1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2011 Marvell International Ltd. All rights reserved.
4  * Author: Chao Xie <chao.xie@marvell.com>
5  *	   Neil Zhang <zhangwm@marvell.com>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmapool.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/ioport.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/errno.h>
18 #include <linux/err.h>
19 #include <linux/timer.h>
20 #include <linux/list.h>
21 #include <linux/interrupt.h>
22 #include <linux/moduleparam.h>
23 #include <linux/device.h>
24 #include <linux/usb/ch9.h>
25 #include <linux/usb/gadget.h>
26 #include <linux/usb/otg.h>
27 #include <linux/pm.h>
28 #include <linux/io.h>
29 #include <linux/irq.h>
30 #include <linux/platform_device.h>
31 #include <linux/clk.h>
32 #include <linux/platform_data/mv_usb.h>
33 #include <asm/unaligned.h>
34 
35 #include "mv_udc.h"
36 
37 #define DRIVER_DESC		"Marvell PXA USB Device Controller driver"
38 
39 #define ep_dir(ep)	(((ep)->ep_num == 0) ? \
40 				((ep)->udc->ep0_dir) : ((ep)->direction))
41 
42 /* timeout value -- usec */
43 #define RESET_TIMEOUT		10000
44 #define FLUSH_TIMEOUT		10000
45 #define EPSTATUS_TIMEOUT	10000
46 #define PRIME_TIMEOUT		10000
47 #define READSAFE_TIMEOUT	1000
48 
49 #define LOOPS_USEC_SHIFT	1
50 #define LOOPS_USEC		(1 << LOOPS_USEC_SHIFT)
51 #define LOOPS(timeout)		((timeout) >> LOOPS_USEC_SHIFT)
52 
53 static DECLARE_COMPLETION(release_done);
54 
55 static const char driver_name[] = "mv_udc";
56 static const char driver_desc[] = DRIVER_DESC;
57 
58 static void nuke(struct mv_ep *ep, int status);
59 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver);
60 
61 /* for endpoint 0 operations */
62 static const struct usb_endpoint_descriptor mv_ep0_desc = {
63 	.bLength =		USB_DT_ENDPOINT_SIZE,
64 	.bDescriptorType =	USB_DT_ENDPOINT,
65 	.bEndpointAddress =	0,
66 	.bmAttributes =		USB_ENDPOINT_XFER_CONTROL,
67 	.wMaxPacketSize =	EP0_MAX_PKT_SIZE,
68 };
69 
70 static void ep0_reset(struct mv_udc *udc)
71 {
72 	struct mv_ep *ep;
73 	u32 epctrlx;
74 	int i = 0;
75 
76 	/* ep0 in and out */
77 	for (i = 0; i < 2; i++) {
78 		ep = &udc->eps[i];
79 		ep->udc = udc;
80 
81 		/* ep0 dQH */
82 		ep->dqh = &udc->ep_dqh[i];
83 
84 		/* configure ep0 endpoint capabilities in dQH */
85 		ep->dqh->max_packet_length =
86 			(EP0_MAX_PKT_SIZE << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
87 			| EP_QUEUE_HEAD_IOS;
88 
89 		ep->dqh->next_dtd_ptr = EP_QUEUE_HEAD_NEXT_TERMINATE;
90 
91 		epctrlx = readl(&udc->op_regs->epctrlx[0]);
92 		if (i) {	/* TX */
93 			epctrlx |= EPCTRL_TX_ENABLE
94 				| (USB_ENDPOINT_XFER_CONTROL
95 					<< EPCTRL_TX_EP_TYPE_SHIFT);
96 
97 		} else {	/* RX */
98 			epctrlx |= EPCTRL_RX_ENABLE
99 				| (USB_ENDPOINT_XFER_CONTROL
100 					<< EPCTRL_RX_EP_TYPE_SHIFT);
101 		}
102 
103 		writel(epctrlx, &udc->op_regs->epctrlx[0]);
104 	}
105 }
106 
107 /* protocol ep0 stall, will automatically be cleared on new transaction */
108 static void ep0_stall(struct mv_udc *udc)
109 {
110 	u32	epctrlx;
111 
112 	/* set TX and RX to stall */
113 	epctrlx = readl(&udc->op_regs->epctrlx[0]);
114 	epctrlx |= EPCTRL_RX_EP_STALL | EPCTRL_TX_EP_STALL;
115 	writel(epctrlx, &udc->op_regs->epctrlx[0]);
116 
117 	/* update ep0 state */
118 	udc->ep0_state = WAIT_FOR_SETUP;
119 	udc->ep0_dir = EP_DIR_OUT;
120 }
121 
122 static int process_ep_req(struct mv_udc *udc, int index,
123 	struct mv_req *curr_req)
124 {
125 	struct mv_dtd	*curr_dtd;
126 	struct mv_dqh	*curr_dqh;
127 	int actual, remaining_length;
128 	int i, direction;
129 	int retval = 0;
130 	u32 errors;
131 	u32 bit_pos;
132 
133 	curr_dqh = &udc->ep_dqh[index];
134 	direction = index % 2;
135 
136 	curr_dtd = curr_req->head;
137 	actual = curr_req->req.length;
138 
139 	for (i = 0; i < curr_req->dtd_count; i++) {
140 		if (curr_dtd->size_ioc_sts & DTD_STATUS_ACTIVE) {
141 			dev_dbg(&udc->dev->dev, "%s, dTD not completed\n",
142 				udc->eps[index].name);
143 			return 1;
144 		}
145 
146 		errors = curr_dtd->size_ioc_sts & DTD_ERROR_MASK;
147 		if (!errors) {
148 			remaining_length =
149 				(curr_dtd->size_ioc_sts	& DTD_PACKET_SIZE)
150 					>> DTD_LENGTH_BIT_POS;
151 			actual -= remaining_length;
152 
153 			if (remaining_length) {
154 				if (direction) {
155 					dev_dbg(&udc->dev->dev,
156 						"TX dTD remains data\n");
157 					retval = -EPROTO;
158 					break;
159 				} else
160 					break;
161 			}
162 		} else {
163 			dev_info(&udc->dev->dev,
164 				"complete_tr error: ep=%d %s: error = 0x%x\n",
165 				index >> 1, direction ? "SEND" : "RECV",
166 				errors);
167 			if (errors & DTD_STATUS_HALTED) {
168 				/* Clear the errors and Halt condition */
169 				curr_dqh->size_ioc_int_sts &= ~errors;
170 				retval = -EPIPE;
171 			} else if (errors & DTD_STATUS_DATA_BUFF_ERR) {
172 				retval = -EPROTO;
173 			} else if (errors & DTD_STATUS_TRANSACTION_ERR) {
174 				retval = -EILSEQ;
175 			}
176 		}
177 		if (i != curr_req->dtd_count - 1)
178 			curr_dtd = (struct mv_dtd *)curr_dtd->next_dtd_virt;
179 	}
180 	if (retval)
181 		return retval;
182 
183 	if (direction == EP_DIR_OUT)
184 		bit_pos = 1 << curr_req->ep->ep_num;
185 	else
186 		bit_pos = 1 << (16 + curr_req->ep->ep_num);
187 
188 	while (curr_dqh->curr_dtd_ptr == curr_dtd->td_dma) {
189 		if (curr_dtd->dtd_next == EP_QUEUE_HEAD_NEXT_TERMINATE) {
190 			while (readl(&udc->op_regs->epstatus) & bit_pos)
191 				udelay(1);
192 			break;
193 		}
194 		udelay(1);
195 	}
196 
197 	curr_req->req.actual = actual;
198 
199 	return 0;
200 }
201 
202 /*
203  * done() - retire a request; caller blocked irqs
204  * @status : request status to be set, only works when
205  * request is still in progress.
206  */
207 static void done(struct mv_ep *ep, struct mv_req *req, int status)
208 	__releases(&ep->udc->lock)
209 	__acquires(&ep->udc->lock)
210 {
211 	struct mv_udc *udc = NULL;
212 	unsigned char stopped = ep->stopped;
213 	struct mv_dtd *curr_td, *next_td;
214 	int j;
215 
216 	udc = (struct mv_udc *)ep->udc;
217 	/* Removed the req from fsl_ep->queue */
218 	list_del_init(&req->queue);
219 
220 	/* req.status should be set as -EINPROGRESS in ep_queue() */
221 	if (req->req.status == -EINPROGRESS)
222 		req->req.status = status;
223 	else
224 		status = req->req.status;
225 
226 	/* Free dtd for the request */
227 	next_td = req->head;
228 	for (j = 0; j < req->dtd_count; j++) {
229 		curr_td = next_td;
230 		if (j != req->dtd_count - 1)
231 			next_td = curr_td->next_dtd_virt;
232 		dma_pool_free(udc->dtd_pool, curr_td, curr_td->td_dma);
233 	}
234 
235 	usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
236 
237 	if (status && (status != -ESHUTDOWN))
238 		dev_info(&udc->dev->dev, "complete %s req %p stat %d len %u/%u",
239 			ep->ep.name, &req->req, status,
240 			req->req.actual, req->req.length);
241 
242 	ep->stopped = 1;
243 
244 	spin_unlock(&ep->udc->lock);
245 
246 	usb_gadget_giveback_request(&ep->ep, &req->req);
247 
248 	spin_lock(&ep->udc->lock);
249 	ep->stopped = stopped;
250 }
251 
252 static int queue_dtd(struct mv_ep *ep, struct mv_req *req)
253 {
254 	struct mv_udc *udc;
255 	struct mv_dqh *dqh;
256 	u32 bit_pos, direction;
257 	u32 usbcmd, epstatus;
258 	unsigned int loops;
259 	int retval = 0;
260 
261 	udc = ep->udc;
262 	direction = ep_dir(ep);
263 	dqh = &(udc->ep_dqh[ep->ep_num * 2 + direction]);
264 	bit_pos = 1 << (((direction == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
265 
266 	/* check if the pipe is empty */
267 	if (!(list_empty(&ep->queue))) {
268 		struct mv_req *lastreq;
269 		lastreq = list_entry(ep->queue.prev, struct mv_req, queue);
270 		lastreq->tail->dtd_next =
271 			req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
272 
273 		wmb();
274 
275 		if (readl(&udc->op_regs->epprime) & bit_pos)
276 			goto done;
277 
278 		loops = LOOPS(READSAFE_TIMEOUT);
279 		while (1) {
280 			/* start with setting the semaphores */
281 			usbcmd = readl(&udc->op_regs->usbcmd);
282 			usbcmd |= USBCMD_ATDTW_TRIPWIRE_SET;
283 			writel(usbcmd, &udc->op_regs->usbcmd);
284 
285 			/* read the endpoint status */
286 			epstatus = readl(&udc->op_regs->epstatus) & bit_pos;
287 
288 			/*
289 			 * Reread the ATDTW semaphore bit to check if it is
290 			 * cleared. When hardware see a hazard, it will clear
291 			 * the bit or else we remain set to 1 and we can
292 			 * proceed with priming of endpoint if not already
293 			 * primed.
