1 /* 2 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; version 2 of the License. 7 */ 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/pci.h> 12 #include <linux/delay.h> 13 #include <linux/errno.h> 14 #include <linux/list.h> 15 #include <linux/interrupt.h> 16 #include <linux/usb/ch9.h> 17 #include <linux/usb/gadget.h> 18 #include <linux/gpio.h> 19 #include <linux/irq.h> 20 21 /* GPIO port for VBUS detecting */ 22 static int vbus_gpio_port = -1; /* GPIO port number (-1:Not used) */ 23 24 #define PCH_VBUS_PERIOD 3000 /* VBUS polling period (msec) */ 25 #define PCH_VBUS_INTERVAL 10 /* VBUS polling interval (msec) */ 26 27 /* Address offset of Registers */ 28 #define UDC_EP_REG_SHIFT 0x20 /* Offset to next EP */ 29 30 #define UDC_EPCTL_ADDR 0x00 /* Endpoint control */ 31 #define UDC_EPSTS_ADDR 0x04 /* Endpoint status */ 32 #define UDC_BUFIN_FRAMENUM_ADDR 0x08 /* buffer size in / frame number out */ 33 #define UDC_BUFOUT_MAXPKT_ADDR 0x0C /* buffer size out / maxpkt in */ 34 #define UDC_SUBPTR_ADDR 0x10 /* setup buffer pointer */ 35 #define UDC_DESPTR_ADDR 0x14 /* Data descriptor pointer */ 36 #define UDC_CONFIRM_ADDR 0x18 /* Write/Read confirmation */ 37 38 #define UDC_DEVCFG_ADDR 0x400 /* Device configuration */ 39 #define UDC_DEVCTL_ADDR 0x404 /* Device control */ 40 #define UDC_DEVSTS_ADDR 0x408 /* Device status */ 41 #define UDC_DEVIRQSTS_ADDR 0x40C /* Device irq status */ 42 #define UDC_DEVIRQMSK_ADDR 0x410 /* Device irq mask */ 43 #define UDC_EPIRQSTS_ADDR 0x414 /* Endpoint irq status */ 44 #define UDC_EPIRQMSK_ADDR 0x418 /* Endpoint irq mask */ 45 #define UDC_DEVLPM_ADDR 0x41C /* LPM control / status */ 46 #define UDC_CSR_BUSY_ADDR 0x4f0 /* UDC_CSR_BUSY Status register */ 47 #define UDC_SRST_ADDR 0x4fc /* SOFT RESET register */ 48 #define UDC_CSR_ADDR 0x500 /* USB_DEVICE endpoint register */ 49 50 /* Endpoint control register */ 51 /* Bit position */ 52 #define UDC_EPCTL_MRXFLUSH (1 << 12) 53 #define UDC_EPCTL_RRDY (1 << 9) 54 #define UDC_EPCTL_CNAK (1 << 8) 55 #define UDC_EPCTL_SNAK (1 << 7) 56 #define UDC_EPCTL_NAK (1 << 6) 57 #define UDC_EPCTL_P (1 << 3) 58 #define UDC_EPCTL_F (1 << 1) 59 #define UDC_EPCTL_S (1 << 0) 60 #define UDC_EPCTL_ET_SHIFT 4 61 /* Mask patern */ 62 #define UDC_EPCTL_ET_MASK 0x00000030 63 /* Value for ET field */ 64 #define UDC_EPCTL_ET_CONTROL 0 65 #define UDC_EPCTL_ET_ISO 1 66 #define UDC_EPCTL_ET_BULK 2 67 #define UDC_EPCTL_ET_INTERRUPT 3 68 69 /* Endpoint status register */ 70 /* Bit position */ 71 #define UDC_EPSTS_XFERDONE (1 << 27) 72 #define UDC_EPSTS_RSS (1 << 26) 73 #define UDC_EPSTS_RCS (1 << 25) 74 #define UDC_EPSTS_TXEMPTY (1 << 24) 75 #define UDC_EPSTS_TDC (1 << 10) 76 #define UDC_EPSTS_HE (1 << 9) 77 #define UDC_EPSTS_MRXFIFO_EMP (1 << 8) 78 #define UDC_EPSTS_BNA (1 << 7) 79 #define UDC_EPSTS_IN (1 << 6) 80 #define UDC_EPSTS_OUT_SHIFT 4 81 /* Mask patern */ 82 #define UDC_EPSTS_OUT_MASK 0x00000030 83 #define UDC_EPSTS_ALL_CLR_MASK 0x1F0006F0 84 /* Value for OUT field */ 85 #define UDC_EPSTS_OUT_SETUP 2 86 #define UDC_EPSTS_OUT_DATA 1 87 88 /* Device configuration register */ 89 /* Bit position */ 90 #define UDC_DEVCFG_CSR_PRG (1 << 17) 91 #define UDC_DEVCFG_SP (1 << 3) 92 /* SPD Valee */ 93 #define UDC_DEVCFG_SPD_HS 0x0 94 #define UDC_DEVCFG_SPD_FS 0x1 95 #define UDC_DEVCFG_SPD_LS 0x2 96 97 /* Device control register */ 98 /* Bit position */ 99 #define UDC_DEVCTL_THLEN_SHIFT 24 100 #define UDC_DEVCTL_BRLEN_SHIFT 16 101 #define UDC_DEVCTL_CSR_DONE (1 << 13) 102 #define UDC_DEVCTL_SD (1 << 10) 103 #define UDC_DEVCTL_MODE (1 << 9) 104 #define UDC_DEVCTL_BREN (1 << 8) 105 #define UDC_DEVCTL_THE (1 << 7) 106 #define UDC_DEVCTL_DU (1 << 4) 107 #define UDC_DEVCTL_TDE (1 << 3) 108 #define UDC_DEVCTL_RDE (1 << 2) 109 #define UDC_DEVCTL_RES (1 << 0) 110 111 /* Device status register */ 112 /* Bit position */ 113 #define UDC_DEVSTS_TS_SHIFT 18 114 #define UDC_DEVSTS_ENUM_SPEED_SHIFT 13 115 #define UDC_DEVSTS_ALT_SHIFT 8 116 #define UDC_DEVSTS_INTF_SHIFT 4 117 #define UDC_DEVSTS_CFG_SHIFT 0 118 /* Mask patern */ 119 #define UDC_DEVSTS_TS_MASK 0xfffc0000 120 #define UDC_DEVSTS_ENUM_SPEED_MASK 0x00006000 121 #define UDC_DEVSTS_ALT_MASK 0x00000f00 122 #define UDC_DEVSTS_INTF_MASK 0x000000f0 123 #define UDC_DEVSTS_CFG_MASK 0x0000000f 124 /* value for maximum speed for SPEED field */ 125 #define UDC_DEVSTS_ENUM_SPEED_FULL 1 126 #define UDC_DEVSTS_ENUM_SPEED_HIGH 0 127 #define UDC_DEVSTS_ENUM_SPEED_LOW 2 128 #define UDC_DEVSTS_ENUM_SPEED_FULLX 3 129 130 /* Device irq register */ 131 /* Bit position */ 132 #define UDC_DEVINT_RWKP (1 << 7) 133 #define UDC_DEVINT_ENUM (1 << 6) 134 #define UDC_DEVINT_SOF (1 << 5) 135 #define UDC_DEVINT_US (1 << 4) 136 #define UDC_DEVINT_UR (1 << 3) 137 #define UDC_DEVINT_ES (1 << 2) 138 #define UDC_DEVINT_SI (1 << 1) 139 #define UDC_DEVINT_SC (1 << 0) 140 /* Mask patern */ 141 #define UDC_DEVINT_MSK 0x7f 142 143 /* Endpoint irq register */ 144 /* Bit position */ 145 #define UDC_EPINT_IN_SHIFT 0 146 #define UDC_EPINT_OUT_SHIFT 16 147 #define UDC_EPINT_IN_EP0 (1 << 0) 148 #define UDC_EPINT_OUT_EP0 (1 << 16) 149 /* Mask patern */ 150 #define UDC_EPINT_MSK_DISABLE_ALL 0xffffffff 151 152 /* UDC_CSR_BUSY Status register */ 153 /* Bit position */ 154 #define UDC_CSR_BUSY (1 << 0) 155 156 /* SOFT RESET register */ 157 /* Bit position */ 158 #define UDC_PSRST (1 << 1) 159 #define UDC_SRST (1 << 0) 160 161 /* USB_DEVICE endpoint register */ 162 /* Bit position */ 163 #define UDC_CSR_NE_NUM_SHIFT 0 164 #define UDC_CSR_NE_DIR_SHIFT 4 165 #define UDC_CSR_NE_TYPE_SHIFT 5 166 #define UDC_CSR_NE_CFG_SHIFT 7 167 #define UDC_CSR_NE_INTF_SHIFT 11 168 #define UDC_CSR_NE_ALT_SHIFT 15 169 #define UDC_CSR_NE_MAX_PKT_SHIFT 19 170 /* Mask patern */ 171 #define UDC_CSR_NE_NUM_MASK 0x0000000f 172 #define UDC_CSR_NE_DIR_MASK 0x00000010 173 #define UDC_CSR_NE_TYPE_MASK 0x00000060 174 #define UDC_CSR_NE_CFG_MASK 0x00000780 175 #define UDC_CSR_NE_INTF_MASK 0x00007800 176 #define UDC_CSR_NE_ALT_MASK 0x00078000 177 #define UDC_CSR_NE_MAX_PKT_MASK 0x3ff80000 178 179 #define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4) 180 #define PCH_UDC_EPINT(in, num)\ 181 (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT))) 182 183 /* Index of endpoint */ 184 #define UDC_EP0IN_IDX 0 185 #define UDC_EP0OUT_IDX 1 186 #define UDC_EPIN_IDX(ep) (ep * 2) 187 #define UDC_EPOUT_IDX(ep) (ep * 2 + 1) 188 #define PCH_UDC_EP0 0 189 #define PCH_UDC_EP1 1 190 #define PCH_UDC_EP2 2 191 #define PCH_UDC_EP3 3 192 193 /* Number of endpoint */ 194 #define PCH_UDC_EP_NUM 32 /* Total number of EPs (16 IN,16 OUT) */ 195 #define PCH_UDC_USED_EP_NUM 4 /* EP number of EP's really used */ 196 /* Length Value */ 197 #define PCH_UDC_BRLEN 0x0F /* Burst length */ 198 #define PCH_UDC_THLEN 0x1F /* Threshold length */ 199 /* Value of EP Buffer Size */ 200 #define UDC_EP0IN_BUFF_SIZE 16 201 #define UDC_EPIN_BUFF_SIZE 256 202 #define UDC_EP0OUT_BUFF_SIZE 16 203 #define UDC_EPOUT_BUFF_SIZE 256 204 /* Value of EP maximum packet size */ 205 #define UDC_EP0IN_MAX_PKT_SIZE 64 206 #define UDC_EP0OUT_MAX_PKT_SIZE 64 207 #define UDC_BULK_MAX_PKT_SIZE 512 208 209 /* DMA */ 210 #define DMA_DIR_RX 1 /* DMA for data receive */ 211 #define DMA_DIR_TX 2 /* DMA for data transmit */ 212 #define DMA_ADDR_INVALID (~(dma_addr_t)0) 213 #define UDC_DMA_MAXPACKET 65536 /* maximum packet size for DMA */ 214 215 /** 216 * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information 217 * for data 218 * @status: Status quadlet 219 * @reserved: Reserved 220 * @dataptr: Buffer descriptor 221 * @next: Next descriptor 222 */ 223 struct pch_udc_data_dma_desc { 224 u32 status; 225 u32 reserved; 226 u32 dataptr; 227 u32 next; 228 }; 229 230 /** 231 * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information 232 * for control data 233 * @status: Status 234 * @reserved: Reserved 235 * @data12: First setup word 236 * @data34: Second setup word 237 */ 238 struct pch_udc_stp_dma_desc { 239 u32 status; 240 u32 reserved; 241 struct usb_ctrlrequest request; 242 } __attribute((packed)); 243 244 /* DMA status definitions */ 245 /* Buffer status */ 246 #define PCH_UDC_BUFF_STS 0xC0000000 247 #define PCH_UDC_BS_HST_RDY 0x00000000 248 #define PCH_UDC_BS_DMA_BSY 0x40000000 249 #define PCH_UDC_BS_DMA_DONE 0x80000000 250 #define PCH_UDC_BS_HST_BSY 0xC0000000 251 /* Rx/Tx Status */ 252 #define PCH_UDC_RXTX_STS 0x30000000 253 #define PCH_UDC_RTS_SUCC 0x00000000 254 #define PCH_UDC_RTS_DESERR 0x10000000 255 #define PCH_UDC_RTS_BUFERR 0x30000000 256 /* Last Descriptor Indication */ 257 #define PCH_UDC_DMA_LAST 0x08000000 258 /* Number of Rx/Tx Bytes Mask */ 259 #define PCH_UDC_RXTX_BYTES 0x0000ffff 260 261 /** 262 * struct pch_udc_cfg_data - Structure to hold current configuration 263 * and interface information 264 * @cur_cfg: current configuration in use 265 * @cur_intf: current interface in use 266 * @cur_alt: current alt interface in use 267 */ 268 struct pch_udc_cfg_data { 269 u16 cur_cfg; 270 u16 cur_intf; 271 u16 cur_alt; 272 }; 273 274 /** 275 * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information 276 * @ep: embedded ep request 277 * @td_stp_phys: for setup request 278 * @td_data_phys: for data request 279 * @td_stp: for setup request 280 * @td_data: for data request 281 * @dev: reference to device struct 282 * @offset_addr: offset address of ep register 283 * @desc: for this ep 284 * @queue: queue for requests 285 * @num: endpoint number 286 * @in: endpoint is IN 287 * @halted: endpoint halted? 288 * @epsts: Endpoint status 289 */ 290 struct pch_udc_ep { 291 struct usb_ep ep; 292 dma_addr_t td_stp_phys; 293 dma_addr_t td_data_phys; 294 struct pch_udc_stp_dma_desc *td_stp; 295 struct pch_udc_data_dma_desc *td_data; 296 struct pch_udc_dev *dev; 297 unsigned long offset_addr; 298 struct list_head queue; 299 unsigned num:5, 300 in:1, 301 halted:1; 302 unsigned long epsts; 303 }; 304 305 /** 306 * struct pch_vbus_gpio_data - Structure holding GPIO informaton 307 * for detecting VBUS 308 * @port: gpio port number 309 * @intr: gpio interrupt number 310 * @irq_work_fall Structure for WorkQueue 311 * @irq_work_rise Structure for WorkQueue 312 */ 313 struct pch_vbus_gpio_data { 314 int port; 315 int intr; 316 struct work_struct irq_work_fall; 317 struct work_struct irq_work_rise; 318 }; 319 320 /** 321 * struct pch_udc_dev - Structure holding complete information 322 * of the PCH USB device 323 * @gadget: gadget driver data 324 * @driver: reference to gadget driver bound 325 * @pdev: reference to the PCI device 326 * @ep: array of endpoints 327 * @lock: protects all state 328 * @active: enabled the PCI device 329 * @stall: stall requested 330 * @prot_stall: protcol stall requested 331 * @irq_registered: irq registered with system 332 * @mem_region: device memory mapped 333 * @registered: driver registered with system 334 * @suspended: driver in suspended state 335 * @connected: gadget driver associated 336 * @vbus_session: required vbus_session state 337 * @set_cfg_not_acked: pending acknowledgement 4 setup 338 * @waiting_zlp_ack: pending acknowledgement 4 ZLP 339 * @data_requests: DMA pool for data requests 340 * @stp_requests: DMA pool for setup requests 341 * @dma_addr: DMA pool for received 342 * @ep0out_buf: Buffer for DMA 343 * @setup_data: Received setup data 344 * @phys_addr: of device memory 345 * @base_addr: for mapped device memory 346 * @bar: Indicates which PCI BAR for USB regs 347 * @irq: IRQ line for the device 348 * @cfg_data: current cfg, intf, and alt in use 349 * @vbus_gpio: GPIO informaton for detecting VBUS 350 */ 351 struct pch_udc_dev { 352 struct usb_gadget gadget; 353 struct usb_gadget_driver *driver; 354 struct pci_dev *pdev; 355 struct pch_udc_ep ep[PCH_UDC_EP_NUM]; 356 spinlock_t lock; /* protects all state */ 357 unsigned active:1, 358 stall:1, 359 prot_stall:1, 360 irq_registered:1, 361 mem_region:1, 362 suspended:1, 363 connected:1, 364 vbus_session:1, 365 set_cfg_not_acked:1, 366 waiting_zlp_ack:1; 367 struct pci_pool *data_requests; 368 struct pci_pool *stp_requests; 369 dma_addr_t dma_addr; 370 void *ep0out_buf; 371 struct usb_ctrlrequest setup_data; 372 unsigned long phys_addr; 373 void __iomem *base_addr; 374 unsigned bar; 375 unsigned irq; 376 struct pch_udc_cfg_data cfg_data; 377 struct pch_vbus_gpio_data vbus_gpio; 378 }; 379 #define to_pch_udc(g) (container_of((g), struct pch_udc_dev, gadget)) 380 381 #define PCH_UDC_PCI_BAR_QUARK_X1000 0 382 #define PCH_UDC_PCI_BAR 1 383 #define PCI_DEVICE_ID_INTEL_EG20T_UDC 0x8808 384 #define PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC 0x0939 385 #define PCI_VENDOR_ID_ROHM 0x10DB 386 #define PCI_DEVICE_ID_ML7213_IOH_UDC 0x801D 387 #define PCI_DEVICE_ID_ML7831_IOH_UDC 0x8808 388 389 static