xref: /openbmc/linux/drivers/usb/gadget/udc/lpc32xx_udc.c (revision 7eec52db361a6ae6fbbd86c2299718586866b664)
1 /*
2  * USB Gadget driver for LPC32xx
3  *
4  * Authors:
5  *    Kevin Wells <kevin.wells@nxp.com>
6  *    Mike James
7  *    Roland Stigge <stigge@antcom.de>
8  *
9  * Copyright (C) 2006 Philips Semiconductors
10  * Copyright (C) 2009 NXP Semiconductors
11  * Copyright (C) 2012 Roland Stigge
12  *
13  * Note: This driver is based on original work done by Mike James for
14  *       the LPC3180.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License as published by
18  * the Free Software Foundation; either version 2 of the License, or
19  * (at your option) any later version.
20  *
21  * This program is distributed in the hope that it will be useful,
22  * but WITHOUT ANY WARRANTY; without even the implied warranty of
23  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
24  * GNU General Public License for more details.
25  *
26  * You should have received a copy of the GNU General Public License
27  * along with this program; if not, write to the Free Software
28  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/platform_device.h>
34 #include <linux/delay.h>
35 #include <linux/ioport.h>
36 #include <linux/slab.h>
37 #include <linux/errno.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/interrupt.h>
41 #include <linux/proc_fs.h>
42 #include <linux/clk.h>
43 #include <linux/usb/ch9.h>
44 #include <linux/usb/gadget.h>
45 #include <linux/i2c.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/dma-mapping.h>
49 #include <linux/dmapool.h>
50 #include <linux/workqueue.h>
51 #include <linux/of.h>
52 #include <linux/usb/isp1301.h>
53 
54 #include <asm/byteorder.h>
55 #include <mach/hardware.h>
56 #include <linux/io.h>
57 #include <asm/irq.h>
58 
59 #include <mach/platform.h>
60 #include <mach/irqs.h>
61 #include <mach/board.h>
62 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
63 #include <linux/debugfs.h>
64 #include <linux/seq_file.h>
65 #endif
66 
67 /*
68  * USB device configuration structure
69  */
70 typedef void (*usc_chg_event)(int);
71 struct lpc32xx_usbd_cfg {
72 	int vbus_drv_pol;   /* 0=active low drive for VBUS via ISP1301 */
73 	usc_chg_event conn_chgb; /* Connection change event (optional) */
74 	usc_chg_event susp_chgb; /* Suspend/resume event (optional) */
75 	usc_chg_event rmwk_chgb; /* Enable/disable remote wakeup */
76 };
77 
78 /*
79  * controller driver data structures
80  */
81 
82 /* 16 endpoints (not to be confused with 32 hardware endpoints) */
83 #define	NUM_ENDPOINTS	16
84 
85 /*
86  * IRQ indices make reading the code a little easier
87  */
88 #define IRQ_USB_LP	0
89 #define IRQ_USB_HP	1
90 #define IRQ_USB_DEVDMA	2
91 #define IRQ_USB_ATX	3
92 
93 #define EP_OUT 0 /* RX (from host) */
94 #define EP_IN 1 /* TX (to host) */
95 
96 /* Returns the interrupt mask for the selected hardware endpoint */
97 #define EP_MASK_SEL(ep, dir) (1 << (((ep) * 2) + dir))
98 
99 #define EP_INT_TYPE 0
100 #define EP_ISO_TYPE 1
101 #define EP_BLK_TYPE 2
102 #define EP_CTL_TYPE 3
103 
104 /* EP0 states */
105 #define WAIT_FOR_SETUP 0 /* Wait for setup packet */
106 #define DATA_IN        1 /* Expect dev->host transfer */
107 #define DATA_OUT       2 /* Expect host->dev transfer */
108 
109 /* DD (DMA Descriptor) structure, requires word alignment, this is already
110  * defined in the LPC32XX USB device header file, but this version is slightly
111  * modified to tag some work data with each DMA descriptor. */
112 struct lpc32xx_usbd_dd_gad {
113 	u32 dd_next_phy;
114 	u32 dd_setup;
115 	u32 dd_buffer_addr;
116 	u32 dd_status;
117 	u32 dd_iso_ps_mem_addr;
118 	u32 this_dma;
119 	u32 iso_status[6]; /* 5 spare */
120 	u32 dd_next_v;
121 };
122 
123 /*
124  * Logical endpoint structure
125  */
126 struct lpc32xx_ep {
127 	struct usb_ep		ep;
128 	struct list_head	queue;
129 	struct lpc32xx_udc	*udc;
130 
131 	u32			hwep_num_base; /* Physical hardware EP */
132 	u32			hwep_num; /* Maps to hardware endpoint */
133 	u32			maxpacket;
134 	u32			lep;
135 
136 	bool			is_in;
137 	bool			req_pending;
138 	u32			eptype;
139 
140 	u32                     totalints;
141 
142 	bool			wedge;
143 };
144 
145 /*
146  * Common UDC structure
147  */
148 struct lpc32xx_udc {
149 	struct usb_gadget	gadget;
150 	struct usb_gadget_driver *driver;
151 	struct platform_device	*pdev;
152 	struct device		*dev;
153 	struct dentry		*pde;
154 	spinlock_t		lock;
155 	struct i2c_client	*isp1301_i2c_client;
156 
157 	/* Board and device specific */
158 	struct lpc32xx_usbd_cfg	*board;
159 	u32			io_p_start;
160 	u32			io_p_size;
161 	void __iomem		*udp_baseaddr;
162 	int			udp_irq[4];
163 	struct clk		*usb_pll_clk;
164 	struct clk		*usb_slv_clk;
165 	struct clk		*usb_otg_clk;
166 
167 	/* DMA support */
168 	u32			*udca_v_base;
169 	u32			udca_p_base;
170 	struct dma_pool		*dd_cache;
171 
172 	/* Common EP and control data */
173 	u32			enabled_devints;
174 	u32			enabled_hwepints;
175 	u32			dev_status;
176 	u32			realized_eps;
177 
178 	/* VBUS detection, pullup, and power flags */
179 	u8			vbus;
180 	u8			last_vbus;
181 	int			pullup;
182 	int			poweron;
183 
184 	/* Work queues related to I2C support */
185 	struct work_struct	pullup_job;
186 	struct work_struct	vbus_job;
187 	struct work_struct	power_job;
188 
189 	/* USB device peripheral - various */
190 	struct lpc32xx_ep	ep[NUM_ENDPOINTS];
191 	bool			enabled;
192 	bool			clocked;
193 	bool			suspended;
194 	int                     ep0state;
195 	atomic_t                enabled_ep_cnt;
196 	wait_queue_head_t       ep_disable_wait_queue;
197 };
198 
199 /*
200  * Endpoint request
201  */
202 struct lpc32xx_request {
203 	struct usb_request	req;
204 	struct list_head	queue;
205 	struct lpc32xx_usbd_dd_gad *dd_desc_ptr;
206 	bool			mapped;
207 	bool			send_zlp;
208 };
209 
210 static inline struct lpc32xx_udc *to_udc(struct usb_gadget *g)
211 {
212 	return container_of(g, struct lpc32xx_udc, gadget);
213 }
214 
215 #define ep_dbg(epp, fmt, arg...) \
216 	dev_dbg(epp->udc->dev, "%s: " fmt, __func__, ## arg)
217 #define ep_err(epp, fmt, arg...) \
218 	dev_err(epp->udc->dev, "%s: " fmt, __func__, ## arg)
219 #define ep_info(epp, fmt, arg...) \
220 	dev_info(epp->udc->dev, "%s: " fmt, __func__, ## arg)
221 #define ep_warn(epp, fmt, arg...) \
222 	dev_warn(epp->udc->dev, "%s:" fmt, __func__, ## arg)
223 
224 #define UDCA_BUFF_SIZE (128)
225 
226 /* TODO: When the clock framework is introduced in LPC32xx, IO_ADDRESS will
227  * be replaced with an inremap()ed pointer
228  * */
229 #define USB_CTRL		IO_ADDRESS(LPC32XX_CLK_PM_BASE + 0x64)
230 
231 /* USB_CTRL bit defines */
232 #define USB_SLAVE_HCLK_EN	(1 << 24)
233 #define USB_HOST_NEED_CLK_EN	(1 << 21)
234 #define USB_DEV_NEED_CLK_EN	(1 << 22)
235 
236 /**********************************************************************
237  * USB device controller register offsets
238  **********************************************************************/
239 
240 #define USBD_DEVINTST(x)	((x) + 0x200)
241 #define USBD_DEVINTEN(x)	((x) + 0x204)
242 #define USBD_DEVINTCLR(x)	((x) + 0x208)
243 #define USBD_DEVINTSET(x)	((x) + 0x20C)
244 #define USBD_CMDCODE(x)		((x) + 0x210)
245 #define USBD_CMDDATA(x)		((x) + 0x214)
246 #define USBD_RXDATA(x)		((x) + 0x218)
247 #define USBD_TXDATA(x)		((x) + 0x21C)
248 #define USBD_RXPLEN(x)		((x) + 0x220)
249 #define USBD_TXPLEN(x)		((x) + 0x224)
250 #define USBD_CTRL(x)		((x) + 0x228)
251 #define USBD_DEVINTPRI(x)	((x) + 0x22C)
252 #define USBD_EPINTST(x)		((x) + 0x230)
253 #define USBD_EPINTEN(x)		((x) + 0x234)
254 #define USBD_EPINTCLR(x)	((x) + 0x238)
255 #define USBD_EPINTSET(x)	((x) + 0x23C)
256 #define USBD_EPINTPRI(x)	((x) + 0x240)
257 #define USBD_REEP(x)		((x) + 0x244)
258 #define USBD_EPIND(x)		((x) + 0x248)
259 #define USBD_EPMAXPSIZE(x)	((x) + 0x24C)
260 /* DMA support registers only below */
261 /* Set, clear, or get enabled state of the DMA request status. If
262  * enabled, an IN or OUT token will start a DMA transfer for the EP */
263 #define USBD_DMARST(x)		((x) + 0x250)
264 #define USBD_DMARCLR(x)		((x) + 0x254)
265 #define USBD_DMARSET(x)		((x) + 0x258)
266 /* DMA UDCA head pointer */
267 #define USBD_UDCAH(x)		((x) + 0x280)
268 /* EP DMA status, enable, and disable. This is used to specifically
269  * enabled or disable DMA for a specific EP */
270 #define USBD_EPDMAST(x)		((x) + 0x284)
271 #define USBD_EPDMAEN(x)		((x) + 0x288)
272 #define USBD_EPDMADIS(x)	((x) + 0x28C)
273 /* DMA master interrupts enable and pending interrupts */
274 #define USBD_DMAINTST(x)	((x) + 0x290)
275 #define USBD_DMAINTEN(x)	((x) + 0x294)
276 /* DMA end of transfer interrupt enable, disable, status */
277 #define USBD_EOTINTST(x)	((x) + 0x2A0)
278 #define USBD_EOTINTCLR(x)	((x) + 0x2A4)
279 #define USBD_EOTINTSET(x)	((x) + 0x2A8)
280 /* New DD request interrupt enable, disable, status */
281 #define USBD_NDDRTINTST(x)	((x) + 0x2AC)
282 #define USBD_NDDRTINTCLR(x)	((x) + 0x2B0)
283 #define USBD_NDDRTINTSET(x)	((x) + 0x2B4)
284 /* DMA error interrupt enable, disable, status */
285 #define USBD_SYSERRTINTST(x)	((x) + 0x2B8)
286 #define USBD_SYSERRTINTCLR(x)	((x) + 0x2BC)
287 #define USBD_SYSERRTINTSET(x)	((x) + 0x2C0)
288 
289 /**********************************************************************
290  * USBD_DEVINTST/USBD_DEVINTEN/USBD_DEVINTCLR/USBD_DEVINTSET/
291  * USBD_DEVINTPRI register definitions
292  **********************************************************************/
293 #define USBD_ERR_INT		(1 << 9)
294 #define USBD_EP_RLZED		(1 << 8)
295 #define USBD_TXENDPKT		(1 << 7)
296 #define USBD_RXENDPKT		(1 << 6)
297 #define USBD_CDFULL		(1 << 5)
298 #define USBD_CCEMPTY		(1 << 4)
299 #define USBD_DEV_STAT		(1 << 3)
300 #define USBD_EP_SLOW		(1 << 2)
301 #define USBD_EP_FAST		(1 << 1)
302 #define USBD_FRAME		(1 << 0)
303 
304 /**********************************************************************
305  * USBD_EPINTST/USBD_EPINTEN/USBD_EPINTCLR/USBD_EPINTSET/
306  * USBD_EPINTPRI register definitions
307  **********************************************************************/
308 /* End point selection macro (RX) */
309 #define USBD_RX_EP_SEL(e)	(1 << ((e) << 1))
310 
311 /* End point selection macro (TX) */
312 #define USBD_TX_EP_SEL(e)	(1 << (((e) << 1) + 1))
313 
314 /**********************************************************************
315  * USBD_REEP/USBD_DMARST/USBD_DMARCLR/USBD_DMARSET/USBD_EPDMAST/
316  * USBD_EPDMAEN/USBD_EPDMADIS/
317  * USBD_NDDRTINTST/USBD_NDDRTINTCLR/USBD_NDDRTINTSET/
318  * USBD_EOTINTST/USBD_EOTINTCLR/USBD_EOTINTSET/
319  * USBD_SYSERRTINTST/USBD_SYSERRTINTCLR/USBD_SYSERRTINTSET
320  * register definitions
321  **********************************************************************/
322 /* Endpoint selection macro */
323 #define USBD_EP_SEL(e)		(1 << (e))
324 
325 /**********************************************************************
326  * SBD_DMAINTST/USBD_DMAINTEN
327  **********************************************************************/
328 #define USBD_SYS_ERR_INT	(1 << 2)
329 #define USBD_NEW_DD_INT		(1 << 1)
330 #define USBD_EOT_INT		(1 << 0)
331 
332 /**********************************************************************
333  * USBD_RXPLEN register definitions
334  **********************************************************************/
335 #define USBD_PKT_RDY		(1 << 11)
336 #define USBD_DV			(1 << 10)
337 #define USBD_PK_LEN_MASK	0x3FF
338 
339 /**********************************************************************
340  * USBD_CTRL register definitions
341  **********************************************************************/
342 #define USBD_LOG_ENDPOINT(e)	((e) << 2)
343 #define USBD_WR_EN		(1 << 1)
344 #define USBD_RD_EN		(1 << 0)
345 
346 /**********************************************************************
347  * USBD_CMDCODE register definitions
348  **********************************************************************/
349 #define USBD_CMD_CODE(c)	((c) << 16)
350 #define USBD_CMD_PHASE(p)	((p) << 8)
351 
352 /**********************************************************************
353  * USBD_DMARST/USBD_DMARCLR/USBD_DMARSET register definitions
354  **********************************************************************/
355 #define USBD_DMAEP(e)		(1 << (e))
356 
357 /* DD (DMA Descriptor) structure, requires word alignment */
358 struct lpc32xx_usbd_dd {
359 	u32 *dd_next;
360 	u32 dd_setup;
361 	u32 dd_buffer_addr;
362 	u32 dd_status;
363 	u32 dd_iso_ps_mem_addr;
364 };
365 
366 /* dd_setup bit defines */
367 #define DD_SETUP_ATLE_DMA_MODE	0x01
368 #define DD_SETUP_NEXT_DD_VALID	0x04
369 #define DD_SETUP_ISO_EP		0x10
370 #define DD_SETUP_PACKETLEN(n)	(((n) & 0x7FF) << 5)
371 #define DD_SETUP_DMALENBYTES(n)	(((n) & 0xFFFF) << 16)
372 
373 /* dd_status bit defines */
374 #define DD_STATUS_DD_RETIRED	0x01
375 #define DD_STATUS_STS_MASK	0x1E
376 #define DD_STATUS_STS_NS	0x00 /* Not serviced */
377 #define DD_STATUS_STS_BS	0x02 /* Being serviced */
378 #define DD_STATUS_STS_NC	0x04 /* Normal completion */
379 #define DD_STATUS_STS_DUR	0x06 /* Data underrun (short packet) */
380 #define DD_STATUS_STS_DOR	0x08 /* Data overrun */
381 #define DD_STATUS_STS_SE	0x12 /* System error */
382 #define DD_STATUS_PKT_VAL	0x20 /* Packet valid */
383 #define DD_STATUS_LSB_EX	0x40 /* LS byte extracted (ATLE) */
384 #define DD_STATUS_MSB_EX	0x80 /* MS byte extracted (ATLE) */
385 #define DD_STATUS_MLEN(n)	(((n) >> 8) & 0x3F)
386 #define DD_STATUS_CURDMACNT(n)	(((n) >> 16) & 0xFFFF)
387 
388 /*
389  *
390  * Protocol engine bits below
391  *
392  */
393 /* Device Interrupt Bit Definitions */
394 #define FRAME_INT		0x00000001
395 #define EP_FAST_INT		0x00000002
396 #define EP_SLOW_INT		0x00000004
397 #define DEV_STAT_INT		0x00000008
398 #define CCEMTY_INT		0x00000010
399 #define CDFULL_INT		0x00000020
400 #define RxENDPKT_INT		0x00000040
401 #define TxENDPKT_INT		0x00000080
402 #define EP_RLZED_INT		0x00000100
403 #define ERR_INT			0x00000200
404 
405 /* Rx & Tx Packet Length Definitions */
406 #define PKT_LNGTH_MASK		0x000003FF
407 #define PKT_DV			0x00000400
408 #define PKT_RDY			0x00000800
409 
410 /* USB Control Definitions */
411 #define CTRL_RD_EN		0x00000001
412 #define CTRL_WR_EN		0x00000002
413 
414 /* Command Codes */
415 #define CMD_SET_ADDR		0x00D00500
416 #define CMD_CFG_DEV		0x00D80500
417 #define CMD_SET_MODE		0x00F30500
418 #define CMD_RD_FRAME		0x00F50500
419 #define DAT_RD_FRAME		0x00F50200