294 			 */
295 			if (readl(&udc->op_regs->usbcmd)
296 				& USBCMD_ATDTW_TRIPWIRE_SET)
297 				break;
298 
299 			loops--;
300 			if (loops == 0) {
301 				dev_err(&udc->dev->dev,
302 					"Timeout for ATDTW_TRIPWIRE...\n");
303 				retval = -ETIME;
304 				goto done;
305 			}
306 			udelay(LOOPS_USEC);
307 		}
308 
309 		/* Clear the semaphore */
310 		usbcmd = readl(&udc->op_regs->usbcmd);
311 		usbcmd &= USBCMD_ATDTW_TRIPWIRE_CLEAR;
312 		writel(usbcmd, &udc->op_regs->usbcmd);
313 
314 		if (epstatus)
315 			goto done;
316 	}
317 
318 	/* Write dQH next pointer and terminate bit to 0 */
319 	dqh->next_dtd_ptr = req->head->td_dma
320 				& EP_QUEUE_HEAD_NEXT_POINTER_MASK;
321 
322 	/* clear active and halt bit, in case set from a previous error */
323 	dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
324 
325 	/* Ensure that updates to the QH will occur before priming. */
326 	wmb();
327 
328 	/* Prime the Endpoint */
329 	writel(bit_pos, &udc->op_regs->epprime);
330 
331 done:
332 	return retval;
333 }
334 
335 static struct mv_dtd *build_dtd(struct mv_req *req, unsigned *length,
336 		dma_addr_t *dma, int *is_last)
337 {
338 	struct mv_dtd *dtd;
339 	struct mv_udc *udc;
340 	struct mv_dqh *dqh;
341 	u32 temp, mult = 0;
342 
343 	/* how big will this transfer be? */
344 	if (usb_endpoint_xfer_isoc(req->ep->ep.desc)) {
345 		dqh = req->ep->dqh;
346 		mult = (dqh->max_packet_length >> EP_QUEUE_HEAD_MULT_POS)
347 				& 0x3;
348 		*length = min(req->req.length - req->req.actual,
349 				(unsigned)(mult * req->ep->ep.maxpacket));
350 	} else
351 		*length = min(req->req.length - req->req.actual,
352 				(unsigned)EP_MAX_LENGTH_TRANSFER);
353 
354 	udc = req->ep->udc;
355 
356 	/*
357 	 * Be careful that no _GFP_HIGHMEM is set,
358 	 * or we can not use dma_to_virt
359 	 */
360 	dtd = dma_pool_alloc(udc->dtd_pool, GFP_ATOMIC, dma);
361 	if (dtd == NULL)
362 		return dtd;
363 
364 	dtd->td_dma = *dma;
365 	/* initialize buffer page pointers */
366 	temp = (u32)(req->req.dma + req->req.actual);
367 	dtd->buff_ptr0 = cpu_to_le32(temp);
368 	temp &= ~0xFFF;
369 	dtd->buff_ptr1 = cpu_to_le32(temp + 0x1000);
370 	dtd->buff_ptr2 = cpu_to_le32(temp + 0x2000);
371 	dtd->buff_ptr3 = cpu_to_le32(temp + 0x3000);
372 	dtd->buff_ptr4 = cpu_to_le32(temp + 0x4000);
373 
374 	req->req.actual += *length;
375 
376 	/* zlp is needed if req->req.zero is set */
377 	if (req->req.zero) {
378 		if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
379 			*is_last = 1;
380 		else
381 			*is_last = 0;
382 	} else if (req->req.length == req->req.actual)
383 		*is_last = 1;
384 	else
385 		*is_last = 0;
386 
387 	/* Fill in the transfer size; set active bit */
388 	temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
389 
390 	/* Enable interrupt for the last dtd of a request */
391 	if (*is_last && !req->req.no_interrupt)
392 		temp |= DTD_IOC;
393 
394 	temp |= mult << 10;
395 
396 	dtd->size_ioc_sts = temp;
397 
398 	mb();
399 
400 	return dtd;
401 }
402 
403 /* generate dTD linked list for a request */
404 static int req_to_dtd(struct mv_req *req)
405 {
406 	unsigned count;
407 	int is_last, is_first = 1;
408 	struct mv_dtd *dtd, *last_dtd = NULL;
409 	dma_addr_t dma;
410 
411 	do {
412 		dtd = build_dtd(req, &count, &dma, &is_last);
413 		if (dtd == NULL)
414 			return -ENOMEM;
415 
416 		if (is_first) {
417 			is_first = 0;
418 			req->head = dtd;
419 		} else {
420 			last_dtd->dtd_next = dma;
421 			last_dtd->next_dtd_virt = dtd;
422 		}
423 		last_dtd = dtd;
424 		req->dtd_count++;
425 	} while (!is_last);
426 
427 	/* set terminate bit to 1 for the last dTD */
428 	dtd->dtd_next = DTD_NEXT_TERMINATE;
429 
430 	req->tail = dtd;
431 
432 	return 0;
433 }
434 
435 static int mv_ep_enable(struct usb_ep *_ep,
436 		const struct usb_endpoint_descriptor *desc)
437 {
438 	struct mv_udc *udc;
439 	struct mv_ep *ep;
440 	struct mv_dqh *dqh;
441 	u16 max = 0;
442 	u32 bit_pos, epctrlx, direction;
443 	const unsigned char zlt = 1;
444 	unsigned char ios, mult;
445 	unsigned long flags;
446 
447 	ep = container_of(_ep, struct mv_ep, ep);
448 	udc = ep->udc;
449 
450 	if (!_ep || !desc
451 			|| desc->bDescriptorType != USB_DT_ENDPOINT)
452 		return -EINVAL;
453 
454 	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
455 		return -ESHUTDOWN;
456 
457 	direction = ep_dir(ep);
458 	max = usb_endpoint_maxp(desc);
459 
460 	/*
461 	 * disable HW zero length termination select
462 	 * driver handles zero length packet through req->req.zero
463 	 */
464 	bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
465 
466 	/* Check if the Endpoint is Primed */
467 	if ((readl(&udc->op_regs->epprime) & bit_pos)
468 		|| (readl(&udc->op_regs->epstatus) & bit_pos)) {
469 		dev_info(&udc->dev->dev,
470 			"ep=%d %s: Init ERROR: ENDPTPRIME=0x%x,"
471 			" ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
472 			(unsigned)ep->ep_num, direction ? "SEND" : "RECV",
473 			(unsigned)readl(&udc->op_regs->epprime),
474 			(unsigned)readl(&udc->op_regs->epstatus),
475 			(unsigned)bit_pos);
476 		goto en_done;
477 	}
478 
479 	/* Set the max packet length, interrupt on Setup and Mult fields */
480 	ios = 0;
481 	mult = 0;
482 	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
483 	case USB_ENDPOINT_XFER_BULK:
484 	case USB_ENDPOINT_XFER_INT:
485 		break;
486 	case USB_ENDPOINT_XFER_CONTROL:
487 		ios = 1;
488 		break;
489 	case USB_ENDPOINT_XFER_ISOC:
490 		/* Calculate transactions needed for high bandwidth iso */
491 		mult = usb_endpoint_maxp_mult(desc);
492 		/* 3 transactions at most */
493 		if (mult > 3)
494 			goto en_done;
495 		break;
496 	default:
497 		goto en_done;
498 	}
499 
500 	spin_lock_irqsave(&udc->lock, flags);
501 	/* Get the endpoint queue head address */
502 	dqh = ep->dqh;
503 	dqh->max_packet_length = (max << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
504 		| (mult << EP_QUEUE_HEAD_MULT_POS)
505 		| (zlt ? EP_QUEUE_HEAD_ZLT_SEL : 0)
506 		| (ios ? EP_QUEUE_HEAD_IOS : 0);
507 	dqh->next_dtd_ptr = 1;
508 	dqh->size_ioc_int_sts = 0;
509 
510 	ep->ep.maxpacket = max;
511 	ep->ep.desc = desc;
512 	ep->stopped = 0;
513 
514 	/* Enable the endpoint for Rx or Tx and set the endpoint type */
515 	epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
516 	if (direction == EP_DIR_IN) {
517 		epctrlx &= ~EPCTRL_TX_ALL_MASK;
518 		epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
519 			| ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
520 				<< EPCTRL_TX_EP_TYPE_SHIFT);
521 	} else {
522 		epctrlx &= ~EPCTRL_RX_ALL_MASK;
523 		epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
524 			| ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
525 				<< EPCTRL_RX_EP_TYPE_SHIFT);
526 	}
527 	writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
528 
529 	/*
530 	 * Implement Guideline (GL# USB-7) The unused endpoint type must
531 	 * be programmed to bulk.
