1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * USB Gadget driver for LPC32xx
4  *
5  * Authors:
6  *    Kevin Wells <kevin.wells@nxp.com>
7  *    Mike James
8  *    Roland Stigge <stigge@antcom.de>
9  *
10  * Copyright (C) 2006 Philips Semiconductors
11  * Copyright (C) 2009 NXP Semiconductors
12  * Copyright (C) 2012 Roland Stigge
13  *
14  * Note: This driver is based on original work done by Mike James for
15  *       the LPC3180.
16  */
17 
18 #include <linux/clk.h>
19 #include <linux/delay.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dmapool.h>
22 #include <linux/i2c.h>
23 #include <linux/interrupt.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/prefetch.h>
28 #include <linux/proc_fs.h>
29 #include <linux/slab.h>
30 #include <linux/usb/ch9.h>
31 #include <linux/usb/gadget.h>
32 #include <linux/usb/isp1301.h>
33 
34 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif
38 
39 /*
40  * USB device configuration structure
41  */
42 typedef void (*usc_chg_event)(int);
43 struct lpc32xx_usbd_cfg {
44 	int vbus_drv_pol;   /* 0=active low drive for VBUS via ISP1301 */
45 	usc_chg_event conn_chgb; /* Connection change event (optional) */
46 	usc_chg_event susp_chgb; /* Suspend/resume event (optional) */
47 	usc_chg_event rmwk_chgb; /* Enable/disable remote wakeup */
48 };
49 
50 /*
51  * controller driver data structures
52  */
53 
54 /* 16 endpoints (not to be confused with 32 hardware endpoints) */
55 #define	NUM_ENDPOINTS	16
56 
57 /*
58  * IRQ indices make reading the code a little easier
59  */
60 #define IRQ_USB_LP	0
61 #define IRQ_USB_HP	1
62 #define IRQ_USB_DEVDMA	2
63 #define IRQ_USB_ATX	3
64 
65 #define EP_OUT 0 /* RX (from host) */
66 #define EP_IN 1 /* TX (to host) */
67 
68 /* Returns the interrupt mask for the selected hardware endpoint */
69 #define EP_MASK_SEL(ep, dir) (1 << (((ep) * 2) + dir))
70 
71 #define EP_INT_TYPE 0
72 #define EP_ISO_TYPE 1
73 #define EP_BLK_TYPE 2
74 #define EP_CTL_TYPE 3
75 
76 /* EP0 states */
77 #define WAIT_FOR_SETUP 0 /* Wait for setup packet */
78 #define DATA_IN        1 /* Expect dev->host transfer */
79 #define DATA_OUT       2 /* Expect host->dev transfer */
80 
81 /* DD (DMA Descriptor) structure, requires word alignment, this is already
82  * defined in the LPC32XX USB device header file, but this version is slightly
83  * modified to tag some work data with each DMA descriptor. */
84 struct lpc32xx_usbd_dd_gad {
85 	u32 dd_next_phy;
86 	u32 dd_setup;
87 	u32 dd_buffer_addr;
88 	u32 dd_status;
89 	u32 dd_iso_ps_mem_addr;
90 	u32 this_dma;
91 	u32 iso_status[6]; /* 5 spare */
92 	u32 dd_next_v;
93 };
94 
95 /*
96  * Logical endpoint structure
97  */
98 struct lpc32xx_ep {
99 	struct usb_ep		ep;
100 	struct list_head	queue;
101 	struct lpc32xx_udc	*udc;
102 
103 	u32			hwep_num_base; /* Physical hardware EP */
104 	u32			hwep_num; /* Maps to hardware endpoint */
105 	u32			maxpacket;
106 	u32			lep;
107 
108 	bool			is_in;
109 	bool			req_pending;
110 	u32			eptype;
111 
112 	u32                     totalints;
113 
114 	bool			wedge;
115 };
116 
117 enum atx_type {
118 	ISP1301,
119 	STOTG04,
120 };
121 
122 /*
123  * Common UDC structure
124  */
125 struct lpc32xx_udc {
126 	struct usb_gadget	gadget;
127 	struct usb_gadget_driver *driver;
128 	struct platform_device	*pdev;
129 	struct device		*dev;
130 	spinlock_t		lock;
131 	struct i2c_client	*isp1301_i2c_client;
132 
133 	/* Board and device specific */
134 	struct lpc32xx_usbd_cfg	*board;
135 	void __iomem		*udp_baseaddr;
136 	int			udp_irq[4];
137 	struct clk		*usb_slv_clk;
138 
139 	/* DMA support */
140 	u32			*udca_v_base;
141 	u32			udca_p_base;
142 	struct dma_pool		*dd_cache;
143 
144 	/* Common EP and control data */
145 	u32			enabled_devints;
146 	u32			enabled_hwepints;
147 	u32			dev_status;
148 	u32			realized_eps;
149 
150 	/* VBUS detection, pullup, and power flags */
151 	u8			vbus;
152 	u8			last_vbus;
153 	int			pullup;
154 	int			poweron;
155 	enum atx_type		atx;
156 
157 	/* Work queues related to I2C support */
158 	struct work_struct	pullup_job;
159 	struct work_struct	power_job;
160 
161 	/* USB device peripheral - various */
162 	struct lpc32xx_ep	ep[NUM_ENDPOINTS];
163 	bool			enabled;
164 	bool			clocked;
165 	bool			suspended;
166 	int                     ep0state;
167 	atomic_t                enabled_ep_cnt;
168 	wait_queue_head_t       ep_disable_wait_queue;
169 };
170 
171 /*
172  * Endpoint request
173  */
174 struct lpc32xx_request {
175 	struct usb_request	req;
176 	struct list_head	queue;
177 	struct lpc32xx_usbd_dd_gad *dd_desc_ptr;
178 	bool			mapped;
179 	bool			send_zlp;
180 };
181 
182 static inline struct lpc32xx_udc *to_udc(struct usb_gadget *g)
183 {
184 	return container_of(g, struct lpc32xx_udc, gadget);
185 }
186 
187 #define ep_dbg(epp, fmt, arg...) \
188 	dev_dbg(epp->udc->dev, "%s: " fmt, __func__, ## arg)
189 #define ep_err(epp, fmt, arg...) \
190 	dev_err(epp->udc->dev, "%s: " fmt, __func__, ## arg)
191 #define ep_info(epp, fmt, arg...) \
192 	dev_info(epp->udc->dev, "%s: " fmt, __func__, ## arg)
193 #define ep_warn(epp, fmt, arg...) \
194 	dev_warn(epp->udc->dev, "%s:" fmt, __func__, ## arg)
195 
196 #define UDCA_BUFF_SIZE (128)
197 
198 /**********************************************************************
199  * USB device controller register offsets
200  **********************************************************************/
201 
202 #define USBD_DEVINTST(x)	((x) + 0x200)
203 #define USBD_DEVINTEN(x)	((x) + 0x204)
204 #define USBD_DEVINTCLR(x)	((x) + 0x208)
205 #define USBD_DEVINTSET(x)	((x) + 0x20C)
206 #define USBD_CMDCODE(x)		((x) + 0x210)
207 #define USBD_CMDDATA(x)		((x) + 0x214)
208 #define USBD_RXDATA(x)		((x) + 0x218)
209 #define USBD_TXDATA(x)		((x) + 0x21C)
210 #define USBD_RXPLEN(x)		((x) + 0x220)
211 #define USBD_TXPLEN(x)		((x) + 0x224)
212 #define USBD_CTRL(x)		((x) + 0x228)
213 #define USBD_DEVINTPRI(x)	((x) + 0x22C)
214 #define USBD_EPINTST(x)		((x) + 0x230)
215 #define USBD_EPINTEN(x)		((x) + 0x234)
216 #define USBD_EPINTCLR(x)	((x) + 0x238)
217 #define USBD_EPINTSET(x)	((x) + 0x23C)
218 #define USBD_EPINTPRI(x)	((x) + 0x240)
219 #define USBD_REEP(x)		((x) + 0x244)
220 #define USBD_EPIND(x)		((x) + 0x248)
221 #define USBD_EPMAXPSIZE(x)	((x) + 0x24C)
222 /* DMA support registers only below */
223 /* Set, clear, or get enabled state of the DMA request status. If
224  * enabled, an IN or OUT token will start a DMA transfer for the EP */
225 #define USBD_DMARST(x)		((x) + 0x250)
226 #define USBD_DMARCLR(x)		((x) + 0x254)
227 #define USBD_DMARSET(x)		((x) + 0x258)
228 /* DMA UDCA head pointer */
229 #define USBD_UDCAH(x)		((x) + 0x280)
230 /* EP DMA status, enable, and disable. This is used to specifically
231  * enabled or disable DMA for a specific EP */
232 #define USBD_EPDMAST(x)		((x) + 0x284)
233 #define USBD_EPDMAEN(x)		((x) + 0x288)
234 #define USBD_EPDMADIS(x)	((x) + 0x28C)
235 /* DMA master interrupts enable and pending interrupts */
236 #define USBD_DMAINTST(x)	((x) + 0x290)
237 #define USBD_DMAINTEN(x)	((x) + 0x294)
238 /* DMA end of transfer interrupt enable, disable, status */
239 #define USBD_EOTINTST(x)	((x) + 0x2A0)
240 #define USBD_EOTINTCLR(x)	((x) + 0x2A4)
241 #define USBD_EOTINTSET(x)	((x) + 0x2A8)
242 /* New DD request interrupt enable, disable, status */
243 #define USBD_NDDRTINTST(x)	((x) + 0x2AC)
244 #define USBD_NDDRTINTCLR(x)	((x) + 0x2B0)
245 #define USBD_NDDRTINTSET(x)	((x) + 0x2B4)
246 /* DMA error interrupt enable, disable, status */
247 #define USBD_SYSERRTINTST(x)	((x) + 0x2B8)
248 #define USBD_SYSERRTINTCLR(x)	((x) + 0x2BC)
249 #define USBD_SYSERRTINTSET(x)	((x) + 0x2C0)
250 
251 /**********************************************************************
252  * USBD_DEVINTST/USBD_DEVINTEN/USBD_DEVINTCLR/USBD_DEVINTSET/
253  * USBD_DEVINTPRI register definitions
254  **********************************************************************/
255 #define USBD_ERR_INT		(1 << 9)
256 #define USBD_EP_RLZED		(1 << 8)
257 #define USBD_TXENDPKT		(1 << 7)
258 #define USBD_RXENDPKT		(1 << 6)
259 #define USBD_CDFULL		(1 << 5)
260 #define USBD_CCEMPTY		(1 << 4)
261 #define USBD_DEV_STAT		(1 << 3)
262 #define USBD_EP_SLOW		(1 << 2)
263 #define USBD_EP_FAST		(1 << 1)
264 #define USBD_FRAME		(1 << 0)
265 
266 /**********************************************************************
267  * USBD_EPINTST/USBD_EPINTEN/USBD_EPINTCLR/USBD_EPINTSET/
268  * USBD_EPINTPRI register definitions
269  **********************************************************************/
270 /* End point selection macro (RX) */
271 #define USBD_RX_EP_SEL(e)	(1 << ((e) << 1))
272 
273 /* End point selection macro (TX) */
274 #define USBD_TX_EP_SEL(e)	(1 << (((e) << 1) + 1))
275 
276 /**********************************************************************
277  * USBD_REEP/USBD_DMARST/USBD_DMARCLR/USBD_DMARSET/USBD_EPDMAST/
278  * USBD_EPDMAEN/USBD_EPDMADIS/
279  * USBD_NDDRTINTST/USBD_NDDRTINTCLR/USBD_NDDRTINTSET/
280  * USBD_EOTINTST/USBD_EOTINTCLR/USBD_EOTINTSET/
281  * USBD_SYSERRTINTST/USBD_SYSERRTINTCLR/USBD_SYSERRTINTSET
282  * register definitions
283  **********************************************************************/
284 /* Endpoint selection macro */
285 #define USBD_EP_SEL(e)		(1 << (e))
286 
287 /**********************************************************************
288  * SBD_DMAINTST/USBD_DMAINTEN
289  **********************************************************************/
290 #define USBD_SYS_ERR_INT	(1 << 2)
291 #define USBD_NEW_DD_INT		(1 << 1)
292 #define USBD_EOT_INT		(1 << 0)
293 
294 /**********************************************************************
295  * USBD_RXPLEN register definitions
296  **********************************************************************/
297 #define USBD_PKT_RDY		(1 << 11)
298 #define USBD_DV			(1 << 10)
299 #define USBD_PK_LEN_MASK	0x3FF
300 
301 /**********************************************************************
302  * USBD_CTRL register definitions
303  **********************************************************************/
304 #define USBD_LOG_ENDPOINT(e)	((e) << 2)
305 #define USBD_WR_EN		(1 << 1)
306 #define USBD_RD_EN		(1 << 0)
307 
308 /**********************************************************************
309  * USBD_CMDCODE register definitions
310  **********************************************************************/
311 #define USBD_CMD_CODE(c)	((c) << 16)
312 #define USBD_CMD_PHASE(p)	((p) << 8)
313 
314 /**********************************************************************
315  * USBD_DMARST/USBD_DMARCLR/USBD_DMARSET register definitions
316  **********************************************************************/
317 #define USBD_DMAEP(e)		(1 << (e))
318 
319 /* DD (DMA Descriptor) structure, requires word alignment */
320 struct lpc32xx_usbd_dd {