const char ep0_string[] = "ep0in"; 390 static DEFINE_SPINLOCK(udc_stall_spinlock); /* stall spin lock */ 391 static bool speed_fs; 392 module_param_named(speed_fs, speed_fs, bool, S_IRUGO); 393 MODULE_PARM_DESC(speed_fs, "true for Full speed operation"); 394 395 /** 396 * struct pch_udc_request - Structure holding a PCH USB device request packet 397 * @req: embedded ep request 398 * @td_data_phys: phys. address 399 * @td_data: first dma desc. of chain 400 * @td_data_last: last dma desc. of chain 401 * @queue: associated queue 402 * @dma_going: DMA in progress for request 403 * @dma_mapped: DMA memory mapped for request 404 * @dma_done: DMA completed for request 405 * @chain_len: chain length 406 * @buf: Buffer memory for align adjustment 407 * @dma: DMA memory for align adjustment 408 */ 409 struct pch_udc_request { 410 struct usb_request req; 411 dma_addr_t td_data_phys; 412 struct pch_udc_data_dma_desc *td_data; 413 struct pch_udc_data_dma_desc *td_data_last; 414 struct list_head queue; 415 unsigned dma_going:1, 416 dma_mapped:1, 417 dma_done:1; 418 unsigned chain_len; 419 void *buf; 420 dma_addr_t dma; 421 }; 422 423 static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg) 424 { 425 return ioread32(dev->base_addr + reg); 426 } 427 428 static inline void pch_udc_writel(struct pch_udc_dev *dev, 429 unsigned long val, unsigned long reg) 430 { 431 iowrite32(val, dev->base_addr + reg); 432 } 433 434 static inline void pch_udc_bit_set(struct pch_udc_dev *dev, 435 unsigned long reg, 436 unsigned long bitmask) 437 { 438 pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg); 439 } 440 441 static inline void pch_udc_bit_clr(struct pch_udc_dev *dev, 442 unsigned long reg, 443 unsigned long bitmask) 444 { 445 pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg); 446 } 447 448 static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg) 449 { 450 return ioread32(ep->dev->base_addr + ep->offset_addr + reg); 451 } 452 453 static inline void pch_udc_ep_writel(struct pch_udc_ep *ep, 454 unsigned long val, unsigned long reg) 455 { 456 iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg); 457 } 458 459 static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep, 460 unsigned long reg, 461 unsigned long bitmask) 462 { 463 pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg); 464 } 465 466 static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep, 467 unsigned long reg, 468 unsigned long bitmask) 469 { 470 pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg); 471 } 472 473 /** 474 * pch_udc_csr_busy() - Wait till idle. 475 * @dev: Reference to pch_udc_dev structure 476 */ 477 static void pch_udc_csr_busy(struct pch_udc_dev *dev) 478 { 479 unsigned int count = 200; 480 481 /* Wait till idle */ 482 while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY) 483 && --count) 484 cpu_relax(); 485 if (!count) 486 dev_err(&dev->pdev->dev, "%s: wait error\n", __func__); 487 } 488 489 /** 490 * pch_udc_write_csr() - Write the command and status registers. 491 * @dev: Reference to pch_udc_dev structure 492 * @val: value to be written to CSR register 493 * @addr: address of CSR register 494 */ 495 static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val, 496 unsigned int ep) 497 { 498 unsigned long reg = PCH_UDC_CSR(ep); 499 500 pch_udc_csr_busy(dev); /* Wait till idle */ 501 pch_udc_writel(dev, val, reg); 502 pch_udc_csr_busy(dev); /* Wait till idle */ 503 } 504 505 /** 506 * pch_udc_read_csr() - Read the command and status registers. 507 * @dev: Reference to pch_udc_dev structure 508 * @addr: address of CSR register 509 * 510 * Return codes: content of CSR register 511 */ 512 static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep) 513 { 514 unsigned long reg = PCH_UDC_CSR(ep); 515 516 pch_udc_csr_busy(dev); /* Wait till idle */ 517 pch_udc_readl(dev, reg); /* Dummy read */ 518 pch_udc_csr_busy(dev); /* Wait till idle */ 519 return pch_udc_readl(dev, reg); 520 } 521 522 /** 523 * pch_udc_rmt_wakeup() - Initiate for remote wakeup 524 * @dev: Reference to pch_udc_dev structure 525 */ 526 static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev) 527 { 528 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES); 529 mdelay(1); 530 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES); 531 } 532 533 /** 534 * pch_udc_get_frame() - Get the current frame from device status register 535 * @dev: Reference to pch_udc_dev structure 536 * Retern current frame 537 */ 538 static inline int pch_udc_get_frame(struct pch_udc_dev *dev) 539 { 540 u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR); 541 return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT; 542 } 543 544 /** 545 * pch_udc_clear_selfpowered() - Clear the self power control 546 * @dev: Reference to pch_udc_regs structure 547 */ 548 static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev) 549 { 550 pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP); 551 } 552 553 /** 554 * pch_udc_set_selfpowered() - Set the self power control 555 * @dev: Reference to pch_udc_regs structure 556 */ 557 static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev) 558 { 559 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP); 560 } 561 562 /** 563 * pch_udc_set_disconnect() - Set the disconnect status. 564 * @dev: Reference to pch_udc_regs structure 565 */ 566 static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev) 567 { 568 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD); 569 } 570 571 /** 572 * pch_udc_clear_disconnect() - Clear the disconnect status. 573 * @dev: Reference to pch_udc_regs structure 574 */ 575 static void pch_udc_clear_disconnect(struct pch_udc_dev *dev) 576 { 577 /* Clear the disconnect */ 578 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES); 579 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD); 580 mdelay(1); 581 /* Resume USB signalling */ 582 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES); 583 } 584 585 /** 586 * pch_udc_reconnect() - This API initializes usb device controller, 587 * and clear the disconnect status. 588 * @dev: Reference to pch_udc_regs structure 589 */ 590 static void pch_udc_init(struct pch_udc_dev *dev); 591 static void pch_udc_reconnect(struct pch_udc_dev *dev) 592 { 593 pch_udc_init(dev); 594 595 /* enable device interrupts */ 596 /* pch_udc_enable_interrupts() */ 597 pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, 598 UDC_DEVINT_UR | UDC_DEVINT_ENUM); 599 600 /* Clear the disconnect */ 601 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES); 602 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD); 603 mdelay(1); 604 /* Resume USB signalling */ 605 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES); 606 } 607 608 /** 609 * pch_udc_vbus_session() - set or clearr the disconnect status. 610 * @dev: Reference to pch_udc_regs structure 611 * @is_active: Parameter specifying the action 612 * 0: indicating VBUS power is ending 613 * !0: indicating VBUS power is starting 614 */ 615 static inline void pch_udc_vbus_session(struct pch_udc_dev *dev, 616 int is_active) 617 { 618 if (is_active) { 619 pch_udc_reconnect(dev); 620 dev->vbus_session = 1; 621 } else { 622 if (dev->driver && dev->driver->disconnect) { 623 spin_lock(&dev->lock); 624 dev->driver->disconnect(&dev->gadget); 625 spin_unlock(&dev->lock); 626 } 627 pch_udc_set_disconnect(dev); 628 dev->vbus_session = 0; 629 } 630 } 631 632 /** 633 * pch_udc_ep_set_stall() - Set the stall of endpoint 634 * @ep: Reference to structure of type pch_udc_ep_regs 635 */ 636 static void pch_udc_ep_set_stall(struct pch_udc_ep *ep) 637 { 638 if (ep->in) { 639 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F); 640 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S); 641 } else { 642 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S); 643 } 644 } 645 646 /** 647 * pch_udc_ep_clear_stall() - Clear the stall of endpoint 648 * @ep: Reference to structure of type pch_udc_ep_regs 649 */ 650 static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep) 651 { 652 /* Clear the stall */ 653 pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S); 654 /* Clear NAK by writing CNAK */ 655 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK); 656 } 657 658 /** 659 * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint 660 * @ep: Reference to structure of type pch_udc_ep_regs 661 * @type: Type of endpoint 662 */ 663 static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep, 664 u8 type) 665 { 666 pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) & 667 UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR); 668 } 669 670 /** 671 * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint 672 * @ep: Reference to structure of type pch_udc_ep_regs 673 * @buf_size: The buffer word size 674 */ 675 static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep, 676 u32 buf_size, u32 ep_in) 677 { 678 u32 data; 679 if (ep_in) { 680 data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR); 681 data = (data & 0xffff0000) | (buf_size & 0xffff); 682 pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR); 683 } else { 684 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR); 685 data = (buf_size << 16) | (data & 0xffff); 686 pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR); 687 } 688 } 689 690 /** 691 * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint 692 * @ep: Reference to structure of type pch_udc_ep_regs 693 * @pkt_size: The packet byte size 694 */ 695 static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size) 696 { 697 u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR); 698 data = (data & 0xffff0000) | (pkt_size & 0xffff); 699 pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR); 700 } 701 702 /** 703 * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint 704 * @ep: Reference to structure of type pch_udc_ep_regs 705 * @addr: Address of the register 706 */ 707 static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr) 708 { 709 pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR); 710 } 711 712 /** 713 * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint 714 * @ep: Reference to structure of type pch_udc_ep_regs 715 * @addr: Address of the register 716 */ 717 static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr) 718 { 719 pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR); 720 } 721 722 /** 723 * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint 724 * @ep: Reference to structure of type pch_udc_ep_regs 725 */ 726 static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep) 727 { 728 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P); 729 } 730 731 /** 732 * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint 733 * @ep: Reference to structure of type pch_udc_ep_regs 734 */ 735 static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep) 736 { 737 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY); 738 } 739 740 /** 741 * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint 742 * @ep: Reference to structure of type pch_udc_ep_regs 743 */ 744 static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep) 745 { 746 pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY); 747 } 748 749 /** 750 * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control 751 * register depending on the direction specified 752 * @dev: Reference to structure of type pch_udc_regs 753 * @dir: whether Tx or Rx 754 * DMA_DIR_RX: Receive 755 * DMA_DIR_TX: Transmit 756 */ 757 static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir) 758 { 759 if (dir == DMA_DIR_RX) 760 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE); 761 else if (dir == DMA_DIR_TX) 762 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE); 763 } 764 765 /** 766 * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control 767 * register depending on the direction specified 768 * @dev: Reference to structure of type pch_udc_regs 769 * @dir: Whether Tx or Rx 770 * DMA_DIR_RX: Receive 771 * DMA_DIR_TX: Transmit 772 */ 773 static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir) 774 { 775 if (dir == DMA_DIR_RX) 776 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE); 777 else if (dir == DMA_DIR_TX) 778 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE); 779 } 780 781 /** 782 * pch_udc_set_csr_done() - Set the device control register 783 * CSR done field (bit 13) 784 * @dev: reference to structure of type pch_udc_regs 785 */ 786 static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev) 787 { 788 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE); 789 } 790 791 /** 792 * pch_udc_disable_interrupts() - Disables the specified interrupts 793 * @dev: Reference to