1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd. 4 */ 5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 6 #include <linux/kernel.h> 7 #include <linux/module.h> 8 #include <linux/pci.h> 9 #include <linux/delay.h> 10 #include <linux/errno.h> 11 #include <linux/gpio/consumer.h> 12 #include <linux/gpio/machine.h> 13 #include <linux/list.h> 14 #include <linux/interrupt.h> 15 #include <linux/usb/ch9.h> 16 #include <linux/usb/gadget.h> 17 #include <linux/irq.h> 18 19 #define PCH_VBUS_PERIOD 3000 /* VBUS polling period (msec) */ 20 #define PCH_VBUS_INTERVAL 10 /* VBUS polling interval (msec) */ 21 22 /* Address offset of Registers */ 23 #define UDC_EP_REG_SHIFT 0x20 /* Offset to next EP */ 24 25 #define UDC_EPCTL_ADDR 0x00 /* Endpoint control */ 26 #define UDC_EPSTS_ADDR 0x04 /* Endpoint status */ 27 #define UDC_BUFIN_FRAMENUM_ADDR 0x08 /* buffer size in / frame number out */ 28 #define UDC_BUFOUT_MAXPKT_ADDR 0x0C /* buffer size out / maxpkt in */ 29 #define UDC_SUBPTR_ADDR 0x10 /* setup buffer pointer */ 30 #define UDC_DESPTR_ADDR 0x14 /* Data descriptor pointer */ 31 #define UDC_CONFIRM_ADDR 0x18 /* Write/Read confirmation */ 32 33 #define UDC_DEVCFG_ADDR 0x400 /* Device configuration */ 34 #define UDC_DEVCTL_ADDR 0x404 /* Device control */ 35 #define UDC_DEVSTS_ADDR 0x408 /* Device status */ 36 #define UDC_DEVIRQSTS_ADDR 0x40C /* Device irq status */ 37 #define UDC_DEVIRQMSK_ADDR 0x410 /* Device irq mask */ 38 #define UDC_EPIRQSTS_ADDR 0x414 /* Endpoint irq status */ 39 #define UDC_EPIRQMSK_ADDR 0x418 /* Endpoint irq mask */ 40 #define UDC_DEVLPM_ADDR 0x41C /* LPM control / status */ 41 #define UDC_CSR_BUSY_ADDR 0x4f0 /* UDC_CSR_BUSY Status register */ 42 #define UDC_SRST_ADDR 0x4fc /* SOFT RESET register */ 43 #define UDC_CSR_ADDR 0x500 /* USB_DEVICE endpoint register */ 44 45 /* Endpoint control register */ 46 /* Bit position */ 47 #define UDC_EPCTL_MRXFLUSH (1 << 12) 48 #define UDC_EPCTL_RRDY (1 << 9) 49 #define UDC_EPCTL_CNAK (1 << 8) 50 #define UDC_EPCTL_SNAK (1 << 7) 51 #define UDC_EPCTL_NAK (1 << 6) 52 #define UDC_EPCTL_P (1 << 3) 53 #define UDC_EPCTL_F (1 << 1) 54 #define UDC_EPCTL_S (1 << 0) 55 #define UDC_EPCTL_ET_SHIFT 4 56 /* Mask patern */ 57 #define UDC_EPCTL_ET_MASK 0x00000030 58 /* Value for ET field */ 59 #define UDC_EPCTL_ET_CONTROL 0 60 #define UDC_EPCTL_ET_ISO 1 61 #define UDC_EPCTL_ET_BULK 2 62 #define UDC_EPCTL_ET_INTERRUPT 3 63 64 /* Endpoint status register */ 65 /* Bit position */ 66 #define UDC_EPSTS_XFERDONE (1 << 27) 67 #define UDC_EPSTS_RSS (1 << 26) 68 #define UDC_EPSTS_RCS (1 << 25) 69 #define UDC_EPSTS_TXEMPTY (1 << 24) 70 #define UDC_EPSTS_TDC (1 << 10) 71 #define UDC_EPSTS_HE (1 << 9) 72 #define UDC_EPSTS_MRXFIFO_EMP (1 << 8) 73 #define UDC_EPSTS_BNA (1 << 7) 74 #define UDC_EPSTS_IN (1 << 6) 75 #define UDC_EPSTS_OUT_SHIFT 4 76 /* Mask patern */ 77 #define UDC_EPSTS_OUT_MASK 0x00000030 78 #define UDC_EPSTS_ALL_CLR_MASK 0x1F0006F0 79 /* Value for OUT field */ 80 #define UDC_EPSTS_OUT_SETUP 2 81 #define UDC_EPSTS_OUT_DATA 1 82 83 /* Device configuration register */ 84 /* Bit position */ 85 #define UDC_DEVCFG_CSR_PRG (1 << 17) 86 #define UDC_DEVCFG_SP (1 << 3) 87 /* SPD Valee */ 88 #define UDC_DEVCFG_SPD_HS 0x0 89 #define UDC_DEVCFG_SPD_FS 0x1 90 #define UDC_DEVCFG_SPD_LS 0x2 91 92 /* Device control register */ 93 /* Bit position */ 94 #define UDC_DEVCTL_THLEN_SHIFT 24 95 #define UDC_DEVCTL_BRLEN_SHIFT 16 96 #define UDC_DEVCTL_CSR_DONE (1 << 13) 97 #define UDC_DEVCTL_SD (1 << 10) 98 #define UDC_DEVCTL_MODE (1 << 9) 99 #define UDC_DEVCTL_BREN (1 << 8) 100 #define UDC_DEVCTL_THE (1 << 7) 101 #define UDC_DEVCTL_DU (1 << 4) 102 #define UDC_DEVCTL_TDE (1 << 3) 103 #define UDC_DEVCTL_RDE (1 << 2) 104 #define UDC_DEVCTL_RES (1 << 0) 105 106 /* Device status register */ 107 /* Bit position */ 108 #define UDC_DEVSTS_TS_SHIFT 18 109 #define UDC_DEVSTS_ENUM_SPEED_SHIFT 13 110 #define UDC_DEVSTS_ALT_SHIFT 8 111 #define UDC_DEVSTS_INTF_SHIFT 4 112 #define UDC_DEVSTS_CFG_SHIFT 0 113 /* Mask patern */ 114 #define UDC_DEVSTS_TS_MASK 0xfffc0000 115 #define UDC_DEVSTS_ENUM_SPEED_MASK 0x00006000 116 #define UDC_DEVSTS_ALT_MASK 0x00000f00 117 #define UDC_DEVSTS_INTF_MASK 0x000000f0 118 #define UDC_DEVSTS_CFG_MASK 0x0000000f 119 /* value for maximum speed for SPEED field */ 120 #define UDC_DEVSTS_ENUM_SPEED_FULL 1 121 #define UDC_DEVSTS_ENUM_SPEED_HIGH 0 122 #define UDC_DEVSTS_ENUM_SPEED_LOW 2 123 #define UDC_DEVSTS_ENUM_SPEED_FULLX 3 124 125 /* Device irq register */ 126 /* Bit position */ 127 #define UDC_DEVINT_RWKP (1 << 7) 128 #define UDC_DEVINT_ENUM (1 << 6) 129 #define UDC_DEVINT_SOF (1 << 5) 130 #define UDC_DEVINT_US (1 << 4) 131 #define UDC_DEVINT_UR (1 << 3) 132 #define UDC_DEVINT_ES (1 << 2) 133 #define UDC_DEVINT_SI (1 << 1) 134 #define UDC_DEVINT_SC (1 << 0) 135 /* Mask patern */ 136 #define UDC_DEVINT_MSK 0x7f 137 138 /* Endpoint irq register */ 139 /* Bit position */ 140 #define UDC_EPINT_IN_SHIFT 0 141 #define UDC_EPINT_OUT_SHIFT 16 142 #define UDC_EPINT_IN_EP0 (1 << 0) 143 #define UDC_EPINT_OUT_EP0 (1 << 16) 144 /* Mask patern */ 145 #define UDC_EPINT_MSK_DISABLE_ALL 0xffffffff 146 147 /* UDC_CSR_BUSY Status register */ 148 /* Bit position */ 149 #define UDC_CSR_BUSY (1 << 0) 150 151 /* SOFT RESET register */ 152 /* Bit position */ 153 #define UDC_PSRST (1 << 1) 154 #define UDC_SRST (1 << 0) 155 156 /* USB_DEVICE endpoint register */ 157 /* Bit position */ 158 #define UDC_CSR_NE_NUM_SHIFT 0 159 #define UDC_CSR_NE_DIR_SHIFT 4 160 #define UDC_CSR_NE_TYPE_SHIFT 5 161 #define UDC_CSR_NE_CFG_SHIFT 7 162 #define UDC_CSR_NE_INTF_SHIFT 11 163 #define UDC_CSR_NE_ALT_SHIFT 15 164 #define UDC_CSR_NE_MAX_PKT_SHIFT 19 165 /* Mask patern */ 166 #define UDC_CSR_NE_NUM_MASK 0x0000000f 167 #define UDC_CSR_NE_DIR_MASK 0x00000010 168 #define UDC_CSR_NE_TYPE_MASK 0x00000060 169 #define UDC_CSR_NE_CFG_MASK 0x00000780 170 #define UDC_CSR_NE_INTF_MASK 0x00007800 171 #define UDC_CSR_NE_ALT_MASK 0x00078000 172 #define UDC_CSR_NE_MAX_PKT_MASK 0x3ff80000 173 174 #define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4) 175 #define PCH_UDC_EPINT(in, num)\ 176 (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT))) 177 178 /* Index of endpoint */ 179 #define UDC_EP0IN_IDX 0 180 #define UDC_EP0OUT_IDX 1 181 #define UDC_EPIN_IDX(ep) (ep * 2) 182 #define UDC_EPOUT_IDX(ep) (ep * 2 + 1) 183 #define PCH_UDC_EP0 0 184 #define PCH_UDC_EP1 1 185 #define PCH_UDC_EP2 2 186 #define PCH_UDC_EP3 3 187 188 /* Number of endpoint */ 189 #define PCH_UDC_EP_NUM 32 /* Total number of EPs (16 IN,16 OUT) */ 190 #define PCH_UDC_USED_EP_NUM 4 /* EP number of EP's really used */ 191 /* Length Value */ 192 #define PCH_UDC_BRLEN 0x0F /* Burst length */ 193 #define PCH_UDC_THLEN 0x1F /* Threshold length */ 194 /* Value of EP Buffer Size */ 195 #define UDC_EP0IN_BUFF_SIZE 16 196 #define UDC_EPIN_BUFF_SIZE 256 197 #define UDC_EP0OUT_BUFF_SIZE 16 198 #define UDC_EPOUT_BUFF_SIZE 256 199 /* Value of EP maximum packet size */ 200 #define UDC_EP0IN_MAX_PKT_SIZE 64 201 #define UDC_EP0OUT_MAX_PKT_SIZE 64 202 #define UDC_BULK_MAX_PKT_SIZE 512 203 204 /* DMA */ 205 #define DMA_DIR_RX 1 /* DMA for data receive */ 206 #define DMA_DIR_TX 2 /* DMA for data transmit */ 207 #define DMA_ADDR_INVALID (~(dma_addr_t)0) 208 #define UDC_DMA_MAXPACKET 65536 /* maximum packet size for DMA */ 209 210 /** 211 * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information 212 * for data 213 * @status: Status quadlet 214 * @reserved: Reserved 215 * @dataptr: Buffer descriptor 216 * @next: Next descriptor 217 */ 218 struct pch_udc_data_dma_desc { 219 u32 status; 220 u32 reserved; 221 u32 dataptr; 222 u32 next; 223 }; 224 225 /** 226 * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information 227 * for control data 228 * @status: Status 229 * @reserved: Reserved 230 * @request: Control Request 231 */ 232 struct pch_udc_stp_dma_desc { 233 u32 status; 234 u32 reserved; 235 struct usb_ctrlrequest request; 236 } __attribute((packed)); 237 238 /* DMA status definitions */ 239 /* Buffer status */ 240 #define PCH_UDC_BUFF_STS 0xC0000000 241 #define PCH_UDC_BS_HST_RDY 0x00000000 242 #define PCH_UDC_BS_DMA_BSY 0x40000000 243 #define PCH_UDC_BS_DMA_DONE 0x80000000 244 #define PCH_UDC_BS_HST_BSY 0xC0000000 245 /* Rx/Tx Status */ 246 #define PCH_UDC_RXTX_STS 0x30000000 247 #define PCH_UDC_RTS_SUCC 0x00000000 248 #define PCH_UDC_RTS_DESERR 0x10000000 249 #define PCH_UDC_RTS_BUFERR 0x30000000 250 /* Last Descriptor Indication */ 251 #define PCH_UDC_DMA_LAST 0x08000000 252 /* Number of Rx/Tx Bytes Mask */ 253 #define PCH_UDC_RXTX_BYTES 0x0000ffff 254 255 /** 256 * struct pch_udc_cfg_data - Structure to hold current configuration 257 * and interface information 258 * @cur_cfg: current configuration in use 259 * @cur_intf: current interface in use 260 * @cur_alt: current alt interface in use 261 */ 262 struct pch_udc_cfg_data { 263 u16 cur_cfg; 264 u16 cur_intf; 265 u16 cur_alt; 266 }; 267 268 /** 269 * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information 270 * @ep: embedded ep request 271 * @td_stp_phys: for setup request 272 * @td_data_phys: for data request 273 * @td_stp: for setup request 274 * @td_data: for data request 275 * @dev: reference to device struct 276 * @offset_addr: offset address of ep register 277 * @desc: for this ep 278 * @queue: queue for requests 279 * @num: endpoint number 280 * @in: endpoint is IN 281 * @halted: endpoint halted? 282 * @epsts: Endpoint status 283 */ 284 struct pch_udc_ep { 285 struct usb_ep ep; 286 dma_addr_t td_stp_phys; 287 dma_addr_t td_data_phys; 288 struct pch_udc_stp_dma_desc *td_stp; 289 struct pch_udc_data_dma_desc *td_data; 290 struct pch_udc_dev *dev; 291 unsigned long offset_addr; 292 struct list_head queue; 293 unsigned num:5, 294 in:1, 295 halted:1; 296 unsigned long epsts; 297 }; 298 299 /** 300 * struct pch_vbus_gpio_data - Structure holding GPIO informaton 301 * for detecting VBUS 302 * @port: gpio descriptor for the VBUS GPIO 303 * @intr: gpio interrupt number 304 * @irq_work_fall: Structure for WorkQueue 305 * @irq_work_rise: Structure for WorkQueue 306 */ 307 struct pch_vbus_gpio_data { 308 struct gpio_desc *port; 309 int intr; 310 struct work_struct irq_work_fall; 311 struct work_struct irq_work_rise; 312 }; 313 314 /** 315 * struct pch_udc_dev - Structure holding complete information 316 * of the PCH USB device 317 * @gadget: gadget driver data 318 * @driver: reference to gadget driver bound 319 * @pdev: reference to the PCI device 320 * @ep: array of endpoints 321 * @lock: protects all state 322 * @stall: stall requested 323 * @prot_stall: protcol stall requested 324 * @registered: driver registered with system 325 * @suspended: driver in suspended state 326 * @connected: gadget driver associated 327 * @vbus_session: required vbus_session state 328 * @set_cfg_not_acked: pending acknowledgement 4 setup 329 * @waiting_zlp_ack: pending acknowledgement 4 ZLP 330 * @data_requests: DMA pool for data requests 331 * @stp_requests: DMA pool for setup requests 332 * @dma_addr: DMA pool for received 333 * @setup_data: Received setup data 334 * @base_addr: for mapped device memory 335 * @bar: PCI BAR used for mapped device memory 336 * @cfg_data: current cfg, intf, and alt in use 337 * @vbus_gpio: GPIO informaton for detecting VBUS 338 */ 339 struct pch_udc_dev { 340 struct usb_gadget gadget; 341 struct usb_gadget_driver *driver; 342 struct pci_dev *pdev; 343 struct pch_udc_ep ep[PCH_UDC_EP_NUM]; 344 spinlock_t lock; /* protects all state */ 345 unsigned 346 stall:1, 347 prot_stall:1, 348 suspended:1, 349 connected:1, 350 vbus_session:1, 351 set_cfg_not_acked:1, 352 waiting_zlp_ack:1; 353 struct dma_pool *data_requests; 354 struct dma_pool *stp_requests; 355 dma_addr_t dma_addr; 356 struct usb_ctrlrequest setup_data; 357 void __iomem *base_addr; 358 unsigned short bar; 359 struct pch_udc_cfg_data cfg_data; 360 struct pch_vbus_gpio_data vbus_gpio; 361 }; 362 #define to_pch_udc(g) (container_of((g), struct pch_udc_dev, gadget)) 363 364 #define PCH_UDC_PCI_BAR_QUARK_X1000 0 365 #define PCH_UDC_PCI_BAR 1 366 367 #define PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC 0x0939 368 #define PCI_DEVICE_ID_INTEL_EG20T_UDC 0x8808 369 370 #define PCI_DEVICE_ID_ML7213_IOH_UDC 0x801D 371 #define PCI_DEVICE_ID_ML7831_IOH_UDC 0x8808 372 373 static const char ep0_string[] = "ep0in"; 374 