532 	 */
533 	epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
534 	if ((epctrlx & EPCTRL_RX_ENABLE) == 0) {
535 		epctrlx |= (USB_ENDPOINT_XFER_BULK
536 				<< EPCTRL_RX_EP_TYPE_SHIFT);
537 		writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
538 	}
539 
540 	epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
541 	if ((epctrlx & EPCTRL_TX_ENABLE) == 0) {
542 		epctrlx |= (USB_ENDPOINT_XFER_BULK
543 				<< EPCTRL_TX_EP_TYPE_SHIFT);
544 		writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
545 	}
546 
547 	spin_unlock_irqrestore(&udc->lock, flags);
548 
549 	return 0;
550 en_done:
551 	return -EINVAL;
552 }
553 
554 static int  mv_ep_disable(struct usb_ep *_ep)
555 {
556 	struct mv_udc *udc;
557 	struct mv_ep *ep;
558 	struct mv_dqh *dqh;
559 	u32 epctrlx, direction;
560 	unsigned long flags;
561 
562 	ep = container_of(_ep, struct mv_ep, ep);
563 	if ((_ep == NULL) || !ep->ep.desc)
564 		return -EINVAL;
565 
566 	udc = ep->udc;
567 
568 	/* Get the endpoint queue head address */
569 	dqh = ep->dqh;
570 
571 	spin_lock_irqsave(&udc->lock, flags);
572 
573 	direction = ep_dir(ep);
574 
575 	/* Reset the max packet length and the interrupt on Setup */
576 	dqh->max_packet_length = 0;
577 
578 	/* Disable the endpoint for Rx or Tx and reset the endpoint type */
579 	epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
580 	epctrlx &= ~((direction == EP_DIR_IN)
581 			? (EPCTRL_TX_ENABLE | EPCTRL_TX_TYPE)
582 			: (EPCTRL_RX_ENABLE | EPCTRL_RX_TYPE));
583 	writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
584 
585 	/* nuke all pending requests (does flush) */
586 	nuke(ep, -ESHUTDOWN);
587 
588 	ep->ep.desc = NULL;
589 	ep->stopped = 1;
590 
591 	spin_unlock_irqrestore(&udc->lock, flags);
592 
593 	return 0;
594 }
595 
596 static struct usb_request *
597 mv_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
598 {
599 	struct mv_req *req = NULL;
600 
601 	req = kzalloc(sizeof *req, gfp_flags);
602 	if (!req)
603 		return NULL;
604 
605 	req->req.dma = DMA_ADDR_INVALID;
606 	INIT_LIST_HEAD(&req->queue);
607 
608 	return &req->req;
609 }
610 
611 static void mv_free_request(struct usb_ep *_ep, struct usb_request *_req)
612 {
613 	struct mv_req *req = NULL;
614 
615 	req = container_of(_req, struct mv_req, req);
616 
617 	if (_req)
618 		kfree(req);
619 }
620 
621 static void mv_ep_fifo_flush(struct usb_ep *_ep)
622 {
623 	struct mv_udc *udc;
624 	u32 bit_pos, direction;
625 	struct mv_ep *ep;
626 	unsigned int loops;
627 
628 	if (!_ep)
629 		return;
630 
631 	ep = container_of(_ep, struct mv_ep, ep);
632 	if (!ep->ep.desc)
633 		return;
634 
635 	udc = ep->udc;
636 	direction = ep_dir(ep);
637 
638 	if (ep->ep_num == 0)
639 		bit_pos = (1 << 16) | 1;
640 	else if (direction == EP_DIR_OUT)
641 		bit_pos = 1 << ep->ep_num;
642 	else
643 		bit_pos = 1 << (16 + ep->ep_num);
644 
645 	loops = LOOPS(EPSTATUS_TIMEOUT);
646 	do {
647 		unsigned int inter_loops;
648 
649 		if (loops == 0) {
650 			dev_err(&udc->dev->dev,
651 				"TIMEOUT for ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
652 				(unsigned)readl(&udc->op_regs->epstatus),
653 				(unsigned)bit_pos);
654 			return;
655 		}
656 		/* Write 1 to the Flush register */
657 		writel(bit_pos, &udc->op_regs->epflush);
658 
659 		/* Wait until flushing completed */
660 		inter_loops = LOOPS(FLUSH_TIMEOUT);
661 		while (readl(&udc->op_regs->epflush)) {
662 			/*
663 			 * ENDPTFLUSH bit should be cleared to indicate this
664 			 * operation is complete
665 			 */
666 			if (inter_loops == 0) {
667 				dev_err(&udc->dev->dev,
668 					"TIMEOUT for ENDPTFLUSH=0x%x,"
669 					"bit_pos=0x%x\n",
670 					(unsigned)readl(&udc->op_regs->epflush),
671 					(unsigned)bit_pos);
672 				return;
673 			}
674 			inter_loops--;
675 			udelay(LOOPS_USEC);
676 		}
677 		loops--;
678 	} while (readl(&udc->op_regs->epstatus) & bit_pos);
679 }
680 
681 /* queues (submits) an I/O request to an endpoint */
682 static int
683 mv_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
684 {
685 	struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
686 	struct mv_req *req = container_of(_req, struct mv_req, req);
687 	struct mv_udc *udc = ep->udc;
688 	unsigned long flags;
689 	int retval;
690 
691 	/* catch various bogus parameters */
692 	if (!_req || !req->req.complete || !req->req.buf
693 			|| !list_empty(&req->queue)) {
694 		dev_err(&udc->dev->dev, "%s, bad params", __func__);
695 		return -EINVAL;
696 	}
697 	if (unlikely(!_ep || !ep->ep.desc)) {
698 		dev_err(&udc->dev->dev, "%s, bad ep", __func__);
699 		return -EINVAL;
700 	}
701 
702 	udc = ep->udc;
703 	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
704 		return -ESHUTDOWN;
705 
706 	req->ep = ep;
707 
708 	/* map virtual address to hardware */
709 	retval = usb_gadget_map_request(&udc->gadget, _req, ep_dir(ep));
710 	if (retval)
711 		return retval;
712 
713 	req->req.status = -EINPROGRESS;
714 	req->req.actual = 0;
715 	req->dtd_count = 0;
716 
717 	spin_lock_irqsave(&udc->lock, flags);
718 
719 	/* build dtds and push them to device queue */
720 	if (!req_to_dtd(req)) {
721 		retval = queue_dtd(ep, req);
722 		if (retval) {
723 			spin_unlock_irqrestore(&udc->lock, flags);
724 			dev_err(&udc->dev->dev, "Failed to queue dtd\n");
725 			goto err_unmap_dma;
726 		}
727 	} else {
728 		spin_unlock_irqrestore(&udc->lock, flags);
729 		dev_err(&udc->dev->dev, "Failed to dma_pool_alloc\n");
730 		retval = -ENOMEM;
731 		goto err_unmap_dma;
732 	}
733 
734 	/* Update ep0 state */
735 	if (ep->ep_num == 0)
736 		udc->ep0_state = DATA_STATE_XMIT;
737 
738 	/* irq handler advances the queue */
739 	list_add_tail(&req->queue, &ep->queue);
740 	spin_unlock_irqrestore(&udc->lock, flags);
741 
742 	return 0;
743 
744 err_unmap_dma:
745 	usb_gadget_unmap_request(&udc->gadget, _req, ep_dir(ep));
746 
747 	return retval;
748 }
749 
750 static void mv_prime_ep(struct mv_ep *ep, struct mv_req *req)
751 {
752 	struct mv_dqh *dqh = ep->dqh;
753 	u32 bit_pos;
754 
755 	/* Write dQH next pointer and terminate bit to 0 */
756 	dqh->next_dtd_ptr = req->head->td_dma
757 		& EP_QUEUE_HEAD_NEXT_POINTER_MASK;
758 
759 	/* clear active and halt bit, in case set from a previous error */
760 	dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
761 
762 	/* Ensure that updates to the QH will occure before priming. */
763 	wmb();
764 
765 	bit_pos = 1 << (((ep_dir(ep) == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
766 
767 	/* Prime the Endpoint */
768 	writel(bit_pos, &ep->udc->op_regs->epprime);
769 }
770 
771 /* dequeues (cancels, unlinks) an I/O request from an endpoint */
772 static int mv_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
773 {
774 	struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
775 	struct mv_req *req;
776 	struct mv_udc *udc = ep->udc;
777 	unsigned long flags;
778 	int stopped, ret = 0;
779 	u32 epctrlx;
780 
781 	if (!_ep || !_req)
782 		return -EINVAL;
783 
784 	spin_lock_irqsave(&ep->udc->lock, flags);
785 	stopped = ep->stopped;
786 
787 	/* Stop the ep before we deal with the queue */
788 	ep->stopped = 1;
789 	epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
790 	if (ep_dir(ep) == EP_DIR_IN)
791 		epctrlx &= ~EPCTRL_TX_ENABLE;
792 	else
793 		epctrlx &= ~EPCTRL_RX_ENABLE;
794 	writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
795 
796 	/* make sure it's actually queued on this endpoint */
797 	list_for_each_entry(req, &ep->queue, queue) {
798 		if (&req->req == _req)
799 			break;
800 	}
801 	if (&req->req != _req) {
802 		ret = -EINVAL;
803 		goto out;
804 	}
805 
806 	/* The request is in progress, or completed but not dequeued */
807 	if (ep->queue.next == &req->queue) {
808 		_req->status = -ECONNRESET;
809 		mv_ep_fifo_flush(_ep);	/* flush current transfer */
810 
811 		/* The request isn't the last request in this ep queue */
812 		if (req->queue.next != &ep->queue) {
813 			struct mv_req *next_req;
814 
815 			next_req = list_entry(req->queue.next,
816 				struct mv_req, queue);
817 
818 			/* Point the QH to the first TD of next request */
819 			mv_prime_ep(ep, next_req);
820 		} else {
821 			struct mv_dqh *qh;
822 
823 			qh = ep->dqh;
824 			qh->next_dtd_ptr = 1;
825 			qh->size_ioc_int_sts = 0;
826 		}
827 
828 		/* The request hasn't been processed, patch up the TD chain */
829 	} else {
830 		struct mv_req *prev_req;
831 
832 		prev_req = list_entry(req->queue.prev, struct mv_req, queue);
833 		writel(readl(&req->tail->dtd_next),
834 				&prev_req->tail->dtd_next);
835 
836 	}
837 
838 	done(ep, req, -ECONNRESET);
839 
840 	/* Enable EP */
841 out:
842 	epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
843 	if (ep_dir(ep) == EP_DIR_IN)
844 		epctrlx |= EPCTRL_TX_ENABLE;
845 	else
846 		epctrlx |= EPCTRL_RX_ENABLE;
847 	writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
848 	ep->stopped = stopped;
849 
850 	spin_unlock_irqrestore(&ep->udc->lock, flags);
851 	return ret;
852 }
853 
854 static void ep_set_stall(struct mv_udc *udc, u8 ep_num, u8 direction, int stall)
855 {
856 	u32 epctrlx;