321 	u32 *dd_next;
322 	u32 dd_setup;
323 	u32 dd_buffer_addr;
324 	u32 dd_status;
325 	u32 dd_iso_ps_mem_addr;
326 };
327 
328 /* dd_setup bit defines */
329 #define DD_SETUP_ATLE_DMA_MODE	0x01
330 #define DD_SETUP_NEXT_DD_VALID	0x04
331 #define DD_SETUP_ISO_EP		0x10
332 #define DD_SETUP_PACKETLEN(n)	(((n) & 0x7FF) << 5)
333 #define DD_SETUP_DMALENBYTES(n)	(((n) & 0xFFFF) << 16)
334 
335 /* dd_status bit defines */
336 #define DD_STATUS_DD_RETIRED	0x01
337 #define DD_STATUS_STS_MASK	0x1E
338 #define DD_STATUS_STS_NS	0x00 /* Not serviced */
339 #define DD_STATUS_STS_BS	0x02 /* Being serviced */
340 #define DD_STATUS_STS_NC	0x04 /* Normal completion */
341 #define DD_STATUS_STS_DUR	0x06 /* Data underrun (short packet) */
342 #define DD_STATUS_STS_DOR	0x08 /* Data overrun */
343 #define DD_STATUS_STS_SE	0x12 /* System error */
344 #define DD_STATUS_PKT_VAL	0x20 /* Packet valid */
345 #define DD_STATUS_LSB_EX	0x40 /* LS byte extracted (ATLE) */
346 #define DD_STATUS_MSB_EX	0x80 /* MS byte extracted (ATLE) */
347 #define DD_STATUS_MLEN(n)	(((n) >> 8) & 0x3F)
348 #define DD_STATUS_CURDMACNT(n)	(((n) >> 16) & 0xFFFF)
349 
350 /*
351  *
352  * Protocol engine bits below
353  *
354  */
355 /* Device Interrupt Bit Definitions */
356 #define FRAME_INT		0x00000001
357 #define EP_FAST_INT		0x00000002
358 #define EP_SLOW_INT		0x00000004
359 #define DEV_STAT_INT		0x00000008
360 #define CCEMTY_INT		0x00000010
361 #define CDFULL_INT		0x00000020
362 #define RxENDPKT_INT		0x00000040
363 #define TxENDPKT_INT		0x00000080
364 #define EP_RLZED_INT		0x00000100
365 #define ERR_INT			0x00000200
366 
367 /* Rx & Tx Packet Length Definitions */
368 #define PKT_LNGTH_MASK		0x000003FF
369 #define PKT_DV			0x00000400
370 #define PKT_RDY			0x00000800
371 
372 /* USB Control Definitions */
373 #define CTRL_RD_EN		0x00000001
374 #define CTRL_WR_EN		0x00000002
375 
376 /* Command Codes */
377 #define CMD_SET_ADDR		0x00D00500
378 #define CMD_CFG_DEV		0x00D80500
379 #define CMD_SET_MODE		0x00F30500
380 #define CMD_RD_FRAME		0x00F50500
381 #define DAT_RD_FRAME		0x00F50200
382 #define CMD_RD_TEST		0x00FD0500
383 #define DAT_RD_TEST		0x00FD0200
384 #define CMD_SET_DEV_STAT	0x00FE0500
385 #define CMD_GET_DEV_STAT	0x00FE0500
386 #define DAT_GET_DEV_STAT	0x00FE0200
387 #define CMD_GET_ERR_CODE	0x00FF0500
388 #define DAT_GET_ERR_CODE	0x00FF0200
389 #define CMD_RD_ERR_STAT		0x00FB0500
390 #define DAT_RD_ERR_STAT		0x00FB0200
391 #define DAT_WR_BYTE(x)		(0x00000100 | ((x) << 16))
392 #define CMD_SEL_EP(x)		(0x00000500 | ((x) << 16))
393 #define DAT_SEL_EP(x)		(0x00000200 | ((x) << 16))
394 #define CMD_SEL_EP_CLRI(x)	(0x00400500 | ((x) << 16))
395 #define DAT_SEL_EP_CLRI(x)	(0x00400200 | ((x) << 16))
396 #define CMD_SET_EP_STAT(x)	(0x00400500 | ((x) << 16))
397 #define CMD_CLR_BUF		0x00F20500
398 #define DAT_CLR_BUF		0x00F20200
399 #define CMD_VALID_BUF		0x00FA0500
400 
401 /* Device Address Register Definitions */
402 #define DEV_ADDR_MASK		0x7F
403 #define DEV_EN			0x80
404 
405 /* Device Configure Register Definitions */
406 #define CONF_DVICE		0x01
407 
408 /* Device Mode Register Definitions */
409 #define AP_CLK			0x01
410 #define INAK_CI			0x02
411 #define INAK_CO			0x04
412 #define INAK_II			0x08
413 #define INAK_IO			0x10
414 #define INAK_BI			0x20
415 #define INAK_BO			0x40
416 
417 /* Device Status Register Definitions */
418 #define DEV_CON			0x01
419 #define DEV_CON_CH		0x02
420 #define DEV_SUS			0x04
421 #define DEV_SUS_CH		0x08
422 #define DEV_RST			0x10
423 
424 /* Error Code Register Definitions */
425 #define ERR_EC_MASK		0x0F
426 #define ERR_EA			0x10
427 
428 /* Error Status Register Definitions */
429 #define ERR_PID			0x01
430 #define ERR_UEPKT		0x02
431 #define ERR_DCRC		0x04
432 #define ERR_TIMOUT		0x08
433 #define ERR_EOP			0x10
434 #define ERR_B_OVRN		0x20
435 #define ERR_BTSTF		0x40
436 #define ERR_TGL			0x80
437 
438 /* Endpoint Select Register Definitions */
439 #define EP_SEL_F		0x01
440 #define EP_SEL_ST		0x02
441 #define EP_SEL_STP		0x04
442 #define EP_SEL_PO		0x08
443 #define EP_SEL_EPN		0x10
444 #define EP_SEL_B_1_FULL		0x20
445 #define EP_SEL_B_2_FULL		0x40
446 
447 /* Endpoint Status Register Definitions */
448 #define EP_STAT_ST		0x01
449 #define EP_STAT_DA		0x20
450 #define EP_STAT_RF_MO		0x40
451 #define EP_STAT_CND_ST		0x80
452 
453 /* Clear Buffer Register Definitions */
454 #define CLR_BUF_PO		0x01
455 
456 /* DMA Interrupt Bit Definitions */
457 #define EOT_INT			0x01
458 #define NDD_REQ_INT		0x02
459 #define SYS_ERR_INT		0x04
460 
461 #define	DRIVER_VERSION	"1.03"
462 static const char driver_name[] = "lpc32xx_udc";
463 
464 /*
465  *
466  * proc interface support
467  *
468  */
469 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
470 static char *epnames[] = {"INT", "ISO", "BULK", "CTRL"};
471 static const char debug_filename[] = "driver/udc";
472 
473 static void proc_ep_show(struct seq_file *s, struct lpc32xx_ep *ep)
474 {
475 	struct lpc32xx_request *req;
476 
477 	seq_printf(s, "\n");
478 	seq_printf(s, "%12s, maxpacket %4d %3s",
479 			ep->ep.name, ep->ep.maxpacket,
480 			ep->is_in ? "in" : "out");
481 	seq_printf(s, " type %4s", epnames[ep->eptype]);
482 	seq_printf(s, " ints: %12d", ep->totalints);
483 
484 	if (list_empty(&ep->queue))
485 		seq_printf(s, "\t(queue empty)\n");
486 	else {
487 		list_for_each_entry(req, &ep->queue, queue) {
488 			u32 length = req->req.actual;
489 
490 			seq_printf(s, "\treq %p len %d/%d buf %p\n",
491 				   &req->req, length,
492 				   req->req.length, req->req.buf);
493 		}
494 	}
495 }
496 
497 static int udc_show(struct seq_file *s, void *unused)
498 {
499 	struct lpc32xx_udc *udc = s->private;
500 	struct lpc32xx_ep *ep;
501 	unsigned long flags;
502 
503 	seq_printf(s, "%s: version %s\n", driver_name, DRIVER_VERSION);
504 
505 	spin_lock_irqsave(&udc->lock, flags);
506 
507 	seq_printf(s, "vbus %s, pullup %s, %s powered%s, gadget %s\n\n",
508 		   udc->vbus ? "present" : "off",
509 		   udc->enabled ? (udc->vbus ? "active" : "enabled") :
510 		   "disabled",
511 		   udc->gadget.is_selfpowered ? "self" : "VBUS",
512 		   udc->suspended ? ", suspended" : "",
513 		   udc->driver ? udc->driver->driver.name : "(none)");
514 
515 	if (udc->enabled && udc->vbus) {
516 		proc_ep_show(s, &udc->ep[0]);
517 		list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list)
518 			proc_ep_show(s, ep);
519 	}
520 
521 	spin_unlock_irqrestore(&udc->lock, flags);
522 
523 	return 0;
524 }
525 
526 DEFINE_SHOW_ATTRIBUTE(udc);
527 
528 static void create_debug_file(struct lpc32xx_udc *udc)
529 {
530 	debugfs_create_file(debug_filename, 0, NULL, udc, &udc_fops);
531 }
532 
533 static void remove_debug_file(struct lpc32xx_udc *udc)
534 {
535 	debugfs_remove(debugfs_lookup(debug_filename, NULL));
536 }
537 
538 #else
539 static inline void create_debug_file(struct lpc32xx_udc *udc) {}
540 static inline void remove_debug_file(struct lpc32xx_udc *udc) {}
541 #endif
542 
543 /* Primary initialization sequence for the ISP1301 transceiver */
544 static void isp1301_udc_configure(struct lpc32xx_udc *udc)
545 {
546 	u8 value;
547 	s32 vendor, product;
548 
549 	vendor = i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x00);
550 	product = i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x02);
551 
552 	if (vendor == 0x0483 && product == 0xa0c4)
553 		udc->atx = STOTG04;
554 
555 	/* LPC32XX only supports DAT_SE0 USB mode */
556 	/* This sequence is important */
557 
558 	/* Disable transparent UART mode first */
559 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
560 		(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
561 		MC1_UART_EN);
562 
563 	/* Set full speed and SE0 mode */
564 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
565 		(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
566 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
567 		ISP1301_I2C_MODE_CONTROL_1, (MC1_SPEED_REG | MC1_DAT_SE0));
568 
569 	/*
570 	 * The PSW_OE enable bit state is reversed in the ISP1301 User's Guide
571 	 */
572 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
573 		(ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
574 
575 	value = MC2_BI_DI;
576 	if (udc->atx != STOTG04)
577 		value |= MC2_SPD_SUSP_CTRL;
578 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
579 		ISP1301_I2C_MODE_CONTROL_2, value);
580 
581 	/* Driver VBUS_DRV high or low depending on board setup */
582 	if (udc->board->vbus_drv_pol != 0)
583 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
584 			ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DRV);
585 	else
586 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
587 			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
588 			OTG1_VBUS_DRV);
589 
590 	/* Bi-directional mode with suspend control
591 	 * Enable both pulldowns for now - the pullup will be enable when VBUS
592 	 * is detected */
593 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
594 		(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
595 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
596 		ISP1301_I2C_OTG_CONTROL_1,
597 		(0 | OTG1_DM_PULLDOWN | OTG1_DP_PULLDOWN));
598 
599 	/* Discharge VBUS (just in case) */
600 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
601 		ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
602 	msleep(1);
603 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
604 		(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
605 		OTG1_VBUS_DISCHRG);
606 
607 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
608 		ISP1301_I2C_INTERRUPT_LATCH | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
609 
610 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
611 		ISP1301_I2C_INTERRUPT_FALLING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
612 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
613 		ISP1301_I2C_INTERRUPT_RISING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
614 
615 	dev_info(udc->dev, "ISP1301 Vendor ID  : 0x%04x\n", vendor);
616 	dev_info(udc->dev, "ISP1301 Product ID : 0x%04x\n", product);
617 	dev_info(udc->dev, "ISP1301 Version ID : 0x%04x\n",
618 		 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x14));
619 
620 }
621 
622 /* Enables or disables the USB device pullup via the ISP1301 transceiver */
623 static void isp1301_pullup_set(struct lpc32xx_udc *udc)
624 {
625 	if (udc->pullup)
626 		/* Enable pullup for bus signalling */
627 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
628 			ISP1301_I2C_OTG_CONTROL_1, OTG1_DP_PULLUP);
629 	else
630 		/* Enable pullup for bus signalling */
631 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
632 			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
633 			OTG1_DP_PULLUP);
634 }
635 
636 static void pullup_work(struct work_struct *work)
637 {
638 	struct lpc32xx_udc *udc =
