == USB_ENDPOINT_XFER_ISOC) { 1004 DMSG("%s, bad ep\n", __func__); 1005 return -EINVAL; 1006 } 1007 if (value == 0) { 1008 /* this path (reset toggle+halt) is needed to implement 1009 * SET_INTERFACE on normal hardware. but it can't be 1010 * done from software on the PXA UDC, and the hardware 1011 * forgets to do it as part of SET_INTERFACE automagic. 1012 */ 1013 DMSG("only host can clear %s halt\n", _ep->name); 1014 return -EROFS; 1015 } 1016 1017 local_irq_save(flags); 1018 1019 if ((ep->bEndpointAddress & USB_DIR_IN) != 0 1020 && ((udc_ep_get_UDCCS(ep) & UDCCS_BI_TFS) == 0 1021 || !list_empty(&ep->queue))) { 1022 local_irq_restore(flags); 1023 return -EAGAIN; 1024 } 1025 1026 /* FST bit is the same for control, bulk in, bulk out, interrupt in */ 1027 udc_ep_set_UDCCS(ep, UDCCS_BI_FST|UDCCS_BI_FTF); 1028 1029 /* ep0 needs special care */ 1030 if (!ep->ep.desc) { 1031 start_watchdog(ep->dev); 1032 ep->dev->req_pending = 0; 1033 ep->dev->ep0state = EP0_STALL; 1034 1035 /* and bulk/intr endpoints like dropping stalls too */ 1036 } else { 1037 unsigned i; 1038 for (i = 0; i < 1000; i += 20) { 1039 if (udc_ep_get_UDCCS(ep) & UDCCS_BI_SST) 1040 break; 1041 udelay(20); 1042 } 1043 } 1044 local_irq_restore(flags); 1045 1046 DBG(DBG_VERBOSE, "%s halt\n", _ep->name); 1047 return 0; 1048 } 1049 1050 static int pxa25x_ep_fifo_status(struct usb_ep *_ep) 1051 { 1052 struct pxa25x_ep *ep; 1053 1054 ep = container_of(_ep, struct pxa25x_ep, ep); 1055 if (!_ep) { 1056 DMSG("%s, bad ep\n", __func__); 1057 return -ENODEV; 1058 } 1059 /* pxa can't report unclaimed bytes from IN fifos */ 1060 if ((ep->bEndpointAddress & USB_DIR_IN) != 0) 1061 return -EOPNOTSUPP; 1062 if (ep->dev->gadget.speed == USB_SPEED_UNKNOWN 1063 || (udc_ep_get_UDCCS(ep) & UDCCS_BO_RFS) == 0) 1064 return 0; 1065 else 1066 return (udc_ep_get_UBCR(ep) & 0xfff) + 1; 1067 } 1068 1069 static void pxa25x_ep_fifo_flush(struct usb_ep *_ep) 1070 { 1071 struct pxa25x_ep *ep; 1072 1073 ep = container_of(_ep, struct pxa25x_ep, ep); 1074 if (!_ep || ep->ep.name == ep0name || !list_empty(&ep->queue)) { 1075 DMSG("%s, bad ep\n", __func__); 1076 return; 1077 } 1078 1079 /* toggle and halt bits stay unchanged */ 1080 1081 /* for OUT, just read and discard the FIFO contents. */ 1082 if ((ep->bEndpointAddress & USB_DIR_IN) == 0) { 1083 while (((udc_ep_get_UDCCS(ep)) & UDCCS_BO_RNE) != 0) 1084 (void)udc_ep_get_UDDR(ep); 1085 return; 1086 } 1087 1088 /* most IN status is the same, but ISO can't stall */ 1089 udc_ep_set_UDCCS(ep, UDCCS_BI_TPC|UDCCS_BI_FTF|UDCCS_BI_TUR 1090 | (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC 1091 ? 0 : UDCCS_BI_SST)); 1092 } 1093 1094 1095 static const struct usb_ep_ops pxa25x_ep_ops = { 1096 .enable = pxa25x_ep_enable, 1097 .disable = pxa25x_ep_disable, 1098 1099 .alloc_request = pxa25x_ep_alloc_request, 1100 .free_request = pxa25x_ep_free_request, 1101 1102 .queue = pxa25x_ep_queue, 1103 .dequeue = pxa25x_ep_dequeue, 1104 1105 .set_halt = pxa25x_ep_set_halt, 1106 .fifo_status = pxa25x_ep_fifo_status, 1107 .fifo_flush = pxa25x_ep_fifo_flush, 1108 }; 1109 1110 1111 /* --------------------------------------------------------------------------- 1112 * device-scoped parts of the api to the usb controller hardware 1113 * --------------------------------------------------------------------------- 1114 */ 1115 1116 static int pxa25x_udc_get_frame(struct usb_gadget *_gadget) 1117 { 1118 struct pxa25x_udc *dev; 1119 1120 dev = container_of(_gadget, struct pxa25x_udc, gadget); 1121 return ((udc_get_reg(dev, UFNRH) & 0x07) << 8) | 1122 (udc_get_reg(dev, UFNRL) & 0xff); 1123 } 1124 1125 static int pxa25x_udc_wakeup(struct usb_gadget *_gadget) 1126 { 1127 struct pxa25x_udc *udc; 1128 1129 udc = container_of(_gadget, struct pxa25x_udc, gadget); 1130 1131 /* host may not have enabled remote wakeup */ 1132 if ((udc_ep0_get_UDCCS(udc) & UDCCS0_DRWF) == 0) 1133 return -EHOSTUNREACH; 1134 udc_set_mask_UDCCR(udc, UDCCR_RSM); 1135 return 0; 1136 } 1137 1138 static void stop_activity(struct pxa25x_udc *, struct usb_gadget_driver *); 1139 static void udc_enable (struct pxa25x_udc *); 1140 static void udc_disable(struct pxa25x_udc *); 1141 1142 /* We disable the UDC -- and its 48 MHz clock -- whenever it's not 1143 * in active use. 1144 */ 1145 static int pullup(struct pxa25x_udc *udc) 1146 { 1147 int is_active = udc->vbus && udc->pullup && !udc->suspended; 1148 DMSG("%s\n", is_active ? "active" : "inactive"); 1149 if (is_active) { 1150 if (!udc->active) { 1151 udc->active = 1; 1152 /* Enable clock for USB device */ 1153 clk_enable(udc->clk); 1154 udc_enable(udc); 1155 } 1156 } else { 1157 if (udc->active) { 1158 if (udc->gadget.speed != USB_SPEED_UNKNOWN) { 1159 DMSG("disconnect %s\n", udc->driver 1160 ? udc->driver->driver.name 1161 : "(no driver)"); 1162 stop_activity(udc, udc->driver); 1163 } 1164 udc_disable(udc); 1165 /* Disable clock for USB device */ 1166 clk_disable(udc->clk); 1167 udc->active = 0; 1168 } 1169 1170 } 1171 return 0; 1172 } 1173 1174 /* VBUS reporting logically comes from a transceiver */ 1175 static int pxa25x_udc_vbus_session(struct usb_gadget *_gadget, int is_active) 1176 { 1177 struct pxa25x_udc *udc; 1178 1179 udc = container_of(_gadget, struct pxa25x_udc, gadget); 1180 udc->vbus = is_active; 1181 DMSG("vbus %s\n", is_active ? "supplied" : "inactive"); 1182 pullup(udc); 1183 return 0; 1184 } 1185 1186 /* drivers may have software control over D+ pullup */ 1187 static int pxa25x_udc_pullup(struct usb_gadget *_gadget, int is_active) 1188 { 1189 struct pxa25x_udc *udc; 1190 1191 udc = container_of(_gadget, struct pxa25x_udc, gadget); 1192 1193 /* not all boards support pullup control */ 1194 if (!gpio_is_valid(udc->mach->gpio_pullup) && !udc->mach->udc_command) 1195 return -EOPNOTSUPP; 1196 1197 udc->pullup = (is_active != 0); 1198 pullup(udc); 1199 return 0; 1200 } 1201 1202 /* boards may consume current from VBUS, up to 100-500mA based on config. 