1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2011 Marvell International Ltd. All rights reserved.
4  * Author: Chao Xie <chao.xie@marvell.com>
5  *	   Neil Zhang <zhangwm@marvell.com>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmapool.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/ioport.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/errno.h>
18 #include <linux/err.h>
19 #include <linux/timer.h>
20 #include <linux/list.h>
21 #include <linux/interrupt.h>
22 #include <linux/moduleparam.h>
23 #include <linux/device.h>
24 #include <linux/usb/ch9.h>
25 #include <linux/usb/gadget.h>
26 #include <linux/usb/otg.h>
27 #include <linux/pm.h>
28 #include <linux/io.h>
29 #include <linux/irq.h>
30 #include <linux/platform_device.h>
31 #include <linux/clk.h>
32 #include <linux/platform_data/mv_usb.h>
33 #include <asm/unaligned.h>
34 
35 #include "mv_udc.h"
36 
37 #define DRIVER_DESC		"Marvell PXA USB Device Controller driver"
38 
39 #define ep_dir(ep)	(((ep)->ep_num == 0) ? \
40 				((ep)->udc->ep0_dir) : ((ep)->direction))
41 
42 /* timeout value -- usec */
43 #define RESET_TIMEOUT		10000
44 #define FLUSH_TIMEOUT		10000
45 #define EPSTATUS_TIMEOUT	10000
46 #define PRIME_TIMEOUT		10000
47 #define READSAFE_TIMEOUT	1000
48 
49 #define LOOPS_USEC_SHIFT	1
50 #define LOOPS_USEC		(1 << LOOPS_USEC_SHIFT)
51 #define LOOPS(timeout)		((timeout) >> LOOPS_USEC_SHIFT)
52 
53 static DECLARE_COMPLETION(release_done);
54 
55 static const char driver_name[] = "mv_udc";
56 
57 static void nuke(struct mv_ep *ep, int status);
58 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver);
59 
60 /* for endpoint 0 operations */
61 static const struct usb_endpoint_descriptor mv_ep0_desc = {
62 	.bLength =		USB_DT_ENDPOINT_SIZE,
63 	.bDescriptorType =	USB_DT_ENDPOINT,
64 	.bEndpointAddress =	0,
65 	.bmAttributes =		USB_ENDPOINT_XFER_CONTROL,
66 	.wMaxPacketSize =	EP0_MAX_PKT_SIZE,
67 };
68 
69 static void ep0_reset(struct mv_udc *udc)
70 {
71 	struct mv_ep *ep;
72 	u32 epctrlx;
73 	int i = 0;
74 
75 	/* ep0 in and out */
76 	for (i = 0; i < 2; i++) {
77 		ep = &udc->eps[i];
78 		ep->udc = udc;
79 
80 		/* ep0 dQH */
81 		ep->dqh = &udc->ep_dqh[i];
82 
83 		/* configure ep0 endpoint capabilities in dQH */
84 		ep->dqh->max_packet_length =
85 			(EP0_MAX_PKT_SIZE << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
86 			| EP_QUEUE_HEAD_IOS;
87 
88 		ep->dqh->next_dtd_ptr = EP_QUEUE_HEAD_NEXT_TERMINATE;
89 
90 		epctrlx = readl(&udc->op_regs->epctrlx[0]);
91 		if (i) {	/* TX */
92 			epctrlx |= EPCTRL_TX_ENABLE
93 				| (USB_ENDPOINT_XFER_CONTROL
94 					<< EPCTRL_TX_EP_TYPE_SHIFT);
95 
96 		} else {	/* RX */
97 			epctrlx |= EPCTRL_RX_ENABLE
98 				| (USB_ENDPOINT_XFER_CONTROL
99 					<< EPCTRL_RX_EP_TYPE_SHIFT);
100 		}
101 
102 		writel(epctrlx, &udc->op_regs->epctrlx[0]);
103 	}
104 }
105 
106 /* protocol ep0 stall, will automatically be cleared on new transaction */
107 static void ep0_stall(struct mv_udc *udc)
108 {
109 	u32	epctrlx;
110 
111 	/* set TX and RX to stall */
112 	epctrlx = readl(&udc->op_regs->epctrlx[0]);
113 	epctrlx |= EPCTRL_RX_EP_STALL | EPCTRL_TX_EP_STALL;
114 	writel(epctrlx, &udc->op_regs->epctrlx[0]);
115 
116 	/* update ep0 state */
117 	udc->ep0_state = WAIT_FOR_SETUP;
118 	udc->ep0_dir = EP_DIR_OUT;
119 }
120 
121 static int process_ep_req(struct mv_udc *udc, int index,
122 	struct mv_req *curr_req)
123 {
124 	struct mv_dtd	*curr_dtd;
125 	struct mv_dqh	*curr_dqh;
126 	int actual, remaining_length;
127 	int i, direction;
128 	int retval = 0;
129 	u32 errors;
130 	u32 bit_pos;
131 
132 	curr_dqh = &udc->ep_dqh[index];
133 	direction = index % 2;
134 
135 	curr_dtd = curr_req->head;
136 	actual = curr_req->req.length;
137 
138 	for (i = 0; i < curr_req->dtd_count; i++) {
139 		if (curr_dtd->size_ioc_sts & DTD_STATUS_ACTIVE) {
140 			dev_dbg(&udc->dev->dev, "%s, dTD not completed\n",
141 				udc->eps[index].name);
142 			return 1;
143 		}
144 
145 		errors = curr_dtd->size_ioc_sts & DTD_ERROR_MASK;
146 		if (!errors) {
147 			remaining_length =
148 				(curr_dtd->size_ioc_sts	& DTD_PACKET_SIZE)
149 					>> DTD_LENGTH_BIT_POS;
150 			actual -= remaining_length;
151 
152 			if (remaining_length) {
153 				if (direction) {
154 					dev_dbg(&udc->dev->dev,
155 						"TX dTD remains data\n");
156 					retval = -EPROTO;
157 					break;
158 				} else
159 					break;
160 			}
161 		} else {
162 			dev_info(&udc->dev->dev,
163 				"complete_tr error: ep=%d %s: error = 0x%x\n",
164 				index >> 1, direction ? "SEND" : "RECV",
165 				errors);
166 			if (errors & DTD_STATUS_HALTED) {
167 				/* Clear the errors and Halt condition */
168 				curr_dqh->size_ioc_int_sts &= ~errors;
169 				retval = -EPIPE;
170 			} else if (errors & DTD_STATUS_DATA_BUFF_ERR) {
171 				retval = -EPROTO;
172 			} else if (errors & DTD_STATUS_TRANSACTION_ERR) {
173 				retval = -EILSEQ;
174 			}
175 		}
176 		if (i != curr_req->dtd_count - 1)
177 			curr_dtd = (struct mv_dtd *)curr_dtd->next_dtd_virt;
178 	}
179 	if (retval)
180 		return retval;
181 
182 	if (direction == EP_DIR_OUT)
183 		bit_pos = 1 << curr_req->ep->ep_num;
184 	else
185 		bit_pos = 1 << (16 + curr_req->ep->ep_num);
186 
187 	while (curr_dqh->curr_dtd_ptr == curr_dtd->td_dma) {
188 		if (curr_dtd->dtd_next == EP_QUEUE_HEAD_NEXT_TERMINATE) {
189 			while (readl(&udc->op_regs->epstatus) & bit_pos)
190 				udelay(1);
191 			break;
192 		}
193 		udelay(1);
194 	}
195 
196 	curr_req->req.actual = actual;
197 
198 	return 0;
199 }
200 
201 /*
202  * done() - retire a request; caller blocked irqs
203  * @status : request status to be set, only works when
204  * request is still in progress.
205  */
206 static void done(struct mv_ep *ep, struct mv_req *req, int status)
207 	__releases(&ep->udc->lock)
208 	__acquires(&ep->udc->lock)
209 {
210 	struct mv_udc *udc = NULL;
211 	unsigned char stopped = ep->stopped;
212 	struct mv_dtd *curr_td, *next_td;
213 	int j;
214 
215 	udc = (struct mv_udc *)ep->udc;
216 	/* Removed the req from fsl_ep->queue */
217 	list_del_init(&req->queue);
218 
219 	/* req.status should be set as -EINPROGRESS in ep_queue() */
220 	if (req->req.status == -EINPROGRESS)
221 		req->req.status = status;
222 	else
223 		status = req->req.status;
224 
225 	/* Free dtd for the request */
226 	next_td = req->head;
227 	for (j = 0; j < req->dtd_count; j++) {
228 		curr_td = next_td;
229 		if (j != req->dtd_count - 1)
230 			next_td = curr_td->next_dtd_virt;
231 		dma_pool_free(udc->dtd_pool, curr_td, curr_td->td_dma);
232 	}
233 
234 	usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
235 
236 	if (status && (status != -ESHUTDOWN))
237 		dev_info(&udc->dev->dev, "complete %s req %p stat %d len %u/%u",
238 			ep->ep.name, &req->req, status,
239 			req->req.actual, req->req.length);
240 
241 	ep->stopped = 1;
242 
243 	spin_unlock(&ep->udc->lock);
244 
245 	usb_gadget_giveback_request(&ep->ep, &req->req);
246 
247 	spin_lock(&ep->udc->lock);
248 	ep->stopped = stopped;
249 }
250 
251 static int queue_dtd(struct mv_ep *ep, struct mv_req *req)
252 {
253 	struct mv_udc *udc;
254 	struct mv_dqh *dqh;
255 	u32 bit_pos, direction;
256 	u32 usbcmd, epstatus;
257 	unsigned int loops;
258 	int retval = 0;
259 
260 	udc = ep->udc;
261 	direction = ep_dir(ep);
262 	dqh = &(udc->ep_dqh[ep->ep_num * 2 + direction]);
263 	bit_pos = 1 << (((direction == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
264 
265 	/* check if the pipe is empty */
266 	if (!(list_empty(&ep->queue))) {
267 		struct mv_req *lastreq;
268 		lastreq = list_entry(ep->queue.prev, struct mv_req, queue);
269 		lastreq->tail->dtd_next =
270 			req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
271 
272 		wmb();
273 
274 		if (readl(&udc->op_regs->epprime) & bit_pos)
275 			goto done;
276 
277 		loops = LOOPS(READSAFE_TIMEOUT);
278 		while (1) {
279 			/* start with setting the semaphores */
280 			usbcmd = readl(&udc->op_regs->usbcmd);
281 			usbcmd |= USBCMD_ATDTW_TRIPWIRE_SET;
282 			writel(usbcmd, &udc->op_regs->usbcmd);
283 
284 			/* read the endpoint status */
285 			epstatus = readl(&udc->op_regs->epstatus) & bit_pos;
286 
287 			/*
288 			 * Reread the ATDTW semaphore bit to check if it is
289 			 * cleared. When hardware see a hazard, it will clear
290 			 * the bit or else we remain set to 1 and we can
291 			 * proceed with priming of endpoint if not already
292 			 * primed.