857 
858 	epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
859 
860 	if (stall) {
861 		if (direction == EP_DIR_IN)
862 			epctrlx |= EPCTRL_TX_EP_STALL;
863 		else
864 			epctrlx |= EPCTRL_RX_EP_STALL;
865 	} else {
866 		if (direction == EP_DIR_IN) {
867 			epctrlx &= ~EPCTRL_TX_EP_STALL;
868 			epctrlx |= EPCTRL_TX_DATA_TOGGLE_RST;
869 		} else {
870 			epctrlx &= ~EPCTRL_RX_EP_STALL;
871 			epctrlx |= EPCTRL_RX_DATA_TOGGLE_RST;
872 		}
873 	}
874 	writel(epctrlx, &udc->op_regs->epctrlx[ep_num]);
875 }
876 
877 static int ep_is_stall(struct mv_udc *udc, u8 ep_num, u8 direction)
878 {
879 	u32 epctrlx;
880 
881 	epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
882 
883 	if (direction == EP_DIR_OUT)
884 		return (epctrlx & EPCTRL_RX_EP_STALL) ? 1 : 0;
885 	else
886 		return (epctrlx & EPCTRL_TX_EP_STALL) ? 1 : 0;
887 }
888 
889 static int mv_ep_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
890 {
891 	struct mv_ep *ep;
892 	unsigned long flags = 0;
893 	int status = 0;
894 	struct mv_udc *udc;
895 
896 	ep = container_of(_ep, struct mv_ep, ep);
897 	udc = ep->udc;
898 	if (!_ep || !ep->ep.desc) {
899 		status = -EINVAL;
900 		goto out;
901 	}
902 
903 	if (ep->ep.desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
904 		status = -EOPNOTSUPP;
905 		goto out;
906 	}
907 
908 	/*
909 	 * Attempt to halt IN ep will fail if any transfer requests
910 	 * are still queue
911 	 */
912 	if (halt && (ep_dir(ep) == EP_DIR_IN) && !list_empty(&ep->queue)) {
913 		status = -EAGAIN;
914 		goto out;
915 	}
916 
917 	spin_lock_irqsave(&ep->udc->lock, flags);
918 	ep_set_stall(udc, ep->ep_num, ep_dir(ep), halt);
919 	if (halt && wedge)
920 		ep->wedge = 1;
921 	else if (!halt)
922 		ep->wedge = 0;
923 	spin_unlock_irqrestore(&ep->udc->lock, flags);
924 
925 	if (ep->ep_num == 0) {
926 		udc->ep0_state = WAIT_FOR_SETUP;
927 		udc->ep0_dir = EP_DIR_OUT;
928 	}
929 out:
930 	return status;
931 }
932 
933 static int mv_ep_set_halt(struct usb_ep *_ep, int halt)
934 {
935 	return mv_ep_set_halt_wedge(_ep, halt, 0);
936 }
937 
938 static int mv_ep_set_wedge(struct usb_ep *_ep)
939 {
940 	return mv_ep_set_halt_wedge(_ep, 1, 1);
941 }
942 
943 static const struct usb_ep_ops mv_ep_ops = {
944 	.enable		= mv_ep_enable,
945 	.disable	= mv_ep_disable,
946 
947 	.alloc_request	= mv_alloc_request,
948 	.free_request	= mv_free_request,
949 
950 	.queue		= mv_ep_queue,
951 	.dequeue	= mv_ep_dequeue,
952 
953 	.set_wedge	= mv_ep_set_wedge,
954 	.set_halt	= mv_ep_set_halt,
955 	.fifo_flush	= mv_ep_fifo_flush,	/* flush fifo */
956 };
957 
958 static int udc_clock_enable(struct mv_udc *udc)
959 {
960 	return clk_prepare_enable(udc->clk);
961 }
962 
963 static void udc_clock_disable(struct mv_udc *udc)
964 {
965 	clk_disable_unprepare(udc->clk);
966 }
967 
968 static void udc_stop(struct mv_udc *udc)
969 {
970 	u32 tmp;
971 
972 	/* Disable interrupts */
973 	tmp = readl(&udc->op_regs->usbintr);
974 	tmp &= ~(USBINTR_INT_EN | USBINTR_ERR_INT_EN |
975 		USBINTR_PORT_CHANGE_DETECT_EN | USBINTR_RESET_EN);
976 	writel(tmp, &udc->op_regs->usbintr);
977 
978 	udc->stopped = 1;
979 
980 	/* Reset the Run the bit in the command register to stop VUSB */
981 	tmp = readl(&udc->op_regs->usbcmd);
982 	tmp &= ~USBCMD_RUN_STOP;
983 	writel(tmp, &udc->op_regs->usbcmd);
984 }
985 
986 static void udc_start(struct mv_udc *udc)
987 {
988 	u32 usbintr;
989 
990 	usbintr = USBINTR_INT_EN | USBINTR_ERR_INT_EN
991 		| USBINTR_PORT_CHANGE_DETECT_EN
992 		| USBINTR_RESET_EN | USBINTR_DEVICE_SUSPEND;
993 	/* Enable interrupts */
994 	writel(usbintr, &udc->op_regs->usbintr);
995 
996 	udc->stopped = 0;
997 
998 	/* Set the Run bit in the command register */
999 	writel(USBCMD_RUN_STOP, &udc->op_regs->usbcmd);
1000 }
1001 
1002 static int udc_reset(struct mv_udc *udc)
1003 {
1004 	unsigned int loops;
1005 	u32 tmp, portsc;
1006 
1007 	/* Stop the controller */
1008 	tmp = readl(&udc->op_regs->usbcmd);
1009 	tmp &= ~USBCMD_RUN_STOP;
1010 	writel(tmp, &udc->op_regs->usbcmd);
1011 
1012 	/* Reset the controller to get default values */
1013 	writel(USBCMD_CTRL_RESET, &udc->op_regs->usbcmd);
1014 
1015 	/* wait for reset to complete */
1016 	loops = LOOPS(RESET_TIMEOUT);
1017 	while (readl(&udc->op_regs->usbcmd) & USBCMD_CTRL_RESET) {
1018 		if (loops == 0) {
1019 			dev_err(&udc->dev->dev,
1020 				"Wait for RESET completed TIMEOUT\n");
1021 			return -ETIMEDOUT;
1022 		}
1023 		loops--;
1024 		udelay(LOOPS_USEC);
1025 	}
1026 
1027 	/* set controller to device mode */
1028 	tmp = readl(&udc->op_regs->usbmode);
1029 	tmp |= USBMODE_CTRL_MODE_DEVICE;
1030 
1031 	/* turn setup lockout off, require setup tripwire in usbcmd */
1032 	tmp |= USBMODE_SETUP_LOCK_OFF;
1033 
1034 	writel(tmp, &udc->op_regs->usbmode);
1035 
1036 	writel(0x0, &udc->op_regs->epsetupstat);
1037 
1038 	/* Configure the Endpoint List Address */
1039 	writel(udc->ep_dqh_dma & USB_EP_LIST_ADDRESS_MASK,
1040 		&udc->op_regs->eplistaddr);
1041 
1042 	portsc = readl(&udc->op_regs->portsc[0]);
1043 	if (readl(&udc->cap_regs->hcsparams) & HCSPARAMS_PPC)
1044 		portsc &= (~PORTSCX_W1C_BITS | ~PORTSCX_PORT_POWER);
1045 
1046 	if (udc->force_fs)
1047 		portsc |= PORTSCX_FORCE_FULL_SPEED_CONNECT;
1048 	else
1049 		portsc &= (~PORTSCX_FORCE_FULL_SPEED_CONNECT);
1050 
1051 	writel(portsc, &udc->op_regs->portsc[0]);
1052 
1053 	tmp = readl(&udc->op_regs->epctrlx[0]);
1054 	tmp &= ~(EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL);
1055 	writel(tmp, &udc->op_regs->epctrlx[0]);
1056 
1057 	return 0;
1058 }
1059 
1060 static int mv_udc_enable_internal(struct mv_udc *udc)
1061 {
1062 	int retval;
1063 
1064 	if (udc->active)
1065 		return 0;
1066 
1067 	dev_dbg(&udc->dev->dev, "enable udc\n");
1068 	retval = udc_clock_enable(udc);
1069 	if (retval)
1070 		return retval;
1071 
1072 	if (udc->pdata->phy_init) {
1073 		retval = udc->pdata->phy_init(udc->phy_regs);
1074 		if (retval) {
1075 			dev_err(&udc->dev->dev,
1076 				"init phy error %d\n", retval);
1077 			udc_clock_disable(udc);
1078 			return retval;
1079 		}
1080 	}
1081 	udc->active = 1;
1082 
1083 	return 0;
1084 }
1085 
1086 static int mv_udc_enable(struct mv_udc *udc)
1087 {
1088 	if (udc->clock_gating)
1089 		return mv_udc_enable_internal(udc);
1090 
1091 	return 0;
1092 }
1093 
1094 static void mv_udc_disable_internal(struct mv_udc *udc)
1095 {
1096 	if (udc->active) {
1097 		dev_dbg(&udc->dev->dev, "disable udc\n");
1098 		if (udc->pdata->phy_deinit)
1099 			udc->pdata->phy_deinit(udc->phy_regs);
1100 		udc_clock_disable(udc);
1101 		udc->active = 0;
1102 	}
1103 }
1104 
1105 static void mv_udc_disable(struct mv_udc *udc)
1106 {
1107 	if (udc->clock_gating)
1108 		mv_udc_disable_internal(udc);
1109 }
1110 
1111 static int mv_udc_get_frame(struct usb_gadget *gadget)
1112 {
1113 	struct mv_udc *udc;
1114 	u16	retval;
1115 
1116 	if (!gadget)
1117 		return -ENODEV;
1118 
1119 	udc = container_of(gadget, struct mv_udc, gadget);
1120 
1121 	retval = readl(&udc->op_regs->frindex) & USB_FRINDEX_MASKS;
1122 
1123 	return retval;
1124 }
1125 
1126 /* Tries to wake up the host connected to this gadget */
1127 static int mv_udc_wakeup(struct usb_gadget *gadget)
1128 {
1129 	struct mv_udc *udc = container_of(gadget, struct mv_udc, gadget);
1130 	u32 portsc;
1131 
1132 	/* Remote wakeup feature not enabled by host */
1133 	if (!udc->remote_wakeup)
1134 		return -ENOTSUPP;
1135 
1136 	portsc = readl(&udc->op_regs->portsc);
1137 	/* not suspended? */
1138 	if (!(portsc & PORTSCX_PORT_SUSPEND))
1139 		return 0;
1140 	/* trigger force resume */
1141 	portsc |= PORTSCX_PORT_FORCE_RESUME;
1142 	writel(portsc, &udc->op_regs->portsc[0]);
1143 	return 0;
1144 }
1145 
1146 static int mv_udc_vbus_session(struct usb_gadget *gadget, int is_active)
1147 {
1148 	struct mv_udc *udc;
1149 	unsigned long flags;
1150 	int retval = 0;
1151 
1152 	udc = container_of(gadget, struct mv_udc, gadget);
1153 	spin_lock_irqsave(&udc->lock, flags);
1154 
1155 	udc->vbus_active = (is_active != 0);
1156 
1157 	dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1158 		__func__, udc->softconnect, udc->vbus_active);
1159 
1160 	if (udc->driver && udc->softconnect && udc->vbus_active) {
1161 		retval = mv_udc_enable(udc);
1162 		if (retval == 0) {
1163 			/* Clock is disabled, need re-init registers */
1164 			udc_reset(udc);
1165 			ep0_reset(udc);
1166 			udc_start(udc);
1167 		}
1168 	} else if (udc->driver && udc->softconnect) {
1169 		if (!udc->active)
1170 			goto out;
1171 
1172 		/* stop all the transfer in queue*/
1173 		stop_activity(udc, udc->driver);
1174 		udc_stop(udc);
1175 		mv_udc_disable(udc);
1176 	}
1177 
1178 out:
1179 	spin_unlock_irqrestore(&udc->lock, flags);
1180 	return retval;
1181 }
1182 
1183 static int mv_udc_pullup(struct usb_gadget *gadget, int is_on)
1184 {
1185 	struct mv_udc *udc;
1186 	unsigned long flags;
1187 	int retval = 0;
1188 
1189 	udc = container_of(gadget, struct mv_udc, gadget);
1190 	spin_lock_irqsave(&udc->lock, flags);
1191 
1192 	udc->softconnect = (is_on != 0);
1193 