1203 * the 500uA suspend ceiling means that exclusively vbus-powered PXA designs 1204 * violate USB specs. 1205 */ 1206 static int pxa25x_udc_vbus_draw(struct usb_gadget *_gadget, unsigned mA) 1207 { 1208 struct pxa25x_udc *udc; 1209 1210 udc = container_of(_gadget, struct pxa25x_udc, gadget); 1211 1212 if (!IS_ERR_OR_NULL(udc->transceiver)) 1213 return usb_phy_set_power(udc->transceiver, mA); 1214 return -EOPNOTSUPP; 1215 } 1216 1217 static int pxa25x_udc_start(struct usb_gadget *g, 1218 struct usb_gadget_driver *driver); 1219 static int pxa25x_udc_stop(struct usb_gadget *g); 1220 1221 static const struct usb_gadget_ops pxa25x_udc_ops = { 1222 .get_frame = pxa25x_udc_get_frame, 1223 .wakeup = pxa25x_udc_wakeup, 1224 .vbus_session = pxa25x_udc_vbus_session, 1225 .pullup = pxa25x_udc_pullup, 1226 .vbus_draw = pxa25x_udc_vbus_draw, 1227 .udc_start = pxa25x_udc_start, 1228 .udc_stop = pxa25x_udc_stop, 1229 }; 1230 1231 /*-------------------------------------------------------------------------*/ 1232 1233 #ifdef CONFIG_USB_GADGET_DEBUG_FS 1234 1235 static int udc_debug_show(struct seq_file *m, void *_d) 1236 { 1237 struct pxa25x_udc *dev = m->private; 1238 unsigned long flags; 1239 int i; 1240 u32 tmp; 1241 1242 local_irq_save(flags); 1243 1244 /* basic device status */ 1245 seq_printf(m, DRIVER_DESC "\n" 1246 "%s version: %s\nGadget driver: %s\nHost %s\n\n", 1247 driver_name, DRIVER_VERSION SIZE_STR "(pio)", 1248 dev->driver ? dev->driver->driver.name : "(none)", 1249 dev->gadget.speed == USB_SPEED_FULL ? "full speed" : "disconnected"); 1250 1251 /* registers for device and ep0 */ 1252 seq_printf(m, 1253 "uicr %02X.%02X, usir %02X.%02x, ufnr %02X.%02X\n", 1254 udc_get_reg(dev, UICR1), udc_get_reg(dev, UICR0), 1255 udc_get_reg(dev, USIR1), udc_get_reg(dev, USIR0), 1256 udc_get_reg(dev, UFNRH), udc_get_reg(dev, UFNRL)); 1257 1258 tmp = udc_get_reg(dev, UDCCR); 1259 seq_printf(m, 1260 "udccr %02X =%s%s%s%s%s%s%s%s\n", tmp, 1261 (tmp & UDCCR_REM) ? " rem" : "", 1262 (tmp & UDCCR_RSTIR) ? " rstir" : "", 1263 (tmp & UDCCR_SRM) ? " srm" : "", 1264 (tmp & UDCCR_SUSIR) ? " susir" : "", 1265 (tmp & UDCCR_RESIR) ? " resir" : "", 1266 (tmp & UDCCR_RSM) ? " rsm" : "", 1267 (tmp & UDCCR_UDA) ? " uda" : "", 1268 (tmp & UDCCR_UDE) ? " ude" : ""); 1269 1270 tmp = udc_ep0_get_UDCCS(dev); 1271 seq_printf(m, 1272 "udccs0 %02X =%s%s%s%s%s%s%s%s\n", tmp, 1273 (tmp & UDCCS0_SA) ? " sa" : "", 1274 (tmp & UDCCS0_RNE) ? " rne" : "", 1275 (tmp & UDCCS0_FST) ? " fst" : "", 1276 (tmp & UDCCS0_SST) ? " sst" : "", 1277 (tmp & UDCCS0_DRWF) ? " dwrf" : "", 1278 (tmp & UDCCS0_FTF) ? " ftf" : "", 1279 (tmp & UDCCS0_IPR) ? " ipr" : "", 1280 (tmp & UDCCS0_OPR) ? " opr" : ""); 1281 1282 if (dev->has_cfr) { 1283 tmp = udc_get_reg(dev, UDCCFR); 1284 seq_printf(m, 1285 "udccfr %02X =%s%s\n", tmp, 1286 (tmp & UDCCFR_AREN) ? " aren" : "", 1287 (tmp & UDCCFR_ACM) ? " acm" : ""); 1288 } 1289 1290 if (dev->gadget.speed != USB_SPEED_FULL || !dev->driver) 1291 goto done; 1292 1293 seq_printf(m, "ep0 IN %lu/%lu, OUT %lu/%lu\nirqs %lu\n\n", 1294 dev->stats.write.bytes, dev->stats.write.ops, 1295 dev->stats.read.bytes, dev->stats.read.ops, 1296 dev->stats.irqs); 1297 1298 /* dump endpoint queues */ 1299 for (i = 0; i < PXA_UDC_NUM_ENDPOINTS; i++) { 1300 struct pxa25x_ep *ep = &dev->ep [i]; 1301 struct pxa25x_request *req; 1302 1303 if (i != 0) { 1304 const struct usb_endpoint_descriptor *desc; 1305 1306 desc = ep->ep.desc; 1307 if (!desc) 1308 continue; 1309 tmp = udc_ep_get_UDCCS(&dev->ep[i]); 1310 seq_printf(m, 1311 "%s max %d %s udccs %02x irqs %lu\n", 1312 ep->ep.name, usb_endpoint_maxp(desc), 1313 "pio", tmp, ep->pio_irqs); 1314 /* TODO translate all five groups of udccs bits! */ 1315 1316 } else /* ep0 should only have one transfer queued */ 1317 seq_printf(m, "ep0 max 16 pio irqs %lu\n", 1318 ep->pio_irqs); 1319 1320 if (list_empty(&ep->queue)) { 1321 seq_printf(m, "\t(nothing queued)\n"); 1322 continue; 1323 } 1324 list_for_each_entry(req, &ep->queue, queue) { 1325 seq_printf(m, 1326 "\treq %p len %d/%d buf %p\n", 1327 &req->req, req->req.actual, 1328 req->req.length, req->req.buf); 1329 } 1330 } 1331 1332 done: 1333 local_irq_restore(flags); 1334 return 0; 1335 } 1336 DEFINE_SHOW_ATTRIBUTE(udc_debug); 1337 1338 #define create_debug_files(dev) \ 1339 do { \ 1340 debugfs_create_file(dev->gadget.name, \ 1341 S_IRUGO, NULL, dev, &udc_debug_fops); \ 1342 } while (0) 1343 #define remove_debug_files(dev) debugfs_remove(debugfs_lookup(dev->gadget.name, NULL)) 1344 1345 #else /* !CONFIG_USB_GADGET_DEBUG_FILES */ 1346 1347 #define create_debug_files(dev) do {} while (0) 1348 #define remove_debug_files(dev) do {} while (0) 1349 1350 #endif /* CONFIG_USB_GADGET_DEBUG_FILES */ 1351 1352 /*-------------------------------------------------------------------------*/ 1353 1354 /* 1355 * udc_disable - disable USB device controller 1356 */ 1357 static void udc_disable(struct pxa25x_udc *dev) 1358 { 1359 /* block all irqs */ 1360 udc_set_mask_UDCCR(dev, UDCCR_SRM|UDCCR_REM); 1361 udc_set_reg(dev, UICR0, 0xff); 1362 udc_set_reg(dev, UICR1, 0xff); 1363 