293 			 */
294 			if (readl(&udc->op_regs->usbcmd)
295 				& USBCMD_ATDTW_TRIPWIRE_SET)
296 				break;
297 
298 			loops--;
299 			if (loops == 0) {
300 				dev_err(&udc->dev->dev,
301 					"Timeout for ATDTW_TRIPWIRE...\n");
302 				retval = -ETIME;
303 				goto done;
304 			}
305 			udelay(LOOPS_USEC);
306 		}
307 
308 		/* Clear the semaphore */
309 		usbcmd = readl(&udc->op_regs->usbcmd);
310 		usbcmd &= USBCMD_ATDTW_TRIPWIRE_CLEAR;
311 		writel(usbcmd, &udc->op_regs->usbcmd);
312 
313 		if (epstatus)
314 			goto done;
315 	}
316 
317 	/* Write dQH next pointer and terminate bit to 0 */
318 	dqh->next_dtd_ptr = req->head->td_dma
319 				& EP_QUEUE_HEAD_NEXT_POINTER_MASK;
320 
321 	/* clear active and halt bit, in case set from a previous error */
322 	dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
323 
324 	/* Ensure that updates to the QH will occur before priming. */
325 	wmb();
326 
327 	/* Prime the Endpoint */
328 	writel(bit_pos, &udc->op_regs->epprime);
329 
330 done:
331 	return retval;
332 }
333 
334 static struct mv_dtd *build_dtd(struct mv_req *req, unsigned *length,
335 		dma_addr_t *dma, int *is_last)
336 {
337 	struct mv_dtd *dtd;
338 	struct mv_udc *udc;
339 	struct mv_dqh *dqh;
340 	u32 temp, mult = 0;
341 
342 	/* how big will this transfer be? */
343 	if (usb_endpoint_xfer_isoc(req->ep->ep.desc)) {
344 		dqh = req->ep->dqh;
345 		mult = (dqh->max_packet_length >> EP_QUEUE_HEAD_MULT_POS)
346 				& 0x3;
347 		*length = min(req->req.length - req->req.actual,
348 				(unsigned)(mult * req->ep->ep.maxpacket));
349 	} else
350 		*length = min(req->req.length - req->req.actual,
351 				(unsigned)EP_MAX_LENGTH_TRANSFER);
352 
353 	udc = req->ep->udc;
354 
355 	/*
356 	 * Be careful that no _GFP_HIGHMEM is set,
357 	 * or we can not use dma_to_virt
358 	 */
359 	dtd = dma_pool_alloc(udc->dtd_pool, GFP_ATOMIC, dma);
360 	if (dtd == NULL)
361 		return dtd;
362 
363 	dtd->td_dma = *dma;
364 	/* initialize buffer page pointers */
365 	temp = (u32)(req->req.dma + req->req.actual);
366 	dtd->buff_ptr0 = cpu_to_le32(temp);
367 	temp &= ~0xFFF;
368 	dtd->buff_ptr1 = cpu_to_le32(temp + 0x1000);
369 	dtd->buff_ptr2 = cpu_to_le32(temp + 0x2000);
370 	dtd->buff_ptr3 = cpu_to_le32(temp + 0x3000);
371 	dtd->buff_ptr4 = cpu_to_le32(temp + 0x4000);
372 
373 	req->req.actual += *length;
374 
375 	/* zlp is needed if req->req.zero is set */
376 	if (req->req.zero) {
377 		if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
378 			*is_last = 1;
379 		else
380 			*is_last = 0;
381 	} else if (req->req.length == req->req.actual)
382 		*is_last = 1;
383 	else
384 		*is_last = 0;
385 
386 	/* Fill in the transfer size; set active bit */
387 	temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
388 
389 	/* Enable interrupt for the last dtd of a request */
390 	if (*is_last && !req->req.no_interrupt)
391 		temp |= DTD_IOC;
392 
393 	temp |= mult << 10;
394 
395 	dtd->size_ioc_sts = temp;
396 
397 	mb();
398 
399 	return dtd;
400 }
401 
402 /* generate dTD linked list for a request */
403 static int req_to_dtd(struct mv_req *req)
404 {
405 	unsigned count;
406 	int is_last, is_first = 1;
407 	struct mv_dtd *dtd, *last_dtd = NULL;
408 	dma_addr_t dma;
409 
410 	do {
411 		dtd = build_dtd(req, &count, &dma, &is_last);
412 		if (dtd == NULL)
413 			return -ENOMEM;
414 
415 		if (is_first) {
416 			is_first = 0;
417 			req->head = dtd;
418 		} else {
419 			last_dtd->dtd_next = dma;
420 			last_dtd->next_dtd_virt = dtd;
421 		}
422 		last_dtd = dtd;
423 		req->dtd_count++;
424 	} while (!is_last);
425 
426 	/* set terminate bit to 1 for the last dTD */
427 	dtd->dtd_next = DTD_NEXT_TERMINATE;
428 
429 	req->tail = dtd;
430 
431 	return 0;
432 }
433 
434 static int mv_ep_enable(struct usb_ep *_ep,
435 		const struct usb_endpoint_descriptor *desc)
436 {
437 	struct mv_udc *udc;
438 	struct mv_ep *ep;
439 	struct mv_dqh *dqh;
440 	u16 max = 0;
441 	u32 bit_pos, epctrlx, direction;
442 	const unsigned char zlt = 1;
443 	unsigned char ios, mult;
444 	unsigned long flags;
445 
446 	ep = container_of(_ep, struct mv_ep, ep);
447 	udc = ep->udc;
448 
449 	if (!_ep || !desc
450 			|| desc->bDescriptorType != USB_DT_ENDPOINT)
451 		return -EINVAL;
452 
453 	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
454 		return -ESHUTDOWN;
455 
456 	direction = ep_dir(ep);
457 	max = usb_endpoint_maxp(desc);
458 
459 	/*
460 	 * disable HW zero length termination select
461 	 * driver handles zero length packet through req->req.zero
462 	 */
463 	bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
464 
465 	/* Check if the Endpoint is Primed */
466 	if ((readl(&udc->op_regs->epprime) & bit_pos)
467 		|| (readl(&udc->op_regs->epstatus) & bit_pos)) {
468 		dev_info(&udc->dev->dev,
469 			"ep=%d %s: Init ERROR: ENDPTPRIME=0x%x,"
470 			" ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
471 			(unsigned)ep->ep_num, direction ? "SEND" : "RECV",
472 			(unsigned)readl(&udc->op_regs->epprime),
473 			(unsigned)readl(&udc->op_regs->epstatus),
474 			(unsigned)bit_pos);
475 		goto en_done;
476 	}
477 
478 	/* Set the max packet length, interrupt on Setup and Mult fields */
479 	ios = 0;
480 	mult = 0;
481 	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
482 	case USB_ENDPOINT_XFER_BULK:
483 	case USB_ENDPOINT_XFER_INT:
484 		break;
485 	case USB_ENDPOINT_XFER_CONTROL:
486 		ios = 1;
487 		break;
488 	case USB_ENDPOINT_XFER_ISOC:
489 		/* Calculate transactions needed for high bandwidth iso */
490 		mult = usb_endpoint_maxp_mult(desc);
491 		/* 3 transactions at most */
492 		if (mult > 3)
493 			goto en_done;
494 		break;
495 	default:
496 		goto en_done;
497 	}
498 
499 	spin_lock_irqsave(&udc->lock, flags);
500 	/* Get the endpoint queue head address */
501 	dqh = ep->dqh;
502 	dqh->max_packet_length = (max << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
503 		| (mult << EP_QUEUE_HEAD_MULT_POS)
504 		| (zlt ? EP_QUEUE_HEAD_ZLT_SEL : 0)
505 		| (ios ? EP_QUEUE_HEAD_IOS : 0);
506 	dqh->next_dtd_ptr = 1;
507 	dqh->size_ioc_int_sts = 0;
508 
509 	ep->ep.maxpacket = max;
510 	ep->ep.desc = desc;
511 	ep->stopped = 0;
512 
513 	/* Enable the endpoint for Rx or Tx and set the endpoint type */
514 	epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
515 	if (direction == EP_DIR_IN) {
516 		epctrlx &= ~EPCTRL_TX_ALL_MASK;
517 		epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
518 			| ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
519 				<< EPCTRL_TX_EP_TYPE_SHIFT);
520 	} else {
521 		epctrlx &= ~EPCTRL_RX_ALL_MASK;
522 		epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
523 			| ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
524 				<< EPCTRL_RX_EP_TYPE_SHIFT);
525 	}
526 	writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
527 
528 	/*
529 	 * Implement Guideline (GL# USB-7) The unused endpoint type must
530 	 * be programmed to bulk.