1194 	dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1195 			__func__, udc->softconnect, udc->vbus_active);
1196 
1197 	if (udc->driver && udc->softconnect && udc->vbus_active) {
1198 		retval = mv_udc_enable(udc);
1199 		if (retval == 0) {
1200 			/* Clock is disabled, need re-init registers */
1201 			udc_reset(udc);
1202 			ep0_reset(udc);
1203 			udc_start(udc);
1204 		}
1205 	} else if (udc->driver && udc->vbus_active) {
1206 		/* stop all the transfer in queue*/
1207 		stop_activity(udc, udc->driver);
1208 		udc_stop(udc);
1209 		mv_udc_disable(udc);
1210 	}
1211 
1212 	spin_unlock_irqrestore(&udc->lock, flags);
1213 	return retval;
1214 }
1215 
1216 static int mv_udc_start(struct usb_gadget *, struct usb_gadget_driver *);
1217 static int mv_udc_stop(struct usb_gadget *);
1218 /* device controller usb_gadget_ops structure */
1219 static const struct usb_gadget_ops mv_ops = {
1220 
1221 	/* returns the current frame number */
1222 	.get_frame	= mv_udc_get_frame,
1223 
1224 	/* tries to wake up the host connected to this gadget */
1225 	.wakeup		= mv_udc_wakeup,
1226 
1227 	/* notify controller that VBUS is powered or not */
1228 	.vbus_session	= mv_udc_vbus_session,
1229 
1230 	/* D+ pullup, software-controlled connect/disconnect to USB host */
1231 	.pullup		= mv_udc_pullup,
1232 	.udc_start	= mv_udc_start,
1233 	.udc_stop	= mv_udc_stop,
1234 };
1235 
1236 static int eps_init(struct mv_udc *udc)
1237 {
1238 	struct mv_ep	*ep;
1239 	char name[14];
1240 	int i;
1241 
1242 	/* initialize ep0 */
1243 	ep = &udc->eps[0];
1244 	ep->udc = udc;
1245 	strncpy(ep->name, "ep0", sizeof(ep->name));
1246 	ep->ep.name = ep->name;
1247 	ep->ep.ops = &mv_ep_ops;
1248 	ep->wedge = 0;
1249 	ep->stopped = 0;
1250 	usb_ep_set_maxpacket_limit(&ep->ep, EP0_MAX_PKT_SIZE);
1251 	ep->ep.caps.type_control = true;
1252 	ep->ep.caps.dir_in = true;
1253 	ep->ep.caps.dir_out = true;
1254 	ep->ep_num = 0;
1255 	ep->ep.desc = &mv_ep0_desc;
1256 	INIT_LIST_HEAD(&ep->queue);
1257 
1258 	ep->ep_type = USB_ENDPOINT_XFER_CONTROL;
1259 
1260 	/* initialize other endpoints */
1261 	for (i = 2; i < udc->max_eps * 2; i++) {
1262 		ep = &udc->eps[i];
1263 		if (i % 2) {
1264 			snprintf(name, sizeof(name), "ep%din", i / 2);
1265 			ep->direction = EP_DIR_IN;
1266 			ep->ep.caps.dir_in = true;
1267 		} else {
1268 			snprintf(name, sizeof(name), "ep%dout", i / 2);
1269 			ep->direction = EP_DIR_OUT;
1270 			ep->ep.caps.dir_out = true;
1271 		}
1272 		ep->udc = udc;
1273 		strncpy(ep->name, name, sizeof(ep->name));
1274 		ep->ep.name = ep->name;
1275 
1276 		ep->ep.caps.type_iso = true;
1277 		ep->ep.caps.type_bulk = true;
1278 		ep->ep.caps.type_int = true;
1279 
1280 		ep->ep.ops = &mv_ep_ops;
1281 		ep->stopped = 0;
1282 		usb_ep_set_maxpacket_limit(&ep->ep, (unsigned short) ~0);
1283 		ep->ep_num = i / 2;
1284 
1285 		INIT_LIST_HEAD(&ep->queue);
1286 		list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1287 
1288 		ep->dqh = &udc->ep_dqh[i];
1289 	}
1290 
1291 	return 0;
1292 }
1293 
1294 /* delete all endpoint requests, called with spinlock held */
1295 static void nuke(struct mv_ep *ep, int status)
1296 {
1297 	/* called with spinlock held */
1298 	ep->stopped = 1;
1299 
1300 	/* endpoint fifo flush */
1301 	mv_ep_fifo_flush(&ep->ep);
1302 
1303 	while (!list_empty(&ep->queue)) {
1304 		struct mv_req *req = NULL;
1305 		req = list_entry(ep->queue.next, struct mv_req, queue);
1306 		done(ep, req, status);
1307 	}
1308 }
1309 
1310 static void gadget_reset(struct mv_udc *udc, struct usb_gadget_driver *driver)
1311 {
1312 	struct mv_ep	*ep;
1313 
1314 	nuke(&udc->eps[0], -ESHUTDOWN);
1315 
1316 	list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1317 		nuke(ep, -ESHUTDOWN);
1318 	}
1319 
1320 	/* report reset; the driver is already quiesced */
1321 	if (driver) {
1322 		spin_unlock(&udc->lock);
1323 		usb_gadget_udc_reset(&udc->gadget, driver);
1324 		spin_lock(&udc->lock);
1325 	}
1326 }
1327 /* stop all USB activities */
1328 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver)
1329 {
1330 	struct mv_ep	*ep;
1331 
1332 	nuke(&udc->eps[0], -ESHUTDOWN);
1333 
1334 	list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1335 		nuke(ep, -ESHUTDOWN);
1336 	}
1337 
1338 	/* report disconnect; the driver is already quiesced */
1339 	if (driver) {
1340 		spin_unlock(&udc->lock);
1341 		driver->disconnect(&udc->gadget);
1342 		spin_lock(&udc->lock);
1343 	}
1344 }
1345 
1346 static int mv_udc_start(struct usb_gadget *gadget,
1347 		struct usb_gadget_driver *driver)
1348 {
1349 	struct mv_udc *udc;
1350 	int retval = 0;
1351 	unsigned long flags;
1352 
1353 	udc = container_of(gadget, struct mv_udc, gadget);
1354 
1355 	if (udc->driver)
1356 		return -EBUSY;
1357 
1358 	spin_lock_irqsave(&udc->lock, flags);
1359 
1360 	/* hook up the driver ... */
1361 	driver->driver.bus = NULL;
1362 	udc->driver = driver;
1363 
1364 	udc->usb_state = USB_STATE_ATTACHED;
1365 	udc->ep0_state = WAIT_FOR_SETUP;
1366 	udc->ep0_dir = EP_DIR_OUT;
1367 
1368 	spin_unlock_irqrestore(&udc->lock, flags);
1369 
1370 	if (udc->transceiver) {
1371 		retval = otg_set_peripheral(udc->transceiver->otg,
1372 					&udc->gadget);
1373 		if (retval) {
1374 			dev_err(&udc->dev->dev,
1375 				"unable to register peripheral to otg\n");
1376 			udc->driver = NULL;
1377 			return retval;
1378 		}
1379 	}
1380 
1381 	/* When boot with cable attached, there will be no vbus irq occurred */
1382 	if (udc->qwork)
1383 		queue_work(udc->qwork, &udc->vbus_work);
1384 
1385 	return 0;
1386 }
1387 
1388 static int mv_udc_stop(struct usb_gadget *gadget)
1389 {
1390 	struct mv_udc *udc;
1391 	unsigned long flags;
1392 
1393 	udc = container_of(gadget, struct mv_udc, gadget);
1394 
1395 	spin_lock_irqsave(&udc->lock, flags);
1396 
1397 	mv_udc_enable(udc);
1398 	udc_stop(udc);
1399 
1400 	/* stop all usb activities */
1401 	udc->gadget.speed = USB_SPEED_UNKNOWN;
1402 	stop_activity(udc, NULL);
1403 	mv_udc_disable(udc);
1404 
1405 	spin_unlock_irqrestore(&udc->lock, flags);
1406 
1407 	/* unbind gadget driver */
1408 	udc->driver = NULL;
1409 
1410 	return 0;
1411 }
1412 
1413 static void mv_set_ptc(struct mv_udc *udc, u32 mode)
1414 {
1415 	u32 portsc;
1416 
1417 	portsc = readl(&udc->op_regs->portsc[0]);
1418 	portsc |= mode << 16;
1419 	writel(portsc, &udc->op_regs->portsc[0]);
1420 }
1421 
1422 static void prime_status_complete(struct usb_ep *ep, struct usb_request *_req)
1423 {
1424 	struct mv_ep *mvep = container_of(ep, struct mv_ep, ep);
1425 	struct mv_req *req = container_of(_req, struct mv_req, req);
1426 	struct mv_udc *udc;
1427 	unsigned long flags;
1428 
1429 	udc = mvep->udc;
1430 
1431 	dev_info(&udc->dev->dev, "switch to test mode %d\n", req->test_mode);
1432 
1433 	spin_lock_irqsave(&udc->lock, flags);
1434 	if (req->test_mode) {
1435 		mv_set_ptc(udc, req->test_mode);
1436 		req->test_mode = 0;
1437 	}
1438 	spin_unlock_irqrestore(&udc->lock, flags);
1439 }
1440 
1441 static int
1442 udc_prime_status(struct mv_udc *udc, u8 direction, u16 status, bool empty)
1443 {
1444 	int retval = 0;
1445 	struct mv_req *req;
1446 	struct mv_ep *ep;
1447 
1448 	ep = &udc->eps[0];
1449 	udc->ep0_dir = direction;
1450 	udc->ep0_state = WAIT_FOR_OUT_STATUS;
1451 
1452 	req = udc->status_req;
1453 
1454 	/* fill in the reqest structure */
1455 	if (empty == false) {
1456 		*((u16 *) req->req.buf) = cpu_to_le16(status);
1457 		req->req.length = 2;
1458 	} else
1459 		req->req.length = 0;
1460 
1461 	req->ep = ep;
1462 	req->req.status = -EINPROGRESS;
1463 	req->req.actual = 0;
1464 	if (udc->test_mode) {
1465 		req->req.complete = prime_status_complete;
1466 		req->test_mode = udc->test_mode;
1467 		udc->test_mode = 0;
1468 	} else
1469 		req->req.complete = NULL;
1470 	req->dtd_count = 0;
1471 
1472 	if (req->req.dma == DMA_ADDR_INVALID) {
1473 		req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
1474 				req->req.buf, req->req.length,
1475 				ep_dir(ep) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1476 		req->mapped = 1;
1477 	}
1478 
1479 	/* prime the data phase */
1480 	if (!req_to_dtd(req)) {
1481 		retval = queue_dtd(ep, req);
1482 		if (retval) {
1483 			dev_err(&udc->dev->dev,
1484 				"Failed to queue dtd when prime status\n");
1485 			goto out;
1486 		}
1487 	} else{	/* no mem */
1488 		retval = -ENOMEM;
1489 		dev_err(&udc->dev->dev,
1490 			"Failed to dma_pool_alloc when prime status\n");
1491 		goto out;
1492 	}
1493 
1494 	list_add_tail(&req->queue, &ep->queue);
1495 
1496 	return 0;
1497 out:
1498 	usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
1499 
1500 	return retval;
1501 }
1502 
1503 static void mv_udc_testmode(struct mv_udc *udc, u16 index)
1504 {
1505 	if (index <= TEST_FORCE_EN) {
1506 		udc->test_mode = index;
1507 		if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1508 			ep0_stall(udc);
1509 	} else
1510 		dev_err(&udc->dev->dev,
1511 			"This test mode(%d) is not supported\n", index);
1512 }
1513 
1514 static void ch9setaddress(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1515 {
1516 	udc->dev_addr = (u8)setup->wValue;
