1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2011 Marvell International Ltd. All rights reserved.
4  * Author: Chao Xie <chao.xie@marvell.com>
5  *	   Neil Zhang <zhangwm@marvell.com>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmapool.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/ioport.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/errno.h>
18 #include <linux/err.h>
19 #include <linux/timer.h>
20 #include <linux/list.h>
21 #include <linux/interrupt.h>
22 #include <linux/moduleparam.h>
23 #include <linux/device.h>
24 #include <linux/usb/ch9.h>
25 #include <linux/usb/gadget.h>
26 #include <linux/usb/otg.h>
27 #include <linux/pm.h>
28 #include <linux/io.h>
29 #include <linux/irq.h>
30 #include <linux/platform_device.h>
31 #include <linux/clk.h>
32 #include <linux/platform_data/mv_usb.h>
33 #include <asm/unaligned.h>
34 
35 #include "mv_udc.h"
36 
37 #define DRIVER_DESC		"Marvell PXA USB Device Controller driver"
38 
39 #define ep_dir(ep)	(((ep)->ep_num == 0) ? \
40 				((ep)->udc->ep0_dir) : ((ep)->direction))
41 
42 /* timeout value -- usec */
43 #define RESET_TIMEOUT		10000
44 #define FLUSH_TIMEOUT		10000
45 #define EPSTATUS_TIMEOUT	10000
46 #define PRIME_TIMEOUT		10000
47 #define READSAFE_TIMEOUT	1000
48 
49 #define LOOPS_USEC_SHIFT	1
50 #define LOOPS_USEC		(1 << LOOPS_USEC_SHIFT)
51 #define LOOPS(timeout)		((timeout) >> LOOPS_USEC_SHIFT)
52 
53 static DECLARE_COMPLETION(release_done);
54 
55 static const char driver_name[] = "mv_udc";
56 
57 static void nuke(struct mv_ep *ep, int status);
58 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver);
59 
60 /* for endpoint 0 operations */
61 static const struct usb_endpoint_descriptor mv_ep0_desc = {
62 	.bLength =		USB_DT_ENDPOINT_SIZE,
63 	.bDescriptorType =	USB_DT_ENDPOINT,
64 	.bEndpointAddress =	0,
65 	.bmAttributes =		USB_ENDPOINT_XFER_CONTROL,
66 	.wMaxPacketSize =	EP0_MAX_PKT_SIZE,
67 };
68 
69 static void ep0_reset(struct mv_udc *udc)
70 {
71 	struct mv_ep *ep;
72 	u32 epctrlx;
73 	int i = 0;
74 
75 	/* ep0 in and out */
76 	for (i = 0; i < 2; i++) {
77 		ep = &udc->eps[i];
78 		ep->udc = udc;
79 
80 		/* ep0 dQH */
81 		ep->dqh = &udc->ep_dqh[i];
82 
83 		/* configure ep0 endpoint capabilities in dQH */
84 		ep->dqh->max_packet_length =
85 			(EP0_MAX_PKT_SIZE << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
86 			| EP_QUEUE_HEAD_IOS;
87 
88 		ep->dqh->next_dtd_ptr = EP_QUEUE_HEAD_NEXT_TERMINATE;
89 
90 		epctrlx = readl(&udc->op_regs->epctrlx[0]);
91 		if (i) {	/* TX */
92 			epctrlx |= EPCTRL_TX_ENABLE
93 				| (USB_ENDPOINT_XFER_CONTROL
94 					<< EPCTRL_TX_EP_TYPE_SHIFT);
95 
96 		} else {	/* RX */
97 			epctrlx |= EPCTRL_RX_ENABLE
98 				| (USB_ENDPOINT_XFER_CONTROL
99 					<< EPCTRL_RX_EP_TYPE_SHIFT);
100 		}
101 
102 		writel(epctrlx, &udc->op_regs->epctrlx[0]);
103 	}
104 }
105 
106 /* protocol ep0 stall, will automatically be cleared on new transaction */
107 static void ep0_stall(struct mv_udc *udc)
108 {
109 	u32	epctrlx;
110 
111 	/* set TX and RX to stall */
112 	epctrlx = readl(&udc->op_regs->epctrlx[0]);
113 	epctrlx |= EPCTRL_RX_EP_STALL | EPCTRL_TX_EP_STALL;
114 	writel(epctrlx, &udc->op_regs->epctrlx[0]);
115 
116 	/* update ep0 state */
117 	udc->ep0_state = WAIT_FOR_SETUP;
118 	udc->ep0_dir = EP_DIR_OUT;
119 }
120 
121 static int process_ep_req(struct mv_udc *udc, int index,
122 	struct mv_req *curr_req)
123 {
124 	struct mv_dtd	*curr_dtd;
125 	struct mv_dqh	*curr_dqh;
126 	int actual, remaining_length;
127 	int i, direction;
128 	int retval = 0;
129 	u32 errors;
130 	u32 bit_pos;
131 
132 	curr_dqh = &udc->ep_dqh[index];
133 	direction = index % 2;
134 
135 	curr_dtd = curr_req->head;
136 	actual = curr_req->req.length;
137 
138 	for (i = 0; i < curr_req->dtd_count; i++) {
139 		if (curr_dtd->size_ioc_sts & DTD_STATUS_ACTIVE) {
140 			dev_dbg(&udc->dev->dev, "%s, dTD not completed\n",
141 				udc->eps[index].name);
142 			return 1;
143 		}
144 
145 		errors = curr_dtd->size_ioc_sts & DTD_ERROR_MASK;
146 		if (!errors) {
147 			remaining_length =
148 				(curr_dtd->size_ioc_sts	& DTD_PACKET_SIZE)
149 					>> DTD_LENGTH_BIT_POS;
150 			actual -= remaining_length;
151 
152 			if (remaining_length) {
153 				if (direction) {
154 					dev_dbg(&udc->dev->dev,
155 						"TX dTD remains data\n");
156 					retval = -EPROTO;
157 					break;
158 				} else
159 					break;
160 			}
161 		} else {
162 			dev_info(&udc->dev->dev,
163 				"complete_tr error: ep=%d %s: error = 0x%x\n",
164 				index >> 1, direction ? "SEND" : "RECV",
165 				errors);
166 			if (errors & DTD_STATUS_HALTED) {
167 				/* Clear the errors and Halt condition */
168 				curr_dqh->size_ioc_int_sts &= ~errors;
169 				retval = -EPIPE;
170 			} else if (errors & DTD_STATUS_DATA_BUFF_ERR) {
171 				retval = -EPROTO;
172 			} else if (errors & DTD_STATUS_TRANSACTION_ERR) {
173 				retval = -EILSEQ;
174 			}
175 		}
176 		if (i != curr_req->dtd_count - 1)
177 			curr_dtd = (struct mv_dtd *)curr_dtd->next_dtd_virt;
178 	}
179 	if (retval)
180 		return retval;
181 
182 	if (direction == EP_DIR_OUT)
183 		bit_pos = 1 << curr_req->ep->ep_num;
184 	else
185 		bit_pos = 1 << (16 + curr_req->ep->ep_num);
186 
187 	while (curr_dqh->curr_dtd_ptr == curr_dtd->td_dma) {
188 		if (curr_dtd->dtd_next == EP_QUEUE_HEAD_NEXT_TERMINATE) {
189 			while (readl(&udc->op_regs->epstatus) & bit_pos)
190 				udelay(1);
191 			break;
192 		}
193 		udelay(1);
194 	}
195 
196 	curr_req->req.actual = actual;
197 
198 	return 0;
199 }
200 
201 /*
202  * done() - retire a request; caller blocked irqs
203  * @status : request status to be set, only works when
204  * request is still in progress.
205  */
206 static void done(struct mv_ep *ep, struct mv_req *req, int status)
207 	__releases(&ep->udc->lock)
208 	__acquires(&ep->udc->lock)
209 {
210 	struct mv_udc *udc = NULL;
211 	unsigned char stopped = ep->stopped;
212 	struct mv_dtd *curr_td, *next_td;
213 	int j;
214 
215 	udc = (struct mv_udc *)ep->udc;
216 	/* Removed the req from fsl_ep->queue */
217 	list_del_init(&req->queue);
218 
219 	/* req.status should be set as -EINPROGRESS in ep_queue() */
220 	if (req->req.status == -EINPROGRESS)
221 		req->req.status = status;
222 	else
223 		status = req->req.status;
224 
225 	/* Free dtd for the request */
226 	next_td = req->head;
227 	for (j = 0; j < req->dtd_count; j++) {
228 		curr_td = next_td;
229 		if (j != req->dtd_count - 1)
230 			next_td = curr_td->next_dtd_virt;
231 		dma_pool_free(udc->dtd_pool, curr_td, curr_td->td_dma);
232 	}
233 
234 	usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
235 
236 	if (status && (status != -ESHUTDOWN))
237 		dev_info(&udc->dev->dev, "complete %s req %p stat %d len %u/%u",
238 			ep->ep.name, &req->req, status,
239 			req->req.actual, req->req.length);
240 
241 	ep->stopped = 1;
242 
243 	spin_unlock(&ep->udc->lock);
244 
245 	usb_gadget_giveback_request(&ep->ep, &req->req);
246 
247 	spin_lock(&ep->udc->lock);
248 	ep->stopped = stopped;
249 }
250 
251 static int queue_dtd(struct mv_ep *ep, struct mv_req *req)
252 {
253 	struct mv_udc *udc;
254 	struct mv_dqh *dqh;
255 	u32 bit_pos, direction;
256 	u32 usbcmd, epstatus;
257 	unsigned int loops;
258 	int retval = 0;
259 
260 	udc = ep->udc;
261 	direction = ep_dir(ep);
262 	dqh = &(udc->ep_dqh[ep->ep_num * 2 + direction]);
263 	bit_pos = 1 << (((direction == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
264 
265 	/* check if the pipe is empty */
266 	if (!(list_empty(&ep->queue))) {
267 		struct mv_req *lastreq;
268 		lastreq = list_entry(ep->queue.prev, struct mv_req, queue);
269 		lastreq->tail->dtd_next =
270 			req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
271 
272 		wmb();
273 
274 		if (readl(&udc->op_regs->epprime) & bit_pos)
275 			goto done;
276 
277 		loops = LOOPS(READSAFE_TIMEOUT);
278 		while (1) {
279 			/* start with setting the semaphores */
280 			usbcmd = readl(&udc->op_regs->usbcmd);
281 			usbcmd |= USBCMD_ATDTW_TRIPWIRE_SET;
282 			writel(usbcmd, &udc->op_regs->usbcmd);
283 
284 			/* read the endpoint status */
285 			epstatus = readl(&udc->op_regs->epstatus) & bit_pos;
286 
287 			/*
288 			 * Reread the ATDTW semaphore bit to check if it is
289 			 * cleared. When hardware see a hazard, it will clear
290 			 * the bit or else we remain set to 1 and we can
291 			 * proceed with priming of endpoint if not already
292 			 * primed.