static DEFINE_SPINLOCK(udc_stall_spinlock); /* stall spin lock */ 375 static bool speed_fs; 376 module_param_named(speed_fs, speed_fs, bool, S_IRUGO); 377 MODULE_PARM_DESC(speed_fs, "true for Full speed operation"); 378 379 /** 380 * struct pch_udc_request - Structure holding a PCH USB device request packet 381 * @req: embedded ep request 382 * @td_data_phys: phys. address 383 * @td_data: first dma desc. of chain 384 * @td_data_last: last dma desc. of chain 385 * @queue: associated queue 386 * @dma_going: DMA in progress for request 387 * @dma_done: DMA completed for request 388 * @chain_len: chain length 389 */ 390 struct pch_udc_request { 391 struct usb_request req; 392 dma_addr_t td_data_phys; 393 struct pch_udc_data_dma_desc *td_data; 394 struct pch_udc_data_dma_desc *td_data_last; 395 struct list_head queue; 396 unsigned dma_going:1, 397 dma_done:1; 398 unsigned chain_len; 399 }; 400 401 static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg) 402 { 403 return ioread32(dev->base_addr + reg); 404 } 405 406 static inline void pch_udc_writel(struct pch_udc_dev *dev, 407 unsigned long val, unsigned long reg) 408 { 409 iowrite32(val, dev->base_addr + reg); 410 } 411 412 static inline void pch_udc_bit_set(struct pch_udc_dev *dev, 413 unsigned long reg, 414 unsigned long bitmask) 415 { 416 pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg); 417 } 418 419 static inline void pch_udc_bit_clr(struct pch_udc_dev *dev, 420 unsigned long reg, 421 unsigned long bitmask) 422 { 423 pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg); 424 } 425 426 static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg) 427 { 428 return ioread32(ep->dev->base_addr + ep->offset_addr + reg); 429 } 430 431 static inline void pch_udc_ep_writel(struct pch_udc_ep *ep, 432 unsigned long val, unsigned long reg) 433 { 434 iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg); 435 } 436 437 static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep, 438 unsigned long reg, 439 unsigned long bitmask) 440 { 441 pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg); 442 } 443 444 static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep, 445 unsigned long reg, 446 unsigned long bitmask) 447 { 448 pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg); 449 } 450 451 /** 452 * pch_udc_csr_busy() - Wait till idle. 453 * @dev: Reference to pch_udc_dev structure 454 */ 455 static void pch_udc_csr_busy(struct pch_udc_dev *dev) 456 { 457 unsigned int count = 200; 458 459 /* Wait till idle */ 460 while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY) 461 && --count) 462 cpu_relax(); 463 if (!count) 464 dev_err(&dev->pdev->dev, "%s: wait error\n", __func__); 465 } 466 467 /** 468 * pch_udc_write_csr() - Write the command and status registers. 469 * @dev: Reference to pch_udc_dev structure 470 * @val: value to be written to CSR register 471 * @ep: end-point number 472 */ 473 static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val, 474 unsigned int ep) 475 { 476 unsigned long reg = PCH_UDC_CSR(ep); 477 478 pch_udc_csr_busy(dev); /* Wait till idle */ 479 pch_udc_writel(dev, val, reg); 480 pch_udc_csr_busy(dev); /* Wait till idle */ 481 } 482 483 /** 484 * pch_udc_read_csr() - Read the command and status registers. 485 * @dev: Reference to pch_udc_dev structure 486 * @ep: end-point number 487 * 488 * Return codes: content of CSR register 489 */ 490 static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep) 491 { 492 unsigned long reg = PCH_UDC_CSR(ep); 493 494 pch_udc_csr_busy(dev); /* Wait till idle */ 495 pch_udc_readl(dev, reg); /* Dummy read */ 496 pch_udc_csr_busy(dev); /* Wait till idle */ 497 return pch_udc_readl(dev, reg); 498 } 499 500 /** 501 * pch_udc_rmt_wakeup() - Initiate for remote wakeup 502 * @dev: Reference to pch_udc_dev structure 503 */ 504 static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev) 505 { 506 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES); 507 mdelay(1); 508 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES); 509 } 510 511 /** 512 * pch_udc_get_frame() - Get the current frame from device status register 513 * @dev: Reference to pch_udc_dev structure 514 * Retern current frame 515 */ 516 static inline int pch_udc_get_frame(struct pch_udc_dev *dev) 517 { 518 u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR); 519 return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT; 520 } 521 522 /** 523 * pch_udc_clear_selfpowered() - Clear the self power control 524 * @dev: Reference to pch_udc_regs structure 525 */ 526 static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev) 527 { 528 pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP); 529 } 530 531 /** 532 * pch_udc_set_selfpowered() - Set the self power control 533 * @dev: Reference to pch_udc_regs structure 534 */ 535 static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev) 536 { 537 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP); 538 } 539 540 /** 541 * pch_udc_set_disconnect() - Set the disconnect status. 542 * @dev: Reference to pch_udc_regs structure 543 */ 544 static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev) 545 { 546 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD); 547 } 548 549 /** 550 * pch_udc_clear_disconnect() - Clear the disconnect status. 551 * @dev: Reference to pch_udc_regs structure 552 */ 553 static void pch_udc_clear_disconnect(struct pch_udc_dev *dev) 554 { 555 /* Clear the disconnect */ 556 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES); 557 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD); 558 mdelay(1); 559 /* Resume USB signalling */ 560 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES); 561 } 562 563 static void pch_udc_init(struct pch_udc_dev *dev); 564 565 /** 566 * pch_udc_reconnect() - This API initializes usb device controller, 567 * and clear the disconnect status. 568 * @dev: Reference to pch_udc_regs structure 569 */ 570 static void pch_udc_reconnect(struct pch_udc_dev *dev) 571 { 572 pch_udc_init(dev); 573 574 /* enable device interrupts */ 575 /* pch_udc_enable_interrupts() */ 576 pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, 577 UDC_DEVINT_UR | UDC_DEVINT_ENUM); 578 579 /* Clear the disconnect */ 580 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES); 581 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD); 582 mdelay(1); 583 /* Resume USB signalling */ 584 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES); 585 } 586 587 /** 588 * pch_udc_vbus_session() - set or clearr the disconnect status. 589 * @dev: Reference to pch_udc_regs structure 590 * @is_active: Parameter specifying the action 591 * 0: indicating VBUS power is ending 592 * !0: indicating VBUS power is starting 593 */ 594 static inline void pch_udc_vbus_session(struct pch_udc_dev *dev, 595 int is_active) 596 { 597 unsigned long iflags; 598 599 spin_lock_irqsave(&dev->lock, iflags); 600 if (is_active) { 601 pch_udc_reconnect(dev); 602 dev->vbus_session = 1; 603 } else { 604 if (dev->driver && dev->driver->disconnect) { 605 spin_unlock_irqrestore(&dev->lock, iflags); 606 dev->driver->disconnect(&dev->gadget); 607 spin_lock_irqsave(&dev->lock, iflags); 608 } 609 pch_udc_set_disconnect(dev); 610 dev->vbus_session = 0; 611 } 612 spin_unlock_irqrestore(&dev->lock, iflags); 613 } 614 615 /** 616 * pch_udc_ep_set_stall() - Set the stall of endpoint 617 * @ep: Reference to structure of type pch_udc_ep_regs 618 */ 619 static void pch_udc_ep_set_stall(struct pch_udc_ep *ep) 620 { 621 if (ep->in) { 622 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F); 623 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S); 624 } else { 625 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S); 626 } 627 } 628 629 /** 630 * pch_udc_ep_clear_stall() - Clear the stall of endpoint 631 * @ep: Reference to structure of type pch_udc_ep_regs 632 */ 633 static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep) 634 { 635 /* Clear the stall */ 636 pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S); 637 /* Clear NAK by writing CNAK */ 638 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK); 639 } 640 641 /** 642 * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint 643 * @ep: Reference to structure of type pch_udc_ep_regs 644 * @type: Type of endpoint 645 */ 646 static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep, 647 u8 type) 648 { 649 pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) & 650 UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR); 651 } 652 653 /** 654 * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint 655 * @ep: Reference to structure of type pch_udc_ep_regs 656 * @buf_size: The buffer word size 657 * @ep_in: EP is IN 658 */ 659 static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep, 660 u32 buf_size, u32 ep_in) 661 { 662 u32 data; 663 if (ep_in) { 664 data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR); 665 data = (data & 0xffff0000) | (buf_size & 0xffff); 666 pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR); 667 } else { 668 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR); 669 data = (buf_size << 16) | (data & 0xffff); 670 pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR); 671 } 672 } 673 674 /** 675 * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint 676 * @ep: Reference to structure of type pch_udc_ep_regs 677 * @pkt_size: The packet byte size 678 */ 679 static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size) 680 { 681 u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR); 682 data = (data & 0xffff0000) | (pkt_size & 0xffff); 683 pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR); 684 } 685 686 /** 687 * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint 688 * @ep: Reference to structure of type pch_udc_ep_regs 689 * @addr: Address of the register 690 */ 691 static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr) 692 { 693 pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR); 694 } 695 696 /** 697 * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint 698 * @ep: Reference to structure of type pch_udc_ep_regs 699 * @addr: Address of the register 700 */ 701 static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr) 702 { 703 pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR); 704 } 705 706 /** 707 * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint 708 * @ep: Reference to structure of type pch_udc_ep_regs 709 */ 710 static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep) 711 { 712 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P); 713 } 714 715 /** 716 * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint 717 * @ep: Reference to structure of type pch_udc_ep_regs 718 */ 719 static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep) 720 { 721 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY); 722 } 723 724 /** 725 * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint 726 * @ep: Reference to structure of type pch_udc_ep_regs 727 */ 728 static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep) 729 { 730 pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY); 731 } 732 733 /** 734 * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control 735 * register depending on the direction specified 736 * @dev: Reference to structure of type pch_udc_regs 737 * @dir: whether Tx or Rx 738 * DMA_DIR_RX: Receive 739 * DMA_DIR_TX: Transmit 740 */ 741 static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir) 742 { 743 if (dir == DMA_DIR_RX) 744 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE); 745 else if (dir == DMA_DIR_TX) 746 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE); 747 } 748 749 /** 750 * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control 751 * register depending on the direction specified 752 * @dev: Reference to structure of type pch_udc_regs 753 * @dir: Whether Tx or Rx 754 * DMA_DIR_RX: Receive 755 * DMA_DIR_TX: Transmit 756 */ 757 static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir) 758 { 759 if (dir == DMA_DIR_RX) 760 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE); 761 else if (dir == DMA_DIR_TX) 762 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE); 763 } 764 765 /** 766 * pch_udc_set_csr_done() - Set the device control register 767 * CSR done field (bit 13) 768 * @dev: reference