udc_set_reg(dev, UFNRH, UFNRH_SIM); 1364 1365 /* if hardware supports it, disconnect from usb */ 1366 pullup_off(); 1367 1368 udc_clear_mask_UDCCR(dev, UDCCR_UDE); 1369 1370 ep0_idle (dev); 1371 dev->gadget.speed = USB_SPEED_UNKNOWN; 1372 } 1373 1374 1375 /* 1376 * udc_reinit - initialize software state 1377 */ 1378 static void udc_reinit(struct pxa25x_udc *dev) 1379 { 1380 u32 i; 1381 1382 /* device/ep0 records init */ 1383 INIT_LIST_HEAD (&dev->gadget.ep_list); 1384 INIT_LIST_HEAD (&dev->gadget.ep0->ep_list); 1385 dev->ep0state = EP0_IDLE; 1386 dev->gadget.quirk_altset_not_supp = 1; 1387 1388 /* basic endpoint records init */ 1389 for (i = 0; i < PXA_UDC_NUM_ENDPOINTS; i++) { 1390 struct pxa25x_ep *ep = &dev->ep[i]; 1391 1392 if (i != 0) 1393 list_add_tail (&ep->ep.ep_list, &dev->gadget.ep_list); 1394 1395 ep->ep.desc = NULL; 1396 ep->stopped = 0; 1397 INIT_LIST_HEAD (&ep->queue); 1398 ep->pio_irqs = 0; 1399 usb_ep_set_maxpacket_limit(&ep->ep, ep->ep.maxpacket); 1400 } 1401 1402 /* the rest was statically initialized, and is read-only */ 1403 } 1404 1405 /* until it's enabled, this UDC should be completely invisible 1406 * to any USB host. 1407 */ 1408 static void udc_enable (struct pxa25x_udc *dev) 1409 { 1410 udc_clear_mask_UDCCR(dev, UDCCR_UDE); 1411 1412 /* try to clear these bits before we enable the udc */ 1413 udc_ack_int_UDCCR(dev, UDCCR_SUSIR|/*UDCCR_RSTIR|*/UDCCR_RESIR); 1414 1415 ep0_idle(dev); 1416 dev->gadget.speed = USB_SPEED_UNKNOWN; 1417 dev->stats.irqs = 0; 1418 1419 /* 1420 * sequence taken from chapter 12.5.10, PXA250 AppProcDevManual: 1421 * - enable UDC 1422 * - if RESET is already in progress, ack interrupt 1423 * - unmask reset interrupt 1424 */ 1425 udc_set_mask_UDCCR(dev, UDCCR_UDE); 1426 if (!(udc_get_reg(dev, UDCCR) & UDCCR_UDA)) 1427 udc_ack_int_UDCCR(dev, UDCCR_RSTIR); 1428 1429 if (dev->has_cfr /* UDC_RES2 is defined */) { 1430 /* pxa255 (a0+) can avoid a set_config race that could 1431 * prevent gadget drivers from configuring correctly 1432 */ 1433 udc_set_reg(dev, UDCCFR, UDCCFR_ACM | UDCCFR_MB1); 1434 } else { 1435 /* "USB test mode" for pxa250 errata 40-42 (stepping a0, a1) 1436 * which could result in missing packets and interrupts. 1437 * supposedly one bit per endpoint, controlling whether it 1438 * double buffers or not; ACM/AREN bits fit into the holes. 1439 * zero bits (like USIR0_IRx) disable double buffering. 1440 */ 1441 udc_set_reg(dev, UDC_RES1, 0x00); 1442 udc_set_reg(dev, UDC_RES2, 0x00); 1443 } 1444 1445 /* enable suspend/resume and reset irqs */ 1446 udc_clear_mask_UDCCR(dev, UDCCR_SRM | UDCCR_REM); 1447 1448 /* enable ep0 irqs */ 1449 udc_set_reg(dev, UICR0, udc_get_reg(dev, UICR0) & ~UICR0_IM0); 1450 1451 /* if hardware supports it, pullup D+ and wait for reset */ 1452 pullup_on(); 1453 } 1454 1455 1456 /* when a driver is successfully registered, it will receive 1457 * control requests including set_configuration(), which enables 1458 * non-control requests. then usb traffic follows until a 1459 * disconnect is reported. then a host may connect again, or 1460 * the driver might get unbound. 1461 */ 1462 static int pxa25x_udc_start(struct usb_gadget *g, 1463 struct usb_gadget_driver *driver) 1464 { 1465 struct pxa25x_udc *dev = to_pxa25x(g); 1466 int retval; 1467 1468 /* first hook up the driver ... */ 1469 dev->driver = driver; 1470 dev->pullup = 1; 1471 1472 /* ... then enable host detection and ep0; and we're ready 1473 * for set_configuration as well as eventual disconnect. 1474 */ 1475 /* connect to bus through transceiver */ 1476 if (!IS_ERR_OR_NULL(dev->transceiver)) { 1477 retval = otg_set_peripheral(dev->transceiver->otg, 1478 &dev->gadget); 1479 if (retval) 1480 goto bind_fail; 1481 } 1482 1483 dump_state(dev); 1484 return 0; 1485 bind_fail: 1486 return retval; 1487 } 1488 1489 static void 1490 reset_gadget(struct pxa25x_udc *dev, struct usb_gadget_driver *driver) 1491 { 1492 int i; 1493 1494 /* don't disconnect drivers more than once */ 1495 if (dev->gadget.speed == USB_SPEED_UNKNOWN) 1496 driver = NULL; 1497 dev->gadget.speed = USB_SPEED_UNKNOWN; 1498 1499 /* prevent new request submissions, kill any outstanding requests */ 1500 for (i = 0; i < PXA_UDC_NUM_ENDPOINTS; i++) { 1501 struct pxa25x_ep *ep = &dev->ep[i]; 1502 1503 ep->stopped = 1; 1504 nuke(ep, -ESHUTDOWN); 1505 } 1506 del_timer_sync(&dev->timer); 1507 1508 /* report reset; the driver is already quiesced */ 1509 if (driver) 1510 usb_gadget_udc_reset(&dev->gadget, driver); 1511 1512 /* re-init driver-visible data structures */ 1513 udc_reinit(dev); 1514 } 1515 1516 static void 1517 stop_activity(struct pxa25x_udc *dev, struct usb_gadget_driver *driver) 1518 { 1519 int i; 1520 1521 /* don't disconnect drivers more than once */ 1522 if (dev->gadget.speed == USB_SPEED_UNKNOWN) 1523 driver = NULL; 1524 dev->gadget.speed = USB_SPEED_UNKNOWN; 1525 1526 /* prevent new request submissions, kill any outstanding requests */ 1527 for (i = 0; i < PXA_UDC_NUM_ENDPOINTS; i++) { 1528 struct pxa25x_ep *ep = &dev->ep[i]; 1529 1530 ep->stopped = 1; 1531 nuke(ep, -ESHUTDOWN); 1532 } 1533 del_timer_sync(&dev->timer); 1534 1535 /* report disconnect; the driver is already quiesced */ 1536 if (driver) 1537 driver->disconnect(&dev->gadget); 1538 1539 /* re-init driver-visible data structures */ 1540 udc_reinit(dev); 1541 } 1542 1543 static int pxa25x_udc_stop(struct usb_gadget*g) 1544 { 1545 struct pxa25x_udc *dev = to_pxa25x(g); 1546 1547 local_irq_disable(); 1548 dev->pullup = 0; 1549 stop_activity(dev, NULL); 1550 local_irq_enable(); 1551 1552 if (!IS_ERR_OR_NULL(dev->transceiver)) 1553 (void) otg_set_peripheral(dev->transceiver->otg, NULL); 1554 1555 dev->driver = NULL; 1556 1557 dump_state(dev); 1558 1559 return 0; 1560 } 1561 1562 /*-------------------------------------------------------------------------*/ 1563 1564 #ifdef CONFIG_ARCH_LUBBOCK 1565 1566 /* Lubbock has separate connect and disconnect irqs. More typical designs 1567 * use one GPIO as the VBUS IRQ, and another to control the D+ pullup. 