293 			 */
294 			if (readl(&udc->op_regs->usbcmd)
295 				& USBCMD_ATDTW_TRIPWIRE_SET)
296 				break;
297 
298 			loops--;
299 			if (loops == 0) {
300 				dev_err(&udc->dev->dev,
301 					"Timeout for ATDTW_TRIPWIRE...\n");
302 				retval = -ETIME;
303 				goto done;
304 			}
305 			udelay(LOOPS_USEC);
306 		}
307 
308 		/* Clear the semaphore */
309 		usbcmd = readl(&udc->op_regs->usbcmd);
310 		usbcmd &= USBCMD_ATDTW_TRIPWIRE_CLEAR;
311 		writel(usbcmd, &udc->op_regs->usbcmd);
312 
313 		if (epstatus)
314 			goto done;
315 	}
316 
317 	/* Write dQH next pointer and terminate bit to 0 */
318 	dqh->next_dtd_ptr = req->head->td_dma
319 				& EP_QUEUE_HEAD_NEXT_POINTER_MASK;
320 
321 	/* clear active and halt bit, in case set from a previous error */
322 	dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
323 
324 	/* Ensure that updates to the QH will occur before priming. */
325 	wmb();
326 
327 	/* Prime the Endpoint */
328 	writel(bit_pos, &udc->op_regs->epprime);
329 
330 done:
331 	return retval;
332 }
333 
334 static struct mv_dtd *build_dtd(struct mv_req *req, unsigned *length,
335 		dma_addr_t *dma, int *is_last)
336 {
337 	struct mv_dtd *dtd;
338 	struct mv_udc *udc;
339 	struct mv_dqh *dqh;
340 	u32 temp, mult = 0;
341 
342 	/* how big will this transfer be? */
343 	if (usb_endpoint_xfer_isoc(req->ep->ep.desc)) {
344 		dqh = req->ep->dqh;
345 		mult = (dqh->max_packet_length >> EP_QUEUE_HEAD_MULT_POS)
346 				& 0x3;
347 		*length = min(req->req.length - req->req.actual,
348 				(unsigned)(mult * req->ep->ep.maxpacket));
349 	} else
350 		*length = min(req->req.length - req->req.actual,
351 				(unsigned)EP_MAX_LENGTH_TRANSFER);
352 
353 	udc = req->ep->udc;
354 
355 	/*
356 	 * Be careful that no _GFP_HIGHMEM is set,
357 	 * or we can not use dma_to_virt
358 	 */
359 	dtd = dma_pool_alloc(udc->dtd_pool, GFP_ATOMIC, dma);
360 	if (dtd == NULL)
361 		return dtd;
362 
363 	dtd->td_dma = *dma;
364 	/* initialize buffer page pointers */
365 	temp = (u32)(req->req.dma + req->req.actual);
366 	dtd->buff_ptr0 = cpu_to_le32(temp);
367 	temp &= ~0xFFF;
368 	dtd->buff_ptr1 = cpu_to_le32(temp + 0x1000);
369 	dtd->buff_ptr2 = cpu_to_le32(temp + 0x2000);
370 	dtd->buff_ptr3 = cpu_to_le32(temp + 0x3000);
371 	dtd->buff_ptr4 = cpu_to_le32(temp + 0x4000);
372 
373 	req->req.actual += *length;
374 
375 	/* zlp is needed if req->req.zero is set */
376 	if (req->req.zero) {
377 		if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
378 			*is_last = 1;
379 		else
380 			*is_last = 0;
381 	} else if (req->req.length == req->req.actual)
382 		*is_last = 1;
383 	else
384 		*is_last = 0;
385 
386 	/* Fill in the transfer size; set active bit */
387 	temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
388 
389 	/* Enable interrupt for the last dtd of a request */
390 	if (*is_last && !req->req.no_interrupt)
391 		temp |= DTD_IOC;
392 
393 	temp |= mult << 10;
394 
395 	dtd->size_ioc_sts = temp;
396 
397 	mb();
398 
399 	return dtd;
400 }
401 
402 /* generate dTD linked list for a request */
403 static int req_to_dtd(struct mv_req *req)
404 {
405 	unsigned count;
406 	int is_last, is_first = 1;
407 	struct mv_dtd *dtd, *last_dtd = NULL;
408 	dma_addr_t dma;
409 
410 	do {
411 		dtd = build_dtd(req, &count, &dma, &is_last);
412 		if (dtd == NULL)
413 			return -ENOMEM;
414 
415 		if (is_first) {
416 			is_first = 0;
417 			req->head = dtd;
418 		} else {
419 			last_dtd->dtd_next = dma;
420 			last_dtd->next_dtd_virt = dtd;
421 		}
422 		last_dtd = dtd;
423 		req->dtd_count++;
424 	} while (!is_last);
425 
426 	/* set terminate bit to 1 for the last dTD */
427 	dtd->dtd_next = DTD_NEXT_TERMINATE;
428 
429 	req->tail = dtd;
430 
431 	return 0;
432 }
433 
434 static int mv_ep_enable(struct usb_ep *_ep,
435 		const struct usb_endpoint_descriptor *desc)
436 {
437 	struct mv_udc *udc;
438 	struct mv_ep *ep;
439 	struct mv_dqh *dqh;
440 	u16 max = 0;
441 	u32 bit_pos, epctrlx, direction;
442 	const unsigned char zlt = 1;
443 	unsigned char ios, mult;
444 	unsigned long flags;
445 
446 	ep = container_of(_ep, struct mv_ep, ep);
447 	udc = ep->udc;
448 
449 	if (!_ep || !desc
450 			|| desc->bDescriptorType != USB_DT_ENDPOINT)
451 		return -EINVAL;
452 
453 	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
454 		return -ESHUTDOWN;
455 
456 	direction = ep_dir(ep);
457 	max = usb_endpoint_maxp(desc);
458 
459 	/*
460 	 * disable HW zero length termination select
461 	 * driver handles zero length packet through req->req.zero
462 	 */
463 	bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
464 
465 	/* Check if the Endpoint is Primed */
466 	if ((readl(&udc->op_regs->epprime) & bit_pos)
467 		|| (readl(&udc->op_regs->epstatus) & bit_pos)) {
468 		dev_info(&udc->dev->dev,
469 			"ep=%d %s: Init ERROR: ENDPTPRIME=0x%x,"
470 			" ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
471 			(unsigned)ep->ep_num, direction ? "SEND" : "RECV",
472 			(unsigned)readl(&udc->op_regs->epprime),
473 			(unsigned)readl(&udc->op_regs->epstatus),
474 			(unsigned)bit_pos);
475 		goto en_done;
476 	}
477 
478 	/* Set the max packet length, interrupt on Setup and Mult fields */
479 	ios = 0;
480 	mult = 0;
481 	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
482 	case USB_ENDPOINT_XFER_BULK:
483 	case USB_ENDPOINT_XFER_INT:
484 		break;
485 	case USB_ENDPOINT_XFER_CONTROL:
486 		ios = 1;
487 		break;
488 	case USB_ENDPOINT_XFER_ISOC:
489 		/* Calculate transactions needed for high bandwidth iso */
490 		mult = usb_endpoint_maxp_mult(desc);
491 		/* 3 transactions at most */
492 		if (mult > 3)
493 			goto en_done;
494 		break;
495 	default:
496 		goto en_done;
497 	}
498 
499 	spin_lock_irqsave(&udc->lock, flags);
500 	/* Get the endpoint queue head address */
501 	dqh = ep->dqh;
502 	dqh->max_packet_length = (max << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
503 		| (mult << EP_QUEUE_HEAD_MULT_POS)
504 		| (zlt ? EP_QUEUE_HEAD_ZLT_SEL : 0)
505 		| (ios ? EP_QUEUE_HEAD_IOS : 0);
506 	dqh->next_dtd_ptr = 1;
507 	dqh->size_ioc_int_sts = 0;
508 
509 	ep->ep.maxpacket = max;
510 	ep->ep.desc = desc;
511 	ep->stopped = 0;
512 
513 	/* Enable the endpoint for Rx or Tx and set the endpoint type */
514 	epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
515 	if (direction == EP_DIR_IN) {
516 		epctrlx &= ~EPCTRL_TX_ALL_MASK;
517 		epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
518 			| ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
519 				<< EPCTRL_TX_EP_TYPE_SHIFT);
520 	} else {
521 		epctrlx &= ~EPCTRL_RX_ALL_MASK;
522 		epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
523 			| ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
524 				<< EPCTRL_RX_EP_TYPE_SHIFT);
525 	}
526 	writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
527 
528 	/*
529 	 * Implement Guideline (GL# USB-7) The unused endpoint type must
530 	 * be programmed to bulk.