1517 
1518 	/* update usb state */
1519 	udc->usb_state = USB_STATE_ADDRESS;
1520 
1521 	if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1522 		ep0_stall(udc);
1523 }
1524 
1525 static void ch9getstatus(struct mv_udc *udc, u8 ep_num,
1526 	struct usb_ctrlrequest *setup)
1527 {
1528 	u16 status = 0;
1529 	int retval;
1530 
1531 	if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
1532 		!= (USB_DIR_IN | USB_TYPE_STANDARD))
1533 		return;
1534 
1535 	if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1536 		status = 1 << USB_DEVICE_SELF_POWERED;
1537 		status |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
1538 	} else if ((setup->bRequestType & USB_RECIP_MASK)
1539 			== USB_RECIP_INTERFACE) {
1540 		/* get interface status */
1541 		status = 0;
1542 	} else if ((setup->bRequestType & USB_RECIP_MASK)
1543 			== USB_RECIP_ENDPOINT) {
1544 		u8 ep_num, direction;
1545 
1546 		ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1547 		direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1548 				? EP_DIR_IN : EP_DIR_OUT;
1549 		status = ep_is_stall(udc, ep_num, direction)
1550 				<< USB_ENDPOINT_HALT;
1551 	}
1552 
1553 	retval = udc_prime_status(udc, EP_DIR_IN, status, false);
1554 	if (retval)
1555 		ep0_stall(udc);
1556 	else
1557 		udc->ep0_state = DATA_STATE_XMIT;
1558 }
1559 
1560 static void ch9clearfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1561 {
1562 	u8 ep_num;
1563 	u8 direction;
1564 	struct mv_ep *ep;
1565 
1566 	if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1567 		== ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1568 		switch (setup->wValue) {
1569 		case USB_DEVICE_REMOTE_WAKEUP:
1570 			udc->remote_wakeup = 0;
1571 			break;
1572 		default:
1573 			goto out;
1574 		}
1575 	} else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1576 		== ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1577 		switch (setup->wValue) {
1578 		case USB_ENDPOINT_HALT:
1579 			ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1580 			direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1581 				? EP_DIR_IN : EP_DIR_OUT;
1582 			if (setup->wValue != 0 || setup->wLength != 0
1583 				|| ep_num > udc->max_eps)
1584 				goto out;
1585 			ep = &udc->eps[ep_num * 2 + direction];
1586 			if (ep->wedge == 1)
1587 				break;
1588 			spin_unlock(&udc->lock);
1589 			ep_set_stall(udc, ep_num, direction, 0);
1590 			spin_lock(&udc->lock);
1591 			break;
1592 		default:
1593 			goto out;
1594 		}
1595 	} else
1596 		goto out;
1597 
1598 	if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1599 		ep0_stall(udc);
1600 out:
1601 	return;
1602 }
1603 
1604 static void ch9setfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1605 {
1606 	u8 ep_num;
1607 	u8 direction;
1608 
1609 	if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1610 		== ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1611 		switch (setup->wValue) {
1612 		case USB_DEVICE_REMOTE_WAKEUP:
1613 			udc->remote_wakeup = 1;
1614 			break;
1615 		case USB_DEVICE_TEST_MODE:
1616 			if (setup->wIndex & 0xFF
1617 				||  udc->gadget.speed != USB_SPEED_HIGH)
1618 				ep0_stall(udc);
1619 
1620 			if (udc->usb_state != USB_STATE_CONFIGURED
1621 				&& udc->usb_state != USB_STATE_ADDRESS
1622 				&& udc->usb_state != USB_STATE_DEFAULT)
1623 				ep0_stall(udc);
1624 
1625 			mv_udc_testmode(udc, (setup->wIndex >> 8));
1626 			goto out;
1627 		default:
1628 			goto out;
1629 		}
1630 	} else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1631 		== ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1632 		switch (setup->wValue) {
1633 		case USB_ENDPOINT_HALT:
1634 			ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1635 			direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1636 				? EP_DIR_IN : EP_DIR_OUT;
1637 			if (setup->wValue != 0 || setup->wLength != 0
1638 				|| ep_num > udc->max_eps)
1639 				goto out;
1640 			spin_unlock(&udc->lock);
1641 			ep_set_stall(udc, ep_num, direction, 1);
1642 			spin_lock(&udc->lock);
1643 			break;
1644 		default:
1645 			goto out;
1646 		}
1647 	} else
1648 		goto out;
1649 
1650 	if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1651 		ep0_stall(udc);
1652 out:
1653 	return;
1654 }
1655 
1656 static void handle_setup_packet(struct mv_udc *udc, u8 ep_num,
1657 	struct usb_ctrlrequest *setup)
1658 	__releases(&ep->udc->lock)
1659 	__acquires(&ep->udc->lock)
1660 {
1661 	bool delegate = false;
1662 
1663 	nuke(&udc->eps[ep_num * 2 + EP_DIR_OUT], -ESHUTDOWN);
1664 
1665 	dev_dbg(&udc->dev->dev, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1666 			setup->bRequestType, setup->bRequest,
1667 			setup->wValue, setup->wIndex, setup->wLength);
1668 	/* We process some standard setup requests here */
1669 	if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1670 		switch (setup->bRequest) {
1671 		case USB_REQ_GET_STATUS:
1672 			ch9getstatus(udc, ep_num, setup);
1673 			break;
1674 
1675 		case USB_REQ_SET_ADDRESS:
1676 			ch9setaddress(udc, setup);
1677 			break;
1678 
1679 		case USB_REQ_CLEAR_FEATURE:
1680 			ch9clearfeature(udc, setup);
1681 			break;
1682 
1683 		case USB_REQ_SET_FEATURE:
1684 			ch9setfeature(udc, setup);
1685 			break;
1686 
1687 		default:
1688 			delegate = true;
1689 		}
1690 	} else
1691 		delegate = true;
1692 
1693 	/* delegate USB standard requests to the gadget driver */
1694 	if (delegate == true) {
1695 		/* USB requests handled by gadget */
1696 		if (setup->wLength) {
1697 			/* DATA phase from gadget, STATUS phase from udc */
1698 			udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
1699 					?  EP_DIR_IN : EP_DIR_OUT;
1700 			spin_unlock(&udc->lock);
1701 			if (udc->driver->setup(&udc->gadget,
1702 				&udc->local_setup_buff) < 0)
1703 				ep0_stall(udc);
1704 			spin_lock(&udc->lock);
1705 			udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
1706 					?  DATA_STATE_XMIT : DATA_STATE_RECV;
1707 		} else {
1708 			/* no DATA phase, IN STATUS phase from gadget */
1709 			udc->ep0_dir = EP_DIR_IN;
1710 			spin_unlock(&udc->lock);
1711 			if (udc->driver->setup(&udc->gadget,
1712 				&udc->local_setup_buff) < 0)
1713 				ep0_stall(udc);
1714 			spin_lock(&udc->lock);
1715 			udc->ep0_state = WAIT_FOR_OUT_STATUS;
1716 		}
1717 	}
1718 }
1719 
1720 /* complete DATA or STATUS phase of ep0 prime status phase if needed */
1721 static void ep0_req_complete(struct mv_udc *udc,
1722 	struct mv_ep *ep0, struct mv_req *req)
1723 {
1724 	u32 new_addr;
1725 
1726 	if (udc->usb_state == USB_STATE_ADDRESS) {
1727 		/* set the new address */
1728 		new_addr = (u32)udc->dev_addr;
1729 		writel(new_addr << USB_DEVICE_ADDRESS_BIT_SHIFT,
1730 			&udc->op_regs->deviceaddr);
1731 	}
1732 
1733 	done(ep0, req, 0);
1734 
1735 	switch (udc->ep0_state) {
1736 	case DATA_STATE_XMIT:
1737 		/* receive status phase */
1738 		if (udc_prime_status(udc, EP_DIR_OUT, 0, true))
1739 			ep0_stall(udc);
1740 		break;
1741 	case DATA_STATE_RECV:
1742 		/* send status phase */
1743 		if (udc_prime_status(udc, EP_DIR_IN, 0 , true))
1744 			ep0_stall(udc);
1745 		break;
1746 	case WAIT_FOR_OUT_STATUS:
1747 		udc->ep0_state = WAIT_FOR_SETUP;
1748 		break;
1749 	case WAIT_FOR_SETUP:
1750 		dev_err(&udc->dev->dev, "unexpect ep0 packets\n");
1751 		break;
1752 	default:
1753 		ep0_stall(udc);
1754 		break;
1755 	}
1756 }
1757 
1758 static void get_setup_data(struct mv_udc *udc, u8 ep_num, u8 *buffer_ptr)
1759 {
1760 	u32 temp;
1761 	struct mv_dqh *dqh;
1762 
1763 	dqh = &udc->ep_dqh[ep_num * 2 + EP_DIR_OUT];
1764 
1765 	/* Clear bit in ENDPTSETUPSTAT */
1766 	writel((1 << ep_num), &udc->op_regs->epsetupstat);
1767 
1768 	/* while a hazard exists when setup package arrives */
1769 	do {
1770 		/* Set Setup Tripwire */
1771 		temp = readl(&udc->op_regs->usbcmd);
1772 		writel(temp | USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1773 
1774 		/* Copy the setup packet to local buffer */
1775 		memcpy(buffer_ptr, (u8 *) dqh->setup_buffer, 8);
1776 	} while (!(readl(&udc->op_regs->usbcmd) & USBCMD_SETUP_TRIPWIRE_SET));
1777 
1778 	/* Clear Setup Tripwire */
1779 	temp = readl(&udc->op_regs->usbcmd);
1780 	writel(temp & ~USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1781 }
1782 
1783 static void irq_process_tr_complete(struct mv_udc *udc)
1784 {
1785 	u32 tmp, bit_pos;
1786 	int i, ep_num = 0, direction = 0;
1787 	struct mv_ep	*curr_ep;
1788 	struct mv_req *curr_req, *temp_req;
1789 	int status;
1790 
1791 	/*
1792 	 * We use separate loops for ENDPTSETUPSTAT and ENDPTCOMPLETE
1793 	 * because the setup packets are to be read ASAP
1794 	 */
1795 
1796 	/* Process all Setup packet received interrupts */
1797 	tmp = readl(&udc->op_regs->epsetupstat);
1798 
1799 	if (tmp) {
1800 		for (i = 0; i < udc->max_eps; i++) {
1801 			if (tmp & (1 << i)) {
1802 				get_setup_data(udc, i,
1803 					(u8 *)(&udc->local_setup_buff));
1804 				handle_setup_packet(udc, i,
1805 					&udc->local_setup_buff);
1806 			}
1807 		}
1808 	}
1809 
1810 	/* Don't clear the endpoint setup status register here.