420 #define CMD_RD_TEST		0x00FD0500
421 #define DAT_RD_TEST		0x00FD0200
422 #define CMD_SET_DEV_STAT	0x00FE0500
423 #define CMD_GET_DEV_STAT	0x00FE0500
424 #define DAT_GET_DEV_STAT	0x00FE0200
425 #define CMD_GET_ERR_CODE	0x00FF0500
426 #define DAT_GET_ERR_CODE	0x00FF0200
427 #define CMD_RD_ERR_STAT		0x00FB0500
428 #define DAT_RD_ERR_STAT		0x00FB0200
429 #define DAT_WR_BYTE(x)		(0x00000100 | ((x) << 16))
430 #define CMD_SEL_EP(x)		(0x00000500 | ((x) << 16))
431 #define DAT_SEL_EP(x)		(0x00000200 | ((x) << 16))
432 #define CMD_SEL_EP_CLRI(x)	(0x00400500 | ((x) << 16))
433 #define DAT_SEL_EP_CLRI(x)	(0x00400200 | ((x) << 16))
434 #define CMD_SET_EP_STAT(x)	(0x00400500 | ((x) << 16))
435 #define CMD_CLR_BUF		0x00F20500
436 #define DAT_CLR_BUF		0x00F20200
437 #define CMD_VALID_BUF		0x00FA0500
438 
439 /* Device Address Register Definitions */
440 #define DEV_ADDR_MASK		0x7F
441 #define DEV_EN			0x80
442 
443 /* Device Configure Register Definitions */
444 #define CONF_DVICE		0x01
445 
446 /* Device Mode Register Definitions */
447 #define AP_CLK			0x01
448 #define INAK_CI			0x02
449 #define INAK_CO			0x04
450 #define INAK_II			0x08
451 #define INAK_IO			0x10
452 #define INAK_BI			0x20
453 #define INAK_BO			0x40
454 
455 /* Device Status Register Definitions */
456 #define DEV_CON			0x01
457 #define DEV_CON_CH		0x02
458 #define DEV_SUS			0x04
459 #define DEV_SUS_CH		0x08
460 #define DEV_RST			0x10
461 
462 /* Error Code Register Definitions */
463 #define ERR_EC_MASK		0x0F
464 #define ERR_EA			0x10
465 
466 /* Error Status Register Definitions */
467 #define ERR_PID			0x01
468 #define ERR_UEPKT		0x02
469 #define ERR_DCRC		0x04
470 #define ERR_TIMOUT		0x08
471 #define ERR_EOP			0x10
472 #define ERR_B_OVRN		0x20
473 #define ERR_BTSTF		0x40
474 #define ERR_TGL			0x80
475 
476 /* Endpoint Select Register Definitions */
477 #define EP_SEL_F		0x01
478 #define EP_SEL_ST		0x02
479 #define EP_SEL_STP		0x04
480 #define EP_SEL_PO		0x08
481 #define EP_SEL_EPN		0x10
482 #define EP_SEL_B_1_FULL		0x20
483 #define EP_SEL_B_2_FULL		0x40
484 
485 /* Endpoint Status Register Definitions */
486 #define EP_STAT_ST		0x01
487 #define EP_STAT_DA		0x20
488 #define EP_STAT_RF_MO		0x40
489 #define EP_STAT_CND_ST		0x80
490 
491 /* Clear Buffer Register Definitions */
492 #define CLR_BUF_PO		0x01
493 
494 /* DMA Interrupt Bit Definitions */
495 #define EOT_INT			0x01
496 #define NDD_REQ_INT		0x02
497 #define SYS_ERR_INT		0x04
498 
499 #define	DRIVER_VERSION	"1.03"
500 static const char driver_name[] = "lpc32xx_udc";
501 
502 /*
503  *
504  * proc interface support
505  *
506  */
507 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
508 static char *epnames[] = {"INT", "ISO", "BULK", "CTRL"};
509 static const char debug_filename[] = "driver/udc";
510 
511 static void proc_ep_show(struct seq_file *s, struct lpc32xx_ep *ep)
512 {
513 	struct lpc32xx_request *req;
514 
515 	seq_printf(s, "\n");
516 	seq_printf(s, "%12s, maxpacket %4d %3s",
517 			ep->ep.name, ep->ep.maxpacket,
518 			ep->is_in ? "in" : "out");
519 	seq_printf(s, " type %4s", epnames[ep->eptype]);
520 	seq_printf(s, " ints: %12d", ep->totalints);
521 
522 	if (list_empty(&ep->queue))
523 		seq_printf(s, "\t(queue empty)\n");
524 	else {
525 		list_for_each_entry(req, &ep->queue, queue) {
526 			u32 length = req->req.actual;
527 
528 			seq_printf(s, "\treq %p len %d/%d buf %p\n",
529 				   &req->req, length,
530 				   req->req.length, req->req.buf);
531 		}
532 	}
533 }
534 
535 static int proc_udc_show(struct seq_file *s, void *unused)
536 {
537 	struct lpc32xx_udc *udc = s->private;
538 	struct lpc32xx_ep *ep;
539 	unsigned long flags;
540 
541 	seq_printf(s, "%s: version %s\n", driver_name, DRIVER_VERSION);
542 
543 	spin_lock_irqsave(&udc->lock, flags);
544 
545 	seq_printf(s, "vbus %s, pullup %s, %s powered%s, gadget %s\n\n",
546 		   udc->vbus ? "present" : "off",
547 		   udc->enabled ? (udc->vbus ? "active" : "enabled") :
548 		   "disabled",
549 		   udc->gadget.is_selfpowered ? "self" : "VBUS",
550 		   udc->suspended ? ", suspended" : "",
551 		   udc->driver ? udc->driver->driver.name : "(none)");
552 
553 	if (udc->enabled && udc->vbus) {
554 		proc_ep_show(s, &udc->ep[0]);
555 		list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list)
556 			proc_ep_show(s, ep);
557 	}
558 
559 	spin_unlock_irqrestore(&udc->lock, flags);
560 
561 	return 0;
562 }
563 
564 static int proc_udc_open(struct inode *inode, struct file *file)
565 {
566 	return single_open(file, proc_udc_show, PDE_DATA(inode));
567 }
568 
569 static const struct file_operations proc_ops = {
570 	.owner		= THIS_MODULE,
571 	.open		= proc_udc_open,
572 	.read		= seq_read,
573 	.llseek		= seq_lseek,
574 	.release	= single_release,
575 };
576 
577 static void create_debug_file(struct lpc32xx_udc *udc)
578 {
579 	udc->pde = debugfs_create_file(debug_filename, 0, NULL, udc, &proc_ops);
580 }
581 
582 static void remove_debug_file(struct lpc32xx_udc *udc)
583 {
584 	debugfs_remove(udc->pde);
585 }
586 
587 #else
588 static inline void create_debug_file(struct lpc32xx_udc *udc) {}
589 static inline void remove_debug_file(struct lpc32xx_udc *udc) {}
590 #endif
591 
592 /* Primary initialization sequence for the ISP1301 transceiver */
593 static void isp1301_udc_configure(struct lpc32xx_udc *udc)
594 {
595 	/* LPC32XX only supports DAT_SE0 USB mode */
596 	/* This sequence is important */
597 
598 	/* Disable transparent UART mode first */
599 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
600 		(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
601 		MC1_UART_EN);
602 
603 	/* Set full speed and SE0 mode */
604 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
605 		(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
606 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
607 		ISP1301_I2C_MODE_CONTROL_1, (MC1_SPEED_REG | MC1_DAT_SE0));
608 
609 	/*
610 	 * The PSW_OE enable bit state is reversed in the ISP1301 User's Guide
611 	 */
612 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
613 		(ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
614 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
615 		ISP1301_I2C_MODE_CONTROL_2, (MC2_BI_DI | MC2_SPD_SUSP_CTRL));
616 
617 	/* Driver VBUS_DRV high or low depending on board setup */
618 	if (udc->board->vbus_drv_pol != 0)
619 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
620 			ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DRV);
621 	else
622 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
623 			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
624 			OTG1_VBUS_DRV);
625 
626 	/* Bi-directional mode with suspend control
627 	 * Enable both pulldowns for now - the pullup will be enable when VBUS
628 	 * is detected */
629 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
630 		(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
631 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
632 		ISP1301_I2C_OTG_CONTROL_1,
633 		(0 | OTG1_DM_PULLDOWN | OTG1_DP_PULLDOWN));
634 
635 	/* Discharge VBUS (just in case) */
636 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
637 		ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
638 	msleep(1);
639 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
640 		(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
641 		OTG1_VBUS_DISCHRG);
642 
643 	/* Clear and enable VBUS high edge interrupt */
644 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
645 		ISP1301_I2C_INTERRUPT_LATCH | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
646 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
647 		ISP1301_I2C_INTERRUPT_FALLING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
648 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
649 		ISP1301_I2C_INTERRUPT_FALLING, INT_VBUS_VLD);
650 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
651 		ISP1301_I2C_INTERRUPT_RISING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
652 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
653 		ISP1301_I2C_INTERRUPT_RISING, INT_VBUS_VLD);
654 
655 	/* Enable usb_need_clk clock after transceiver is initialized */
656 	writel((readl(USB_CTRL) | USB_DEV_NEED_CLK_EN), USB_CTRL);
657 
658 	dev_info(udc->dev, "ISP1301 Vendor ID  : 0x%04x\n",
659 		 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x00));
660 	dev_info(udc->dev, "ISP1301 Product ID : 0x%04x\n",
661 		 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x02));
662 	dev_info(udc->dev, "ISP1301 Version ID : 0x%04x\n",
663 		 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x14));
664 }
665 
666 /* Enables or disables the USB device pullup via the ISP1301 transceiver */
667 static void isp1301_pullup_set(struct lpc32xx_udc *udc)
668 {
669 	if (udc->pullup)
670 		/* Enable pullup for bus signalling */
671 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
672 			ISP1301_I2C_OTG_CONTROL_1, OTG1_DP_PULLUP);
673 	else
674 		/* Enable pullup for bus signalling */
675 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
676 			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
677 			OTG1_DP_PULLUP);
678 }
679 
680 static void pullup_work(struct work_struct *work)
681 {
682 	struct lpc32xx_udc *udc =
683 		container_of(work, struct lpc32xx_udc, pullup_job);
684 
685 	isp1301_pullup_set(udc);
686 }
687 
688 static void isp1301_pullup_enable(struct lpc32xx_udc *udc, int en_pullup,
689 				  int block)
690 {
691 	if (en_pullup == udc->pullup)
692 		return;
693 
694 	udc->pullup = en_pullup;
695 	if (block)
696 		isp1301_pullup_set(udc);
697 	else
698 		/* defer slow i2c pull up setting */
699 		schedule_work(&udc->pullup_job);
700 }
701 
702 #ifdef CONFIG_PM
703 /* Powers up or down the ISP1301 transceiver */
704 static void isp1301_set_powerstate(struct lpc32xx_udc *udc, int enable)
705 {
706 	if (enable != 0)
707 		/* Power up ISP1301 - this ISP1301 will automatically wakeup
708 		   when VBUS is detected */
709 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
710 			ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR,
711 			MC2_GLOBAL_PWR_DN);
712 	else
713 		/* Power down ISP1301 */
714 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
715 			ISP1301_I2C_MODE_CONTROL_2, MC2_GLOBAL_PWR_DN);
716 }
717 
718 static void power_work(struct work_struct *work)
719 {
720 	struct lpc32xx_udc *udc =
721 		container_of(work, struct lpc32xx_udc, power_job);
722 
723 	isp1301_set_powerstate(udc, udc->poweron);
724 }
725 #endif
726 
727 /*
728  *
729  * USB protocol engine command/data read/write helper functions
730  *
731  */
732 /* Issues a single command to the USB device state machine */
733 static void udc_protocol_cmd_w(struct lpc32xx_udc *udc, u32 cmd)
734 {
735 	u32 pass = 0;
736 	int to;
737 
738 	/* EP may lock on CLRI if this read isn't done */
739 	u32 tmp = readl(USBD_DEVINTST(udc->udp_baseaddr));
740 	(void) tmp;
741 
742 	while (pass == 0) {
743 		writel(USBD_CCEMPTY, USBD_DEVINTCLR(udc->udp_baseaddr));
744 
745 		/* Write command code */
746 		writel(cmd, USBD_CMDCODE(udc->udp_baseaddr));
747 		to = 10000;
748 		while (((readl(USBD_DEVINTST(udc->udp_baseaddr)) &
749 			 USBD_CCEMPTY) == 0) && (to > 0)) {
750 			to--;
751 		}
752 
753 		if (to > 0)
754 			pass = 1;
755 
756 		cpu_relax();
757 	}
758 }
759 
760 /* Issues 2 commands (or command and data) to the USB device state machine */
761 static inline void udc_protocol_cmd_data_w(struct lpc32xx_udc *udc, u32 cmd,
762 					   u32 data)
763 {
764 	udc_protocol_cmd_w(udc, cmd);
765 	udc_protocol_cmd_w(udc, data);
766 }
767 
768 /* Issues a single command to the USB device state machine and reads
769  * response data */
770 static u32 udc_protocol_cmd_r(struct lpc32xx_udc *udc, u32 cmd)
771 {
772 	u32 tmp;
773 	int to = 1000;
774 
775 	/* Write a command and read data from the protocol engine */
776 	writel((USBD_CDFULL | USBD_CCEMPTY),
777 		     USBD_DEVINTCLR(udc->udp_baseaddr));
778 
779 	/* Write command code */
780 	udc_protocol_cmd_w(udc, cmd);
781 
782 	tmp = readl(USBD_DEVINTST(udc->udp_baseaddr));
783 	while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) & USBD_CDFULL))
784 	       && (to > 0))
785 		to--;
786 	if (!to)
787 		dev_dbg(udc->dev,
788 			"Protocol engine didn't receive response (CDFULL)\n");
789 
790 	return readl(USBD_CMDDATA(udc->udp_baseaddr));
791 }
792 
793 /*
794  *
795  * USB device interrupt mask support functions
796  *
797  */
798 /* Enable one or more USB device interrupts */
799 static inline void uda_enable_devint(struct lpc32xx_udc *udc, u32 devmask)
800 {
801 	udc->enabled_devints |= devmask;
802 	writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
803 }
804 
805 /* Disable one or more USB device interrupts */
806 static inline void uda_disable_devint(struct lpc32xx_udc *udc, u32 mask)
807 {
808 	udc->enabled_devints &= ~mask;
809 	writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
810 }
811 
812 /* Clear one or more USB device interrupts */
813 static inline void uda_clear_devint(struct lpc32xx_udc *udc, u32 mask)
814 {
815 	writel(mask, USBD_DEVINTCLR(udc->udp_baseaddr));
816 }
817 
818 /*
819  *
820  * Endpoint interrupt disable/enable functions
821  *
822  */
823 /* Enable one or more USB endpoint interrupts */
824 static void uda_enable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
825 {
826 	udc->enabled_hwepints |= (1 << hwep);
827 	writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
828 }
829 
830 /* Disable one or more USB endpoint interrupts */
831 static void uda_disable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
832 {
833 	udc->enabled_hwepints &= ~(1 << hwep);
834 	writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
835 }
836 
837 /* Clear one or more USB endpoint interrupts */
838 static inline void uda_clear_hwepint(struct lpc32xx_udc *udc, u32 hwep)
839 {
840 	writel((1 << hwep), USBD_EPINTCLR(udc->udp_baseaddr));
841 }
842 
843 /* Enable DMA for the HW channel */
844 static inline void udc_ep_dma_enable(struct lpc32xx_udc *udc, u32 hwep)
845 {
846 	writel((1 << hwep), USBD_EPDMAEN(udc->udp_baseaddr));
847 }
848 
849 /* Disable DMA for the HW channel */
850 static inline void udc_ep_dma_disable(struct lpc32xx_udc *udc, u32 hwep)
851 {
852 	writel((1 << hwep), USBD_EPDMADIS(udc->udp_baseaddr));
853 }
854 
855 /*
856  *
857  * Endpoint realize/unrealize functions
858  *
859  */
860 /* Before an endpoint can be used, it needs to be realized
861  * in the USB protocol engine - this realizes the endpoint.