531 	 */
532 	epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
533 	if ((epctrlx & EPCTRL_RX_ENABLE) == 0) {
534 		epctrlx |= (USB_ENDPOINT_XFER_BULK
535 				<< EPCTRL_RX_EP_TYPE_SHIFT);
536 		writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
537 	}
538 
539 	epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
540 	if ((epctrlx & EPCTRL_TX_ENABLE) == 0) {
541 		epctrlx |= (USB_ENDPOINT_XFER_BULK
542 				<< EPCTRL_TX_EP_TYPE_SHIFT);
543 		writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
544 	}
545 
546 	spin_unlock_irqrestore(&udc->lock, flags);
547 
548 	return 0;
549 en_done:
550 	return -EINVAL;
551 }
552 
553 static int  mv_ep_disable(struct usb_ep *_ep)
554 {
555 	struct mv_udc *udc;
556 	struct mv_ep *ep;
557 	struct mv_dqh *dqh;
558 	u32 epctrlx, direction;
559 	unsigned long flags;
560 
561 	ep = container_of(_ep, struct mv_ep, ep);
562 	if ((_ep == NULL) || !ep->ep.desc)
563 		return -EINVAL;
564 
565 	udc = ep->udc;
566 
567 	/* Get the endpoint queue head address */
568 	dqh = ep->dqh;
569 
570 	spin_lock_irqsave(&udc->lock, flags);
571 
572 	direction = ep_dir(ep);
573 
574 	/* Reset the max packet length and the interrupt on Setup */
575 	dqh->max_packet_length = 0;
576 
577 	/* Disable the endpoint for Rx or Tx and reset the endpoint type */
578 	epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
579 	epctrlx &= ~((direction == EP_DIR_IN)
580 			? (EPCTRL_TX_ENABLE | EPCTRL_TX_TYPE)
581 			: (EPCTRL_RX_ENABLE | EPCTRL_RX_TYPE));
582 	writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
583 
584 	/* nuke all pending requests (does flush) */
585 	nuke(ep, -ESHUTDOWN);
586 
587 	ep->ep.desc = NULL;
588 	ep->stopped = 1;
589 
590 	spin_unlock_irqrestore(&udc->lock, flags);
591 
592 	return 0;
593 }
594 
595 static struct usb_request *
596 mv_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
597 {
598 	struct mv_req *req = NULL;
599 
600 	req = kzalloc(sizeof *req, gfp_flags);
601 	if (!req)
602 		return NULL;
603 
604 	req->req.dma = DMA_ADDR_INVALID;
605 	INIT_LIST_HEAD(&req->queue);
606 
607 	return &req->req;
608 }
609 
610 static void mv_free_request(struct usb_ep *_ep, struct usb_request *_req)
611 {
612 	struct mv_req *req = NULL;
613 
614 	req = container_of(_req, struct mv_req, req);
615 
616 	if (_req)
617 		kfree(req);
618 }
619 
620 static void mv_ep_fifo_flush(struct usb_ep *_ep)
621 {
622 	struct mv_udc *udc;
623 	u32 bit_pos, direction;
624 	struct mv_ep *ep;
625 	unsigned int loops;
626 
627 	if (!_ep)
628 		return;
629 
630 	ep = container_of(_ep, struct mv_ep, ep);
631 	if (!ep->ep.desc)
632 		return;
633 
634 	udc = ep->udc;
635 	direction = ep_dir(ep);
636 
637 	if (ep->ep_num == 0)
638 		bit_pos = (1 << 16) | 1;
639 	else if (direction == EP_DIR_OUT)
640 		bit_pos = 1 << ep->ep_num;
641 	else
642 		bit_pos = 1 << (16 + ep->ep_num);
643 
644 	loops = LOOPS(EPSTATUS_TIMEOUT);
645 	do {
646 		unsigned int inter_loops;
647 
648 		if (loops == 0) {
649 			dev_err(&udc->dev->dev,
650 				"TIMEOUT for ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
651 				(unsigned)readl(&udc->op_regs->epstatus),
652 				(unsigned)bit_pos);
653 			return;
654 		}
655 		/* Write 1 to the Flush register */
656 		writel(bit_pos, &udc->op_regs->epflush);
657 
658 		/* Wait until flushing completed */
659 		inter_loops = LOOPS(FLUSH_TIMEOUT);
660 		while (readl(&udc->op_regs->epflush)) {
661 			/*
662 			 * ENDPTFLUSH bit should be cleared to indicate this
663 			 * operation is complete
664 			 */
665 			if (inter_loops == 0) {
666 				dev_err(&udc->dev->dev,
667 					"TIMEOUT for ENDPTFLUSH=0x%x,"
668 					"bit_pos=0x%x\n",
669 					(unsigned)readl(&udc->op_regs->epflush),
670 					(unsigned)bit_pos);
671 				return;
672 			}
673 			inter_loops--;
674 			udelay(LOOPS_USEC);
675 		}
676 		loops--;
677 	} while (readl(&udc->op_regs->epstatus) & bit_pos);
678 }
679 
680 /* queues (submits) an I/O request to an endpoint */
681 static int
682 mv_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
683 {
684 	struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
685 	struct mv_req *req = container_of(_req, struct mv_req, req);
686 	struct mv_udc *udc = ep->udc;
687 	unsigned long flags;
688 	int retval;
689 
690 	/* catch various bogus parameters */
691 	if (!_req || !req->req.complete || !req->req.buf
692 			|| !list_empty(&req->queue)) {
693 		dev_err(&udc->dev->dev, "%s, bad params", __func__);
694 		return -EINVAL;
695 	}
696 	if (unlikely(!_ep || !ep->ep.desc)) {
697 		dev_err(&udc->dev->dev, "%s, bad ep", __func__);
698 		return -EINVAL;
699 	}
700 
701 	udc = ep->udc;
702 	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
703 		return -ESHUTDOWN;
704 
705 	req->ep = ep;
706 
707 	/* map virtual address to hardware */
708 	retval = usb_gadget_map_request(&udc->gadget, _req, ep_dir(ep));
709 	if (retval)
710 		return retval;
711 
712 	req->req.status = -EINPROGRESS;
713 	req->req.actual = 0;
714 	req->dtd_count = 0;
715 
716 	spin_lock_irqsave(&udc->lock, flags);
717 
718 	/* build dtds and push them to device queue */
719 	if (!req_to_dtd(req)) {
720 		retval = queue_dtd(ep, req);
721 		if (retval) {
722 			spin_unlock_irqrestore(&udc->lock, flags);
723 			dev_err(&udc->dev->dev, "Failed to queue dtd\n");
724 			goto err_unmap_dma;
725 		}
726 	} else {
727 		spin_unlock_irqrestore(&udc->lock, flags);
728 		dev_err(&udc->dev->dev, "Failed to dma_pool_alloc\n");
729 		retval = -ENOMEM;
730 		goto err_unmap_dma;
731 	}
732 
733 	/* Update ep0 state */
734 	if (ep->ep_num == 0)
735 		udc->ep0_state = DATA_STATE_XMIT;
736 
737 	/* irq handler advances the queue */
738 	list_add_tail(&req->queue, &ep->queue);
739 	spin_unlock_irqrestore(&udc->lock, flags);
740 
741 	return 0;
742 
743 err_unmap_dma:
744 	usb_gadget_unmap_request(&udc->gadget, _req, ep_dir(ep));
745 
746 	return retval;
747 }
748 
749 static void mv_prime_ep(struct mv_ep *ep, struct mv_req *req)
750 {
751 	struct mv_dqh *dqh = ep->dqh;
752 	u32 bit_pos;
753 
754 	/* Write dQH next pointer and terminate bit to 0 */
755 	dqh->next_dtd_ptr = req->head->td_dma
756 		& EP_QUEUE_HEAD_NEXT_POINTER_MASK;
757 
758 	/* clear active and halt bit, in case set from a previous error */
759 	dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
760 
761 	/* Ensure that updates to the QH will occure before priming. */
762 	wmb();
763 
764 	bit_pos = 1 << (((ep_dir(ep) == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
765 
766 	/* Prime the Endpoint */
767 	writel(bit_pos, &ep->udc->op_regs->epprime);
768 }
769 
770 /* dequeues (cancels, unlinks) an I/O request from an endpoint */
771 static int mv_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
772 {
773 	struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
774 	struct mv_req *req;
775 	struct mv_udc *udc = ep->udc;
776 	unsigned long flags;
777 	int stopped, ret = 0;
778 	u32 epctrlx;
779 
780 	if (!_ep || !_req)
781 		return -EINVAL;
782 
783 	spin_lock_irqsave(&ep->udc->lock, flags);
784 	stopped = ep->stopped;
785 
786 	/* Stop the ep before we deal with the queue */
787 	ep->stopped = 1;
788 	epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
789 	if (ep_dir(ep) == EP_DIR_IN)
790 		epctrlx &= ~EPCTRL_TX_ENABLE;
791 	else
792 		epctrlx &= ~EPCTRL_RX_ENABLE;
793 	writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
794 
795 	/* make sure it's actually queued on this endpoint */
796 	list_for_each_entry(req, &ep->queue, queue) {
797 		if (&req->req == _req)
798 			break;
799 	}
800 	if (&req->req != _req) {
801 		ret = -EINVAL;
802 		goto out;
803 	}
804 
805 	/* The request is in progress, or completed but not dequeued */
806 	if (ep->queue.next == &req->queue) {
807 		_req->status = -ECONNRESET;
808 		mv_ep_fifo_flush(_ep);	/* flush current transfer */
809 
810 		/* The request isn't the last request in this ep queue */
811 		if (req->queue.next != &ep->queue) {
812 			struct mv_req *next_req;
813 
814 			next_req = list_entry(req->queue.next,
815 				struct mv_req, queue);
816 
817 			/* Point the QH to the first TD of next request */
818 			mv_prime_ep(ep, next_req);
819 		} else {
820 			struct mv_dqh *qh;
821 
822 			qh = ep->dqh;
823 			qh->next_dtd_ptr = 1;
824 			qh->size_ioc_int_sts = 0;
825 		}
826 
827 		/* The request hasn't been processed, patch up the TD chain */
828 	} else {
829 		struct mv_req *prev_req;
830 
831 		prev_req = list_entry(req->queue.prev, struct mv_req, queue);
832 		writel(readl(&req->tail->dtd_next),
833 				&prev_req->tail->dtd_next);
834 
835 	}
836 
837 	done(ep, req, -ECONNRESET);
838 
839 	/* Enable EP */
840 out:
841 	epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
842 	if (ep_dir(ep) == EP_DIR_IN)
843 		epctrlx |= EPCTRL_TX_ENABLE;
844 	else
845 		epctrlx |= EPCTRL_RX_ENABLE;
846 	writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
847 	ep->stopped = stopped;
848 
849 	spin_unlock_irqrestore(&ep->udc->lock, flags);
850 	return ret;
851 }
852 
853 static void ep_set_stall(struct mv_udc *udc, u8 ep_num, u8 direction, int stall)
854 {
855 	u32 epctrlx;