1568 */ 1569 1570 static irqreturn_t 1571 lubbock_vbus_irq(int irq, void *_dev) 1572 { 1573 struct pxa25x_udc *dev = _dev; 1574 int vbus; 1575 1576 dev->stats.irqs++; 1577 if (irq == dev->usb_irq) { 1578 vbus = 1; 1579 disable_irq(dev->usb_irq); 1580 enable_irq(dev->usb_disc_irq); 1581 } else if (irq == dev->usb_disc_irq) { 1582 vbus = 0; 1583 disable_irq(dev->usb_disc_irq); 1584 enable_irq(dev->usb_irq); 1585 } else { 1586 return IRQ_NONE; 1587 } 1588 1589 pxa25x_udc_vbus_session(&dev->gadget, vbus); 1590 return IRQ_HANDLED; 1591 } 1592 1593 #endif 1594 1595 1596 /*-------------------------------------------------------------------------*/ 1597 1598 static inline void clear_ep_state (struct pxa25x_udc *dev) 1599 { 1600 unsigned i; 1601 1602 /* hardware SET_{CONFIGURATION,INTERFACE} automagic resets endpoint 1603 * fifos, and pending transactions mustn't be continued in any case. 1604 */ 1605 for (i = 1; i < PXA_UDC_NUM_ENDPOINTS; i++) 1606 nuke(&dev->ep[i], -ECONNABORTED); 1607 } 1608 1609 static void udc_watchdog(struct timer_list *t) 1610 { 1611 struct pxa25x_udc *dev = from_timer(dev, t, timer); 1612 1613 local_irq_disable(); 1614 if (dev->ep0state == EP0_STALL 1615 && (udc_ep0_get_UDCCS(dev) & UDCCS0_FST) == 0 1616 && (udc_ep0_get_UDCCS(dev) & UDCCS0_SST) == 0) { 1617 udc_ep0_set_UDCCS(dev, UDCCS0_FST|UDCCS0_FTF); 1618 DBG(DBG_VERBOSE, "ep0 re-stall\n"); 1619 start_watchdog(dev); 1620 } 1621 local_irq_enable(); 1622 } 1623 1624 static void handle_ep0 (struct pxa25x_udc *dev) 1625 { 1626 u32 udccs0 = udc_ep0_get_UDCCS(dev); 1627 struct pxa25x_ep *ep = &dev->ep [0]; 1628 struct pxa25x_request *req; 1629 union { 1630 struct usb_ctrlrequest r; 1631 u8 raw [8]; 1632 u32 word [2]; 1633 } u; 1634 1635 if (list_empty(&ep->queue)) 1636 req = NULL; 1637 else 1638 req = list_entry(ep->queue.next, struct pxa25x_request, queue); 1639 1640 /* clear stall status */ 1641 if (udccs0 & UDCCS0_SST) { 1642 nuke(ep, -EPIPE); 1643 udc_ep0_set_UDCCS(dev, UDCCS0_SST); 1644 del_timer(&dev->timer); 1645 ep0_idle(dev); 1646 } 1647 1648 /* previous request unfinished? non-error iff back-to-back ... */ 1649 if ((udccs0 & UDCCS0_SA) != 0 && dev->ep0state != EP0_IDLE) { 1650 nuke(ep, 0); 1651 del_timer(&dev->timer); 1652 ep0_idle(dev); 1653 } 1654 1655 switch (dev->ep0state) { 1656 case EP0_IDLE: 1657 /* late-breaking status? */ 1658 udccs0 = udc_ep0_get_UDCCS(dev); 1659 1660 /* start control request? */ 1661 if (likely((udccs0 & (UDCCS0_OPR|UDCCS0_SA|UDCCS0_RNE)) 1662 == (UDCCS0_OPR|UDCCS0_SA|UDCCS0_RNE))) { 1663 int i; 1664 1665 nuke (ep, -EPROTO); 1666 1667 /* read SETUP packet */ 1668 for (i = 0; i < 8; i++) { 1669 if (unlikely(!(udc_ep0_get_UDCCS(dev) & UDCCS0_RNE))) { 1670 bad_setup: 1671 DMSG("SETUP %d!\n", i); 1672 goto stall; 1673 } 1674 u.raw [i] = (u8) UDDR0; 1675 } 1676 if (unlikely((udc_ep0_get_UDCCS(dev) & UDCCS0_RNE) != 0)) 1677 goto bad_setup; 1678 1679 got_setup: 1680 DBG(DBG_VERBOSE, "SETUP %02x.%02x v%04x i%04x l%04x\n", 1681 u.r.bRequestType, u.r.bRequest, 1682 le16_to_cpu(u.r.wValue), 1683 le16_to_cpu(u.r.wIndex), 1684 le16_to_cpu(u.r.wLength)); 1685 1686 /* cope with automagic for some standard requests. */ 1687 dev->req_std = (u.r.bRequestType & USB_TYPE_MASK) 1688 == USB_TYPE_STANDARD; 1689 dev->req_config = 0; 1690 dev->req_pending = 1; 1691 switch (u.r.bRequest) { 1692 /* hardware restricts gadget drivers here! */ 1693 case USB_REQ_SET_CONFIGURATION: 1694 if (u.r.bRequestType == USB_RECIP_DEVICE) { 1695 /* reflect hardware's automagic 1696 * up to the gadget driver. 1697 */ 1698 config_change: 1699 dev->req_config = 1; 1700 clear_ep_state(dev); 1701 /* if !has_cfr, there's no synch 1702 * else use AREN (later) not SA|OPR 1703 * USIR0_IR0 acts edge sensitive 1704 */ 1705 } 1706 break; 1707 /* ... and here, even more ... */ 1708 case USB_REQ_SET_INTERFACE: 1709 if (u.r.bRequestType == USB_RECIP_INTERFACE) { 1710 /* udc hardware is broken by design: 1711 * - altsetting may only be zero; 1712 * - hw resets all interfaces' eps; 1713 * - ep reset doesn't include halt(?). 1714 */ 1715 DMSG("broken set_interface (%d/%d)\n", 1716 le16_to_cpu(u.r.wIndex), 1717 le16_to_cpu(u.r.wValue)); 1718 goto config_change; 1719 } 1720 break; 1721 /* hardware was supposed to hide this */ 1722 case USB_REQ_SET_ADDRESS: 1723 if (u.r.bRequestType == USB_RECIP_DEVICE) { 1724 ep0start(dev, 0, "address"); 1725 return; 1726 } 1727 break; 1728 } 1729 1730 if (u.r.bRequestType & USB_DIR_IN) 1731 dev->ep0state = EP0_IN_DATA_PHASE; 1732 else 1733 dev->ep0state = EP0_OUT_DATA_PHASE; 1734 1735 i = dev->driver->setup(&dev->gadget, &u.r); 1736 if (i < 0) { 1737 /* hardware automagic preventing STALL... */ 1738 if (dev->req_config) { 1739 /* hardware sometimes neglects to tell 1740 * tell us about config change events, 1741 * so later ones may fail... 1742 */ 1743 WARNING("config change %02x fail %d?\n", 1744 u.r.bRequest, i); 1745 return; 1746 /* TODO experiment: if has_cfr, 1747 * hardware didn't ACK; maybe we 1748 * could actually STALL! 