862  * The interrupt (FIFO or DMA) is not enabled with this function */
863 static void udc_realize_hwep(struct lpc32xx_udc *udc, u32 hwep,
864 			     u32 maxpacket)
865 {
866 	int to = 1000;
867 
868 	writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
869 	writel(hwep, USBD_EPIND(udc->udp_baseaddr));
870 	udc->realized_eps |= (1 << hwep);
871 	writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
872 	writel(maxpacket, USBD_EPMAXPSIZE(udc->udp_baseaddr));
873 
874 	/* Wait until endpoint is realized in hardware */
875 	while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) &
876 		  USBD_EP_RLZED)) && (to > 0))
877 		to--;
878 	if (!to)
879 		dev_dbg(udc->dev, "EP not correctly realized in hardware\n");
880 
881 	writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
882 }
883 
884 /* Unrealize an EP */
885 static void udc_unrealize_hwep(struct lpc32xx_udc *udc, u32 hwep)
886 {
887 	udc->realized_eps &= ~(1 << hwep);
888 	writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
889 }
890 
891 /*
892  *
893  * Endpoint support functions
894  *
895  */
896 /* Select and clear endpoint interrupt */
897 static u32 udc_selep_clrint(struct lpc32xx_udc *udc, u32 hwep)
898 {
899 	udc_protocol_cmd_w(udc, CMD_SEL_EP_CLRI(hwep));
900 	return udc_protocol_cmd_r(udc, DAT_SEL_EP_CLRI(hwep));
901 }
902 
903 /* Disables the endpoint in the USB protocol engine */
904 static void udc_disable_hwep(struct lpc32xx_udc *udc, u32 hwep)
905 {
906 	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
907 				DAT_WR_BYTE(EP_STAT_DA));
908 }
909 
910 /* Stalls the endpoint - endpoint will return STALL */
911 static void udc_stall_hwep(struct lpc32xx_udc *udc, u32 hwep)
912 {
913 	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
914 				DAT_WR_BYTE(EP_STAT_ST));
915 }
916 
917 /* Clear stall or reset endpoint */
918 static void udc_clrstall_hwep(struct lpc32xx_udc *udc, u32 hwep)
919 {
920 	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
921 				DAT_WR_BYTE(0));
922 }
923 
924 /* Select an endpoint for endpoint status, clear, validate */
925 static void udc_select_hwep(struct lpc32xx_udc *udc, u32 hwep)
926 {
927 	udc_protocol_cmd_w(udc, CMD_SEL_EP(hwep));
928 }
929 
930 /*
931  *
932  * Endpoint buffer management functions
933  *
934  */
935 /* Clear the current endpoint's buffer */
936 static void udc_clr_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
937 {
938 	udc_select_hwep(udc, hwep);
939 	udc_protocol_cmd_w(udc, CMD_CLR_BUF);
940 }
941 
942 /* Validate the current endpoint's buffer */
943 static void udc_val_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
944 {
945 	udc_select_hwep(udc, hwep);
946 	udc_protocol_cmd_w(udc, CMD_VALID_BUF);
947 }
948 
949 static inline u32 udc_clearep_getsts(struct lpc32xx_udc *udc, u32 hwep)
950 {
951 	/* Clear EP interrupt */
952 	uda_clear_hwepint(udc, hwep);
953 	return udc_selep_clrint(udc, hwep);
954 }
955 
956 /*
957  *
958  * USB EP DMA support
959  *
960  */
961 /* Allocate a DMA Descriptor */
962 static struct lpc32xx_usbd_dd_gad *udc_dd_alloc(struct lpc32xx_udc *udc)
963 {
964 	dma_addr_t			dma;
965 	struct lpc32xx_usbd_dd_gad	*dd;
966 
967 	dd = (struct lpc32xx_usbd_dd_gad *) dma_pool_alloc(
968 			udc->dd_cache, (GFP_KERNEL | GFP_DMA), &dma);
969 	if (dd)
970 		dd->this_dma = dma;
971 
972 	return dd;
973 }
974 
975 /* Free a DMA Descriptor */
976 static void udc_dd_free(struct lpc32xx_udc *udc, struct lpc32xx_usbd_dd_gad *dd)
977 {
978 	dma_pool_free(udc->dd_cache, dd, dd->this_dma);
979 }
980 
981 /*
982  *
983  * USB setup and shutdown functions
984  *
985  */
986 /* Enables or disables most of the USB system clocks when low power mode is
987  * needed. Clocks are typically started on a connection event, and disabled
988  * when a cable is disconnected */
989 static void udc_clk_set(struct lpc32xx_udc *udc, int enable)
990 {
991 	if (enable != 0) {
992 		if (udc->clocked)
993 			return;
994 
995 		udc->clocked = 1;
996 
997 		/* 48MHz PLL up */
998 		clk_enable(udc->usb_pll_clk);
999 
1000 		/* Enable the USB device clock */
1001 		writel(readl(USB_CTRL) | USB_DEV_NEED_CLK_EN,
1002 			     USB_CTRL);
1003 
1004 		clk_enable(udc->usb_otg_clk);
1005 	} else {
1006 		if (!udc->clocked)
1007 			return;
1008 
1009 		udc->clocked = 0;
1010 
1011 		/* Never disable the USB_HCLK during normal operation */
1012 
1013 		/* 48MHz PLL dpwn */
1014 		clk_disable(udc->usb_pll_clk);
1015 
1016 		/* Disable the USB device clock */
1017 		writel(readl(USB_CTRL) & ~USB_DEV_NEED_CLK_EN,
1018 			     USB_CTRL);
1019 
1020 		clk_disable(udc->usb_otg_clk);
1021 	}
1022 }
1023 
1024 /* Set/reset USB device address */
1025 static void udc_set_address(struct lpc32xx_udc *udc, u32 addr)
1026 {
1027 	/* Address will be latched at the end of the status phase, or
1028 	   latched immediately if function is called twice */
1029 	udc_protocol_cmd_data_w(udc, CMD_SET_ADDR,
1030 				DAT_WR_BYTE(DEV_EN | addr));
1031 }
1032 
1033 /* Setup up a IN request for DMA transfer - this consists of determining the
1034  * list of DMA addresses for the transfer, allocating DMA Descriptors,
1035  * installing the DD into the UDCA, and then enabling the DMA for that EP */
1036 static int udc_ep_in_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1037 {
1038 	struct lpc32xx_request *req;
1039 	u32 hwep = ep->hwep_num;
1040 
1041 	ep->req_pending = 1;
1042 
1043 	/* There will always be a request waiting here */
1044 	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1045 
1046 	/* Place the DD Descriptor into the UDCA */
1047 	udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
1048 
1049 	/* Enable DMA and interrupt for the HW EP */
1050 	udc_ep_dma_enable(udc, hwep);
1051 
1052 	/* Clear ZLP if last packet is not of MAXP size */
1053 	if (req->req.length % ep->ep.maxpacket)
1054 		req->send_zlp = 0;
1055 
1056 	return 0;
1057 }
1058 
1059 /* Setup up a OUT request for DMA transfer - this consists of determining the
1060  * list of DMA addresses for the transfer, allocating DMA Descriptors,
1061  * installing the DD into the UDCA, and then enabling the DMA for that EP */
1062 static int udc_ep_out_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1063 {
1064 	struct lpc32xx_request *req;
1065 	u32 hwep = ep->hwep_num;
1066 
1067 	ep->req_pending = 1;
1068 
1069 	/* There will always be a request waiting here */
1070 	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1071 
1072 	/* Place the DD Descriptor into the UDCA */
1073 	udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
1074 
1075 	/* Enable DMA and interrupt for the HW EP */
1076 	udc_ep_dma_enable(udc, hwep);
1077 	return 0;
1078 }
1079 
1080 static void udc_disable(struct lpc32xx_udc *udc)
1081 {
1082 	u32 i;
1083 
1084 	/* Disable device */
1085 	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1086 	udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(0));
1087 
1088 	/* Disable all device interrupts (including EP0) */
1089 	uda_disable_devint(udc, 0x3FF);
1090 
1091 	/* Disable and reset all endpoint interrupts */
1092 	for (i = 0; i < 32; i++) {
1093 		uda_disable_hwepint(udc, i);
1094 		uda_clear_hwepint(udc, i);
1095 		udc_disable_hwep(udc, i);
1096 		udc_unrealize_hwep(udc, i);
1097 		udc->udca_v_base[i] = 0;
1098 
1099 		/* Disable and clear all interrupts and DMA */
1100 		udc_ep_dma_disable(udc, i);
1101 		writel((1 << i), USBD_EOTINTCLR(udc->udp_baseaddr));
1102 		writel((1 << i), USBD_NDDRTINTCLR(udc->udp_baseaddr));
1103 		writel((1 << i), USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1104 		writel((1 << i), USBD_DMARCLR(udc->udp_baseaddr));
1105 	}
1106 
1107 	/* Disable DMA interrupts */
1108 	writel(0, USBD_DMAINTEN(udc->udp_baseaddr));
1109 
1110 	writel(0, USBD_UDCAH(udc->udp_baseaddr));
1111 }
1112 
1113 static void udc_enable(struct lpc32xx_udc *udc)
1114 {
1115 	u32 i;
1116 	struct lpc32xx_ep *ep = &udc->ep[0];
1117 
1118 	/* Start with known state */
1119 	udc_disable(udc);
1120 
1121 	/* Enable device */
1122 	udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(DEV_CON));
1123 
1124 	/* EP interrupts on high priority, FRAME interrupt on low priority */
1125 	writel(USBD_EP_FAST, USBD_DEVINTPRI(udc->udp_baseaddr));
1126 	writel(0xFFFF, USBD_EPINTPRI(udc->udp_baseaddr));
1127 
1128 	/* Clear any pending device interrupts */
1129 	writel(0x3FF, USBD_DEVINTCLR(udc->udp_baseaddr));
1130 
1131 	/* Setup UDCA - not yet used (DMA) */
1132 	writel(udc->udca_p_base, USBD_UDCAH(udc->udp_baseaddr));
1133 
1134 	/* Only enable EP0 in and out for now, EP0 only works in FIFO mode */
1135 	for (i = 0; i <= 1; i++) {
1136 		udc_realize_hwep(udc, i, ep->ep.maxpacket);
1137 		uda_enable_hwepint(udc, i);
1138 		udc_select_hwep(udc, i);
1139 		udc_clrstall_hwep(udc, i);
1140 		udc_clr_buffer_hwep(udc, i);
1141 	}
1142 
1143 	/* Device interrupt setup */
1144 	uda_clear_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1145 			       USBD_EP_FAST));
1146 	uda_enable_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1147 				USBD_EP_FAST));
1148 
1149 	/* Set device address to 0 - called twice to force a latch in the USB
1150 	   engine without the need of a setup packet status closure */
1151 	udc_set_address(udc, 0);
1152 	udc_set_address(udc, 0);
1153 
1154 	/* Enable master DMA interrupts */
1155 	writel((USBD_SYS_ERR_INT | USBD_EOT_INT),
1156 		     USBD_DMAINTEN(udc->udp_baseaddr));
1157 
1158 	udc->dev_status = 0;
1159 }
1160 
1161 /*
1162  *
1163  * USB device board specific events handled via callbacks
1164  *
1165  */
1166 /* Connection change event - notify board function of change */
1167 static void uda_power_event(struct lpc32xx_udc *udc, u32 conn)
1168 {
1169 	/* Just notify of a connection change event (optional) */
1170 	if (udc->board->conn_chgb != NULL)
1171 		udc->board->conn_chgb(conn);
1172 }
1173 
1174 /* Suspend/resume event - notify board function of change */
1175 static void uda_resm_susp_event(struct lpc32xx_udc *udc, u32 conn)
1176 {
1177 	/* Just notify of a Suspend/resume change event (optional) */
1178 	if (udc->board->susp_chgb != NULL)
1179 		udc->board->susp_chgb(conn);
1180 
1181 	if (conn)
1182 		udc->suspended = 0;
1183 	else
1184 		udc->suspended = 1;
1185 }
1186 
1187 /* Remote wakeup enable/disable - notify board function of change */
1188 static void uda_remwkp_cgh(struct lpc32xx_udc *udc)
1189 {
1190 	if (udc->board->rmwk_chgb != NULL)
1191 		udc->board->rmwk_chgb(udc->dev_status &
1192 				      (1 << USB_DEVICE_REMOTE_WAKEUP));
1193 }
1194 
1195 /* Reads data from FIFO, adjusts for alignment and data size */
1196 static void udc_pop_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1197 {
1198 	int n, i, bl;
1199 	u16 *p16;
1200 	u32 *p32, tmp, cbytes;
1201 
1202 	/* Use optimal data transfer method based on source address and size */
1203 	switch (((u32) data) & 0x3) {
1204 	case 0: /* 32-bit aligned */
1205 		p32 = (u32 *) data;
1206 		cbytes = (bytes & ~0x3);
1207 
1208 		/* Copy 32-bit aligned data first */
1209 		for (n = 0; n < cbytes; n += 4)
1210 			*p32++ = readl(USBD_RXDATA(udc->udp_baseaddr));
1211 
1212 		/* Handle any remaining bytes */
1213 		bl = bytes - cbytes;
1214 		if (bl) {
1215 			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1216 			for (n = 0; n < bl; n++)
1217 				data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1218 
1219 		}
1220 		break;
1221 
1222 	case 1: /* 8-bit aligned */
1223 	case 3:
1224 		/* Each byte has to be handled independently */
1225 		for (n = 0; n < bytes; n += 4) {
1226 			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1227 
1228 			bl = bytes - n;
1229 			if (bl > 3)
1230 				bl = 3;
1231 
1232 			for (i = 0; i < bl; i++)
1233 				data[n + i] = (u8) ((tmp >> (n * 8)) & 0xFF);
1234 		}
1235 		break;
1236 
1237 	case 2: /* 16-bit aligned */
1238 		p16 = (u16 *) data;
1239 		cbytes = (bytes & ~0x3);
1240 
1241 		/* Copy 32-bit sized objects first with 16-bit alignment */
1242 		for (n = 0; n < cbytes; n += 4) {
1243 			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1244 			*p16++ = (u16)(tmp & 0xFFFF);
1245 			*p16++ = (u16)((tmp >> 16) & 0xFFFF);
1246 		}
1247 
1248 		/* Handle any remaining bytes */
1249 		bl = bytes - cbytes;
1250 		if (bl) {
1251 			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1252 			for (n = 0; n < bl; n++)
1253 				data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1254 		}
1255 		break;
1256 	}
1257 }
1258 
1259 /* Read data from the FIFO for an endpoint. This function is for endpoints (such
1260  * as EP0) that don't use DMA. This function should only be called if a packet
1261  * is known to be ready to read for the endpoint. Note that the endpoint must
1262  * be selected in the protocol engine prior to this call. */
1263 static u32 udc_read_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1264 			 u32 bytes)
1265 {