to structure of type pch_udc_regs 769 */ 770 static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev) 771 { 772 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE); 773 } 774 775 /** 776 * pch_udc_disable_interrupts() - Disables the specified interrupts 777 * @dev: Reference to structure of type pch_udc_regs 778 * @mask: Mask to disable interrupts 779 */ 780 static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev, 781 u32 mask) 782 { 783 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask); 784 } 785 786 /** 787 * pch_udc_enable_interrupts() - Enable the specified interrupts 788 * @dev: Reference to structure of type pch_udc_regs 789 * @mask: Mask to enable interrupts 790 */ 791 static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev, 792 u32 mask) 793 { 794 pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask); 795 } 796 797 /** 798 * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts 799 * @dev: Reference to structure of type pch_udc_regs 800 * @mask: Mask to disable interrupts 801 */ 802 static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev, 803 u32 mask) 804 { 805 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask); 806 } 807 808 /** 809 * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts 810 * @dev: Reference to structure of type pch_udc_regs 811 * @mask: Mask to enable interrupts 812 */ 813 static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev, 814 u32 mask) 815 { 816 pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask); 817 } 818 819 /** 820 * pch_udc_read_device_interrupts() - Read the device interrupts 821 * @dev: Reference to structure of type pch_udc_regs 822 * Retern The device interrupts 823 */ 824 static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev) 825 { 826 return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR); 827 } 828 829 /** 830 * pch_udc_write_device_interrupts() - Write device interrupts 831 * @dev: Reference to structure of type pch_udc_regs 832 * @val: The value to be written to interrupt register 833 */ 834 static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev, 835 u32 val) 836 { 837 pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR); 838 } 839 840 /** 841 * pch_udc_read_ep_interrupts() - Read the endpoint interrupts 842 * @dev: Reference to structure of type pch_udc_regs 843 * Retern The endpoint interrupt 844 */ 845 static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev) 846 { 847 return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR); 848 } 849 850 /** 851 * pch_udc_write_ep_interrupts() - Clear endpoint interupts 852 * @dev: Reference to structure of type pch_udc_regs 853 * @val: The value to be written to interrupt register 854 */ 855 static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev, 856 u32 val) 857 { 858 pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR); 859 } 860 861 /** 862 * pch_udc_read_device_status() - Read the device status 863 * @dev: Reference to structure of type pch_udc_regs 864 * Retern The device status 865 */ 866 static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev) 867 { 868 return pch_udc_readl(dev, UDC_DEVSTS_ADDR); 869 } 870 871 /** 872 * pch_udc_read_ep_control() - Read the endpoint control 873 * @ep: Reference to structure of type pch_udc_ep_regs 874 * Retern The endpoint control register value 875 */ 876 static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep) 877 { 878 return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR); 879 } 880 881 /** 882 * pch_udc_clear_ep_control() - Clear the endpoint control register 883 * @ep: Reference to structure of type pch_udc_ep_regs 884 * Retern The endpoint control register value 885 */ 886 static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep) 887 { 888 return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR); 889 } 890 891 /** 892 * pch_udc_read_ep_status() - Read the endpoint status 893 * @ep: Reference to structure of type pch_udc_ep_regs 894 * Retern The endpoint status 895 */ 896 static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep) 897 { 898 return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR); 899 } 900 901 /** 902 * pch_udc_clear_ep_status() - Clear the endpoint status 903 * @ep: Reference to structure of type pch_udc_ep_regs 904 * @stat: Endpoint status 905 */ 906 static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep, 907 u32 stat) 908 { 909 return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR); 910 } 911 912 /** 913 * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field) 914 * of the endpoint control register 915 * @ep: Reference to structure of type pch_udc_ep_regs 916 */ 917 static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep) 918 { 919 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK); 920 } 921 922 /** 923 * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field) 924 * of the endpoint control register 925 * @ep: reference to structure of type pch_udc_ep_regs 926 */ 927 static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep) 928 { 929 unsigned int loopcnt = 0; 930 struct pch_udc_dev *dev = ep->dev; 931 932 if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK)) 933 return; 934 if (!ep->in) { 935 loopcnt = 10000; 936 while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) && 937 --loopcnt) 938 udelay(5); 939 if (!loopcnt) 940 dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n", 941 __func__); 942 } 943 loopcnt = 10000; 944 while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) { 945 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK); 946 udelay(5); 947 } 948 if (!loopcnt) 949 dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n", 950 __func__, ep->num, (ep->in ? "in" : "out")); 951 } 952 953 /** 954 * pch_udc_ep_fifo_flush() - Flush the endpoint fifo 955 * @ep: reference to structure of type pch_udc_ep_regs 956 * @dir: direction of endpoint 957 * 0: endpoint is OUT 958 * !0: endpoint is IN 959 */ 960 static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir) 961 { 962 if (dir) { /* IN ep */ 963 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F); 964 return; 965 } 966 } 967 968 /** 969 * pch_udc_ep_enable() - This api enables endpoint 970 * @ep: reference to structure of type pch_udc_ep_regs 971 * @cfg: current configuration information 972 * @desc: endpoint descriptor 973 */ 974 static void pch_udc_ep_enable(struct pch_udc_ep *ep, 975 struct pch_udc_cfg_data *cfg, 976 const struct usb_endpoint_descriptor *desc) 977 { 978 u32 val = 0; 979 u32 buff_size = 0; 980 981 pch_udc_ep_set_trfr_type(ep, desc->bmAttributes); 982 if (ep->in) 983 buff_size = UDC_EPIN_BUFF_SIZE; 984 else 985 buff_size = UDC_EPOUT_BUFF_SIZE; 986 pch_udc_ep_set_bufsz(ep, buff_size, ep->in); 987 pch_udc_ep_set_maxpkt(ep, usb_endpoint_maxp(desc)); 988 pch_udc_ep_set_nak(ep); 989 pch_udc_ep_fifo_flush(ep, ep->in); 990 /* Configure the endpoint */ 991 val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT | 992 ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) << 993 UDC_CSR_NE_TYPE_SHIFT) | 994 (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) | 995 (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) | 996 (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) | 997 usb_endpoint_maxp(desc) << UDC_CSR_NE_MAX_PKT_SHIFT; 998 999 if (ep->in) 1000 pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num)); 1001 else 1002 pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num)); 1003 } 1004 1005 /** 1006 * pch_udc_ep_disable() - This api disables endpoint 1007 * @ep: reference to structure of type pch_udc_ep_regs 1008 */ 1009 static void pch_udc_ep_disable(struct pch_udc_ep *ep) 1010 { 1011 if (ep->in) { 1012 /* flush the fifo */ 1013 pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR); 1014 /* set NAK */ 1015 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR); 1016 pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN); 1017 } else { 1018 /* set NAK */ 1019 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR); 1020 } 1021 /* reset desc pointer */ 1022 pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR); 1023 } 1024 1025 /** 1026 * pch_udc_wait_ep_stall() - Wait EP stall. 1027 * @ep: reference to structure of type pch_udc_ep_regs 1028 */ 1029 static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep) 1030 { 1031 unsigned int count = 10000; 1032 1033 /* Wait till idle */ 1034 while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count) 1035 udelay(5); 1036 if (!count) 1037 dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__); 1038 } 1039 1040 /** 1041 * pch_udc_init() - This API initializes usb device controller 1042 * @dev: Rreference to pch_udc_regs structure 1043 */ 1044 static void pch_udc_init(struct pch_udc_dev *dev) 1045 { 1046 if (NULL == dev) { 1047 pr_err("%s: Invalid address\n", __func__); 1048 return; 1049 } 1050 /* Soft Reset and Reset PHY */ 1051 pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR); 1052 pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR); 1053 mdelay(1); 1054 pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR); 1055 pch_udc_writel(dev, 0x00, UDC_SRST_ADDR); 1056 mdelay(1); 1057 /* mask and clear all device interrupts */ 1058 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK); 1059 pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK); 1060 1061 /* mask and clear all ep interrupts */ 1062 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL); 1063 pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL); 1064 1065 /* enable dynamic CSR programmingi, self powered and device speed */ 1066 if (speed_fs) 1067 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG | 1068 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS); 1069 else /* defaul high speed */ 1070 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG | 1071 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS); 1072 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, 1073 (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) | 1074 (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) | 1075 UDC_DEVCTL_MODE | UDC_DEVCTL_BREN | 1076 UDC_DEVCTL_THE); 1077 } 1078 1079 /** 1080 * pch_udc_exit() - This API exit usb device controller 1081 * @dev: Reference to pch_udc_regs structure 1082 */ 1083 static void pch_udc_exit(struct pch_udc_dev *dev) 1084 { 1085 /* mask all device interrupts */ 1086 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK); 1087 /* mask all ep interrupts */ 1088 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL); 1089 /* put device in disconnected state */ 1090 pch_udc_set_disconnect(dev); 1091 } 1092 1093 /** 1094 * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number 1095 * @gadget: Reference to the gadget driver 1096 * 1097 * Return codes: 1098 * 0: Success 1099 * -EINVAL: If the gadget passed is NULL 1100 */ 1101 static int pch_udc_pcd_get_frame(struct usb_gadget *gadget) 1102 { 1103 struct pch_udc_dev *dev; 1104 1105 if (!gadget) 1106 return -EINVAL; 1107 dev = container_of(gadget, struct pch_udc_dev, gadget); 1108 return pch_udc_get_frame(dev); 1109 } 1110 1111 /** 1112 * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup 1113 * @gadget: Reference to the gadget driver 1114 * 1115 * Return codes: 1116 * 0: Success 1117 * -EINVAL: If the gadget passed is NULL 1118 */ 1119 static int pch_udc_pcd_wakeup(struct usb_gadget *gadget) 1120 { 1121 struct pch_udc_dev *dev; 1122 unsigned long flags; 1123 1124 if (!gadget) 1125 return -EINVAL; 1126 dev = container_of(gadget, struct pch_udc_dev, gadget); 1127 spin_lock_irqsave(&dev->lock, flags); 1128 pch_udc_rmt_wakeup(dev); 1129 spin_unlock_irqrestore(&dev->lock, flags); 1130 return 0; 1131 } 1132 1133 /** 1134 * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device 1135 * is self powered or not 1136 * @gadget: Reference to the gadget driver 1137 * @value: Specifies self powered or not 1138 * 1139 * Return codes: 1140 * 0: Success 1141 * -EINVAL: If the gadget passed is NULL 1142 */ 1143 static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value) 1144 { 1145 struct pch_udc_dev *dev; 1146 1147 if (!gadget) 1148 return -EINVAL; 1149 gadget->is_selfpowered = (value != 0); 1150 dev = container_of(gadget, struct pch_udc_dev, gadget); 1151 if (value) 1152 pch_udc_set_selfpowered(dev); 1153 else 