1749 */ 1750 } 1751 DBG(DBG_VERBOSE, "protocol STALL, " 1752 "%02x err %d\n", udc_ep0_get_UDCCS(dev), i); 1753 stall: 1754 /* the watchdog timer helps deal with cases 1755 * where udc seems to clear FST wrongly, and 1756 * then NAKs instead of STALLing. 1757 */ 1758 ep0start(dev, UDCCS0_FST|UDCCS0_FTF, "stall"); 1759 start_watchdog(dev); 1760 dev->ep0state = EP0_STALL; 1761 1762 /* deferred i/o == no response yet */ 1763 } else if (dev->req_pending) { 1764 if (likely(dev->ep0state == EP0_IN_DATA_PHASE 1765 || dev->req_std || u.r.wLength)) 1766 ep0start(dev, 0, "defer"); 1767 else 1768 ep0start(dev, UDCCS0_IPR, "defer/IPR"); 1769 } 1770 1771 /* expect at least one data or status stage irq */ 1772 return; 1773 1774 } else if (likely((udccs0 & (UDCCS0_OPR|UDCCS0_SA)) 1775 == (UDCCS0_OPR|UDCCS0_SA))) { 1776 unsigned i; 1777 1778 /* pxa210/250 erratum 131 for B0/B1 says RNE lies. 1779 * still observed on a pxa255 a0. 1780 */ 1781 DBG(DBG_VERBOSE, "e131\n"); 1782 nuke(ep, -EPROTO); 1783 1784 /* read SETUP data, but don't trust it too much */ 1785 for (i = 0; i < 8; i++) 1786 u.raw [i] = (u8) UDDR0; 1787 if ((u.r.bRequestType & USB_RECIP_MASK) 1788 > USB_RECIP_OTHER) 1789 goto stall; 1790 if (u.word [0] == 0 && u.word [1] == 0) 1791 goto stall; 1792 goto got_setup; 1793 } else { 1794 /* some random early IRQ: 1795 * - we acked FST 1796 * - IPR cleared 1797 * - OPR got set, without SA (likely status stage) 1798 */ 1799 udc_ep0_set_UDCCS(dev, udccs0 & (UDCCS0_SA|UDCCS0_OPR)); 1800 } 1801 break; 1802 case EP0_IN_DATA_PHASE: /* GET_DESCRIPTOR etc */ 1803 if (udccs0 & UDCCS0_OPR) { 1804 udc_ep0_set_UDCCS(dev, UDCCS0_OPR|UDCCS0_FTF); 1805 DBG(DBG_VERBOSE, "ep0in premature status\n"); 1806 if (req) 1807 done(ep, req, 0); 1808 ep0_idle(dev); 1809 } else /* irq was IPR clearing */ { 1810 if (req) { 1811 /* this IN packet might finish the request */ 1812 (void) write_ep0_fifo(ep, req); 1813 } /* else IN token before response was written */ 1814 } 1815 break; 1816 case EP0_OUT_DATA_PHASE: /* SET_DESCRIPTOR etc */ 1817 if (udccs0 & UDCCS0_OPR) { 1818 if (req) { 1819 /* this OUT packet might finish the request */ 1820 if (read_ep0_fifo(ep, req)) 1821 done(ep, req, 0); 1822 /* else more OUT packets expected */ 1823 } /* else OUT token before read was issued */ 1824 } else /* irq was IPR clearing */ { 1825 DBG(DBG_VERBOSE, "ep0out premature status\n"); 1826 if (req) 1827 done(ep, req, 0); 1828 ep0_idle(dev); 1829 } 1830 break; 1831 case EP0_END_XFER: 1832 if (req) 1833 done(ep, req, 0); 1834 /* ack control-IN status (maybe in-zlp was skipped) 1835 * also appears after some config change events. 1836 */ 1837 if (udccs0 & UDCCS0_OPR) 1838 udc_ep0_set_UDCCS(dev, UDCCS0_OPR); 1839 ep0_idle(dev); 1840 break; 1841 case EP0_STALL: 1842 udc_ep0_set_UDCCS(dev, UDCCS0_FST); 1843 break; 1844 } 1845 udc_set_reg(dev, USIR0, USIR0_IR0); 1846 } 1847 1848 static void handle_ep(struct pxa25x_ep *ep) 1849 { 1850 struct pxa25x_request *req; 1851 int is_in = ep->bEndpointAddress & USB_DIR_IN; 1852 int completed; 1853 u32 udccs, tmp; 1854 1855 do { 1856 completed = 0; 1857 if (likely (!list_empty(&ep->queue))) 1858 req = list_entry(ep->queue.next, 1859 struct pxa25x_request, queue); 1860 else 1861 req = NULL; 1862 1863 // TODO check FST handling 1864 1865 udccs = udc_ep_get_UDCCS(ep); 1866 if (unlikely(is_in)) { /* irq from TPC, SST, or (ISO) TUR */ 1867 tmp = UDCCS_BI_TUR; 1868 if (likely(ep->bmAttributes == USB_ENDPOINT_XFER_BULK)) 1869 tmp |= UDCCS_BI_SST; 1870 tmp &= udccs; 1871 if (likely (tmp)) 1872 udc_ep_set_UDCCS(ep, tmp); 1873 if (req && likely ((udccs & UDCCS_BI_TFS) != 0)) 1874 completed = write_fifo(ep, req); 1875 1876 } else { /* irq from RPC (or for ISO, ROF) */ 1877 if (likely(ep->bmAttributes == USB_ENDPOINT_XFER_BULK)) 1878 tmp = UDCCS_BO_SST | UDCCS_BO_DME; 1879 else 1880 tmp = UDCCS_IO_ROF | UDCCS_IO_DME; 1881 tmp &= udccs; 1882 if (likely(tmp)) 1883 udc_ep_set_UDCCS(ep, tmp); 1884 1885 /* fifos can hold packets, ready for reading... */ 1886 if (likely(req)) { 1887 completed = read_fifo(ep, req); 1888 } else 1889 pio_irq_disable(ep); 1890 } 1891 ep->pio_irqs++; 1892 } while (completed); 1893 } 1894 1895 /* 1896 * pxa25x_udc_irq - interrupt handler 1897 * 1898 * avoid delays in ep0 processing. the control handshaking isn't always 1899 * under software control (pxa250c0 and the pxa255 are better), and delays 1900 * could cause usb protocol errors. 1901 */ 1902 static irqreturn_t 1903 pxa25x_udc_irq(int irq, void *_dev) 1904 { 1905 struct pxa25x_udc *dev = _dev; 1906 int handled; 1907 1908 dev->stats.irqs++; 1909 do { 1910 u32 udccr = udc_get_reg(dev, UDCCR); 1911 1912 handled = 0; 1913 1914 /* SUSpend Interrupt Request */ 1915 if (unlikely(udccr & UDCCR_SUSIR)) { 1916 udc_ack_int_UDCCR(dev, UDCCR_SUSIR); 1917 handled = 1; 1918 DBG(DBG_VERBOSE, "USB suspend\n"); 1919 1920 if (dev->gadget.speed != USB_SPEED_UNKNOWN 1921 && dev->driver 1922 && dev->driver->suspend) 1923 dev->driver->suspend(&dev->gadget); 1924 ep0_idle (dev); 1925 } 1926 1927 /* RESume Interrupt Request */ 1928 if (unlikely(udccr & UDCCR_RESIR)) { 1929 udc_ack_int_UDCCR(dev, UDCCR_RESIR); 1930 handled = 1; 1931 DBG(DBG_VERBOSE, "USB resume\n"); 1932 1933 if (dev->gadget.speed != USB_SPEED_UNKNOWN 1934 && dev->driver 1935 && dev->driver->resume) 1936 dev->driver->resume(&dev->gadget); 1937 } 1938 1939 /* ReSeT Interrupt Request - USB reset */ 1940 if (unlikely(udccr & UDCCR_RSTIR)) { 1941 udc_ack_int_UDCCR(dev, UDCCR_RSTIR); 1942 handled = 1; 1943 1944 if ((udc_get_reg(dev, UDCCR) & UDCCR_UDA) == 0) { 1945 DBG(DBG_VERBOSE, "USB reset start\n"); 1946 1947 /* reset driver and endpoints, 1948 * in case that's not yet done 1949 */ 1950 reset_gadget(dev, dev->driver); 1951 1952 } else { 1953 DBG(DBG_VERBOSE, "USB reset end\n"); 1954 dev->gadget.speed = USB_SPEED_FULL; 1955 memset(&dev->stats, 0, sizeof dev->stats); 1956 /* driver and endpoints are still reset */ 1957 } 1958 1959 } else { 1960 u32 usir0 = udc_get_reg(dev, USIR0) & 1961 ~udc_get_reg(dev, UICR0); 1962 u32 usir1 = udc_get_reg(dev, USIR1) & 1963 ~udc_get_reg(dev, UICR1); 1964 int i; 1965 1966 if (unlikely (!usir0 && !usir1)) 1967 continue; 1968 1969 DBG(DBG_VERY_NOISY, "irq %02x.