531 	 */
532 	epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
533 	if ((epctrlx & EPCTRL_RX_ENABLE) == 0) {
534 		epctrlx |= (USB_ENDPOINT_XFER_BULK
535 				<< EPCTRL_RX_EP_TYPE_SHIFT);
536 		writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
537 	}
538 
539 	epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
540 	if ((epctrlx & EPCTRL_TX_ENABLE) == 0) {
541 		epctrlx |= (USB_ENDPOINT_XFER_BULK
542 				<< EPCTRL_TX_EP_TYPE_SHIFT);
543 		writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
544 	}
545 
546 	spin_unlock_irqrestore(&udc->lock, flags);
547 
548 	return 0;
549 en_done:
550 	return -EINVAL;
551 }
552 
553 static int  mv_ep_disable(struct usb_ep *_ep)
554 {
555 	struct mv_udc *udc;
556 	struct mv_ep *ep;
557 	struct mv_dqh *dqh;
558 	u32 epctrlx, direction;
559 	unsigned long flags;
560 
561 	ep = container_of(_ep, struct mv_ep, ep);
562 	if ((_ep == NULL) || !ep->ep.desc)
563 		return -EINVAL;
564 
565 	udc = ep->udc;
566 
567 	/* Get the endpoint queue head address */
568 	dqh = ep->dqh;
569 
570 	spin_lock_irqsave(&udc->lock, flags);
571 
572 	direction = ep_dir(ep);
573 
574 	/* Reset the max packet length and the interrupt on Setup */
575 	dqh->max_packet_length = 0;
576 
577 	/* Disable the endpoint for Rx or Tx and reset the endpoint type */
578 	epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
579 	epctrlx &= ~((direction == EP_DIR_IN)
580 			? (EPCTRL_TX_ENABLE | EPCTRL_TX_TYPE)
581 			: (EPCTRL_RX_ENABLE | EPCTRL_RX_TYPE));
582 	writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
583 
584 	/* nuke all pending requests (does flush) */
585 	nuke(ep, -ESHUTDOWN);
586 
587 	ep->ep.desc = NULL;
588 	ep->stopped = 1;
589 
590 	spin_unlock_irqrestore(&udc->lock, flags);
591 
592 	return 0;
593 }
594 
595 static struct usb_request *
596 mv_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
597 {
598 	struct mv_req *req = NULL;
599 
600 	req = kzalloc(sizeof *req, gfp_flags);
601 	if (!req)
602 		return NULL;
603 
604 	req->req.dma = DMA_ADDR_INVALID;
605 	INIT_LIST_HEAD(&req->queue);
606 
607 	return &req->req;
608 }
609 
610 static void mv_free_request(struct usb_ep *_ep, struct usb_request *_req)
611 {
612 	struct mv_req *req = NULL;
613 
614 	req = container_of(_req, struct mv_req, req);
615 
616 	if (_req)
617 		kfree(req);
618 }
619 
620 static void mv_ep_fifo_flush(struct usb_ep *_ep)
621 {
622 	struct mv_udc *udc;
623 	u32 bit_pos, direction;
624 	struct mv_ep *ep;
625 	unsigned int loops;
626 
627 	if (!_ep)
628 		return;
629 
630 	ep = container_of(_ep, struct mv_ep, ep);
631 	if (!ep->ep.desc)
632 		return;
633 
634 	udc = ep->udc;
635 	direction = ep_dir(ep);
636 
637 	if (ep->ep_num == 0)
638 		bit_pos = (1 << 16) | 1;
639 	else if (direction == EP_DIR_OUT)
640 		bit_pos = 1 << ep->ep_num;
641 	else
642 		bit_pos = 1 << (16 + ep->ep_num);
643 
644 	loops = LOOPS(EPSTATUS_TIMEOUT);
645 	do {
646 		unsigned int inter_loops;
647 
648 		if (loops == 0) {
649 			dev_err(&udc->dev->dev,
650 				"TIMEOUT for ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
651 				(unsigned)readl(&udc->op_regs->epstatus),
652 				(unsigned)bit_pos);
653 			return;
654 		}
655 		/* Write 1 to the Flush register */
656 		writel(bit_pos, &udc->op_regs->epflush);
657 
658 		/* Wait until flushing completed */
659 		inter_loops = LOOPS(FLUSH_TIMEOUT);
660 		while (readl(&udc->op_regs->epflush)) {
661 			/*
662 			 * ENDPTFLUSH bit should be cleared to indicate this
663 			 * operation is complete
664 			 */
665 			if (inter_loops == 0) {
666 				dev_err(&udc->dev->dev,
667 					"TIMEOUT for ENDPTFLUSH=0x%x,"
668 					"bit_pos=0x%x\n",
669 					(unsigned)readl(&udc->op_regs->epflush),
670 					(unsigned)bit_pos);
671 				return;
672 			}
673 			inter_loops--;
674 			udelay(LOOPS_USEC);
675 		}
676 		loops--;
677 	} while (readl(&udc->op_regs->epstatus) & bit_pos);
678 }
679 
680 /* queues (submits) an I/O request to an endpoint */
681 static int
682 mv_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
683 {
684 	struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
685 	struct mv_req *req = container_of(_req, struct mv_req, req);
686 	struct mv_udc *udc = ep->udc;
687 	unsigned long flags;
688 	int retval;
689 
690 	/* catch various bogus parameters */
691 	if (!_req || !req->req.complete || !req->req.buf
692 			|| !list_empty(&req->queue)) {
693 		dev_err(&udc->dev->dev, "%s, bad params", __func__);
694 		return -EINVAL;
695 	}
696 	if (unlikely(!_ep || !ep->ep.desc)) {
697 		dev_err(&udc->dev->dev, "%s, bad ep", __func__);
698 		return -EINVAL;
699 	}
700 
701 	udc = ep->udc;
702 	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
703 		return -ESHUTDOWN;
704 
705 	req->ep = ep;
706 
707 	/* map virtual address to hardware */
708 	retval = usb_gadget_map_request(&udc->gadget, _req, ep_dir(ep));
709 	if (retval)
710 		return retval;
711 
712 	req->req.status = -EINPROGRESS;
713 	req->req.actual = 0;
714 	req->dtd_count = 0;
715 
716 	spin_lock_irqsave(&udc->lock, flags);
717 
718 	/* build dtds and push them to device queue */
719 	if (!req_to_dtd(req)) {
720 		retval = queue_dtd(ep, req);
721 		if (retval) {
722 			spin_unlock_irqrestore(&udc->lock, flags);
723 			dev_err(&udc->dev->dev, "Failed to queue dtd\n");
724 			goto err_unmap_dma;
725 		}
726 	} else {
727 		spin_unlock_irqrestore(&udc->lock, flags);
728 		dev_err(&udc->dev->dev, "Failed to dma_pool_alloc\n");
729 		retval = -ENOMEM;
730 		goto err_unmap_dma;
731 	}
732 
733 	/* Update ep0 state */
734 	if (ep->ep_num == 0)
735 		udc->ep0_state = DATA_STATE_XMIT;
736 
737 	/* irq handler advances the queue */
738 	list_add_tail(&req->queue, &ep->queue);
739 	spin_unlock_irqrestore(&udc->lock, flags);
740 
741 	return 0;
742 
743 err_unmap_dma:
744 	usb_gadget_unmap_request(&udc->gadget, _req, ep_dir(ep));
745 
746 	return retval;
747 }
748 
749 static void mv_prime_ep(struct mv_ep *ep, struct mv_req *req)
750 {
751 	struct mv_dqh *dqh = ep->dqh;
752 	u32 bit_pos;
753 
754 	/* Write dQH next pointer and terminate bit to 0 */
755 	dqh->next_dtd_ptr = req->head->td_dma
756 		& EP_QUEUE_HEAD_NEXT_POINTER_MASK;
757 
758 	/* clear active and halt bit, in case set from a previous error */
759 	dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
760 
761 	/* Ensure that updates to the QH will occure before priming. */
762 	wmb();
763 
764 	bit_pos = 1 << (((ep_dir(ep) == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
765 
766 	/* Prime the Endpoint */
767 	writel(bit_pos, &ep->udc->op_regs->epprime);
768 }
769 
770 /* dequeues (cancels, unlinks) an I/O request from an endpoint */
771 static int mv_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
772 {
773 	struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
774 	struct mv_req *req = NULL, *iter;
775 	struct mv_udc *udc = ep->udc;
776 	unsigned long flags;
777 	int stopped, ret = 0;
778 	u32 epctrlx;
779 
780 	if (!_ep || !_req)
781 		return -EINVAL;
782 
783 	spin_lock_irqsave(&ep->udc->lock, flags);
784 	stopped = ep->stopped;
785 
786 	/* Stop the ep before we deal with the queue */
787 	ep->stopped = 1;
788 	epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
789 	if (ep_dir(ep) == EP_DIR_IN)
790 		epctrlx &= ~EPCTRL_TX_ENABLE;
791 	else
792 		epctrlx &= ~EPCTRL_RX_ENABLE;
793 	writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
794 
795 	/* make sure it's actually queued on this endpoint */
796 	list_for_each_entry(iter, &ep->queue, queue) {
797 		if (&iter->req != _req)
798 			continue;
799 		req = iter;
800 		break;
801 	}
802 	if (!req) {
803 		ret = -EINVAL;
804 		goto out;
805 	}
806 
807 	/* The request is in progress, or completed but not dequeued */
808 	if (ep->queue.next == &req->queue) {
809 		_req->status = -ECONNRESET;
810 		mv_ep_fifo_flush(_ep);	/* flush current transfer */
811 
812 		/* The request isn't the last request in this ep queue */
813 		if (req->queue.next != &ep->queue) {
814 			struct mv_req *next_req;
815 
816 			next_req = list_entry(req->queue.next,
817 				struct mv_req, queue);
818 
819 			/* Point the QH to the first TD of next request */
820 			mv_prime_ep(ep, next_req);
821 		} else {
822 			struct mv_dqh *qh;
823 
824 			qh = ep->dqh;
825 			qh->next_dtd_ptr = 1;
826 			qh->size_ioc_int_sts = 0;
827 		}
828 
829 		/* The request hasn't been processed, patch up the TD chain */
830 	} else {
831 		struct mv_req *prev_req;
832 
833 		prev_req = list_entry(req->queue.prev, struct mv_req, queue);
834 		writel(readl(&req->tail->dtd_next),
835 				&prev_req->tail->dtd_next);
836 
837 	}
838 
839 	done(ep, req, -ECONNRESET);
840 
841 	/* Enable EP */
842 out:
843 	epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
844 	if (ep_dir(ep) == EP_DIR_IN)
845 		epctrlx |= EPCTRL_TX_ENABLE;
846 	else
847 		epctrlx |= EPCTRL_RX_ENABLE;
848 	writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
849 	ep->stopped = stopped;
850 
851 	spin_unlock_irqrestore(&ep->udc->lock, flags);
852 	return ret;
853 }
854 
855 static void ep_set_stall(struct mv_udc *udc, u8 ep_num, u8 direction, int stall)