1266 	u32 tmpv;
1267 	int to = 1000;
1268 	u32 tmp, hwrep = ((hwep & 0x1E) << 1) | CTRL_RD_EN;
1269 
1270 	/* Setup read of endpoint */
1271 	writel(hwrep, USBD_CTRL(udc->udp_baseaddr));
1272 
1273 	/* Wait until packet is ready */
1274 	while ((((tmpv = readl(USBD_RXPLEN(udc->udp_baseaddr))) &
1275 		 PKT_RDY) == 0)	&& (to > 0))
1276 		to--;
1277 	if (!to)
1278 		dev_dbg(udc->dev, "No packet ready on FIFO EP read\n");
1279 
1280 	/* Mask out count */
1281 	tmp = tmpv & PKT_LNGTH_MASK;
1282 	if (bytes < tmp)
1283 		tmp = bytes;
1284 
1285 	if ((tmp > 0) && (data != NULL))
1286 		udc_pop_fifo(udc, (u8 *) data, tmp);
1287 
1288 	writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1289 
1290 	/* Clear the buffer */
1291 	udc_clr_buffer_hwep(udc, hwep);
1292 
1293 	return tmp;
1294 }
1295 
1296 /* Stuffs data into the FIFO, adjusts for alignment and data size */
1297 static void udc_stuff_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1298 {
1299 	int n, i, bl;
1300 	u16 *p16;
1301 	u32 *p32, tmp, cbytes;
1302 
1303 	/* Use optimal data transfer method based on source address and size */
1304 	switch (((u32) data) & 0x3) {
1305 	case 0: /* 32-bit aligned */
1306 		p32 = (u32 *) data;
1307 		cbytes = (bytes & ~0x3);
1308 
1309 		/* Copy 32-bit aligned data first */
1310 		for (n = 0; n < cbytes; n += 4)
1311 			writel(*p32++, USBD_TXDATA(udc->udp_baseaddr));
1312 
1313 		/* Handle any remaining bytes */
1314 		bl = bytes - cbytes;
1315 		if (bl) {
1316 			tmp = 0;
1317 			for (n = 0; n < bl; n++)
1318 				tmp |= data[cbytes + n] << (n * 8);
1319 
1320 			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1321 		}
1322 		break;
1323 
1324 	case 1: /* 8-bit aligned */
1325 	case 3:
1326 		/* Each byte has to be handled independently */
1327 		for (n = 0; n < bytes; n += 4) {
1328 			bl = bytes - n;
1329 			if (bl > 4)
1330 				bl = 4;
1331 
1332 			tmp = 0;
1333 			for (i = 0; i < bl; i++)
1334 				tmp |= data[n + i] << (i * 8);
1335 
1336 			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1337 		}
1338 		break;
1339 
1340 	case 2: /* 16-bit aligned */
1341 		p16 = (u16 *) data;
1342 		cbytes = (bytes & ~0x3);
1343 
1344 		/* Copy 32-bit aligned data first */
1345 		for (n = 0; n < cbytes; n += 4) {
1346 			tmp = *p16++ & 0xFFFF;
1347 			tmp |= (*p16++ & 0xFFFF) << 16;
1348 			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1349 		}
1350 
1351 		/* Handle any remaining bytes */
1352 		bl = bytes - cbytes;
1353 		if (bl) {
1354 			tmp = 0;
1355 			for (n = 0; n < bl; n++)
1356 				tmp |= data[cbytes + n] << (n * 8);
1357 
1358 			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1359 		}
1360 		break;
1361 	}
1362 }
1363 
1364 /* Write data to the FIFO for an endpoint. This function is for endpoints (such
1365  * as EP0) that don't use DMA. Note that the endpoint must be selected in the
1366  * protocol engine prior to this call. */
1367 static void udc_write_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1368 			   u32 bytes)
1369 {
1370 	u32 hwwep = ((hwep & 0x1E) << 1) | CTRL_WR_EN;
1371 
1372 	if ((bytes > 0) && (data == NULL))
1373 		return;
1374 
1375 	/* Setup write of endpoint */
1376 	writel(hwwep, USBD_CTRL(udc->udp_baseaddr));
1377 
1378 	writel(bytes, USBD_TXPLEN(udc->udp_baseaddr));
1379 
1380 	/* Need at least 1 byte to trigger TX */
1381 	if (bytes == 0)
1382 		writel(0, USBD_TXDATA(udc->udp_baseaddr));
1383 	else
1384 		udc_stuff_fifo(udc, (u8 *) data, bytes);
1385 
1386 	writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1387 
1388 	udc_val_buffer_hwep(udc, hwep);
1389 }
1390 
1391 /* USB device reset - resets USB to a default state with just EP0
1392    enabled */
1393 static void uda_usb_reset(struct lpc32xx_udc *udc)
1394 {
1395 	u32 i = 0;
1396 	/* Re-init device controller and EP0 */
1397 	udc_enable(udc);
1398 	udc->gadget.speed = USB_SPEED_FULL;
1399 
1400 	for (i = 1; i < NUM_ENDPOINTS; i++) {
1401 		struct lpc32xx_ep *ep = &udc->ep[i];
1402 		ep->req_pending = 0;
1403 	}
1404 }
1405 
1406 /* Send a ZLP on EP0 */
1407 static void udc_ep0_send_zlp(struct lpc32xx_udc *udc)
1408 {
1409 	udc_write_hwep(udc, EP_IN, NULL, 0);
1410 }
1411 
1412 /* Get current frame number */
1413 static u16 udc_get_current_frame(struct lpc32xx_udc *udc)
1414 {
1415 	u16 flo, fhi;
1416 
1417 	udc_protocol_cmd_w(udc, CMD_RD_FRAME);
1418 	flo = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1419 	fhi = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1420 
1421 	return (fhi << 8) | flo;
1422 }
1423 
1424 /* Set the device as configured - enables all endpoints */
1425 static inline void udc_set_device_configured(struct lpc32xx_udc *udc)
1426 {
1427 	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(CONF_DVICE));
1428 }
1429 
1430 /* Set the device as unconfigured - disables all endpoints */
1431 static inline void udc_set_device_unconfigured(struct lpc32xx_udc *udc)
1432 {
1433 	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1434 }
1435 
1436 /* reinit == restore initial software state */
1437 static void udc_reinit(struct lpc32xx_udc *udc)
1438 {
1439 	u32 i;
1440 
1441 	INIT_LIST_HEAD(&udc->gadget.ep_list);
1442 	INIT_LIST_HEAD(&udc->gadget.ep0->ep_list);
1443 
1444 	for (i = 0; i < NUM_ENDPOINTS; i++) {
1445 		struct lpc32xx_ep *ep = &udc->ep[i];
1446 
1447 		if (i != 0)
1448 			list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1449 		usb_ep_set_maxpacket_limit(&ep->ep, ep->maxpacket);
1450 		INIT_LIST_HEAD(&ep->queue);
1451 		ep->req_pending = 0;
1452 	}
1453 
1454 	udc->ep0state = WAIT_FOR_SETUP;
1455 }
1456 
1457 /* Must be called with lock */
1458 static void done(struct lpc32xx_ep *ep, struct lpc32xx_request *req, int status)
1459 {
1460 	struct lpc32xx_udc *udc = ep->udc;
1461 
1462 	list_del_init(&req->queue);
1463 	if (req->req.status == -EINPROGRESS)
1464 		req->req.status = status;
1465 	else
1466 		status = req->req.status;
1467 
1468 	if (ep->lep) {
1469 		usb_gadget_unmap_request(&udc->gadget, &req->req, ep->is_in);
1470 
1471 		/* Free DDs */
1472 		udc_dd_free(udc, req->dd_desc_ptr);
1473 	}
1474 
1475 	if (status && status != -ESHUTDOWN)
1476 		ep_dbg(ep, "%s done %p, status %d\n", ep->ep.name, req, status);
1477 
1478 	ep->req_pending = 0;
1479 	spin_unlock(&udc->lock);
1480 	usb_gadget_giveback_request(&ep->ep, &req->req);
1481 	spin_lock(&udc->lock);
1482 }
1483 
1484 /* Must be called with lock */
1485 static void nuke(struct lpc32xx_ep *ep, int status)
1486 {
1487 	struct lpc32xx_request *req;
1488 
1489 	while (!list_empty(&ep->queue)) {
1490 		req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1491 		done(ep, req, status);
1492 	}
1493 
1494 	if (status == -ESHUTDOWN) {
1495 		uda_disable_hwepint(ep->udc, ep->hwep_num);
1496 		udc_disable_hwep(ep->udc, ep->hwep_num);
1497 	}
1498 }
1499 
1500 /* IN endpoint 0 transfer */
1501 static int udc_ep0_in_req(struct lpc32xx_udc *udc)
1502 {
1503 	struct lpc32xx_request *req;
1504 	struct lpc32xx_ep *ep0 = &udc->ep[0];
1505 	u32 tsend, ts = 0;
1506 
1507 	if (list_empty(&ep0->queue))
1508 		/* Nothing to send */
1509 		return 0;
1510 	else
1511 		req = list_entry(ep0->queue.next, struct lpc32xx_request,
1512 				 queue);
1513 
1514 	tsend = ts = req->req.length - req->req.actual;
1515 	if (ts == 0) {
1516 		/* Send a ZLP */
1517 		udc_ep0_send_zlp(udc);
1518 		done(ep0, req, 0);
1519 		return 1;
1520 	} else if (ts > ep0->ep.maxpacket)
1521 		ts = ep0->ep.maxpacket; /* Just send what we can */
1522 
1523 	/* Write data to the EP0 FIFO and start transfer */
1524 	udc_write_hwep(udc, EP_IN, (req->req.buf + req->req.actual), ts);
1525 
1526 	/* Increment data pointer */
1527 	req->req.actual += ts;
1528 
1529 	if (tsend >= ep0->ep.maxpacket)
1530 		return 0; /* Stay in data transfer state */
1531 
1532 	/* Transfer request is complete */
1533 	udc->ep0state = WAIT_FOR_SETUP;
1534 	done(ep0, req, 0);
1535 	return 1;
1536 }
1537 
1538 /* OUT endpoint 0 transfer */
1539 static int udc_ep0_out_req(struct lpc32xx_udc *udc)
1540 {
1541 	struct lpc32xx_request *req;
1542 	struct lpc32xx_ep *ep0 = &udc->ep[0];
1543 	u32 tr, bufferspace;
1544 
1545 	if (list_empty(&ep0->queue))
1546 		return 0;
1547 	else
1548 		req = list_entry(ep0->queue.next, struct lpc32xx_request,
1549 				 queue);
1550 
1551 	if (req) {
1552 		if (req->req.length == 0) {
1553 			/* Just dequeue request */
1554 			done(ep0, req, 0);
1555 			udc->ep0state = WAIT_FOR_SETUP;
1556 			return 1;
1557 		}
1558 
1559 		/* Get data from FIFO */
1560 		bufferspace = req->req.length - req->req.actual;
1561 		if (bufferspace > ep0->ep.maxpacket)
1562 			bufferspace = ep0->ep.maxpacket;
1563 
1564 		/* Copy data to buffer */
1565 		prefetchw(req->req.buf + req->req.actual);
1566 		tr = udc_read_hwep(udc, EP_OUT, req->req.buf + req->req.actual,
1567 				   bufferspace);
1568 		req->req.actual += bufferspace;
1569 
1570 		if (tr < ep0->ep.maxpacket) {
1571 			/* This is the last packet */
1572 			done(ep0, req, 0);
1573 			udc->ep0state = WAIT_FOR_SETUP;
1574 			return 1;
1575 		}
1576 	}
1577 
1578 	return 0;
1579 }
1580 
1581 /* Must be called with lock */
1582 static void stop_activity(struct lpc32xx_udc *udc)
1583 {
1584 	struct usb_gadget_driver *driver = udc->driver;
1585 	int i;
1586 
1587 	if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1588 		driver = NULL;
1589 
1590 	udc->gadget.speed = USB_SPEED_UNKNOWN;
1591 	udc->suspended = 0;
1592 
1593 	for (i = 0; i < NUM_ENDPOINTS; i++) {
1594 		struct lpc32xx_ep *ep = &udc->ep[i];
1595 		nuke(ep, -ESHUTDOWN);
1596 	}
1597 	if (driver) {
1598 		spin_unlock(&udc->lock);
1599 		driver->disconnect(&udc->gadget);
1600 		spin_lock(&udc->lock);
1601 	}
1602 
1603 	isp1301_pullup_enable(udc, 0, 0);
1604 	udc_disable(udc);
1605 	udc_reinit(udc);
1606 }
1607 
1608 /*
1609  * Activate or kill host pullup
1610  * Can be called with or without lock
1611  */
1612 static void pullup(struct lpc32xx_udc *udc, int is_on)
1613 {
1614 	if (!udc->clocked)
1615 		return;
1616 
1617 	if (!udc->enabled || !udc->vbus)
1618 		is_on = 0;
1619 
1620 	if (is_on != udc->pullup)
1621 		isp1301_pullup_enable(udc, is_on, 0);
1622 }
1623 
1624 /* Must be called without lock */
1625 static int lpc32xx_ep_disable(struct usb_ep *_ep)
1626 {
1627 	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1628 	struct lpc32xx_udc *udc = ep->udc;
1629 	unsigned long	flags;
1630 
1631 	if ((ep->hwep_num_base == 0) || (ep->hwep_num == 0))
1632 		return -EINVAL;
1633 	spin_lock_irqsave(&udc->lock, flags);
1634 
1635 	nuke(ep, -ESHUTDOWN);
1636 
1637 	/* Clear all DMA statuses for this EP */
1638 	udc_ep_dma_disable(udc, ep->hwep_num);
1639 	writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1640 	writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1641 	writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1642 	writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1643 
1644 	/* Remove the DD pointer in the UDCA */
1645 	udc->udca_v_base[ep->hwep_num] = 0;
1646 
1647 	/* Disable and reset endpoint and interrupt */
1648 	uda_clear_hwepint(udc, ep->hwep_num);
1649 	udc_unrealize_hwep(udc, ep->hwep_num);
1650 
1651 	ep->hwep_num = 0;
1652 
1653 	spin_unlock_irqrestore(&udc->lock, flags);
1654 
1655 	atomic_dec(&udc->enabled_ep_cnt);
1656 	wake_up(&udc->ep_disable_wait_queue);
1657 
1658 	return 0;
1659 }
1660 
1661 /* Must be called without lock */
1662 static int lpc32xx_ep_enable(struct usb_ep *_ep,
1663 			     const struct usb_endpoint_descriptor *desc)
1664 {
1665 	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1666 	struct lpc32xx_udc *udc = ep->udc;
1667 	u16 maxpacket;
1668 	u32 tmp;
1669 	unsigned long flags;
1670 
1671 	/* Verify EP data */
1672 	if ((!_ep) || (!ep) || (!desc) ||
1673 	    (desc->bDescriptorType != USB_DT_ENDPOINT)) {
1674 		dev_dbg(udc->dev, "bad ep or descriptor\n");
1675 		return -EINVAL;
1676 	}
1677 	maxpacket = usb_endpoint_maxp(desc);
1678 	if ((maxpacket == 0) || (maxpacket > ep->maxpacket)) {
1679 		dev_dbg(udc->dev, "bad ep descriptor's packet size\n");
1680 		return -EINVAL;
1681 	}
1682 
1683 	/* Don't touch EP0 */
1684 	if (ep->hwep_num_base == 0) {
1685 		dev_dbg(udc->dev, "Can't re-enable EP0!!!\n");
1686 		return -EINVAL;
1687 	}
1688 
1689 	/* Is driver ready? */
1690 	if ((!udc->driver) || (udc->gadget.speed == USB_SPEED_UNKNOWN)) {
1691 		dev_dbg(udc->dev, "bogus device state\n");
1692 		return -ESHUTDOWN;
1693 	}
1694 
1695 	tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
1696 	switch (tmp) {
1697 	case USB_ENDPOINT_XFER_CONTROL:
1698 		return -EINVAL;
1699 
1700 	case USB_ENDPOINT_XFER_INT:
1701 		if (maxpacket > ep->maxpacket) {
1702 			dev_dbg(udc->dev,
1703 				"Bad INT endpoint maxpacket %d\n", maxpacket);
1704 			return -EINVAL;
1705 		}
1706 		break;
1707 
1708 	case USB_ENDPOINT_XFER_BULK:
1709 		switch (maxpacket) {
1710 		case 8:
1711 		case 16:
1712 		case 32:
1713 		case 64:
1714 			break;
1715 
1716 		default:
1717 			dev_dbg(udc->dev,
1718 				"Bad BULK endpoint maxpacket %d\n", maxpacket);
1719 			return -EINVAL;
1720 		}
1721 		break;
1722 
1723 	case USB_ENDPOINT_XFER_ISOC:
1724 		break;
1725 	}
1726 	spin_lock_irqsave(&udc->lock, flags);
1727 
1728 	/* Initialize endpoint to match the selected descriptor */
1729 	ep->is_in = (desc->bEndpointAddress & USB_DIR_IN) != 0;
1730 	ep->ep.maxpacket = maxpacket;
1731 
1732 	/* Map hardware endpoint from base and direction */
1733 	if (ep->is_in)
1734 		/* IN endpoints are offset 1 from the OUT endpoint */
1735 		ep->hwep_num = ep->hwep_num_base + EP_IN;
1736 	else
1737 		ep->hwep_num = ep->hwep_num_base;
1738 
1739 	ep_dbg(ep, "EP enabled: %s, HW:%d, MP:%d IN:%d\n", ep->ep.name,
1740 	       ep->hwep_num, maxpacket, (ep->is_in == 1));
1741 
1742 	/* Realize the endpoint, interrupt is enabled later when
1743 	 * buffers are queued, IN EPs will NAK until buffers are ready */
1744 	udc_realize_hwep(udc, ep->hwep_num, ep->ep.maxpacket);
1745 	udc_clr_buffer_hwep(udc, ep->hwep_num);
1746 	uda_disable_hwepint(udc, ep->hwep_num);
1747 	udc_clrstall_hwep(udc, ep->hwep_num);
1748 
1749 	/* Clear all DMA statuses for this EP */
1750 	udc_ep_dma_disable(udc, ep->hwep_num);
1751 	writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1752 	writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1753 	writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1754 	writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1755 
1756 	spin_unlock_irqrestore(&udc->lock, flags);
1757 
1758 	atomic_inc(&udc->enabled_ep_cnt);
1759 	return 0;
1760 }
1761 
1762 /*
1763  * Allocate a USB request list
1764  * Can be called with or without lock
1765  */
1766 static struct usb_request *lpc32xx_ep_alloc_request(struct usb_ep *_ep,
1767 						    gfp_t gfp_flags)
1768 {
1769 	struct lpc32xx_request *req;
1770 
1771 	req = kzalloc(sizeof(struct lpc32xx_request), gfp_flags);
1772 	if (!req)
1773 		return NULL;
1774 
1775 	INIT_LIST_HEAD(&req->queue);
1776 	return &req->req;
1777 }
1778 
1779 /*
1780  * De-allocate a USB request list
1781  * Can be called with or without lock
1782  */
1783 static void lpc32xx_ep_free_request(struct usb_ep *_ep,
1784 				    struct usb_request *_req)
1785 {
1786 	struct lpc32xx_request *req;
1787 
1788 	req = container_of(_req, struct lpc32xx_request, req);
1789 	BUG_ON(!list_empty(&req->queue));
1790 	kfree(req);
1791 }
1792 
1793 /* Must be called without lock */
1794 static int lpc32xx_ep_queue(struct usb_ep *_ep,
1795 			    struct usb_request *_req, gfp_t gfp_flags)
1796 {
1797 	struct lpc32xx_request *req;
1798 	struct lpc32xx_ep *ep;
1799 	struct lpc32xx_udc *udc;
1800 	unsigned long flags;
1801 	int status = 0;
1802 
1803 	req = container_of(_req, struct lpc32xx_request, req);
1804 	ep = container_of(_ep, struct lpc32xx_ep, ep);
1805 
1806 	if (!_req || !_req->complete || !_req->buf ||
1807 	    !list_empty(&req->queue))
1808 		return -EINVAL;
1809 
1810 	udc = ep->udc;
1811 
1812 	if (!_ep) {
1813 		dev_dbg(udc->dev, "invalid ep\n");
1814 		return -EINVAL;
1815 	}
1816 
1817 
1818 	if ((!udc) || (!udc->driver) ||
1819 	    (udc->gadget.speed == USB_SPEED_UNKNOWN)) {
1820 		dev_dbg(udc->dev, "invalid device\n");
1821 		return -EINVAL;
1822 	}
1823 
1824 	if (ep->lep) {
1825 		struct lpc32xx_usbd_dd_gad *dd;
1826 
1827 		status = usb_gadget_map_request(&udc->gadget, _req, ep->is_in);
1828 		if (status)
1829 			return status;
1830 
1831 		/* For the request, build a list of DDs */
1832 		dd = udc_dd_alloc(udc);
1833 		if (!dd) {
1834 			/* Error allocating DD */
1835 			return -ENOMEM;
1836 		}
1837 		req->dd_desc_ptr = dd;
1838 
1839 		/* Setup the DMA descriptor */
1840 		dd->dd_next_phy = dd->dd_next_v = 0;
1841 		dd->dd_buffer_addr = req->req.dma;
1842 		dd->dd_status = 0;
1843 
1844 		/* Special handling for ISO EPs */
1845 		if (ep->eptype == EP_ISO_TYPE) {
1846 			dd->dd_setup = DD_SETUP_ISO_EP |
1847 				DD_SETUP_PACKETLEN(0) |
1848 				DD_SETUP_DMALENBYTES(1);
1849 			dd->dd_iso_ps_mem_addr = dd->this_dma + 24;
1850 			if (ep->is_in)
1851 				dd->iso_status[0] = req->req.length;
1852 			else
1853 				dd->iso_status[0] = 0;
1854 		} else
1855 			dd->dd_setup = DD_SETUP_PACKETLEN(ep->ep.maxpacket) |
1856 				DD_SETUP_DMALENBYTES(req->req.length);
1857 	}
1858 
1859 	ep_dbg(ep, "%s queue req %p len %d buf %p (in=%d) z=%d\n", _ep->name,
1860 	       _req, _req->length, _req->buf, ep->is_in, _req->zero);
1861 
1862 	spin_lock_irqsave(&udc->lock, flags);
1863 
1864 	_req->status = -EINPROGRESS;
1865 	_req->actual = 0;
1866 	req->send_zlp = _req->zero;
1867 
1868 	/* Kickstart empty queues */
1869 	if (list_empty(&ep->queue)) {
1870 		list_add_tail(&req->queue, &ep->queue);
1871 
1872 		if (ep->hwep_num_base == 0) {
1873 			/* Handle expected data direction */
1874 			if (ep->is_in) {
1875 				/* IN packet to host */
1876 				udc->ep0state = DATA_IN;
1877 				status = udc_ep0_in_req(udc);
1878 			} else {
1879 				/* OUT packet from host */
1880 				udc->ep0state = DATA_OUT;
1881 				status = udc_ep0_out_req(udc);
1882 			}
1883 		} else if (ep->is_in) {
1884 			/* IN packet to host and kick off transfer */
1885 			if (!ep->req_pending)
1886 				udc_ep_in_req_dma(udc, ep);
1887 		} else
1888 			/* OUT packet from host and kick off list */
1889 			if (!ep->req_pending)
1890 				udc_ep_out_req_dma(udc, ep);
1891 	} else
1892 		list_add_tail(&req->queue, &ep->queue);
1893 
1894 	spin_unlock_irqrestore(&udc->lock, flags);
1895 
1896 	return (status < 0) ? status : 0;
1897 }
1898 
1899 /* Must be called without lock */
1900 static int lpc32xx_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1901 {
1902 	struct lpc32xx_ep *ep;
1903 	struct lpc32xx_request *req;
1904 	unsigned long flags;
1905 
1906 	ep = container_of(_ep, struct lpc32xx_ep, ep);
1907 	if (!_ep || ep->hwep_num_base == 0)
1908 		return -EINVAL;
1909 
1910 	spin_lock_irqsave(&ep->udc->lock, flags);
1911 
1912 	/* make sure it's actually queued on this endpoint */
1913 	list_for_each_entry(req, &ep->queue, queue) {
1914 		if (&req->req == _req)
1915 			break;
1916 	}
1917 	if (&req->req != _req) {
1918 		spin_unlock_irqrestore(&ep->udc->lock, flags);
1919 		return -EINVAL;
1920 	}
1921 
1922 	done(ep, req, -ECONNRESET);
1923 
1924 	spin_unlock_irqrestore(&ep->udc->lock, flags);
1925 
1926 	return 0;
1927 }
1928 
1929 /* Must be called without lock */
1930 static int lpc32xx_ep_set_halt(struct usb_ep *_ep, int value)
1931 {
1932 	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1933 	struct lpc32xx_udc *udc = ep->udc;
1934 	unsigned long flags;
1935 
1936 	if ((!ep) || (ep->hwep_num <= 1))
1937 		return -EINVAL;
1938 
1939 	/* Don't halt an IN EP */
1940 	if (ep->is_in)
1941 		return -EAGAIN;
1942 
1943 	spin_lock_irqsave(&udc->lock, flags);
1944 
1945 	if (value == 1) {
1946 		/* stall */
1947 		udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1948 					DAT_WR_BYTE(EP_STAT_ST));
1949 	} else {
1950 		/* End stall */
1951 		ep->wedge = 0;
1952 		udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1953 					DAT_WR_BYTE(0));
1954 	}
1955 
1956 	spin_unlock_irqrestore(&udc->lock, flags);
1957 
1958 	return 0;
1959 }
1960 
1961 /* set the halt feature and ignores clear requests */
1962 static int lpc32xx_ep_set_wedge(struct usb_ep *_ep)
1963 {
1964 	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1965 
1966 	if (!_ep || !ep->udc)
1967 		return -EINVAL;
1968 
1969 	ep->wedge = 1;
1970 
1971 	return usb_ep_set_halt(_ep);
1972 }
1973 
1974 static const struct usb_ep_ops lpc32xx_ep_ops = {
1975 	.enable		= lpc32xx_ep_enable,
1976 	.disable	= lpc32xx_ep_disable,
1977 	.alloc_request	= lpc32xx_ep_alloc_request,
1978 	.free_request	= lpc32xx_ep_free_request,
1979 	.queue		= lpc32xx_ep_queue,
1980 	.dequeue	= lpc32xx_ep_dequeue,
1981 	.set_halt	= lpc32xx_ep_set_halt,
1982 	.set_wedge	= lpc32xx_ep_set_wedge,
1983 };
1984 
1985 /* Send a ZLP on a non-0 IN EP */
1986 void udc_send_in_zlp(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1987 {
1988 	/* Clear EP status */
1989 	udc_clearep_getsts(udc, ep->hwep_num);
1990 
1991 	/* Send ZLP via FIFO mechanism */
1992 	udc_write_hwep(udc, ep->hwep_num, NULL, 0);
1993 }
1994 
1995 /*
1996  * Handle EP completion for ZLP
1997  * This function will only be called when a delayed ZLP needs to be sent out
1998  * after a DMA transfer has filled both buffers.
1999  */
2000 void udc_handle_eps(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
2001 {
2002 	u32 epstatus;
2003 	struct lpc32xx_request *req;
2004 
2005 	if (ep->hwep_num <= 0)
2006 		return;
2007 
2008 	uda_clear_hwepint(udc, ep->hwep_num);
2009 
2010 	/* If this interrupt isn't enabled, return now */
2011 	if (!(udc->enabled_hwepints & (1 << ep->hwep_num)))
2012 		return;
2013 
2014 	/* Get endpoint status */
2015 	epstatus = udc_clearep_getsts(udc, ep->hwep_num);
2016 
2017 	/*
2018 	 * This should never happen, but protect against writing to the
2019 	 * buffer when full.
2020 	 */
2021 	if (epstatus & EP_SEL_F)
2022 		return;
2023 
2024 	if (ep->is_in) {
2025 		udc_send_in_zlp(udc, ep);
2026 		uda_disable_hwepint(udc, ep->hwep_num);
2027 	} else
2028 		return;
2029 
2030 	/* If there isn't a request waiting, something went wrong */
2031 	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
2032 	if (req) {
2033 		done(ep, req, 0);
2034 
2035 		/* Start another request if ready */
2036 		if (!list_empty(&ep->queue)) {
2037 			if (ep->is_in)
2038 				udc_ep_in_req_dma(udc, ep);
2039 			else
2040 				udc_ep_out_req_dma(udc, ep);
2041 		} else
2042 			ep->req_pending = 0;
2043 	}
2044 }
2045 
2046 
2047 /* DMA end of transfer completion */
2048 static void udc_handle_dma_ep(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
2049 {
2050 	u32 status, epstatus;
2051 	struct lpc32xx_request *req;
2052 	struct lpc32xx_usbd_dd_gad *dd;
2053 
2054 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
2055 	ep->totalints++;
2056 #endif
2057 
2058 	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
2059 	if (!req) {
2060 		ep_err(ep, "DMA interrupt on no req!\n");
2061 		return;
2062 	}
2063 	dd = req->dd_desc_ptr;
2064 
2065 	/* DMA descriptor should always be retired for this call */
2066 	if (!(dd->dd_status & DD_STATUS_DD_RETIRED))
2067 		ep_warn(ep, "DMA descriptor did not retire\n");
2068 
2069 	/* Disable DMA */
2070 	udc_ep_dma_disable(udc, ep->hwep_num);
2071 	writel((1 << ep->hwep_num), USBD_EOTINTCLR(udc->udp_baseaddr));
2072 	writel((1 << ep->hwep_num), USBD_NDDRTINTCLR(udc->udp_baseaddr));
2073 
2074 	/* System error? */
2075 	if (readl(USBD_SYSERRTINTST(udc->udp_baseaddr)) &
2076 	    (1 << ep->hwep_num)) {
2077 		writel((1 << ep->hwep_num),
2078 			     USBD_SYSERRTINTCLR(udc->udp_baseaddr));
2079 		ep_err(ep, "AHB critical error!\n");
2080 		ep->req_pending = 0;
2081 
2082 		/* The error could have occurred on a packet of a multipacket
2083 		 * transfer, so recovering the transfer is not possible. Close
2084 		 * the request with an error */
2085 		done(ep, req, -ECONNABORTED);
2086 		return;
2087 	}
2088 
2089 	/* Handle the current DD's status */
2090 	status = dd->dd_status;
2091 	switch (status & DD_STATUS_STS_MASK) {
2092 	case DD_STATUS_STS_NS:
2093 		/* DD not serviced? This shouldn't happen! */
2094 		ep->req_pending = 0;
2095 		ep_err(ep, "DMA critical EP error: DD not serviced (0x%x)!\n",
2096 		       status);
2097 
2098 		done(ep, req, -ECONNABORTED);
2099 		return;
2100 
2101 	case DD_STATUS_STS_BS:
2102 		/* Interrupt only fires on EOT - This shouldn't happen! */
2103 		ep->req_pending = 0;
2104 		ep_err(ep, "DMA critical EP error: EOT prior to service completion (0x%x)!\n",
2105 		       status);
2106 		done(ep, req, -ECONNABORTED);
2107 		return;
2108 
2109 	case DD_STATUS_STS_NC:
2110 	case DD_STATUS_STS_DUR:
2111 		/* Really just a short packet, not an underrun */
2112 		/* This is a good status and what we expect */
2113 		break;
2114 
2115 	default:
2116 		/* Data overrun, system error, or unknown */
2117 		ep->req_pending = 0;
2118 		ep_err(ep, "DMA critical EP error: System error (0x%x)!\n",
2119 		       status);
2120 		done(ep, req, -ECONNABORTED);
2121 		return;
2122 	}
2123 
2124 	/* ISO endpoints are handled differently */
2125 	if (ep->eptype == EP_ISO_TYPE) {
2126 		if (ep->is_in)
2127 			req->req.actual = req->req.length;
2128 		else
2129 			req->req.actual = dd->iso_status[0] & 0xFFFF;
2130 	} else
2131 		req->req.actual += DD_STATUS_CURDMACNT(status);
2132 
2133 	/* Send a ZLP if necessary. This will be done for non-int
2134 	 * packets which have a size that is a divisor of MAXP */
2135 	if (req->send_zlp) {
2136 		/*
2137 		 * If at least 1 buffer is available, send the ZLP now.
2138 		 * Otherwise, the ZLP send needs to be deferred until a
2139 		 * buffer is available.