856 
857 	epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
858 
859 	if (stall) {
860 		if (direction == EP_DIR_IN)
861 			epctrlx |= EPCTRL_TX_EP_STALL;
862 		else
863 			epctrlx |= EPCTRL_RX_EP_STALL;
864 	} else {
865 		if (direction == EP_DIR_IN) {
866 			epctrlx &= ~EPCTRL_TX_EP_STALL;
867 			epctrlx |= EPCTRL_TX_DATA_TOGGLE_RST;
868 		} else {
869 			epctrlx &= ~EPCTRL_RX_EP_STALL;
870 			epctrlx |= EPCTRL_RX_DATA_TOGGLE_RST;
871 		}
872 	}
873 	writel(epctrlx, &udc->op_regs->epctrlx[ep_num]);
874 }
875 
876 static int ep_is_stall(struct mv_udc *udc, u8 ep_num, u8 direction)
877 {
878 	u32 epctrlx;
879 
880 	epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
881 
882 	if (direction == EP_DIR_OUT)
883 		return (epctrlx & EPCTRL_RX_EP_STALL) ? 1 : 0;
884 	else
885 		return (epctrlx & EPCTRL_TX_EP_STALL) ? 1 : 0;
886 }
887 
888 static int mv_ep_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
889 {
890 	struct mv_ep *ep;
891 	unsigned long flags = 0;
892 	int status = 0;
893 	struct mv_udc *udc;
894 
895 	ep = container_of(_ep, struct mv_ep, ep);
896 	udc = ep->udc;
897 	if (!_ep || !ep->ep.desc) {
898 		status = -EINVAL;
899 		goto out;
900 	}
901 
902 	if (ep->ep.desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
903 		status = -EOPNOTSUPP;
904 		goto out;
905 	}
906 
907 	/*
908 	 * Attempt to halt IN ep will fail if any transfer requests
909 	 * are still queue
910 	 */
911 	if (halt && (ep_dir(ep) == EP_DIR_IN) && !list_empty(&ep->queue)) {
912 		status = -EAGAIN;
913 		goto out;
914 	}
915 
916 	spin_lock_irqsave(&ep->udc->lock, flags);
917 	ep_set_stall(udc, ep->ep_num, ep_dir(ep), halt);
918 	if (halt && wedge)
919 		ep->wedge = 1;
920 	else if (!halt)
921 		ep->wedge = 0;
922 	spin_unlock_irqrestore(&ep->udc->lock, flags);
923 
924 	if (ep->ep_num == 0) {
925 		udc->ep0_state = WAIT_FOR_SETUP;
926 		udc->ep0_dir = EP_DIR_OUT;
927 	}
928 out:
929 	return status;
930 }
931 
932 static int mv_ep_set_halt(struct usb_ep *_ep, int halt)
933 {
934 	return mv_ep_set_halt_wedge(_ep, halt, 0);
935 }
936 
937 static int mv_ep_set_wedge(struct usb_ep *_ep)
938 {
939 	return mv_ep_set_halt_wedge(_ep, 1, 1);
940 }
941 
942 static const struct usb_ep_ops mv_ep_ops = {
943 	.enable		= mv_ep_enable,
944 	.disable	= mv_ep_disable,
945 
946 	.alloc_request	= mv_alloc_request,
947 	.free_request	= mv_free_request,
948 
949 	.queue		= mv_ep_queue,
950 	.dequeue	= mv_ep_dequeue,
951 
952 	.set_wedge	= mv_ep_set_wedge,
953 	.set_halt	= mv_ep_set_halt,
954 	.fifo_flush	= mv_ep_fifo_flush,	/* flush fifo */
955 };
956 
957 static int udc_clock_enable(struct mv_udc *udc)
958 {
959 	return clk_prepare_enable(udc->clk);
960 }
961 
962 static void udc_clock_disable(struct mv_udc *udc)
963 {
964 	clk_disable_unprepare(udc->clk);
965 }
966 
967 static void udc_stop(struct mv_udc *udc)
968 {
969 	u32 tmp;
970 
971 	/* Disable interrupts */
972 	tmp = readl(&udc->op_regs->usbintr);
973 	tmp &= ~(USBINTR_INT_EN | USBINTR_ERR_INT_EN |
974 		USBINTR_PORT_CHANGE_DETECT_EN | USBINTR_RESET_EN);
975 	writel(tmp, &udc->op_regs->usbintr);
976 
977 	udc->stopped = 1;
978 
979 	/* Reset the Run the bit in the command register to stop VUSB */
980 	tmp = readl(&udc->op_regs->usbcmd);
981 	tmp &= ~USBCMD_RUN_STOP;
982 	writel(tmp, &udc->op_regs->usbcmd);
983 }
984 
985 static void udc_start(struct mv_udc *udc)
986 {
987 	u32 usbintr;
988 
989 	usbintr = USBINTR_INT_EN | USBINTR_ERR_INT_EN
990 		| USBINTR_PORT_CHANGE_DETECT_EN
991 		| USBINTR_RESET_EN | USBINTR_DEVICE_SUSPEND;
992 	/* Enable interrupts */
993 	writel(usbintr, &udc->op_regs->usbintr);
994 
995 	udc->stopped = 0;
996 
997 	/* Set the Run bit in the command register */
998 	writel(USBCMD_RUN_STOP, &udc->op_regs->usbcmd);
999 }
1000 
1001 static int udc_reset(struct mv_udc *udc)
1002 {
1003 	unsigned int loops;
1004 	u32 tmp, portsc;
1005 
1006 	/* Stop the controller */
1007 	tmp = readl(&udc->op_regs->usbcmd);
1008 	tmp &= ~USBCMD_RUN_STOP;
1009 	writel(tmp, &udc->op_regs->usbcmd);
1010 
1011 	/* Reset the controller to get default values */
1012 	writel(USBCMD_CTRL_RESET, &udc->op_regs->usbcmd);
1013 
1014 	/* wait for reset to complete */
1015 	loops = LOOPS(RESET_TIMEOUT);
1016 	while (readl(&udc->op_regs->usbcmd) & USBCMD_CTRL_RESET) {
1017 		if (loops == 0) {
1018 			dev_err(&udc->dev->dev,
1019 				"Wait for RESET completed TIMEOUT\n");
1020 			return -ETIMEDOUT;
1021 		}
1022 		loops--;
1023 		udelay(LOOPS_USEC);
1024 	}
1025 
1026 	/* set controller to device mode */
1027 	tmp = readl(&udc->op_regs->usbmode);
1028 	tmp |= USBMODE_CTRL_MODE_DEVICE;
1029 
1030 	/* turn setup lockout off, require setup tripwire in usbcmd */
1031 	tmp |= USBMODE_SETUP_LOCK_OFF;
1032 
1033 	writel(tmp, &udc->op_regs->usbmode);
1034 
1035 	writel(0x0, &udc->op_regs->epsetupstat);
1036 
1037 	/* Configure the Endpoint List Address */
1038 	writel(udc->ep_dqh_dma & USB_EP_LIST_ADDRESS_MASK,
1039 		&udc->op_regs->eplistaddr);
1040 
1041 	portsc = readl(&udc->op_regs->portsc[0]);
1042 	if (readl(&udc->cap_regs->hcsparams) & HCSPARAMS_PPC)
1043 		portsc &= (~PORTSCX_W1C_BITS | ~PORTSCX_PORT_POWER);
1044 
1045 	if (udc->force_fs)
1046 		portsc |= PORTSCX_FORCE_FULL_SPEED_CONNECT;
1047 	else
1048 		portsc &= (~PORTSCX_FORCE_FULL_SPEED_CONNECT);
1049 
1050 	writel(portsc, &udc->op_regs->portsc[0]);
1051 
1052 	tmp = readl(&udc->op_regs->epctrlx[0]);
1053 	tmp &= ~(EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL);
1054 	writel(tmp, &udc->op_regs->epctrlx[0]);
1055 
1056 	return 0;
1057 }
1058 
1059 static int mv_udc_enable_internal(struct mv_udc *udc)
1060 {
1061 	int retval;
1062 
1063 	if (udc->active)
1064 		return 0;
1065 
1066 	dev_dbg(&udc->dev->dev, "enable udc\n");
1067 	retval = udc_clock_enable(udc);
1068 	if (retval)
1069 		return retval;
1070 
1071 	if (udc->pdata->phy_init) {
1072 		retval = udc->pdata->phy_init(udc->phy_regs);
1073 		if (retval) {
1074 			dev_err(&udc->dev->dev,
1075 				"init phy error %d\n", retval);
1076 			udc_clock_disable(udc);
1077 			return retval;
1078 		}
1079 	}
1080 	udc->active = 1;
1081 
1082 	return 0;
1083 }
1084 
1085 static int mv_udc_enable(struct mv_udc *udc)
1086 {
1087 	if (udc->clock_gating)
1088 		return mv_udc_enable_internal(udc);
1089 
1090 	return 0;
1091 }
1092 
1093 static void mv_udc_disable_internal(struct mv_udc *udc)
1094 {
1095 	if (udc->active) {
1096 		dev_dbg(&udc->dev->dev, "disable udc\n");
1097 		if (udc->pdata->phy_deinit)
1098 			udc->pdata->phy_deinit(udc->phy_regs);
1099 		udc_clock_disable(udc);
1100 		udc->active = 0;
1101 	}
1102 }
1103 
1104 static void mv_udc_disable(struct mv_udc *udc)
1105 {
1106 	if (udc->clock_gating)
1107 		mv_udc_disable_internal(udc);
1108 }
1109 
1110 static int mv_udc_get_frame(struct usb_gadget *gadget)
1111 {
1112 	struct mv_udc *udc;
1113 	u16	retval;
1114 
1115 	if (!gadget)
1116 		return -ENODEV;
1117 
1118 	udc = container_of(gadget, struct mv_udc, gadget);
1119 
1120 	retval = readl(&udc->op_regs->frindex) & USB_FRINDEX_MASKS;
1121 
1122 	return retval;
1123 }
1124 
1125 /* Tries to wake up the host connected to this gadget */
1126 static int mv_udc_wakeup(struct usb_gadget *gadget)
1127 {
1128 	struct mv_udc *udc = container_of(gadget, struct mv_udc, gadget);
1129 	u32 portsc;
1130 
1131 	/* Remote wakeup feature not enabled by host */
1132 	if (!udc->remote_wakeup)
1133 		return -ENOTSUPP;
1134 
1135 	portsc = readl(&udc->op_regs->portsc);
1136 	/* not suspended? */
1137 	if (!(portsc & PORTSCX_PORT_SUSPEND))
1138 		return 0;
1139 	/* trigger force resume */
1140 	portsc |= PORTSCX_PORT_FORCE_RESUME;
1141 	writel(portsc, &udc->op_regs->portsc[0]);
1142 	return 0;
1143 }
1144 
1145 static int mv_udc_vbus_session(struct usb_gadget *gadget, int is_active)
1146 {
1147 	struct mv_udc *udc;
1148 	unsigned long flags;
1149 	int retval = 0;
1150 
1151 	udc = container_of(gadget, struct mv_udc, gadget);
1152 	spin_lock_irqsave(&udc->lock, flags);
1153 
1154 	udc->vbus_active = (is_active != 0);
1155 
1156 	dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1157 		__func__, udc->softconnect, udc->vbus_active);
1158 
1159 	if (udc->driver && udc->softconnect && udc->vbus_active) {
1160 		retval = mv_udc_enable(udc);
1161 		if (retval == 0) {
1162 			/* Clock is disabled, need re-init registers */
1163 			udc_reset(udc);
1164 			ep0_reset(udc);
1165 			udc_start(udc);
1166 		}
1167 	} else if (udc->driver && udc->softconnect) {
1168 		if (!udc->active)
1169 			goto out;
1170 
1171 		/* stop all the transfer in queue*/
1172 		stop_activity(udc, udc->driver);
1173 		udc_stop(udc);
1174 		mv_udc_disable(udc);
1175 	}
1176 
1177 out:
1178 	spin_unlock_irqrestore(&udc->lock, flags);
1179 	return retval;
1180 }
1181 
1182 static int mv_udc_pullup(struct usb_gadget *gadget, int is_on)
1183 {
1184 	struct mv_udc *udc;
1185 	unsigned long flags;
1186 	int retval = 0;
1187 
1188 	udc = container_of(gadget, struct mv_udc, gadget);
1189 	spin_lock_irqsave(&udc->lock, flags);
1190 
1191 	udc->softconnect = (is_on != 0);
1192 