structure of type pch_udc_regs 794 * @mask: Mask to disable interrupts 795 */ 796 static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev, 797 u32 mask) 798 { 799 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask); 800 } 801 802 /** 803 * pch_udc_enable_interrupts() - Enable the specified interrupts 804 * @dev: Reference to structure of type pch_udc_regs 805 * @mask: Mask to enable interrupts 806 */ 807 static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev, 808 u32 mask) 809 { 810 pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask); 811 } 812 813 /** 814 * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts 815 * @dev: Reference to structure of type pch_udc_regs 816 * @mask: Mask to disable interrupts 817 */ 818 static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev, 819 u32 mask) 820 { 821 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask); 822 } 823 824 /** 825 * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts 826 * @dev: Reference to structure of type pch_udc_regs 827 * @mask: Mask to enable interrupts 828 */ 829 static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev, 830 u32 mask) 831 { 832 pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask); 833 } 834 835 /** 836 * pch_udc_read_device_interrupts() - Read the device interrupts 837 * @dev: Reference to structure of type pch_udc_regs 838 * Retern The device interrupts 839 */ 840 static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev) 841 { 842 return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR); 843 } 844 845 /** 846 * pch_udc_write_device_interrupts() - Write device interrupts 847 * @dev: Reference to structure of type pch_udc_regs 848 * @val: The value to be written to interrupt register 849 */ 850 static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev, 851 u32 val) 852 { 853 pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR); 854 } 855 856 /** 857 * pch_udc_read_ep_interrupts() - Read the endpoint interrupts 858 * @dev: Reference to structure of type pch_udc_regs 859 * Retern The endpoint interrupt 860 */ 861 static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev) 862 { 863 return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR); 864 } 865 866 /** 867 * pch_udc_write_ep_interrupts() - Clear endpoint interupts 868 * @dev: Reference to structure of type pch_udc_regs 869 * @val: The value to be written to interrupt register 870 */ 871 static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev, 872 u32 val) 873 { 874 pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR); 875 } 876 877 /** 878 * pch_udc_read_device_status() - Read the device status 879 * @dev: Reference to structure of type pch_udc_regs 880 * Retern The device status 881 */ 882 static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev) 883 { 884 return pch_udc_readl(dev, UDC_DEVSTS_ADDR); 885 } 886 887 /** 888 * pch_udc_read_ep_control() - Read the endpoint control 889 * @ep: Reference to structure of type pch_udc_ep_regs 890 * Retern The endpoint control register value 891 */ 892 static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep) 893 { 894 return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR); 895 } 896 897 /** 898 * pch_udc_clear_ep_control() - Clear the endpoint control register 899 * @ep: Reference to structure of type pch_udc_ep_regs 900 * Retern The endpoint control register value 901 */ 902 static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep) 903 { 904 return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR); 905 } 906 907 /** 908 * pch_udc_read_ep_status() - Read the endpoint status 909 * @ep: Reference to structure of type pch_udc_ep_regs 910 * Retern The endpoint status 911 */ 912 static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep) 913 { 914 return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR); 915 } 916 917 /** 918 * pch_udc_clear_ep_status() - Clear the endpoint status 919 * @ep: Reference to structure of type pch_udc_ep_regs 920 * @stat: Endpoint status 921 */ 922 static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep, 923 u32 stat) 924 { 925 return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR); 926 } 927 928 /** 929 * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field) 930 * of the endpoint control register 931 * @ep: Reference to structure of type pch_udc_ep_regs 932 */ 933 static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep) 934 { 935 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK); 936 } 937 938 /** 939 * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field) 940 * of the endpoint control register 941 * @ep: reference to structure of type pch_udc_ep_regs 942 */ 943 static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep) 944 { 945 unsigned int loopcnt = 0; 946 struct pch_udc_dev *dev = ep->dev; 947 948 if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK)) 949 return; 950 if (!ep->in) { 951 loopcnt = 10000; 952 while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) && 953 --loopcnt) 954 udelay(5); 955 if (!loopcnt) 956 dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n", 957 __func__); 958 } 959 loopcnt = 10000; 960 while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) { 961 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK); 962 udelay(5); 963 } 964 if (!loopcnt) 965 dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n", 966 __func__, ep->num, (ep->in ? "in" : "out")); 967 } 968 969 /** 970 * pch_udc_ep_fifo_flush() - Flush the endpoint fifo 971 * @ep: reference to structure of type pch_udc_ep_regs 972 * @dir: direction of endpoint 973 * 0: endpoint is OUT 974 * !0: endpoint is IN 975 */ 976 static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir) 977 { 978 if (dir) { /* IN ep */ 979 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F); 980 return; 981 } 982 } 983 984 /** 985 * pch_udc_ep_enable() - This api enables endpoint 986 * @regs: Reference to structure pch_udc_ep_regs 987 * @desc: endpoint descriptor 988 */ 989 static void pch_udc_ep_enable(struct pch_udc_ep *ep, 990 struct pch_udc_cfg_data *cfg, 991 const struct usb_endpoint_descriptor *desc) 992 { 993 u32 val = 0; 994 u32 buff_size = 0; 995 996 pch_udc_ep_set_trfr_type(ep, desc->bmAttributes); 997 if (ep->in) 998 buff_size = UDC_EPIN_BUFF_SIZE; 999 else 1000 buff_size = UDC_EPOUT_BUFF_SIZE; 1001 pch_udc_ep_set_bufsz(ep, buff_size, ep->in); 1002 pch_udc_ep_set_maxpkt(ep, usb_endpoint_maxp(desc)); 1003 pch_udc_ep_set_nak(ep); 1004 pch_udc_ep_fifo_flush(ep, ep->in); 1005 /* Configure the endpoint */ 1006 val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT | 1007 ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) << 1008 UDC_CSR_NE_TYPE_SHIFT) | 1009 (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) | 1010 (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) | 1011 (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) | 1012 usb_endpoint_maxp(desc) << UDC_CSR_NE_MAX_PKT_SHIFT; 1013 1014 if (ep->in) 1015 pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num)); 1016 else 1017 pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num)); 1018 } 1019 1020 /** 1021 * pch_udc_ep_disable() - This api disables endpoint 1022 * @regs: Reference to structure pch_udc_ep_regs 1023 */ 1024 static void pch_udc_ep_disable(struct pch_udc_ep *ep) 1025 { 1026 if (ep->in) { 1027 /* flush the fifo */ 1028 pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR); 1029 /* set NAK */ 1030 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR); 1031 pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN); 1032 } else { 1033 /* set NAK */ 1034 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR); 1035 } 1036 /* reset desc pointer */ 1037 pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR); 1038 } 1039 1040 /** 1041 * pch_udc_wait_ep_stall() - Wait EP stall. 1042 * @dev: Reference to pch_udc_dev structure 1043 */ 1044 static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep) 1045 { 1046 unsigned int count = 10000; 1047 1048 /* Wait till idle */ 1049 while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count) 1050 udelay(5); 1051 if (!count) 1052 dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__); 1053 } 1054 1055 /** 1056 * pch_udc_init() - This API initializes usb device controller 1057 * @dev: Rreference to pch_udc_regs structure 1058 */ 1059 static void pch_udc_init(struct pch_udc_dev *dev) 1060 { 1061 if (NULL == dev) { 1062 pr_err("%s: Invalid address\n", __func__); 1063 return; 1064 } 1065 /* Soft Reset and Reset PHY */ 1066 pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR); 1067 pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR); 1068 mdelay(1); 1069 pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR); 1070 pch_udc_writel(dev, 0x00, UDC_SRST_ADDR); 1071 mdelay(1); 1072 /* mask and clear all device interrupts */ 1073 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK); 1074 pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK); 1075 1076 /* mask and clear all ep interrupts */ 1077 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL); 1078 pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL); 1079 1080 /* enable dynamic CSR programmingi, self powered and device speed */ 1081 if (speed_fs) 1082 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG | 1083 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS); 1084 else /* defaul high speed */ 1085 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG | 1086 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS); 1087 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, 1088 (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) | 1089 (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) | 1090 UDC_DEVCTL_MODE | UDC_DEVCTL_BREN | 1091 UDC_DEVCTL_THE); 1092 } 1093 1094 /** 1095 * pch_udc_exit() - This API exit usb device controller 1096 * @dev: Reference to pch_udc_regs structure 1097 */ 1098 static void pch_udc_exit(struct pch_udc_dev *dev) 1099 { 1100 /* mask all device interrupts */ 1101 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK); 1102 /* mask all ep interrupts */ 1103 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL); 1104 /* put device in disconnected state */ 1105 pch_udc_set_disconnect(dev); 1106 } 1107 1108 /** 1109 * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number 1110 * @gadget: Reference to the gadget driver 1111 * 1112 * Return codes: 1113 * 0: Success 1114 * -EINVAL: If the gadget passed is NULL 1115 */ 1116 static int pch_udc_pcd_get_frame(struct usb_gadget *gadget) 1117 { 1118 struct pch_udc_dev *dev; 1119 1120 if (!gadget) 1121 return -EINVAL; 1122 dev = container_of(gadget, struct pch_udc_dev, gadget); 1123 return pch_udc_get_frame(dev); 1124 } 1125 1126 /** 1127 * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup 1128 * @gadget: Reference to the gadget driver 1129 * 1130 * Return codes: 1131 * 0: Success 1132 * -EINVAL: If the gadget passed is NULL 1133 */ 1134 static int pch_udc_pcd_wakeup(struct usb_gadget *gadget) 1135 { 1136 struct pch_udc_dev *dev; 1137 unsigned long flags; 1138 1139 if (!gadget) 1140 return -EINVAL; 1141 dev = container_of(gadget, struct pch_udc_dev, gadget); 1142 spin_lock_irqsave(&dev->lock, flags); 1143 pch_udc_rmt_wakeup(dev); 1144 spin_unlock_irqrestore(&dev->lock, flags); 1145 return 0; 1146 } 1147 1148 /** 1149 * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device 1150 * is self powered or not 1151 * @gadget: Reference to the gadget driver 1152 * @value: Specifies self powered or not 1153 * 1154 * Return codes: 1155 * 0: Success 1156 * -EINVAL: If the gadget passed is NULL 1157 */ 1158 static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value) 1159 { 1160 struct pch_udc_dev *dev; 1161 1162 if (!gadget) 1163 return -EINVAL; 1164 gadget->is_selfpowered = (value != 0); 1165 dev = container_of(gadget, struct pch_udc_dev, gadget); 1166 if (value) 1167 pch_udc_set_selfpowered(dev); 1168 else 1169 pch_udc_clear_selfpowered(dev); 1170 return 0; 1171 } 1172 1173 /** 1174 * pch_udc_pcd_pullup() - This API is invoked to make the device 1175 * visible/invisible to the host 1176 * @gadget: Reference to the gadget driver 1177 * @is_on: Specifies whether the pull up is made active or inactive 1178 * 1179 * Return codes: 1180 * 0: Success 1181 * -EINVAL: If the gadget passed is NULL 1182 */ 1183 static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on) 1184 { 1185 struct pch_udc_dev *dev; 1186 1187 if (!gadget) 1188 return -EINVAL; 1189 dev = container_of(gadget, struct pch_udc_dev, gadget); 1190 if (is_on) { 1191 pch_udc_reconnect(dev); 1192 } else { 1193 if (dev->driver && dev->driver->disconnect) { 