639 		container_of(work, struct lpc32xx_udc, pullup_job);
640 
641 	isp1301_pullup_set(udc);
642 }
643 
644 static void isp1301_pullup_enable(struct lpc32xx_udc *udc, int en_pullup,
645 				  int block)
646 {
647 	if (en_pullup == udc->pullup)
648 		return;
649 
650 	udc->pullup = en_pullup;
651 	if (block)
652 		isp1301_pullup_set(udc);
653 	else
654 		/* defer slow i2c pull up setting */
655 		schedule_work(&udc->pullup_job);
656 }
657 
658 #ifdef CONFIG_PM
659 /* Powers up or down the ISP1301 transceiver */
660 static void isp1301_set_powerstate(struct lpc32xx_udc *udc, int enable)
661 {
662 	/* There is no "global power down" register for stotg04 */
663 	if (udc->atx == STOTG04)
664 		return;
665 
666 	if (enable != 0)
667 		/* Power up ISP1301 - this ISP1301 will automatically wakeup
668 		   when VBUS is detected */
669 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
670 			ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR,
671 			MC2_GLOBAL_PWR_DN);
672 	else
673 		/* Power down ISP1301 */
674 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
675 			ISP1301_I2C_MODE_CONTROL_2, MC2_GLOBAL_PWR_DN);
676 }
677 
678 static void power_work(struct work_struct *work)
679 {
680 	struct lpc32xx_udc *udc =
681 		container_of(work, struct lpc32xx_udc, power_job);
682 
683 	isp1301_set_powerstate(udc, udc->poweron);
684 }
685 #endif
686 
687 /*
688  *
689  * USB protocol engine command/data read/write helper functions
690  *
691  */
692 /* Issues a single command to the USB device state machine */
693 static void udc_protocol_cmd_w(struct lpc32xx_udc *udc, u32 cmd)
694 {
695 	u32 pass = 0;
696 	int to;
697 
698 	/* EP may lock on CLRI if this read isn't done */
699 	u32 tmp = readl(USBD_DEVINTST(udc->udp_baseaddr));
700 	(void) tmp;
701 
702 	while (pass == 0) {
703 		writel(USBD_CCEMPTY, USBD_DEVINTCLR(udc->udp_baseaddr));
704 
705 		/* Write command code */
706 		writel(cmd, USBD_CMDCODE(udc->udp_baseaddr));
707 		to = 10000;
708 		while (((readl(USBD_DEVINTST(udc->udp_baseaddr)) &
709 			 USBD_CCEMPTY) == 0) && (to > 0)) {
710 			to--;
711 		}
712 
713 		if (to > 0)
714 			pass = 1;
715 
716 		cpu_relax();
717 	}
718 }
719 
720 /* Issues 2 commands (or command and data) to the USB device state machine */
721 static inline void udc_protocol_cmd_data_w(struct lpc32xx_udc *udc, u32 cmd,
722 					   u32 data)
723 {
724 	udc_protocol_cmd_w(udc, cmd);
725 	udc_protocol_cmd_w(udc, data);
726 }
727 
728 /* Issues a single command to the USB device state machine and reads
729  * response data */
730 static u32 udc_protocol_cmd_r(struct lpc32xx_udc *udc, u32 cmd)
731 {
732 	int to = 1000;
733 
734 	/* Write a command and read data from the protocol engine */
735 	writel((USBD_CDFULL | USBD_CCEMPTY),
736 		     USBD_DEVINTCLR(udc->udp_baseaddr));
737 
738 	/* Write command code */
739 	udc_protocol_cmd_w(udc, cmd);
740 
741 	while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) & USBD_CDFULL))
742 	       && (to > 0))
743 		to--;
744 	if (!to)
745 		dev_dbg(udc->dev,
746 			"Protocol engine didn't receive response (CDFULL)\n");
747 
748 	return readl(USBD_CMDDATA(udc->udp_baseaddr));
749 }
750 
751 /*
752  *
753  * USB device interrupt mask support functions
754  *
755  */
756 /* Enable one or more USB device interrupts */
757 static inline void uda_enable_devint(struct lpc32xx_udc *udc, u32 devmask)
758 {
759 	udc->enabled_devints |= devmask;
760 	writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
761 }
762 
763 /* Disable one or more USB device interrupts */
764 static inline void uda_disable_devint(struct lpc32xx_udc *udc, u32 mask)
765 {
766 	udc->enabled_devints &= ~mask;
767 	writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
768 }
769 
770 /* Clear one or more USB device interrupts */
771 static inline void uda_clear_devint(struct lpc32xx_udc *udc, u32 mask)
772 {
773 	writel(mask, USBD_DEVINTCLR(udc->udp_baseaddr));
774 }
775 
776 /*
777  *
778  * Endpoint interrupt disable/enable functions
779  *
780  */
781 /* Enable one or more USB endpoint interrupts */
782 static void uda_enable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
783 {
784 	udc->enabled_hwepints |= (1 << hwep);
785 	writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
786 }
787 
788 /* Disable one or more USB endpoint interrupts */
789 static void uda_disable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
790 {
791 	udc->enabled_hwepints &= ~(1 << hwep);
792 	writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
793 }
794 
795 /* Clear one or more USB endpoint interrupts */
796 static inline void uda_clear_hwepint(struct lpc32xx_udc *udc, u32 hwep)
797 {
798 	writel((1 << hwep), USBD_EPINTCLR(udc->udp_baseaddr));
799 }
800 
801 /* Enable DMA for the HW channel */
802 static inline void udc_ep_dma_enable(struct lpc32xx_udc *udc, u32 hwep)
803 {
804 	writel((1 << hwep), USBD_EPDMAEN(udc->udp_baseaddr));
805 }
806 
807 /* Disable DMA for the HW channel */
808 static inline void udc_ep_dma_disable(struct lpc32xx_udc *udc, u32 hwep)
809 {
810 	writel((1 << hwep), USBD_EPDMADIS(udc->udp_baseaddr));
811 }
812 
813 /*
814  *
815  * Endpoint realize/unrealize functions
816  *
817  */
818 /* Before an endpoint can be used, it needs to be realized
819  * in the USB protocol engine - this realizes the endpoint.
820  * The interrupt (FIFO or DMA) is not enabled with this function */
821 static void udc_realize_hwep(struct lpc32xx_udc *udc, u32 hwep,
822 			     u32 maxpacket)
823 {
824 	int to = 1000;
825 
826 	writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
827 	writel(hwep, USBD_EPIND(udc->udp_baseaddr));
828 	udc->realized_eps |= (1 << hwep);
829 	writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
830 	writel(maxpacket, USBD_EPMAXPSIZE(udc->udp_baseaddr));
831 
832 	/* Wait until endpoint is realized in hardware */
833 	while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) &
834 		  USBD_EP_RLZED)) && (to > 0))
835 		to--;
836 	if (!to)
837 		dev_dbg(udc->dev, "EP not correctly realized in hardware\n");
838 
839 	writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
840 }
841 
842 /* Unrealize an EP */
843 static void udc_unrealize_hwep(struct lpc32xx_udc *udc, u32 hwep)
844 {
845 	udc->realized_eps &= ~(1 << hwep);
846 	writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
847 }
848 
849 /*
850  *
851  * Endpoint support functions
852  *
853  */
854 /* Select and clear endpoint interrupt */
855 static u32 udc_selep_clrint(struct lpc32xx_udc *udc, u32 hwep)
856 {
857 	udc_protocol_cmd_w(udc, CMD_SEL_EP_CLRI(hwep));
858 	return udc_protocol_cmd_r(udc, DAT_SEL_EP_CLRI(hwep));
859 }
860 
861 /* Disables the endpoint in the USB protocol engine */
862 static void udc_disable_hwep(struct lpc32xx_udc *udc, u32 hwep)
863 {
864 	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
865 				DAT_WR_BYTE(EP_STAT_DA));
866 }
867 
868 /* Stalls the endpoint - endpoint will return STALL */
869 static void udc_stall_hwep(struct lpc32xx_udc *udc, u32 hwep)
870 {
871 	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
872 				DAT_WR_BYTE(EP_STAT_ST));
873 }
874 
875 /* Clear stall or reset endpoint */
876 static void udc_clrstall_hwep(struct lpc32xx_udc *udc, u32 hwep)
877 {
878 	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
879 				DAT_WR_BYTE(0));
880 }
881 
882 /* Select an endpoint for endpoint status, clear, validate */
883 static void udc_select_hwep(struct lpc32xx_udc *udc, u32 hwep)
884 {
885 	udc_protocol_cmd_w(udc, CMD_SEL_EP(hwep));
886 }
887 
888 /*
889  *
890  * Endpoint buffer management functions
891  *
892  */
893 /* Clear the current endpoint's buffer */
894 static void udc_clr_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
895 {
896 	udc_select_hwep(udc, hwep);
897 	udc_protocol_cmd_w(udc, CMD_CLR_BUF);
898 }
899 
900 /* Validate the current endpoint's buffer */
901 static void udc_val_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
902 {
903 	udc_select_hwep(udc, hwep);
904 	udc_protocol_cmd_w(udc, CMD_VALID_BUF);
905 }
906 
907 static inline u32 udc_clearep_getsts(struct lpc32xx_udc *udc, u32 hwep)
908 {
909 	/* Clear EP interrupt */
910 	uda_clear_hwepint(udc, hwep);
911 	return udc_selep_clrint(udc, hwep);
912 }
913 
914 /*
915  *
916  * USB EP DMA support
917  *
918  */
919 /* Allocate a DMA Descriptor */
920 static struct lpc32xx_usbd_dd_gad *udc_dd_alloc(struct lpc32xx_udc *udc)
921 {
922 	dma_addr_t			dma;
923 	struct lpc32xx_usbd_dd_gad	*dd;
924 
925 	dd = dma_pool_alloc(udc->dd_cache, GFP_ATOMIC | GFP_DMA, &dma);
926 	if (dd)
927 		dd->this_dma = dma;
928 
929 	return dd;
930 }
931 
932 /* Free a DMA Descriptor */
933 static void udc_dd_free(struct lpc32xx_udc *udc, struct lpc32xx_usbd_dd_gad *dd)
934 {
935 	dma_pool_free(udc->dd_cache, dd, dd->this_dma);
936 }
937 
938 /*
939  *
940  * USB setup and shutdown functions
941  *
942  */
943 /* Enables or disables most of the USB system clocks when low power mode is
944  * needed. Clocks are typically started on a connection event, and disabled
945  * when a cable is disconnected */
946 static void udc_clk_set(struct lpc32xx_udc *udc, int enable)
947 {
948 	if (enable != 0) {
949 		if (udc->clocked)
950 			return;
951 
952 		udc->clocked = 1;
953 		clk_prepare_enable(udc->usb_slv_clk);
954 	} else {
955 		if (!udc->clocked)
956 			return;
957 
958 		udc->clocked = 0;
959 		clk_disable_unprepare(udc->usb_slv_clk);
960 	}
961 }
962 
963 /* Set/reset USB device address */
964 static void udc_set_address(struct lpc32xx_udc *udc, u32 addr)
965 {
966 	/* Address will be latched at the end of the status phase, or
967 	   latched immediately if function is called twice */
968 	udc_protocol_cmd_data_w(udc, CMD_SET_ADDR,
969 				DAT_WR_BYTE(DEV_EN | addr));
970 }
971 
972 /* Setup up a IN request for DMA transfer - this consists of determining the
973  * list of DMA addresses for the transfer, allocating DMA Descriptors,
974  * installing the DD into the UDCA, and then enabling the DMA for that EP */
975 static int udc_ep_in_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
976 {
977 	struct lpc32xx_request *req;
978 	u32 hwep = ep->hwep_num;
979 
980 	ep->req_pending = 1;
981 
982 	/* There will always be a request waiting here */
983 	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
984 
985 	/* Place the DD Descriptor into the UDCA */
986 	udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
987 
988 	/* Enable DMA and interrupt for the HW EP */
989 	udc_ep_dma_enable(udc, hwep);
990 
991 	/* Clear ZLP if last packet is not of MAXP size */
992 	if (req->req.length % ep->ep.maxpacket)
993 		req->send_zlp = 0;
994 
995 	return 0;
996 }
997 
998 /* Setup up a OUT request for DMA transfer - this consists of determining the