1154 pch_udc_clear_selfpowered(dev); 1155 return 0; 1156 } 1157 1158 /** 1159 * pch_udc_pcd_pullup() - This API is invoked to make the device 1160 * visible/invisible to the host 1161 * @gadget: Reference to the gadget driver 1162 * @is_on: Specifies whether the pull up is made active or inactive 1163 * 1164 * Return codes: 1165 * 0: Success 1166 * -EINVAL: If the gadget passed is NULL 1167 */ 1168 static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on) 1169 { 1170 struct pch_udc_dev *dev; 1171 unsigned long iflags; 1172 1173 if (!gadget) 1174 return -EINVAL; 1175 1176 dev = container_of(gadget, struct pch_udc_dev, gadget); 1177 1178 spin_lock_irqsave(&dev->lock, iflags); 1179 if (is_on) { 1180 pch_udc_reconnect(dev); 1181 } else { 1182 if (dev->driver && dev->driver->disconnect) { 1183 spin_unlock_irqrestore(&dev->lock, iflags); 1184 dev->driver->disconnect(&dev->gadget); 1185 spin_lock_irqsave(&dev->lock, iflags); 1186 } 1187 pch_udc_set_disconnect(dev); 1188 } 1189 spin_unlock_irqrestore(&dev->lock, iflags); 1190 1191 return 0; 1192 } 1193 1194 /** 1195 * pch_udc_pcd_vbus_session() - This API is used by a driver for an external 1196 * transceiver (or GPIO) that 1197 * detects a VBUS power session starting/ending 1198 * @gadget: Reference to the gadget driver 1199 * @is_active: specifies whether the session is starting or ending 1200 * 1201 * Return codes: 1202 * 0: Success 1203 * -EINVAL: If the gadget passed is NULL 1204 */ 1205 static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active) 1206 { 1207 struct pch_udc_dev *dev; 1208 1209 if (!gadget) 1210 return -EINVAL; 1211 dev = container_of(gadget, struct pch_udc_dev, gadget); 1212 pch_udc_vbus_session(dev, is_active); 1213 return 0; 1214 } 1215 1216 /** 1217 * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during 1218 * SET_CONFIGURATION calls to 1219 * specify how much power the device can consume 1220 * @gadget: Reference to the gadget driver 1221 * @mA: specifies the current limit in 2mA unit 1222 * 1223 * Return codes: 1224 * -EINVAL: If the gadget passed is NULL 1225 * -EOPNOTSUPP: 1226 */ 1227 static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA) 1228 { 1229 return -EOPNOTSUPP; 1230 } 1231 1232 static int pch_udc_start(struct usb_gadget *g, 1233 struct usb_gadget_driver *driver); 1234 static int pch_udc_stop(struct usb_gadget *g); 1235 1236 static const struct usb_gadget_ops pch_udc_ops = { 1237 .get_frame = pch_udc_pcd_get_frame, 1238 .wakeup = pch_udc_pcd_wakeup, 1239 .set_selfpowered = pch_udc_pcd_selfpowered, 1240 .pullup = pch_udc_pcd_pullup, 1241 .vbus_session = pch_udc_pcd_vbus_session, 1242 .vbus_draw = pch_udc_pcd_vbus_draw, 1243 .udc_start = pch_udc_start, 1244 .udc_stop = pch_udc_stop, 1245 }; 1246 1247 /** 1248 * pch_vbus_gpio_get_value() - This API gets value of GPIO port as VBUS status. 1249 * @dev: Reference to the driver structure 1250 * 1251 * Return value: 1252 * 1: VBUS is high 1253 * 0: VBUS is low 1254 * -1: It is not enable to detect VBUS using GPIO 1255 */ 1256 static int pch_vbus_gpio_get_value(struct pch_udc_dev *dev) 1257 { 1258 int vbus = 0; 1259 1260 if (dev->vbus_gpio.port) 1261 vbus = gpiod_get_value(dev->vbus_gpio.port) ? 1 : 0; 1262 else 1263 vbus = -1; 1264 1265 return vbus; 1266 } 1267 1268 /** 1269 * pch_vbus_gpio_work_fall() - This API keeps watch on VBUS becoming Low. 1270 * If VBUS is Low, disconnect is processed 1271 * @irq_work: Structure for WorkQueue 1272 * 1273 */ 1274 static void pch_vbus_gpio_work_fall(struct work_struct *irq_work) 1275 { 1276 struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work, 1277 struct pch_vbus_gpio_data, irq_work_fall); 1278 struct pch_udc_dev *dev = 1279 container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio); 1280 int vbus_saved = -1; 1281 int vbus; 1282 int count; 1283 1284 if (!dev->vbus_gpio.port) 1285 return; 1286 1287 for (count = 0; count < (PCH_VBUS_PERIOD / PCH_VBUS_INTERVAL); 1288 count++) { 1289 vbus = pch_vbus_gpio_get_value(dev); 1290 1291 if ((vbus_saved == vbus) && (vbus == 0)) { 1292 dev_dbg(&dev->pdev->dev, "VBUS fell"); 1293 if (dev->driver 1294 && dev->driver->disconnect) { 1295 dev->driver->disconnect( 1296 &dev->gadget); 1297 } 1298 if (dev->vbus_gpio.intr) 1299 pch_udc_init(dev); 1300 else 1301 pch_udc_reconnect(dev); 1302 return; 1303 } 1304 vbus_saved = vbus; 1305 mdelay(PCH_VBUS_INTERVAL); 1306 } 1307 } 1308 1309 /** 1310 * pch_vbus_gpio_work_rise() - This API checks VBUS is High. 1311 * If VBUS is High, connect is processed 1312 * @irq_work: Structure for WorkQueue 1313 * 1314 */ 1315 static void pch_vbus_gpio_work_rise(struct work_struct *irq_work) 1316 { 1317 struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work, 1318 struct pch_vbus_gpio_data, irq_work_rise); 1319 struct pch_udc_dev *dev = 1320 container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio); 1321 int vbus; 1322 1323 if (!dev->vbus_gpio.port) 1324 return; 1325 1326 mdelay(PCH_VBUS_INTERVAL); 1327 vbus = pch_vbus_gpio_get_value(dev); 1328 1329 if (vbus == 1) { 1330 dev_dbg(&dev->pdev->dev, "VBUS rose"); 1331 pch_udc_reconnect(dev); 1332 return; 1333 } 1334 } 1335 1336 /** 1337 * pch_vbus_gpio_irq() - IRQ handler for GPIO interrupt for changing VBUS 1338 * @irq: Interrupt request number 1339 * @data: Reference to the device structure 1340 * 1341 * Return codes: 1342 * 0: Success 1343 * -EINVAL: GPIO port is invalid or can't be initialized. 1344 */ 1345 static irqreturn_t pch_vbus_gpio_irq(int irq, void *data) 1346 { 1347 struct pch_udc_dev *dev = (struct pch_udc_dev *)data; 1348 1349 if (!dev->vbus_gpio.port || !dev->vbus_gpio.intr) 1350 return IRQ_NONE; 1351 1352 if (pch_vbus_gpio_get_value(dev)) 1353 schedule_work(&dev->vbus_gpio.irq_work_rise); 1354 else 1355 schedule_work(&dev->vbus_gpio.irq_work_fall); 1356 1357 return IRQ_HANDLED; 1358 } 1359 1360 /** 1361 * pch_vbus_gpio_init() - This API initializes GPIO port detecting VBUS. 1362 * @dev: Reference to the driver structure 1363 * 1364 * Return codes: 1365 * 0: Success 1366 * -EINVAL: GPIO port is invalid or can't be initialized. 1367 */ 1368 static int pch_vbus_gpio_init(struct pch_udc_dev *dev) 1369 { 1370 struct device *d = &dev->pdev->dev; 1371 int err; 1372 int irq_num = 0; 1373 struct gpio_desc *gpiod; 1374 1375 dev->vbus_gpio.port = NULL; 1376 dev->vbus_gpio.intr = 0; 1377 1378 /* Retrieve the GPIO line from the USB gadget device */ 1379 gpiod = devm_gpiod_get_optional(d, NULL, GPIOD_IN); 1380 if (IS_ERR(gpiod)) 1381 return PTR_ERR(gpiod); 1382 gpiod_set_consumer_name(gpiod, "pch_vbus"); 1383 1384 dev->vbus_gpio.port = gpiod; 1385 INIT_WORK(&dev->vbus_gpio.irq_work_fall, pch_vbus_gpio_work_fall); 1386 1387 irq_num = gpiod_to_irq(gpiod); 1388 if (irq_num > 0) { 1389 irq_set_irq_type(irq_num, IRQ_TYPE_EDGE_BOTH); 1390 err = request_irq(irq_num, pch_vbus_gpio_irq, 0, 1391 "vbus_detect", dev); 1392 if (!err) { 1393 dev->vbus_gpio.intr = irq_num; 1394 INIT_WORK(&dev->vbus_gpio.irq_work_rise, 1395 pch_vbus_gpio_work_rise); 1396 } else { 1397 pr_err("%s: can't request irq %d, err: %d\n", 1398 __func__, irq_num, err); 1399 } 1400 } 1401 1402 return 0; 1403 } 1404 1405 /** 1406 * pch_vbus_gpio_free() - This API frees resources of GPIO port 1407 * @dev: Reference to the driver structure 1408 */ 1409 static void pch_vbus_gpio_free(struct pch_udc_dev *dev) 1410 { 1411 if (dev->vbus_gpio.intr) 1412 free_irq(dev->vbus_gpio.intr, dev); 1413 } 1414 1415 /** 1416 * complete_req() - This API is invoked from the driver when processing 1417 * of a request is complete 1418 * @ep: Reference to the endpoint structure 1419 * @req: Reference to the request structure 1420 * @status: Indicates the success/failure of completion 1421 */ 1422 static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req, 1423 int status) 1424 __releases(&dev->lock) 1425 __acquires(&dev->lock) 1426 { 1427 struct pch_udc_dev *dev; 1428 unsigned halted = ep->halted; 1429 1430 list_del_init(&req->queue); 1431 1432 /* set new status if pending */ 1433 if (req->req.status == -EINPROGRESS) 1434 req->req.status = status; 1435 else 1436 status = req->req.status; 1437 1438 dev = ep->dev; 1439 usb_gadget_unmap_request(&dev->gadget, &req->req, ep->in); 1440 ep->halted = 1; 1441 spin_unlock(&dev->lock); 1442 if (!ep->in) 1443 pch_udc_ep_clear_rrdy(ep); 1444 usb_gadget_giveback_request(&ep->ep, &req->req); 1445 spin_lock(&dev->lock); 1446 ep->halted = halted; 1447 } 1448 1449 /** 1450 * empty_req_queue() - This API empties the request queue of an endpoint 1451 * @ep: Reference to the endpoint structure 1452 */ 1453 static void empty_req_queue(struct pch_udc_ep *ep) 1454 { 1455 struct pch_udc_request *req; 1456 1457 ep->halted = 1; 1458 while (!list_empty(&ep->queue)) { 1459 req = list_entry(ep->queue.next, struct pch_udc_request, queue); 1460 complete_req(ep, req, -ESHUTDOWN); /* Remove from list */ 1461 } 1462 } 1463 1464 /** 1465 * pch_udc_free_dma_chain() - This function frees the DMA chain created 1466 * for the request 1467 * @dev: Reference to the driver structure 1468 * @req: Reference to the request to be freed 1469 * 1470 * Return codes: 1471 * 0: Success 1472 */ 1473 static void pch_udc_free_dma_chain(struct pch_udc_dev *dev, 1474 struct pch_udc_request *req) 1475 { 1476 struct pch_udc_data_dma_desc *td = req->td_data; 1477 unsigned i = req->chain_len; 1478 1479 dma_addr_t addr2; 1480 dma_addr_t addr = (dma_addr_t)td->next; 1481 td->next = 0x00; 1482 for (; i > 1; --i) { 1483 /* do not free first desc., will be done by free for request */ 1484 td = phys_to_virt(addr); 1485 addr2 = (dma_addr_t)td->next; 1486 dma_pool_free(dev->data_requests, td, addr); 1487 addr = addr2; 1488 } 1489 req->chain_len = 1; 1490 } 1491 1492 /** 1493 * pch_udc_create_dma_chain() - This function creates or reinitializes 1494 * a DMA chain 1495 * @ep: Reference to the endpoint structure 1496 * @req: Reference to the request 1497 * @buf_len: The buffer length 1498 * @gfp_flags: Flags to be used while mapping the data buffer 1499 * 1500 * Return codes: 1501 * 0: success, 1502 * -ENOMEM: dma_pool_alloc invocation fails 1503 */ 1504 static int pch_udc_create_dma_chain(struct pch_udc_ep *ep, 1505 struct pch_udc_request *req, 1506 unsigned long buf_len, 1507 gfp_t gfp_flags) 1508 { 1509 struct pch_udc_data_dma_desc *td = req->td_data, *last; 1510 unsigned long bytes = req->req.length, i = 0; 1511 dma_addr_t dma_addr; 1512 unsigned len = 1; 1513 1514 if (req->chain_len > 1) 1515 pch_udc_free_dma_chain(ep->dev, req); 1516 1517 td->dataptr = req->req.dma; 1518 td->status = PCH_UDC_BS_HST_BSY; 1519 1520 for (; ; bytes -= buf_len, ++len) { 1521 td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes); 1522 if (bytes <= buf_len) 1523 break; 1524 last = td; 1525 td = dma_pool_alloc(ep->dev->data_requests, gfp_flags, 1526 &dma_addr); 1527 if (!td) 1528 goto nomem; 1529 i += buf_len; 1530 td->dataptr = req->td_data->dataptr + i; 1531 last->next = dma_addr; 1532 } 1533 1534 req->td_data_last = td; 1535 td->status |= PCH_UDC_DMA_LAST; 1536 td->next = req->td_data_phys; 1537 req->chain_len = len; 1538 return 0; 1539 1540 nomem: 1541 if (len > 1) { 1542 req->chain_len = len; 1543 pch_udc_free_dma_chain(ep->dev, req); 1544 } 1545 req->chain_len = 1; 1546 return -ENOMEM; 1547 } 1548 1549 /** 1550 * prepare_dma() - This function creates and initializes the DMA chain 1551 * for the request 1552 * @ep: Reference to the endpoint structure 1553 * @req: Reference to the request 1554 * @gfp: Flag to be used while mapping the data buffer 1555 * 1556 * Return codes: 1557 * 0: Success 1558 * Other 0: linux error number on failure 1559 */ 1560 static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req, 1561 gfp_t gfp) 1562 { 1563 int retval; 1564 1565 /* Allocate and create a DMA chain */ 1566 retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp); 1567 if (retval) { 1568 pr_err("%s: could not create DMA chain:%d\n", __func__, retval); 1569 return retval; 1570 } 1571 if (ep->in) 1572 req->td_data->status = (req->td_data->status & 1573 ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY; 1574 return 0; 1575 } 1576 1577 /** 1578 * process_zlp() - This function process zero length packets 1579 * from the gadget driver 1580 * @ep: Reference to the endpoint structure 1581 * @req: Reference to the request 1582 */ 1583 static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req) 1584 { 1585 struct pch_udc_dev *dev = ep->dev; 1586 1587 /* IN zlp's are handled by hardware */ 1588 complete_req(ep, req, 0); 1589 1590 /* if set_config or set_intf is waiting for ack by zlp 1591 * then set CSR_DONE 1592 */ 1593 if (dev->set_cfg_not_acked) { 1594 pch_udc_set_csr_done(dev); 1595 dev->set_cfg_not_acked = 0; 1596 } 1597 /* setup command is ACK'ed now by zlp */ 1598 if (!dev->stall && dev->waiting_zlp_ack) { 1599 pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX])); 1600 dev->waiting_zlp_ack = 0; 1601 } 1602 } 1603 1604 /** 1605 * pch_udc_start_rxrequest() - This function starts the receive requirement. 