856 {
857 	u32 epctrlx;
858 
859 	epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
860 
861 	if (stall) {
862 		if (direction == EP_DIR_IN)
863 			epctrlx |= EPCTRL_TX_EP_STALL;
864 		else
865 			epctrlx |= EPCTRL_RX_EP_STALL;
866 	} else {
867 		if (direction == EP_DIR_IN) {
868 			epctrlx &= ~EPCTRL_TX_EP_STALL;
869 			epctrlx |= EPCTRL_TX_DATA_TOGGLE_RST;
870 		} else {
871 			epctrlx &= ~EPCTRL_RX_EP_STALL;
872 			epctrlx |= EPCTRL_RX_DATA_TOGGLE_RST;
873 		}
874 	}
875 	writel(epctrlx, &udc->op_regs->epctrlx[ep_num]);
876 }
877 
878 static int ep_is_stall(struct mv_udc *udc, u8 ep_num, u8 direction)
879 {
880 	u32 epctrlx;
881 
882 	epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
883 
884 	if (direction == EP_DIR_OUT)
885 		return (epctrlx & EPCTRL_RX_EP_STALL) ? 1 : 0;
886 	else
887 		return (epctrlx & EPCTRL_TX_EP_STALL) ? 1 : 0;
888 }
889 
890 static int mv_ep_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
891 {
892 	struct mv_ep *ep;
893 	unsigned long flags;
894 	int status = 0;
895 	struct mv_udc *udc;
896 
897 	ep = container_of(_ep, struct mv_ep, ep);
898 	udc = ep->udc;
899 	if (!_ep || !ep->ep.desc) {
900 		status = -EINVAL;
901 		goto out;
902 	}
903 
904 	if (ep->ep.desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
905 		status = -EOPNOTSUPP;
906 		goto out;
907 	}
908 
909 	/*
910 	 * Attempt to halt IN ep will fail if any transfer requests
911 	 * are still queue
912 	 */
913 	if (halt && (ep_dir(ep) == EP_DIR_IN) && !list_empty(&ep->queue)) {
914 		status = -EAGAIN;
915 		goto out;
916 	}
917 
918 	spin_lock_irqsave(&ep->udc->lock, flags);
919 	ep_set_stall(udc, ep->ep_num, ep_dir(ep), halt);
920 	if (halt && wedge)
921 		ep->wedge = 1;
922 	else if (!halt)
923 		ep->wedge = 0;
924 	spin_unlock_irqrestore(&ep->udc->lock, flags);
925 
926 	if (ep->ep_num == 0) {
927 		udc->ep0_state = WAIT_FOR_SETUP;
928 		udc->ep0_dir = EP_DIR_OUT;
929 	}
930 out:
931 	return status;
932 }
933 
934 static int mv_ep_set_halt(struct usb_ep *_ep, int halt)
935 {
936 	return mv_ep_set_halt_wedge(_ep, halt, 0);
937 }
938 
939 static int mv_ep_set_wedge(struct usb_ep *_ep)
940 {
941 	return mv_ep_set_halt_wedge(_ep, 1, 1);
942 }
943 
944 static const struct usb_ep_ops mv_ep_ops = {
945 	.enable		= mv_ep_enable,
946 	.disable	= mv_ep_disable,
947 
948 	.alloc_request	= mv_alloc_request,
949 	.free_request	= mv_free_request,
950 
951 	.queue		= mv_ep_queue,
952 	.dequeue	= mv_ep_dequeue,
953 
954 	.set_wedge	= mv_ep_set_wedge,
955 	.set_halt	= mv_ep_set_halt,
956 	.fifo_flush	= mv_ep_fifo_flush,	/* flush fifo */
957 };
958 
959 static int udc_clock_enable(struct mv_udc *udc)
960 {
961 	return clk_prepare_enable(udc->clk);
962 }
963 
964 static void udc_clock_disable(struct mv_udc *udc)
965 {
966 	clk_disable_unprepare(udc->clk);
967 }
968 
969 static void udc_stop(struct mv_udc *udc)
970 {
971 	u32 tmp;
972 
973 	/* Disable interrupts */
974 	tmp = readl(&udc->op_regs->usbintr);
975 	tmp &= ~(USBINTR_INT_EN | USBINTR_ERR_INT_EN |
976 		USBINTR_PORT_CHANGE_DETECT_EN | USBINTR_RESET_EN);
977 	writel(tmp, &udc->op_regs->usbintr);
978 
979 	udc->stopped = 1;
980 
981 	/* Reset the Run the bit in the command register to stop VUSB */
982 	tmp = readl(&udc->op_regs->usbcmd);
983 	tmp &= ~USBCMD_RUN_STOP;
984 	writel(tmp, &udc->op_regs->usbcmd);
985 }
986 
987 static void udc_start(struct mv_udc *udc)
988 {
989 	u32 usbintr;
990 
991 	usbintr = USBINTR_INT_EN | USBINTR_ERR_INT_EN
992 		| USBINTR_PORT_CHANGE_DETECT_EN
993 		| USBINTR_RESET_EN | USBINTR_DEVICE_SUSPEND;
994 	/* Enable interrupts */
995 	writel(usbintr, &udc->op_regs->usbintr);
996 
997 	udc->stopped = 0;
998 
999 	/* Set the Run bit in the command register */
1000 	writel(USBCMD_RUN_STOP, &udc->op_regs->usbcmd);
1001 }
1002 
1003 static int udc_reset(struct mv_udc *udc)
1004 {
1005 	unsigned int loops;
1006 	u32 tmp, portsc;
1007 
1008 	/* Stop the controller */
1009 	tmp = readl(&udc->op_regs->usbcmd);
1010 	tmp &= ~USBCMD_RUN_STOP;
1011 	writel(tmp, &udc->op_regs->usbcmd);
1012 
1013 	/* Reset the controller to get default values */
1014 	writel(USBCMD_CTRL_RESET, &udc->op_regs->usbcmd);
1015 
1016 	/* wait for reset to complete */
1017 	loops = LOOPS(RESET_TIMEOUT);
1018 	while (readl(&udc->op_regs->usbcmd) & USBCMD_CTRL_RESET) {
1019 		if (loops == 0) {
1020 			dev_err(&udc->dev->dev,
1021 				"Wait for RESET completed TIMEOUT\n");
1022 			return -ETIMEDOUT;
1023 		}
1024 		loops--;
1025 		udelay(LOOPS_USEC);
1026 	}
1027 
1028 	/* set controller to device mode */
1029 	tmp = readl(&udc->op_regs->usbmode);
1030 	tmp |= USBMODE_CTRL_MODE_DEVICE;
1031 
1032 	/* turn setup lockout off, require setup tripwire in usbcmd */
1033 	tmp |= USBMODE_SETUP_LOCK_OFF;
1034 
1035 	writel(tmp, &udc->op_regs->usbmode);
1036 
1037 	writel(0x0, &udc->op_regs->epsetupstat);
1038 
1039 	/* Configure the Endpoint List Address */
1040 	writel(udc->ep_dqh_dma & USB_EP_LIST_ADDRESS_MASK,
1041 		&udc->op_regs->eplistaddr);
1042 
1043 	portsc = readl(&udc->op_regs->portsc[0]);
1044 	if (readl(&udc->cap_regs->hcsparams) & HCSPARAMS_PPC)
1045 		portsc &= (~PORTSCX_W1C_BITS | ~PORTSCX_PORT_POWER);
1046 
1047 	if (udc->force_fs)
1048 		portsc |= PORTSCX_FORCE_FULL_SPEED_CONNECT;
1049 	else
1050 		portsc &= (~PORTSCX_FORCE_FULL_SPEED_CONNECT);
1051 
1052 	writel(portsc, &udc->op_regs->portsc[0]);
1053 
1054 	tmp = readl(&udc->op_regs->epctrlx[0]);
1055 	tmp &= ~(EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL);
1056 	writel(tmp, &udc->op_regs->epctrlx[0]);
1057 
1058 	return 0;
1059 }
1060 
1061 static int mv_udc_enable_internal(struct mv_udc *udc)
1062 {
1063 	int retval;
1064 
1065 	if (udc->active)
1066 		return 0;
1067 
1068 	dev_dbg(&udc->dev->dev, "enable udc\n");
1069 	retval = udc_clock_enable(udc);
1070 	if (retval)
1071 		return retval;
1072 
1073 	if (udc->pdata->phy_init) {
1074 		retval = udc->pdata->phy_init(udc->phy_regs);
1075 		if (retval) {
1076 			dev_err(&udc->dev->dev,
1077 				"init phy error %d\n", retval);
1078 			udc_clock_disable(udc);
1079 			return retval;
1080 		}
1081 	}
1082 	udc->active = 1;
1083 
1084 	return 0;
1085 }
1086 
1087 static int mv_udc_enable(struct mv_udc *udc)
1088 {
1089 	if (udc->clock_gating)
1090 		return mv_udc_enable_internal(udc);
1091 
1092 	return 0;
1093 }
1094 
1095 static void mv_udc_disable_internal(struct mv_udc *udc)
1096 {
1097 	if (udc->active) {
1098 		dev_dbg(&udc->dev->dev, "disable udc\n");
1099 		if (udc->pdata->phy_deinit)
1100 			udc->pdata->phy_deinit(udc->phy_regs);
1101 		udc_clock_disable(udc);
1102 		udc->active = 0;
1103 	}
1104 }
1105 
1106 static void mv_udc_disable(struct mv_udc *udc)
1107 {
1108 	if (udc->clock_gating)
1109 		mv_udc_disable_internal(udc);
1110 }
1111 
1112 static int mv_udc_get_frame(struct usb_gadget *gadget)
1113 {
1114 	struct mv_udc *udc;
1115 	u16	retval;
1116 
1117 	if (!gadget)
1118 		return -ENODEV;
1119 
1120 	udc = container_of(gadget, struct mv_udc, gadget);
1121 
1122 	retval = readl(&udc->op_regs->frindex) & USB_FRINDEX_MASKS;
1123 
1124 	return retval;
1125 }
1126 
1127 /* Tries to wake up the host connected to this gadget */
1128 static int mv_udc_wakeup(struct usb_gadget *gadget)
1129 {
1130 	struct mv_udc *udc = container_of(gadget, struct mv_udc, gadget);
1131 	u32 portsc;
1132 
1133 	/* Remote wakeup feature not enabled by host */
1134 	if (!udc->remote_wakeup)
1135 		return -ENOTSUPP;
1136 
1137 	portsc = readl(&udc->op_regs->portsc);
1138 	/* not suspended? */
1139 	if (!(portsc & PORTSCX_PORT_SUSPEND))
1140 		return 0;
1141 	/* trigger force resume */
1142 	portsc |= PORTSCX_PORT_FORCE_RESUME;
1143 	writel(portsc, &udc->op_regs->portsc[0]);
1144 	return 0;
1145 }
1146 
1147 static int mv_udc_vbus_session(struct usb_gadget *gadget, int is_active)
1148 {
1149 	struct mv_udc *udc;
1150 	unsigned long flags;
1151 	int retval = 0;
1152 
1153 	udc = container_of(gadget, struct mv_udc, gadget);
1154 	spin_lock_irqsave(&udc->lock, flags);
1155 
1156 	udc->vbus_active = (is_active != 0);
1157 
1158 	dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1159 		__func__, udc->softconnect, udc->vbus_active);
1160 
1161 	if (udc->driver && udc->softconnect && udc->vbus_active) {
1162 		retval = mv_udc_enable(udc);
1163 		if (retval == 0) {
1164 			/* Clock is disabled, need re-init registers */
1165 			udc_reset(udc);
1166 			ep0_reset(udc);
1167 			udc_start(udc);
1168 		}
1169 	} else if (udc->driver && udc->softconnect) {
1170 		if (!udc->active)
1171 			goto out;
1172 
1173 		/* stop all the transfer in queue*/
1174 		stop_activity(udc, udc->driver);
1175 		udc_stop(udc);
1176 		mv_udc_disable(udc);
1177 	}
1178 
1179 out:
1180 	spin_unlock_irqrestore(&udc->lock, flags);
1181 	return retval;
1182 }
1183 
1184 static int mv_udc_pullup(struct usb_gadget *gadget, int is_on)
1185 {
1186 	struct mv_udc *udc;
1187 	unsigned long flags;
1188 	int retval = 0;
1189 
1190 	udc = container_of(gadget, struct mv_udc, gadget);
1191 	spin_lock_irqsave(&udc->lock, flags);
1192 
1193 	udc->softconnect = (is_on != 0);