999  * list of DMA addresses for the transfer, allocating DMA Descriptors,
1000  * installing the DD into the UDCA, and then enabling the DMA for that EP */
1001 static int udc_ep_out_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1002 {
1003 	struct lpc32xx_request *req;
1004 	u32 hwep = ep->hwep_num;
1005 
1006 	ep->req_pending = 1;
1007 
1008 	/* There will always be a request waiting here */
1009 	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1010 
1011 	/* Place the DD Descriptor into the UDCA */
1012 	udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
1013 
1014 	/* Enable DMA and interrupt for the HW EP */
1015 	udc_ep_dma_enable(udc, hwep);
1016 	return 0;
1017 }
1018 
1019 static void udc_disable(struct lpc32xx_udc *udc)
1020 {
1021 	u32 i;
1022 
1023 	/* Disable device */
1024 	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1025 	udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(0));
1026 
1027 	/* Disable all device interrupts (including EP0) */
1028 	uda_disable_devint(udc, 0x3FF);
1029 
1030 	/* Disable and reset all endpoint interrupts */
1031 	for (i = 0; i < 32; i++) {
1032 		uda_disable_hwepint(udc, i);
1033 		uda_clear_hwepint(udc, i);
1034 		udc_disable_hwep(udc, i);
1035 		udc_unrealize_hwep(udc, i);
1036 		udc->udca_v_base[i] = 0;
1037 
1038 		/* Disable and clear all interrupts and DMA */
1039 		udc_ep_dma_disable(udc, i);
1040 		writel((1 << i), USBD_EOTINTCLR(udc->udp_baseaddr));
1041 		writel((1 << i), USBD_NDDRTINTCLR(udc->udp_baseaddr));
1042 		writel((1 << i), USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1043 		writel((1 << i), USBD_DMARCLR(udc->udp_baseaddr));
1044 	}
1045 
1046 	/* Disable DMA interrupts */
1047 	writel(0, USBD_DMAINTEN(udc->udp_baseaddr));
1048 
1049 	writel(0, USBD_UDCAH(udc->udp_baseaddr));
1050 }
1051 
1052 static void udc_enable(struct lpc32xx_udc *udc)
1053 {
1054 	u32 i;
1055 	struct lpc32xx_ep *ep = &udc->ep[0];
1056 
1057 	/* Start with known state */
1058 	udc_disable(udc);
1059 
1060 	/* Enable device */
1061 	udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(DEV_CON));
1062 
1063 	/* EP interrupts on high priority, FRAME interrupt on low priority */
1064 	writel(USBD_EP_FAST, USBD_DEVINTPRI(udc->udp_baseaddr));
1065 	writel(0xFFFF, USBD_EPINTPRI(udc->udp_baseaddr));
1066 
1067 	/* Clear any pending device interrupts */
1068 	writel(0x3FF, USBD_DEVINTCLR(udc->udp_baseaddr));
1069 
1070 	/* Setup UDCA - not yet used (DMA) */
1071 	writel(udc->udca_p_base, USBD_UDCAH(udc->udp_baseaddr));
1072 
1073 	/* Only enable EP0 in and out for now, EP0 only works in FIFO mode */
1074 	for (i = 0; i <= 1; i++) {
1075 		udc_realize_hwep(udc, i, ep->ep.maxpacket);
1076 		uda_enable_hwepint(udc, i);
1077 		udc_select_hwep(udc, i);
1078 		udc_clrstall_hwep(udc, i);
1079 		udc_clr_buffer_hwep(udc, i);
1080 	}
1081 
1082 	/* Device interrupt setup */
1083 	uda_clear_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1084 			       USBD_EP_FAST));
1085 	uda_enable_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1086 				USBD_EP_FAST));
1087 
1088 	/* Set device address to 0 - called twice to force a latch in the USB
1089 	   engine without the need of a setup packet status closure */
1090 	udc_set_address(udc, 0);
1091 	udc_set_address(udc, 0);
1092 
1093 	/* Enable master DMA interrupts */
1094 	writel((USBD_SYS_ERR_INT | USBD_EOT_INT),
1095 		     USBD_DMAINTEN(udc->udp_baseaddr));
1096 
1097 	udc->dev_status = 0;
1098 }
1099 
1100 /*
1101  *
1102  * USB device board specific events handled via callbacks
1103  *
1104  */
1105 /* Connection change event - notify board function of change */
1106 static void uda_power_event(struct lpc32xx_udc *udc, u32 conn)
1107 {
1108 	/* Just notify of a connection change event (optional) */
1109 	if (udc->board->conn_chgb != NULL)
1110 		udc->board->conn_chgb(conn);
1111 }
1112 
1113 /* Suspend/resume event - notify board function of change */
1114 static void uda_resm_susp_event(struct lpc32xx_udc *udc, u32 conn)
1115 {
1116 	/* Just notify of a Suspend/resume change event (optional) */
1117 	if (udc->board->susp_chgb != NULL)
1118 		udc->board->susp_chgb(conn);
1119 
1120 	if (conn)
1121 		udc->suspended = 0;
1122 	else
1123 		udc->suspended = 1;
1124 }
1125 
1126 /* Remote wakeup enable/disable - notify board function of change */
1127 static void uda_remwkp_cgh(struct lpc32xx_udc *udc)
1128 {
1129 	if (udc->board->rmwk_chgb != NULL)
1130 		udc->board->rmwk_chgb(udc->dev_status &
1131 				      (1 << USB_DEVICE_REMOTE_WAKEUP));
1132 }
1133 
1134 /* Reads data from FIFO, adjusts for alignment and data size */
1135 static void udc_pop_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1136 {
1137 	int n, i, bl;
1138 	u16 *p16;
1139 	u32 *p32, tmp, cbytes;
1140 
1141 	/* Use optimal data transfer method based on source address and size */
1142 	switch (((uintptr_t) data) & 0x3) {
1143 	case 0: /* 32-bit aligned */
1144 		p32 = (u32 *) data;
1145 		cbytes = (bytes & ~0x3);
1146 
1147 		/* Copy 32-bit aligned data first */
1148 		for (n = 0; n < cbytes; n += 4)
1149 			*p32++ = readl(USBD_RXDATA(udc->udp_baseaddr));
1150 
1151 		/* Handle any remaining bytes */
1152 		bl = bytes - cbytes;
1153 		if (bl) {
1154 			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1155 			for (n = 0; n < bl; n++)
1156 				data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1157 
1158 		}
1159 		break;
1160 
1161 	case 1: /* 8-bit aligned */
1162 	case 3:
1163 		/* Each byte has to be handled independently */
1164 		for (n = 0; n < bytes; n += 4) {
1165 			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1166 
1167 			bl = bytes - n;
1168 			if (bl > 4)
1169 				bl = 4;
1170 
1171 			for (i = 0; i < bl; i++)
1172 				data[n + i] = (u8) ((tmp >> (i * 8)) & 0xFF);
1173 		}
1174 		break;
1175 
1176 	case 2: /* 16-bit aligned */
1177 		p16 = (u16 *) data;
1178 		cbytes = (bytes & ~0x3);
1179 
1180 		/* Copy 32-bit sized objects first with 16-bit alignment */
1181 		for (n = 0; n < cbytes; n += 4) {
1182 			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1183 			*p16++ = (u16)(tmp & 0xFFFF);
1184 			*p16++ = (u16)((tmp >> 16) & 0xFFFF);
1185 		}
1186 
1187 		/* Handle any remaining bytes */
1188 		bl = bytes - cbytes;
1189 		if (bl) {
1190 			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1191 			for (n = 0; n < bl; n++)
1192 				data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1193 		}
1194 		break;
1195 	}
1196 }
1197 
1198 /* Read data from the FIFO for an endpoint. This function is for endpoints (such
1199  * as EP0) that don't use DMA. This function should only be called if a packet
1200  * is known to be ready to read for the endpoint. Note that the endpoint must
1201  * be selected in the protocol engine prior to this call. */
1202 static u32 udc_read_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1203 			 u32 bytes)
1204 {
1205 	u32 tmpv;
1206 	int to = 1000;
1207 	u32 tmp, hwrep = ((hwep & 0x1E) << 1) | CTRL_RD_EN;
1208 
1209 	/* Setup read of endpoint */
1210 	writel(hwrep, USBD_CTRL(udc->udp_baseaddr));
1211 
1212 	/* Wait until packet is ready */
1213 	while ((((tmpv = readl(USBD_RXPLEN(udc->udp_baseaddr))) &
1214 		 PKT_RDY) == 0)	&& (to > 0))
1215 		to--;
1216 	if (!to)
1217 		dev_dbg(udc->dev, "No packet ready on FIFO EP read\n");
1218 
1219 	/* Mask out count */
1220 	tmp = tmpv & PKT_LNGTH_MASK;
1221 	if (bytes < tmp)
1222 		tmp = bytes;
1223 
1224 	if ((tmp > 0) && (data != NULL))
1225 		udc_pop_fifo(udc, (u8 *) data, tmp);
1226 
1227 	writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1228 
1229 	/* Clear the buffer */
1230 	udc_clr_buffer_hwep(udc, hwep);
1231 
1232 	return tmp;
1233 }
1234 
1235 /* Stuffs data into the FIFO, adjusts for alignment and data size */
1236 static void udc_stuff_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1237 {
1238 	int n, i, bl;
1239 	u16 *p16;
1240 	u32 *p32, tmp, cbytes;
1241 
1242 	/* Use optimal data transfer method based on source address and size */
1243 	switch (((uintptr_t) data) & 0x3) {
1244 	case 0: /* 32-bit aligned */
1245 		p32 = (u32 *) data;
1246 		cbytes = (bytes & ~0x3);
1247 
1248 		/* Copy 32-bit aligned data first */
1249 		for (n = 0; n < cbytes; n += 4)
1250 			writel(*p32++, USBD_TXDATA(udc->udp_baseaddr));
1251 
1252 		/* Handle any remaining bytes */
1253 		bl = bytes - cbytes;
1254 		if (bl) {
1255 			tmp = 0;
1256 			for (n = 0; n < bl; n++)
1257 				tmp |= data[cbytes + n] << (n * 8);
1258 
1259 			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1260 		}
1261 		break;
1262 
1263 	case 1: /* 8-bit aligned */
1264 	case 3:
1265 		/* Each byte has to be handled independently */
1266 		for (n = 0; n < bytes; n += 4) {
1267 			bl = bytes - n;
1268 			if (bl > 4)
1269 				bl = 4;
1270 
1271 			tmp = 0;
1272 			for (i = 0; i < bl; i++)
1273 				tmp |= data[n + i] << (i * 8);
1274 
1275 			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1276 		}
1277 		break;
1278 
1279 	case 2: /* 16-bit aligned */
1280 		p16 = (u16 *) data;
1281 		cbytes = (bytes & ~0x3);
1282 
1283 		/* Copy 32-bit aligned data first */
1284 		for (n = 0; n < cbytes; n += 4) {
1285 			tmp = *p16++ & 0xFFFF;
1286 			tmp |= (*p16++ & 0xFFFF) << 16;
1287 			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1288 		}
1289 
1290 		/* Handle any remaining bytes */
1291 		bl = bytes - cbytes;
1292 		if (bl) {
1293 			tmp = 0;
1294 			for (n = 0; n < bl; n++)
1295 				tmp |= data[cbytes + n] << (n * 8);
1296 
1297 			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1298 		}
1299 		break;
1300 	}
1301 }
1302 
1303 /* Write data to the FIFO for an endpoint. This function is for endpoints (such
1304  * as EP0) that don't use DMA. Note that the endpoint must be selected in the
1305  * protocol engine prior to this call. */
1306 static void udc_write_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1307 			   u32 bytes)
1308 {
1309 	u32 hwwep = ((hwep & 0x1E) << 1) | CTRL_WR_EN;
1310 
1311 	if ((bytes > 0) && (data == NULL))
1312 		return;
1313 
1314 	/* Setup write of endpoint */
1315 	writel(hwwep, USBD_CTRL(udc->udp_baseaddr));
1316 
1317 	writel(bytes, USBD_TXPLEN(udc->udp_baseaddr));
1318 
1319 	/* Need at least 1 byte to trigger TX */
1320 	if (bytes == 0)
1321 		writel(0, USBD_TXDATA(udc->udp_baseaddr));
1322 	else
1323 		udc_stuff_fifo(udc, (u8 *) data, bytes);
1324 
1325 	writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1326 
1327 	udc_val_buffer_hwep(udc, hwep);
1328 }
1329 
1330 /* USB device reset - resets USB to a default state with just EP0
1331    enabled */
1332 static void uda_usb_reset(struct lpc32xx_udc *udc)
1333 {
1334 	u32 i = 0;
1335 	/* Re-init device controller and EP0 */
1336 	udc_enable(udc);
1337 	udc->gadget.speed = USB_SPEED_FULL;
1338 
1339 	for (i = 1; i < NUM_ENDPOINTS; i++) {