1606 * @ep: Reference to the endpoint structure 1607 * @req: Reference to the request structure 1608 */ 1609 static void pch_udc_start_rxrequest(struct pch_udc_ep *ep, 1610 struct pch_udc_request *req) 1611 { 1612 struct pch_udc_data_dma_desc *td_data; 1613 1614 pch_udc_clear_dma(ep->dev, DMA_DIR_RX); 1615 td_data = req->td_data; 1616 /* Set the status bits for all descriptors */ 1617 while (1) { 1618 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) | 1619 PCH_UDC_BS_HST_RDY; 1620 if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST) 1621 break; 1622 td_data = phys_to_virt(td_data->next); 1623 } 1624 /* Write the descriptor pointer */ 1625 pch_udc_ep_set_ddptr(ep, req->td_data_phys); 1626 req->dma_going = 1; 1627 pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num); 1628 pch_udc_set_dma(ep->dev, DMA_DIR_RX); 1629 pch_udc_ep_clear_nak(ep); 1630 pch_udc_ep_set_rrdy(ep); 1631 } 1632 1633 /** 1634 * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called 1635 * from gadget driver 1636 * @usbep: Reference to the USB endpoint structure 1637 * @desc: Reference to the USB endpoint descriptor structure 1638 * 1639 * Return codes: 1640 * 0: Success 1641 * -EINVAL: 1642 * -ESHUTDOWN: 1643 */ 1644 static int pch_udc_pcd_ep_enable(struct usb_ep *usbep, 1645 const struct usb_endpoint_descriptor *desc) 1646 { 1647 struct pch_udc_ep *ep; 1648 struct pch_udc_dev *dev; 1649 unsigned long iflags; 1650 1651 if (!usbep || (usbep->name == ep0_string) || !desc || 1652 (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize) 1653 return -EINVAL; 1654 1655 ep = container_of(usbep, struct pch_udc_ep, ep); 1656 dev = ep->dev; 1657 if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN)) 1658 return -ESHUTDOWN; 1659 spin_lock_irqsave(&dev->lock, iflags); 1660 ep->ep.desc = desc; 1661 ep->halted = 0; 1662 pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc); 1663 ep->ep.maxpacket = usb_endpoint_maxp(desc); 1664 pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num)); 1665 spin_unlock_irqrestore(&dev->lock, iflags); 1666 return 0; 1667 } 1668 1669 /** 1670 * pch_udc_pcd_ep_disable() - This API disables endpoint and is called 1671 * from gadget driver 1672 * @usbep: Reference to the USB endpoint structure 1673 * 1674 * Return codes: 1675 * 0: Success 1676 * -EINVAL: 1677 */ 1678 static int pch_udc_pcd_ep_disable(struct usb_ep *usbep) 1679 { 1680 struct pch_udc_ep *ep; 1681 unsigned long iflags; 1682 1683 if (!usbep) 1684 return -EINVAL; 1685 1686 ep = container_of(usbep, struct pch_udc_ep, ep); 1687 if ((usbep->name == ep0_string) || !ep->ep.desc) 1688 return -EINVAL; 1689 1690 spin_lock_irqsave(&ep->dev->lock, iflags); 1691 empty_req_queue(ep); 1692 ep->halted = 1; 1693 pch_udc_ep_disable(ep); 1694 pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num)); 1695 ep->ep.desc = NULL; 1696 INIT_LIST_HEAD(&ep->queue); 1697 spin_unlock_irqrestore(&ep->dev->lock, iflags); 1698 return 0; 1699 } 1700 1701 /** 1702 * pch_udc_alloc_request() - This function allocates request structure. 1703 * It is called by gadget driver 1704 * @usbep: Reference to the USB endpoint structure 1705 * @gfp: Flag to be used while allocating memory 1706 * 1707 * Return codes: 1708 * NULL: Failure 1709 * Allocated address: Success 1710 */ 1711 static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep, 1712 gfp_t gfp) 1713 { 1714 struct pch_udc_request *req; 1715 struct pch_udc_ep *ep; 1716 struct pch_udc_data_dma_desc *dma_desc; 1717 1718 if (!usbep) 1719 return NULL; 1720 ep = container_of(usbep, struct pch_udc_ep, ep); 1721 req = kzalloc(sizeof *req, gfp); 1722 if (!req) 1723 return NULL; 1724 req->req.dma = DMA_ADDR_INVALID; 1725 INIT_LIST_HEAD(&req->queue); 1726 if (!ep->dev->dma_addr) 1727 return &req->req; 1728 /* ep0 in requests are allocated from data pool here */ 1729 dma_desc = dma_pool_alloc(ep->dev->data_requests, gfp, 1730 &req->td_data_phys); 1731 if (NULL == dma_desc) { 1732 kfree(req); 1733 return NULL; 1734 } 1735 /* prevent from using desc. - set HOST BUSY */ 1736 dma_desc->status |= PCH_UDC_BS_HST_BSY; 1737 dma_desc->dataptr = lower_32_bits(DMA_ADDR_INVALID); 1738 req->td_data = dma_desc; 1739 req->td_data_last = dma_desc; 1740 req->chain_len = 1; 1741 return &req->req; 1742 } 1743 1744 /** 1745 * pch_udc_free_request() - This function frees request structure. 1746 * It is called by gadget driver 1747 * @usbep: Reference to the USB endpoint structure 1748 * @usbreq: Reference to the USB request 1749 */ 1750 static void pch_udc_free_request(struct usb_ep *usbep, 1751 struct usb_request *usbreq) 1752 { 1753 struct pch_udc_ep *ep; 1754 struct pch_udc_request *req; 1755 struct pch_udc_dev *dev; 1756 1757 if (!usbep || !usbreq) 1758 return; 1759 ep = container_of(usbep, struct pch_udc_ep, ep); 1760 req = container_of(usbreq, struct pch_udc_request, req); 1761 dev = ep->dev; 1762 if (!list_empty(&req->queue)) 1763 dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n", 1764 __func__, usbep->name, req); 1765 if (req->td_data != NULL) { 1766 if (req->chain_len > 1) 1767 pch_udc_free_dma_chain(ep->dev, req); 1768 dma_pool_free(ep->dev->data_requests, req->td_data, 1769 req->td_data_phys); 1770 } 1771 kfree(req); 1772 } 1773 1774 /** 1775 * pch_udc_pcd_queue() - This function queues a request packet. It is called 1776 * by gadget driver 1777 * @usbep: Reference to the USB endpoint structure 1778 * @usbreq: Reference to the USB request 1779 * @gfp: Flag to be used while mapping the data buffer 1780 * 1781 * Return codes: 1782 * 0: Success 1783 * linux error number: Failure 1784 */ 1785 static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq, 1786 gfp_t gfp) 1787 { 1788 int retval = 0; 1789 struct pch_udc_ep *ep; 1790 struct pch_udc_dev *dev; 1791 struct pch_udc_request *req; 1792 unsigned long iflags; 1793 1794 if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf) 1795 return -EINVAL; 1796 ep = container_of(usbep, struct pch_udc_ep, ep); 1797 dev = ep->dev; 1798 if (!ep->ep.desc && ep->num) 1799 return -EINVAL; 1800 req = container_of(usbreq, struct pch_udc_request, req); 1801 if (!list_empty(&req->queue)) 1802 return -EINVAL; 1803 if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN)) 1804 return -ESHUTDOWN; 1805 spin_lock_irqsave(&dev->lock, iflags); 1806 /* map the buffer for dma */ 1807 retval = usb_gadget_map_request(&dev->gadget, usbreq, ep->in); 1808 if (retval) 1809 goto probe_end; 1810 if (usbreq->length > 0) { 1811 retval = prepare_dma(ep, req, GFP_ATOMIC); 1812 if (retval) 1813 goto probe_end; 1814 } 1815 usbreq->actual = 0; 1816 usbreq->status = -EINPROGRESS; 1817 req->dma_done = 0; 1818 if (list_empty(&ep->queue) && !ep->halted) { 1819 /* no pending transfer, so start this req */ 1820 if (!usbreq->length) { 1821 process_zlp(ep, req); 1822 retval = 0; 1823 goto probe_end; 1824 } 1825 if (!ep->in) { 1826 pch_udc_start_rxrequest(ep, req); 1827 } else { 1828 /* 1829 * For IN trfr the descriptors will be programmed and 1830 * P bit will be set when 1831 * we get an IN token 1832 */ 1833 pch_udc_wait_ep_stall(ep); 1834 pch_udc_ep_clear_nak(ep); 1835 pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num)); 1836 } 1837 } 1838 /* Now add this request to the ep's pending requests */ 1839 if (req != NULL) 1840 list_add_tail(&req->queue, &ep->queue); 1841 1842 probe_end: 1843 spin_unlock_irqrestore(&dev->lock, iflags); 1844 return retval; 1845 } 1846 1847 /** 1848 * pch_udc_pcd_dequeue() - This function de-queues a request packet. 1849 * It is called by gadget driver 1850 * @usbep: Reference to the USB endpoint structure 1851 * @usbreq: Reference to the USB request 1852 * 1853 * Return codes: 1854 * 0: Success 1855 * linux error number: Failure 1856 */ 1857 static int pch_udc_pcd_dequeue(struct usb_ep *usbep, 1858 struct usb_request *usbreq) 1859 { 1860 struct pch_udc_ep *ep; 1861 struct pch_udc_request *req; 1862 unsigned long flags; 1863 int ret = -EINVAL; 1864 1865 ep = container_of(usbep, struct pch_udc_ep, ep); 1866 if (!usbep || !usbreq || (!ep->ep.desc && ep->num)) 1867 return ret; 1868 req = container_of(usbreq, struct pch_udc_request, req); 1869 spin_lock_irqsave(&ep->dev->lock, flags); 1870 /* make sure it's still queued on this endpoint */ 1871 list_for_each_entry(req, &ep->queue, queue) { 1872 if (&req->req == usbreq) { 1873 pch_udc_ep_set_nak(ep); 1874 if (!list_empty(&req->queue)) 1875 complete_req(ep, req, -ECONNRESET); 1876 ret = 0; 1877 break; 1878 } 1879 } 1880 spin_unlock_irqrestore(&ep->dev->lock, flags); 1881 return ret; 1882 } 1883 1884 /** 1885 * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt 1886 * feature 1887 * @usbep: Reference to the USB endpoint structure 1888 * @halt: Specifies whether to set or clear the feature 1889 * 1890 * Return codes: 1891 * 0: Success 1892 * linux error number: Failure 1893 */ 1894 static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt) 1895 { 1896 struct pch_udc_ep *ep; 1897 unsigned long iflags; 1898 int ret; 1899 1900 if (!usbep) 1901 return -EINVAL; 1902 ep = container_of(usbep, struct pch_udc_ep, ep); 1903 if (!ep->ep.desc && !ep->num) 1904 return -EINVAL; 1905 if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN)) 1906 return -ESHUTDOWN; 1907 spin_lock_irqsave(&udc_stall_spinlock, iflags); 1908 if (list_empty(&ep->queue)) { 1909 if (halt) { 1910 if (ep->num == PCH_UDC_EP0) 1911 ep->dev->stall = 1; 1912 pch_udc_ep_set_stall(ep); 1913 pch_udc_enable_ep_interrupts( 1914 ep->dev, PCH_UDC_EPINT(ep->in, ep->num)); 1915 } else { 1916 pch_udc_ep_clear_stall(ep); 1917 } 1918 ret = 0; 1919 } else { 1920 ret = -EAGAIN; 1921 } 1922 spin_unlock_irqrestore(&udc_stall_spinlock, iflags); 1923 return ret; 1924 } 1925 1926 /** 1927 * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint 1928 * halt feature 1929 * @usbep: Reference to the USB endpoint structure 1930 * 1931 * Return codes: 1932 * 0: Success 1933 * linux error number: Failure 1934 */ 1935 static int pch_udc_pcd_set_wedge(struct usb_ep *usbep) 1936 { 1937 struct pch_udc_ep *ep; 1938 unsigned long iflags; 1939 int ret; 1940 1941 if (!usbep) 1942 return -EINVAL; 1943 ep = container_of(usbep, struct pch_udc_ep, ep); 1944 if (!ep->ep.desc && !ep->num) 1945 return -EINVAL; 1946 if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN)) 1947 return -ESHUTDOWN; 1948 spin_lock_irqsave(&udc_stall_spinlock, iflags); 1949 if (!list_empty(&ep->queue)) { 1950 ret = -EAGAIN; 1951 } else { 1952 if (ep->num == PCH_UDC_EP0) 1953 ep->dev->stall = 1; 1954 pch_udc_ep_set_stall(ep); 1955 pch_udc_enable_ep_interrupts(ep->dev, 1956 PCH_UDC_EPINT(ep->in, ep->num)); 1957 ep->dev->prot_stall = 1; 1958 ret = 0; 1959 } 1960 spin_unlock_irqrestore(&udc_stall_spinlock, iflags); 1961 return ret; 1962 } 1963 1964 /** 1965 * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint 1966 * @usbep: Reference to the USB endpoint structure 1967 */ 1968 static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep) 1969 { 1970 struct pch_udc_ep *ep; 1971 1972 if (!usbep) 1973 return; 1974 1975 ep = container_of(usbep, struct pch_udc_ep, ep); 1976 if (ep->ep.desc || !ep->num) 1977 pch_udc_ep_fifo_flush(ep, ep->in); 1978 } 1979 1980 static const struct usb_ep_ops pch_udc_ep_ops = { 1981 .enable = pch_udc_pcd_ep_enable, 1982 .disable = pch_udc_pcd_ep_disable, 1983 .alloc_request = pch_udc_alloc_request, 1984 .free_request = pch_udc_free_request, 1985 .queue = pch_udc_pcd_queue, 1986 .dequeue = pch_udc_pcd_dequeue, 1987 .set_halt = pch_udc_pcd_set_halt, 1988 .set_wedge = pch_udc_pcd_set_wedge, 1989 .fifo_status = NULL, 1990 .fifo_flush = pch_udc_pcd_fifo_flush, 1991 }; 1992 1993 /** 1994 * pch_udc_init_setup_buff() - This function initializes the SETUP