1193 	dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1194 			__func__, udc->softconnect, udc->vbus_active);
1195 
1196 	if (udc->driver && udc->softconnect && udc->vbus_active) {
1197 		retval = mv_udc_enable(udc);
1198 		if (retval == 0) {
1199 			/* Clock is disabled, need re-init registers */
1200 			udc_reset(udc);
1201 			ep0_reset(udc);
1202 			udc_start(udc);
1203 		}
1204 	} else if (udc->driver && udc->vbus_active) {
1205 		/* stop all the transfer in queue*/
1206 		stop_activity(udc, udc->driver);
1207 		udc_stop(udc);
1208 		mv_udc_disable(udc);
1209 	}
1210 
1211 	spin_unlock_irqrestore(&udc->lock, flags);
1212 	return retval;
1213 }
1214 
1215 static int mv_udc_start(struct usb_gadget *, struct usb_gadget_driver *);
1216 static int mv_udc_stop(struct usb_gadget *);
1217 /* device controller usb_gadget_ops structure */
1218 static const struct usb_gadget_ops mv_ops = {
1219 
1220 	/* returns the current frame number */
1221 	.get_frame	= mv_udc_get_frame,
1222 
1223 	/* tries to wake up the host connected to this gadget */
1224 	.wakeup		= mv_udc_wakeup,
1225 
1226 	/* notify controller that VBUS is powered or not */
1227 	.vbus_session	= mv_udc_vbus_session,
1228 
1229 	/* D+ pullup, software-controlled connect/disconnect to USB host */
1230 	.pullup		= mv_udc_pullup,
1231 	.udc_start	= mv_udc_start,
1232 	.udc_stop	= mv_udc_stop,
1233 };
1234 
1235 static int eps_init(struct mv_udc *udc)
1236 {
1237 	struct mv_ep	*ep;
1238 	char name[14];
1239 	int i;
1240 
1241 	/* initialize ep0 */
1242 	ep = &udc->eps[0];
1243 	ep->udc = udc;
1244 	strncpy(ep->name, "ep0", sizeof(ep->name));
1245 	ep->ep.name = ep->name;
1246 	ep->ep.ops = &mv_ep_ops;
1247 	ep->wedge = 0;
1248 	ep->stopped = 0;
1249 	usb_ep_set_maxpacket_limit(&ep->ep, EP0_MAX_PKT_SIZE);
1250 	ep->ep.caps.type_control = true;
1251 	ep->ep.caps.dir_in = true;
1252 	ep->ep.caps.dir_out = true;
1253 	ep->ep_num = 0;
1254 	ep->ep.desc = &mv_ep0_desc;
1255 	INIT_LIST_HEAD(&ep->queue);
1256 
1257 	ep->ep_type = USB_ENDPOINT_XFER_CONTROL;
1258 
1259 	/* initialize other endpoints */
1260 	for (i = 2; i < udc->max_eps * 2; i++) {
1261 		ep = &udc->eps[i];
1262 		if (i % 2) {
1263 			snprintf(name, sizeof(name), "ep%din", i / 2);
1264 			ep->direction = EP_DIR_IN;
1265 			ep->ep.caps.dir_in = true;
1266 		} else {
1267 			snprintf(name, sizeof(name), "ep%dout", i / 2);
1268 			ep->direction = EP_DIR_OUT;
1269 			ep->ep.caps.dir_out = true;
1270 		}
1271 		ep->udc = udc;
1272 		strncpy(ep->name, name, sizeof(ep->name));
1273 		ep->ep.name = ep->name;
1274 
1275 		ep->ep.caps.type_iso = true;
1276 		ep->ep.caps.type_bulk = true;
1277 		ep->ep.caps.type_int = true;
1278 
1279 		ep->ep.ops = &mv_ep_ops;
1280 		ep->stopped = 0;
1281 		usb_ep_set_maxpacket_limit(&ep->ep, (unsigned short) ~0);
1282 		ep->ep_num = i / 2;
1283 
1284 		INIT_LIST_HEAD(&ep->queue);
1285 		list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1286 
1287 		ep->dqh = &udc->ep_dqh[i];
1288 	}
1289 
1290 	return 0;
1291 }
1292 
1293 /* delete all endpoint requests, called with spinlock held */
1294 static void nuke(struct mv_ep *ep, int status)
1295 {
1296 	/* called with spinlock held */
1297 	ep->stopped = 1;
1298 
1299 	/* endpoint fifo flush */
1300 	mv_ep_fifo_flush(&ep->ep);
1301 
1302 	while (!list_empty(&ep->queue)) {
1303 		struct mv_req *req = NULL;
1304 		req = list_entry(ep->queue.next, struct mv_req, queue);
1305 		done(ep, req, status);
1306 	}
1307 }
1308 
1309 static void gadget_reset(struct mv_udc *udc, struct usb_gadget_driver *driver)
1310 {
1311 	struct mv_ep	*ep;
1312 
1313 	nuke(&udc->eps[0], -ESHUTDOWN);
1314 
1315 	list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1316 		nuke(ep, -ESHUTDOWN);
1317 	}
1318 
1319 	/* report reset; the driver is already quiesced */
1320 	if (driver) {
1321 		spin_unlock(&udc->lock);
1322 		usb_gadget_udc_reset(&udc->gadget, driver);
1323 		spin_lock(&udc->lock);
1324 	}
1325 }
1326 /* stop all USB activities */
1327 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver)
1328 {
1329 	struct mv_ep	*ep;
1330 
1331 	nuke(&udc->eps[0], -ESHUTDOWN);
1332 
1333 	list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1334 		nuke(ep, -ESHUTDOWN);
1335 	}
1336 
1337 	/* report disconnect; the driver is already quiesced */
1338 	if (driver) {
1339 		spin_unlock(&udc->lock);
1340 		driver->disconnect(&udc->gadget);
1341 		spin_lock(&udc->lock);
1342 	}
1343 }
1344 
1345 static int mv_udc_start(struct usb_gadget *gadget,
1346 		struct usb_gadget_driver *driver)
1347 {
1348 	struct mv_udc *udc;
1349 	int retval = 0;
1350 	unsigned long flags;
1351 
1352 	udc = container_of(gadget, struct mv_udc, gadget);
1353 
1354 	if (udc->driver)
1355 		return -EBUSY;
1356 
1357 	spin_lock_irqsave(&udc->lock, flags);
1358 
1359 	/* hook up the driver ... */
1360 	driver->driver.bus = NULL;
1361 	udc->driver = driver;
1362 
1363 	udc->usb_state = USB_STATE_ATTACHED;
1364 	udc->ep0_state = WAIT_FOR_SETUP;
1365 	udc->ep0_dir = EP_DIR_OUT;
1366 
1367 	spin_unlock_irqrestore(&udc->lock, flags);
1368 
1369 	if (udc->transceiver) {
1370 		retval = otg_set_peripheral(udc->transceiver->otg,
1371 					&udc->gadget);
1372 		if (retval) {
1373 			dev_err(&udc->dev->dev,
1374 				"unable to register peripheral to otg\n");
1375 			udc->driver = NULL;
1376 			return retval;
1377 		}
1378 	}
1379 
1380 	/* When boot with cable attached, there will be no vbus irq occurred */
1381 	if (udc->qwork)
1382 		queue_work(udc->qwork, &udc->vbus_work);
1383 
1384 	return 0;
1385 }
1386 
1387 static int mv_udc_stop(struct usb_gadget *gadget)
1388 {
1389 	struct mv_udc *udc;
1390 	unsigned long flags;
1391 
1392 	udc = container_of(gadget, struct mv_udc, gadget);
1393 
1394 	spin_lock_irqsave(&udc->lock, flags);
1395 
1396 	mv_udc_enable(udc);
1397 	udc_stop(udc);
1398 
1399 	/* stop all usb activities */
1400 	udc->gadget.speed = USB_SPEED_UNKNOWN;
1401 	stop_activity(udc, NULL);
1402 	mv_udc_disable(udc);
1403 
1404 	spin_unlock_irqrestore(&udc->lock, flags);
1405 
1406 	/* unbind gadget driver */
1407 	udc->driver = NULL;
1408 
1409 	return 0;
1410 }
1411 
1412 static void mv_set_ptc(struct mv_udc *udc, u32 mode)
1413 {
1414 	u32 portsc;
1415 
1416 	portsc = readl(&udc->op_regs->portsc[0]);
1417 	portsc |= mode << 16;
1418 	writel(portsc, &udc->op_regs->portsc[0]);
1419 }
1420 
1421 static void prime_status_complete(struct usb_ep *ep, struct usb_request *_req)
1422 {
1423 	struct mv_ep *mvep = container_of(ep, struct mv_ep, ep);
1424 	struct mv_req *req = container_of(_req, struct mv_req, req);
1425 	struct mv_udc *udc;
1426 	unsigned long flags;
1427 
1428 	udc = mvep->udc;
1429 
1430 	dev_info(&udc->dev->dev, "switch to test mode %d\n", req->test_mode);
1431 
1432 	spin_lock_irqsave(&udc->lock, flags);
1433 	if (req->test_mode) {
1434 		mv_set_ptc(udc, req->test_mode);
1435 		req->test_mode = 0;
1436 	}
1437 	spin_unlock_irqrestore(&udc->lock, flags);
1438 }
1439 
1440 static int
1441 udc_prime_status(struct mv_udc *udc, u8 direction, u16 status, bool empty)
1442 {
1443 	int retval = 0;
1444 	struct mv_req *req;
1445 	struct mv_ep *ep;
1446 
1447 	ep = &udc->eps[0];
1448 	udc->ep0_dir = direction;
1449 	udc->ep0_state = WAIT_FOR_OUT_STATUS;
1450 
1451 	req = udc->status_req;
1452 
1453 	/* fill in the reqest structure */
1454 	if (empty == false) {
1455 		*((u16 *) req->req.buf) = cpu_to_le16(status);
1456 		req->req.length = 2;
1457 	} else
1458 		req->req.length = 0;
1459 
1460 	req->ep = ep;
1461 	req->req.status = -EINPROGRESS;
1462 	req->req.actual = 0;
1463 	if (udc->test_mode) {
1464 		req->req.complete = prime_status_complete;
1465 		req->test_mode = udc->test_mode;
1466 		udc->test_mode = 0;
1467 	} else
1468 		req->req.complete = NULL;
1469 	req->dtd_count = 0;
1470 
1471 	if (req->req.dma == DMA_ADDR_INVALID) {
1472 		req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
1473 				req->req.buf, req->req.length,
1474 				ep_dir(ep) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1475 		req->mapped = 1;
1476 	}
1477 
1478 	/* prime the data phase */
1479 	if (!req_to_dtd(req)) {
1480 		retval = queue_dtd(ep, req);
1481 		if (retval) {
1482 			dev_err(&udc->dev->dev,
1483 				"Failed to queue dtd when prime status\n");
1484 			goto out;
1485 		}
1486 	} else{	/* no mem */
1487 		retval = -ENOMEM;
1488 		dev_err(&udc->dev->dev,
1489 			"Failed to dma_pool_alloc when prime status\n");
1490 		goto out;
1491 	}
1492 
1493 	list_add_tail(&req->queue, &ep->queue);
1494 
1495 	return 0;
1496 out:
1497 	usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
1498 
1499 	return retval;
1500 }
1501 
1502 static void mv_udc_testmode(struct mv_udc *udc, u16 index)
1503 {
1504 	if (index <= USB_TEST_FORCE_ENABLE) {
1505 		udc->test_mode = index;
1506 		if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1507 			ep0_stall(udc);
1508 	} else
1509 		dev_err(&udc->dev->dev,
1510 			"This test mode(%d) is not supported\n", index);
1511 }
1512 
1513 static void ch9setaddress(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1514 {
1515 	udc->dev_addr = (u8)setup->wValue;