%02x\n", usir1, usir0); 1970 1971 /* control traffic */ 1972 if (usir0 & USIR0_IR0) { 1973 dev->ep[0].pio_irqs++; 1974 handle_ep0(dev); 1975 handled = 1; 1976 } 1977 1978 /* endpoint data transfers */ 1979 for (i = 0; i < 8; i++) { 1980 u32 tmp = 1 << i; 1981 1982 if (i && (usir0 & tmp)) { 1983 handle_ep(&dev->ep[i]); 1984 udc_set_reg(dev, USIR0, 1985 udc_get_reg(dev, USIR0) | tmp); 1986 handled = 1; 1987 } 1988 #ifndef CONFIG_USB_PXA25X_SMALL 1989 if (usir1 & tmp) { 1990 handle_ep(&dev->ep[i+8]); 1991 udc_set_reg(dev, USIR1, 1992 udc_get_reg(dev, USIR1) | tmp); 1993 handled = 1; 1994 } 1995 #endif 1996 } 1997 } 1998 1999 /* we could also ask for 1 msec SOF (SIR) interrupts */ 2000 2001 } while (handled); 2002 return IRQ_HANDLED; 2003 } 2004 2005 /*-------------------------------------------------------------------------*/ 2006 2007 static void nop_release (struct device *dev) 2008 { 2009 DMSG("%s %s\n", __func__, dev_name(dev)); 2010 } 2011 2012 /* this uses load-time allocation and initialization (instead of 2013 * doing it at run-time) to save code, eliminate fault paths, and 2014 * be more obviously correct. 2015 */ 2016 static struct pxa25x_udc memory = { 2017 .gadget = { 2018 .ops = &pxa25x_udc_ops, 2019 .ep0 = &memory.ep[0].ep, 2020 .name = driver_name, 2021 .dev = { 2022 .init_name = "gadget", 2023 .release = nop_release, 2024 }, 2025 }, 2026 2027 /* control endpoint */ 2028 .ep[0] = { 2029 .ep = { 2030 .name = ep0name, 2031 .ops = &pxa25x_ep_ops, 2032 .maxpacket = EP0_FIFO_SIZE, 2033 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL, 2034 USB_EP_CAPS_DIR_ALL), 2035 }, 2036 .dev = &memory, 2037 .regoff_udccs = UDCCS0, 2038 .regoff_uddr = UDDR0, 2039 }, 2040 2041 /* first group of endpoints */ 2042 .ep[1] = { 2043 .ep = { 2044 .name = "ep1in-bulk", 2045 .ops = &pxa25x_ep_ops, 2046 .maxpacket = BULK_FIFO_SIZE, 2047 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, 2048 USB_EP_CAPS_DIR_IN), 2049 }, 2050 .dev = &memory, 2051 .fifo_size = BULK_FIFO_SIZE, 2052 .bEndpointAddress = USB_DIR_IN | 1, 2053 .bmAttributes = USB_ENDPOINT_XFER_BULK, 2054 .regoff_udccs = UDCCS1, 2055 .regoff_uddr = UDDR1, 2056 }, 2057 .ep[2] = { 2058 .ep = { 2059 .name = "ep2out-bulk", 2060 .ops = &pxa25x_ep_ops, 2061 .maxpacket = BULK_FIFO_SIZE, 2062 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, 2063 USB_EP_CAPS_DIR_OUT), 2064 }, 2065 .dev = &memory, 2066 .fifo_size = BULK_FIFO_SIZE, 2067 .bEndpointAddress = 2, 2068 .bmAttributes = USB_ENDPOINT_XFER_BULK, 2069 .regoff_udccs = UDCCS2, 2070 .regoff_ubcr = UBCR2, 2071 .regoff_uddr = UDDR2, 2072 }, 2073 #ifndef CONFIG_USB_PXA25X_SMALL 2074 .ep[3] = { 2075 .ep = { 2076 .name = "ep3in-iso", 2077 .ops = &pxa25x_ep_ops, 2078 .maxpacket = ISO_FIFO_SIZE, 2079 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO, 2080 USB_EP_CAPS_DIR_IN), 2081 }, 2082 .dev = &memory, 2083 .fifo_size = ISO_FIFO_SIZE, 2084 .bEndpointAddress = USB_DIR_IN | 3, 2085 .bmAttributes = USB_ENDPOINT_XFER_ISOC, 2086 .regoff_udccs = UDCCS3, 2087 .regoff_uddr = UDDR3, 2088 }, 2089 .ep[4] = { 2090 .ep = { 2091 .name = "ep4out-iso", 2092 .ops = &pxa25x_ep_ops, 2093 .maxpacket = ISO_FIFO_SIZE, 2094 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO, 2095 USB_EP_CAPS_DIR_OUT), 2096 }, 2097 .dev = &memory, 2098 .fifo_size = ISO_FIFO_SIZE, 2099 .bEndpointAddress = 4, 2100 .bmAttributes = USB_ENDPOINT_XFER_ISOC, 2101 .regoff_udccs = UDCCS4, 2102 .regoff_ubcr = UBCR4, 2103 .regoff_uddr = UDDR4, 2104 }, 2105 .ep[5] = { 2106 .ep = { 2107 .name = "ep5in-int", 2108 .ops = &pxa25x_ep_ops, 2109 .maxpacket = INT_FIFO_SIZE, 2110 .caps = USB_EP_CAPS(0, 0), 2111 }, 2112 .dev = &memory, 2113 .fifo_size = INT_FIFO_SIZE, 2114 .bEndpointAddress = USB_DIR_IN | 5, 2115 .bmAttributes = USB_ENDPOINT_XFER_INT, 2116 .regoff_udccs = UDCCS5, 2117 .regoff_uddr = UDDR5, 2118 }, 2119 2120 /* second group of endpoints */ 2121 .ep[6] = { 2122 .ep = { 2123 .name = "ep6in-bulk", 2124 .ops = &pxa25x_ep_ops, 2125 .maxpacket = BULK_FIFO_SIZE, 2126 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, 2127 USB_EP_CAPS_DIR_IN), 2128 }, 2129 .dev = &memory, 2130 .fifo_size = BULK_FIFO_SIZE, 2131 .bEndpointAddress = USB_DIR_IN | 6, 2132 .bmAttributes = USB_ENDPOINT_XFER_BULK, 2133 .regoff_udccs = UDCCS6, 2134 .regoff_uddr = UDDR6, 2135 }, 2136 .ep[7] = { 2137 .ep = { 2138 .name = "ep7out-bulk", 2139 .ops = &pxa25x_ep_ops, 2140 .maxpacket = BULK_FIFO_SIZE, 2141 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, 2142 USB_EP_CAPS_DIR_OUT), 2143 }, 2144 .dev = &memory, 2145 .fifo_size = BULK_FIFO_SIZE, 2146 .bEndpointAddress = 7, 2147 .bmAttributes = USB_ENDPOINT_XFER_BULK, 2148 .regoff_udccs = UDCCS7, 2149 .regoff_ubcr = UBCR7, 2150 .regoff_uddr = UDDR7, 2151 }, 2152 .ep[8] = { 2153 .ep = { 2154 .name = "ep8in-iso", 2155 .ops = &pxa25x_ep_ops, 2156 .maxpacket = ISO_FIFO_SIZE, 2157 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO, 