1340 		struct lpc32xx_ep *ep = &udc->ep[i];
1341 		ep->req_pending = 0;
1342 	}
1343 }
1344 
1345 /* Send a ZLP on EP0 */
1346 static void udc_ep0_send_zlp(struct lpc32xx_udc *udc)
1347 {
1348 	udc_write_hwep(udc, EP_IN, NULL, 0);
1349 }
1350 
1351 /* Get current frame number */
1352 static u16 udc_get_current_frame(struct lpc32xx_udc *udc)
1353 {
1354 	u16 flo, fhi;
1355 
1356 	udc_protocol_cmd_w(udc, CMD_RD_FRAME);
1357 	flo = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1358 	fhi = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1359 
1360 	return (fhi << 8) | flo;
1361 }
1362 
1363 /* Set the device as configured - enables all endpoints */
1364 static inline void udc_set_device_configured(struct lpc32xx_udc *udc)
1365 {
1366 	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(CONF_DVICE));
1367 }
1368 
1369 /* Set the device as unconfigured - disables all endpoints */
1370 static inline void udc_set_device_unconfigured(struct lpc32xx_udc *udc)
1371 {
1372 	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1373 }
1374 
1375 /* reinit == restore initial software state */
1376 static void udc_reinit(struct lpc32xx_udc *udc)
1377 {
1378 	u32 i;
1379 
1380 	INIT_LIST_HEAD(&udc->gadget.ep_list);
1381 	INIT_LIST_HEAD(&udc->gadget.ep0->ep_list);
1382 
1383 	for (i = 0; i < NUM_ENDPOINTS; i++) {
1384 		struct lpc32xx_ep *ep = &udc->ep[i];
1385 
1386 		if (i != 0)
1387 			list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1388 		usb_ep_set_maxpacket_limit(&ep->ep, ep->maxpacket);
1389 		INIT_LIST_HEAD(&ep->queue);
1390 		ep->req_pending = 0;
1391 	}
1392 
1393 	udc->ep0state = WAIT_FOR_SETUP;
1394 }
1395 
1396 /* Must be called with lock */
1397 static void done(struct lpc32xx_ep *ep, struct lpc32xx_request *req, int status)
1398 {
1399 	struct lpc32xx_udc *udc = ep->udc;
1400 
1401 	list_del_init(&req->queue);
1402 	if (req->req.status == -EINPROGRESS)
1403 		req->req.status = status;
1404 	else
1405 		status = req->req.status;
1406 
1407 	if (ep->lep) {
1408 		usb_gadget_unmap_request(&udc->gadget, &req->req, ep->is_in);
1409 
1410 		/* Free DDs */
1411 		udc_dd_free(udc, req->dd_desc_ptr);
1412 	}
1413 
1414 	if (status && status != -ESHUTDOWN)
1415 		ep_dbg(ep, "%s done %p, status %d\n", ep->ep.name, req, status);
1416 
1417 	ep->req_pending = 0;
1418 	spin_unlock(&udc->lock);
1419 	usb_gadget_giveback_request(&ep->ep, &req->req);
1420 	spin_lock(&udc->lock);
1421 }
1422 
1423 /* Must be called with lock */
1424 static void nuke(struct lpc32xx_ep *ep, int status)
1425 {
1426 	struct lpc32xx_request *req;
1427 
1428 	while (!list_empty(&ep->queue)) {
1429 		req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1430 		done(ep, req, status);
1431 	}
1432 
1433 	if (status == -ESHUTDOWN) {
1434 		uda_disable_hwepint(ep->udc, ep->hwep_num);
1435 		udc_disable_hwep(ep->udc, ep->hwep_num);
1436 	}
1437 }
1438 
1439 /* IN endpoint 0 transfer */
1440 static int udc_ep0_in_req(struct lpc32xx_udc *udc)
1441 {
1442 	struct lpc32xx_request *req;
1443 	struct lpc32xx_ep *ep0 = &udc->ep[0];
1444 	u32 tsend, ts = 0;
1445 
1446 	if (list_empty(&ep0->queue))
1447 		/* Nothing to send */
1448 		return 0;
1449 	else
1450 		req = list_entry(ep0->queue.next, struct lpc32xx_request,
1451 				 queue);
1452 
1453 	tsend = ts = req->req.length - req->req.actual;
1454 	if (ts == 0) {
1455 		/* Send a ZLP */
1456 		udc_ep0_send_zlp(udc);
1457 		done(ep0, req, 0);
1458 		return 1;
1459 	} else if (ts > ep0->ep.maxpacket)
1460 		ts = ep0->ep.maxpacket; /* Just send what we can */
1461 
1462 	/* Write data to the EP0 FIFO and start transfer */
1463 	udc_write_hwep(udc, EP_IN, (req->req.buf + req->req.actual), ts);
1464 
1465 	/* Increment data pointer */
1466 	req->req.actual += ts;
1467 
1468 	if (tsend >= ep0->ep.maxpacket)
1469 		return 0; /* Stay in data transfer state */
1470 
1471 	/* Transfer request is complete */
1472 	udc->ep0state = WAIT_FOR_SETUP;
1473 	done(ep0, req, 0);
1474 	return 1;
1475 }
1476 
1477 /* OUT endpoint 0 transfer */
1478 static int udc_ep0_out_req(struct lpc32xx_udc *udc)
1479 {
1480 	struct lpc32xx_request *req;
1481 	struct lpc32xx_ep *ep0 = &udc->ep[0];
1482 	u32 tr, bufferspace;
1483 
1484 	if (list_empty(&ep0->queue))
1485 		return 0;
1486 	else
1487 		req = list_entry(ep0->queue.next, struct lpc32xx_request,
1488 				 queue);
1489 
1490 	if (req) {
1491 		if (req->req.length == 0) {
1492 			/* Just dequeue request */
1493 			done(ep0, req, 0);
1494 			udc->ep0state = WAIT_FOR_SETUP;
1495 			return 1;
1496 		}
1497 
1498 		/* Get data from FIFO */
1499 		bufferspace = req->req.length - req->req.actual;
1500 		if (bufferspace > ep0->ep.maxpacket)
1501 			bufferspace = ep0->ep.maxpacket;
1502 
1503 		/* Copy data to buffer */
1504 		prefetchw(req->req.buf + req->req.actual);
1505 		tr = udc_read_hwep(udc, EP_OUT, req->req.buf + req->req.actual,
1506 				   bufferspace);
1507 		req->req.actual += bufferspace;
1508 
1509 		if (tr < ep0->ep.maxpacket) {
1510 			/* This is the last packet */
1511 			done(ep0, req, 0);
1512 			udc->ep0state = WAIT_FOR_SETUP;
1513 			return 1;
1514 		}
1515 	}
1516 
1517 	return 0;
1518 }
1519 
1520 /* Must be called with lock */
1521 static void stop_activity(struct lpc32xx_udc *udc)
1522 {
1523 	struct usb_gadget_driver *driver = udc->driver;
1524 	int i;
1525 
1526 	if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1527 		driver = NULL;
1528 
1529 	udc->gadget.speed = USB_SPEED_UNKNOWN;
1530 	udc->suspended = 0;
1531 
1532 	for (i = 0; i < NUM_ENDPOINTS; i++) {
1533 		struct lpc32xx_ep *ep = &udc->ep[i];
1534 		nuke(ep, -ESHUTDOWN);
1535 	}
1536 	if (driver) {
1537 		spin_unlock(&udc->lock);
1538 		driver->disconnect(&udc->gadget);
1539 		spin_lock(&udc->lock);
1540 	}
1541 
1542 	isp1301_pullup_enable(udc, 0, 0);
1543 	udc_disable(udc);
1544 	udc_reinit(udc);
1545 }
1546 
1547 /*
1548  * Activate or kill host pullup
1549  * Can be called with or without lock
1550  */
1551 static void pullup(struct lpc32xx_udc *udc, int is_on)
1552 {
1553 	if (!udc->clocked)
1554 		return;
1555 
1556 	if (!udc->enabled || !udc->vbus)
1557 		is_on = 0;
1558 
1559 	if (is_on != udc->pullup)
1560 		isp1301_pullup_enable(udc, is_on, 0);
1561 }
1562 
1563 /* Must be called without lock */
1564 static int lpc32xx_ep_disable(struct usb_ep *_ep)
1565 {
1566 	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1567 	struct lpc32xx_udc *udc = ep->udc;
1568 	unsigned long	flags;
1569 
1570 	if ((ep->hwep_num_base == 0) || (ep->hwep_num == 0))
1571 		return -EINVAL;
1572 	spin_lock_irqsave(&udc->lock, flags);
1573 
1574 	nuke(ep, -ESHUTDOWN);
1575 
1576 	/* Clear all DMA statuses for this EP */
1577 	udc_ep_dma_disable(udc, ep->hwep_num);
1578 	writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1579 	writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1580 	writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1581 	writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1582 
1583 	/* Remove the DD pointer in the UDCA */
1584 	udc->udca_v_base[ep->hwep_num] = 0;
1585 
1586 	/* Disable and reset endpoint and interrupt */
1587 	uda_clear_hwepint(udc, ep->hwep_num);
1588 	udc_unrealize_hwep(udc, ep->hwep_num);
1589 
1590 	ep->hwep_num = 0;
1591 
1592 	spin_unlock_irqrestore(&udc->lock, flags);
1593 
1594 	atomic_dec(&udc->enabled_ep_cnt);
1595 	wake_up(&udc->ep_disable_wait_queue);
1596 
1597 	return 0;
1598 }
1599 
1600 /* Must be called without lock */
1601 static int lpc32xx_ep_enable(struct usb_ep *_ep,
1602 			     const struct usb_endpoint_descriptor *desc)
1603 {
1604 	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1605 	struct lpc32xx_udc *udc;
1606 	u16 maxpacket;
1607 	u32 tmp;
1608 	unsigned long flags;
1609 
1610 	/* Verify EP data */
1611 	if ((!_ep) || (!ep) || (!desc) ||
1612 	    (desc->bDescriptorType != USB_DT_ENDPOINT))
1613 		return -EINVAL;
1614 
1615 	udc = ep->udc;
1616 	maxpacket = usb_endpoint_maxp(desc);
1617 	if ((maxpacket == 0) || (maxpacket > ep->maxpacket)) {
1618 		dev_dbg(udc->dev, "bad ep descriptor's packet size\n");
1619 		return -EINVAL;
1620 	}
1621 
1622 	/* Don't touch EP0 */
1623 	if (ep->hwep_num_base == 0) {
1624 		dev_dbg(udc->dev, "Can't re-enable EP0!!!\n");
1625 		return -EINVAL;
1626 	}
1627 
1628 	/* Is driver ready? */
1629 	if ((!udc->driver) || (udc->gadget.speed == USB_SPEED_UNKNOWN)) {
1630 		dev_dbg(udc->dev, "bogus device state\n");
1631 		return -ESHUTDOWN;
1632 	}
1633 
1634 	tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
1635 	switch (tmp) {
1636 	case USB_ENDPOINT_XFER_CONTROL:
1637 		return -EINVAL;
1638 
1639 	case USB_ENDPOINT_XFER_INT:
1640 		if (maxpacket > ep->maxpacket) {
1641 			dev_dbg(udc->dev,
1642 				"Bad INT endpoint maxpacket %d\n", maxpacket);
1643 			return -EINVAL;
1644 		}
1645 		break;
1646 
1647 	case USB_ENDPOINT_XFER_BULK:
1648 		switch (maxpacket) {
1649 		case 8:
1650 		case 16:
1651 		case 32:
1652 		case 64:
1653 			break;
1654 
1655 		default:
1656 			dev_dbg(udc->dev,
1657 				"Bad BULK endpoint maxpacket %d\n", maxpacket);
1658 			return -EINVAL;
1659 		}
1660 		break;
1661 
1662 	case USB_ENDPOINT_XFER_ISOC:
1663 		break;
1664 	}
1665 	spin_lock_irqsave(&udc->lock, flags);
1666 
1667 	/* Initialize endpoint to match the selected descriptor */
1668 	ep->is_in = (desc->bEndpointAddress & USB_DIR_IN) != 0;
1669 	ep->ep.maxpacket = maxpacket;
1670 
1671 	/* Map hardware endpoint from base and direction */
1672 	if (ep->is_in)
1673 		/* IN endpoints are offset 1 from the OUT endpoint */
1674 		ep->hwep_num = ep->hwep_num_base + EP_IN;
1675 	else
1676 		ep->hwep_num = ep->hwep_num_base;
1677 
1678 	ep_dbg(ep, "EP enabled: %s, HW:%d, MP:%d IN:%d\n", ep->ep.name,
1679 	       ep->hwep_num, maxpacket, (ep->is_in == 1));
1680 
1681 	/* Realize the endpoint, interrupt is enabled later when
1682 	 * buffers are queued, IN EPs will NAK until buffers are ready */
1683 	udc_realize_hwep(udc, ep->hwep_num, ep->ep.maxpacket);
1684 	udc_clr_buffer_hwep(udc, ep->hwep_num);
1685 	uda_disable_hwepint(udc, ep->hwep_num);
1686 	udc_clrstall_hwep(udc, ep->hwep_num);
1687 
1688 	/* Clear all DMA statuses for this EP */
1689 	udc_ep_dma_disable(udc, ep->hwep_num);
1690 	writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1691 	writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1692 	writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1693 	writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1694 
1695 	spin_unlock_irqrestore(&udc->lock, flags);
1696 
1697 	atomic_inc(&udc->enabled_ep_cnt);
1698 	return 0;
1699 }
1700 
1701 /*
1702  * Allocate a USB request list
1703  * Can be called with or without lock
1704  */
1705 static struct usb_request *lpc32xx_ep_alloc_request(struct usb_ep *_ep,
1706 						    gfp_t gfp_flags)
1707 {