2140 		 */
2141 		if (udc_clearep_getsts(udc, ep->hwep_num) & EP_SEL_F) {
2142 			udc_clearep_getsts(udc, ep->hwep_num);
2143 			uda_enable_hwepint(udc, ep->hwep_num);
2144 			epstatus = udc_clearep_getsts(udc, ep->hwep_num);
2145 
2146 			/* Let the EP interrupt handle the ZLP */
2147 			return;
2148 		} else
2149 			udc_send_in_zlp(udc, ep);
2150 	}
2151 
2152 	/* Transfer request is complete */
2153 	done(ep, req, 0);
2154 
2155 	/* Start another request if ready */
2156 	udc_clearep_getsts(udc, ep->hwep_num);
2157 	if (!list_empty((&ep->queue))) {
2158 		if (ep->is_in)
2159 			udc_ep_in_req_dma(udc, ep);
2160 		else
2161 			udc_ep_out_req_dma(udc, ep);
2162 	} else
2163 		ep->req_pending = 0;
2164 
2165 }
2166 
2167 /*
2168  *
2169  * Endpoint 0 functions
2170  *
2171  */
2172 static void udc_handle_dev(struct lpc32xx_udc *udc)
2173 {
2174 	u32 tmp;
2175 
2176 	udc_protocol_cmd_w(udc, CMD_GET_DEV_STAT);
2177 	tmp = udc_protocol_cmd_r(udc, DAT_GET_DEV_STAT);
2178 
2179 	if (tmp & DEV_RST)
2180 		uda_usb_reset(udc);
2181 	else if (tmp & DEV_CON_CH)
2182 		uda_power_event(udc, (tmp & DEV_CON));
2183 	else if (tmp & DEV_SUS_CH) {
2184 		if (tmp & DEV_SUS) {
2185 			if (udc->vbus == 0)
2186 				stop_activity(udc);
2187 			else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2188 				 udc->driver) {
2189 				/* Power down transceiver */
2190 				udc->poweron = 0;
2191 				schedule_work(&udc->pullup_job);
2192 				uda_resm_susp_event(udc, 1);
2193 			}
2194 		} else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2195 			   udc->driver && udc->vbus) {
2196 			uda_resm_susp_event(udc, 0);
2197 			/* Power up transceiver */
2198 			udc->poweron = 1;
2199 			schedule_work(&udc->pullup_job);
2200 		}
2201 	}
2202 }
2203 
2204 static int udc_get_status(struct lpc32xx_udc *udc, u16 reqtype, u16 wIndex)
2205 {
2206 	struct lpc32xx_ep *ep;
2207 	u32 ep0buff = 0, tmp;
2208 
2209 	switch (reqtype & USB_RECIP_MASK) {
2210 	case USB_RECIP_INTERFACE:
2211 		break; /* Not supported */
2212 
2213 	case USB_RECIP_DEVICE:
2214 		ep0buff = udc->gadget.is_selfpowered;
2215 		if (udc->dev_status & (1 << USB_DEVICE_REMOTE_WAKEUP))
2216 			ep0buff |= (1 << USB_DEVICE_REMOTE_WAKEUP);
2217 		break;
2218 
2219 	case USB_RECIP_ENDPOINT:
2220 		tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2221 		ep = &udc->ep[tmp];
2222 		if ((tmp == 0) || (tmp >= NUM_ENDPOINTS))
2223 			return -EOPNOTSUPP;
2224 
2225 		if (wIndex & USB_DIR_IN) {
2226 			if (!ep->is_in)
2227 				return -EOPNOTSUPP; /* Something's wrong */
2228 		} else if (ep->is_in)
2229 			return -EOPNOTSUPP; /* Not an IN endpoint */
2230 
2231 		/* Get status of the endpoint */
2232 		udc_protocol_cmd_w(udc, CMD_SEL_EP(ep->hwep_num));
2233 		tmp = udc_protocol_cmd_r(udc, DAT_SEL_EP(ep->hwep_num));
2234 
2235 		if (tmp & EP_SEL_ST)
2236 			ep0buff = (1 << USB_ENDPOINT_HALT);
2237 		else
2238 			ep0buff = 0;
2239 		break;
2240 
2241 	default:
2242 		break;
2243 	}
2244 
2245 	/* Return data */
2246 	udc_write_hwep(udc, EP_IN, &ep0buff, 2);
2247 
2248 	return 0;
2249 }
2250 
2251 static void udc_handle_ep0_setup(struct lpc32xx_udc *udc)
2252 {
2253 	struct lpc32xx_ep *ep, *ep0 = &udc->ep[0];
2254 	struct usb_ctrlrequest ctrlpkt;
2255 	int i, bytes;
2256 	u16 wIndex, wValue, wLength, reqtype, req, tmp;
2257 
2258 	/* Nuke previous transfers */
2259 	nuke(ep0, -EPROTO);
2260 
2261 	/* Get setup packet */
2262 	bytes = udc_read_hwep(udc, EP_OUT, (u32 *) &ctrlpkt, 8);
2263 	if (bytes != 8) {
2264 		ep_warn(ep0, "Incorrectly sized setup packet (s/b 8, is %d)!\n",
2265 			bytes);
2266 		return;
2267 	}
2268 
2269 	/* Native endianness */
2270 	wIndex = le16_to_cpu(ctrlpkt.wIndex);
2271 	wValue = le16_to_cpu(ctrlpkt.wValue);
2272 	wLength = le16_to_cpu(ctrlpkt.wLength);
2273 	reqtype = le16_to_cpu(ctrlpkt.bRequestType);
2274 
2275 	/* Set direction of EP0 */
2276 	if (likely(reqtype & USB_DIR_IN))
2277 		ep0->is_in = 1;
2278 	else
2279 		ep0->is_in = 0;
2280 
2281 	/* Handle SETUP packet */
2282 	req = le16_to_cpu(ctrlpkt.bRequest);
2283 	switch (req) {
2284 	case USB_REQ_CLEAR_FEATURE:
2285 	case USB_REQ_SET_FEATURE:
2286 		switch (reqtype) {
2287 		case (USB_TYPE_STANDARD | USB_RECIP_DEVICE):
2288 			if (wValue != USB_DEVICE_REMOTE_WAKEUP)
2289 				goto stall; /* Nothing else handled */
2290 
2291 			/* Tell board about event */
2292 			if (req == USB_REQ_CLEAR_FEATURE)
2293 				udc->dev_status &=
2294 					~(1 << USB_DEVICE_REMOTE_WAKEUP);
2295 			else
2296 				udc->dev_status |=
2297 					(1 << USB_DEVICE_REMOTE_WAKEUP);
2298 			uda_remwkp_cgh(udc);
2299 			goto zlp_send;
2300 
2301 		case (USB_TYPE_STANDARD | USB_RECIP_ENDPOINT):
2302 			tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2303 			if ((wValue != USB_ENDPOINT_HALT) ||
2304 			    (tmp >= NUM_ENDPOINTS))
2305 				break;
2306 
2307 			/* Find hardware endpoint from logical endpoint */
2308 			ep = &udc->ep[tmp];
2309 			tmp = ep->hwep_num;
2310 			if (tmp == 0)
2311 				break;
2312 
2313 			if (req == USB_REQ_SET_FEATURE)
2314 				udc_stall_hwep(udc, tmp);
2315 			else if (!ep->wedge)
2316 				udc_clrstall_hwep(udc, tmp);
2317 
2318 			goto zlp_send;
2319 
2320 		default:
2321 			break;
2322 		}
2323 
2324 
2325 	case USB_REQ_SET_ADDRESS:
2326 		if (reqtype == (USB_TYPE_STANDARD | USB_RECIP_DEVICE)) {
2327 			udc_set_address(udc, wValue);
2328 			goto zlp_send;
2329 		}
2330 		break;
2331 
2332 	case USB_REQ_GET_STATUS:
2333 		udc_get_status(udc, reqtype, wIndex);
2334 		return;
2335 
2336 	default:
2337 		break; /* Let GadgetFS handle the descriptor instead */
2338 	}
2339 
2340 	if (likely(udc->driver)) {
2341 		/* device-2-host (IN) or no data setup command, process
2342 		 * immediately */
2343 		spin_unlock(&udc->lock);
2344 		i = udc->driver->setup(&udc->gadget, &ctrlpkt);
2345 
2346 		spin_lock(&udc->lock);
2347 		if (req == USB_REQ_SET_CONFIGURATION) {
2348 			/* Configuration is set after endpoints are realized */
2349 			if (wValue) {
2350 				/* Set configuration */
2351 				udc_set_device_configured(udc);
2352 
2353 				udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2354 							DAT_WR_BYTE(AP_CLK |
2355 							INAK_BI | INAK_II));
2356 			} else {
2357 				/* Clear configuration */
2358 				udc_set_device_unconfigured(udc);
2359 
2360 				/* Disable NAK interrupts */
2361 				udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2362 							DAT_WR_BYTE(AP_CLK));
2363 			}
2364 		}
2365 
2366 		if (i < 0) {
2367 			/* setup processing failed, force stall */
2368 			dev_dbg(udc->dev,
2369 				"req %02x.%02x protocol STALL; stat %d\n",
2370 				reqtype, req, i);
2371 			udc->ep0state = WAIT_FOR_SETUP;
2372 			goto stall;
2373 		}
2374 	}
2375 
2376 	if (!ep0->is_in)
2377 		udc_ep0_send_zlp(udc); /* ZLP IN packet on data phase */
2378 
2379 	return;
2380 
2381 stall:
2382 	udc_stall_hwep(udc, EP_IN);
2383 	return;
2384 
2385 zlp_send:
2386 	udc_ep0_send_zlp(udc);
2387 	return;
2388 }
2389 
2390 /* IN endpoint 0 transfer */
2391 static void udc_handle_ep0_in(struct lpc32xx_udc *udc)
2392 {
2393 	struct lpc32xx_ep *ep0 = &udc->ep[0];
2394 	u32 epstatus;
2395 
2396 	/* Clear EP interrupt */
2397 	epstatus = udc_clearep_getsts(udc, EP_IN);
2398 
2399 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
2400 	ep0->totalints++;
2401 #endif
2402 
2403 	/* Stalled? Clear stall and reset buffers */
2404 	if (epstatus & EP_SEL_ST) {
2405 		udc_clrstall_hwep(udc, EP_IN);
2406 		nuke(ep0, -ECONNABORTED);
2407 		udc->ep0state = WAIT_FOR_SETUP;
2408 		return;
2409 	}
2410 
2411 	/* Is a buffer available? */
2412 	if (!(epstatus & EP_SEL_F)) {
2413 		/* Handle based on current state */
2414 		if (udc->ep0state == DATA_IN)
2415 			udc_ep0_in_req(udc);
2416 		else {
2417 			/* Unknown state for EP0 oe end of DATA IN phase */
2418 			nuke(ep0, -ECONNABORTED);
2419 			udc->ep0state = WAIT_FOR_SETUP;
2420 		}
2421 	}
2422 }
2423 
2424 /* OUT endpoint 0 transfer */
2425 static void udc_handle_ep0_out(struct lpc32xx_udc *udc)
2426 {
2427 	struct lpc32xx_ep *ep0 = &udc->ep[0];
2428 	u32 epstatus;
2429 
2430 	/* Clear EP interrupt */
2431 	epstatus = udc_clearep_getsts(udc, EP_OUT);
2432 
2433 
2434 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
2435 	ep0->totalints++;
2436 #endif
2437 
2438 	/* Stalled? */
2439 	if (epstatus & EP_SEL_ST) {
2440 		udc_clrstall_hwep(udc, EP_OUT);
2441 		nuke(ep0, -ECONNABORTED);
2442 		udc->ep0state = WAIT_FOR_SETUP;
2443 		return;
2444 	}
2445 
2446 	/* A NAK may occur if a packet couldn't be received yet */
2447 	if (epstatus & EP_SEL_EPN)
2448 		return;
2449 	/* Setup packet incoming? */
2450 	if (epstatus & EP_SEL_STP) {
2451 		nuke(ep0, 0);
2452 		udc->ep0state = WAIT_FOR_SETUP;
2453 	}
2454 
2455 	/* Data available? */
2456 	if (epstatus & EP_SEL_F)
2457 		/* Handle based on current state */
2458 		switch (udc->ep0state) {
2459 		case WAIT_FOR_SETUP:
2460 			udc_handle_ep0_setup(udc);
2461 			break;
2462 
2463 		case DATA_OUT:
2464 			udc_ep0_out_req(udc);
2465 			break;
2466 
2467 		default:
2468 			/* Unknown state for EP0 */
2469 			nuke(ep0, -ECONNABORTED);
2470 			udc->ep0state = WAIT_FOR_SETUP;
2471 		}
2472 }
2473 
2474 /* Must be called without lock */
2475 static int lpc32xx_get_frame(struct usb_gadget *gadget)
2476 {
2477 	int frame;
2478 	unsigned long flags;
2479 	struct lpc32xx_udc *udc = to_udc(gadget);
2480 
2481 	if (!udc->clocked)
2482 		return -EINVAL;
2483 
2484 	spin_lock_irqsave(&udc->lock, flags);
2485 
2486 	frame = (int) udc_get_current_frame(udc);
2487 
2488 	spin_unlock_irqrestore(&udc->lock, flags);
2489 
2490 	return frame;
2491 }
2492 
2493 static int lpc32xx_wakeup(struct usb_gadget *gadget)
2494 {
2495 	return -ENOTSUPP;
2496 }
2497 
2498 static int lpc32xx_set_selfpowered(struct usb_gadget *gadget, int is_on)
2499 {
2500 	gadget->is_selfpowered = (is_on != 0);
2501 
2502 	return 0;
2503 }
2504 
2505 /*
2506  * vbus is here!  turn everything on that's ready
2507  * Must be called without lock
2508  */
2509 static int lpc32xx_vbus_session(struct usb_gadget *gadget, int is_active)
2510 {
2511 	unsigned long flags;
2512 	struct lpc32xx_udc *udc = to_udc(gadget);
2513 
2514 	spin_lock_irqsave(&udc->lock, flags);
2515 
2516 	/* Doesn't need lock */
2517 	if (udc->driver) {
2518 		udc_clk_set(udc, 1);
2519 		udc_enable(udc);
2520 		pullup(udc, is_active);
2521 	} else {
2522 		stop_activity(udc);
2523 		pullup(udc, 0);
2524 
2525 		spin_unlock_irqrestore(&udc->lock, flags);
2526 		/*
2527 		 *  Wait for all the endpoints to disable,
2528 		 *  before disabling clocks. Don't wait if
2529 		 *  endpoints are not enabled.