2158 USB_EP_CAPS_DIR_IN), 2159 }, 2160 .dev = &memory, 2161 .fifo_size = ISO_FIFO_SIZE, 2162 .bEndpointAddress = USB_DIR_IN | 8, 2163 .bmAttributes = USB_ENDPOINT_XFER_ISOC, 2164 .regoff_udccs = UDCCS8, 2165 .regoff_uddr = UDDR8, 2166 }, 2167 .ep[9] = { 2168 .ep = { 2169 .name = "ep9out-iso", 2170 .ops = &pxa25x_ep_ops, 2171 .maxpacket = ISO_FIFO_SIZE, 2172 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO, 2173 USB_EP_CAPS_DIR_OUT), 2174 }, 2175 .dev = &memory, 2176 .fifo_size = ISO_FIFO_SIZE, 2177 .bEndpointAddress = 9, 2178 .bmAttributes = USB_ENDPOINT_XFER_ISOC, 2179 .regoff_udccs = UDCCS9, 2180 .regoff_ubcr = UBCR9, 2181 .regoff_uddr = UDDR9, 2182 }, 2183 .ep[10] = { 2184 .ep = { 2185 .name = "ep10in-int", 2186 .ops = &pxa25x_ep_ops, 2187 .maxpacket = INT_FIFO_SIZE, 2188 .caps = USB_EP_CAPS(0, 0), 2189 }, 2190 .dev = &memory, 2191 .fifo_size = INT_FIFO_SIZE, 2192 .bEndpointAddress = USB_DIR_IN | 10, 2193 .bmAttributes = USB_ENDPOINT_XFER_INT, 2194 .regoff_udccs = UDCCS10, 2195 .regoff_uddr = UDDR10, 2196 }, 2197 2198 /* third group of endpoints */ 2199 .ep[11] = { 2200 .ep = { 2201 .name = "ep11in-bulk", 2202 .ops = &pxa25x_ep_ops, 2203 .maxpacket = BULK_FIFO_SIZE, 2204 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, 2205 USB_EP_CAPS_DIR_IN), 2206 }, 2207 .dev = &memory, 2208 .fifo_size = BULK_FIFO_SIZE, 2209 .bEndpointAddress = USB_DIR_IN | 11, 2210 .bmAttributes = USB_ENDPOINT_XFER_BULK, 2211 .regoff_udccs = UDCCS11, 2212 .regoff_uddr = UDDR11, 2213 }, 2214 .ep[12] = { 2215 .ep = { 2216 .name = "ep12out-bulk", 2217 .ops = &pxa25x_ep_ops, 2218 .maxpacket = BULK_FIFO_SIZE, 2219 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, 2220 USB_EP_CAPS_DIR_OUT), 2221 }, 2222 .dev = &memory, 2223 .fifo_size = BULK_FIFO_SIZE, 2224 .bEndpointAddress = 12, 2225 .bmAttributes = USB_ENDPOINT_XFER_BULK, 2226 .regoff_udccs = UDCCS12, 2227 .regoff_ubcr = UBCR12, 2228 .regoff_uddr = UDDR12, 2229 }, 2230 .ep[13] = { 2231 .ep = { 2232 .name = "ep13in-iso", 2233 .ops = &pxa25x_ep_ops, 2234 .maxpacket = ISO_FIFO_SIZE, 2235 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO, 2236 USB_EP_CAPS_DIR_IN), 2237 }, 2238 .dev = &memory, 2239 .fifo_size = ISO_FIFO_SIZE, 2240 .bEndpointAddress = USB_DIR_IN | 13, 2241 .bmAttributes = USB_ENDPOINT_XFER_ISOC, 2242 .regoff_udccs = UDCCS13, 2243 .regoff_uddr = UDDR13, 2244 }, 2245 .ep[14] = { 2246 .ep = { 2247 .name = "ep14out-iso", 2248 .ops = &pxa25x_ep_ops, 2249 .maxpacket = ISO_FIFO_SIZE, 2250 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO, 2251 USB_EP_CAPS_DIR_OUT), 2252 }, 2253 .dev = &memory, 2254 .fifo_size = ISO_FIFO_SIZE, 2255 .bEndpointAddress = 14, 2256 .bmAttributes = USB_ENDPOINT_XFER_ISOC, 2257 .regoff_udccs = UDCCS14, 2258 .regoff_ubcr = UBCR14, 2259 .regoff_uddr = UDDR14, 2260 }, 2261 .ep[15] = { 2262 .ep = { 2263 .name = "ep15in-int", 2264 .ops = &pxa25x_ep_ops, 2265 .maxpacket = INT_FIFO_SIZE, 2266 .caps = USB_EP_CAPS(0, 0), 2267 }, 2268 .dev = &memory, 2269 .fifo_size = INT_FIFO_SIZE, 2270 .bEndpointAddress = USB_DIR_IN | 15, 2271 .bmAttributes = USB_ENDPOINT_XFER_INT, 2272 .regoff_udccs = UDCCS15, 2273 .regoff_uddr = UDDR15, 2274 }, 2275 #endif /* !CONFIG_USB_PXA25X_SMALL */ 2276 }; 2277 2278 #define CP15R0_VENDOR_MASK 0xffffe000 2279 2280 #if defined(CONFIG_ARCH_PXA) 2281 #define CP15R0_XSCALE_VALUE 0x69052000 /* intel/arm/xscale */ 2282 2283 #elif defined(CONFIG_ARCH_IXP4XX) 2284 #define CP15R0_XSCALE_VALUE 0x69054000 /* intel/arm/ixp4xx */ 2285 2286 #endif 2287 2288 #define CP15R0_PROD_MASK 0x000003f0 2289 #define PXA25x 0x00000100 /* and PXA26x */ 2290 #define PXA210 0x00000120 2291 2292 #define CP15R0_REV_MASK 0x0000000f 2293 2294 #define CP15R0_PRODREV_MASK (CP15R0_PROD_MASK | CP15R0_REV_MASK) 2295 2296 #define PXA255_A0 0x00000106 /* or PXA260_B1 */ 2297 #define PXA250_C0 0x00000105 /* or PXA26x_B0 */ 2298 #define PXA250_B2 0x00000104 2299 #define PXA250_B1 0x00000103 /* or PXA260_A0 */ 2300 #define PXA250_B0 0x00000102 2301 #define PXA250_A1 0x00000101 2302 #define PXA250_A0 0x00000100 2303 2304 #define PXA210_C0 0x00000125 2305 #define PXA210_B2 0x00000124 2306 #define PXA210_B1 0x00000123 2307 #define PXA210_B0 0x00000122 2308 #define IXP425_A0 0x000001c1 2309 #define IXP425_B0 0x000001f1 2310 #define IXP465_AD 0x00000200 2311 2312 /* 2313 * probe - binds to the platform device 2314 */ 2315 static int pxa25x_udc_probe(struct platform_device *pdev) 2316 { 2317 struct pxa25x_udc *dev = &memory; 2318 int retval, irq; 2319 u32 chiprev; 2320 2321 pr_info("%s: version %s\n", driver_name, DRIVER_VERSION); 2322 2323 /* insist on Intel/ARM/XScale */ 2324 asm("mrc p15, 0, %0, c0, c0" : "=r" (chiprev)); 2325 if ((chiprev & CP15R0_VENDOR_MASK) != CP15R0_XSCALE_VALUE) { 2326 pr_err("%s: not XScale!