1194 
1195 	dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1196 			__func__, udc->softconnect, udc->vbus_active);
1197 
1198 	if (udc->driver && udc->softconnect && udc->vbus_active) {
1199 		retval = mv_udc_enable(udc);
1200 		if (retval == 0) {
1201 			/* Clock is disabled, need re-init registers */
1202 			udc_reset(udc);
1203 			ep0_reset(udc);
1204 			udc_start(udc);
1205 		}
1206 	} else if (udc->driver && udc->vbus_active) {
1207 		/* stop all the transfer in queue*/
1208 		stop_activity(udc, udc->driver);
1209 		udc_stop(udc);
1210 		mv_udc_disable(udc);
1211 	}
1212 
1213 	spin_unlock_irqrestore(&udc->lock, flags);
1214 	return retval;
1215 }
1216 
1217 static int mv_udc_start(struct usb_gadget *, struct usb_gadget_driver *);
1218 static int mv_udc_stop(struct usb_gadget *);
1219 /* device controller usb_gadget_ops structure */
1220 static const struct usb_gadget_ops mv_ops = {
1221 
1222 	/* returns the current frame number */
1223 	.get_frame	= mv_udc_get_frame,
1224 
1225 	/* tries to wake up the host connected to this gadget */
1226 	.wakeup		= mv_udc_wakeup,
1227 
1228 	/* notify controller that VBUS is powered or not */
1229 	.vbus_session	= mv_udc_vbus_session,
1230 
1231 	/* D+ pullup, software-controlled connect/disconnect to USB host */
1232 	.pullup		= mv_udc_pullup,
1233 	.udc_start	= mv_udc_start,
1234 	.udc_stop	= mv_udc_stop,
1235 };
1236 
1237 static int eps_init(struct mv_udc *udc)
1238 {
1239 	struct mv_ep	*ep;
1240 	char name[14];
1241 	int i;
1242 
1243 	/* initialize ep0 */
1244 	ep = &udc->eps[0];
1245 	ep->udc = udc;
1246 	strncpy(ep->name, "ep0", sizeof(ep->name));
1247 	ep->ep.name = ep->name;
1248 	ep->ep.ops = &mv_ep_ops;
1249 	ep->wedge = 0;
1250 	ep->stopped = 0;
1251 	usb_ep_set_maxpacket_limit(&ep->ep, EP0_MAX_PKT_SIZE);
1252 	ep->ep.caps.type_control = true;
1253 	ep->ep.caps.dir_in = true;
1254 	ep->ep.caps.dir_out = true;
1255 	ep->ep_num = 0;
1256 	ep->ep.desc = &mv_ep0_desc;
1257 	INIT_LIST_HEAD(&ep->queue);
1258 
1259 	ep->ep_type = USB_ENDPOINT_XFER_CONTROL;
1260 
1261 	/* initialize other endpoints */
1262 	for (i = 2; i < udc->max_eps * 2; i++) {
1263 		ep = &udc->eps[i];
1264 		if (i % 2) {
1265 			snprintf(name, sizeof(name), "ep%din", i / 2);
1266 			ep->direction = EP_DIR_IN;
1267 			ep->ep.caps.dir_in = true;
1268 		} else {
1269 			snprintf(name, sizeof(name), "ep%dout", i / 2);
1270 			ep->direction = EP_DIR_OUT;
1271 			ep->ep.caps.dir_out = true;
1272 		}
1273 		ep->udc = udc;
1274 		strncpy(ep->name, name, sizeof(ep->name));
1275 		ep->ep.name = ep->name;
1276 
1277 		ep->ep.caps.type_iso = true;
1278 		ep->ep.caps.type_bulk = true;
1279 		ep->ep.caps.type_int = true;
1280 
1281 		ep->ep.ops = &mv_ep_ops;
1282 		ep->stopped = 0;
1283 		usb_ep_set_maxpacket_limit(&ep->ep, (unsigned short) ~0);
1284 		ep->ep_num = i / 2;
1285 
1286 		INIT_LIST_HEAD(&ep->queue);
1287 		list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1288 
1289 		ep->dqh = &udc->ep_dqh[i];
1290 	}
1291 
1292 	return 0;
1293 }
1294 
1295 /* delete all endpoint requests, called with spinlock held */
1296 static void nuke(struct mv_ep *ep, int status)
1297 {
1298 	/* called with spinlock held */
1299 	ep->stopped = 1;
1300 
1301 	/* endpoint fifo flush */
1302 	mv_ep_fifo_flush(&ep->ep);
1303 
1304 	while (!list_empty(&ep->queue)) {
1305 		struct mv_req *req = NULL;
1306 		req = list_entry(ep->queue.next, struct mv_req, queue);
1307 		done(ep, req, status);
1308 	}
1309 }
1310 
1311 static void gadget_reset(struct mv_udc *udc, struct usb_gadget_driver *driver)
1312 {
1313 	struct mv_ep	*ep;
1314 
1315 	nuke(&udc->eps[0], -ESHUTDOWN);
1316 
1317 	list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1318 		nuke(ep, -ESHUTDOWN);
1319 	}
1320 
1321 	/* report reset; the driver is already quiesced */
1322 	if (driver) {
1323 		spin_unlock(&udc->lock);
1324 		usb_gadget_udc_reset(&udc->gadget, driver);
1325 		spin_lock(&udc->lock);
1326 	}
1327 }
1328 /* stop all USB activities */
1329 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver)
1330 {
1331 	struct mv_ep	*ep;
1332 
1333 	nuke(&udc->eps[0], -ESHUTDOWN);
1334 
1335 	list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1336 		nuke(ep, -ESHUTDOWN);
1337 	}
1338 
1339 	/* report disconnect; the driver is already quiesced */
1340 	if (driver) {
1341 		spin_unlock(&udc->lock);
1342 		driver->disconnect(&udc->gadget);
1343 		spin_lock(&udc->lock);
1344 	}
1345 }
1346 
1347 static int mv_udc_start(struct usb_gadget *gadget,
1348 		struct usb_gadget_driver *driver)
1349 {
1350 	struct mv_udc *udc;
1351 	int retval = 0;
1352 	unsigned long flags;
1353 
1354 	udc = container_of(gadget, struct mv_udc, gadget);
1355 
1356 	if (udc->driver)
1357 		return -EBUSY;
1358 
1359 	spin_lock_irqsave(&udc->lock, flags);
1360 
1361 	/* hook up the driver ... */
1362 	udc->driver = driver;
1363 
1364 	udc->usb_state = USB_STATE_ATTACHED;
1365 	udc->ep0_state = WAIT_FOR_SETUP;
1366 	udc->ep0_dir = EP_DIR_OUT;
1367 
1368 	spin_unlock_irqrestore(&udc->lock, flags);
1369 
1370 	if (udc->transceiver) {
1371 		retval = otg_set_peripheral(udc->transceiver->otg,
1372 					&udc->gadget);
1373 		if (retval) {
1374 			dev_err(&udc->dev->dev,
1375 				"unable to register peripheral to otg\n");
1376 			udc->driver = NULL;
1377 			return retval;
1378 		}
1379 	}
1380 
1381 	/* When boot with cable attached, there will be no vbus irq occurred */
1382 	if (udc->qwork)
1383 		queue_work(udc->qwork, &udc->vbus_work);
1384 
1385 	return 0;
1386 }
1387 
1388 static int mv_udc_stop(struct usb_gadget *gadget)
1389 {
1390 	struct mv_udc *udc;
1391 	unsigned long flags;
1392 
1393 	udc = container_of(gadget, struct mv_udc, gadget);
1394 
1395 	spin_lock_irqsave(&udc->lock, flags);
1396 
1397 	mv_udc_enable(udc);
1398 	udc_stop(udc);
1399 
1400 	/* stop all usb activities */
1401 	udc->gadget.speed = USB_SPEED_UNKNOWN;
1402 	stop_activity(udc, NULL);
1403 	mv_udc_disable(udc);
1404 
1405 	spin_unlock_irqrestore(&udc->lock, flags);
1406 
1407 	/* unbind gadget driver */
1408 	udc->driver = NULL;
1409 
1410 	return 0;
1411 }
1412 
1413 static void mv_set_ptc(struct mv_udc *udc, u32 mode)
1414 {
1415 	u32 portsc;
1416 
1417 	portsc = readl(&udc->op_regs->portsc[0]);
1418 	portsc |= mode << 16;
1419 	writel(portsc, &udc->op_regs->portsc[0]);
1420 }
1421 
1422 static void prime_status_complete(struct usb_ep *ep, struct usb_request *_req)
1423 {
1424 	struct mv_ep *mvep = container_of(ep, struct mv_ep, ep);
1425 	struct mv_req *req = container_of(_req, struct mv_req, req);
1426 	struct mv_udc *udc;
1427 	unsigned long flags;
1428 
1429 	udc = mvep->udc;
1430 
1431 	dev_info(&udc->dev->dev, "switch to test mode %d\n", req->test_mode);
1432 
1433 	spin_lock_irqsave(&udc->lock, flags);
1434 	if (req->test_mode) {
1435 		mv_set_ptc(udc, req->test_mode);
1436 		req->test_mode = 0;
1437 	}
1438 	spin_unlock_irqrestore(&udc->lock, flags);
1439 }
1440 
1441 static int
1442 udc_prime_status(struct mv_udc *udc, u8 direction, u16 status, bool empty)
1443 {
1444 	int retval = 0;
1445 	struct mv_req *req;
1446 	struct mv_ep *ep;
1447 
1448 	ep = &udc->eps[0];
1449 	udc->ep0_dir = direction;
1450 	udc->ep0_state = WAIT_FOR_OUT_STATUS;
1451 
1452 	req = udc->status_req;
1453 
1454 	/* fill in the reqest structure */
1455 	if (empty == false) {
1456 		*((u16 *) req->req.buf) = cpu_to_le16(status);
1457 		req->req.length = 2;
1458 	} else
1459 		req->req.length = 0;
1460 
1461 	req->ep = ep;
1462 	req->req.status = -EINPROGRESS;
1463 	req->req.actual = 0;
1464 	if (udc->test_mode) {
1465 		req->req.complete = prime_status_complete;
1466 		req->test_mode = udc->test_mode;
1467 		udc->test_mode = 0;
1468 	} else
1469 		req->req.complete = NULL;
1470 	req->dtd_count = 0;
1471 
1472 	if (req->req.dma == DMA_ADDR_INVALID) {
1473 		req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
1474 				req->req.buf, req->req.length,
1475 				ep_dir(ep) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1476 		req->mapped = 1;
1477 	}
1478 
1479 	/* prime the data phase */
1480 	if (!req_to_dtd(req)) {
1481 		retval = queue_dtd(ep, req);
1482 		if (retval) {
1483 			dev_err(&udc->dev->dev,
1484 				"Failed to queue dtd when prime status\n");
1485 			goto out;
1486 		}
1487 	} else{	/* no mem */
1488 		retval = -ENOMEM;
1489 		dev_err(&udc->dev->dev,
1490 			"Failed to dma_pool_alloc when prime status\n");
1491 		goto out;
1492 	}
1493 
1494 	list_add_tail(&req->queue, &ep->queue);
1495 
1496 	return 0;
1497 out:
1498 	usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
1499 
1500 	return retval;
1501 }
1502 
1503 static void mv_udc_testmode(struct mv_udc *udc, u16 index)
1504 {
1505 	if (index <= USB_TEST_FORCE_ENABLE) {
1506 		udc->test_mode = index;
1507 		if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1508 			ep0_stall(udc);
1509 	} else
1510 		dev_err(&udc->dev->dev,
1511 			"This test mode(%d) is not supported\n", index);
1512 }
1513 
1514 static void ch9setaddress(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1515 {
1516 	udc->dev_addr = (u8)setup->wValue;