1194 spin_lock(&dev->lock); 1195 dev->driver->disconnect(&dev->gadget); 1196 spin_unlock(&dev->lock); 1197 } 1198 pch_udc_set_disconnect(dev); 1199 } 1200 1201 return 0; 1202 } 1203 1204 /** 1205 * pch_udc_pcd_vbus_session() - This API is used by a driver for an external 1206 * transceiver (or GPIO) that 1207 * detects a VBUS power session starting/ending 1208 * @gadget: Reference to the gadget driver 1209 * @is_active: specifies whether the session is starting or ending 1210 * 1211 * Return codes: 1212 * 0: Success 1213 * -EINVAL: If the gadget passed is NULL 1214 */ 1215 static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active) 1216 { 1217 struct pch_udc_dev *dev; 1218 1219 if (!gadget) 1220 return -EINVAL; 1221 dev = container_of(gadget, struct pch_udc_dev, gadget); 1222 pch_udc_vbus_session(dev, is_active); 1223 return 0; 1224 } 1225 1226 /** 1227 * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during 1228 * SET_CONFIGURATION calls to 1229 * specify how much power the device can consume 1230 * @gadget: Reference to the gadget driver 1231 * @mA: specifies the current limit in 2mA unit 1232 * 1233 * Return codes: 1234 * -EINVAL: If the gadget passed is NULL 1235 * -EOPNOTSUPP: 1236 */ 1237 static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA) 1238 { 1239 return -EOPNOTSUPP; 1240 } 1241 1242 static int pch_udc_start(struct usb_gadget *g, 1243 struct usb_gadget_driver *driver); 1244 static int pch_udc_stop(struct usb_gadget *g); 1245 1246 static const struct usb_gadget_ops pch_udc_ops = { 1247 .get_frame = pch_udc_pcd_get_frame, 1248 .wakeup = pch_udc_pcd_wakeup, 1249 .set_selfpowered = pch_udc_pcd_selfpowered, 1250 .pullup = pch_udc_pcd_pullup, 1251 .vbus_session = pch_udc_pcd_vbus_session, 1252 .vbus_draw = pch_udc_pcd_vbus_draw, 1253 .udc_start = pch_udc_start, 1254 .udc_stop = pch_udc_stop, 1255 }; 1256 1257 /** 1258 * pch_vbus_gpio_get_value() - This API gets value of GPIO port as VBUS status. 1259 * @dev: Reference to the driver structure 1260 * 1261 * Return value: 1262 * 1: VBUS is high 1263 * 0: VBUS is low 1264 * -1: It is not enable to detect VBUS using GPIO 1265 */ 1266 static int pch_vbus_gpio_get_value(struct pch_udc_dev *dev) 1267 { 1268 int vbus = 0; 1269 1270 if (dev->vbus_gpio.port) 1271 vbus = gpio_get_value(dev->vbus_gpio.port) ? 1 : 0; 1272 else 1273 vbus = -1; 1274 1275 return vbus; 1276 } 1277 1278 /** 1279 * pch_vbus_gpio_work_fall() - This API keeps watch on VBUS becoming Low. 1280 * If VBUS is Low, disconnect is processed 1281 * @irq_work: Structure for WorkQueue 1282 * 1283 */ 1284 static void pch_vbus_gpio_work_fall(struct work_struct *irq_work) 1285 { 1286 struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work, 1287 struct pch_vbus_gpio_data, irq_work_fall); 1288 struct pch_udc_dev *dev = 1289 container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio); 1290 int vbus_saved = -1; 1291 int vbus; 1292 int count; 1293 1294 if (!dev->vbus_gpio.port) 1295 return; 1296 1297 for (count = 0; count < (PCH_VBUS_PERIOD / PCH_VBUS_INTERVAL); 1298 count++) { 1299 vbus = pch_vbus_gpio_get_value(dev); 1300 1301 if ((vbus_saved == vbus) && (vbus == 0)) { 1302 dev_dbg(&dev->pdev->dev, "VBUS fell"); 1303 if (dev->driver 1304 && dev->driver->disconnect) { 1305 dev->driver->disconnect( 1306 &dev->gadget); 1307 } 1308 if (dev->vbus_gpio.intr) 1309 pch_udc_init(dev); 1310 else 1311 pch_udc_reconnect(dev); 1312 return; 1313 } 1314 vbus_saved = vbus; 1315 mdelay(PCH_VBUS_INTERVAL); 1316 } 1317 } 1318 1319 /** 1320 * pch_vbus_gpio_work_rise() - This API checks VBUS is High. 1321 * If VBUS is High, connect is processed 1322 * @irq_work: Structure for WorkQueue 1323 * 1324 */ 1325 static void pch_vbus_gpio_work_rise(struct work_struct *irq_work) 1326 { 1327 struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work, 1328 struct pch_vbus_gpio_data, irq_work_rise); 1329 struct pch_udc_dev *dev = 1330 container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio); 1331 int vbus; 1332 1333 if (!dev->vbus_gpio.port) 1334 return; 1335 1336 mdelay(PCH_VBUS_INTERVAL); 1337 vbus = pch_vbus_gpio_get_value(dev); 1338 1339 if (vbus == 1) { 1340 dev_dbg(&dev->pdev->dev, "VBUS rose"); 1341 pch_udc_reconnect(dev); 1342 return; 1343 } 1344 } 1345 1346 /** 1347 * pch_vbus_gpio_irq() - IRQ handler for GPIO intrerrupt for changing VBUS 1348 * @irq: Interrupt request number 1349 * @dev: Reference to the device structure 1350 * 1351 * Return codes: 1352 * 0: Success 1353 * -EINVAL: GPIO port is invalid or can't be initialized. 1354 */ 1355 static irqreturn_t pch_vbus_gpio_irq(int irq, void *data) 1356 { 1357 struct pch_udc_dev *dev = (struct pch_udc_dev *)data; 1358 1359 if (!dev->vbus_gpio.port || !dev->vbus_gpio.intr) 1360 return IRQ_NONE; 1361 1362 if (pch_vbus_gpio_get_value(dev)) 1363 schedule_work(&dev->vbus_gpio.irq_work_rise); 1364 else 1365 schedule_work(&dev->vbus_gpio.irq_work_fall); 1366 1367 return IRQ_HANDLED; 1368 } 1369 1370 /** 1371 * pch_vbus_gpio_init() - This API initializes GPIO port detecting VBUS. 1372 * @dev: Reference to the driver structure 1373 * @vbus_gpio Number of GPIO port to detect gpio 1374 * 1375 * Return codes: 1376 * 0: Success 1377 * -EINVAL: GPIO port is invalid or can't be initialized. 1378 */ 1379 static int pch_vbus_gpio_init(struct pch_udc_dev *dev, int vbus_gpio_port) 1380 { 1381 int err; 1382 int irq_num = 0; 1383 1384 dev->vbus_gpio.port = 0; 1385 dev->vbus_gpio.intr = 0; 1386 1387 if (vbus_gpio_port <= -1) 1388 return -EINVAL; 1389 1390 err = gpio_is_valid(vbus_gpio_port); 1391 if (!err) { 1392 pr_err("%s: gpio port %d is invalid\n", 1393 __func__, vbus_gpio_port); 1394 return -EINVAL; 1395 } 1396 1397 err = gpio_request(vbus_gpio_port, "pch_vbus"); 1398 if (err) { 1399 pr_err("%s: can't request gpio port %d, err: %d\n", 1400 __func__, vbus_gpio_port, err); 1401 return -EINVAL; 1402 } 1403 1404 dev->vbus_gpio.port = vbus_gpio_port; 1405 gpio_direction_input(vbus_gpio_port); 1406 INIT_WORK(&dev->vbus_gpio.irq_work_fall, pch_vbus_gpio_work_fall); 1407 1408 irq_num = gpio_to_irq(vbus_gpio_port); 1409 if (irq_num > 0) { 1410 irq_set_irq_type(irq_num, IRQ_TYPE_EDGE_BOTH); 1411 err = request_irq(irq_num, pch_vbus_gpio_irq, 0, 1412 "vbus_detect", dev); 1413 if (!err) { 1414 dev->vbus_gpio.intr = irq_num; 1415 INIT_WORK(&dev->vbus_gpio.irq_work_rise, 1416 pch_vbus_gpio_work_rise); 1417 } else { 1418 pr_err("%s: can't request irq %d, err: %d\n", 1419 __func__, irq_num, err); 1420 } 1421 } 1422 1423 return 0; 1424 } 1425 1426 /** 1427 * pch_vbus_gpio_free() - This API frees resources of GPIO port 1428 * @dev: Reference to the driver structure 1429 */ 1430 static void pch_vbus_gpio_free(struct pch_udc_dev *dev) 1431 { 1432 if (dev->vbus_gpio.intr) 1433 free_irq(dev->vbus_gpio.intr, dev); 1434 1435 if (dev->vbus_gpio.port) 1436 gpio_free(dev->vbus_gpio.port); 1437 } 1438 1439 /** 1440 * complete_req() - This API is invoked from the driver when processing 1441 * of a request is complete 1442 * @ep: Reference to the endpoint structure 1443 * @req: Reference to the request structure 1444 * @status: Indicates the success/failure of completion 1445 */ 1446 static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req, 1447 int status) 1448 __releases(&dev->lock) 1449 __acquires(&dev->lock) 1450 { 1451 struct pch_udc_dev *dev; 1452 unsigned halted = ep->halted; 1453 1454 list_del_init(&req->queue); 1455 1456 /* set new status if pending */ 1457 if (req->req.status == -EINPROGRESS) 1458 req->req.status = status; 1459 else 1460 status = req->req.status; 1461 1462 dev = ep->dev; 1463 if (req->dma_mapped) { 1464 if (req->dma == DMA_ADDR_INVALID) { 1465 if (ep->in) 1466 dma_unmap_single(&dev->pdev->dev, req->req.dma, 1467 req->req.length, 1468 DMA_TO_DEVICE); 1469 else 1470 dma_unmap_single(&dev->pdev->dev, req->req.dma, 1471 req->req.length, 1472 DMA_FROM_DEVICE); 1473 req->req.dma = DMA_ADDR_INVALID; 1474 } else { 1475 if (ep->in) 1476 dma_unmap_single(&dev->pdev->dev, req->dma, 1477 req->req.length, 1478 DMA_TO_DEVICE); 1479 else { 1480 dma_unmap_single(&dev->pdev->dev, req->dma, 1481 req->req.length, 1482 DMA_FROM_DEVICE); 1483 memcpy(req->req.buf, req->buf, req->req.length); 1484 } 1485 kfree(req->buf); 1486 req->dma = DMA_ADDR_INVALID; 1487 } 1488 req->dma_mapped = 0; 1489 } 1490 ep->halted = 1; 1491 spin_lock(&dev->lock); 1492 if (!ep->in) 1493 pch_udc_ep_clear_rrdy(ep); 1494 usb_gadget_giveback_request(&ep->ep, &req->req); 1495 spin_unlock(&dev->lock); 1496 ep->halted = halted; 1497 } 1498 1499 /** 1500 * empty_req_queue() - This API empties the request queue of an endpoint 1501 * @ep: Reference to the endpoint structure 1502 */ 1503 static void empty_req_queue(struct pch_udc_ep *ep) 1504 { 1505 struct pch_udc_request *req; 1506 1507 ep->halted = 1; 1508 while (!list_empty(&ep->queue)) { 1509 req = list_entry(ep->queue.next, struct pch_udc_request, queue); 1510 complete_req(ep, req, -ESHUTDOWN); /* Remove from list */ 1511 } 1512 } 1513 1514 /** 1515 * pch_udc_free_dma_chain() - This function frees the DMA chain created 1516 * for the request 1517 * @dev Reference to the driver structure 1518 * @req Reference to the request to be freed 1519 * 1520 * Return codes: 1521 * 0: Success 1522 */ 1523 static void pch_udc_free_dma_chain(struct pch_udc_dev *dev, 1524 struct pch_udc_request *req) 1525 { 1526 struct pch_udc_data_dma_desc *td = req->td_data; 1527 unsigned i = req->chain_len; 1528 1529 dma_addr_t addr2; 1530 dma_addr_t addr = (dma_addr_t)td->next; 1531 td->next = 0x00; 1532 for (; i > 1; --i) { 1533 /* do not free first desc., will be done by free for request */ 1534 td = phys_to_virt(addr); 1535 addr2 = (dma_addr_t)td->next; 1536 pci_pool_free(dev->data_requests, td, addr); 1537 td->next = 0x00; 1538 addr = addr2; 1539 } 1540 req->chain_len = 1; 1541 } 1542 1543 /** 1544 * pch_udc_create_dma_chain() - This function creates or reinitializes 1545 * a DMA chain 1546 * @ep: Reference to the endpoint structure 1547 * @req: Reference to the request 1548 * @buf_len: The buffer length 1549 * @gfp_flags: Flags to be used while mapping the data buffer 1550 * 1551 * Return codes: 1552 * 0: success, 1553 * -ENOMEM: pci_pool_alloc invocation fails 1554 */ 1555 static int pch_udc_create_dma_chain(struct pch_udc_ep *ep, 1556 struct pch_udc_request *req, 1557 unsigned long buf_len, 1558 gfp_t gfp_flags) 1559 { 1560 struct pch_udc_data_dma_desc *td = req->td_data, *last; 1561 unsigned long bytes = req->req.length, i = 0; 1562 dma_addr_t dma_addr; 1563 unsigned len = 1; 1564 1565 if (req->chain_len > 1) 1566 pch_udc_free_dma_chain(ep->dev, req); 1567 1568 if (req->dma == DMA_ADDR_INVALID) 1569 td->dataptr = req->req.dma; 1570 else 1571 td->dataptr = req->dma; 1572 1573 td->status = PCH_UDC_BS_HST_BSY; 1574 for (; ; bytes -= buf_len, ++len) { 1575 td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes); 1576 if (bytes <= buf_len) 1577 break; 1578 last = td; 1579 td = pci_pool_alloc(ep->dev->data_requests, gfp_flags, 1580 &dma_addr); 1581 if (!td) 1582 goto nomem; 1583 i += buf_len; 1584 td->dataptr = req->td_data->dataptr + i; 1585 last->next = dma_addr; 1586 } 1587 1588 req->td_data_last = td; 1589 td->status |= PCH_UDC_DMA_LAST; 1590 td->next = req->td_data_phys; 1591 req->chain_len = len; 1592 return 0; 1593 1594 nomem: 1595 if (len > 1) { 1596 req->chain_len = len; 1597 pch_udc_free_dma_chain(ep->dev, req); 1598 } 1599 req->chain_len = 1; 1600 return -ENOMEM; 1601 } 1602 1603 /** 1604 * prepare_dma() - This function creates and initializes the DMA chain 1605 * for the request 1606 * @ep: Reference to the endpoint structure 1607 * @req: Reference to the request 1608 * @gfp: Flag to be used while mapping the data buffer 1609 * 1610 * Return codes: 1611 * 0: Success 1612 * Other 0: linux error number on failure 1613 */ 1614 static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req, 1615 gfp_t gfp) 1616 { 1617 int retval; 1618 1619 /* Allocate and create a DMA chain */ 1620 retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp); 1621 if (retval) { 1622 pr_err("%s: could not create DMA chain:%d\n", __func__, retval); 1623 return retval; 1624 } 1625 if (ep->in) 1626 req->td_data->status = (req->td_data->status & 1627 ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY; 1628 return 0; 1629 } 1630 1631 /** 1632 * process_zlp() - This function process zero length packets 1633 * from the gadget driver 1634 * @ep: Reference to the endpoint structure 1635 * @req: Reference to the request 1636 */ 1637 static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req) 1638 { 1639 struct pch_udc_dev *dev = ep->dev; 1640 1641 /* IN zlp's are handled by hardware */ 1642 complete_req(ep, req, 0); 1643 1644 /* if set_config or set_intf is waiting for ack by zlp 1645 * then set CSR_DONE 1646 */ 1647 if (dev->set_cfg_not_acked) { 1648 pch_udc_set_csr_done(dev); 1649 dev->set_cfg_not_acked = 0; 1650 } 1651 /* setup command is ACK'ed now by zlp */ 1652 if (!dev->stall && dev->waiting_zlp_ack) { 1653 pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX])); 1654 dev->waiting_zlp_ack = 0; 1655 } 1656 } 1657 1658 /** 1659 * pch_udc_start_rxrequest() - This function starts the receive requirement. 