buffer 1995 * @td_stp: Reference to the SETP buffer structure 1996 */ 1997 static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp) 1998 { 1999 static u32 pky_marker; 2000 2001 if (!td_stp) 2002 return; 2003 td_stp->reserved = ++pky_marker; 2004 memset(&td_stp->request, 0xFF, sizeof td_stp->request); 2005 td_stp->status = PCH_UDC_BS_HST_RDY; 2006 } 2007 2008 /** 2009 * pch_udc_start_next_txrequest() - This function starts 2010 * the next transmission requirement 2011 * @ep: Reference to the endpoint structure 2012 */ 2013 static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep) 2014 { 2015 struct pch_udc_request *req; 2016 struct pch_udc_data_dma_desc *td_data; 2017 2018 if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P) 2019 return; 2020 2021 if (list_empty(&ep->queue)) 2022 return; 2023 2024 /* next request */ 2025 req = list_entry(ep->queue.next, struct pch_udc_request, queue); 2026 if (req->dma_going) 2027 return; 2028 if (!req->td_data) 2029 return; 2030 pch_udc_wait_ep_stall(ep); 2031 req->dma_going = 1; 2032 pch_udc_ep_set_ddptr(ep, 0); 2033 td_data = req->td_data; 2034 while (1) { 2035 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) | 2036 PCH_UDC_BS_HST_RDY; 2037 if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST) 2038 break; 2039 td_data = phys_to_virt(td_data->next); 2040 } 2041 pch_udc_ep_set_ddptr(ep, req->td_data_phys); 2042 pch_udc_set_dma(ep->dev, DMA_DIR_TX); 2043 pch_udc_ep_set_pd(ep); 2044 pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num)); 2045 pch_udc_ep_clear_nak(ep); 2046 } 2047 2048 /** 2049 * pch_udc_complete_transfer() - This function completes a transfer 2050 * @ep: Reference to the endpoint structure 2051 */ 2052 static void pch_udc_complete_transfer(struct pch_udc_ep *ep) 2053 { 2054 struct pch_udc_request *req; 2055 struct pch_udc_dev *dev = ep->dev; 2056 2057 if (list_empty(&ep->queue)) 2058 return; 2059 req = list_entry(ep->queue.next, struct pch_udc_request, queue); 2060 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) != 2061 PCH_UDC_BS_DMA_DONE) 2062 return; 2063 if ((req->td_data_last->status & PCH_UDC_RXTX_STS) != 2064 PCH_UDC_RTS_SUCC) { 2065 dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) " 2066 "epstatus=0x%08x\n", 2067 (req->td_data_last->status & PCH_UDC_RXTX_STS), 2068 (int)(ep->epsts)); 2069 return; 2070 } 2071 2072 req->req.actual = req->req.length; 2073 req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST; 2074 req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST; 2075 complete_req(ep, req, 0); 2076 req->dma_going = 0; 2077 if (!list_empty(&ep->queue)) { 2078 pch_udc_wait_ep_stall(ep); 2079 pch_udc_ep_clear_nak(ep); 2080 pch_udc_enable_ep_interrupts(ep->dev, 2081 PCH_UDC_EPINT(ep->in, ep->num)); 2082 } else { 2083 pch_udc_disable_ep_interrupts(ep->dev, 2084 PCH_UDC_EPINT(ep->in, ep->num)); 2085 } 2086 } 2087 2088 /** 2089 * pch_udc_complete_receiver() - This function completes a receiver 2090 * @ep: Reference to the endpoint structure 2091 */ 2092 static void pch_udc_complete_receiver(struct pch_udc_ep *ep) 2093 { 2094 struct pch_udc_request *req; 2095 struct pch_udc_dev *dev = ep->dev; 2096 unsigned int count; 2097 struct pch_udc_data_dma_desc *td; 2098 dma_addr_t addr; 2099 2100 if (list_empty(&ep->queue)) 2101 return; 2102 /* next request */ 2103 req = list_entry(ep->queue.next, struct pch_udc_request, queue); 2104 pch_udc_clear_dma(ep->dev, DMA_DIR_RX); 2105 pch_udc_ep_set_ddptr(ep, 0); 2106 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) == 2107 PCH_UDC_BS_DMA_DONE) 2108 td = req->td_data_last; 2109 else 2110 td = req->td_data; 2111 2112 while (1) { 2113 if ((td->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) { 2114 dev_err(&dev->pdev->dev, "Invalid RXTX status=0x%08x " 2115 "epstatus=0x%08x\n", 2116 (req->td_data->status & PCH_UDC_RXTX_STS), 2117 (int)(ep->epsts)); 2118 return; 2119 } 2120 if ((td->status & PCH_UDC_BUFF_STS) == PCH_UDC_BS_DMA_DONE) 2121 if (td->status & PCH_UDC_DMA_LAST) { 2122 count = td->status & PCH_UDC_RXTX_BYTES; 2123 break; 2124 } 2125 if (td == req->td_data_last) { 2126 dev_err(&dev->pdev->dev, "Not complete RX descriptor"); 2127 return; 2128 } 2129 addr = (dma_addr_t)td->next; 2130 td = phys_to_virt(addr); 2131 } 2132 /* on 64k packets the RXBYTES field is zero */ 2133 if (!count && (req->req.length == UDC_DMA_MAXPACKET)) 2134 count = UDC_DMA_MAXPACKET; 2135 req->td_data->status |= PCH_UDC_DMA_LAST; 2136 td->status |= PCH_UDC_BS_HST_BSY; 2137 2138 req->dma_going = 0; 2139 req->req.actual = count; 2140 complete_req(ep, req, 0); 2141 /* If there is a new/failed requests try that now */ 2142 if (!list_empty(&ep->queue)) { 2143 req = list_entry(ep->queue.next, struct pch_udc_request, queue); 2144 pch_udc_start_rxrequest(ep, req); 2145 } 2146 } 2147 2148 /** 2149 * pch_udc_svc_data_in() - This function process endpoint interrupts 2150 * for IN endpoints 2151 * @dev: Reference to the device structure 2152 * @ep_num: Endpoint that generated the interrupt 2153 */ 2154 static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num) 2155 { 2156 u32 epsts; 2157 struct pch_udc_ep *ep; 2158 2159 ep = &dev->ep[UDC_EPIN_IDX(ep_num)]; 2160 epsts = ep->epsts; 2161 ep->epsts = 0; 2162 2163 if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE | 2164 UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY | 2165 UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE))) 2166 return; 2167 if ((epsts & UDC_EPSTS_BNA)) 2168 return; 2169 if (epsts & UDC_EPSTS_HE) 2170 return; 2171 if (epsts & UDC_EPSTS_RSS) { 2172 pch_udc_ep_set_stall(ep); 2173 pch_udc_enable_ep_interrupts(ep->dev, 2174 PCH_UDC_EPINT(ep->in, ep->num)); 2175 } 2176 if (epsts & UDC_EPSTS_RCS) { 2177 if (!dev->prot_stall) { 2178 pch_udc_ep_clear_stall(ep); 2179 } else { 2180 pch_udc_ep_set_stall(ep); 2181 pch_udc_enable_ep_interrupts(ep->dev, 2182 PCH_UDC_EPINT(ep->in, ep->num)); 2183 } 2184 } 2185 if (epsts & UDC_EPSTS_TDC) 2186 pch_udc_complete_transfer(ep); 2187 /* On IN interrupt, provide data if we have any */ 2188 if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) && 2189 !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY)) 2190 pch_udc_start_next_txrequest(ep); 2191 } 2192 2193 /** 2194 * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint 2195 * @dev: Reference to the device structure 2196 * @ep_num: Endpoint that generated the interrupt 2197 */ 2198 static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num) 2199 { 2200 u32 epsts; 2201 struct pch_udc_ep *ep; 2202 struct pch_udc_request *req = NULL; 2203 2204 ep = &dev->ep[UDC_EPOUT_IDX(ep_num)]; 2205 epsts = ep->epsts; 2206 ep->epsts = 0; 2207 2208 if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) { 2209 /* next request */ 2210 req = list_entry(ep->queue.next, struct pch_udc_request, 2211 queue); 2212 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) != 2213 PCH_UDC_BS_DMA_DONE) { 2214 if (!req->dma_going) 2215 pch_udc_start_rxrequest(ep, req); 2216 return; 2217 } 2218 } 2219 if (epsts & UDC_EPSTS_HE) 2220 return; 2221 if (epsts & UDC_EPSTS_RSS) { 2222 pch_udc_ep_set_stall(ep); 2223 pch_udc_enable_ep_interrupts(ep->dev, 2224 PCH_UDC_EPINT(ep->in, ep->num)); 2225 } 2226 if (epsts & UDC_EPSTS_RCS) { 2227 if (!dev->prot_stall) { 2228 pch_udc_ep_clear_stall(ep); 2229 } else { 2230 pch_udc_ep_set_stall(ep); 2231 pch_udc_enable_ep_interrupts(ep->dev, 2232 PCH_UDC_EPINT(ep->in, ep->num)); 2233 } 2234 } 2235 if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) == 2236 UDC_EPSTS_OUT_DATA) { 2237 if (ep->dev->prot_stall == 1) { 2238 pch_udc_ep_set_stall(ep); 2239 pch_udc_enable_ep_interrupts(ep->dev, 2240 PCH_UDC_EPINT(ep->in, ep->num)); 2241 } else { 2242 pch_udc_complete_receiver(ep); 2243 } 2244 } 2245 if (list_empty(&ep->queue)) 2246 pch_udc_set_dma(dev, DMA_DIR_RX); 2247 } 2248 2249 static int pch_udc_gadget_setup(struct pch_udc_dev *dev) 2250 __must_hold(&dev->lock) 2251 { 2252 int rc; 2253 2254 /* In some cases we can get an interrupt before driver gets setup */ 2255 if (!dev->driver) 2256 return -ESHUTDOWN; 2257 2258 spin_unlock(&dev->lock); 2259 rc = dev->driver->setup(&dev->gadget, &dev->setup_data); 2260 spin_lock(&dev->lock); 2261 return rc; 2262 } 2263 2264 /** 2265 * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts 2266 * @dev: Reference to the device structure 2267 */ 2268 static void pch_udc_svc_control_in(struct pch_udc_dev *dev) 2269 { 2270 u32 epsts; 2271 struct pch_udc_ep *ep; 2272 struct pch_udc_ep *ep_out; 2273 2274 ep = &dev->ep[UDC_EP0IN_IDX]; 2275 ep_out = &dev->ep[UDC_EP0OUT_IDX]; 2276 epsts = ep->epsts; 2277 ep->epsts = 0; 2278 2279 if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE | 2280 UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY | 2281 UDC_EPSTS_XFERDONE))) 2282 return; 2283 if ((epsts & UDC_EPSTS_BNA)) 2284 return; 2285 if (epsts & UDC_EPSTS_HE) 2286 return; 2287 if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) { 2288 pch_udc_complete_transfer(ep); 2289 pch_udc_clear_dma(dev, DMA_DIR_RX); 2290 ep_out->td_data->status = (ep_out->td_data->status & 2291 ~PCH_UDC_BUFF_STS) | 2292 PCH_UDC_BS_HST_RDY; 2293 pch_udc_ep_clear_nak(ep_out); 2294 pch_udc_set_dma(dev, DMA_DIR_RX); 2295 pch_udc_ep_set_rrdy(ep_out); 2296 } 2297 /* On IN interrupt, provide data if we have any */ 2298 if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) && 2299 !(epsts & UDC_EPSTS_TXEMPTY)) 2300 pch_udc_start_next_txrequest(ep); 2301 } 2302 2303 /** 2304 * pch_udc_svc_control_out() - Routine that handle Control 2305 * OUT endpoint interrupts 2306 * @dev: Reference to the device structure 2307 */ 2308 static void pch_udc_svc_control_out(struct pch_udc_dev *dev) 2309 __releases(&dev->lock) 2310 __acquires(&dev->lock) 2311 { 2312 u32 stat; 2313 int setup_supported; 2314 struct pch_udc_ep *ep; 2315 2316 ep = &dev->ep[UDC_EP0OUT_IDX]; 2317 stat = ep->epsts; 2318 ep->epsts = 0; 2319 2320 /* If setup data */ 2321 if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) == 2322 UDC_EPSTS_OUT_SETUP) { 2323 dev->stall = 0; 2324 dev->ep[UDC_EP0IN_IDX].halted = 0; 2325 dev->ep[UDC_EP0OUT_IDX].halted = 0; 2326 dev->setup_data = ep->td_stp->request; 2327 pch_udc_init_setup_buff(ep->td_stp); 2328 pch_udc_clear_dma(dev, DMA_DIR_RX); 2329 pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]), 2330 dev->ep[UDC_EP0IN_IDX].in); 2331 if ((dev->setup_data.bRequestType & USB_DIR_IN)) 2332 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep; 2333 else /* OUT */ 2334 dev->gadget.ep0 = &ep->ep; 2335 /* If Mass storage Reset */ 2336 if ((dev->setup_data.bRequestType == 0x21) && 2337 (dev->setup_data.bRequest == 0xFF)) 2338 dev->prot_stall = 0; 2339 /* call gadget with setup data received */ 2340 setup_supported = pch_udc_gadget_setup(dev); 2341 2342 if (dev->setup_data.bRequestType & USB_DIR_IN) { 2343 ep->td_data->status = (ep->td_data->status & 2344 ~PCH_UDC_BUFF_STS) | 2345 PCH_UDC_BS_HST_RDY; 2346 pch_udc_ep_set_ddptr(ep, ep->td_data_phys); 2347 } 2348 /* ep0 in returns data on IN phase */ 2349 if (setup_supported >= 0 && setup_supported < 2350 UDC_EP0IN_MAX_PKT_SIZE) { 2351 pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX])); 2352 /* Gadget would have queued a request when 2353 * we called the setup */ 2354 if (!