2530 		 */
2531 		if (atomic_read(&udc->enabled_ep_cnt))
2532 			wait_event_interruptible(udc->ep_disable_wait_queue,
2533 				 (atomic_read(&udc->enabled_ep_cnt) == 0));
2534 
2535 		spin_lock_irqsave(&udc->lock, flags);
2536 
2537 		udc_clk_set(udc, 0);
2538 	}
2539 
2540 	spin_unlock_irqrestore(&udc->lock, flags);
2541 
2542 	return 0;
2543 }
2544 
2545 /* Can be called with or without lock */
2546 static int lpc32xx_pullup(struct usb_gadget *gadget, int is_on)
2547 {
2548 	struct lpc32xx_udc *udc = to_udc(gadget);
2549 
2550 	/* Doesn't need lock */
2551 	pullup(udc, is_on);
2552 
2553 	return 0;
2554 }
2555 
2556 static int lpc32xx_start(struct usb_gadget *, struct usb_gadget_driver *);
2557 static int lpc32xx_stop(struct usb_gadget *);
2558 
2559 static const struct usb_gadget_ops lpc32xx_udc_ops = {
2560 	.get_frame		= lpc32xx_get_frame,
2561 	.wakeup			= lpc32xx_wakeup,
2562 	.set_selfpowered	= lpc32xx_set_selfpowered,
2563 	.vbus_session		= lpc32xx_vbus_session,
2564 	.pullup			= lpc32xx_pullup,
2565 	.udc_start		= lpc32xx_start,
2566 	.udc_stop		= lpc32xx_stop,
2567 };
2568 
2569 static void nop_release(struct device *dev)
2570 {
2571 	/* nothing to free */
2572 }
2573 
2574 static const struct lpc32xx_udc controller_template = {
2575 	.gadget = {
2576 		.ops	= &lpc32xx_udc_ops,
2577 		.name	= driver_name,
2578 		.dev	= {
2579 			.init_name = "gadget",
2580 			.release = nop_release,
2581 		}
2582 	},
2583 	.ep[0] = {
2584 		.ep = {
2585 			.name	= "ep0",
2586 			.ops	= &lpc32xx_ep_ops,
2587 		},
2588 		.maxpacket	= 64,
2589 		.hwep_num_base	= 0,
2590 		.hwep_num	= 0, /* Can be 0 or 1, has special handling */
2591 		.lep		= 0,
2592 		.eptype		= EP_CTL_TYPE,
2593 	},
2594 	.ep[1] = {
2595 		.ep = {
2596 			.name	= "ep1-int",
2597 			.ops	= &lpc32xx_ep_ops,
2598 		},
2599 		.maxpacket	= 64,
2600 		.hwep_num_base	= 2,
2601 		.hwep_num	= 0, /* 2 or 3, will be set later */
2602 		.lep		= 1,
2603 		.eptype		= EP_INT_TYPE,
2604 	},
2605 	.ep[2] = {
2606 		.ep = {
2607 			.name	= "ep2-bulk",
2608 			.ops	= &lpc32xx_ep_ops,
2609 		},
2610 		.maxpacket	= 64,
2611 		.hwep_num_base	= 4,
2612 		.hwep_num	= 0, /* 4 or 5, will be set later */
2613 		.lep		= 2,
2614 		.eptype		= EP_BLK_TYPE,
2615 	},
2616 	.ep[3] = {
2617 		.ep = {
2618 			.name	= "ep3-iso",
2619 			.ops	= &lpc32xx_ep_ops,
2620 		},
2621 		.maxpacket	= 1023,
2622 		.hwep_num_base	= 6,
2623 		.hwep_num	= 0, /* 6 or 7, will be set later */
2624 		.lep		= 3,
2625 		.eptype		= EP_ISO_TYPE,
2626 	},
2627 	.ep[4] = {
2628 		.ep = {
2629 			.name	= "ep4-int",
2630 			.ops	= &lpc32xx_ep_ops,
2631 		},
2632 		.maxpacket	= 64,
2633 		.hwep_num_base	= 8,
2634 		.hwep_num	= 0, /* 8 or 9, will be set later */
2635 		.lep		= 4,
2636 		.eptype		= EP_INT_TYPE,
2637 	},
2638 	.ep[5] = {
2639 		.ep = {
2640 			.name	= "ep5-bulk",
2641 			.ops	= &lpc32xx_ep_ops,
2642 		},
2643 		.maxpacket	= 64,
2644 		.hwep_num_base	= 10,
2645 		.hwep_num	= 0, /* 10 or 11, will be set later */
2646 		.lep		= 5,
2647 		.eptype		= EP_BLK_TYPE,
2648 	},
2649 	.ep[6] = {
2650 		.ep = {
2651 			.name	= "ep6-iso",
2652 			.ops	= &lpc32xx_ep_ops,
2653 		},
2654 		.maxpacket	= 1023,
2655 		.hwep_num_base	= 12,
2656 		.hwep_num	= 0, /* 12 or 13, will be set later */
2657 		.lep		= 6,
2658 		.eptype		= EP_ISO_TYPE,
2659 	},
2660 	.ep[7] = {
2661 		.ep = {
2662 			.name	= "ep7-int",
2663 			.ops	= &lpc32xx_ep_ops,
2664 		},
2665 		.maxpacket	= 64,
2666 		.hwep_num_base	= 14,
2667 		.hwep_num	= 0,
2668 		.lep		= 7,
2669 		.eptype		= EP_INT_TYPE,
2670 	},
2671 	.ep[8] = {
2672 		.ep = {
2673 			.name	= "ep8-bulk",
2674 			.ops	= &lpc32xx_ep_ops,
2675 		},
2676 		.maxpacket	= 64,
2677 		.hwep_num_base	= 16,
2678 		.hwep_num	= 0,
2679 		.lep		= 8,
2680 		.eptype		= EP_BLK_TYPE,
2681 	},
2682 	.ep[9] = {
2683 		.ep = {
2684 			.name	= "ep9-iso",
2685 			.ops	= &lpc32xx_ep_ops,
2686 		},
2687 		.maxpacket	= 1023,
2688 		.hwep_num_base	= 18,
2689 		.hwep_num	= 0,
2690 		.lep		= 9,
2691 		.eptype		= EP_ISO_TYPE,
2692 	},
2693 	.ep[10] = {
2694 		.ep = {
2695 			.name	= "ep10-int",
2696 			.ops	= &lpc32xx_ep_ops,
2697 		},
2698 		.maxpacket	= 64,
2699 		.hwep_num_base	= 20,
2700 		.hwep_num	= 0,
2701 		.lep		= 10,
2702 		.eptype		= EP_INT_TYPE,
2703 	},
2704 	.ep[11] = {
2705 		.ep = {
2706 			.name	= "ep11-bulk",
2707 			.ops	= &lpc32xx_ep_ops,
2708 		},
2709 		.maxpacket	= 64,
2710 		.hwep_num_base	= 22,
2711 		.hwep_num	= 0,
2712 		.lep		= 11,
2713 		.eptype		= EP_BLK_TYPE,
2714 	},
2715 	.ep[12] = {
2716 		.ep = {
2717 			.name	= "ep12-iso",
2718 			.ops	= &lpc32xx_ep_ops,
2719 		},
2720 		.maxpacket	= 1023,
2721 		.hwep_num_base	= 24,
2722 		.hwep_num	= 0,
2723 		.lep		= 12,
2724 		.eptype		= EP_ISO_TYPE,
2725 	},
2726 	.ep[13] = {
2727 		.ep = {
2728 			.name	= "ep13-int",
2729 			.ops	= &lpc32xx_ep_ops,
2730 		},
2731 		.maxpacket	= 64,
2732 		.hwep_num_base	= 26,
2733 		.hwep_num	= 0,
2734 		.lep		= 13,
2735 		.eptype		= EP_INT_TYPE,
2736 	},
2737 	.ep[14] = {
2738 		.ep = {
2739 			.name	= "ep14-bulk",
2740 			.ops	= &lpc32xx_ep_ops,
2741 		},
2742 		.maxpacket	= 64,
2743 		.hwep_num_base	= 28,
2744 		.hwep_num	= 0,
2745 		.lep		= 14,
2746 		.eptype		= EP_BLK_TYPE,
2747 	},
2748 	.ep[15] = {
2749 		.ep = {
2750 			.name	= "ep15-bulk",
2751 			.ops	= &lpc32xx_ep_ops,
2752 		},
2753 		.maxpacket	= 1023,
2754 		.hwep_num_base	= 30,
2755 		.hwep_num	= 0,
2756 		.lep		= 15,
2757 		.eptype		= EP_BLK_TYPE,
2758 	},
2759 };
2760 
2761 /* ISO and status interrupts */
2762 static irqreturn_t lpc32xx_usb_lp_irq(int irq, void *_udc)
2763 {
2764 	u32 tmp, devstat;
2765 	struct lpc32xx_udc *udc = _udc;
2766 
2767 	spin_lock(&udc->lock);
2768 
2769 	/* Read the device status register */
2770 	devstat = readl(USBD_DEVINTST(udc->udp_baseaddr));
2771 
2772 	devstat &= ~USBD_EP_FAST;
2773 	writel(devstat, USBD_DEVINTCLR(udc->udp_baseaddr));
2774 	devstat = devstat & udc->enabled_devints;
2775 
2776 	/* Device specific handling needed? */
2777 	if (devstat & USBD_DEV_STAT)
2778 		udc_handle_dev(udc);
2779 
2780 	/* Start of frame? (devstat & FRAME_INT):
2781 	 * The frame interrupt isn't really needed for ISO support,
2782 	 * as the driver will queue the necessary packets */
2783 
2784 	/* Error? */
2785 	if (devstat & ERR_INT) {
2786 		/* All types of errors, from cable removal during transfer to
2787 		 * misc protocol and bit errors. These are mostly for just info,
2788 		 * as the USB hardware will work around these. If these errors
2789 		 * happen alot, something is wrong. */
2790 		udc_protocol_cmd_w(udc, CMD_RD_ERR_STAT);
2791 		tmp = udc_protocol_cmd_r(udc, DAT_RD_ERR_STAT);
2792 		dev_dbg(udc->dev, "Device error (0x%x)!\n", tmp);
2793 	}
2794 
2795 	spin_unlock(&udc->lock);
2796 
2797 	return IRQ_HANDLED;
2798 }
2799 
2800 /* EP interrupts */
2801 static irqreturn_t lpc32xx_usb_hp_irq(int irq, void *_udc)
2802 {
2803 	u32 tmp;
2804 	struct lpc32xx_udc *udc = _udc;
2805 
2806 	spin_lock(&udc->lock);
2807 
2808 	/* Read the device status register */
2809 	writel(USBD_EP_FAST, USBD_DEVINTCLR(udc->udp_baseaddr));
2810 
2811 	/* Endpoints */
2812 	tmp = readl(USBD_EPINTST(udc->udp_baseaddr));
2813 
2814 	/* Special handling for EP0 */
2815 	if (tmp & (EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2816 		/* Handle EP0 IN */
2817 		if (tmp & (EP_MASK_SEL(0, EP_IN)))
2818 			udc_handle_ep0_in(udc);
2819 
2820 		/* Handle EP0 OUT */
2821 		if (tmp & (EP_MASK_SEL(0, EP_OUT)))
2822 			udc_handle_ep0_out(udc);
2823 	}
2824 
2825 	/* All other EPs */
2826 	if (tmp & ~(EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2827 		int i;
2828 
2829 		/* Handle other EP interrupts */
2830 		for (i = 1; i < NUM_ENDPOINTS; i++) {
2831 			if (tmp & (1 << udc->ep[i].hwep_num))
2832 				udc_handle_eps(udc, &udc->ep[i]);
2833 		}
2834 	}
2835 
2836 	spin_unlock(&udc->lock);
2837 
2838 	return IRQ_HANDLED;
2839 }
2840 
2841 static irqreturn_t lpc32xx_usb_devdma_irq(int irq, void *_udc)
2842 {
2843 	struct lpc32xx_udc *udc = _udc;
2844 
2845 	int i;
2846 	u32 tmp;
2847 
2848 	spin_lock(&udc->lock);
2849 
2850 	/* Handle EP DMA EOT interrupts */
2851 	tmp = readl(USBD_EOTINTST(udc->udp_baseaddr)) |
2852 		(readl(USBD_EPDMAST(udc->udp_baseaddr)) &
2853 		 readl(USBD_NDDRTINTST(udc->udp_baseaddr))) |
2854 		readl(USBD_SYSERRTINTST(udc->udp_baseaddr));
2855 	for (i = 1; i < NUM_ENDPOINTS; i++) {
2856 		if (tmp & (1 << udc->ep[i].hwep_num))
2857 			udc_handle_dma_ep(udc, &udc->ep[i]);
2858 	}
2859 
2860 	spin_unlock(&udc->lock);
2861 
2862 	return IRQ_HANDLED;
2863 }
2864 
2865 /*
2866  *
2867  * VBUS detection, pullup handler, and Gadget cable state notification
2868  *
2869  */
2870 static void vbus_work(struct work_struct *work)
2871 {
2872 	u8 value;
2873 	struct lpc32xx_udc *udc = container_of(work, struct lpc32xx_udc,
2874 					       vbus_job);
2875 
2876 	if (udc->enabled != 0) {
2877 		/* Discharge VBUS real quick */
2878 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2879 			ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
2880 
2881 		/* Give VBUS some time (100mS) to discharge */
2882 		msleep(100);
2883 
2884 		/* Disable VBUS discharge resistor */
2885 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2886 			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
2887 			OTG1_VBUS_DISCHRG);
2888 
2889 		/* Clear interrupt */
2890 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2891 			ISP1301_I2C_INTERRUPT_LATCH |
2892 			ISP1301_I2C_REG_CLEAR_ADDR, ~0);
2893 
2894 		/* Get the VBUS status from the transceiver */
2895 		value = i2c_smbus_read_byte_data(udc->isp1301_i2c_client,
2896 						 ISP1301_I2C_INTERRUPT_SOURCE);
2897 
2898 		/* VBUS on or off? */
2899 		if (value & INT_SESS_VLD)
2900 			udc->vbus = 1;
2901 		else
2902 			udc->vbus = 0;
2903 
2904 		/* VBUS changed? */
2905 		if (udc->last_vbus != udc->vbus) {
2906 			udc->last_vbus = udc->vbus;
2907 			lpc32xx_vbus_session(&udc->gadget, udc->vbus);
2908 		}
2909 	}
2910 
2911 	/* Re-enable after completion */
2912 	enable_irq(udc->udp_irq[IRQ_USB_ATX]);
2913 }
2914 
2915 static irqreturn_t lpc32xx_usb_vbus_irq(int irq, void *_udc)
2916 {
2917 	struct lpc32xx_udc *udc = _udc;
2918 
2919 	/* Defer handling of VBUS IRQ to work queue */
2920 	disable_irq_nosync(udc->udp_irq[IRQ_USB_ATX]);
2921 	schedule_work(&udc->vbus_job);
2922 
2923 	return IRQ_HANDLED;
2924 }
2925 
2926 static int lpc32xx_start(struct usb_gadget *gadget,
2927 			 struct usb_gadget_driver *driver)
2928 {
2929 	struct lpc32xx_udc *udc = to_udc(gadget);
2930 	int i;
2931 
2932 	if (!driver || driver->max_speed < USB_SPEED_FULL || !driver->setup) {
2933 		dev_err(udc->dev, "bad parameter.\n");
2934 		return -EINVAL;
2935 	}
2936 
2937 	if (udc->driver) {
2938 		dev_err(udc->dev, "UDC already has a gadget driver\n");
2939 		return -EBUSY;
2940 	}
2941 
2942 	udc->driver = driver;
2943 	udc->gadget.dev.of_node = udc->dev->of_node;
2944 	udc->enabled = 1;
2945 	udc->gadget.is_selfpowered = 1;
2946 	udc->vbus = 0;
2947 
2948 	/* Force VBUS process once to check for cable insertion */
2949 	udc->last_vbus = udc->vbus = 0;
2950 	schedule_work(&udc->vbus_job);
2951 
2952 	/* Do not re-enable ATX IRQ (3) */
2953 	for (i = IRQ_USB_LP; i < IRQ_USB_ATX; i++)
2954 		enable_irq(udc->udp_irq[i]);
2955 
2956 	return 0;
2957 }
2958 
2959 static int lpc32xx_stop(struct usb_gadget *gadget)
2960 {
2961 	int i;
2962 	struct lpc32xx_udc *udc = to_udc(gadget);
2963 
2964 	for (i = IRQ_USB_LP; i <= IRQ_USB_ATX; i++)
2965 		disable_irq(udc->udp_irq[i]);
2966 
2967 	if (udc->clocked) {
2968 		spin_lock(&udc->lock);
2969 		stop_activity(udc);
2970 		spin_unlock(&udc->lock);
2971 
2972 		/*
2973 		 *  Wait for all the endpoints to disable,
2974 		 *  before disabling clocks. Don't wait if
2975 		 *  endpoints are not enabled.