1660 * @ep: Reference to the endpoint structure 1661 * @req: Reference to the request structure 1662 */ 1663 static void pch_udc_start_rxrequest(struct pch_udc_ep *ep, 1664 struct pch_udc_request *req) 1665 { 1666 struct pch_udc_data_dma_desc *td_data; 1667 1668 pch_udc_clear_dma(ep->dev, DMA_DIR_RX); 1669 td_data = req->td_data; 1670 /* Set the status bits for all descriptors */ 1671 while (1) { 1672 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) | 1673 PCH_UDC_BS_HST_RDY; 1674 if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST) 1675 break; 1676 td_data = phys_to_virt(td_data->next); 1677 } 1678 /* Write the descriptor pointer */ 1679 pch_udc_ep_set_ddptr(ep, req->td_data_phys); 1680 req->dma_going = 1; 1681 pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num); 1682 pch_udc_set_dma(ep->dev, DMA_DIR_RX); 1683 pch_udc_ep_clear_nak(ep); 1684 pch_udc_ep_set_rrdy(ep); 1685 } 1686 1687 /** 1688 * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called 1689 * from gadget driver 1690 * @usbep: Reference to the USB endpoint structure 1691 * @desc: Reference to the USB endpoint descriptor structure 1692 * 1693 * Return codes: 1694 * 0: Success 1695 * -EINVAL: 1696 * -ESHUTDOWN: 1697 */ 1698 static int pch_udc_pcd_ep_enable(struct usb_ep *usbep, 1699 const struct usb_endpoint_descriptor *desc) 1700 { 1701 struct pch_udc_ep *ep; 1702 struct pch_udc_dev *dev; 1703 unsigned long iflags; 1704 1705 if (!usbep || (usbep->name == ep0_string) || !desc || 1706 (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize) 1707 return -EINVAL; 1708 1709 ep = container_of(usbep, struct pch_udc_ep, ep); 1710 dev = ep->dev; 1711 if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN)) 1712 return -ESHUTDOWN; 1713 spin_lock_irqsave(&dev->lock, iflags); 1714 ep->ep.desc = desc; 1715 ep->halted = 0; 1716 pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc); 1717 ep->ep.maxpacket = usb_endpoint_maxp(desc); 1718 pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num)); 1719 spin_unlock_irqrestore(&dev->lock, iflags); 1720 return 0; 1721 } 1722 1723 /** 1724 * pch_udc_pcd_ep_disable() - This API disables endpoint and is called 1725 * from gadget driver 1726 * @usbep Reference to the USB endpoint structure 1727 * 1728 * Return codes: 1729 * 0: Success 1730 * -EINVAL: 1731 */ 1732 static int pch_udc_pcd_ep_disable(struct usb_ep *usbep) 1733 { 1734 struct pch_udc_ep *ep; 1735 struct pch_udc_dev *dev; 1736 unsigned long iflags; 1737 1738 if (!usbep) 1739 return -EINVAL; 1740 1741 ep = container_of(usbep, struct pch_udc_ep, ep); 1742 dev = ep->dev; 1743 if ((usbep->name == ep0_string) || !ep->ep.desc) 1744 return -EINVAL; 1745 1746 spin_lock_irqsave(&ep->dev->lock, iflags); 1747 empty_req_queue(ep); 1748 ep->halted = 1; 1749 pch_udc_ep_disable(ep); 1750 pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num)); 1751 ep->ep.desc = NULL; 1752 INIT_LIST_HEAD(&ep->queue); 1753 spin_unlock_irqrestore(&ep->dev->lock, iflags); 1754 return 0; 1755 } 1756 1757 /** 1758 * pch_udc_alloc_request() - This function allocates request structure. 1759 * It is called by gadget driver 1760 * @usbep: Reference to the USB endpoint structure 1761 * @gfp: Flag to be used while allocating memory 1762 * 1763 * Return codes: 1764 * NULL: Failure 1765 * Allocated address: Success 1766 */ 1767 static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep, 1768 gfp_t gfp) 1769 { 1770 struct pch_udc_request *req; 1771 struct pch_udc_ep *ep; 1772 struct pch_udc_data_dma_desc *dma_desc; 1773 struct pch_udc_dev *dev; 1774 1775 if (!usbep) 1776 return NULL; 1777 ep = container_of(usbep, struct pch_udc_ep, ep); 1778 dev = ep->dev; 1779 req = kzalloc(sizeof *req, gfp); 1780 if (!req) 1781 return NULL; 1782 req->req.dma = DMA_ADDR_INVALID; 1783 req->dma = DMA_ADDR_INVALID; 1784 INIT_LIST_HEAD(&req->queue); 1785 if (!ep->dev->dma_addr) 1786 return &req->req; 1787 /* ep0 in requests are allocated from data pool here */ 1788 dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp, 1789 &req->td_data_phys); 1790 if (NULL == dma_desc) { 1791 kfree(req); 1792 return NULL; 1793 } 1794 /* prevent from using desc. - set HOST BUSY */ 1795 dma_desc->status |= PCH_UDC_BS_HST_BSY; 1796 dma_desc->dataptr = cpu_to_le32(DMA_ADDR_INVALID); 1797 req->td_data = dma_desc; 1798 req->td_data_last = dma_desc; 1799 req->chain_len = 1; 1800 return &req->req; 1801 } 1802 1803 /** 1804 * pch_udc_free_request() - This function frees request structure. 1805 * It is called by gadget driver 1806 * @usbep: Reference to the USB endpoint structure 1807 * @usbreq: Reference to the USB request 1808 */ 1809 static void pch_udc_free_request(struct usb_ep *usbep, 1810 struct usb_request *usbreq) 1811 { 1812 struct pch_udc_ep *ep; 1813 struct pch_udc_request *req; 1814 struct pch_udc_dev *dev; 1815 1816 if (!usbep || !usbreq) 1817 return; 1818 ep = container_of(usbep, struct pch_udc_ep, ep); 1819 req = container_of(usbreq, struct pch_udc_request, req); 1820 dev = ep->dev; 1821 if (!list_empty(&req->queue)) 1822 dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n", 1823 __func__, usbep->name, req); 1824 if (req->td_data != NULL) { 1825 if (req->chain_len > 1) 1826 pch_udc_free_dma_chain(ep->dev, req); 1827 pci_pool_free(ep->dev->data_requests, req->td_data, 1828 req->td_data_phys); 1829 } 1830 kfree(req); 1831 } 1832 1833 /** 1834 * pch_udc_pcd_queue() - This function queues a request packet. It is called 1835 * by gadget driver 1836 * @usbep: Reference to the USB endpoint structure 1837 * @usbreq: Reference to the USB request 1838 * @gfp: Flag to be used while mapping the data buffer 1839 * 1840 * Return codes: 1841 * 0: Success 1842 * linux error number: Failure 1843 */ 1844 static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq, 1845 gfp_t gfp) 1846 { 1847 int retval = 0; 1848 struct pch_udc_ep *ep; 1849 struct pch_udc_dev *dev; 1850 struct pch_udc_request *req; 1851 unsigned long iflags; 1852 1853 if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf) 1854 return -EINVAL; 1855 ep = container_of(usbep, struct pch_udc_ep, ep); 1856 dev = ep->dev; 1857 if (!ep->ep.desc && ep->num) 1858 return -EINVAL; 1859 req = container_of(usbreq, struct pch_udc_request, req); 1860 if (!list_empty(&req->queue)) 1861 return -EINVAL; 1862 if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN)) 1863 return -ESHUTDOWN; 1864 spin_lock_irqsave(&dev->lock, iflags); 1865 /* map the buffer for dma */ 1866 if (usbreq->length && 1867 ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) { 1868 if (!((unsigned long)(usbreq->buf) & 0x03)) { 1869 if (ep->in) 1870 usbreq->dma = dma_map_single(&dev->pdev->dev, 1871 usbreq->buf, 1872 usbreq->length, 1873 DMA_TO_DEVICE); 1874 else 1875 usbreq->dma = dma_map_single(&dev->pdev->dev, 1876 usbreq->buf, 1877 usbreq->length, 1878 DMA_FROM_DEVICE); 1879 } else { 1880 req->buf = kzalloc(usbreq->length, GFP_ATOMIC); 1881 if (!req->buf) { 1882 retval = -ENOMEM; 1883 goto probe_end; 1884 } 1885 if (ep->in) { 1886 memcpy(req->buf, usbreq->buf, usbreq->length); 1887 req->dma = dma_map_single(&dev->pdev->dev, 1888 req->buf, 1889 usbreq->length, 1890 DMA_TO_DEVICE); 1891 } else 1892 req->dma = dma_map_single(&dev->pdev->dev, 1893 req->buf, 1894 usbreq->length, 1895 DMA_FROM_DEVICE); 1896 } 1897 req->dma_mapped = 1; 1898 } 1899 if (usbreq->length > 0) { 1900 retval = prepare_dma(ep, req, GFP_ATOMIC); 1901 if (retval) 1902 goto probe_end; 1903 } 1904 usbreq->actual = 0; 1905 usbreq->status = -EINPROGRESS; 1906 req->dma_done = 0; 1907 if (list_empty(&ep->queue) && !ep->halted) { 1908 /* no pending transfer, so start this req */ 1909 if (!usbreq->length) { 1910 process_zlp(ep, req); 1911 retval = 0; 1912 goto probe_end; 1913 } 1914 if (!ep->in) { 1915 pch_udc_start_rxrequest(ep, req); 1916 } else { 1917 /* 1918 * For IN trfr the descriptors will be programmed and 1919 * P bit will be set when 1920 * we get an IN token 1921 */ 1922 pch_udc_wait_ep_stall(ep); 1923 pch_udc_ep_clear_nak(ep); 1924 pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num)); 1925 } 1926 } 1927 /* Now add this request to the ep's pending requests */ 1928 if (req != NULL) 1929 list_add_tail(&req->queue, &ep->queue); 1930 1931 probe_end: 1932 spin_unlock_irqrestore(&dev->lock, iflags); 1933 return retval; 1934 } 1935 1936 /** 1937 * pch_udc_pcd_dequeue() - This function de-queues a request packet. 1938 * It is called by gadget driver 1939 * @usbep: Reference to the USB endpoint structure 1940 * @usbreq: Reference to the USB request 1941 * 1942 * Return codes: 1943 * 0: Success 1944 * linux error number: Failure 1945 */ 1946 static int pch_udc_pcd_dequeue(struct usb_ep *usbep, 1947 struct usb_request *usbreq) 1948 { 1949 struct pch_udc_ep *ep; 1950 struct pch_udc_request *req; 1951 struct pch_udc_dev *dev; 1952 unsigned long flags; 1953 int ret = -EINVAL; 1954 1955 ep = container_of(usbep, struct pch_udc_ep, ep); 1956 dev = ep->dev; 1957 if (!usbep || !usbreq || (!ep->ep.desc && ep->num)) 1958 return ret; 1959 req = container_of(usbreq, struct pch_udc_request, req); 1960 spin_lock_irqsave(&ep->dev->lock, flags); 1961 /* make sure it's still queued on this endpoint */ 1962 list_for_each_entry(req, &ep->queue, queue) { 1963 if (&req->req == usbreq) { 1964 pch_udc_ep_set_nak(ep); 1965 if (!list_empty(&req->queue)) 1966 complete_req(ep, req, -ECONNRESET); 1967 ret = 0; 1968 break; 1969 } 1970 } 1971 spin_unlock_irqrestore(&ep->dev->lock, flags); 1972 return ret; 1973 } 1974 1975 /** 1976 * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt 1977 * feature 1978 * @usbep: Reference to the USB endpoint structure 1979 * @halt: Specifies whether to set or clear the feature 1980 * 1981 * Return codes: 1982 * 0: Success 1983 * linux error number: Failure 1984 */ 1985 static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt) 1986 { 1987 struct pch_udc_ep *ep; 1988 struct pch_udc_dev *dev; 1989 unsigned long iflags; 1990 int ret; 1991 1992 if (!usbep) 1993 return -EINVAL; 1994 ep = container_of(usbep, struct pch_udc_ep, ep); 1995 dev = ep->dev; 1996 if (!ep->ep.desc && !ep->num) 1997 return -EINVAL; 1998 if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN)) 1999 return -ESHUTDOWN; 2000 spin_lock_irqsave(&udc_stall_spinlock, iflags); 2001 if (list_empty(&ep->queue)) { 2002 if (halt) { 2003 if (ep->num == PCH_UDC_EP0) 2004 ep->dev->stall = 1; 2005 pch_udc_ep_set_stall(ep); 2006 pch_udc_enable_ep_interrupts(ep->dev, 2007 PCH_UDC_EPINT(ep->in, 2008 ep->num)); 2009 } else { 2010 pch_udc_ep_clear_stall(ep); 2011 } 2012 ret = 0; 2013 } else { 2014 ret = -EAGAIN; 2015 } 2016 spin_unlock_irqrestore(&udc_stall_spinlock, iflags); 2017 return ret; 2018 } 2019 2020 /** 2021 * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint 2022 * halt feature 2023 * @usbep: Reference to the USB endpoint structure 2024 * @halt: Specifies whether to set or clear the feature 2025 * 2026 * Return codes: 2027 * 0: Success 2028 * linux error number: Failure 2029 */ 2030 static int pch_udc_pcd_set_wedge(struct usb_ep *usbep) 2031 { 2032 struct pch_udc_ep *ep; 2033 struct pch_udc_dev *dev; 2034 unsigned long iflags; 2035 int ret; 2036 2037 if (!usbep) 2038 return -EINVAL; 2039 ep = container_of(usbep, struct pch_udc_ep, ep); 2040 dev = ep->dev; 2041 if (!ep->ep.desc && !ep->num) 2042 return -EINVAL; 2043 if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN)) 2044 return -ESHUTDOWN; 2045 spin_lock_irqsave(&udc_stall_spinlock, iflags); 2046 if (!list_empty(&ep->queue)) { 2047 ret = -EAGAIN; 2048 } else { 2049 if (ep->num == PCH_UDC_EP0) 2050 ep->dev->stall = 1; 2051 pch_udc_ep_set_stall(ep); 2052 pch_udc_enable_ep_interrupts(ep->dev, 2053 PCH_UDC_EPINT(ep->in, ep->num)); 2054 ep->dev->prot_stall = 1; 2055 ret = 0; 2056 } 2057 spin_unlock_irqrestore(&udc_stall_spinlock, iflags); 2058 return ret; 2059 } 2060 2061 /** 2062 * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint 2063 * @usbep: Reference to the USB endpoint structure 2064 */ 2065 static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep) 2066 { 2067 struct pch_udc_ep *ep; 2068 2069 if (!usbep) 2070 return; 2071 2072 ep = container_of(usbep, struct pch_udc_ep, ep); 2073 if (ep->ep.desc || !ep->num) 2074 