(dev->setup_data.bRequestType & USB_DIR_IN)) { 2355 pch_udc_set_dma(dev, DMA_DIR_RX); 2356 pch_udc_ep_clear_nak(ep); 2357 } 2358 } else if (setup_supported < 0) { 2359 /* if unsupported request, then stall */ 2360 pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX])); 2361 pch_udc_enable_ep_interrupts(ep->dev, 2362 PCH_UDC_EPINT(ep->in, ep->num)); 2363 dev->stall = 0; 2364 pch_udc_set_dma(dev, DMA_DIR_RX); 2365 } else { 2366 dev->waiting_zlp_ack = 1; 2367 } 2368 } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) == 2369 UDC_EPSTS_OUT_DATA) && !dev->stall) { 2370 pch_udc_clear_dma(dev, DMA_DIR_RX); 2371 pch_udc_ep_set_ddptr(ep, 0); 2372 if (!list_empty(&ep->queue)) { 2373 ep->epsts = stat; 2374 pch_udc_svc_data_out(dev, PCH_UDC_EP0); 2375 } 2376 pch_udc_set_dma(dev, DMA_DIR_RX); 2377 } 2378 pch_udc_ep_set_rrdy(ep); 2379 } 2380 2381 2382 /** 2383 * pch_udc_postsvc_epinters() - This function enables end point interrupts 2384 * and clears NAK status 2385 * @dev: Reference to the device structure 2386 * @ep_num: End point number 2387 */ 2388 static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num) 2389 { 2390 struct pch_udc_ep *ep = &dev->ep[UDC_EPIN_IDX(ep_num)]; 2391 if (list_empty(&ep->queue)) 2392 return; 2393 pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num)); 2394 pch_udc_ep_clear_nak(ep); 2395 } 2396 2397 /** 2398 * pch_udc_read_all_epstatus() - This function read all endpoint status 2399 * @dev: Reference to the device structure 2400 * @ep_intr: Status of endpoint interrupt 2401 */ 2402 static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr) 2403 { 2404 int i; 2405 struct pch_udc_ep *ep; 2406 2407 for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) { 2408 /* IN */ 2409 if (ep_intr & (0x1 << i)) { 2410 ep = &dev->ep[UDC_EPIN_IDX(i)]; 2411 ep->epsts = pch_udc_read_ep_status(ep); 2412 pch_udc_clear_ep_status(ep, ep->epsts); 2413 } 2414 /* OUT */ 2415 if (ep_intr & (0x10000 << i)) { 2416 ep = &dev->ep[UDC_EPOUT_IDX(i)]; 2417 ep->epsts = pch_udc_read_ep_status(ep); 2418 pch_udc_clear_ep_status(ep, ep->epsts); 2419 } 2420 } 2421 } 2422 2423 /** 2424 * pch_udc_activate_control_ep() - This function enables the control endpoints 2425 * for traffic after a reset 2426 * @dev: Reference to the device structure 2427 */ 2428 static void pch_udc_activate_control_ep(struct pch_udc_dev *dev) 2429 { 2430 struct pch_udc_ep *ep; 2431 u32 val; 2432 2433 /* Setup the IN endpoint */ 2434 ep = &dev->ep[UDC_EP0IN_IDX]; 2435 pch_udc_clear_ep_control(ep); 2436 pch_udc_ep_fifo_flush(ep, ep->in); 2437 pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in); 2438 pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE); 2439 /* Initialize the IN EP Descriptor */ 2440 ep->td_data = NULL; 2441 ep->td_stp = NULL; 2442 ep->td_data_phys = 0; 2443 ep->td_stp_phys = 0; 2444 2445 /* Setup the OUT endpoint */ 2446 ep = &dev->ep[UDC_EP0OUT_IDX]; 2447 pch_udc_clear_ep_control(ep); 2448 pch_udc_ep_fifo_flush(ep, ep->in); 2449 pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in); 2450 pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE); 2451 val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT; 2452 pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX); 2453 2454 /* Initialize the SETUP buffer */ 2455 pch_udc_init_setup_buff(ep->td_stp); 2456 /* Write the pointer address of dma descriptor */ 2457 pch_udc_ep_set_subptr(ep, ep->td_stp_phys); 2458 /* Write the pointer address of Setup descriptor */ 2459 pch_udc_ep_set_ddptr(ep, ep->td_data_phys); 2460 2461 /* Initialize the dma descriptor */ 2462 ep->td_data->status = PCH_UDC_DMA_LAST; 2463 ep->td_data->dataptr = dev->dma_addr; 2464 ep->td_data->next = ep->td_data_phys; 2465 2466 pch_udc_ep_clear_nak(ep); 2467 } 2468 2469 2470 /** 2471 * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt 2472 * @dev: Reference to driver structure 2473 */ 2474 static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev) 2475 { 2476 struct pch_udc_ep *ep; 2477 int i; 2478 2479 pch_udc_clear_dma(dev, DMA_DIR_TX); 2480 pch_udc_clear_dma(dev, DMA_DIR_RX); 2481 /* Mask all endpoint interrupts */ 2482 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL); 2483 /* clear all endpoint interrupts */ 2484 pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL); 2485 2486 for (i = 0; i < PCH_UDC_EP_NUM; i++) { 2487 ep = &dev->ep[i]; 2488 pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK); 2489 pch_udc_clear_ep_control(ep); 2490 pch_udc_ep_set_ddptr(ep, 0); 2491 pch_udc_write_csr(ep->dev, 0x00, i); 2492 } 2493 dev->stall = 0; 2494 dev->prot_stall = 0; 2495 dev->waiting_zlp_ack = 0; 2496 dev->set_cfg_not_acked = 0; 2497 2498 /* disable ep to empty req queue. Skip the control EP's */ 2499 for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) { 2500 ep = &dev->ep[i]; 2501 pch_udc_ep_set_nak(ep); 2502 pch_udc_ep_fifo_flush(ep, ep->in); 2503 /* Complete request queue */ 2504 empty_req_queue(ep); 2505 } 2506 if (dev->driver) { 2507 spin_unlock(&dev->lock); 2508 usb_gadget_udc_reset(&dev->gadget, dev->driver); 2509 spin_lock(&dev->lock); 2510 } 2511 } 2512 2513 /** 2514 * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration 2515 * done interrupt 2516 * @dev: Reference to driver structure 2517 */ 2518 static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev) 2519 { 2520 u32 dev_stat, dev_speed; 2521 u32 speed = USB_SPEED_FULL; 2522 2523 dev_stat = pch_udc_read_device_status(dev); 2524 dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >> 2525 UDC_DEVSTS_ENUM_SPEED_SHIFT; 2526 switch (dev_speed) { 2527 case UDC_DEVSTS_ENUM_SPEED_HIGH: 2528 speed = USB_SPEED_HIGH; 2529 break; 2530 case UDC_DEVSTS_ENUM_SPEED_FULL: 2531 speed = USB_SPEED_FULL; 2532 break; 2533 case UDC_DEVSTS_ENUM_SPEED_LOW: 2534 speed = USB_SPEED_LOW; 2535 break; 2536 default: 2537 BUG(); 2538 } 2539 dev->gadget.speed = speed; 2540 pch_udc_activate_control_ep(dev); 2541 pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0); 2542 pch_udc_set_dma(dev, DMA_DIR_TX); 2543 pch_udc_set_dma(dev, DMA_DIR_RX); 2544 pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX])); 2545 2546 /* enable device interrupts */ 2547 pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US | 2548 UDC_DEVINT_ES | UDC_DEVINT_ENUM | 2549 UDC_DEVINT_SI | UDC_DEVINT_SC); 2550 } 2551 2552 /** 2553 * pch_udc_svc_intf_interrupt() - This function handles a set interface 2554 * interrupt 2555 * @dev: Reference to driver structure 2556 */ 2557 static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev) 2558 { 2559 u32 reg, dev_stat = 0; 2560 int i; 2561 2562 dev_stat = pch_udc_read_device_status(dev); 2563 dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >> 2564 UDC_DEVSTS_INTF_SHIFT; 2565 dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >> 2566 UDC_DEVSTS_ALT_SHIFT; 2567 dev->set_cfg_not_acked = 1; 2568 /* Construct the usb request for gadget driver and inform it */ 2569 memset(&dev->setup_data, 0 , sizeof dev->setup_data); 2570 dev->setup_data.bRequest = USB_REQ_SET_INTERFACE; 2571 dev->setup_data.bRequestType = USB_RECIP_INTERFACE; 2572 dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt); 2573 dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf); 2574 /* programm the Endpoint Cfg registers */ 2575 /* Only one end point cfg register */ 2576 reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX); 2577 reg = (reg & ~UDC_CSR_NE_INTF_MASK) | 2578 (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT); 2579 reg = (reg & ~UDC_CSR_NE_ALT_MASK) | 2580 (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT); 2581 pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX); 2582 for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) { 2583 /* clear stall bits */ 2584 pch_udc_ep_clear_stall(&(dev->ep[i])); 2585 dev->ep[i].halted = 0; 2586 } 2587 dev->stall = 0; 2588 pch_udc_gadget_setup(dev); 2589 } 2590 2591 /** 2592 * pch_udc_svc_cfg_interrupt() - This function handles a set configuration 2593 * interrupt 2594 * @dev: Reference to driver structure 2595 */ 2596 static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev) 2597 { 2598 int i; 2599 u32 reg, dev_stat = 0; 2600 2601 dev_stat = pch_udc_read_device_status(dev); 2602 dev->set_cfg_not_acked = 1; 2603 dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >> 2604 UDC_DEVSTS_CFG_SHIFT; 2605 /* make usb request for gadget driver */ 2606 memset(&dev->setup_data, 0 , sizeof dev->setup_data); 2607 dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION; 2608 dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg); 2609 /* program the NE registers */ 2610 /* Only one end point cfg register */ 2611 reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX); 2612 reg = (reg & ~UDC_CSR_NE_CFG_MASK) | 2613 (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT); 2614 pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX); 2615 for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) { 2616 /* clear stall bits */ 2617 pch_udc_ep_clear_stall(&(dev->ep[i])); 2618 dev->ep[i].halted = 0; 2619 } 2620 dev->stall = 0; 2621 2622 /* call gadget zero with setup data received */ 2623 pch_udc_gadget_setup(dev); 2624 } 2625 2626 /** 2627 * pch_udc_dev_isr() - This function services device interrupts 2628 * by invoking appropriate routines. 2629 * @dev: Reference to the device structure 2630 * @dev_intr: The Device interrupt status. 2631 */ 2632 static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr) 2633 { 2634 int vbus; 2635 2636 /* USB Reset Interrupt */ 2637 if (dev_intr & UDC_DEVINT_UR) { 2638 pch_udc_svc_ur_interrupt(dev); 2639 dev_dbg(&dev->pdev->dev, "USB_RESET\n"); 2640 } 2641 /* Enumeration Done Interrupt */ 2642 if (dev_intr & UDC_DEVINT_ENUM) { 2643 pch_udc_svc_enum_interrupt(dev); 2644 dev_dbg(&dev->pdev->dev, "USB_ENUM\n"); 2645 } 2646 /* Set Interface Interrupt */ 2647 if (dev_intr & UDC_DEVINT_SI) 2648 pch_udc_svc_intf_interrupt(dev); 2649 /* Set Config Interrupt */ 2650 if (dev_intr & UDC_DEVINT_SC) 2651 pch_udc_svc_cfg_interrupt(dev); 2652 /* USB Suspend interrupt */ 2653 if (dev_intr & UDC_DEVINT_US) { 2654 if (dev->driver 2655 && dev->driver->suspend) { 2656 spin_unlock(&dev->lock); 2657 dev->driver->suspend(&dev->gadget); 2658 spin_lock(&dev->lock); 2659 } 2660 2661 vbus = pch_vbus_gpio_get_value(dev); 2662 if ((dev->vbus_session == 0) 2663 && (vbus != 1)) { 2664 if (dev->driver && dev->driver->disconnect) { 2665 spin_unlock(&dev->lock); 2666 dev->driver->disconnect(&dev->gadget); 2667 spin_lock(&dev->lock); 2668 } 2669 pch_udc_reconnect(dev); 2670 } else if ((dev->vbus_session == 0) 2671 && (vbus == 1) 2672 && !dev->vbus_gpio.intr) 2673 schedule_work(&dev->vbus_gpio.irq_work_fall); 2674 2675 dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n"); 2676 } 2677 /* Clear the SOF interrupt, if enabled */ 2678 if (dev_intr & UDC_DEVINT_SOF) 2679 dev_dbg(&dev->pdev->dev, "SOF\n"); 2680 /* ES interrupt, IDLE > 3ms on the USB */ 2681 if (dev_intr & UDC_DEVINT_ES) 2682 dev_dbg(&dev->pdev->dev, "ES\n"); 2683 /* RWKP interrupt */ 2684 if (dev_intr & UDC_DEVINT_RWKP) 2685 dev_dbg(&dev->pdev->dev, "RWKP\n"); 2686 } 2687 2688 /** 2689 * pch_udc_isr() - This function handles interrupts from the PCH USB Device 2690 * @irq: Interrupt request number 2691 * @pdev: Reference to the device structure 2692 */ 2693 static irqreturn_t pch_udc_isr(int irq, void *pdev) 2694 { 2695 struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev; 2696 u32 dev_intr, ep_intr; 2697 int i; 2698 2699 dev_intr = pch_udc_read_device_interrupts(dev); 2700 ep_intr = pch_udc_read_ep_interrupts(dev); 2701 2702 /* For a hot plug, this find that the controller is hung up. */ 2703 if (dev_intr == ep_intr) 2704 if (dev_intr == pch_udc_readl(dev, UDC_DEVCFG_ADDR)) { 2705 dev_dbg(&dev->pdev->dev, "UDC: Hung up\n"); 2706 /* The controller is reset */ 2707 pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR); 2708 return IRQ_HANDLED; 2709 } 2710 if (dev_intr) 2711 /* Clear device interrupts */ 2712 pch_udc_write_device_interrupts(dev, dev_intr); 2713 if (ep_intr) 2714 /* Clear ep interrupts */ 2715 pch_udc_write_ep_interrupts(dev, ep_intr); 2716 if (!dev_intr && !ep_intr) 2717 return IRQ_NONE; 2718 spin_lock(&dev->lock); 2719 if (dev_intr) 2720 pch_udc_dev_isr(dev, dev_intr); 2721 if (ep_intr) { 2722 pch_udc_read_all_epstatus(dev, ep_intr); 2723 /* Process Control In interrupts, if present */ 2724 if (ep_intr & UDC_EPINT_IN_EP0) { 2725 pch_udc_svc_control_in(dev); 2726 pch_udc_postsvc_epinters(dev, 0); 2727 } 2728 /* Process Control Out interrupts, if present */ 2729 if (ep_intr & UDC_EPINT_OUT_EP0) 2730 pch_udc_svc_control_out(dev); 2731 /* Process data in end point interrupts */ 2732 for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) { 2733 if (ep_intr & (1 << i)) { 2734 pch_udc_svc_data_in(dev, i); 2735 pch_udc_postsvc_epinters(dev, i); 2736 } 2737 } 2738 /* Process data out end point interrupts */ 2739 for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT + 2740 PCH_UDC_USED_EP_NUM); i++) 2741 if (ep_intr & (1 << i)) 2742 pch_udc_svc_data_out(dev, i - 2743 UDC_EPINT_OUT_SHIFT); 2744 } 2745 spin_unlock(&dev->lock); 2746 return IRQ_HANDLED; 2747 } 2748 2749 /** 2750 * pch_udc_setup_ep0() - This function enables control endpoint for traffic 2751 * @dev: Reference to the device structure 2752 */ 2753 static void pch_udc_setup_ep0(struct pch_udc_dev *dev) 2754 { 2755 /* enable ep0 interrupts */ 2756 pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | 2757 UDC_EPINT_OUT_EP0); 2758 /* enable device interrupts */ 2759 pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US | 2760 UDC_DEVINT_ES | UDC_DEVINT_ENUM | 2761 UDC_DEVINT_SI | UDC_DEVINT_SC); 2762 } 2763 2764 /** 2765 * pch_udc_pcd_reinit() - This API initializes the endpoint structures 2766 * @dev: Reference to the driver structure 2767 */ 2768 static void pch_udc_pcd_reinit(struct pch_udc_dev *dev) 2769 { 2770 const char *const ep_string[] = { 2771 ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out", 2772 "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out", 2773 "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out", 2774 "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out", 2775 "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out", 2776 "ep15in", "ep15out", 2777 }; 2778 int i; 2779 2780 dev->gadget.speed = USB_SPEED_UNKNOWN; 2781 INIT_LIST_HEAD(&dev->gadget.ep_list); 2782 2783 /* Initialize the endpoints structures */ 2784 memset(dev->ep, 0, sizeof dev->ep); 2785 for (i = 0; i < PCH_UDC_EP_NUM; i++) { 2786 struct pch_udc_ep *ep = &dev->ep[i]; 2787 ep->dev = dev; 2788 ep->halted = 1; 2789 ep->num = i / 2; 2790 ep->in = ~i & 1; 2791 ep->ep.name = ep_string[i]; 2792 ep->ep.ops = &pch_udc_ep_ops; 2793 if (ep->in) { 2794 ep->offset_addr = ep->num * UDC_EP_REG_SHIFT; 2795 ep->ep.caps.dir_in = true; 2796 } else { 2797 ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) * 2798 UDC_EP_REG_SHIFT; 2799 ep->ep.caps.dir_out = true; 2800 } 2801 if (i == UDC_EP0IN_IDX || i == UDC_EP0OUT_IDX) { 2802 ep->ep.caps.type_control = true; 2803 } else { 2804 ep->ep.caps.type_iso = true; 2805 ep->ep.caps.type_bulk = true; 2806 ep->ep.caps.type_int = true; 2807 } 2808 /* need to set ep->ep.maxpacket and set Default Configuration?