1516 
1517 	/* update usb state */
1518 	udc->usb_state = USB_STATE_ADDRESS;
1519 
1520 	if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1521 		ep0_stall(udc);
1522 }
1523 
1524 static void ch9getstatus(struct mv_udc *udc, u8 ep_num,
1525 	struct usb_ctrlrequest *setup)
1526 {
1527 	u16 status = 0;
1528 	int retval;
1529 
1530 	if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
1531 		!= (USB_DIR_IN | USB_TYPE_STANDARD))
1532 		return;
1533 
1534 	if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1535 		status = 1 << USB_DEVICE_SELF_POWERED;
1536 		status |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
1537 	} else if ((setup->bRequestType & USB_RECIP_MASK)
1538 			== USB_RECIP_INTERFACE) {
1539 		/* get interface status */
1540 		status = 0;
1541 	} else if ((setup->bRequestType & USB_RECIP_MASK)
1542 			== USB_RECIP_ENDPOINT) {
1543 		u8 ep_num, direction;
1544 
1545 		ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1546 		direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1547 				? EP_DIR_IN : EP_DIR_OUT;
1548 		status = ep_is_stall(udc, ep_num, direction)
1549 				<< USB_ENDPOINT_HALT;
1550 	}
1551 
1552 	retval = udc_prime_status(udc, EP_DIR_IN, status, false);
1553 	if (retval)
1554 		ep0_stall(udc);
1555 	else
1556 		udc->ep0_state = DATA_STATE_XMIT;
1557 }
1558 
1559 static void ch9clearfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1560 {
1561 	u8 ep_num;
1562 	u8 direction;
1563 	struct mv_ep *ep;
1564 
1565 	if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1566 		== ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1567 		switch (setup->wValue) {
1568 		case USB_DEVICE_REMOTE_WAKEUP:
1569 			udc->remote_wakeup = 0;
1570 			break;
1571 		default:
1572 			goto out;
1573 		}
1574 	} else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1575 		== ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1576 		switch (setup->wValue) {
1577 		case USB_ENDPOINT_HALT:
1578 			ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1579 			direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1580 				? EP_DIR_IN : EP_DIR_OUT;
1581 			if (setup->wValue != 0 || setup->wLength != 0
1582 				|| ep_num > udc->max_eps)
1583 				goto out;
1584 			ep = &udc->eps[ep_num * 2 + direction];
1585 			if (ep->wedge == 1)
1586 				break;
1587 			spin_unlock(&udc->lock);
1588 			ep_set_stall(udc, ep_num, direction, 0);
1589 			spin_lock(&udc->lock);
1590 			break;
1591 		default:
1592 			goto out;
1593 		}
1594 	} else
1595 		goto out;
1596 
1597 	if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1598 		ep0_stall(udc);
1599 out:
1600 	return;
1601 }
1602 
1603 static void ch9setfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1604 {
1605 	u8 ep_num;
1606 	u8 direction;
1607 
1608 	if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1609 		== ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1610 		switch (setup->wValue) {
1611 		case USB_DEVICE_REMOTE_WAKEUP:
1612 			udc->remote_wakeup = 1;
1613 			break;
1614 		case USB_DEVICE_TEST_MODE:
1615 			if (setup->wIndex & 0xFF
1616 				||  udc->gadget.speed != USB_SPEED_HIGH)
1617 				ep0_stall(udc);
1618 
1619 			if (udc->usb_state != USB_STATE_CONFIGURED
1620 				&& udc->usb_state != USB_STATE_ADDRESS
1621 				&& udc->usb_state != USB_STATE_DEFAULT)
1622 				ep0_stall(udc);
1623 
1624 			mv_udc_testmode(udc, (setup->wIndex >> 8));
1625 			goto out;
1626 		default:
1627 			goto out;
1628 		}
1629 	} else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1630 		== ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1631 		switch (setup->wValue) {
1632 		case USB_ENDPOINT_HALT:
1633 			ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1634 			direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1635 				? EP_DIR_IN : EP_DIR_OUT;
1636 			if (setup->wValue != 0 || setup->wLength != 0
1637 				|| ep_num > udc->max_eps)
1638 				goto out;
1639 			spin_unlock(&udc->lock);
1640 			ep_set_stall(udc, ep_num, direction, 1);
1641 			spin_lock(&udc->lock);
1642 			break;
1643 		default:
1644 			goto out;
1645 		}
1646 	} else
1647 		goto out;
1648 
1649 	if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1650 		ep0_stall(udc);
1651 out:
1652 	return;
1653 }
1654 
1655 static void handle_setup_packet(struct mv_udc *udc, u8 ep_num,
1656 	struct usb_ctrlrequest *setup)
1657 	__releases(&ep->udc->lock)
1658 	__acquires(&ep->udc->lock)
1659 {
1660 	bool delegate = false;
1661 
1662 	nuke(&udc->eps[ep_num * 2 + EP_DIR_OUT], -ESHUTDOWN);
1663 
1664 	dev_dbg(&udc->dev->dev, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1665 			setup->bRequestType, setup->bRequest,
1666 			setup->wValue, setup->wIndex, setup->wLength);
1667 	/* We process some standard setup requests here */
1668 	if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1669 		switch (setup->bRequest) {
1670 		case USB_REQ_GET_STATUS:
1671 			ch9getstatus(udc, ep_num, setup);
1672 			break;
1673 
1674 		case USB_REQ_SET_ADDRESS:
1675 			ch9setaddress(udc, setup);
1676 			break;
1677 
1678 		case USB_REQ_CLEAR_FEATURE:
1679 			ch9clearfeature(udc, setup);
1680 			break;
1681 
1682 		case USB_REQ_SET_FEATURE:
1683 			ch9setfeature(udc, setup);
1684 			break;
1685 
1686 		default:
1687 			delegate = true;
1688 		}
1689 	} else
1690 		delegate = true;
1691 
1692 	/* delegate USB standard requests to the gadget driver */
1693 	if (delegate == true) {
1694 		/* USB requests handled by gadget */
1695 		if (setup->wLength) {
1696 			/* DATA phase from gadget, STATUS phase from udc */
1697 			udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
1698 					?  EP_DIR_IN : EP_DIR_OUT;
1699 			spin_unlock(&udc->lock);
1700 			if (udc->driver->setup(&udc->gadget,
1701 				&udc->local_setup_buff) < 0)
1702 				ep0_stall(udc);
1703 			spin_lock(&udc->lock);
1704 			udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
1705 					?  DATA_STATE_XMIT : DATA_STATE_RECV;
1706 		} else {
1707 			/* no DATA phase, IN STATUS phase from gadget */
1708 			udc->ep0_dir = EP_DIR_IN;
1709 			spin_unlock(&udc->lock);
1710 			if (udc->driver->setup(&udc->gadget,
1711 				&udc->local_setup_buff) < 0)
1712 				ep0_stall(udc);
1713 			spin_lock(&udc->lock);
1714 			udc->ep0_state = WAIT_FOR_OUT_STATUS;
1715 		}
1716 	}
1717 }
1718 
1719 /* complete DATA or STATUS phase of ep0 prime status phase if needed */
1720 static void ep0_req_complete(struct mv_udc *udc,
1721 	struct mv_ep *ep0, struct mv_req *req)
1722 {
1723 	u32 new_addr;
1724 
1725 	if (udc->usb_state == USB_STATE_ADDRESS) {
1726 		/* set the new address */
1727 		new_addr = (u32)udc->dev_addr;
1728 		writel(new_addr << USB_DEVICE_ADDRESS_BIT_SHIFT,
1729 			&udc->op_regs->deviceaddr);
1730 	}
1731 
1732 	done(ep0, req, 0);
1733 
1734 	switch (udc->ep0_state) {
1735 	case DATA_STATE_XMIT:
1736 		/* receive status phase */
1737 		if (udc_prime_status(udc, EP_DIR_OUT, 0, true))
1738 			ep0_stall(udc);
1739 		break;
1740 	case DATA_STATE_RECV:
1741 		/* send status phase */
1742 		if (udc_prime_status(udc, EP_DIR_IN, 0 , true))
1743 			ep0_stall(udc);
1744 		break;
1745 	case WAIT_FOR_OUT_STATUS:
1746 		udc->ep0_state = WAIT_FOR_SETUP;
1747 		break;
1748 	case WAIT_FOR_SETUP:
1749 		dev_err(&udc->dev->dev, "unexpect ep0 packets\n");
1750 		break;
1751 	default:
1752 		ep0_stall(udc);
1753 		break;
1754 	}
1755 }
1756 
1757 static void get_setup_data(struct mv_udc *udc, u8 ep_num, u8 *buffer_ptr)
1758 {
1759 	u32 temp;
1760 	struct mv_dqh *dqh;
1761 
1762 	dqh = &udc->ep_dqh[ep_num * 2 + EP_DIR_OUT];
1763 
1764 	/* Clear bit in ENDPTSETUPSTAT */
1765 	writel((1 << ep_num), &udc->op_regs->epsetupstat);
1766 
1767 	/* while a hazard exists when setup package arrives */
1768 	do {
1769 		/* Set Setup Tripwire */
1770 		temp = readl(&udc->op_regs->usbcmd);
1771 		writel(temp | USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1772 
1773 		/* Copy the setup packet to local buffer */
1774 		memcpy(buffer_ptr, (u8 *) dqh->setup_buffer, 8);
1775 	} while (!(readl(&udc->op_regs->usbcmd) & USBCMD_SETUP_TRIPWIRE_SET));
1776 
1777 	/* Clear Setup Tripwire */
1778 	temp = readl(&udc->op_regs->usbcmd);
1779 	writel(temp & ~USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1780 }
1781 
1782 static void irq_process_tr_complete(struct mv_udc *udc)
1783 {
1784 	u32 tmp, bit_pos;
1785 	int i, ep_num = 0, direction = 0;
1786 	struct mv_ep	*curr_ep;
1787 	struct mv_req *curr_req, *temp_req;
1788 	int status;
1789 
1790 	/*
1791 	 * We use separate loops for ENDPTSETUPSTAT and ENDPTCOMPLETE
1792 	 * because the setup packets are to be read ASAP
1793 	 */
1794 
1795 	/* Process all Setup packet received interrupts */
1796 	tmp = readl(&udc->op_regs->epsetupstat);
1797 
1798 	if (tmp) {
1799 		for (i = 0; i < udc->max_eps; i++) {
1800 			if (tmp & (1 << i)) {
1801 				get_setup_data(udc, i,
1802 					(u8 *)(&udc->local_setup_buff));
1803 				handle_setup_packet(udc, i,
1804 					&udc->local_setup_buff);
1805 			}
1806 		}
1807 	}
1808 
1809 	/* Don't clear the endpoint setup status register here.