1708 	struct lpc32xx_request *req;
1709 
1710 	req = kzalloc(sizeof(struct lpc32xx_request), gfp_flags);
1711 	if (!req)
1712 		return NULL;
1713 
1714 	INIT_LIST_HEAD(&req->queue);
1715 	return &req->req;
1716 }
1717 
1718 /*
1719  * De-allocate a USB request list
1720  * Can be called with or without lock
1721  */
1722 static void lpc32xx_ep_free_request(struct usb_ep *_ep,
1723 				    struct usb_request *_req)
1724 {
1725 	struct lpc32xx_request *req;
1726 
1727 	req = container_of(_req, struct lpc32xx_request, req);
1728 	BUG_ON(!list_empty(&req->queue));
1729 	kfree(req);
1730 }
1731 
1732 /* Must be called without lock */
1733 static int lpc32xx_ep_queue(struct usb_ep *_ep,
1734 			    struct usb_request *_req, gfp_t gfp_flags)
1735 {
1736 	struct lpc32xx_request *req;
1737 	struct lpc32xx_ep *ep;
1738 	struct lpc32xx_udc *udc;
1739 	unsigned long flags;
1740 	int status = 0;
1741 
1742 	req = container_of(_req, struct lpc32xx_request, req);
1743 	ep = container_of(_ep, struct lpc32xx_ep, ep);
1744 
1745 	if (!_ep || !_req || !_req->complete || !_req->buf ||
1746 	    !list_empty(&req->queue))
1747 		return -EINVAL;
1748 
1749 	udc = ep->udc;
1750 
1751 	if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1752 		return -EPIPE;
1753 
1754 	if (ep->lep) {
1755 		struct lpc32xx_usbd_dd_gad *dd;
1756 
1757 		status = usb_gadget_map_request(&udc->gadget, _req, ep->is_in);
1758 		if (status)
1759 			return status;
1760 
1761 		/* For the request, build a list of DDs */
1762 		dd = udc_dd_alloc(udc);
1763 		if (!dd) {
1764 			/* Error allocating DD */
1765 			return -ENOMEM;
1766 		}
1767 		req->dd_desc_ptr = dd;
1768 
1769 		/* Setup the DMA descriptor */
1770 		dd->dd_next_phy = dd->dd_next_v = 0;
1771 		dd->dd_buffer_addr = req->req.dma;
1772 		dd->dd_status = 0;
1773 
1774 		/* Special handling for ISO EPs */
1775 		if (ep->eptype == EP_ISO_TYPE) {
1776 			dd->dd_setup = DD_SETUP_ISO_EP |
1777 				DD_SETUP_PACKETLEN(0) |
1778 				DD_SETUP_DMALENBYTES(1);
1779 			dd->dd_iso_ps_mem_addr = dd->this_dma + 24;
1780 			if (ep->is_in)
1781 				dd->iso_status[0] = req->req.length;
1782 			else
1783 				dd->iso_status[0] = 0;
1784 		} else
1785 			dd->dd_setup = DD_SETUP_PACKETLEN(ep->ep.maxpacket) |
1786 				DD_SETUP_DMALENBYTES(req->req.length);
1787 	}
1788 
1789 	ep_dbg(ep, "%s queue req %p len %d buf %p (in=%d) z=%d\n", _ep->name,
1790 	       _req, _req->length, _req->buf, ep->is_in, _req->zero);
1791 
1792 	spin_lock_irqsave(&udc->lock, flags);
1793 
1794 	_req->status = -EINPROGRESS;
1795 	_req->actual = 0;
1796 	req->send_zlp = _req->zero;
1797 
1798 	/* Kickstart empty queues */
1799 	if (list_empty(&ep->queue)) {
1800 		list_add_tail(&req->queue, &ep->queue);
1801 
1802 		if (ep->hwep_num_base == 0) {
1803 			/* Handle expected data direction */
1804 			if (ep->is_in) {
1805 				/* IN packet to host */
1806 				udc->ep0state = DATA_IN;
1807 				status = udc_ep0_in_req(udc);
1808 			} else {
1809 				/* OUT packet from host */
1810 				udc->ep0state = DATA_OUT;
1811 				status = udc_ep0_out_req(udc);
1812 			}
1813 		} else if (ep->is_in) {
1814 			/* IN packet to host and kick off transfer */
1815 			if (!ep->req_pending)
1816 				udc_ep_in_req_dma(udc, ep);
1817 		} else
1818 			/* OUT packet from host and kick off list */
1819 			if (!ep->req_pending)
1820 				udc_ep_out_req_dma(udc, ep);
1821 	} else
1822 		list_add_tail(&req->queue, &ep->queue);
1823 
1824 	spin_unlock_irqrestore(&udc->lock, flags);
1825 
1826 	return (status < 0) ? status : 0;
1827 }
1828 
1829 /* Must be called without lock */
1830 static int lpc32xx_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1831 {
1832 	struct lpc32xx_ep *ep;
1833 	struct lpc32xx_request *req;
1834 	unsigned long flags;
1835 
1836 	ep = container_of(_ep, struct lpc32xx_ep, ep);
1837 	if (!_ep || ep->hwep_num_base == 0)
1838 		return -EINVAL;
1839 
1840 	spin_lock_irqsave(&ep->udc->lock, flags);
1841 
1842 	/* make sure it's actually queued on this endpoint */
1843 	list_for_each_entry(req, &ep->queue, queue) {
1844 		if (&req->req == _req)
1845 			break;
1846 	}
1847 	if (&req->req != _req) {
1848 		spin_unlock_irqrestore(&ep->udc->lock, flags);
1849 		return -EINVAL;
1850 	}
1851 
1852 	done(ep, req, -ECONNRESET);
1853 
1854 	spin_unlock_irqrestore(&ep->udc->lock, flags);
1855 
1856 	return 0;
1857 }
1858 
1859 /* Must be called without lock */
1860 static int lpc32xx_ep_set_halt(struct usb_ep *_ep, int value)
1861 {
1862 	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1863 	struct lpc32xx_udc *udc;
1864 	unsigned long flags;
1865 
1866 	if ((!ep) || (ep->hwep_num <= 1))
1867 		return -EINVAL;
1868 
1869 	/* Don't halt an IN EP */
1870 	if (ep->is_in)
1871 		return -EAGAIN;
1872 
1873 	udc = ep->udc;
1874 	spin_lock_irqsave(&udc->lock, flags);
1875 
1876 	if (value == 1) {
1877 		/* stall */
1878 		udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1879 					DAT_WR_BYTE(EP_STAT_ST));
1880 	} else {
1881 		/* End stall */
1882 		ep->wedge = 0;
1883 		udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1884 					DAT_WR_BYTE(0));
1885 	}
1886 
1887 	spin_unlock_irqrestore(&udc->lock, flags);
1888 
1889 	return 0;
1890 }
1891 
1892 /* set the halt feature and ignores clear requests */
1893 static int lpc32xx_ep_set_wedge(struct usb_ep *_ep)
1894 {
1895 	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1896 
1897 	if (!_ep || !ep->udc)
1898 		return -EINVAL;
1899 
1900 	ep->wedge = 1;
1901 
1902 	return usb_ep_set_halt(_ep);
1903 }
1904 
1905 static const struct usb_ep_ops lpc32xx_ep_ops = {
1906 	.enable		= lpc32xx_ep_enable,
1907 	.disable	= lpc32xx_ep_disable,
1908 	.alloc_request	= lpc32xx_ep_alloc_request,
1909 	.free_request	= lpc32xx_ep_free_request,
1910 	.queue		= lpc32xx_ep_queue,
1911 	.dequeue	= lpc32xx_ep_dequeue,
1912 	.set_halt	= lpc32xx_ep_set_halt,
1913 	.set_wedge	= lpc32xx_ep_set_wedge,
1914 };
1915 
1916 /* Send a ZLP on a non-0 IN EP */
1917 static void udc_send_in_zlp(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1918 {
1919 	/* Clear EP status */
1920 	udc_clearep_getsts(udc, ep->hwep_num);
1921 
1922 	/* Send ZLP via FIFO mechanism */
1923 	udc_write_hwep(udc, ep->hwep_num, NULL, 0);
1924 }
1925 
1926 /*
1927  * Handle EP completion for ZLP
1928  * This function will only be called when a delayed ZLP needs to be sent out
1929  * after a DMA transfer has filled both buffers.
1930  */
1931 static void udc_handle_eps(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1932 {
1933 	u32 epstatus;
1934 	struct lpc32xx_request *req;
1935 
1936 	if (ep->hwep_num <= 0)
1937 		return;
1938 
1939 	uda_clear_hwepint(udc, ep->hwep_num);
1940 
1941 	/* If this interrupt isn't enabled, return now */
1942 	if (!(udc->enabled_hwepints & (1 << ep->hwep_num)))
1943 		return;
1944 
1945 	/* Get endpoint status */
1946 	epstatus = udc_clearep_getsts(udc, ep->hwep_num);
1947 
1948 	/*
1949 	 * This should never happen, but protect against writing to the
1950 	 * buffer when full.
1951 	 */
1952 	if (epstatus & EP_SEL_F)
1953 		return;
1954 
1955 	if (ep->is_in) {
1956 		udc_send_in_zlp(udc, ep);
1957 		uda_disable_hwepint(udc, ep->hwep_num);
1958 	} else
1959 		return;
1960 
1961 	/* If there isn't a request waiting, something went wrong */
1962 	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1963 	if (req) {
1964 		done(ep, req, 0);
1965 
1966 		/* Start another request if ready */
1967 		if (!list_empty(&ep->queue)) {
1968 			if (ep->is_in)
1969 				udc_ep_in_req_dma(udc, ep);
1970 			else
1971 				udc_ep_out_req_dma(udc, ep);
1972 		} else
1973 			ep->req_pending = 0;
1974 	}
1975 }
1976 
1977 
1978 /* DMA end of transfer completion */
1979 static void udc_handle_dma_ep(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1980 {
1981 	u32 status;
1982 	struct lpc32xx_request *req;
1983 	struct lpc32xx_usbd_dd_gad *dd;
1984 
1985 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
1986 	ep->totalints++;
1987 #endif
1988 
1989 	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1990 	if (!req) {
1991 		ep_err(ep, "DMA interrupt on no req!\n");
1992 		return;
1993 	}
1994 	dd = req->dd_desc_ptr;
1995 
1996 	/* DMA descriptor should always be retired for this call */
1997 	if (!(dd->dd_status & DD_STATUS_DD_RETIRED))
1998 		ep_warn(ep, "DMA descriptor did not retire\n");
1999 
2000 	/* Disable DMA */
2001 	udc_ep_dma_disable(udc, ep->hwep_num);
2002 	writel((1 << ep->hwep_num), USBD_EOTINTCLR(udc->udp_baseaddr));
2003 	writel((1 << ep->hwep_num), USBD_NDDRTINTCLR(udc->udp_baseaddr));
2004 
2005 	/* System error? */
2006 	if (readl(USBD_SYSERRTINTST(udc->udp_baseaddr)) &
2007 	    (1 << ep->hwep_num)) {
2008 		writel((1 << ep->hwep_num),
2009 			     USBD_SYSERRTINTCLR(udc->udp_baseaddr));
2010 		ep_err(ep, "AHB critical error!\n");
2011 		ep->req_pending = 0;
2012 
2013 		/* The error could have occurred on a packet of a multipacket
2014 		 * transfer, so recovering the transfer is not possible. Close
2015 		 * the request with an error */
2016 		done(ep, req, -ECONNABORTED);
2017 		return;
2018 	}
2019 
2020 	/* Handle the current DD's status */
2021 	status = dd->dd_status;
2022 	switch (status & DD_STATUS_STS_MASK) {
2023 	case DD_STATUS_STS_NS:
2024 		/* DD not serviced? This shouldn't happen! */
2025 		ep->req_pending = 0;
2026 		ep_err(ep, "DMA critical EP error: DD not serviced (0x%x)!\n",
2027 		       status);
2028 
2029 		done(ep, req, -ECONNABORTED);
2030 		return;
2031 
2032 	case DD_STATUS_STS_BS:
2033 		/* Interrupt only fires on EOT - This shouldn't happen! */
2034 		ep->req_pending = 0;
2035 		ep_err(ep, "DMA critical EP error: EOT prior to service completion (0x%x)!\n",
2036 		       status);
2037 		done(ep, req, -ECONNABORTED);
2038 		return;
2039 
2040 	case DD_STATUS_STS_NC:
2041 	case DD_STATUS_STS_DUR:
2042 		/* Really just a short packet, not an underrun */
2043 		/* This is a good status and what we expect */
2044 		break;
2045 
2046 	default:
2047 		/* Data overrun, system error, or unknown */
2048 		ep->req_pending = 0;
2049 		ep_err(ep, "DMA critical EP error: System error (0x%x)!\n",
2050 		       status);
2051 		done(ep, req, -ECONNABORTED);
2052 		return;
2053 	}
2054 
2055 	/* ISO endpoints are handled differently */
2056 	if (ep->eptype == EP_ISO_TYPE) {
2057 		if (ep->is_in)
2058 			req->req.actual = req->req.length;
2059 		else
2060 			req->req.actual = dd->iso_status[0] & 0xFFFF;
2061 	} else
2062 		req->req.actual += DD_STATUS_CURDMACNT(status);
2063 
2064 	/* Send a ZLP if necessary. This will be done for non-int
2065 	 * packets which have a size that is a divisor of MAXP */
2066 	if (req->send_zlp) {
2067 		/*
2068 		 * If at least 1 buffer is available, send the ZLP now.
2069 		 * Otherwise, the ZLP send needs to be deferred until a
2070 		 * buffer is available.