1811 	 * It is cleared as a setup packet is read out of the buffer
1812 	 */
1813 
1814 	/* Process non-setup transaction complete interrupts */
1815 	tmp = readl(&udc->op_regs->epcomplete);
1816 
1817 	if (!tmp)
1818 		return;
1819 
1820 	writel(tmp, &udc->op_regs->epcomplete);
1821 
1822 	for (i = 0; i < udc->max_eps * 2; i++) {
1823 		ep_num = i >> 1;
1824 		direction = i % 2;
1825 
1826 		bit_pos = 1 << (ep_num + 16 * direction);
1827 
1828 		if (!(bit_pos & tmp))
1829 			continue;
1830 
1831 		if (i == 1)
1832 			curr_ep = &udc->eps[0];
1833 		else
1834 			curr_ep = &udc->eps[i];
1835 		/* process the req queue until an uncomplete request */
1836 		list_for_each_entry_safe(curr_req, temp_req,
1837 			&curr_ep->queue, queue) {
1838 			status = process_ep_req(udc, i, curr_req);
1839 			if (status)
1840 				break;
1841 
1842 			/* write back status to req */
1843 			curr_req->req.status = status;
1844 
1845 			/* ep0 request completion */
1846 			if (ep_num == 0) {
1847 				ep0_req_complete(udc, curr_ep, curr_req);
1848 				break;
1849 			} else {
1850 				done(curr_ep, curr_req, status);
1851 			}
1852 		}
1853 	}
1854 }
1855 
1856 static void irq_process_reset(struct mv_udc *udc)
1857 {
1858 	u32 tmp;
1859 	unsigned int loops;
1860 
1861 	udc->ep0_dir = EP_DIR_OUT;
1862 	udc->ep0_state = WAIT_FOR_SETUP;
1863 	udc->remote_wakeup = 0;		/* default to 0 on reset */
1864 
1865 	/* The address bits are past bit 25-31. Set the address */
1866 	tmp = readl(&udc->op_regs->deviceaddr);
1867 	tmp &= ~(USB_DEVICE_ADDRESS_MASK);
1868 	writel(tmp, &udc->op_regs->deviceaddr);
1869 
1870 	/* Clear all the setup token semaphores */
1871 	tmp = readl(&udc->op_regs->epsetupstat);
1872 	writel(tmp, &udc->op_regs->epsetupstat);
1873 
1874 	/* Clear all the endpoint complete status bits */
1875 	tmp = readl(&udc->op_regs->epcomplete);
1876 	writel(tmp, &udc->op_regs->epcomplete);
1877 
1878 	/* wait until all endptprime bits cleared */
1879 	loops = LOOPS(PRIME_TIMEOUT);
1880 	while (readl(&udc->op_regs->epprime) & 0xFFFFFFFF) {
1881 		if (loops == 0) {
1882 			dev_err(&udc->dev->dev,
1883 				"Timeout for ENDPTPRIME = 0x%x\n",
1884 				readl(&udc->op_regs->epprime));
1885 			break;
1886 		}
1887 		loops--;
1888 		udelay(LOOPS_USEC);
1889 	}
1890 
1891 	/* Write 1s to the Flush register */
1892 	writel((u32)~0, &udc->op_regs->epflush);
1893 
1894 	if (readl(&udc->op_regs->portsc[0]) & PORTSCX_PORT_RESET) {
1895 		dev_info(&udc->dev->dev, "usb bus reset\n");
1896 		udc->usb_state = USB_STATE_DEFAULT;
1897 		/* reset all the queues, stop all USB activities */
1898 		gadget_reset(udc, udc->driver);
1899 	} else {
1900 		dev_info(&udc->dev->dev, "USB reset portsc 0x%x\n",
1901 			readl(&udc->op_regs->portsc));
1902 
1903 		/*
1904 		 * re-initialize
1905 		 * controller reset
1906 		 */
1907 		udc_reset(udc);
1908 
1909 		/* reset all the queues, stop all USB activities */
1910 		stop_activity(udc, udc->driver);
1911 
1912 		/* reset ep0 dQH and endptctrl */
1913 		ep0_reset(udc);
1914 
1915 		/* enable interrupt and set controller to run state */
1916 		udc_start(udc);
1917 
1918 		udc->usb_state = USB_STATE_ATTACHED;
1919 	}
1920 }
1921 
1922 static void handle_bus_resume(struct mv_udc *udc)
1923 {
1924 	udc->usb_state = udc->resume_state;
1925 	udc->resume_state = 0;
1926 
1927 	/* report resume to the driver */
1928 	if (udc->driver) {
1929 		if (udc->driver->resume) {
1930 			spin_unlock(&udc->lock);
1931 			udc->driver->resume(&udc->gadget);
1932 			spin_lock(&udc->lock);
1933 		}
1934 	}
1935 }
1936 
1937 static void irq_process_suspend(struct mv_udc *udc)
1938 {
1939 	udc->resume_state = udc->usb_state;
1940 	udc->usb_state = USB_STATE_SUSPENDED;
1941 
1942 	if (udc->driver->suspend) {
1943 		spin_unlock(&udc->lock);
1944 		udc->driver->suspend(&udc->gadget);
1945 		spin_lock(&udc->lock);
1946 	}
1947 }
1948 
1949 static void irq_process_port_change(struct mv_udc *udc)
1950 {
1951 	u32 portsc;
1952 
1953 	portsc = readl(&udc->op_regs->portsc[0]);
1954 	if (!(portsc & PORTSCX_PORT_RESET)) {
1955 		/* Get the speed */
1956 		u32 speed = portsc & PORTSCX_PORT_SPEED_MASK;
1957 		switch (speed) {
1958 		case PORTSCX_PORT_SPEED_HIGH:
1959 			udc->gadget.speed = USB_SPEED_HIGH;
1960 			break;
1961 		case PORTSCX_PORT_SPEED_FULL:
1962 			udc->gadget.speed = USB_SPEED_FULL;
1963 			break;
1964 		case PORTSCX_PORT_SPEED_LOW:
1965 			udc->gadget.speed = USB_SPEED_LOW;
1966 			break;
1967 		default:
1968 			udc->gadget.speed = USB_SPEED_UNKNOWN;
1969 			break;
1970 		}
1971 	}
1972 
1973 	if (portsc & PORTSCX_PORT_SUSPEND) {
1974 		udc->resume_state = udc->usb_state;
1975 		udc->usb_state = USB_STATE_SUSPENDED;
1976 		if (udc->driver->suspend) {
1977 			spin_unlock(&udc->lock);
1978 			udc->driver->suspend(&udc->gadget);
1979 			spin_lock(&udc->lock);
1980 		}
1981 	}
1982 
1983 	if (!(portsc & PORTSCX_PORT_SUSPEND)
1984 		&& udc->usb_state == USB_STATE_SUSPENDED) {
1985 		handle_bus_resume(udc);
1986 	}
1987 
1988 	if (!udc->resume_state)
1989 		udc->usb_state = USB_STATE_DEFAULT;
1990 }
1991 
1992 static void irq_process_error(struct mv_udc *udc)
1993 {
1994 	/* Increment the error count */
1995 	udc->errors++;
1996 }
1997 
1998 static irqreturn_t mv_udc_irq(int irq, void *dev)
1999 {
2000 	struct mv_udc *udc = (struct mv_udc *)dev;
2001 	u32 status, intr;
2002 
2003 	/* Disable ISR when stopped bit is set */
2004 	if (udc->stopped)
2005 		return IRQ_NONE;
2006 
2007 	spin_lock(&udc->lock);
2008 
2009 	status = readl(&udc->op_regs->usbsts);
2010 	intr = readl(&udc->op_regs->usbintr);
2011 	status &= intr;
2012 
2013 	if (status == 0) {
2014 		spin_unlock(&udc->lock);
2015 		return IRQ_NONE;
2016 	}
2017 
2018 	/* Clear all the interrupts occurred */
2019 	writel(status, &udc->op_regs->usbsts);
2020 
2021 	if (status & USBSTS_ERR)
2022 		irq_process_error(udc);
2023 
2024 	if (status & USBSTS_RESET)
2025 		irq_process_reset(udc);
2026 
2027 	if (status & USBSTS_PORT_CHANGE)
2028 		irq_process_port_change(udc);
2029 
2030 	if (status & USBSTS_INT)
2031 		irq_process_tr_complete(udc);
2032 
2033 	if (status & USBSTS_SUSPEND)
2034 		irq_process_suspend(udc);
2035 
2036 	spin_unlock(&udc->lock);
2037 
2038 	return IRQ_HANDLED;
2039 }
2040 
2041 static irqreturn_t mv_udc_vbus_irq(int irq, void *dev)
2042 {
2043 	struct mv_udc *udc = (struct mv_udc *)dev;
2044 
2045 	/* polling VBUS and init phy may cause too much time*/
2046 	if (udc->qwork)
2047 		queue_work(udc->qwork, &udc->vbus_work);
2048 
2049 	return IRQ_HANDLED;
2050 }
2051 
2052 static void mv_udc_vbus_work(struct work_struct *work)
2053 {
2054 	struct mv_udc *udc;
2055 	unsigned int vbus;
2056 
2057 	udc = container_of(work, struct mv_udc, vbus_work);
2058 	if (!udc->pdata->vbus)
2059 		return;
2060 
2061 	vbus = udc->pdata->vbus->poll();
2062 	dev_info(&udc->dev->dev, "vbus is %d\n", vbus);
2063 
2064 	if (vbus == VBUS_HIGH)
2065 		mv_udc_vbus_session(&udc->gadget, 1);
2066 	else if (vbus == VBUS_LOW)
2067 		mv_udc_vbus_session(&udc->gadget, 0);
2068 }
2069 
2070 /* release device structure */
2071 static void gadget_release(struct device *_dev)
2072 {
2073 	struct mv_udc *udc;
2074 
2075 	udc = dev_get_drvdata(_dev);
2076 
2077 	complete(udc->done);
2078 }
2079 
2080 static int mv_udc_remove(struct platform_device *pdev)
2081 {
2082 	struct mv_udc *udc;
2083 
2084 	udc = platform_get_drvdata(pdev);
2085 
2086 	usb_del_gadget_udc(&udc->gadget);
2087 
2088 	if (udc->qwork) {
2089 		flush_workqueue(udc->qwork);
2090 		destroy_workqueue(udc->qwork);
2091 	}
2092 
2093 	/* free memory allocated in probe */
2094 	dma_pool_destroy(udc->dtd_pool);
2095 
2096 	if (udc->ep_dqh)
2097 		dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2098 			udc->ep_dqh, udc->ep_dqh_dma);
2099 
2100 	mv_udc_disable(udc);
2101 
2102 	/* free dev, wait for the release() finished */
2103 	wait_for_completion(udc->done);
2104 
2105 	return 0;
2106 }
2107 
2108 static int mv_udc_probe(struct platform_device *pdev)
2109 {
2110 	struct mv_usb_platform_data *pdata = dev_get_platdata(&pdev->dev);
2111 	struct mv_udc *udc;
2112 	int retval = 0;
2113 	struct resource *r;
2114 	size_t size;
2115 
2116 	if (pdata == NULL) {
2117 		dev_err(&pdev->dev, "missing platform_data\n");
2118 		return -ENODEV;
2119 	}
2120 
2121 	udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2122 	if (udc == NULL)
2123 		return -ENOMEM;
2124 
2125 	udc->done = &release_done;
2126 	udc->pdata = dev_get_platdata(&pdev->dev);
2127 	spin_lock_init(&udc->lock);
2128 
2129 	udc->dev = pdev;
2130 
2131 	if (pdata->mode == MV_USB_MODE_OTG) {
2132 		udc->transceiver = devm_usb_get_phy(&pdev->dev,
2133 					USB_PHY_TYPE_USB2);
2134 		if (IS_ERR(udc->transceiver)) {
2135 			retval = PTR_ERR(udc->transceiver);
2136 
2137 			if (retval == -ENXIO)
2138 				return retval;
2139 
2140 			udc->transceiver = NULL;
2141 			return -EPROBE_DEFER;
2142 		}
2143 	}
2144 
2145 	/* udc only have one sysclk. */
2146 	udc->clk = devm_clk_get(&pdev->dev, NULL);
2147 	if (IS_ERR(udc->clk))
2148 		return PTR_ERR(udc->clk);
2149 
2150 	r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "capregs");
2151 	if (r == NULL) {
2152 		dev_err(&pdev->dev, "no I/O memory resource defined\n");
2153 		return -ENODEV;
2154 	}
2155 
2156 	udc->cap_regs = (struct mv_cap_regs __iomem *)
2157 		devm_ioremap(&pdev->dev, r->start, resource_size(r));
2158 	if (udc->cap_regs == NULL) {
2159 		dev_err(&pdev->dev, "failed to map I/O memory\n");
2160 		return -EBUSY;
2161 	}
2162 
2163 	r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "phyregs");
2164 	if (r == NULL) {
2165 		dev_err(&pdev->dev, "no phy I/O memory resource defined\n");
2166 		return -ENODEV;
2167 	}
2168 
2169 	udc->phy_regs = devm_ioremap(&pdev->dev, r->start, resource_size(r));
2170 	if (udc->phy_regs == NULL) {
2171 		dev_err(&pdev->dev, "failed to map phy I/O memory\n");
2172 		return -EBUSY;
2173 	}
2174 
2175 	/* we will acces controller register, so enable the clk */
2176 	retval = mv_udc_enable_internal(udc);
2177 	if (retval)
2178 		return retval;
2179 
2180 	udc->op_regs =
2181 		(struct mv_op_regs __iomem *)((unsigned long)udc->cap_regs
2182 		+ (readl(&udc->cap_regs->caplength_hciversion)
2183 			& CAPLENGTH_MASK));
2184 	udc->max_eps = readl(&udc->cap_regs->dccparams) & DCCPARAMS_DEN_MASK;
2185 
2186 	/*
2187 	 * some platform will use usb to download image, it may not disconnect
2188 	 * usb gadget before loading kernel. So first stop udc here.