1810 	 * It is cleared as a setup packet is read out of the buffer
1811 	 */
1812 
1813 	/* Process non-setup transaction complete interrupts */
1814 	tmp = readl(&udc->op_regs->epcomplete);
1815 
1816 	if (!tmp)
1817 		return;
1818 
1819 	writel(tmp, &udc->op_regs->epcomplete);
1820 
1821 	for (i = 0; i < udc->max_eps * 2; i++) {
1822 		ep_num = i >> 1;
1823 		direction = i % 2;
1824 
1825 		bit_pos = 1 << (ep_num + 16 * direction);
1826 
1827 		if (!(bit_pos & tmp))
1828 			continue;
1829 
1830 		if (i == 1)
1831 			curr_ep = &udc->eps[0];
1832 		else
1833 			curr_ep = &udc->eps[i];
1834 		/* process the req queue until an uncomplete request */
1835 		list_for_each_entry_safe(curr_req, temp_req,
1836 			&curr_ep->queue, queue) {
1837 			status = process_ep_req(udc, i, curr_req);
1838 			if (status)
1839 				break;
1840 
1841 			/* write back status to req */
1842 			curr_req->req.status = status;
1843 
1844 			/* ep0 request completion */
1845 			if (ep_num == 0) {
1846 				ep0_req_complete(udc, curr_ep, curr_req);
1847 				break;
1848 			} else {
1849 				done(curr_ep, curr_req, status);
1850 			}
1851 		}
1852 	}
1853 }
1854 
1855 static void irq_process_reset(struct mv_udc *udc)
1856 {
1857 	u32 tmp;
1858 	unsigned int loops;
1859 
1860 	udc->ep0_dir = EP_DIR_OUT;
1861 	udc->ep0_state = WAIT_FOR_SETUP;
1862 	udc->remote_wakeup = 0;		/* default to 0 on reset */
1863 
1864 	/* The address bits are past bit 25-31. Set the address */
1865 	tmp = readl(&udc->op_regs->deviceaddr);
1866 	tmp &= ~(USB_DEVICE_ADDRESS_MASK);
1867 	writel(tmp, &udc->op_regs->deviceaddr);
1868 
1869 	/* Clear all the setup token semaphores */
1870 	tmp = readl(&udc->op_regs->epsetupstat);
1871 	writel(tmp, &udc->op_regs->epsetupstat);
1872 
1873 	/* Clear all the endpoint complete status bits */
1874 	tmp = readl(&udc->op_regs->epcomplete);
1875 	writel(tmp, &udc->op_regs->epcomplete);
1876 
1877 	/* wait until all endptprime bits cleared */
1878 	loops = LOOPS(PRIME_TIMEOUT);
1879 	while (readl(&udc->op_regs->epprime) & 0xFFFFFFFF) {
1880 		if (loops == 0) {
1881 			dev_err(&udc->dev->dev,
1882 				"Timeout for ENDPTPRIME = 0x%x\n",
1883 				readl(&udc->op_regs->epprime));
1884 			break;
1885 		}
1886 		loops--;
1887 		udelay(LOOPS_USEC);
1888 	}
1889 
1890 	/* Write 1s to the Flush register */
1891 	writel((u32)~0, &udc->op_regs->epflush);
1892 
1893 	if (readl(&udc->op_regs->portsc[0]) & PORTSCX_PORT_RESET) {
1894 		dev_info(&udc->dev->dev, "usb bus reset\n");
1895 		udc->usb_state = USB_STATE_DEFAULT;
1896 		/* reset all the queues, stop all USB activities */
1897 		gadget_reset(udc, udc->driver);
1898 	} else {
1899 		dev_info(&udc->dev->dev, "USB reset portsc 0x%x\n",
1900 			readl(&udc->op_regs->portsc));
1901 
1902 		/*
1903 		 * re-initialize
1904 		 * controller reset
1905 		 */
1906 		udc_reset(udc);
1907 
1908 		/* reset all the queues, stop all USB activities */
1909 		stop_activity(udc, udc->driver);
1910 
1911 		/* reset ep0 dQH and endptctrl */
1912 		ep0_reset(udc);
1913 
1914 		/* enable interrupt and set controller to run state */
1915 		udc_start(udc);
1916 
1917 		udc->usb_state = USB_STATE_ATTACHED;
1918 	}
1919 }
1920 
1921 static void handle_bus_resume(struct mv_udc *udc)
1922 {
1923 	udc->usb_state = udc->resume_state;
1924 	udc->resume_state = 0;
1925 
1926 	/* report resume to the driver */
1927 	if (udc->driver) {
1928 		if (udc->driver->resume) {
1929 			spin_unlock(&udc->lock);
1930 			udc->driver->resume(&udc->gadget);
1931 			spin_lock(&udc->lock);
1932 		}
1933 	}
1934 }
1935 
1936 static void irq_process_suspend(struct mv_udc *udc)
1937 {
1938 	udc->resume_state = udc->usb_state;
1939 	udc->usb_state = USB_STATE_SUSPENDED;
1940 
1941 	if (udc->driver->suspend) {
1942 		spin_unlock(&udc->lock);
1943 		udc->driver->suspend(&udc->gadget);
1944 		spin_lock(&udc->lock);
1945 	}
1946 }
1947 
1948 static void irq_process_port_change(struct mv_udc *udc)
1949 {
1950 	u32 portsc;
1951 
1952 	portsc = readl(&udc->op_regs->portsc[0]);
1953 	if (!(portsc & PORTSCX_PORT_RESET)) {
1954 		/* Get the speed */
1955 		u32 speed = portsc & PORTSCX_PORT_SPEED_MASK;
1956 		switch (speed) {
1957 		case PORTSCX_PORT_SPEED_HIGH:
1958 			udc->gadget.speed = USB_SPEED_HIGH;
1959 			break;
1960 		case PORTSCX_PORT_SPEED_FULL:
1961 			udc->gadget.speed = USB_SPEED_FULL;
1962 			break;
1963 		case PORTSCX_PORT_SPEED_LOW:
1964 			udc->gadget.speed = USB_SPEED_LOW;
1965 			break;
1966 		default:
1967 			udc->gadget.speed = USB_SPEED_UNKNOWN;
1968 			break;
1969 		}
1970 	}
1971 
1972 	if (portsc & PORTSCX_PORT_SUSPEND) {
1973 		udc->resume_state = udc->usb_state;
1974 		udc->usb_state = USB_STATE_SUSPENDED;
1975 		if (udc->driver->suspend) {
1976 			spin_unlock(&udc->lock);
1977 			udc->driver->suspend(&udc->gadget);
1978 			spin_lock(&udc->lock);
1979 		}
1980 	}
1981 
1982 	if (!(portsc & PORTSCX_PORT_SUSPEND)
1983 		&& udc->usb_state == USB_STATE_SUSPENDED) {
1984 		handle_bus_resume(udc);
1985 	}
1986 
1987 	if (!udc->resume_state)
1988 		udc->usb_state = USB_STATE_DEFAULT;
1989 }
1990 
1991 static void irq_process_error(struct mv_udc *udc)
1992 {
1993 	/* Increment the error count */
1994 	udc->errors++;
1995 }
1996 
1997 static irqreturn_t mv_udc_irq(int irq, void *dev)
1998 {
1999 	struct mv_udc *udc = (struct mv_udc *)dev;
2000 	u32 status, intr;
2001 
2002 	/* Disable ISR when stopped bit is set */
2003 	if (udc->stopped)
2004 		return IRQ_NONE;
2005 
2006 	spin_lock(&udc->lock);
2007 
2008 	status = readl(&udc->op_regs->usbsts);
2009 	intr = readl(&udc->op_regs->usbintr);
2010 	status &= intr;
2011 
2012 	if (status == 0) {
2013 		spin_unlock(&udc->lock);
2014 		return IRQ_NONE;
2015 	}
2016 
2017 	/* Clear all the interrupts occurred */
2018 	writel(status, &udc->op_regs->usbsts);
2019 
2020 	if (status & USBSTS_ERR)
2021 		irq_process_error(udc);
2022 
2023 	if (status & USBSTS_RESET)
2024 		irq_process_reset(udc);
2025 
2026 	if (status & USBSTS_PORT_CHANGE)
2027 		irq_process_port_change(udc);
2028 
2029 	if (status & USBSTS_INT)
2030 		irq_process_tr_complete(udc);
2031 
2032 	if (status & USBSTS_SUSPEND)
2033 		irq_process_suspend(udc);
2034 
2035 	spin_unlock(&udc->lock);
2036 
2037 	return IRQ_HANDLED;
2038 }
2039 
2040 static irqreturn_t mv_udc_vbus_irq(int irq, void *dev)
2041 {
2042 	struct mv_udc *udc = (struct mv_udc *)dev;
2043 
2044 	/* polling VBUS and init phy may cause too much time*/
2045 	if (udc->qwork)
2046 		queue_work(udc->qwork, &udc->vbus_work);
2047 
2048 	return IRQ_HANDLED;
2049 }
2050 
2051 static void mv_udc_vbus_work(struct work_struct *work)
2052 {
2053 	struct mv_udc *udc;
2054 	unsigned int vbus;
2055 
2056 	udc = container_of(work, struct mv_udc, vbus_work);
2057 	if (!udc->pdata->vbus)
2058 		return;
2059 
2060 	vbus = udc->pdata->vbus->poll();
2061 	dev_info(&udc->dev->dev, "vbus is %d\n", vbus);
2062 
2063 	if (vbus == VBUS_HIGH)
2064 		mv_udc_vbus_session(&udc->gadget, 1);
2065 	else if (vbus == VBUS_LOW)
2066 		mv_udc_vbus_session(&udc->gadget, 0);
2067 }
2068 
2069 /* release device structure */
2070 static void gadget_release(struct device *_dev)
2071 {
2072 	struct mv_udc *udc;
2073 
2074 	udc = dev_get_drvdata(_dev);
2075 
2076 	complete(udc->done);
2077 }
2078 
2079 static int mv_udc_remove(struct platform_device *pdev)
2080 {
2081 	struct mv_udc *udc;
2082 
2083 	udc = platform_get_drvdata(pdev);
2084 
2085 	usb_del_gadget_udc(&udc->gadget);
2086 
2087 	if (udc->qwork) {
2088 		flush_workqueue(udc->qwork);
2089 		destroy_workqueue(udc->qwork);
2090 	}
2091 
2092 	/* free memory allocated in probe */
2093 	dma_pool_destroy(udc->dtd_pool);
2094 
2095 	if (udc->ep_dqh)
2096 		dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2097 			udc->ep_dqh, udc->ep_dqh_dma);
2098 
2099 	mv_udc_disable(udc);
2100 
2101 	/* free dev, wait for the release() finished */
2102 	wait_for_completion(udc->done);
2103 
2104 	return 0;
2105 }
2106 
2107 static int mv_udc_probe(struct platform_device *pdev)
2108 {
2109 	struct mv_usb_platform_data *pdata = dev_get_platdata(&pdev->dev);
2110 	struct mv_udc *udc;
2111 	int retval = 0;
2112 	struct resource *r;
2113 	size_t size;
2114 
2115 	if (pdata == NULL) {
2116 		dev_err(&pdev->dev, "missing platform_data\n");
2117 		return -ENODEV;
2118 	}
2119 
2120 	udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2121 	if (udc == NULL)
2122 		return -ENOMEM;
2123 
2124 	udc->done = &release_done;
2125 	udc->pdata = dev_get_platdata(&pdev->dev);
2126 	spin_lock_init(&udc->lock);
2127 
2128 	udc->dev = pdev;
2129 
2130 	if (pdata->mode == MV_USB_MODE_OTG) {
2131 		udc->transceiver = devm_usb_get_phy(&pdev->dev,
2132 					USB_PHY_TYPE_USB2);
2133 		if (IS_ERR(udc->transceiver)) {
2134 			retval = PTR_ERR(udc->transceiver);
2135 
2136 			if (retval == -ENXIO)
2137 				return retval;
2138 
2139 			udc->transceiver = NULL;
2140 			return -EPROBE_DEFER;
2141 		}
2142 	}
2143 
2144 	/* udc only have one sysclk. */
2145 	udc->clk = devm_clk_get(&pdev->dev, NULL);
2146 	if (IS_ERR(udc->clk))
2147 		return PTR_ERR(udc->clk);
2148 
2149 	r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "capregs");
2150 	if (r == NULL) {
2151 		dev_err(&pdev->dev, "no I/O memory resource defined\n");
2152 		return -ENODEV;
2153 	}
2154 
2155 	udc->cap_regs = (struct mv_cap_regs __iomem *)
2156 		devm_ioremap(&pdev->dev, r->start, resource_size(r));
2157 	if (udc->cap_regs == NULL) {
2158 		dev_err(&pdev->dev, "failed to map I/O memory\n");
2159 		return -EBUSY;
2160 	}
2161 
2162 	r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "phyregs");
2163 	if (r == NULL) {
2164 		dev_err(&pdev->dev, "no phy I/O memory resource defined\n");
2165 		return -ENODEV;
2166 	}
2167 
2168 	udc->phy_regs = devm_ioremap(&pdev->dev, r->start, resource_size(r));
2169 	if (udc->phy_regs == NULL) {
2170 		dev_err(&pdev->dev, "failed to map phy I/O memory\n");
2171 		return -EBUSY;
2172 	}
2173 
2174 	/* we will acces controller register, so enable the clk */
2175 	retval = mv_udc_enable_internal(udc);
2176 	if (retval)
2177 		return retval;
2178 
2179 	udc->op_regs =
2180 		(struct mv_op_regs __iomem *)((unsigned long)udc->cap_regs
2181 		+ (readl(&udc->cap_regs->caplength_hciversion)
2182 			& CAPLENGTH_MASK));
2183 	udc->max_eps = readl(&udc->cap_regs->dccparams) & DCCPARAMS_DEN_MASK;
2184 
2185 	/*
2186 	 * some platform will use usb to download image, it may not disconnect
2187 	 * usb gadget before loading kernel. So first stop udc here.