2071 		 */
2072 		if (udc_clearep_getsts(udc, ep->hwep_num) & EP_SEL_F) {
2073 			udc_clearep_getsts(udc, ep->hwep_num);
2074 			uda_enable_hwepint(udc, ep->hwep_num);
2075 			udc_clearep_getsts(udc, ep->hwep_num);
2076 
2077 			/* Let the EP interrupt handle the ZLP */
2078 			return;
2079 		} else
2080 			udc_send_in_zlp(udc, ep);
2081 	}
2082 
2083 	/* Transfer request is complete */
2084 	done(ep, req, 0);
2085 
2086 	/* Start another request if ready */
2087 	udc_clearep_getsts(udc, ep->hwep_num);
2088 	if (!list_empty((&ep->queue))) {
2089 		if (ep->is_in)
2090 			udc_ep_in_req_dma(udc, ep);
2091 		else
2092 			udc_ep_out_req_dma(udc, ep);
2093 	} else
2094 		ep->req_pending = 0;
2095 
2096 }
2097 
2098 /*
2099  *
2100  * Endpoint 0 functions
2101  *
2102  */
2103 static void udc_handle_dev(struct lpc32xx_udc *udc)
2104 {
2105 	u32 tmp;
2106 
2107 	udc_protocol_cmd_w(udc, CMD_GET_DEV_STAT);
2108 	tmp = udc_protocol_cmd_r(udc, DAT_GET_DEV_STAT);
2109 
2110 	if (tmp & DEV_RST)
2111 		uda_usb_reset(udc);
2112 	else if (tmp & DEV_CON_CH)
2113 		uda_power_event(udc, (tmp & DEV_CON));
2114 	else if (tmp & DEV_SUS_CH) {
2115 		if (tmp & DEV_SUS) {
2116 			if (udc->vbus == 0)
2117 				stop_activity(udc);
2118 			else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2119 				 udc->driver) {
2120 				/* Power down transceiver */
2121 				udc->poweron = 0;
2122 				schedule_work(&udc->pullup_job);
2123 				uda_resm_susp_event(udc, 1);
2124 			}
2125 		} else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2126 			   udc->driver && udc->vbus) {
2127 			uda_resm_susp_event(udc, 0);
2128 			/* Power up transceiver */
2129 			udc->poweron = 1;
2130 			schedule_work(&udc->pullup_job);
2131 		}
2132 	}
2133 }
2134 
2135 static int udc_get_status(struct lpc32xx_udc *udc, u16 reqtype, u16 wIndex)
2136 {
2137 	struct lpc32xx_ep *ep;
2138 	u32 ep0buff = 0, tmp;
2139 
2140 	switch (reqtype & USB_RECIP_MASK) {
2141 	case USB_RECIP_INTERFACE:
2142 		break; /* Not supported */
2143 
2144 	case USB_RECIP_DEVICE:
2145 		ep0buff = udc->gadget.is_selfpowered;
2146 		if (udc->dev_status & (1 << USB_DEVICE_REMOTE_WAKEUP))
2147 			ep0buff |= (1 << USB_DEVICE_REMOTE_WAKEUP);
2148 		break;
2149 
2150 	case USB_RECIP_ENDPOINT:
2151 		tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2152 		ep = &udc->ep[tmp];
2153 		if ((tmp == 0) || (tmp >= NUM_ENDPOINTS))
2154 			return -EOPNOTSUPP;
2155 
2156 		if (wIndex & USB_DIR_IN) {
2157 			if (!ep->is_in)
2158 				return -EOPNOTSUPP; /* Something's wrong */
2159 		} else if (ep->is_in)
2160 			return -EOPNOTSUPP; /* Not an IN endpoint */
2161 
2162 		/* Get status of the endpoint */
2163 		udc_protocol_cmd_w(udc, CMD_SEL_EP(ep->hwep_num));
2164 		tmp = udc_protocol_cmd_r(udc, DAT_SEL_EP(ep->hwep_num));
2165 
2166 		if (tmp & EP_SEL_ST)
2167 			ep0buff = (1 << USB_ENDPOINT_HALT);
2168 		else
2169 			ep0buff = 0;
2170 		break;
2171 
2172 	default:
2173 		break;
2174 	}
2175 
2176 	/* Return data */
2177 	udc_write_hwep(udc, EP_IN, &ep0buff, 2);
2178 
2179 	return 0;
2180 }
2181 
2182 static void udc_handle_ep0_setup(struct lpc32xx_udc *udc)
2183 {
2184 	struct lpc32xx_ep *ep, *ep0 = &udc->ep[0];
2185 	struct usb_ctrlrequest ctrlpkt;
2186 	int i, bytes;
2187 	u16 wIndex, wValue, reqtype, req, tmp;
2188 
2189 	/* Nuke previous transfers */
2190 	nuke(ep0, -EPROTO);
2191 
2192 	/* Get setup packet */
2193 	bytes = udc_read_hwep(udc, EP_OUT, (u32 *) &ctrlpkt, 8);
2194 	if (bytes != 8) {
2195 		ep_warn(ep0, "Incorrectly sized setup packet (s/b 8, is %d)!\n",
2196 			bytes);
2197 		return;
2198 	}
2199 
2200 	/* Native endianness */
2201 	wIndex = le16_to_cpu(ctrlpkt.wIndex);
2202 	wValue = le16_to_cpu(ctrlpkt.wValue);
2203 	reqtype = le16_to_cpu(ctrlpkt.bRequestType);
2204 
2205 	/* Set direction of EP0 */
2206 	if (likely(reqtype & USB_DIR_IN))
2207 		ep0->is_in = 1;
2208 	else
2209 		ep0->is_in = 0;
2210 
2211 	/* Handle SETUP packet */
2212 	req = le16_to_cpu(ctrlpkt.bRequest);
2213 	switch (req) {
2214 	case USB_REQ_CLEAR_FEATURE:
2215 	case USB_REQ_SET_FEATURE:
2216 		switch (reqtype) {
2217 		case (USB_TYPE_STANDARD | USB_RECIP_DEVICE):
2218 			if (wValue != USB_DEVICE_REMOTE_WAKEUP)
2219 				goto stall; /* Nothing else handled */
2220 
2221 			/* Tell board about event */
2222 			if (req == USB_REQ_CLEAR_FEATURE)
2223 				udc->dev_status &=
2224 					~(1 << USB_DEVICE_REMOTE_WAKEUP);
2225 			else
2226 				udc->dev_status |=
2227 					(1 << USB_DEVICE_REMOTE_WAKEUP);
2228 			uda_remwkp_cgh(udc);
2229 			goto zlp_send;
2230 
2231 		case (USB_TYPE_STANDARD | USB_RECIP_ENDPOINT):
2232 			tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2233 			if ((wValue != USB_ENDPOINT_HALT) ||
2234 			    (tmp >= NUM_ENDPOINTS))
2235 				break;
2236 
2237 			/* Find hardware endpoint from logical endpoint */
2238 			ep = &udc->ep[tmp];
2239 			tmp = ep->hwep_num;
2240 			if (tmp == 0)
2241 				break;
2242 
2243 			if (req == USB_REQ_SET_FEATURE)
2244 				udc_stall_hwep(udc, tmp);
2245 			else if (!ep->wedge)
2246 				udc_clrstall_hwep(udc, tmp);
2247 
2248 			goto zlp_send;
2249 
2250 		default:
2251 			break;
2252 		}
2253 		break;
2254 
2255 	case USB_REQ_SET_ADDRESS:
2256 		if (reqtype == (USB_TYPE_STANDARD | USB_RECIP_DEVICE)) {
2257 			udc_set_address(udc, wValue);
2258 			goto zlp_send;
2259 		}
2260 		break;
2261 
2262 	case USB_REQ_GET_STATUS:
2263 		udc_get_status(udc, reqtype, wIndex);
2264 		return;
2265 
2266 	default:
2267 		break; /* Let GadgetFS handle the descriptor instead */
2268 	}
2269 
2270 	if (likely(udc->driver)) {
2271 		/* device-2-host (IN) or no data setup command, process
2272 		 * immediately */
2273 		spin_unlock(&udc->lock);
2274 		i = udc->driver->setup(&udc->gadget, &ctrlpkt);
2275 
2276 		spin_lock(&udc->lock);
2277 		if (req == USB_REQ_SET_CONFIGURATION) {
2278 			/* Configuration is set after endpoints are realized */
2279 			if (wValue) {
2280 				/* Set configuration */
2281 				udc_set_device_configured(udc);
2282 
2283 				udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2284 							DAT_WR_BYTE(AP_CLK |
2285 							INAK_BI | INAK_II));
2286 			} else {
2287 				/* Clear configuration */
2288 				udc_set_device_unconfigured(udc);
2289 
2290 				/* Disable NAK interrupts */
2291 				udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2292 							DAT_WR_BYTE(AP_CLK));
2293 			}
2294 		}
2295 
2296 		if (i < 0) {
2297 			/* setup processing failed, force stall */
2298 			dev_dbg(udc->dev,
2299 				"req %02x.%02x protocol STALL; stat %d\n",
2300 				reqtype, req, i);
2301 			udc->ep0state = WAIT_FOR_SETUP;
2302 			goto stall;
2303 		}
2304 	}
2305 
2306 	if (!ep0->is_in)
2307 		udc_ep0_send_zlp(udc); /* ZLP IN packet on data phase */
2308 
2309 	return;
2310 
2311 stall:
2312 	udc_stall_hwep(udc, EP_IN);
2313 	return;
2314 
2315 zlp_send:
2316 	udc_ep0_send_zlp(udc);
2317 	return;
2318 }
2319 
2320 /* IN endpoint 0 transfer */
2321 static void udc_handle_ep0_in(struct lpc32xx_udc *udc)
2322 {
2323 	struct lpc32xx_ep *ep0 = &udc->ep[0];
2324 	u32 epstatus;
2325 
2326 	/* Clear EP interrupt */
2327 	epstatus = udc_clearep_getsts(udc, EP_IN);
2328 
2329 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
2330 	ep0->totalints++;
2331 #endif
2332 
2333 	/* Stalled? Clear stall and reset buffers */
2334 	if (epstatus & EP_SEL_ST) {
2335 		udc_clrstall_hwep(udc, EP_IN);
2336 		nuke(ep0, -ECONNABORTED);
2337 		udc->ep0state = WAIT_FOR_SETUP;
2338 		return;
2339 	}
2340 
2341 	/* Is a buffer available? */
2342 	if (!(epstatus & EP_SEL_F)) {
2343 		/* Handle based on current state */
2344 		if (udc->ep0state == DATA_IN)
2345 			udc_ep0_in_req(udc);
2346 		else {
2347 			/* Unknown state for EP0 oe end of DATA IN phase */
2348 			nuke(ep0, -ECONNABORTED);
2349 			udc->ep0state = WAIT_FOR_SETUP;
2350 		}
2351 	}
2352 }
2353 
2354 /* OUT endpoint 0 transfer */
2355 static void udc_handle_ep0_out(struct lpc32xx_udc *udc)
2356 {
2357 	struct lpc32xx_ep *ep0 = &udc->ep[0];
2358 	u32 epstatus;
2359 
2360 	/* Clear EP interrupt */
2361 	epstatus = udc_clearep_getsts(udc, EP_OUT);
2362 
2363 
2364 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
2365 	ep0->totalints++;
2366 #endif
2367 
2368 	/* Stalled? */
2369 	if (epstatus & EP_SEL_ST) {
2370 		udc_clrstall_hwep(udc, EP_OUT);
2371 		nuke(ep0, -ECONNABORTED);
2372 		udc->ep0state = WAIT_FOR_SETUP;
2373 		return;
2374 	}
2375 
2376 	/* A NAK may occur if a packet couldn't be received yet */
2377 	if (epstatus & EP_SEL_EPN)
2378 		return;
2379 	/* Setup packet incoming? */
2380 	if (epstatus & EP_SEL_STP) {
2381 		nuke(ep0, 0);
2382 		udc->ep0state = WAIT_FOR_SETUP;
2383 	}
2384 
2385 	/* Data available? */
2386 	if (epstatus & EP_SEL_F)
2387 		/* Handle based on current state */
2388 		switch (udc->ep0state) {
2389 		case WAIT_FOR_SETUP:
2390 			udc_handle_ep0_setup(udc);
2391 			break;
2392 
2393 		case DATA_OUT:
2394 			udc_ep0_out_req(udc);
2395 			break;
2396 
2397 		default:
2398 			/* Unknown state for EP0 */
2399 			nuke(ep0, -ECONNABORTED);
2400 			udc->ep0state = WAIT_FOR_SETUP;
2401 		}
2402 }
2403 
2404 /* Must be called without lock */
2405 static int lpc32xx_get_frame(struct usb_gadget *gadget)
2406 {
2407 	int frame;
2408 	unsigned long flags;
2409 	struct lpc32xx_udc *udc = to_udc(gadget);
2410 
2411 	if (!udc->clocked)
2412 		return -EINVAL;
2413 
2414 	spin_lock_irqsave(&udc->lock, flags);
2415 
2416 	frame = (int) udc_get_current_frame(udc);
2417 
2418 	spin_unlock_irqrestore(&udc->lock, flags);
2419 
2420 	return frame;
2421 }
2422 
2423 static int lpc32xx_wakeup(struct usb_gadget *gadget)
2424 {
2425 	return -ENOTSUPP;
2426 }
2427 
2428 static int lpc32xx_set_selfpowered(struct usb_gadget *gadget, int is_on)
2429 {
2430 	gadget->is_selfpowered = (is_on != 0);
2431 
2432 	return 0;
2433 }
2434 
2435 /*
2436  * vbus is here!  turn everything on that's ready
2437  * Must be called without lock
2438  */
2439 static int lpc32xx_vbus_session(struct usb_gadget *gadget, int is_active)
2440 {
2441 	unsigned long flags;
2442 	struct lpc32xx_udc *udc = to_udc(gadget);
2443 
2444 	spin_lock_irqsave(&udc->lock, flags);
2445 
2446 	/* Doesn't need lock */
2447 	if (udc->driver) {
2448 		udc_clk_set(udc, 1);
2449 		udc_enable(udc);
2450 		pullup(udc, is_active);
2451 	} else {
2452 		stop_activity(udc);
2453 		pullup(udc, 0);
2454 
2455 		spin_unlock_irqrestore(&udc->lock, flags);
2456 		/*
2457 		 *  Wait for all the endpoints to disable,
2458 		 *  before disabling clocks. Don't wait if
2459 		 *  endpoints are not enabled.