2189 	 */
2190 	udc_stop(udc);
2191 	writel(0xFFFFFFFF, &udc->op_regs->usbsts);
2192 
2193 	size = udc->max_eps * sizeof(struct mv_dqh) *2;
2194 	size = (size + DQH_ALIGNMENT - 1) & ~(DQH_ALIGNMENT - 1);
2195 	udc->ep_dqh = dma_alloc_coherent(&pdev->dev, size,
2196 					&udc->ep_dqh_dma, GFP_KERNEL);
2197 
2198 	if (udc->ep_dqh == NULL) {
2199 		dev_err(&pdev->dev, "allocate dQH memory failed\n");
2200 		retval = -ENOMEM;
2201 		goto err_disable_clock;
2202 	}
2203 	udc->ep_dqh_size = size;
2204 
2205 	/* create dTD dma_pool resource */
2206 	udc->dtd_pool = dma_pool_create("mv_dtd",
2207 			&pdev->dev,
2208 			sizeof(struct mv_dtd),
2209 			DTD_ALIGNMENT,
2210 			DMA_BOUNDARY);
2211 
2212 	if (!udc->dtd_pool) {
2213 		retval = -ENOMEM;
2214 		goto err_free_dma;
2215 	}
2216 
2217 	size = udc->max_eps * sizeof(struct mv_ep) *2;
2218 	udc->eps = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
2219 	if (udc->eps == NULL) {
2220 		retval = -ENOMEM;
2221 		goto err_destroy_dma;
2222 	}
2223 
2224 	/* initialize ep0 status request structure */
2225 	udc->status_req = devm_kzalloc(&pdev->dev, sizeof(struct mv_req),
2226 					GFP_KERNEL);
2227 	if (!udc->status_req) {
2228 		retval = -ENOMEM;
2229 		goto err_destroy_dma;
2230 	}
2231 	INIT_LIST_HEAD(&udc->status_req->queue);
2232 
2233 	/* allocate a small amount of memory to get valid address */
2234 	udc->status_req->req.buf = kzalloc(8, GFP_KERNEL);
2235 	udc->status_req->req.dma = DMA_ADDR_INVALID;
2236 
2237 	udc->resume_state = USB_STATE_NOTATTACHED;
2238 	udc->usb_state = USB_STATE_POWERED;
2239 	udc->ep0_dir = EP_DIR_OUT;
2240 	udc->remote_wakeup = 0;
2241 
2242 	r = platform_get_resource(udc->dev, IORESOURCE_IRQ, 0);
2243 	if (r == NULL) {
2244 		dev_err(&pdev->dev, "no IRQ resource defined\n");
2245 		retval = -ENODEV;
2246 		goto err_destroy_dma;
2247 	}
2248 	udc->irq = r->start;
2249 	if (devm_request_irq(&pdev->dev, udc->irq, mv_udc_irq,
2250 		IRQF_SHARED, driver_name, udc)) {
2251 		dev_err(&pdev->dev, "Request irq %d for UDC failed\n",
2252 			udc->irq);
2253 		retval = -ENODEV;
2254 		goto err_destroy_dma;
2255 	}
2256 
2257 	/* initialize gadget structure */
2258 	udc->gadget.ops = &mv_ops;	/* usb_gadget_ops */
2259 	udc->gadget.ep0 = &udc->eps[0].ep;	/* gadget ep0 */
2260 	INIT_LIST_HEAD(&udc->gadget.ep_list);	/* ep_list */
2261 	udc->gadget.speed = USB_SPEED_UNKNOWN;	/* speed */
2262 	udc->gadget.max_speed = USB_SPEED_HIGH;	/* support dual speed */
2263 
2264 	/* the "gadget" abstracts/virtualizes the controller */
2265 	udc->gadget.name = driver_name;		/* gadget name */
2266 
2267 	eps_init(udc);
2268 
2269 	/* VBUS detect: we can disable/enable clock on demand.*/
2270 	if (udc->transceiver)
2271 		udc->clock_gating = 1;
2272 	else if (pdata->vbus) {
2273 		udc->clock_gating = 1;
2274 		retval = devm_request_threaded_irq(&pdev->dev,
2275 				pdata->vbus->irq, NULL,
2276 				mv_udc_vbus_irq, IRQF_ONESHOT, "vbus", udc);
2277 		if (retval) {
2278 			dev_info(&pdev->dev,
2279 				"Can not request irq for VBUS, "
2280 				"disable clock gating\n");
2281 			udc->clock_gating = 0;
2282 		}
2283 
2284 		udc->qwork = create_singlethread_workqueue("mv_udc_queue");
2285 		if (!udc->qwork) {
2286 			dev_err(&pdev->dev, "cannot create workqueue\n");
2287 			retval = -ENOMEM;
2288 			goto err_destroy_dma;
2289 		}
2290 
2291 		INIT_WORK(&udc->vbus_work, mv_udc_vbus_work);
2292 	}
2293 
2294 	/*
2295 	 * When clock gating is supported, we can disable clk and phy.
2296 	 * If not, it means that VBUS detection is not supported, we
2297 	 * have to enable vbus active all the time to let controller work.
2298 	 */
2299 	if (udc->clock_gating)
2300 		mv_udc_disable_internal(udc);
2301 	else
2302 		udc->vbus_active = 1;
2303 
2304 	retval = usb_add_gadget_udc_release(&pdev->dev, &udc->gadget,
2305 			gadget_release);
2306 	if (retval)
2307 		goto err_create_workqueue;
2308 
2309 	platform_set_drvdata(pdev, udc);
2310 	dev_info(&pdev->dev, "successful probe UDC device %s clock gating.\n",
2311 		udc->clock_gating ? "with" : "without");
2312 
2313 	return 0;
2314 
2315 err_create_workqueue:
2316 	destroy_workqueue(udc->qwork);
2317 err_destroy_dma:
2318 	dma_pool_destroy(udc->dtd_pool);
2319 err_free_dma:
2320 	dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2321 			udc->ep_dqh, udc->ep_dqh_dma);
2322 err_disable_clock:
2323 	mv_udc_disable_internal(udc);
2324 
2325 	return retval;
2326 }
2327 
2328 #ifdef CONFIG_PM
2329 static int mv_udc_suspend(struct device *dev)
2330 {
2331 	struct mv_udc *udc;
2332 
2333 	udc = dev_get_drvdata(dev);
2334 
2335 	/* if OTG is enabled, the following will be done in OTG driver*/
2336 	if (udc->transceiver)
2337 		return 0;
2338 
2339 	if (udc->pdata->vbus && udc->pdata->vbus->poll)
2340 		if (udc->pdata->vbus->poll() == VBUS_HIGH) {
2341 			dev_info(&udc->dev->dev, "USB cable is connected!\n");
2342 			return -EAGAIN;
2343 		}
2344 
2345 	/*
2346 	 * only cable is unplugged, udc can suspend.
2347 	 * So do not care about clock_gating == 1.
2348 	 */
2349 	if (!udc->clock_gating) {
2350 		udc_stop(udc);
2351 
2352 		spin_lock_irq(&udc->lock);
2353 		/* stop all usb activities */
2354 		stop_activity(udc, udc->driver);
2355 		spin_unlock_irq(&udc->lock);
2356 
2357 		mv_udc_disable_internal(udc);
2358 	}
2359 
2360 	return 0;
2361 }
2362 
2363 static int mv_udc_resume(struct device *dev)
2364 {
2365 	struct mv_udc *udc;
2366 	int retval;
2367 
2368 	udc = dev_get_drvdata(dev);
2369 
2370 	/* if OTG is enabled, the following will be done in OTG driver*/
2371 	if (udc->transceiver)
2372 		return 0;
2373 
2374 	if (!udc->clock_gating) {
2375 		retval = mv_udc_enable_internal(udc);
2376 		if (retval)
2377 			return retval;
2378 
2379 		if (udc->driver && udc->softconnect) {
2380 			udc_reset(udc);
2381 			ep0_reset(udc);
2382 			udc_start(udc);
2383 		}
2384 	}
2385 
2386 	return 0;
2387 }
2388 
2389 static const struct dev_pm_ops mv_udc_pm_ops = {
2390 	.suspend	= mv_udc_suspend,
2391 	.resume		= mv_udc_resume,
2392 };
2393 #endif
2394 
2395 static void mv_udc_shutdown(struct platform_device *pdev)
2396 {
2397 	struct mv_udc *udc;
2398 	u32 mode;
2399 
2400 	udc = platform_get_drvdata(pdev);
2401 	/* reset controller mode to IDLE */
2402 	mv_udc_enable(udc);
2403 	mode = readl(&udc->op_regs->usbmode);
2404 	mode &= ~3;
2405 	writel(mode, &udc->op_regs->usbmode);
2406 	mv_udc_disable(udc);
2407 }
2408 
2409 static struct platform_driver udc_driver = {
2410 	.probe		= mv_udc_probe,
2411 	.remove		= mv_udc_remove,
2412 	.shutdown	= mv_udc_shutdown,
2413 	.driver		= {
2414 		.name	= "mv-udc",
2415 #ifdef CONFIG_PM
2416 		.pm	= &mv_udc_pm_ops,
2417 #endif
2418 	},
2419 };
2420 
2421 module_platform_driver(udc_driver);
2422 MODULE_ALIAS("platform:mv-udc");
2423 MODULE_DESCRIPTION(DRIVER_DESC);
2424 MODULE_AUTHOR("Chao Xie <chao.xie@marvell.com>");
2425 MODULE_LICENSE("GPL");
2426