2188 	 */
2189 	udc_stop(udc);
2190 	writel(0xFFFFFFFF, &udc->op_regs->usbsts);
2191 
2192 	size = udc->max_eps * sizeof(struct mv_dqh) *2;
2193 	size = (size + DQH_ALIGNMENT - 1) & ~(DQH_ALIGNMENT - 1);
2194 	udc->ep_dqh = dma_alloc_coherent(&pdev->dev, size,
2195 					&udc->ep_dqh_dma, GFP_KERNEL);
2196 
2197 	if (udc->ep_dqh == NULL) {
2198 		dev_err(&pdev->dev, "allocate dQH memory failed\n");
2199 		retval = -ENOMEM;
2200 		goto err_disable_clock;
2201 	}
2202 	udc->ep_dqh_size = size;
2203 
2204 	/* create dTD dma_pool resource */
2205 	udc->dtd_pool = dma_pool_create("mv_dtd",
2206 			&pdev->dev,
2207 			sizeof(struct mv_dtd),
2208 			DTD_ALIGNMENT,
2209 			DMA_BOUNDARY);
2210 
2211 	if (!udc->dtd_pool) {
2212 		retval = -ENOMEM;
2213 		goto err_free_dma;
2214 	}
2215 
2216 	size = udc->max_eps * sizeof(struct mv_ep) *2;
2217 	udc->eps = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
2218 	if (udc->eps == NULL) {
2219 		retval = -ENOMEM;
2220 		goto err_destroy_dma;
2221 	}
2222 
2223 	/* initialize ep0 status request structure */
2224 	udc->status_req = devm_kzalloc(&pdev->dev, sizeof(struct mv_req),
2225 					GFP_KERNEL);
2226 	if (!udc->status_req) {
2227 		retval = -ENOMEM;
2228 		goto err_destroy_dma;
2229 	}
2230 	INIT_LIST_HEAD(&udc->status_req->queue);
2231 
2232 	/* allocate a small amount of memory to get valid address */
2233 	udc->status_req->req.buf = kzalloc(8, GFP_KERNEL);
2234 	udc->status_req->req.dma = DMA_ADDR_INVALID;
2235 
2236 	udc->resume_state = USB_STATE_NOTATTACHED;
2237 	udc->usb_state = USB_STATE_POWERED;
2238 	udc->ep0_dir = EP_DIR_OUT;
2239 	udc->remote_wakeup = 0;
2240 
2241 	r = platform_get_resource(udc->dev, IORESOURCE_IRQ, 0);
2242 	if (r == NULL) {
2243 		dev_err(&pdev->dev, "no IRQ resource defined\n");
2244 		retval = -ENODEV;
2245 		goto err_destroy_dma;
2246 	}
2247 	udc->irq = r->start;
2248 	if (devm_request_irq(&pdev->dev, udc->irq, mv_udc_irq,
2249 		IRQF_SHARED, driver_name, udc)) {
2250 		dev_err(&pdev->dev, "Request irq %d for UDC failed\n",
2251 			udc->irq);
2252 		retval = -ENODEV;
2253 		goto err_destroy_dma;
2254 	}
2255 
2256 	/* initialize gadget structure */
2257 	udc->gadget.ops = &mv_ops;	/* usb_gadget_ops */
2258 	udc->gadget.ep0 = &udc->eps[0].ep;	/* gadget ep0 */
2259 	INIT_LIST_HEAD(&udc->gadget.ep_list);	/* ep_list */
2260 	udc->gadget.speed = USB_SPEED_UNKNOWN;	/* speed */
2261 	udc->gadget.max_speed = USB_SPEED_HIGH;	/* support dual speed */
2262 
2263 	/* the "gadget" abstracts/virtualizes the controller */
2264 	udc->gadget.name = driver_name;		/* gadget name */
2265 
2266 	eps_init(udc);
2267 
2268 	/* VBUS detect: we can disable/enable clock on demand.*/
2269 	if (udc->transceiver)
2270 		udc->clock_gating = 1;
2271 	else if (pdata->vbus) {
2272 		udc->clock_gating = 1;
2273 		retval = devm_request_threaded_irq(&pdev->dev,
2274 				pdata->vbus->irq, NULL,
2275 				mv_udc_vbus_irq, IRQF_ONESHOT, "vbus", udc);
2276 		if (retval) {
2277 			dev_info(&pdev->dev,
2278 				"Can not request irq for VBUS, "
2279 				"disable clock gating\n");
2280 			udc->clock_gating = 0;
2281 		}
2282 
2283 		udc->qwork = create_singlethread_workqueue("mv_udc_queue");
2284 		if (!udc->qwork) {
2285 			dev_err(&pdev->dev, "cannot create workqueue\n");
2286 			retval = -ENOMEM;
2287 			goto err_destroy_dma;
2288 		}
2289 
2290 		INIT_WORK(&udc->vbus_work, mv_udc_vbus_work);
2291 	}
2292 
2293 	/*
2294 	 * When clock gating is supported, we can disable clk and phy.
2295 	 * If not, it means that VBUS detection is not supported, we
2296 	 * have to enable vbus active all the time to let controller work.
2297 	 */
2298 	if (udc->clock_gating)
2299 		mv_udc_disable_internal(udc);
2300 	else
2301 		udc->vbus_active = 1;
2302 
2303 	retval = usb_add_gadget_udc_release(&pdev->dev, &udc->gadget,
2304 			gadget_release);
2305 	if (retval)
2306 		goto err_create_workqueue;
2307 
2308 	platform_set_drvdata(pdev, udc);
2309 	dev_info(&pdev->dev, "successful probe UDC device %s clock gating.\n",
2310 		udc->clock_gating ? "with" : "without");
2311 
2312 	return 0;
2313 
2314 err_create_workqueue:
2315 	if (udc->qwork)
2316 		destroy_workqueue(udc->qwork);
2317 err_destroy_dma:
2318 	dma_pool_destroy(udc->dtd_pool);
2319 err_free_dma:
2320 	dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2321 			udc->ep_dqh, udc->ep_dqh_dma);
2322 err_disable_clock:
2323 	mv_udc_disable_internal(udc);
2324 
2325 	return retval;
2326 }
2327 
2328 #ifdef CONFIG_PM
2329 static int mv_udc_suspend(struct device *dev)
2330 {
2331 	struct mv_udc *udc;
2332 
2333 	udc = dev_get_drvdata(dev);
2334 
2335 	/* if OTG is enabled, the following will be done in OTG driver*/
2336 	if (udc->transceiver)
2337 		return 0;
2338 
2339 	if (udc->pdata->vbus && udc->pdata->vbus->poll)
2340 		if (udc->pdata->vbus->poll() == VBUS_HIGH) {
2341 			dev_info(&udc->dev->dev, "USB cable is connected!\n");
2342 			return -EAGAIN;
2343 		}
2344 
2345 	/*
2346 	 * only cable is unplugged, udc can suspend.
2347 	 * So do not care about clock_gating == 1.
2348 	 */
2349 	if (!udc->clock_gating) {
2350 		udc_stop(udc);
2351 
2352 		spin_lock_irq(&udc->lock);
2353 		/* stop all usb activities */
2354 		stop_activity(udc, udc->driver);
2355 		spin_unlock_irq(&udc->lock);
2356 
2357 		mv_udc_disable_internal(udc);
2358 	}
2359 
2360 	return 0;
2361 }
2362 
2363 static int mv_udc_resume(struct device *dev)
2364 {
2365 	struct mv_udc *udc;
2366 	int retval;
2367 
2368 	udc = dev_get_drvdata(dev);
2369 
2370 	/* if OTG is enabled, the following will be done in OTG driver*/
2371 	if (udc->transceiver)
2372 		return 0;
2373 
2374 	if (!udc->clock_gating) {
2375 		retval = mv_udc_enable_internal(udc);
2376 		if (retval)
2377 			return retval;
2378 
2379 		if (udc->driver && udc->softconnect) {
2380 			udc_reset(udc);
2381 			ep0_reset(udc);
2382 			udc_start(udc);
2383 		}
2384 	}
2385 
2386 	return 0;
2387 }
2388 
2389 static const struct dev_pm_ops mv_udc_pm_ops = {
2390 	.suspend	= mv_udc_suspend,
2391 	.resume		= mv_udc_resume,
2392 };
2393 #endif
2394 
2395 static void mv_udc_shutdown(struct platform_device *pdev)
2396 {
2397 	struct mv_udc *udc;
2398 	u32 mode;
2399 
2400 	udc = platform_get_drvdata(pdev);
2401 	/* reset controller mode to IDLE */
2402 	mv_udc_enable(udc);
2403 	mode = readl(&udc->op_regs->usbmode);
2404 	mode &= ~3;
2405 	writel(mode, &udc->op_regs->usbmode);
2406 	mv_udc_disable(udc);
2407 }
2408 
2409 static struct platform_driver udc_driver = {
2410 	.probe		= mv_udc_probe,
2411 	.remove		= mv_udc_remove,
2412 	.shutdown	= mv_udc_shutdown,
2413 	.driver		= {
2414 		.name	= "mv-udc",
2415 #ifdef CONFIG_PM
2416 		.pm	= &mv_udc_pm_ops,
2417 #endif
2418 	},
2419 };
2420 
2421 module_platform_driver(udc_driver);
2422 MODULE_ALIAS("platform:mv-udc");
2423 MODULE_DESCRIPTION(DRIVER_DESC);
2424 MODULE_AUTHOR("Chao Xie <chao.xie@marvell.com>");
2425 MODULE_LICENSE("GPL");
2426