1517 
1518 	/* update usb state */
1519 	udc->usb_state = USB_STATE_ADDRESS;
1520 
1521 	if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1522 		ep0_stall(udc);
1523 }
1524 
1525 static void ch9getstatus(struct mv_udc *udc, u8 ep_num,
1526 	struct usb_ctrlrequest *setup)
1527 {
1528 	u16 status = 0;
1529 	int retval;
1530 
1531 	if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
1532 		!= (USB_DIR_IN | USB_TYPE_STANDARD))
1533 		return;
1534 
1535 	if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1536 		status = 1 << USB_DEVICE_SELF_POWERED;
1537 		status |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
1538 	} else if ((setup->bRequestType & USB_RECIP_MASK)
1539 			== USB_RECIP_INTERFACE) {
1540 		/* get interface status */
1541 		status = 0;
1542 	} else if ((setup->bRequestType & USB_RECIP_MASK)
1543 			== USB_RECIP_ENDPOINT) {
1544 		u8 ep_num, direction;
1545 
1546 		ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1547 		direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1548 				? EP_DIR_IN : EP_DIR_OUT;
1549 		status = ep_is_stall(udc, ep_num, direction)
1550 				<< USB_ENDPOINT_HALT;
1551 	}
1552 
1553 	retval = udc_prime_status(udc, EP_DIR_IN, status, false);
1554 	if (retval)
1555 		ep0_stall(udc);
1556 	else
1557 		udc->ep0_state = DATA_STATE_XMIT;
1558 }
1559 
1560 static void ch9clearfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1561 {
1562 	u8 ep_num;
1563 	u8 direction;
1564 	struct mv_ep *ep;
1565 
1566 	if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1567 		== ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1568 		switch (setup->wValue) {
1569 		case USB_DEVICE_REMOTE_WAKEUP:
1570 			udc->remote_wakeup = 0;
1571 			break;
1572 		default:
1573 			goto out;
1574 		}
1575 	} else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1576 		== ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1577 		switch (setup->wValue) {
1578 		case USB_ENDPOINT_HALT:
1579 			ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1580 			direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1581 				? EP_DIR_IN : EP_DIR_OUT;
1582 			if (setup->wValue != 0 || setup->wLength != 0
1583 				|| ep_num > udc->max_eps)
1584 				goto out;
1585 			ep = &udc->eps[ep_num * 2 + direction];
1586 			if (ep->wedge == 1)
1587 				break;
1588 			spin_unlock(&udc->lock);
1589 			ep_set_stall(udc, ep_num, direction, 0);
1590 			spin_lock(&udc->lock);
1591 			break;
1592 		default:
1593 			goto out;
1594 		}
1595 	} else
1596 		goto out;
1597 
1598 	if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1599 		ep0_stall(udc);
1600 out:
1601 	return;
1602 }
1603 
1604 static void ch9setfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1605 {
1606 	u8 ep_num;
1607 	u8 direction;
1608 
1609 	if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1610 		== ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1611 		switch (setup->wValue) {
1612 		case USB_DEVICE_REMOTE_WAKEUP:
1613 			udc->remote_wakeup = 1;
1614 			break;
1615 		case USB_DEVICE_TEST_MODE:
1616 			if (setup->wIndex & 0xFF
1617 				||  udc->gadget.speed != USB_SPEED_HIGH)
1618 				ep0_stall(udc);
1619 
1620 			if (udc->usb_state != USB_STATE_CONFIGURED
1621 				&& udc->usb_state != USB_STATE_ADDRESS
1622 				&& udc->usb_state != USB_STATE_DEFAULT)
1623 				ep0_stall(udc);
1624 
1625 			mv_udc_testmode(udc, (setup->wIndex >> 8));
1626 			goto out;
1627 		default:
1628 			goto out;
1629 		}
1630 	} else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1631 		== ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1632 		switch (setup->wValue) {
1633 		case USB_ENDPOINT_HALT:
1634 			ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1635 			direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1636 				? EP_DIR_IN : EP_DIR_OUT;
1637 			if (setup->wValue != 0 || setup->wLength != 0
1638 				|| ep_num > udc->max_eps)
1639 				goto out;
1640 			spin_unlock(&udc->lock);
1641 			ep_set_stall(udc, ep_num, direction, 1);
1642 			spin_lock(&udc->lock);
1643 			break;
1644 		default:
1645 			goto out;
1646 		}
1647 	} else
1648 		goto out;
1649 
1650 	if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1651 		ep0_stall(udc);
1652 out:
1653 	return;
1654 }
1655 
1656 static void handle_setup_packet(struct mv_udc *udc, u8 ep_num,
1657 	struct usb_ctrlrequest *setup)
1658 	__releases(&ep->udc->lock)
1659 	__acquires(&ep->udc->lock)
1660 {
1661 	bool delegate = false;
1662 
1663 	nuke(&udc->eps[ep_num * 2 + EP_DIR_OUT], -ESHUTDOWN);
1664 
1665 	dev_dbg(&udc->dev->dev, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1666 			setup->bRequestType, setup->bRequest,
1667 			setup->wValue, setup->wIndex, setup->wLength);
1668 	/* We process some standard setup requests here */
1669 	if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1670 		switch (setup->bRequest) {
1671 		case USB_REQ_GET_STATUS:
1672 			ch9getstatus(udc, ep_num, setup);
1673 			break;
1674 
1675 		case USB_REQ_SET_ADDRESS:
1676 			ch9setaddress(udc, setup);
1677 			break;
1678 
1679 		case USB_REQ_CLEAR_FEATURE:
1680 			ch9clearfeature(udc, setup);
1681 			break;
1682 
1683 		case USB_REQ_SET_FEATURE:
1684 			ch9setfeature(udc, setup);
1685 			break;
1686 
1687 		default:
1688 			delegate = true;
1689 		}
1690 	} else
1691 		delegate = true;
1692 
1693 	/* delegate USB standard requests to the gadget driver */
1694 	if (delegate == true) {
1695 		/* USB requests handled by gadget */
1696 		if (setup->wLength) {
1697 			/* DATA phase from gadget, STATUS phase from udc */
1698 			udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
1699 					?  EP_DIR_IN : EP_DIR_OUT;
1700 			spin_unlock(&udc->lock);
1701 			if (udc->driver->setup(&udc->gadget,
1702 				&udc->local_setup_buff) < 0)
1703 				ep0_stall(udc);
1704 			spin_lock(&udc->lock);
1705 			udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
1706 					?  DATA_STATE_XMIT : DATA_STATE_RECV;
1707 		} else {
1708 			/* no DATA phase, IN STATUS phase from gadget */
1709 			udc->ep0_dir = EP_DIR_IN;
1710 			spin_unlock(&udc->lock);
1711 			if (udc->driver->setup(&udc->gadget,
1712 				&udc->local_setup_buff) < 0)
1713 				ep0_stall(udc);
1714 			spin_lock(&udc->lock);
1715 			udc->ep0_state = WAIT_FOR_OUT_STATUS;
1716 		}
1717 	}
1718 }
1719 
1720 /* complete DATA or STATUS phase of ep0 prime status phase if needed */
1721 static void ep0_req_complete(struct mv_udc *udc,
1722 	struct mv_ep *ep0, struct mv_req *req)
1723 {
1724 	u32 new_addr;
1725 
1726 	if (udc->usb_state == USB_STATE_ADDRESS) {
1727 		/* set the new address */
1728 		new_addr = (u32)udc->dev_addr;
1729 		writel(new_addr << USB_DEVICE_ADDRESS_BIT_SHIFT,
1730 			&udc->op_regs->deviceaddr);
1731 	}
1732 
1733 	done(ep0, req, 0);
1734 
1735 	switch (udc->ep0_state) {
1736 	case DATA_STATE_XMIT:
1737 		/* receive status phase */
1738 		if (udc_prime_status(udc, EP_DIR_OUT, 0, true))
1739 			ep0_stall(udc);
1740 		break;
1741 	case DATA_STATE_RECV:
1742 		/* send status phase */
1743 		if (udc_prime_status(udc, EP_DIR_IN, 0 , true))
1744 			ep0_stall(udc);
1745 		break;
1746 	case WAIT_FOR_OUT_STATUS:
1747 		udc->ep0_state = WAIT_FOR_SETUP;
1748 		break;
1749 	case WAIT_FOR_SETUP:
1750 		dev_err(&udc->dev->dev, "unexpect ep0 packets\n");
1751 		break;
1752 	default:
1753 		ep0_stall(udc);
1754 		break;
1755 	}
1756 }
1757 
1758 static void get_setup_data(struct mv_udc *udc, u8 ep_num, u8 *buffer_ptr)
1759 {
1760 	u32 temp;
1761 	struct mv_dqh *dqh;
1762 
1763 	dqh = &udc->ep_dqh[ep_num * 2 + EP_DIR_OUT];
1764 
1765 	/* Clear bit in ENDPTSETUPSTAT */
1766 	writel((1 << ep_num), &udc->op_regs->epsetupstat);
1767 
1768 	/* while a hazard exists when setup package arrives */
1769 	do {
1770 		/* Set Setup Tripwire */
1771 		temp = readl(&udc->op_regs->usbcmd);
1772 		writel(temp | USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1773 
1774 		/* Copy the setup packet to local buffer */
1775 		memcpy(buffer_ptr, (u8 *) dqh->setup_buffer, 8);
1776 	} while (!(readl(&udc->op_regs->usbcmd) & USBCMD_SETUP_TRIPWIRE_SET));
1777 
1778 	/* Clear Setup Tripwire */
1779 	temp = readl(&udc->op_regs->usbcmd);
1780 	writel(temp & ~USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1781 }
1782 
1783 static void irq_process_tr_complete(struct mv_udc *udc)
1784 {
1785 	u32 tmp, bit_pos;
1786 	int i, ep_num = 0, direction = 0;
1787 	struct mv_ep	*curr_ep;
1788 	struct mv_req *curr_req, *temp_req;
1789 	int status;
1790 
1791 	/*
1792 	 * We use separate loops for ENDPTSETUPSTAT and ENDPTCOMPLETE
1793 	 * because the setup packets are to be read ASAP
1794 	 */
1795 
1796 	/* Process all Setup packet received interrupts */
1797 	tmp = readl(&udc->op_regs->epsetupstat);
1798 
1799 	if (tmp) {
1800 		for (i = 0; i < udc->max_eps; i++) {
1801 			if (tmp & (1 << i)) {
1802 				get_setup_data(udc, i,
1803 					(u8 *)(&udc->local_setup_buff));
1804 				handle_setup_packet(udc, i,
1805 					&udc->local_setup_buff);
1806 			}
1807 		}
1808 	}
1809 
1810 	/* Don't clear the endpoint setup status register here.