\n", driver_name); 2327 return -ENODEV; 2328 } 2329 2330 /* trigger chiprev-specific logic */ 2331 switch (chiprev & CP15R0_PRODREV_MASK) { 2332 #if defined(CONFIG_ARCH_PXA) 2333 case PXA255_A0: 2334 dev->has_cfr = 1; 2335 break; 2336 case PXA250_A0: 2337 case PXA250_A1: 2338 /* A0/A1 "not released"; ep 13, 15 unusable */ 2339 fallthrough; 2340 case PXA250_B2: case PXA210_B2: 2341 case PXA250_B1: case PXA210_B1: 2342 case PXA250_B0: case PXA210_B0: 2343 /* OUT-DMA is broken ... */ 2344 fallthrough; 2345 case PXA250_C0: case PXA210_C0: 2346 break; 2347 #elif defined(CONFIG_ARCH_IXP4XX) 2348 case IXP425_A0: 2349 case IXP425_B0: 2350 case IXP465_AD: 2351 dev->has_cfr = 1; 2352 break; 2353 #endif 2354 default: 2355 pr_err("%s: unrecognized processor: %08x\n", 2356 driver_name, chiprev); 2357 /* iop3xx, ixp4xx, ... */ 2358 return -ENODEV; 2359 } 2360 2361 irq = platform_get_irq(pdev, 0); 2362 if (irq < 0) 2363 return irq; 2364 2365 dev->regs = devm_platform_ioremap_resource(pdev, 0); 2366 if (IS_ERR(dev->regs)) 2367 return PTR_ERR(dev->regs); 2368 2369 dev->clk = devm_clk_get(&pdev->dev, NULL); 2370 if (IS_ERR(dev->clk)) 2371 return PTR_ERR(dev->clk); 2372 2373 pr_debug("%s: IRQ %d%s%s\n", driver_name, irq, 2374 dev->has_cfr ? "" : " (!cfr)", 2375 SIZE_STR "(pio)" 2376 ); 2377 2378 /* other non-static parts of init */ 2379 dev->dev = &pdev->dev; 2380 dev->mach = dev_get_platdata(&pdev->dev); 2381 2382 dev->transceiver = devm_usb_get_phy(&pdev->dev, USB_PHY_TYPE_USB2); 2383 2384 if (gpio_is_valid(dev->mach->gpio_pullup)) { 2385 retval = devm_gpio_request(&pdev->dev, dev->mach->gpio_pullup, 2386 "pca25x_udc GPIO PULLUP"); 2387 if (retval) { 2388 dev_dbg(&pdev->dev, 2389 "can't get pullup gpio %d, err: %d\n", 2390 dev->mach->gpio_pullup, retval); 2391 goto err; 2392 } 2393 gpio_direction_output(dev->mach->gpio_pullup, 0); 2394 } 2395 2396 timer_setup(&dev->timer, udc_watchdog, 0); 2397 2398 the_controller = dev; 2399 platform_set_drvdata(pdev, dev); 2400 2401 udc_disable(dev); 2402 udc_reinit(dev); 2403 2404 dev->vbus = 0; 2405 2406 /* irq setup after old hardware state is cleaned up */ 2407 retval = devm_request_irq(&pdev->dev, irq, pxa25x_udc_irq, 0, 2408 driver_name, dev); 2409 if (retval != 0) { 2410 pr_err("%s: can't get irq %d, err %d\n", 2411 driver_name, irq, retval); 2412 goto err; 2413 } 2414 dev->got_irq = 1; 2415 2416 #ifdef CONFIG_ARCH_LUBBOCK 2417 if (machine_is_lubbock()) { 2418 dev->usb_irq = platform_get_irq(pdev, 1); 2419 if (dev->usb_irq < 0) 2420 return dev->usb_irq; 2421 2422 dev->usb_disc_irq = platform_get_irq(pdev, 2); 2423 if (dev->usb_disc_irq < 0) 2424 return dev->usb_disc_irq; 2425 2426 retval = devm_request_irq(&pdev->dev, dev->usb_disc_irq, 2427 lubbock_vbus_irq, 0, driver_name, 2428 dev); 2429 if (retval != 0) { 2430 pr_err("%s: can't get irq %i, err %d\n", 2431 driver_name, dev->usb_disc_irq, retval); 2432 goto err; 2433 } 2434 retval = devm_request_irq(&pdev->dev, dev->usb_irq, 2435 lubbock_vbus_irq, 0, driver_name, 2436 dev); 2437 if (retval != 0) { 2438 pr_err("%s: can't get irq %i, err %d\n", 2439 driver_name, dev->usb_irq, retval); 2440 goto err; 2441 } 2442 } else 2443 #endif 2444 create_debug_files(dev); 2445 2446 retval = usb_add_gadget_udc(&pdev->dev, &dev->gadget); 2447 if (!retval) 2448 return retval; 2449 2450 remove_debug_files(dev); 2451 err: 2452 if (!IS_ERR_OR_NULL(dev->transceiver)) 2453 dev->transceiver = NULL; 2454 return retval; 2455 } 2456 2457 static void pxa25x_udc_shutdown(struct platform_device *_dev) 2458 { 2459 pullup_off(); 2460 } 2461 2462 static int pxa25x_udc_remove(struct platform_device *pdev) 2463 { 2464 struct pxa25x_udc *dev = platform_get_drvdata(pdev); 2465 2466 if (dev->driver) 2467 return -EBUSY; 2468 2469 usb_del_gadget_udc(&dev->gadget); 2470 dev->pullup = 0; 2471 pullup(dev); 2472 2473 remove_debug_files(dev); 2474 2475 if (!IS_ERR_OR_NULL(dev->transceiver)) 2476 dev->transceiver = NULL; 2477 2478 the_controller = NULL; 2479 return 0; 2480 } 2481 2482 /*-------------------------------------------------------------------------*/ 2483 2484 #ifdef CONFIG_PM 2485 2486 /* USB suspend (controlled by the host) and system suspend (controlled 2487 * by the PXA) don't necessarily work well together. If USB is active, 2488 * the 48 MHz clock is required; so the system can't enter 33 MHz idle 2489 * mode, or any deeper PM saving state. 2490 * 2491 * For now, we punt and forcibly disconnect from the USB host when PXA 2492 * enters any suspend state. While we're disconnected, we always disable 2493 * the 48MHz USB clock ... allowing PXA sleep and/or 33 MHz idle states. 2494 * Boards without software pullup control shouldn't use those states. 2495 * VBUS IRQs should probably be ignored so that the PXA device just acts 2496 * "dead" to USB hosts until system resume. 2497 */ 2498 static int pxa25x_udc_suspend(struct platform_device *dev, pm_message_t state) 2499 { 2500 struct pxa25x_udc *udc = platform_get_drvdata(dev); 2501 unsigned long flags; 2502 2503 if (!gpio_is_valid(udc->mach->gpio_pullup) && !udc->mach->udc_command) 2504 WARNING("USB host won't detect disconnect!\n"); 2505 udc->suspended = 1; 2506 2507 local_irq_save(flags); 2508 pullup(udc); 2509 local_irq_restore(flags); 2510 2511 return 0; 2512 } 2513 2514 static int pxa25x_udc_resume(struct platform_device *dev) 2515 { 2516 struct pxa25x_udc *udc = platform_get_drvdata(dev); 2517 unsigned long flags; 2518 2519 udc->suspended = 0; 2520 local_irq_save(flags); 2521 pullup(udc); 2522 local_irq_restore(flags); 2523 2524 return 0; 2525 } 2526 2527 #else 2528 #define pxa25x_udc_suspend NULL 2529 #define pxa25x_udc_resume NULL 2530 #endif 2531 2532 /*-------------------------------------------------------------------------*/ 2533 2534 static struct platform_driver udc_driver = { 2535 .shutdown = pxa25x_udc_shutdown, 2536 .probe = pxa25x_udc_probe, 2537 .remove = pxa25x_udc_remove, 2538 .suspend = pxa25x_udc_suspend, 2539 .resume = pxa25x_udc_resume, 2540 .driver = { 2541 .name = "pxa25x-udc", 2542 }, 2543 }; 2544 2545 module_platform_driver(udc_driver); 2546 2547 MODULE_DESCRIPTION(DRIVER_DESC); 2548 MODULE_AUTHOR("Frank Becker, Robert Schwebel, David Brownell"); 2549 MODULE_LICENSE("GPL"); 2550 MODULE_ALIAS("platform:pxa25x-udc"); 2551