2976 		 */
2977 		if (atomic_read(&udc->enabled_ep_cnt))
2978 			wait_event_interruptible(udc->ep_disable_wait_queue,
2979 				(atomic_read(&udc->enabled_ep_cnt) == 0));
2980 
2981 		spin_lock(&udc->lock);
2982 		udc_clk_set(udc, 0);
2983 		spin_unlock(&udc->lock);
2984 	}
2985 
2986 	udc->enabled = 0;
2987 	udc->driver = NULL;
2988 
2989 	return 0;
2990 }
2991 
2992 static void lpc32xx_udc_shutdown(struct platform_device *dev)
2993 {
2994 	/* Force disconnect on reboot */
2995 	struct lpc32xx_udc *udc = platform_get_drvdata(dev);
2996 
2997 	pullup(udc, 0);
2998 }
2999 
3000 /*
3001  * Callbacks to be overridden by options passed via OF (TODO)
3002  */
3003 
3004 static void lpc32xx_usbd_conn_chg(int conn)
3005 {
3006 	/* Do nothing, it might be nice to enable an LED
3007 	 * based on conn state being !0 */
3008 }
3009 
3010 static void lpc32xx_usbd_susp_chg(int susp)
3011 {
3012 	/* Device suspend if susp != 0 */
3013 }
3014 
3015 static void lpc32xx_rmwkup_chg(int remote_wakup_enable)
3016 {
3017 	/* Enable or disable USB remote wakeup */
3018 }
3019 
3020 struct lpc32xx_usbd_cfg lpc32xx_usbddata = {
3021 	.vbus_drv_pol = 0,
3022 	.conn_chgb = &lpc32xx_usbd_conn_chg,
3023 	.susp_chgb = &lpc32xx_usbd_susp_chg,
3024 	.rmwk_chgb = &lpc32xx_rmwkup_chg,
3025 };
3026 
3027 
3028 static u64 lpc32xx_usbd_dmamask = ~(u32) 0x7F;
3029 
3030 static int lpc32xx_udc_probe(struct platform_device *pdev)
3031 {
3032 	struct device *dev = &pdev->dev;
3033 	struct lpc32xx_udc *udc;
3034 	int retval, i;
3035 	struct resource *res;
3036 	dma_addr_t dma_handle;
3037 	struct device_node *isp1301_node;
3038 
3039 	udc = kmemdup(&controller_template, sizeof(*udc), GFP_KERNEL);
3040 	if (!udc)
3041 		return -ENOMEM;
3042 
3043 	for (i = 0; i <= 15; i++)
3044 		udc->ep[i].udc = udc;
3045 	udc->gadget.ep0 = &udc->ep[0].ep;
3046 
3047 	/* init software state */
3048 	udc->gadget.dev.parent = dev;
3049 	udc->pdev = pdev;
3050 	udc->dev = &pdev->dev;
3051 	udc->enabled = 0;
3052 
3053 	if (pdev->dev.of_node) {
3054 		isp1301_node = of_parse_phandle(pdev->dev.of_node,
3055 						"transceiver", 0);
3056 	} else {
3057 		isp1301_node = NULL;
3058 	}
3059 
3060 	udc->isp1301_i2c_client = isp1301_get_client(isp1301_node);
3061 	if (!udc->isp1301_i2c_client) {
3062 		retval = -EPROBE_DEFER;
3063 		goto phy_fail;
3064 	}
3065 
3066 	dev_info(udc->dev, "ISP1301 I2C device at address 0x%x\n",
3067 		 udc->isp1301_i2c_client->addr);
3068 
3069 	pdev->dev.dma_mask = &lpc32xx_usbd_dmamask;
3070 	retval = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
3071 	if (retval)
3072 		goto resource_fail;
3073 
3074 	udc->board = &lpc32xx_usbddata;
3075 
3076 	/*
3077 	 * Resources are mapped as follows:
3078 	 *  IORESOURCE_MEM, base address and size of USB space
3079 	 *  IORESOURCE_IRQ, USB device low priority interrupt number
3080 	 *  IORESOURCE_IRQ, USB device high priority interrupt number
3081 	 *  IORESOURCE_IRQ, USB device interrupt number
3082 	 *  IORESOURCE_IRQ, USB transceiver interrupt number
3083 	 */
3084 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3085 	if (!res) {
3086 		retval = -ENXIO;
3087 		goto resource_fail;
3088 	}
3089 
3090 	spin_lock_init(&udc->lock);
3091 
3092 	/* Get IRQs */
3093 	for (i = 0; i < 4; i++) {
3094 		udc->udp_irq[i] = platform_get_irq(pdev, i);
3095 		if (udc->udp_irq[i] < 0) {
3096 			dev_err(udc->dev,
3097 				"irq resource %d not available!\n", i);
3098 			retval = udc->udp_irq[i];
3099 			goto irq_fail;
3100 		}
3101 	}
3102 
3103 	udc->io_p_start = res->start;
3104 	udc->io_p_size = resource_size(res);
3105 	if (!request_mem_region(udc->io_p_start, udc->io_p_size, driver_name)) {
3106 		dev_err(udc->dev, "someone's using UDC memory\n");
3107 		retval = -EBUSY;
3108 		goto request_mem_region_fail;
3109 	}
3110 
3111 	udc->udp_baseaddr = ioremap(udc->io_p_start, udc->io_p_size);
3112 	if (!udc->udp_baseaddr) {
3113 		retval = -ENOMEM;
3114 		dev_err(udc->dev, "IO map failure\n");
3115 		goto io_map_fail;
3116 	}
3117 
3118 	/* Enable AHB slave USB clock, needed for further USB clock control */
3119 	writel(USB_SLAVE_HCLK_EN | (1 << 19), USB_CTRL);
3120 
3121 	/* Get required clocks */
3122 	udc->usb_pll_clk = clk_get(&pdev->dev, "ck_pll5");
3123 	if (IS_ERR(udc->usb_pll_clk)) {
3124 		dev_err(udc->dev, "failed to acquire USB PLL\n");
3125 		retval = PTR_ERR(udc->usb_pll_clk);
3126 		goto pll_get_fail;
3127 	}
3128 	udc->usb_slv_clk = clk_get(&pdev->dev, "ck_usbd");
3129 	if (IS_ERR(udc->usb_slv_clk)) {
3130 		dev_err(udc->dev, "failed to acquire USB device clock\n");
3131 		retval = PTR_ERR(udc->usb_slv_clk);
3132 		goto usb_clk_get_fail;
3133 	}
3134 	udc->usb_otg_clk = clk_get(&pdev->dev, "ck_usb_otg");
3135 	if (IS_ERR(udc->usb_otg_clk)) {
3136 		dev_err(udc->dev, "failed to acquire USB otg clock\n");
3137 		retval = PTR_ERR(udc->usb_otg_clk);
3138 		goto usb_otg_clk_get_fail;
3139 	}
3140 
3141 	/* Setup PLL clock to 48MHz */
3142 	retval = clk_enable(udc->usb_pll_clk);
3143 	if (retval < 0) {
3144 		dev_err(udc->dev, "failed to start USB PLL\n");
3145 		goto pll_enable_fail;
3146 	}
3147 
3148 	retval = clk_set_rate(udc->usb_pll_clk, 48000);
3149 	if (retval < 0) {
3150 		dev_err(udc->dev, "failed to set USB clock rate\n");
3151 		goto pll_set_fail;
3152 	}
3153 
3154 	writel(readl(USB_CTRL) | USB_DEV_NEED_CLK_EN, USB_CTRL);
3155 
3156 	/* Enable USB device clock */
3157 	retval = clk_enable(udc->usb_slv_clk);
3158 	if (retval < 0) {
3159 		dev_err(udc->dev, "failed to start USB device clock\n");
3160 		goto usb_clk_enable_fail;
3161 	}
3162 
3163 	/* Enable USB OTG clock */
3164 	retval = clk_enable(udc->usb_otg_clk);
3165 	if (retval < 0) {
3166 		dev_err(udc->dev, "failed to start USB otg clock\n");
3167 		goto usb_otg_clk_enable_fail;
3168 	}
3169 
3170 	/* Setup deferred workqueue data */
3171 	udc->poweron = udc->pullup = 0;
3172 	INIT_WORK(&udc->pullup_job, pullup_work);
3173 	INIT_WORK(&udc->vbus_job, vbus_work);
3174 #ifdef CONFIG_PM
3175 	INIT_WORK(&udc->power_job, power_work);
3176 #endif
3177 
3178 	/* All clocks are now on */
3179 	udc->clocked = 1;
3180 
3181 	isp1301_udc_configure(udc);
3182 	/* Allocate memory for the UDCA */
3183 	udc->udca_v_base = dma_alloc_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3184 					      &dma_handle,
3185 					      (GFP_KERNEL | GFP_DMA));
3186 	if (!udc->udca_v_base) {
3187 		dev_err(udc->dev, "error getting UDCA region\n");
3188 		retval = -ENOMEM;
3189 		goto i2c_fail;
3190 	}
3191 	udc->udca_p_base = dma_handle;
3192 	dev_dbg(udc->dev, "DMA buffer(0x%x bytes), P:0x%08x, V:0x%p\n",
3193 		UDCA_BUFF_SIZE, udc->udca_p_base, udc->udca_v_base);
3194 
3195 	/* Setup the DD DMA memory pool */
3196 	udc->dd_cache = dma_pool_create("udc_dd", udc->dev,
3197 					sizeof(struct lpc32xx_usbd_dd_gad),
3198 					sizeof(u32), 0);
3199 	if (!udc->dd_cache) {
3200 		dev_err(udc->dev, "error getting DD DMA region\n");
3201 		retval = -ENOMEM;
3202 		goto dma_alloc_fail;
3203 	}
3204 
3205 	/* Clear USB peripheral and initialize gadget endpoints */
3206 	udc_disable(udc);
3207 	udc_reinit(udc);
3208 
3209 	/* Request IRQs - low and high priority USB device IRQs are routed to
3210 	 * the same handler, while the DMA interrupt is routed elsewhere */
3211 	retval = request_irq(udc->udp_irq[IRQ_USB_LP], lpc32xx_usb_lp_irq,
3212 			     0, "udc_lp", udc);
3213 	if (retval < 0) {
3214 		dev_err(udc->dev, "LP request irq %d failed\n",
3215 			udc->udp_irq[IRQ_USB_LP]);
3216 		goto irq_lp_fail;
3217 	}
3218 	retval = request_irq(udc->udp_irq[IRQ_USB_HP], lpc32xx_usb_hp_irq,
3219 			     0, "udc_hp", udc);
3220 	if (retval < 0) {
3221 		dev_err(udc->dev, "HP request irq %d failed\n",
3222 			udc->udp_irq[IRQ_USB_HP]);
3223 		goto irq_hp_fail;
3224 	}
3225 
3226 	retval = request_irq(udc->udp_irq[IRQ_USB_DEVDMA],
3227 			     lpc32xx_usb_devdma_irq, 0, "udc_dma", udc);
3228 	if (retval < 0) {
3229 		dev_err(udc->dev, "DEV request irq %d failed\n",
3230 			udc->udp_irq[IRQ_USB_DEVDMA]);
3231 		goto irq_dev_fail;
3232 	}
3233 
3234 	/* The transceiver interrupt is used for VBUS detection and will
3235 	   kick off the VBUS handler function */
3236 	retval = request_irq(udc->udp_irq[IRQ_USB_ATX], lpc32xx_usb_vbus_irq,
3237 			     0, "udc_otg", udc);
3238 	if (retval < 0) {
3239 		dev_err(udc->dev, "VBUS request irq %d failed\n",
3240 			udc->udp_irq[IRQ_USB_ATX]);
3241 		goto irq_xcvr_fail;
3242 	}
3243 
3244 	/* Initialize wait queue */
3245 	init_waitqueue_head(&udc->ep_disable_wait_queue);
3246 	atomic_set(&udc->enabled_ep_cnt, 0);
3247 
3248 	/* Keep all IRQs disabled until GadgetFS starts up */
3249 	for (i = IRQ_USB_LP; i <= IRQ_USB_ATX; i++)
3250 		disable_irq(udc->udp_irq[i]);
3251 
3252 	retval = usb_add_gadget_udc(dev, &udc->gadget);
3253 	if (retval < 0)
3254 		goto add_gadget_fail;
3255 
3256 	dev_set_drvdata(dev, udc);
3257 	device_init_wakeup(dev, 1);
3258 	create_debug_file(udc);
3259 
3260 	/* Disable clocks for now */
3261 	udc_clk_set(udc, 0);
3262 
3263 	dev_info(udc->dev, "%s version %s\n", driver_name, DRIVER_VERSION);
3264 	return 0;
3265 
3266 add_gadget_fail:
3267 	free_irq(udc->udp_irq[IRQ_USB_ATX], udc);
3268 irq_xcvr_fail:
3269 	free_irq(udc->udp_irq[IRQ_USB_DEVDMA], udc);
3270 irq_dev_fail:
3271 	free_irq(udc->udp_irq[IRQ_USB_HP], udc);
3272 irq_hp_fail:
3273 	free_irq(udc->udp_irq[IRQ_USB_LP], udc);
3274 irq_lp_fail:
3275 	dma_pool_destroy(udc->dd_cache);
3276 dma_alloc_fail:
3277 	dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3278 			  udc->udca_v_base, udc->udca_p_base);
3279 i2c_fail:
3280 	clk_disable(udc->usb_otg_clk);
3281 usb_otg_clk_enable_fail:
3282 	clk_disable(udc->usb_slv_clk);
3283 usb_clk_enable_fail:
3284 pll_set_fail:
3285 	clk_disable(udc->usb_pll_clk);
3286 pll_enable_fail:
3287 	clk_put(udc->usb_otg_clk);
3288 usb_otg_clk_get_fail:
3289 	clk_put(udc->usb_slv_clk);
3290 usb_clk_get_fail:
3291 	clk_put(udc->usb_pll_clk);
3292 pll_get_fail:
3293 	iounmap(udc->udp_baseaddr);
3294 io_map_fail:
3295 	release_mem_region(udc->io_p_start, udc->io_p_size);
3296 	dev_err(udc->dev, "%s probe failed, %d\n", driver_name, retval);
3297 request_mem_region_fail:
3298 irq_fail:
3299 resource_fail:
3300 phy_fail:
3301 	kfree(udc);
3302 	return retval;
3303 }
3304 
3305 static int lpc32xx_udc_remove(struct platform_device *pdev)
3306 {
3307 	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3308 
3309 	usb_del_gadget_udc(&udc->gadget);
3310 	if (udc->driver)
3311 		return -EBUSY;
3312 
3313 	udc_clk_set(udc, 1);
3314 	udc_disable(udc);
3315 	pullup(udc, 0);
3316 
3317 	free_irq(udc->udp_irq[IRQ_USB_ATX], udc);
3318 
3319 	device_init_wakeup(&pdev->dev, 0);
3320 	remove_debug_file(udc);
3321 
3322 	dma_pool_destroy(udc->dd_cache);
3323 	dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3324 			  udc->udca_v_base, udc->udca_p_base);
3325 	free_irq(udc->udp_irq[IRQ_USB_DEVDMA], udc);
3326 	free_irq(udc->udp_irq[IRQ_USB_HP], udc);
3327 	free_irq(udc->udp_irq[IRQ_USB_LP], udc);
3328 
3329 	clk_disable(udc->usb_otg_clk);
3330 	clk_put(udc->usb_otg_clk);
3331 	clk_disable(udc->usb_slv_clk);
3332 	clk_put(udc->usb_slv_clk);
3333 	clk_disable(udc->usb_pll_clk);
3334 	clk_put(udc->usb_pll_clk);
3335 	iounmap(udc->udp_baseaddr);
3336 	release_mem_region(udc->io_p_start, udc->io_p_size);
3337 	kfree(udc);
3338 
3339 	return 0;
3340 }
3341 
3342 #ifdef CONFIG_PM
3343 static int lpc32xx_udc_suspend(struct platform_device *pdev, pm_message_t mesg)
3344 {
3345 	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3346 
3347 	if (udc->clocked) {
3348 		/* Power down ISP */
3349 		udc->poweron = 0;
3350 		isp1301_set_powerstate(udc, 0);
3351 
3352 		/* Disable clocking */
3353 		udc_clk_set(udc, 0);
3354 
3355 		/* Keep clock flag on, so we know to re-enable clocks
3356 		   on resume */
3357 		udc->clocked = 1;
3358 
3359 		/* Kill global USB clock */
3360 		clk_disable(udc->usb_slv_clk);
3361 	}
3362 
3363 	return 0;
3364 }
3365 
3366 static int lpc32xx_udc_resume(struct platform_device *pdev)
3367 {
3368 	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3369 
3370 	if (udc->clocked) {
3371 		/* Enable global USB clock */
3372 		clk_enable(udc->usb_slv_clk);
3373 
3374 		/* Enable clocking */
3375 		udc_clk_set(udc, 1);
3376 
3377 		/* ISP back to normal power mode */
3378 		udc->poweron = 1;
3379 		isp1301_set_powerstate(udc, 1);
3380 	}
3381 
3382 	return 0;
3383 }
3384 #else
3385 #define	lpc32xx_udc_suspend	NULL
3386 #define	lpc32xx_udc_resume	NULL
3387 #endif
3388 
3389 #ifdef CONFIG_OF
3390 static const struct of_device_id lpc32xx_udc_of_match[] = {
3391 	{ .compatible = "nxp,lpc3220-udc", },
3392 	{ },
3393 };
3394 MODULE_DEVICE_TABLE(of, lpc32xx_udc_of_match);
3395 #endif
3396 
3397 static struct platform_driver lpc32xx_udc_driver = {
3398 	.remove		= lpc32xx_udc_remove,
3399 	.shutdown	= lpc32xx_udc_shutdown,
3400 	.suspend	= lpc32xx_udc_suspend,
3401 	.resume		= lpc32xx_udc_resume,
3402 	.driver		= {
3403 		.name	= (char *) driver_name,
3404 		.of_match_table = of_match_ptr(lpc32xx_udc_of_match),
3405 	},
3406 };
3407 
3408 module_platform_driver_probe(lpc32xx_udc_driver, lpc32xx_udc_probe);
3409 
3410 MODULE_DESCRIPTION("LPC32XX udc driver");
3411 MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
3412 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
3413 MODULE_LICENSE("GPL");
3414 MODULE_ALIAS("platform:lpc32xx_udc");
3415