1811 	 * It is cleared as a setup packet is read out of the buffer
1812 	 */
1813 
1814 	/* Process non-setup transaction complete interrupts */
1815 	tmp = readl(&udc->op_regs->epcomplete);
1816 
1817 	if (!tmp)
1818 		return;
1819 
1820 	writel(tmp, &udc->op_regs->epcomplete);
1821 
1822 	for (i = 0; i < udc->max_eps * 2; i++) {
1823 		ep_num = i >> 1;
1824 		direction = i % 2;
1825 
1826 		bit_pos = 1 << (ep_num + 16 * direction);
1827 
1828 		if (!(bit_pos & tmp))
1829 			continue;
1830 
1831 		if (i == 1)
1832 			curr_ep = &udc->eps[0];
1833 		else
1834 			curr_ep = &udc->eps[i];
1835 		/* process the req queue until an uncomplete request */
1836 		list_for_each_entry_safe(curr_req, temp_req,
1837 			&curr_ep->queue, queue) {
1838 			status = process_ep_req(udc, i, curr_req);
1839 			if (status)
1840 				break;
1841 
1842 			/* write back status to req */
1843 			curr_req->req.status = status;
1844 
1845 			/* ep0 request completion */
1846 			if (ep_num == 0) {
1847 				ep0_req_complete(udc, curr_ep, curr_req);
1848 				break;
1849 			} else {
1850 				done(curr_ep, curr_req, status);
1851 			}
1852 		}
1853 	}
1854 }
1855 
1856 static void irq_process_reset(struct mv_udc *udc)
1857 {
1858 	u32 tmp;
1859 	unsigned int loops;
1860 
1861 	udc->ep0_dir = EP_DIR_OUT;
1862 	udc->ep0_state = WAIT_FOR_SETUP;
1863 	udc->remote_wakeup = 0;		/* default to 0 on reset */
1864 
1865 	/* The address bits are past bit 25-31. Set the address */
1866 	tmp = readl(&udc->op_regs->deviceaddr);
1867 	tmp &= ~(USB_DEVICE_ADDRESS_MASK);
1868 	writel(tmp, &udc->op_regs->deviceaddr);
1869 
1870 	/* Clear all the setup token semaphores */
1871 	tmp = readl(&udc->op_regs->epsetupstat);
1872 	writel(tmp, &udc->op_regs->epsetupstat);
1873 
1874 	/* Clear all the endpoint complete status bits */
1875 	tmp = readl(&udc->op_regs->epcomplete);
1876 	writel(tmp, &udc->op_regs->epcomplete);
1877 
1878 	/* wait until all endptprime bits cleared */
1879 	loops = LOOPS(PRIME_TIMEOUT);
1880 	while (readl(&udc->op_regs->epprime) & 0xFFFFFFFF) {
1881 		if (loops == 0) {
1882 			dev_err(&udc->dev->dev,
1883 				"Timeout for ENDPTPRIME = 0x%x\n",
1884 				readl(&udc->op_regs->epprime));
1885 			break;
1886 		}
1887 		loops--;
1888 		udelay(LOOPS_USEC);
1889 	}
1890 
1891 	/* Write 1s to the Flush register */
1892 	writel((u32)~0, &udc->op_regs->epflush);
1893 
1894 	if (readl(&udc->op_regs->portsc[0]) & PORTSCX_PORT_RESET) {
1895 		dev_info(&udc->dev->dev, "usb bus reset\n");
1896 		udc->usb_state = USB_STATE_DEFAULT;
1897 		/* reset all the queues, stop all USB activities */
1898 		gadget_reset(udc, udc->driver);
1899 	} else {
1900 		dev_info(&udc->dev->dev, "USB reset portsc 0x%x\n",
1901 			readl(&udc->op_regs->portsc));
1902 
1903 		/*
1904 		 * re-initialize
1905 		 * controller reset
1906 		 */
1907 		udc_reset(udc);
1908 
1909 		/* reset all the queues, stop all USB activities */
1910 		stop_activity(udc, udc->driver);
1911 
1912 		/* reset ep0 dQH and endptctrl */
1913 		ep0_reset(udc);
1914 
1915 		/* enable interrupt and set controller to run state */
1916 		udc_start(udc);
1917 
1918 		udc->usb_state = USB_STATE_ATTACHED;
1919 	}
1920 }
1921 
1922 static void handle_bus_resume(struct mv_udc *udc)
1923 {
1924 	udc->usb_state = udc->resume_state;
1925 	udc->resume_state = 0;
1926 
1927 	/* report resume to the driver */
1928 	if (udc->driver) {
1929 		if (udc->driver->resume) {
1930 			spin_unlock(&udc->lock);
1931 			udc->driver->resume(&udc->gadget);
1932 			spin_lock(&udc->lock);
1933 		}
1934 	}
1935 }
1936 
1937 static void irq_process_suspend(struct mv_udc *udc)
1938 {
1939 	udc->resume_state = udc->usb_state;
1940 	udc->usb_state = USB_STATE_SUSPENDED;
1941 
1942 	if (udc->driver->suspend) {
1943 		spin_unlock(&udc->lock);
1944 		udc->driver->suspend(&udc->gadget);
1945 		spin_lock(&udc->lock);
1946 	}
1947 }
1948 
1949 static void irq_process_port_change(struct mv_udc *udc)
1950 {
1951 	u32 portsc;
1952 
1953 	portsc = readl(&udc->op_regs->portsc[0]);
1954 	if (!(portsc & PORTSCX_PORT_RESET)) {
1955 		/* Get the speed */
1956 		u32 speed = portsc & PORTSCX_PORT_SPEED_MASK;
1957 		switch (speed) {
1958 		case PORTSCX_PORT_SPEED_HIGH:
1959 			udc->gadget.speed = USB_SPEED_HIGH;
1960 			break;
1961 		case PORTSCX_PORT_SPEED_FULL:
1962 			udc->gadget.speed = USB_SPEED_FULL;
1963 			break;
1964 		case PORTSCX_PORT_SPEED_LOW:
1965 			udc->gadget.speed = USB_SPEED_LOW;
1966 			break;
1967 		default:
1968 			udc->gadget.speed = USB_SPEED_UNKNOWN;
1969 			break;
1970 		}
1971 	}
1972 
1973 	if (portsc & PORTSCX_PORT_SUSPEND) {
1974 		udc->resume_state = udc->usb_state;
1975 		udc->usb_state = USB_STATE_SUSPENDED;
1976 		if (udc->driver->suspend) {
1977 			spin_unlock(&udc->lock);
1978 			udc->driver->suspend(&udc->gadget);
1979 			spin_lock(&udc->lock);
1980 		}
1981 	}
1982 
1983 	if (!(portsc & PORTSCX_PORT_SUSPEND)
1984 		&& udc->usb_state == USB_STATE_SUSPENDED) {
1985 		handle_bus_resume(udc);
1986 	}
1987 
1988 	if (!udc->resume_state)
1989 		udc->usb_state = USB_STATE_DEFAULT;
1990 }
1991 
1992 static void irq_process_error(struct mv_udc *udc)
1993 {
1994 	/* Increment the error count */
1995 	udc->errors++;
1996 }
1997 
1998 static irqreturn_t mv_udc_irq(int irq, void *dev)
1999 {
2000 	struct mv_udc *udc = (struct mv_udc *)dev;
2001 	u32 status, intr;
2002 
2003 	/* Disable ISR when stopped bit is set */
2004 	if (udc->stopped)
2005 		return IRQ_NONE;
2006 
2007 	spin_lock(&udc->lock);
2008 
2009 	status = readl(&udc->op_regs->usbsts);
2010 	intr = readl(&udc->op_regs->usbintr);
2011 	status &= intr;
2012 
2013 	if (status == 0) {
2014 		spin_unlock(&udc->lock);
2015 		return IRQ_NONE;
2016 	}
2017 
2018 	/* Clear all the interrupts occurred */
2019 	writel(status, &udc->op_regs->usbsts);
2020 
2021 	if (status & USBSTS_ERR)
2022 		irq_process_error(udc);
2023 
2024 	if (status & USBSTS_RESET)
2025 		irq_process_reset(udc);
2026 
2027 	if (status & USBSTS_PORT_CHANGE)
2028 		irq_process_port_change(udc);
2029 
2030 	if (status & USBSTS_INT)
2031 		irq_process_tr_complete(udc);
2032 
2033 	if (status & USBSTS_SUSPEND)
2034 		irq_process_suspend(udc);
2035 
2036 	spin_unlock(&udc->lock);
2037 
2038 	return IRQ_HANDLED;
2039 }
2040 
2041 static irqreturn_t mv_udc_vbus_irq(int irq, void *dev)
2042 {
2043 	struct mv_udc *udc = (struct mv_udc *)dev;
2044 
2045 	/* polling VBUS and init phy may cause too much time*/
2046 	if (udc->qwork)
2047 		queue_work(udc->qwork, &udc->vbus_work);
2048 
2049 	return IRQ_HANDLED;
2050 }
2051 
2052 static void mv_udc_vbus_work(struct work_struct *work)
2053 {
2054 	struct mv_udc *udc;
2055 	unsigned int vbus;
2056 
2057 	udc = container_of(work, struct mv_udc, vbus_work);
2058 	if (!udc->pdata->vbus)
2059 		return;
2060 
2061 	vbus = udc->pdata->vbus->poll();
2062 	dev_info(&udc->dev->dev, "vbus is %d\n", vbus);
2063 
2064 	if (vbus == VBUS_HIGH)
2065 		mv_udc_vbus_session(&udc->gadget, 1);
2066 	else if (vbus == VBUS_LOW)
2067 		mv_udc_vbus_session(&udc->gadget, 0);
2068 }
2069 
2070 /* release device structure */
2071 static void gadget_release(struct device *_dev)
2072 {
2073 	struct mv_udc *udc;
2074 
2075 	udc = dev_get_drvdata(_dev);
2076 
2077 	complete(udc->done);
2078 }
2079 
2080 static int mv_udc_remove(struct platform_device *pdev)
2081 {
2082 	struct mv_udc *udc;
2083 
2084 	udc = platform_get_drvdata(pdev);
2085 
2086 	usb_del_gadget_udc(&udc->gadget);
2087 
2088 	if (udc->qwork)
2089 		destroy_workqueue(udc->qwork);
2090 
2091 	/* free memory allocated in probe */
2092 	dma_pool_destroy(udc->dtd_pool);
2093 
2094 	if (udc->ep_dqh)
2095 		dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2096 			udc->ep_dqh, udc->ep_dqh_dma);
2097 
2098 	mv_udc_disable(udc);
2099 
2100 	/* free dev, wait for the release() finished */
2101 	wait_for_completion(udc->done);
2102 
2103 	return 0;
2104 }
2105 
2106 static int mv_udc_probe(struct platform_device *pdev)
2107 {
2108 	struct mv_usb_platform_data *pdata = dev_get_platdata(&pdev->dev);
2109 	struct mv_udc *udc;
2110 	int retval = 0;
2111 	struct resource *r;
2112 	size_t size;
2113 
2114 	if (pdata == NULL) {
2115 		dev_err(&pdev->dev, "missing platform_data\n");
2116 		return -ENODEV;
2117 	}
2118 
2119 	udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2120 	if (udc == NULL)
2121 		return -ENOMEM;
2122 
2123 	udc->done = &release_done;
2124 	udc->pdata = dev_get_platdata(&pdev->dev);
2125 	spin_lock_init(&udc->lock);
2126 
2127 	udc->dev = pdev;
2128 
2129 	if (pdata->mode == MV_USB_MODE_OTG) {
2130 		udc->transceiver = devm_usb_get_phy(&pdev->dev,
2131 					USB_PHY_TYPE_USB2);
2132 		if (IS_ERR(udc->transceiver)) {
2133 			retval = PTR_ERR(udc->transceiver);
2134 
2135 			if (retval == -ENXIO)
2136 				return retval;
2137 
2138 			udc->transceiver = NULL;
2139 			return -EPROBE_DEFER;
2140 		}
2141 	}
2142 
2143 	/* udc only have one sysclk. */
2144 	udc->clk = devm_clk_get(&pdev->dev, NULL);
2145 	if (IS_ERR(udc->clk))
2146 		return PTR_ERR(udc->clk);
2147 
2148 	r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "capregs");
2149 	if (r == NULL) {
2150 		dev_err(&pdev->dev, "no I/O memory resource defined\n");
2151 		return -ENODEV;
2152 	}
2153 
2154 	udc->cap_regs = (struct mv_cap_regs __iomem *)
2155 		devm_ioremap(&pdev->dev, r->start, resource_size(r));
2156 	if (udc->cap_regs == NULL) {
2157 		dev_err(&pdev->dev, "failed to map I/O memory\n");
2158 		return -EBUSY;
2159 	}
2160 
2161 	r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "phyregs");
2162 	if (r == NULL) {
2163 		dev_err(&pdev->dev, "no phy I/O memory resource defined\n");
2164 		return -ENODEV;
2165 	}
2166 
2167 	udc->phy_regs = devm_ioremap(&pdev->dev, r->start, resource_size(r));
2168 	if (udc->phy_regs == NULL) {
2169 		dev_err(&pdev->dev, "failed to map phy I/O memory\n");
2170 		return -EBUSY;
2171 	}
2172 
2173 	/* we will acces controller register, so enable the clk */
2174 	retval = mv_udc_enable_internal(udc);
2175 	if (retval)
2176 		return retval;
2177 
2178 	udc->op_regs =
2179 		(struct mv_op_regs __iomem *)((unsigned long)udc->cap_regs
2180 		+ (readl(&udc->cap_regs->caplength_hciversion)
2181 			& CAPLENGTH_MASK));
2182 	udc->max_eps = readl(&udc->cap_regs->dccparams) & DCCPARAMS_DEN_MASK;
2183 
2184 	/*
2185 	 * some platform will use usb to download image, it may not disconnect
2186 	 * usb gadget before loading kernel. So first stop udc here.