*/ 2809 usb_ep_set_maxpacket_limit(&ep->ep, UDC_BULK_MAX_PKT_SIZE); 2810 list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list); 2811 INIT_LIST_HEAD(&ep->queue); 2812 } 2813 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IDX].ep, UDC_EP0IN_MAX_PKT_SIZE); 2814 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IDX].ep, UDC_EP0OUT_MAX_PKT_SIZE); 2815 2816 /* remove ep0 in and out from the list. They have own pointer */ 2817 list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list); 2818 list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list); 2819 2820 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep; 2821 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list); 2822 } 2823 2824 /** 2825 * pch_udc_pcd_init() - This API initializes the driver structure 2826 * @dev: Reference to the driver structure 2827 * 2828 * Return codes: 2829 * 0: Success 2830 * -ERRNO: All kind of errors when retrieving VBUS GPIO 2831 */ 2832 static int pch_udc_pcd_init(struct pch_udc_dev *dev) 2833 { 2834 int ret; 2835 2836 pch_udc_init(dev); 2837 pch_udc_pcd_reinit(dev); 2838 2839 ret = pch_vbus_gpio_init(dev); 2840 if (ret) 2841 pch_udc_exit(dev); 2842 return ret; 2843 } 2844 2845 /** 2846 * init_dma_pools() - create dma pools during initialization 2847 * @dev: reference to struct pci_dev 2848 */ 2849 static int init_dma_pools(struct pch_udc_dev *dev) 2850 { 2851 struct pch_udc_stp_dma_desc *td_stp; 2852 struct pch_udc_data_dma_desc *td_data; 2853 void *ep0out_buf; 2854 2855 /* DMA setup */ 2856 dev->data_requests = dma_pool_create("data_requests", &dev->pdev->dev, 2857 sizeof(struct pch_udc_data_dma_desc), 0, 0); 2858 if (!dev->data_requests) { 2859 dev_err(&dev->pdev->dev, "%s: can't get request data pool\n", 2860 __func__); 2861 return -ENOMEM; 2862 } 2863 2864 /* dma desc for setup data */ 2865 dev->stp_requests = dma_pool_create("setup requests", &dev->pdev->dev, 2866 sizeof(struct pch_udc_stp_dma_desc), 0, 0); 2867 if (!dev->stp_requests) { 2868 dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n", 2869 __func__); 2870 return -ENOMEM; 2871 } 2872 /* setup */ 2873 td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL, 2874 &dev->ep[UDC_EP0OUT_IDX].td_stp_phys); 2875 if (!td_stp) { 2876 dev_err(&dev->pdev->dev, 2877 "%s: can't allocate setup dma descriptor\n", __func__); 2878 return -ENOMEM; 2879 } 2880 dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp; 2881 2882 /* data: 0 packets !? */ 2883 td_data = dma_pool_alloc(dev->data_requests, GFP_KERNEL, 2884 &dev->ep[UDC_EP0OUT_IDX].td_data_phys); 2885 if (!td_data) { 2886 dev_err(&dev->pdev->dev, 2887 "%s: can't allocate data dma descriptor\n", __func__); 2888 return -ENOMEM; 2889 } 2890 dev->ep[UDC_EP0OUT_IDX].td_data = td_data; 2891 dev->ep[UDC_EP0IN_IDX].td_stp = NULL; 2892 dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0; 2893 dev->ep[UDC_EP0IN_IDX].td_data = NULL; 2894 dev->ep[UDC_EP0IN_IDX].td_data_phys = 0; 2895 2896 ep0out_buf = devm_kzalloc(&dev->pdev->dev, UDC_EP0OUT_BUFF_SIZE * 4, 2897 GFP_KERNEL); 2898 if (!ep0out_buf) 2899 return -ENOMEM; 2900 dev->dma_addr = dma_map_single(&dev->pdev->dev, ep0out_buf, 2901 UDC_EP0OUT_BUFF_SIZE * 4, 2902 DMA_FROM_DEVICE); 2903 return dma_mapping_error(&dev->pdev->dev, dev->dma_addr); 2904 } 2905 2906 static int pch_udc_start(struct usb_gadget *g, 2907 struct usb_gadget_driver *driver) 2908 { 2909 struct pch_udc_dev *dev = to_pch_udc(g); 2910 2911 driver->driver.bus = NULL; 2912 dev->driver = driver; 2913 2914 /* get ready for ep0 traffic */ 2915 pch_udc_setup_ep0(dev); 2916 2917 /* clear SD */ 2918 if ((pch_vbus_gpio_get_value(dev) != 0) || !dev->vbus_gpio.intr) 2919 pch_udc_clear_disconnect(dev); 2920 2921 dev->connected = 1; 2922 return 0; 2923 } 2924 2925 static int pch_udc_stop(struct usb_gadget *g) 2926 { 2927 struct pch_udc_dev *dev = to_pch_udc(g); 2928 2929 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK); 2930 2931 /* Assures that there are no pending requests with this driver */ 2932 dev->driver = NULL; 2933 dev->connected = 0; 2934 2935 /* set SD */ 2936 pch_udc_set_disconnect(dev); 2937 2938 return 0; 2939 } 2940 2941 static void pch_vbus_gpio_remove_table(void *table) 2942 { 2943 gpiod_remove_lookup_table(table); 2944 } 2945 2946 static int pch_vbus_gpio_add_table(struct device *d, void *table) 2947 { 2948 gpiod_add_lookup_table(table); 2949 return devm_add_action_or_reset(d, pch_vbus_gpio_remove_table, table); 2950 } 2951 2952 static struct gpiod_lookup_table pch_udc_minnow_vbus_gpio_table = { 2953 .dev_id = "0000:02:02.4", 2954 .table = { 2955 GPIO_LOOKUP("sch_gpio.33158", 12, NULL, GPIO_ACTIVE_HIGH), 2956 {} 2957 }, 2958 }; 2959 2960 static int pch_udc_minnow_platform_init(struct device *d) 2961 { 2962 return pch_vbus_gpio_add_table(d, &pch_udc_minnow_vbus_gpio_table); 2963 } 2964 2965 static int pch_udc_quark_platform_init(struct device *d) 2966 { 2967 struct pch_udc_dev *dev = dev_get_drvdata(d); 2968 2969 dev->bar = PCH_UDC_PCI_BAR_QUARK_X1000; 2970 return 0; 2971 } 2972 2973 static void pch_udc_shutdown(struct pci_dev *pdev) 2974 { 2975 struct pch_udc_dev *dev = pci_get_drvdata(pdev); 2976 2977 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK); 2978 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL); 2979 2980 /* disable the pullup so the host will think we're gone */ 2981 pch_udc_set_disconnect(dev); 2982 } 2983 2984 static void pch_udc_remove(struct pci_dev *pdev) 2985 { 2986 struct pch_udc_dev *dev = pci_get_drvdata(pdev); 2987 2988 usb_del_gadget_udc(&dev->gadget); 2989 2990 /* gadget driver must not be registered */ 2991 if (dev->driver) 2992 dev_err(&pdev->dev, 2993 "%s: gadget driver still bound!!!\n", __func__); 2994 /* dma pool cleanup */ 2995 dma_pool_destroy(dev->data_requests); 2996 2997 if (dev->stp_requests) { 2998 /* cleanup DMA desc's for ep0in */ 2999 if (dev->ep[UDC_EP0OUT_IDX].td_stp) { 3000 dma_pool_free(dev->stp_requests, 3001 dev->ep[UDC_EP0OUT_IDX].td_stp, 3002 dev->ep[UDC_EP0OUT_IDX].td_stp_phys); 3003 } 3004 if (dev->ep[UDC_EP0OUT_IDX].td_data) { 3005 dma_pool_free(dev->stp_requests, 3006 dev->ep[UDC_EP0OUT_IDX].td_data, 3007 dev->ep[UDC_EP0OUT_IDX].td_data_phys); 3008 } 3009 dma_pool_destroy(dev->stp_requests); 3010 } 3011 3012 if (dev->dma_addr) 3013 dma_unmap_single(&dev->pdev->dev, dev->dma_addr, 3014 UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE); 3015 3016 pch_vbus_gpio_free(dev); 3017 3018 pch_udc_exit(dev); 3019 } 3020 3021 static int __maybe_unused pch_udc_suspend(struct device *d) 3022 { 3023 struct pch_udc_dev *dev = dev_get_drvdata(d); 3024 3025 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK); 3026 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL); 3027 3028 return 0; 3029 } 3030 3031 static int __maybe_unused pch_udc_resume(struct device *d) 3032 { 3033 return 0; 3034 } 3035 3036 static SIMPLE_DEV_PM_OPS(pch_udc_pm, pch_udc_suspend, pch_udc_resume); 3037 3038 typedef int (*platform_init_fn)(struct device *); 3039 3040 static int pch_udc_probe(struct pci_dev *pdev, const struct pci_device_id *id) 3041 { 3042 platform_init_fn platform_init = (platform_init_fn)id->driver_data; 3043 int retval; 3044 struct pch_udc_dev *dev; 3045 3046 /* init */ 3047 dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL); 3048 if (!dev) 3049 return -ENOMEM; 3050 3051 /* pci setup */ 3052 retval = pcim_enable_device(pdev); 3053 if (retval) 3054 return retval; 3055 3056 dev->bar = PCH_UDC_PCI_BAR; 3057 dev->pdev = pdev; 3058 pci_set_drvdata(pdev, dev); 3059 3060 /* Platform specific hook */ 3061 if (platform_init) { 3062 retval = platform_init(&pdev->dev); 3063 if (retval) 3064 return retval; 3065 } 3066 3067 /* PCI resource allocation */ 3068 retval = pcim_iomap_regions(pdev, BIT(dev->bar), pci_name(pdev)); 3069 if (retval) 3070 return retval; 3071 3072 dev->base_addr = pcim_iomap_table(pdev)[dev->bar]; 3073 3074 /* initialize the hardware */ 3075 retval = pch_udc_pcd_init(dev); 3076 if (retval) 3077 return retval; 3078 3079 pci_enable_msi(pdev); 3080 3081 retval = devm_request_irq(&pdev->dev, pdev->irq, pch_udc_isr, 3082 IRQF_SHARED, KBUILD_MODNAME, dev); 3083 if (retval) { 3084 dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__, 3085 pdev->irq); 3086 goto finished; 3087 } 3088 3089 pci_set_master(pdev); 3090 pci_try_set_mwi(pdev); 3091 3092 /* device struct setup */ 3093 spin_lock_init(&dev->lock); 3094 dev->gadget.ops = &pch_udc_ops; 3095 3096 retval = init_dma_pools(dev); 3097 if (retval) 3098 goto finished; 3099 3100 dev->gadget.name = KBUILD_MODNAME; 3101 dev->gadget.max_speed = USB_SPEED_HIGH; 3102 3103 /* Put the device in disconnected state till a driver is bound */ 3104 pch_udc_set_disconnect(dev); 3105 retval = usb_add_gadget_udc(&pdev->dev, &dev->gadget); 3106 if (retval) 3107 goto finished; 3108 return 0; 3109 3110 finished: 3111 pch_udc_remove(pdev); 3112 return retval; 3113 } 3114 3115 static const struct pci_device_id pch_udc_pcidev_id[] = { 3116 { 3117 PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC), 3118 .class = PCI_CLASS_SERIAL_USB_DEVICE, 3119 .class_mask = 0xffffffff, 3120 .driver_data = (kernel_ulong_t)&pch_udc_quark_platform_init, 3121 }, 3122 { 3123 PCI_DEVICE_SUB(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC, 3124 PCI_VENDOR_ID_CIRCUITCO, PCI_SUBSYSTEM_ID_CIRCUITCO_MINNOWBOARD), 3125 .class = PCI_CLASS_SERIAL_USB_DEVICE, 3126 .class_mask = 0xffffffff, 3127 .driver_data = (kernel_ulong_t)&pch_udc_minnow_platform_init, 3128 }, 3129 { 3130 PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC), 3131 .class = PCI_CLASS_SERIAL_USB_DEVICE, 3132 .class_mask = 0xffffffff, 3133 }, 3134 { 3135 PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC), 3136 .class = PCI_CLASS_SERIAL_USB_DEVICE, 3137 .class_mask = 0xffffffff, 3138 }, 3139 { 3140 PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7831_IOH_UDC), 3141 .class = PCI_CLASS_SERIAL_USB_DEVICE, 3142 .class_mask = 0xffffffff, 3143 }, 3144 { 0 }, 3145 }; 3146 3147 MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id); 3148 3149 static struct pci_driver pch_udc_driver = { 3150 .name = KBUILD_MODNAME, 3151 .id_table = pch_udc_pcidev_id, 3152 .probe = pch_udc_probe, 3153 .remove = pch_udc_remove, 3154 .shutdown = pch_udc_shutdown, 3155 .driver = { 3156 .pm = &pch_udc_pm, 3157 }, 3158 }; 3159 3160 module_pci_driver(pch_udc_driver); 3161 3162 MODULE_DESCRIPTION("Intel EG20T USB Device Controller"); 3163 MODULE_AUTHOR("LAPIS Semiconductor, <tomoya-linux@dsn.lapis-semi.com>"); 3164 MODULE_LICENSE("GPL"); 3165