pch_udc_ep_fifo_flush(ep, ep->in); 2075 } 2076 2077 static const struct usb_ep_ops pch_udc_ep_ops = { 2078 .enable = pch_udc_pcd_ep_enable, 2079 .disable = pch_udc_pcd_ep_disable, 2080 .alloc_request = pch_udc_alloc_request, 2081 .free_request = pch_udc_free_request, 2082 .queue = pch_udc_pcd_queue, 2083 .dequeue = pch_udc_pcd_dequeue, 2084 .set_halt = pch_udc_pcd_set_halt, 2085 .set_wedge = pch_udc_pcd_set_wedge, 2086 .fifo_status = NULL, 2087 .fifo_flush = pch_udc_pcd_fifo_flush, 2088 }; 2089 2090 /** 2091 * pch_udc_init_setup_buff() - This function initializes the SETUP buffer 2092 * @td_stp: Reference to the SETP buffer structure 2093 */ 2094 static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp) 2095 { 2096 static u32 pky_marker; 2097 2098 if (!td_stp) 2099 return; 2100 td_stp->reserved = ++pky_marker; 2101 memset(&td_stp->request, 0xFF, sizeof td_stp->request); 2102 td_stp->status = PCH_UDC_BS_HST_RDY; 2103 } 2104 2105 /** 2106 * pch_udc_start_next_txrequest() - This function starts 2107 * the next transmission requirement 2108 * @ep: Reference to the endpoint structure 2109 */ 2110 static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep) 2111 { 2112 struct pch_udc_request *req; 2113 struct pch_udc_data_dma_desc *td_data; 2114 2115 if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P) 2116 return; 2117 2118 if (list_empty(&ep->queue)) 2119 return; 2120 2121 /* next request */ 2122 req = list_entry(ep->queue.next, struct pch_udc_request, queue); 2123 if (req->dma_going) 2124 return; 2125 if (!req->td_data) 2126 return; 2127 pch_udc_wait_ep_stall(ep); 2128 req->dma_going = 1; 2129 pch_udc_ep_set_ddptr(ep, 0); 2130 td_data = req->td_data; 2131 while (1) { 2132 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) | 2133 PCH_UDC_BS_HST_RDY; 2134 if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST) 2135 break; 2136 td_data = phys_to_virt(td_data->next); 2137 } 2138 pch_udc_ep_set_ddptr(ep, req->td_data_phys); 2139 pch_udc_set_dma(ep->dev, DMA_DIR_TX); 2140 pch_udc_ep_set_pd(ep); 2141 pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num)); 2142 pch_udc_ep_clear_nak(ep); 2143 } 2144 2145 /** 2146 * pch_udc_complete_transfer() - This function completes a transfer 2147 * @ep: Reference to the endpoint structure 2148 */ 2149 static void pch_udc_complete_transfer(struct pch_udc_ep *ep) 2150 { 2151 struct pch_udc_request *req; 2152 struct pch_udc_dev *dev = ep->dev; 2153 2154 if (list_empty(&ep->queue)) 2155 return; 2156 req = list_entry(ep->queue.next, struct pch_udc_request, queue); 2157 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) != 2158 PCH_UDC_BS_DMA_DONE) 2159 return; 2160 if ((req->td_data_last->status & PCH_UDC_RXTX_STS) != 2161 PCH_UDC_RTS_SUCC) { 2162 dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) " 2163 "epstatus=0x%08x\n", 2164 (req->td_data_last->status & PCH_UDC_RXTX_STS), 2165 (int)(ep->epsts)); 2166 return; 2167 } 2168 2169 req->req.actual = req->req.length; 2170 req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST; 2171 req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST; 2172 complete_req(ep, req, 0); 2173 req->dma_going = 0; 2174 if (!list_empty(&ep->queue)) { 2175 pch_udc_wait_ep_stall(ep); 2176 pch_udc_ep_clear_nak(ep); 2177 pch_udc_enable_ep_interrupts(ep->dev, 2178 PCH_UDC_EPINT(ep->in, ep->num)); 2179 } else { 2180 pch_udc_disable_ep_interrupts(ep->dev, 2181 PCH_UDC_EPINT(ep->in, ep->num)); 2182 } 2183 } 2184 2185 /** 2186 * pch_udc_complete_receiver() - This function completes a receiver 2187 * @ep: Reference to the endpoint structure 2188 */ 2189 static void pch_udc_complete_receiver(struct pch_udc_ep *ep) 2190 { 2191 struct pch_udc_request *req; 2192 struct pch_udc_dev *dev = ep->dev; 2193 unsigned int count; 2194 struct pch_udc_data_dma_desc *td; 2195 dma_addr_t addr; 2196 2197 if (list_empty(&ep->queue)) 2198 return; 2199 /* next request */ 2200 req = list_entry(ep->queue.next, struct pch_udc_request, queue); 2201 pch_udc_clear_dma(ep->dev, DMA_DIR_RX); 2202 pch_udc_ep_set_ddptr(ep, 0); 2203 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) == 2204 PCH_UDC_BS_DMA_DONE) 2205 td = req->td_data_last; 2206 else 2207 td = req->td_data; 2208 2209 while (1) { 2210 if ((td->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) { 2211 dev_err(&dev->pdev->dev, "Invalid RXTX status=0x%08x " 2212 "epstatus=0x%08x\n", 2213 (req->td_data->status & PCH_UDC_RXTX_STS), 2214 (int)(ep->epsts)); 2215 return; 2216 } 2217 if ((td->status & PCH_UDC_BUFF_STS) == PCH_UDC_BS_DMA_DONE) 2218 if (td->status & PCH_UDC_DMA_LAST) { 2219 count = td->status & PCH_UDC_RXTX_BYTES; 2220 break; 2221 } 2222 if (td == req->td_data_last) { 2223 dev_err(&dev->pdev->dev, "Not complete RX descriptor"); 2224 return; 2225 } 2226 addr = (dma_addr_t)td->next; 2227 td = phys_to_virt(addr); 2228 } 2229 /* on 64k packets the RXBYTES field is zero */ 2230 if (!count && (req->req.length == UDC_DMA_MAXPACKET)) 2231 count = UDC_DMA_MAXPACKET; 2232 req->td_data->status |= PCH_UDC_DMA_LAST; 2233 td->status |= PCH_UDC_BS_HST_BSY; 2234 2235 req->dma_going = 0; 2236 req->req.actual = count; 2237 complete_req(ep, req, 0); 2238 /* If there is a new/failed requests try that now */ 2239 if (!list_empty(&ep->queue)) { 2240 req = list_entry(ep->queue.next, struct pch_udc_request, queue); 2241 pch_udc_start_rxrequest(ep, req); 2242 } 2243 } 2244 2245 /** 2246 * pch_udc_svc_data_in() - This function process endpoint interrupts 2247 * for IN endpoints 2248 * @dev: Reference to the device structure 2249 * @ep_num: Endpoint that generated the interrupt 2250 */ 2251 static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num) 2252 { 2253 u32 epsts; 2254 struct pch_udc_ep *ep; 2255 2256 ep = &dev->ep[UDC_EPIN_IDX(ep_num)]; 2257 epsts = ep->epsts; 2258 ep->epsts = 0; 2259 2260 if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE | 2261 UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY | 2262 UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE))) 2263 return; 2264 if ((epsts & UDC_EPSTS_BNA)) 2265 return; 2266 if (epsts & UDC_EPSTS_HE) 2267 return; 2268 if (epsts & UDC_EPSTS_RSS) { 2269 pch_udc_ep_set_stall(ep); 2270 pch_udc_enable_ep_interrupts(ep->dev, 2271 PCH_UDC_EPINT(ep->in, ep->num)); 2272 } 2273 if (epsts & UDC_EPSTS_RCS) { 2274 if (!dev->prot_stall) { 2275 pch_udc_ep_clear_stall(ep); 2276 } else { 2277 pch_udc_ep_set_stall(ep); 2278 pch_udc_enable_ep_interrupts(ep->dev, 2279 PCH_UDC_EPINT(ep->in, ep->num)); 2280 } 2281 } 2282 if (epsts & UDC_EPSTS_TDC) 2283 pch_udc_complete_transfer(ep); 2284 /* On IN interrupt, provide data if we have any */ 2285 if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) && 2286 !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY)) 2287 pch_udc_start_next_txrequest(ep); 2288 } 2289 2290 /** 2291 * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint 2292 * @dev: Reference to the device structure 2293 * @ep_num: Endpoint that generated the interrupt 2294 */ 2295 static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num) 2296 { 2297 u32 epsts; 2298 struct pch_udc_ep *ep; 2299 struct pch_udc_request *req = NULL; 2300 2301 ep = &dev->ep[UDC_EPOUT_IDX(ep_num)]; 2302 epsts = ep->epsts; 2303 ep->epsts = 0; 2304 2305 if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) { 2306 /* next request */ 2307 req = list_entry(ep->queue.next, struct pch_udc_request, 2308 queue); 2309 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) != 2310 PCH_UDC_BS_DMA_DONE) { 2311 if (!req->dma_going) 2312 pch_udc_start_rxrequest(ep, req); 2313 return; 2314 } 2315 } 2316 if (epsts & UDC_EPSTS_HE) 2317 return; 2318 if (epsts & UDC_EPSTS_RSS) { 2319 pch_udc_ep_set_stall(ep); 2320 pch_udc_enable_ep_interrupts(ep->dev, 2321 PCH_UDC_EPINT(ep->in, ep->num)); 2322 } 2323 if (epsts & UDC_EPSTS_RCS) { 2324 if (!dev->prot_stall) { 2325 pch_udc_ep_clear_stall(ep); 2326 } else { 2327 pch_udc_ep_set_stall(ep); 2328 pch_udc_enable_ep_interrupts(ep->dev, 2329 PCH_UDC_EPINT(ep->in, ep->num)); 2330 } 2331 } 2332 if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) == 2333 UDC_EPSTS_OUT_DATA) { 2334 if (ep->dev->prot_stall == 1) { 2335 pch_udc_ep_set_stall(ep); 2336 pch_udc_enable_ep_interrupts(ep->dev, 2337 PCH_UDC_EPINT(ep->in, ep->num)); 2338 } else { 2339 pch_udc_complete_receiver(ep); 2340 } 2341 } 2342 if (list_empty(&ep->queue)) 2343 pch_udc_set_dma(dev, DMA_DIR_RX); 2344 } 2345 2346 /** 2347 * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts 2348 * @dev: Reference to the device structure 2349 */ 2350 static void pch_udc_svc_control_in(struct pch_udc_dev *dev) 2351 { 2352 u32 epsts; 2353 struct pch_udc_ep *ep; 2354 struct pch_udc_ep *ep_out; 2355 2356 ep = &dev->ep[UDC_EP0IN_IDX]; 2357 ep_out = &dev->ep[UDC_EP0OUT_IDX]; 2358 epsts = ep->epsts; 2359 ep->epsts = 0; 2360 2361 if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE | 2362 UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY | 2363 UDC_EPSTS_XFERDONE))) 2364 return; 2365 if ((epsts & UDC_EPSTS_BNA)) 2366 return; 2367 if (epsts & UDC_EPSTS_HE) 2368 return; 2369 if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) { 2370 pch_udc_complete_transfer(ep); 2371 pch_udc_clear_dma(dev, DMA_DIR_RX); 2372 ep_out->td_data->status = (ep_out->td_data->status & 2373 ~PCH_UDC_BUFF_STS) | 2374 PCH_UDC_BS_HST_RDY; 2375 pch_udc_ep_clear_nak(ep_out); 2376 pch_udc_set_dma(dev, DMA_DIR_RX); 2377 pch_udc_ep_set_rrdy(ep_out); 2378 } 2379 /* On IN interrupt, provide data if we have any */ 2380 if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) && 2381 !(epsts & UDC_EPSTS_TXEMPTY)) 2382 pch_udc_start_next_txrequest(ep); 2383 } 2384 2385 /** 2386 * pch_udc_svc_control_out() - Routine that handle Control 2387 * OUT endpoint interrupts 2388 * @dev: Reference to the device structure 2389 */ 2390 static void pch_udc_svc_control_out(struct pch_udc_dev *dev) 2391 __releases(&dev->lock) 2392 __acquires(&dev->lock) 2393 { 2394 u32 stat; 2395 int setup_supported; 2396 struct pch_udc_ep *ep; 2397 2398 ep = &dev->ep[UDC_EP0OUT_IDX]; 2399 stat = ep->epsts; 2400 ep->epsts = 0; 2401 2402 /* If setup data */ 2403 if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) == 2404 UDC_EPSTS_OUT_SETUP) { 2405 dev->stall = 0; 2406 dev->ep[UDC_EP0IN_IDX].halted = 0; 2407 dev->ep[UDC_EP0OUT_IDX].halted = 0; 2408 dev->setup_data = ep->td_stp->request; 2409 pch_udc_init_setup_buff(ep->td_stp); 2410 pch_udc_clear_dma(dev, DMA_DIR_RX); 2411 pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]), 2412 dev->ep[UDC_EP0IN_IDX].in); 2413 if ((dev->setup_data.bRequestType & USB_DIR_IN)) 2414 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep; 2415 else /* OUT */ 2416 dev->gadget.ep0 = &ep->ep; 2417 spin_lock(&dev->lock); 2418 /* If Mass storage Reset */ 2419 if ((dev->setup_data.bRequestType == 0x21) && 2420 (dev->setup_data.bRequest == 0xFF)) 2421 dev->prot_stall = 0; 2422 /* call gadget with setup data received */ 2423 setup_supported = dev->driver->setup(&dev->gadget, 2424 &dev->setup_data); 2425 spin_unlock(&dev->lock); 2426 2427 if (dev->setup_data.bRequestType & USB_DIR_IN) { 2428 ep->td_data->status = (ep->td_data->status & 2429 ~PCH_UDC_BUFF_STS) | 2430 PCH_UDC_BS_HST_RDY; 2431 pch_udc_ep_set_ddptr(ep, ep->td_data_phys); 2432 } 2433 /* ep0 in returns data on IN phase */ 2434 if (setup_supported >= 0 && setup_supported < 2435 UDC_EP0IN_MAX_PKT_SIZE) { 2436 pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX])); 2437 /* Gadget would have queued a request when 2438 * we called the setup */ 2439 if (!