2187 	 */
2188 	udc_stop(udc);
2189 	writel(0xFFFFFFFF, &udc->op_regs->usbsts);
2190 
2191 	size = udc->max_eps * sizeof(struct mv_dqh) *2;
2192 	size = (size + DQH_ALIGNMENT - 1) & ~(DQH_ALIGNMENT - 1);
2193 	udc->ep_dqh = dma_alloc_coherent(&pdev->dev, size,
2194 					&udc->ep_dqh_dma, GFP_KERNEL);
2195 
2196 	if (udc->ep_dqh == NULL) {
2197 		dev_err(&pdev->dev, "allocate dQH memory failed\n");
2198 		retval = -ENOMEM;
2199 		goto err_disable_clock;
2200 	}
2201 	udc->ep_dqh_size = size;
2202 
2203 	/* create dTD dma_pool resource */
2204 	udc->dtd_pool = dma_pool_create("mv_dtd",
2205 			&pdev->dev,
2206 			sizeof(struct mv_dtd),
2207 			DTD_ALIGNMENT,
2208 			DMA_BOUNDARY);
2209 
2210 	if (!udc->dtd_pool) {
2211 		retval = -ENOMEM;
2212 		goto err_free_dma;
2213 	}
2214 
2215 	size = udc->max_eps * sizeof(struct mv_ep) *2;
2216 	udc->eps = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
2217 	if (udc->eps == NULL) {
2218 		retval = -ENOMEM;
2219 		goto err_destroy_dma;
2220 	}
2221 
2222 	/* initialize ep0 status request structure */
2223 	udc->status_req = devm_kzalloc(&pdev->dev, sizeof(struct mv_req),
2224 					GFP_KERNEL);
2225 	if (!udc->status_req) {
2226 		retval = -ENOMEM;
2227 		goto err_destroy_dma;
2228 	}
2229 	INIT_LIST_HEAD(&udc->status_req->queue);
2230 
2231 	/* allocate a small amount of memory to get valid address */
2232 	udc->status_req->req.buf = kzalloc(8, GFP_KERNEL);
2233 	udc->status_req->req.dma = DMA_ADDR_INVALID;
2234 
2235 	udc->resume_state = USB_STATE_NOTATTACHED;
2236 	udc->usb_state = USB_STATE_POWERED;
2237 	udc->ep0_dir = EP_DIR_OUT;
2238 	udc->remote_wakeup = 0;
2239 
2240 	r = platform_get_resource(udc->dev, IORESOURCE_IRQ, 0);
2241 	if (r == NULL) {
2242 		dev_err(&pdev->dev, "no IRQ resource defined\n");
2243 		retval = -ENODEV;
2244 		goto err_destroy_dma;
2245 	}
2246 	udc->irq = r->start;
2247 	if (devm_request_irq(&pdev->dev, udc->irq, mv_udc_irq,
2248 		IRQF_SHARED, driver_name, udc)) {
2249 		dev_err(&pdev->dev, "Request irq %d for UDC failed\n",
2250 			udc->irq);
2251 		retval = -ENODEV;
2252 		goto err_destroy_dma;
2253 	}
2254 
2255 	/* initialize gadget structure */
2256 	udc->gadget.ops = &mv_ops;	/* usb_gadget_ops */
2257 	udc->gadget.ep0 = &udc->eps[0].ep;	/* gadget ep0 */
2258 	INIT_LIST_HEAD(&udc->gadget.ep_list);	/* ep_list */
2259 	udc->gadget.speed = USB_SPEED_UNKNOWN;	/* speed */
2260 	udc->gadget.max_speed = USB_SPEED_HIGH;	/* support dual speed */
2261 
2262 	/* the "gadget" abstracts/virtualizes the controller */
2263 	udc->gadget.name = driver_name;		/* gadget name */
2264 
2265 	eps_init(udc);
2266 
2267 	/* VBUS detect: we can disable/enable clock on demand.*/
2268 	if (udc->transceiver)
2269 		udc->clock_gating = 1;
2270 	else if (pdata->vbus) {
2271 		udc->clock_gating = 1;
2272 		retval = devm_request_threaded_irq(&pdev->dev,
2273 				pdata->vbus->irq, NULL,
2274 				mv_udc_vbus_irq, IRQF_ONESHOT, "vbus", udc);
2275 		if (retval) {
2276 			dev_info(&pdev->dev,
2277 				"Can not request irq for VBUS, "
2278 				"disable clock gating\n");
2279 			udc->clock_gating = 0;
2280 		}
2281 
2282 		udc->qwork = create_singlethread_workqueue("mv_udc_queue");
2283 		if (!udc->qwork) {
2284 			dev_err(&pdev->dev, "cannot create workqueue\n");
2285 			retval = -ENOMEM;
2286 			goto err_destroy_dma;
2287 		}
2288 
2289 		INIT_WORK(&udc->vbus_work, mv_udc_vbus_work);
2290 	}
2291 
2292 	/*
2293 	 * When clock gating is supported, we can disable clk and phy.
2294 	 * If not, it means that VBUS detection is not supported, we
2295 	 * have to enable vbus active all the time to let controller work.
2296 	 */
2297 	if (udc->clock_gating)
2298 		mv_udc_disable_internal(udc);
2299 	else
2300 		udc->vbus_active = 1;
2301 
2302 	retval = usb_add_gadget_udc_release(&pdev->dev, &udc->gadget,
2303 			gadget_release);
2304 	if (retval)
2305 		goto err_create_workqueue;
2306 
2307 	platform_set_drvdata(pdev, udc);
2308 	dev_info(&pdev->dev, "successful probe UDC device %s clock gating.\n",
2309 		udc->clock_gating ? "with" : "without");
2310 
2311 	return 0;
2312 
2313 err_create_workqueue:
2314 	if (udc->qwork)
2315 		destroy_workqueue(udc->qwork);
2316 err_destroy_dma:
2317 	dma_pool_destroy(udc->dtd_pool);
2318 err_free_dma:
2319 	dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2320 			udc->ep_dqh, udc->ep_dqh_dma);
2321 err_disable_clock:
2322 	mv_udc_disable_internal(udc);
2323 
2324 	return retval;
2325 }
2326 
2327 #ifdef CONFIG_PM
2328 static int mv_udc_suspend(struct device *dev)
2329 {
2330 	struct mv_udc *udc;
2331 
2332 	udc = dev_get_drvdata(dev);
2333 
2334 	/* if OTG is enabled, the following will be done in OTG driver*/
2335 	if (udc->transceiver)
2336 		return 0;
2337 
2338 	if (udc->pdata->vbus && udc->pdata->vbus->poll)
2339 		if (udc->pdata->vbus->poll() == VBUS_HIGH) {
2340 			dev_info(&udc->dev->dev, "USB cable is connected!\n");
2341 			return -EAGAIN;
2342 		}
2343 
2344 	/*
2345 	 * only cable is unplugged, udc can suspend.
2346 	 * So do not care about clock_gating == 1.
2347 	 */
2348 	if (!udc->clock_gating) {
2349 		udc_stop(udc);
2350 
2351 		spin_lock_irq(&udc->lock);
2352 		/* stop all usb activities */
2353 		stop_activity(udc, udc->driver);
2354 		spin_unlock_irq(&udc->lock);
2355 
2356 		mv_udc_disable_internal(udc);
2357 	}
2358 
2359 	return 0;
2360 }
2361 
2362 static int mv_udc_resume(struct device *dev)
2363 {
2364 	struct mv_udc *udc;
2365 	int retval;
2366 
2367 	udc = dev_get_drvdata(dev);
2368 
2369 	/* if OTG is enabled, the following will be done in OTG driver*/
2370 	if (udc->transceiver)
2371 		return 0;
2372 
2373 	if (!udc->clock_gating) {
2374 		retval = mv_udc_enable_internal(udc);
2375 		if (retval)
2376 			return retval;
2377 
2378 		if (udc->driver && udc->softconnect) {
2379 			udc_reset(udc);
2380 			ep0_reset(udc);
2381 			udc_start(udc);
2382 		}
2383 	}
2384 
2385 	return 0;
2386 }
2387 
2388 static const struct dev_pm_ops mv_udc_pm_ops = {
2389 	.suspend	= mv_udc_suspend,
2390 	.resume		= mv_udc_resume,
2391 };
2392 #endif
2393 
2394 static void mv_udc_shutdown(struct platform_device *pdev)
2395 {
2396 	struct mv_udc *udc;
2397 	u32 mode;
2398 
2399 	udc = platform_get_drvdata(pdev);
2400 	/* reset controller mode to IDLE */
2401 	mv_udc_enable(udc);
2402 	mode = readl(&udc->op_regs->usbmode);
2403 	mode &= ~3;
2404 	writel(mode, &udc->op_regs->usbmode);
2405 	mv_udc_disable(udc);
2406 }
2407 
2408 static struct platform_driver udc_driver = {
2409 	.probe		= mv_udc_probe,
2410 	.remove		= mv_udc_remove,
2411 	.shutdown	= mv_udc_shutdown,
2412 	.driver		= {
2413 		.name	= "mv-udc",
2414 #ifdef CONFIG_PM
2415 		.pm	= &mv_udc_pm_ops,
2416 #endif
2417 	},
2418 };
2419 
2420 module_platform_driver(udc_driver);
2421 MODULE_ALIAS("platform:mv-udc");
2422 MODULE_DESCRIPTION(DRIVER_DESC);
2423 MODULE_AUTHOR("Chao Xie <chao.xie@marvell.com>");
2424 MODULE_LICENSE("GPL");
2425