(dev->setup_data.bRequestType & USB_DIR_IN)) { 2440 pch_udc_set_dma(dev, DMA_DIR_RX); 2441 pch_udc_ep_clear_nak(ep); 2442 } 2443 } else if (setup_supported < 0) { 2444 /* if unsupported request, then stall */ 2445 pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX])); 2446 pch_udc_enable_ep_interrupts(ep->dev, 2447 PCH_UDC_EPINT(ep->in, ep->num)); 2448 dev->stall = 0; 2449 pch_udc_set_dma(dev, DMA_DIR_RX); 2450 } else { 2451 dev->waiting_zlp_ack = 1; 2452 } 2453 } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) == 2454 UDC_EPSTS_OUT_DATA) && !dev->stall) { 2455 pch_udc_clear_dma(dev, DMA_DIR_RX); 2456 pch_udc_ep_set_ddptr(ep, 0); 2457 if (!list_empty(&ep->queue)) { 2458 ep->epsts = stat; 2459 pch_udc_svc_data_out(dev, PCH_UDC_EP0); 2460 } 2461 pch_udc_set_dma(dev, DMA_DIR_RX); 2462 } 2463 pch_udc_ep_set_rrdy(ep); 2464 } 2465 2466 2467 /** 2468 * pch_udc_postsvc_epinters() - This function enables end point interrupts 2469 * and clears NAK status 2470 * @dev: Reference to the device structure 2471 * @ep_num: End point number 2472 */ 2473 static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num) 2474 { 2475 struct pch_udc_ep *ep; 2476 struct pch_udc_request *req; 2477 2478 ep = &dev->ep[UDC_EPIN_IDX(ep_num)]; 2479 if (!list_empty(&ep->queue)) { 2480 req = list_entry(ep->queue.next, struct pch_udc_request, queue); 2481 pch_udc_enable_ep_interrupts(ep->dev, 2482 PCH_UDC_EPINT(ep->in, ep->num)); 2483 pch_udc_ep_clear_nak(ep); 2484 } 2485 } 2486 2487 /** 2488 * pch_udc_read_all_epstatus() - This function read all endpoint status 2489 * @dev: Reference to the device structure 2490 * @ep_intr: Status of endpoint interrupt 2491 */ 2492 static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr) 2493 { 2494 int i; 2495 struct pch_udc_ep *ep; 2496 2497 for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) { 2498 /* IN */ 2499 if (ep_intr & (0x1 << i)) { 2500 ep = &dev->ep[UDC_EPIN_IDX(i)]; 2501 ep->epsts = pch_udc_read_ep_status(ep); 2502 pch_udc_clear_ep_status(ep, ep->epsts); 2503 } 2504 /* OUT */ 2505 if (ep_intr & (0x10000 << i)) { 2506 ep = &dev->ep[UDC_EPOUT_IDX(i)]; 2507 ep->epsts = pch_udc_read_ep_status(ep); 2508 pch_udc_clear_ep_status(ep, ep->epsts); 2509 } 2510 } 2511 } 2512 2513 /** 2514 * pch_udc_activate_control_ep() - This function enables the control endpoints 2515 * for traffic after a reset 2516 * @dev: Reference to the device structure 2517 */ 2518 static void pch_udc_activate_control_ep(struct pch_udc_dev *dev) 2519 { 2520 struct pch_udc_ep *ep; 2521 u32 val; 2522 2523 /* Setup the IN endpoint */ 2524 ep = &dev->ep[UDC_EP0IN_IDX]; 2525 pch_udc_clear_ep_control(ep); 2526 pch_udc_ep_fifo_flush(ep, ep->in); 2527 pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in); 2528 pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE); 2529 /* Initialize the IN EP Descriptor */ 2530 ep->td_data = NULL; 2531 ep->td_stp = NULL; 2532 ep->td_data_phys = 0; 2533 ep->td_stp_phys = 0; 2534 2535 /* Setup the OUT endpoint */ 2536 ep = &dev->ep[UDC_EP0OUT_IDX]; 2537 pch_udc_clear_ep_control(ep); 2538 pch_udc_ep_fifo_flush(ep, ep->in); 2539 pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in); 2540 pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE); 2541 val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT; 2542 pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX); 2543 2544 /* Initialize the SETUP buffer */ 2545 pch_udc_init_setup_buff(ep->td_stp); 2546 /* Write the pointer address of dma descriptor */ 2547 pch_udc_ep_set_subptr(ep, ep->td_stp_phys); 2548 /* Write the pointer address of Setup descriptor */ 2549 pch_udc_ep_set_ddptr(ep, ep->td_data_phys); 2550 2551 /* Initialize the dma descriptor */ 2552 ep->td_data->status = PCH_UDC_DMA_LAST; 2553 ep->td_data->dataptr = dev->dma_addr; 2554 ep->td_data->next = ep->td_data_phys; 2555 2556 pch_udc_ep_clear_nak(ep); 2557 } 2558 2559 2560 /** 2561 * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt 2562 * @dev: Reference to driver structure 2563 */ 2564 static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev) 2565 { 2566 struct pch_udc_ep *ep; 2567 int i; 2568 2569 pch_udc_clear_dma(dev, DMA_DIR_TX); 2570 pch_udc_clear_dma(dev, DMA_DIR_RX); 2571 /* Mask all endpoint interrupts */ 2572 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL); 2573 /* clear all endpoint interrupts */ 2574 pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL); 2575 2576 for (i = 0; i < PCH_UDC_EP_NUM; i++) { 2577 ep = &dev->ep[i]; 2578 pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK); 2579 pch_udc_clear_ep_control(ep); 2580 pch_udc_ep_set_ddptr(ep, 0); 2581 pch_udc_write_csr(ep->dev, 0x00, i); 2582 } 2583 dev->stall = 0; 2584 dev->prot_stall = 0; 2585 dev->waiting_zlp_ack = 0; 2586 dev->set_cfg_not_acked = 0; 2587 2588 /* disable ep to empty req queue. Skip the control EP's */ 2589 for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) { 2590 ep = &dev->ep[i]; 2591 pch_udc_ep_set_nak(ep); 2592 pch_udc_ep_fifo_flush(ep, ep->in); 2593 /* Complete request queue */ 2594 empty_req_queue(ep); 2595 } 2596 if (dev->driver) { 2597 spin_lock(&dev->lock); 2598 usb_gadget_udc_reset(&dev->gadget, dev->driver); 2599 spin_unlock(&dev->lock); 2600 } 2601 } 2602 2603 /** 2604 * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration 2605 * done interrupt 2606 * @dev: Reference to driver structure 2607 */ 2608 static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev) 2609 { 2610 u32 dev_stat, dev_speed; 2611 u32 speed = USB_SPEED_FULL; 2612 2613 dev_stat = pch_udc_read_device_status(dev); 2614 dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >> 2615 UDC_DEVSTS_ENUM_SPEED_SHIFT; 2616 switch (dev_speed) { 2617 case UDC_DEVSTS_ENUM_SPEED_HIGH: 2618 speed = USB_SPEED_HIGH; 2619 break; 2620 case UDC_DEVSTS_ENUM_SPEED_FULL: 2621 speed = USB_SPEED_FULL; 2622 break; 2623 case UDC_DEVSTS_ENUM_SPEED_LOW: 2624 speed = USB_SPEED_LOW; 2625 break; 2626 default: 2627 BUG(); 2628 } 2629 dev->gadget.speed = speed; 2630 pch_udc_activate_control_ep(dev); 2631 pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0); 2632 pch_udc_set_dma(dev, DMA_DIR_TX); 2633 pch_udc_set_dma(dev, DMA_DIR_RX); 2634 pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX])); 2635 2636 /* enable device interrupts */ 2637 pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US | 2638 UDC_DEVINT_ES | UDC_DEVINT_ENUM | 2639 UDC_DEVINT_SI | UDC_DEVINT_SC); 2640 } 2641 2642 /** 2643 * pch_udc_svc_intf_interrupt() - This function handles a set interface 2644 * interrupt 2645 * @dev: Reference to driver structure 2646 */ 2647 static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev) 2648 { 2649 u32 reg, dev_stat = 0; 2650 int i, ret; 2651 2652 dev_stat = pch_udc_read_device_status(dev); 2653 dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >> 2654 UDC_DEVSTS_INTF_SHIFT; 2655 dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >> 2656 UDC_DEVSTS_ALT_SHIFT; 2657 dev->set_cfg_not_acked = 1; 2658 /* Construct the usb request for gadget driver and inform it */ 2659 memset(&dev->setup_data, 0 , sizeof dev->setup_data); 2660 dev->setup_data.bRequest = USB_REQ_SET_INTERFACE; 2661 dev->setup_data.bRequestType = USB_RECIP_INTERFACE; 2662 dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt); 2663 dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf); 2664 /* programm the Endpoint Cfg registers */ 2665 /* Only one end point cfg register */ 2666 reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX); 2667 reg = (reg & ~UDC_CSR_NE_INTF_MASK) | 2668 (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT); 2669 reg = (reg & ~UDC_CSR_NE_ALT_MASK) | 2670 (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT); 2671 pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX); 2672 for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) { 2673 /* clear stall bits */ 2674 pch_udc_ep_clear_stall(&(dev->ep[i])); 2675 dev->ep[i].halted = 0; 2676 } 2677 dev->stall = 0; 2678 spin_lock(&dev->lock); 2679 ret = dev->driver->setup(&dev->gadget, &dev->setup_data); 2680 spin_unlock(&dev->lock); 2681 } 2682 2683 /** 2684 * pch_udc_svc_cfg_interrupt() - This function handles a set configuration 2685 * interrupt 2686 * @dev: Reference to driver structure 2687 */ 2688 static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev) 2689 { 2690 int i, ret; 2691 u32 reg, dev_stat = 0; 2692 2693 dev_stat = pch_udc_read_device_status(dev); 2694 dev->set_cfg_not_acked = 1; 2695 dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >> 2696 UDC_DEVSTS_CFG_SHIFT; 2697 /* make usb request for gadget driver */ 2698 memset(&dev->setup_data, 0 , sizeof dev->setup_data); 2699 dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION; 2700 dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg); 2701 /* program the NE registers */ 2702 /* Only one end point cfg register */ 2703 reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX); 2704 reg = (reg & ~UDC_CSR_NE_CFG_MASK) | 2705 (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT); 2706 pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX); 2707 for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) { 2708 /* clear stall bits */ 2709 pch_udc_ep_clear_stall(&(dev->ep[i])); 2710 dev->ep[i].halted = 0; 2711 } 2712 dev->stall = 0; 2713 2714 /* call gadget zero with setup data received */ 2715 spin_lock(&dev->lock); 2716 ret = dev->driver->setup(&dev->gadget, &dev->setup_data); 2717 spin_unlock(&dev->lock); 2718 } 2719 2720 /** 2721 * pch_udc_dev_isr() - This function services device interrupts 2722 * by invoking appropriate routines. 2723 * @dev: Reference to the device structure 2724 * @dev_intr: The Device interrupt status. 2725 */ 2726 static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr) 2727 { 2728 int vbus; 2729 2730 /* USB Reset Interrupt */ 2731 if (dev_intr & UDC_DEVINT_UR) { 2732 pch_udc_svc_ur_interrupt(dev); 2733 dev_dbg(&dev->pdev->dev, "USB_RESET\n"); 2734 } 2735 /* Enumeration Done Interrupt */ 2736 if (dev_intr & UDC_DEVINT_ENUM) { 2737 pch_udc_svc_enum_interrupt(dev); 2738 dev_dbg(&dev->pdev->dev, "USB_ENUM\n"); 2739 } 2740 /* Set Interface Interrupt */ 2741 if (dev_intr & UDC_DEVINT_SI) 2742 pch_udc_svc_intf_interrupt(dev); 2743 /* Set Config Interrupt */ 2744 if (dev_intr & UDC_DEVINT_SC) 2745 pch_udc_svc_cfg_interrupt(dev); 2746 /* USB Suspend interrupt */ 2747 if (dev_intr & UDC_DEVINT_US) { 2748 if (dev->driver 2749 && dev->driver->suspend) { 2750 spin_unlock(&dev->lock); 2751 dev->driver->suspend(&dev->gadget); 2752 spin_lock(&dev->lock); 2753 } 2754 2755 vbus = pch_vbus_gpio_get_value(dev); 2756 if ((dev->vbus_session == 0) 2757 && (vbus != 1)) { 2758 if (dev->driver && dev->driver->disconnect) { 2759 spin_unlock(&dev->lock); 2760 dev->driver->disconnect(&dev->gadget); 2761 spin_lock(&dev->lock); 2762 } 2763 pch_udc_reconnect(dev); 2764 } else if ((dev->vbus_session == 0) 2765 && (vbus == 1) 2766 && !dev->vbus_gpio.intr) 2767 schedule_work(&dev->vbus_gpio.irq_work_fall); 2768 2769 dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n"); 2770 } 2771 /* Clear the SOF interrupt, if enabled */ 2772 if (dev_intr & UDC_DEVINT_SOF) 2773 dev_dbg(&dev->pdev->dev, "SOF\n"); 2774 /* ES interrupt, IDLE > 3ms on the USB */ 2775 if (dev_intr & UDC_DEVINT_ES) 2776 dev_dbg(&dev->pdev->dev, "ES\n"); 2777 /* RWKP interrupt */ 2778 if (dev_intr & UDC_DEVINT_RWKP) 2779 dev_dbg(&dev->pdev->dev, "RWKP\n"); 2780 } 2781 2782 /** 2783 * pch_udc_isr() - This function handles interrupts from the PCH USB Device 2784 * @irq: Interrupt request number 2785 * @dev: Reference to the device structure 2786 */ 2787 static irqreturn_t pch_udc_isr(int irq, void *pdev) 2788 { 2789 struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev; 2790 u32 dev_intr, ep_intr; 2791 int i; 2792 2793 dev_intr = pch_udc_read_device_interrupts(dev); 2794 ep_intr = pch_udc_read_ep_interrupts(dev); 2795 2796 /* For a hot plug, this find that the controller is hung up. */ 2797 if (dev_intr == ep_intr) 2798 if (dev_intr == pch_udc_readl(dev, UDC_DEVCFG_ADDR)) { 2799 dev_dbg(&dev->pdev->dev, "UDC: Hung up\n"); 2800 /* The controller is reset */ 2801 pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR); 2802 return IRQ_HANDLED; 2803 } 2804 if (dev_intr) 2805 /* Clear device interrupts */ 2806 pch_udc_write_device_interrupts(dev, dev_intr); 2807 if (ep_intr) 2808 /* Clear ep interrupts */ 2809 pch_udc_write_ep_interrupts(dev, ep_intr); 2810 if (!dev_intr && !ep_intr) 2811 return IRQ_NONE; 2812 spin_lock(&dev->lock); 2813 if (dev_intr) 2814 pch_udc_dev_isr(dev, dev_intr); 2815 if (ep_intr) { 2816 pch_udc_read_all_epstatus(dev, ep_intr); 2817 /* Process Control In interrupts, if present */ 2818 if (ep_intr & UDC_EPINT_IN_EP0) { 2819 pch_udc_svc_control_in(dev); 2820 pch_udc_postsvc_epinters(dev, 0); 2821 } 2822 /* Process Control Out interrupts, if present */ 2823 if (ep_intr & UDC_EPINT_OUT_EP0) 2824 pch_udc_svc_control_out(dev); 2825 /* Process data in end point interrupts */ 2826 for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) { 2827 if (ep_intr & (1 << i)) { 2828 pch_udc_svc_data_in(dev, i); 2829 pch_udc_postsvc_epinters(dev, i); 2830 } 2831 } 2832 /* Process data out end point interrupts */ 2833 for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT + 2834 PCH_UDC_USED_EP_NUM); i++) 2835 if (ep_intr & (1 << i)) 2836 pch_udc_svc_data_out(dev, i - 2837 UDC_EPINT_OUT_SHIFT); 2838 } 2839 spin_unlock(&dev->lock); 2840 return IRQ_HANDLED; 2841 } 2842 2843 /** 2844 * pch_udc_setup_ep0() - This function enables control endpoint for traffic 2845 * @dev: Reference to the device structure 2846 */ 2847 static void pch_udc_setup_ep0(struct pch_udc_dev *dev) 2848 { 2849 /* enable ep0 interrupts */ 2850 pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | 2851 UDC_EPINT_OUT_EP0); 2852 /* enable device interrupts */ 2853 pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US | 2854 UDC_DEVINT_ES | UDC_DEVINT_ENUM | 2855 UDC_DEVINT_SI | UDC_DEVINT_SC); 2856 } 2857 2858 /** 2859 * gadget_release() - Free the gadget driver private data 2860 * @pdev reference to struct pci_dev 2861 */ 2862 static void gadget_release(struct device *pdev) 2863 { 2864 struct pch_udc_dev *dev = dev_get_drvdata(pdev); 2865 2866 kfree(dev); 2867 } 2868 2869 /** 2870 * pch_udc_pcd_reinit() - This API initializes the endpoint structures 2871 * @dev: Reference to the driver structure 2872 */ 2873 static void pch_udc_pcd_reinit(struct pch_udc_dev *dev) 2874 { 2875 const char *const ep_string[] = { 2876 ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out", 2877 "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out", 2878 "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out", 2879 "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out", 2880 "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out", 2881 "ep15in", "ep15out", 2882 }; 2883 int i; 2884 2885 dev->gadget.speed = USB_SPEED_UNKNOWN; 2886 INIT_LIST_HEAD(&dev->gadget.ep_list); 2887 2888 /* Initialize the endpoints structures */ 2889 memset(dev->ep, 0, sizeof dev->ep); 2890 for (i = 0; i < PCH_UDC_EP_NUM; i++) { 2891 struct pch_udc_ep *ep = &dev->ep[i]; 2892 ep->dev = dev; 2893 ep->halted = 1; 2894 ep->num = i / 2; 2895 ep->in = ~i & 1; 2896 ep->ep.name = ep_string[i]; 2897 ep->ep.ops = &pch_udc_ep_ops; 2898 if (ep->in) { 2899 ep->offset_addr = ep->num * UDC_EP_REG_SHIFT; 2900 ep->ep.caps.dir_in = true; 2901 } else { 2902 ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) * 2903 UDC_EP_REG_SHIFT; 2904 ep->ep.caps.dir_out = true; 2905 } 2906 if (i == UDC_EP0IN_IDX || i == UDC_EP0OUT_IDX) { 2907 ep->ep.caps.type_control = true; 2908 } else { 2909 ep->ep.caps.type_iso = true; 2910 ep->ep.caps.type_bulk = true; 2911 ep->ep.caps.type_int = true; 2912 } 2913 /* need to set ep->ep.maxpacket and set Default Configuration?*/ 2914 usb_ep_set_maxpacket_limit(&ep->ep, UDC_BULK_MAX_PKT_SIZE); 2915 list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list); 2916 INIT_LIST_HEAD(&ep->queue); 2917 } 2918 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IDX].ep, UDC_EP0IN_MAX_PKT_SIZE); 2919 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IDX].ep, UDC_EP0OUT_MAX_PKT_SIZE); 2920 2921 /* remove ep0 in and out from the list. They have own pointer */ 2922 list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list); 2923 list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list); 2924 2925 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep; 2926 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list); 2927 } 2928 2929 /** 2930 * pch_udc_pcd_init() - This API initializes the driver structure 2931 * @dev: Reference to the driver structure 2932 * 2933 * Return codes: 2934 * 0: Success 2935 */ 2936 static int pch_udc_pcd_init(struct pch_udc_dev *dev) 2937 { 2938 pch_udc_init(dev); 2939 pch_udc_pcd_reinit(dev); 2940 pch_vbus_gpio_init(dev, vbus_gpio_port); 2941 return 0; 2942 } 2943 2944 /** 2945 * init_dma_pools() - create dma pools during initialization 2946 * @pdev: reference to struct pci_dev 2947 */ 2948 static int init_dma_pools(struct pch_udc_dev *dev) 2949 { 2950 struct pch_udc_stp_dma_desc *td_stp; 2951 struct pch_udc_data_dma_desc *td_data; 2952 2953 /* DMA setup */ 2954 dev->data_requests = pci_pool_create("data_requests", dev->pdev, 2955 sizeof(struct pch_udc_data_dma_desc), 0, 0); 2956 if (!dev->data_requests) { 2957 dev_err(&dev->pdev->dev, "%s: can't get request data pool\n", 2958 __func__); 2959 return -ENOMEM; 2960 } 2961 2962 /* dma desc for setup data */ 2963 dev->stp_requests = pci_pool_create("setup requests", dev->pdev, 2964 sizeof(struct pch_udc_stp_dma_desc), 0, 0); 2965 if (!dev->stp_requests) { 2966 dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n", 2967 __func__); 2968 return -ENOMEM; 2969 } 2970 /* setup */ 2971 td_stp = pci_pool_alloc(dev->stp_requests, GFP_KERNEL, 2972 &dev->ep[UDC_EP0OUT_IDX].td_stp_phys); 2973 if (!td_stp) { 2974 dev_err(&dev->pdev->dev, 2975 "%s: can't allocate setup dma descriptor\n", __func__); 2976 return -ENOMEM; 2977 } 2978 dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp; 2979 2980 /* data: 0 packets !? */ 2981 td_data = pci_pool_alloc(dev->data_requests, GFP_KERNEL, 2982 &dev->ep[UDC_EP0OUT_IDX].td_data_phys); 2983 if (!td_data) { 2984 dev_err(&dev->pdev->dev, 2985 "%s: can't allocate data dma descriptor\n", __func__); 2986 return -ENOMEM; 2987 } 2988 dev->ep[UDC_EP0OUT_IDX].td_data = td_data; 2989 dev->ep[UDC_EP0IN_IDX].td_stp = NULL; 2990 dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0; 2991 dev->ep[UDC_EP0IN_IDX].td_data = NULL; 2992 dev->ep[UDC_EP0IN_IDX].td_data_phys = 0; 2993 2994 dev->ep0out_buf = kzalloc(UDC_EP0OUT_BUFF_SIZE * 4, GFP_KERNEL); 2995 if (!dev->ep0out_buf) 2996 return -ENOMEM; 2997 dev->dma_addr = dma_map_single(&dev->pdev->dev, dev->ep0out_buf, 2998 UDC_EP0OUT_BUFF_SIZE * 4, 2999 DMA_FROM_DEVICE); 3000 return 0; 3001 } 3002 3003 static int pch_udc_start(struct usb_gadget *g, 3004 struct usb_gadget_driver *driver) 3005 { 3006 struct pch_udc_dev *dev = to_pch_udc(g); 3007 3008 driver->driver.bus = NULL; 3009 dev->driver = driver; 3010 3011 /* get ready for ep0 traffic */ 3012 pch_udc_setup_ep0(dev); 3013 3014 /* clear SD */ 3015 if ((pch_vbus_gpio_get_value(dev) != 0) || !dev->vbus_gpio.intr) 3016 pch_udc_clear_disconnect(dev); 3017 3018 dev->connected = 1; 3019 return 0; 3020 } 3021 3022 static int pch_udc_stop(struct usb_gadget *g) 3023 { 3024 struct pch_udc_dev *dev = to_pch_udc(g); 3025 3026 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK); 3027 3028 /* Assures that there are no pending requests with this driver */ 3029 dev->driver = NULL; 3030 dev->connected = 0; 3031 3032 /* set SD */ 3033 pch_udc_set_disconnect(dev); 3034 3035 return 0; 3036 } 3037 3038 static void pch_udc_shutdown(struct pci_dev *pdev) 3039 { 3040 struct pch_udc_dev *dev = pci_get_drvdata(pdev); 3041 3042 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK); 3043 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL); 3044 3045 /* disable the pullup so the host will think we're gone */ 3046 pch_udc_set_disconnect(dev); 3047 } 3048 3049 static void pch_udc_remove(struct pci_dev *pdev) 3050 { 3051 struct pch_udc_dev *dev = pci_get_drvdata(pdev); 3052 3053 usb_del_gadget_udc(&dev->gadget); 3054 3055 /* gadget driver must not be registered */ 3056 if (dev->driver) 3057 dev_err(&pdev->dev, 3058 "%s: gadget driver still bound!!!\n", __func__); 3059 /* dma pool cleanup */ 3060 if (dev->data_requests) 3061 pci_pool_destroy(dev->data_requests); 3062 3063 if (dev->stp_requests) { 3064 /* cleanup DMA desc's for ep0in */ 3065 if (dev->ep[UDC_EP0OUT_IDX].td_stp) { 3066 pci_pool_free(dev->stp_requests, 3067 dev->ep[UDC_EP0OUT_IDX].td_stp, 3068 dev->ep[UDC_EP0OUT_IDX].td_stp_phys); 3069 } 3070 if (dev->ep[UDC_EP0OUT_IDX].td_data) { 3071 pci_pool_free(dev->stp_requests, 3072 dev->ep[UDC_EP0OUT_IDX].td_data, 3073 dev->ep[UDC_EP0OUT_IDX].td_data_phys); 3074 } 3075 pci_pool_destroy(dev->stp_requests); 3076 } 3077 3078 if (dev->dma_addr) 3079 dma_unmap_single(&dev->pdev->dev, dev->dma_addr, 3080 UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE); 3081 kfree(dev->ep0out_buf); 3082 3083 pch_vbus_gpio_free(dev); 3084 3085 pch_udc_exit(dev); 3086 3087 if (dev->irq_registered) 3088 free_irq(pdev->irq, dev); 3089 if (dev->base_addr) 3090 iounmap(dev->base_addr); 3091 if (dev->mem_region) 3092 release_mem_region(dev->phys_addr, 3093 pci_resource_len(pdev, dev->bar)); 3094 if (dev->active) 3095 pci_disable_device(pdev); 3096 kfree(dev); 3097 } 3098 3099 #ifdef CONFIG_PM 3100 static int pch_udc_suspend(struct pci_dev *pdev, pm_message_t state) 3101 { 3102 struct pch_udc_dev *dev = pci_get_drvdata(pdev); 3103 3104 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK); 3105 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL); 3106 3107 pci_disable_device(pdev); 3108 pci_enable_wake(pdev, PCI_D3hot, 0); 3109 3110 if (pci_save_state(pdev)) { 3111 dev_err(&pdev->dev, 3112 "%s: could not save PCI config state\n", __func__); 3113 return -ENOMEM; 3114 } 3115 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 3116 return 0; 3117 } 3118 3119 static int pch_udc_resume(struct pci_dev *pdev) 3120 { 3121 int ret; 3122 3123 pci_set_power_state(pdev, PCI_D0); 3124 pci_restore_state(pdev); 3125 ret = pci_enable_device(pdev); 3126 if (ret) { 3127 dev_err(&pdev->dev, "%s: pci_enable_device failed\n", __func__); 3128 return ret; 3129 } 3130 pci_enable_wake(pdev, PCI_D3hot, 0); 3131 return 0; 3132 } 3133 #else 3134 #define pch_udc_suspend NULL 3135 #define pch_udc_resume NULL 3136 #endif /* CONFIG_PM */ 3137 3138 static int pch_udc_probe(struct pci_dev *pdev, 3139 const struct pci_device_id *id) 3140 { 3141 unsigned long resource; 3142 unsigned long len; 3143 int retval; 3144 struct pch_udc_dev *dev; 3145 3146 /* init */ 3147 dev = kzalloc(sizeof *dev, GFP_KERNEL); 3148 if (!dev) { 3149 pr_err("%s: no memory for device structure\n", __func__); 3150 return -ENOMEM; 3151 } 3152 /* pci setup */ 3153 if (pci_enable_device(pdev) < 0) { 3154 kfree(dev); 3155 pr_err("%s: pci_enable_device failed\n", __func__); 3156 return -ENODEV; 3157 } 3158 dev->active = 1; 3159 pci_set_drvdata(pdev, dev); 3160 3161 /* Determine BAR based on PCI ID */ 3162 if (id->device == PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC) 3163 dev->bar = PCH_UDC_PCI_BAR_QUARK_X1000; 3164 else 3165 dev->bar = PCH_UDC_PCI_BAR; 3166 3167 /* PCI resource allocation */ 3168 resource = pci_resource_start(pdev, dev->bar); 3169 len = pci_resource_len(pdev, dev->bar); 3170 3171 if (!request_mem_region(resource, len, KBUILD_MODNAME)) { 3172 dev_err(&pdev->dev, "%s: pci device used already\n", __func__); 3173 retval = -EBUSY; 3174 goto finished; 3175 } 3176 dev->phys_addr = resource; 3177 dev->mem_region = 1; 3178 3179 dev->base_addr = ioremap_nocache(resource, len); 3180 if (!dev->base_addr) { 3181 pr_err("%s: device memory cannot be mapped\n", __func__); 3182 retval = -ENOMEM; 3183 goto finished; 3184 } 3185 if (!pdev->irq) { 3186 dev_err(&pdev->dev, "%s: irq not set\n", __func__); 3187 retval = -ENODEV; 3188 goto finished; 3189 } 3190 /* initialize the hardware */ 3191 if (pch_udc_pcd_init(dev)) { 3192 retval = -ENODEV; 3193 goto finished; 3194 } 3195 if (request_irq(pdev->irq, pch_udc_isr, IRQF_SHARED, KBUILD_MODNAME, 3196 dev)) { 3197 dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__, 3198 pdev->irq); 3199 retval = -ENODEV; 3200 goto finished; 3201 } 3202 dev->irq = pdev->irq; 3203 dev->irq_registered = 1; 3204 3205 pci_set_master(pdev); 3206 pci_try_set_mwi(pdev); 3207 3208 /* device struct setup */ 3209 spin_lock_init(&dev->lock); 3210 dev->pdev = pdev; 3211 dev->gadget.ops = &pch_udc_ops; 3212 3213 retval = init_dma_pools(dev); 3214 if (retval) 3215 goto finished; 3216 3217 dev->gadget.name = KBUILD_MODNAME; 3218 dev->gadget.max_speed = USB_SPEED_HIGH; 3219 3220 /* Put the device in disconnected state till a driver is bound */ 3221 pch_udc_set_disconnect(dev); 3222 retval = usb_add_gadget_udc_release(&pdev->dev, &dev->gadget, 3223 gadget_release); 3224 if (retval) 3225 goto finished; 3226 return 0; 3227 3228 finished: 3229 pch_udc_remove(pdev); 3230 return retval; 3231 } 3232 3233 static const struct pci_device_id pch_udc_pcidev_id[] = { 3234 { 3235 PCI_DEVICE(PCI_VENDOR_ID_INTEL, 3236 PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC), 3237 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe, 3238 .class_mask = 0xffffffff, 3239 }, 3240 { 3241 PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC), 3242 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe, 3243 .class_mask = 0xffffffff, 3244 }, 3245 { 3246 PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC), 3247 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe, 3248 .class_mask = 0xffffffff, 3249 }, 3250 { 3251 PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7831_IOH_UDC), 3252 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe, 3253 .class_mask = 0xffffffff, 3254 }, 3255 { 0 }, 3256 }; 3257 3258 MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id); 3259 3260 static struct pci_driver pch_udc_driver = { 3261 .name = KBUILD_MODNAME, 3262 .id_table = pch_udc_pcidev_id, 3263 .probe = pch_udc_probe, 3264 .remove = pch_udc_remove, 3265 .suspend = pch_udc_suspend, 3266 .resume = pch_udc_resume, 3267 .shutdown = pch_udc_shutdown, 3268 }; 3269 3270 module_pci_driver(pch_udc_driver); 3271 3272 MODULE_DESCRIPTION("Intel EG20T USB Device Controller"); 3273 MODULE_AUTHOR("LAPIS Semiconductor, <tomoya-linux@dsn.lapis-semi.com>"); 3274 MODULE_LICENSE("GPL"); 3275