2460 		 */
2461 		if (atomic_read(&udc->enabled_ep_cnt))
2462 			wait_event_interruptible(udc->ep_disable_wait_queue,
2463 				 (atomic_read(&udc->enabled_ep_cnt) == 0));
2464 
2465 		spin_lock_irqsave(&udc->lock, flags);
2466 
2467 		udc_clk_set(udc, 0);
2468 	}
2469 
2470 	spin_unlock_irqrestore(&udc->lock, flags);
2471 
2472 	return 0;
2473 }
2474 
2475 /* Can be called with or without lock */
2476 static int lpc32xx_pullup(struct usb_gadget *gadget, int is_on)
2477 {
2478 	struct lpc32xx_udc *udc = to_udc(gadget);
2479 
2480 	/* Doesn't need lock */
2481 	pullup(udc, is_on);
2482 
2483 	return 0;
2484 }
2485 
2486 static int lpc32xx_start(struct usb_gadget *, struct usb_gadget_driver *);
2487 static int lpc32xx_stop(struct usb_gadget *);
2488 
2489 static const struct usb_gadget_ops lpc32xx_udc_ops = {
2490 	.get_frame		= lpc32xx_get_frame,
2491 	.wakeup			= lpc32xx_wakeup,
2492 	.set_selfpowered	= lpc32xx_set_selfpowered,
2493 	.vbus_session		= lpc32xx_vbus_session,
2494 	.pullup			= lpc32xx_pullup,
2495 	.udc_start		= lpc32xx_start,
2496 	.udc_stop		= lpc32xx_stop,
2497 };
2498 
2499 static void nop_release(struct device *dev)
2500 {
2501 	/* nothing to free */
2502 }
2503 
2504 static const struct lpc32xx_udc controller_template = {
2505 	.gadget = {
2506 		.ops	= &lpc32xx_udc_ops,
2507 		.name	= driver_name,
2508 		.dev	= {
2509 			.init_name = "gadget",
2510 			.release = nop_release,
2511 		}
2512 	},
2513 	.ep[0] = {
2514 		.ep = {
2515 			.name	= "ep0",
2516 			.ops	= &lpc32xx_ep_ops,
2517 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL,
2518 					USB_EP_CAPS_DIR_ALL),
2519 		},
2520 		.maxpacket	= 64,
2521 		.hwep_num_base	= 0,
2522 		.hwep_num	= 0, /* Can be 0 or 1, has special handling */
2523 		.lep		= 0,
2524 		.eptype		= EP_CTL_TYPE,
2525 	},
2526 	.ep[1] = {
2527 		.ep = {
2528 			.name	= "ep1-int",
2529 			.ops	= &lpc32xx_ep_ops,
2530 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2531 					USB_EP_CAPS_DIR_ALL),
2532 		},
2533 		.maxpacket	= 64,
2534 		.hwep_num_base	= 2,
2535 		.hwep_num	= 0, /* 2 or 3, will be set later */
2536 		.lep		= 1,
2537 		.eptype		= EP_INT_TYPE,
2538 	},
2539 	.ep[2] = {
2540 		.ep = {
2541 			.name	= "ep2-bulk",
2542 			.ops	= &lpc32xx_ep_ops,
2543 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2544 					USB_EP_CAPS_DIR_ALL),
2545 		},
2546 		.maxpacket	= 64,
2547 		.hwep_num_base	= 4,
2548 		.hwep_num	= 0, /* 4 or 5, will be set later */
2549 		.lep		= 2,
2550 		.eptype		= EP_BLK_TYPE,
2551 	},
2552 	.ep[3] = {
2553 		.ep = {
2554 			.name	= "ep3-iso",
2555 			.ops	= &lpc32xx_ep_ops,
2556 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2557 					USB_EP_CAPS_DIR_ALL),
2558 		},
2559 		.maxpacket	= 1023,
2560 		.hwep_num_base	= 6,
2561 		.hwep_num	= 0, /* 6 or 7, will be set later */
2562 		.lep		= 3,
2563 		.eptype		= EP_ISO_TYPE,
2564 	},
2565 	.ep[4] = {
2566 		.ep = {
2567 			.name	= "ep4-int",
2568 			.ops	= &lpc32xx_ep_ops,
2569 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2570 					USB_EP_CAPS_DIR_ALL),
2571 		},
2572 		.maxpacket	= 64,
2573 		.hwep_num_base	= 8,
2574 		.hwep_num	= 0, /* 8 or 9, will be set later */
2575 		.lep		= 4,
2576 		.eptype		= EP_INT_TYPE,
2577 	},
2578 	.ep[5] = {
2579 		.ep = {
2580 			.name	= "ep5-bulk",
2581 			.ops	= &lpc32xx_ep_ops,
2582 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2583 					USB_EP_CAPS_DIR_ALL),
2584 		},
2585 		.maxpacket	= 64,
2586 		.hwep_num_base	= 10,
2587 		.hwep_num	= 0, /* 10 or 11, will be set later */
2588 		.lep		= 5,
2589 		.eptype		= EP_BLK_TYPE,
2590 	},
2591 	.ep[6] = {
2592 		.ep = {
2593 			.name	= "ep6-iso",
2594 			.ops	= &lpc32xx_ep_ops,
2595 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2596 					USB_EP_CAPS_DIR_ALL),
2597 		},
2598 		.maxpacket	= 1023,
2599 		.hwep_num_base	= 12,
2600 		.hwep_num	= 0, /* 12 or 13, will be set later */
2601 		.lep		= 6,
2602 		.eptype		= EP_ISO_TYPE,
2603 	},
2604 	.ep[7] = {
2605 		.ep = {
2606 			.name	= "ep7-int",
2607 			.ops	= &lpc32xx_ep_ops,
2608 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2609 					USB_EP_CAPS_DIR_ALL),
2610 		},
2611 		.maxpacket	= 64,
2612 		.hwep_num_base	= 14,
2613 		.hwep_num	= 0,
2614 		.lep		= 7,
2615 		.eptype		= EP_INT_TYPE,
2616 	},
2617 	.ep[8] = {
2618 		.ep = {
2619 			.name	= "ep8-bulk",
2620 			.ops	= &lpc32xx_ep_ops,
2621 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2622 					USB_EP_CAPS_DIR_ALL),
2623 		},
2624 		.maxpacket	= 64,
2625 		.hwep_num_base	= 16,
2626 		.hwep_num	= 0,
2627 		.lep		= 8,
2628 		.eptype		= EP_BLK_TYPE,
2629 	},
2630 	.ep[9] = {
2631 		.ep = {
2632 			.name	= "ep9-iso",
2633 			.ops	= &lpc32xx_ep_ops,
2634 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2635 					USB_EP_CAPS_DIR_ALL),
2636 		},
2637 		.maxpacket	= 1023,
2638 		.hwep_num_base	= 18,
2639 		.hwep_num	= 0,
2640 		.lep		= 9,
2641 		.eptype		= EP_ISO_TYPE,
2642 	},
2643 	.ep[10] = {
2644 		.ep = {
2645 			.name	= "ep10-int",
2646 			.ops	= &lpc32xx_ep_ops,
2647 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2648 					USB_EP_CAPS_DIR_ALL),
2649 		},
2650 		.maxpacket	= 64,
2651 		.hwep_num_base	= 20,
2652 		.hwep_num	= 0,
2653 		.lep		= 10,
2654 		.eptype		= EP_INT_TYPE,
2655 	},
2656 	.ep[11] = {
2657 		.ep = {
2658 			.name	= "ep11-bulk",
2659 			.ops	= &lpc32xx_ep_ops,
2660 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2661 					USB_EP_CAPS_DIR_ALL),
2662 		},
2663 		.maxpacket	= 64,
2664 		.hwep_num_base	= 22,
2665 		.hwep_num	= 0,
2666 		.lep		= 11,
2667 		.eptype		= EP_BLK_TYPE,
2668 	},
2669 	.ep[12] = {
2670 		.ep = {
2671 			.name	= "ep12-iso",
2672 			.ops	= &lpc32xx_ep_ops,
2673 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2674 					USB_EP_CAPS_DIR_ALL),
2675 		},
2676 		.maxpacket	= 1023,
2677 		.hwep_num_base	= 24,
2678 		.hwep_num	= 0,
2679 		.lep		= 12,
2680 		.eptype		= EP_ISO_TYPE,
2681 	},
2682 	.ep[13] = {
2683 		.ep = {
2684 			.name	= "ep13-int",
2685 			.ops	= &lpc32xx_ep_ops,
2686 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2687 					USB_EP_CAPS_DIR_ALL),
2688 		},
2689 		.maxpacket	= 64,
2690 		.hwep_num_base	= 26,
2691 		.hwep_num	= 0,
2692 		.lep		= 13,
2693 		.eptype		= EP_INT_TYPE,
2694 	},
2695 	.ep[14] = {
2696 		.ep = {
2697 			.name	= "ep14-bulk",
2698 			.ops	= &lpc32xx_ep_ops,
2699 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2700 					USB_EP_CAPS_DIR_ALL),
2701 		},
2702 		.maxpacket	= 64,
2703 		.hwep_num_base	= 28,
2704 		.hwep_num	= 0,
2705 		.lep		= 14,
2706 		.eptype		= EP_BLK_TYPE,
2707 	},
2708 	.ep[15] = {
2709 		.ep = {
2710 			.name	= "ep15-bulk",
2711 			.ops	= &lpc32xx_ep_ops,
2712 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2713 					USB_EP_CAPS_DIR_ALL),
2714 		},
2715 		.maxpacket	= 1023,
2716 		.hwep_num_base	= 30,
2717 		.hwep_num	= 0,
2718 		.lep		= 15,
2719 		.eptype		= EP_BLK_TYPE,
2720 	},
2721 };
2722 
2723 /* ISO and status interrupts */
2724 static irqreturn_t lpc32xx_usb_lp_irq(int irq, void *_udc)
2725 {
2726 	u32 tmp, devstat;
2727 	struct lpc32xx_udc *udc = _udc;
2728 
2729 	spin_lock(&udc->lock);
2730 
2731 	/* Read the device status register */
2732 	devstat = readl(USBD_DEVINTST(udc->udp_baseaddr));
2733 
2734 	devstat &= ~USBD_EP_FAST;
2735 	writel(devstat, USBD_DEVINTCLR(udc->udp_baseaddr));
2736 	devstat = devstat & udc->enabled_devints;
2737 
2738 	/* Device specific handling needed? */
2739 	if (devstat & USBD_DEV_STAT)
2740 		udc_handle_dev(udc);
2741 
2742 	/* Start of frame? (devstat & FRAME_INT):
2743 	 * The frame interrupt isn't really needed for ISO support,
2744 	 * as the driver will queue the necessary packets */
2745 
2746 	/* Error? */
2747 	if (devstat & ERR_INT) {
2748 		/* All types of errors, from cable removal during transfer to
2749 		 * misc protocol and bit errors. These are mostly for just info,
2750 		 * as the USB hardware will work around these. If these errors
2751 		 * happen alot, something is wrong. */
2752 		udc_protocol_cmd_w(udc, CMD_RD_ERR_STAT);
2753 		tmp = udc_protocol_cmd_r(udc, DAT_RD_ERR_STAT);
2754 		dev_dbg(udc->dev, "Device error (0x%x)!\n", tmp);
2755 	}
2756 
2757 	spin_unlock(&udc->lock);
2758 
2759 	return IRQ_HANDLED;
2760 }
2761 
2762 /* EP interrupts */
2763 static irqreturn_t lpc32xx_usb_hp_irq(int irq, void *_udc)
2764 {
2765 	u32 tmp;
2766 	struct lpc32xx_udc *udc = _udc;
2767 
2768 	spin_lock(&udc->lock);
2769 
2770 	/* Read the device status register */
2771 	writel(USBD_EP_FAST, USBD_DEVINTCLR(udc->udp_baseaddr));
2772 
2773 	/* Endpoints */
2774 	tmp = readl(USBD_EPINTST(udc->udp_baseaddr));
2775 
2776 	/* Special handling for EP0 */
2777 	if (tmp & (EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2778 		/* Handle EP0 IN */
2779 		if (tmp & (EP_MASK_SEL(0, EP_IN)))
2780 			udc_handle_ep0_in(udc);
2781 
2782 		/* Handle EP0 OUT */
2783 		if (tmp & (EP_MASK_SEL(0, EP_OUT)))
2784 			udc_handle_ep0_out(udc);
2785 	}
2786 
2787 	/* All other EPs */
2788 	if (tmp & ~(EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2789 		int i;
2790 
2791 		/* Handle other EP interrupts */
2792 		for (i = 1; i < NUM_ENDPOINTS; i++) {
2793 			if (tmp & (1 << udc->ep[i].hwep_num))
2794 				udc_handle_eps(udc, &udc->ep[i]);
2795 		}
2796 	}
2797 
2798 	spin_unlock(&udc->lock);
2799 
2800 	return IRQ_HANDLED;
2801 }
2802 
2803 static irqreturn_t lpc32xx_usb_devdma_irq(int irq, void *_udc)
2804 {
2805 	struct lpc32xx_udc *udc = _udc;
2806 
2807 	int i;
2808 	u32 tmp;
2809 
2810 	spin_lock(&udc->lock);
2811 
2812 	/* Handle EP DMA EOT interrupts */
2813 	tmp = readl(USBD_EOTINTST(udc->udp_baseaddr)) |
2814 		(readl(USBD_EPDMAST(udc->udp_baseaddr)) &
2815 		 readl(USBD_NDDRTINTST(udc->udp_baseaddr))) |
2816 		readl(USBD_SYSERRTINTST(udc->udp_baseaddr));
2817 	for (i = 1; i < NUM_ENDPOINTS; i++) {
2818 		if (tmp & (1 << udc->ep[i].hwep_num))
2819 			udc_handle_dma_ep(udc, &udc->ep[i]);
2820 	}
2821 
2822 	spin_unlock(&udc->lock);
2823 
2824 	return IRQ_HANDLED;
2825 }
2826 
2827 /*
2828  *
2829  * VBUS detection, pullup handler, and Gadget cable state notification
2830  *
2831  */
2832 static void vbus_work(struct lpc32xx_udc *udc)
2833 {
2834 	u8 value;
2835 
2836 	if (udc->enabled != 0) {
2837 		/* Discharge VBUS real quick */
2838 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2839 			ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
2840 
2841 		/* Give VBUS some time (100mS) to discharge */
2842 		msleep(100);
2843 
2844 		/* Disable VBUS discharge resistor */
2845 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2846 			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
2847 			OTG1_VBUS_DISCHRG);
2848 
2849 		/* Clear interrupt */
2850 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2851 			ISP1301_I2C_INTERRUPT_LATCH |
2852 			ISP1301_I2C_REG_CLEAR_ADDR, ~0);
2853 
2854 		/* Get the VBUS status from the transceiver */
2855 		value = i2c_smbus_read_byte_data(udc->isp1301_i2c_client,
2856 						 ISP1301_I2C_INTERRUPT_SOURCE);
2857 
2858 		/* VBUS on or off? */
2859 		if (value & INT_SESS_VLD)
2860 			udc->vbus = 1;
2861 		else
2862 			udc->vbus = 0;
2863 
2864 		/* VBUS changed? */
2865 		if (udc->last_vbus != udc->vbus) {
2866 			udc->last_vbus = udc->vbus;
2867 			lpc32xx_vbus_session(&udc->gadget, udc->vbus);
2868 		}
2869 	}
2870 }
2871 
2872 static irqreturn_t lpc32xx_usb_vbus_irq(int irq, void *_udc)
2873 {
2874 	struct lpc32xx_udc *udc = _udc;
2875 
2876 	vbus_work(udc);
2877 
2878 	return IRQ_HANDLED;
2879 }
2880 
2881 static int lpc32xx_start(struct usb_gadget *gadget,
2882 			 struct usb_gadget_driver *driver)
2883 {
2884 	struct lpc32xx_udc *udc = to_udc(gadget);
2885 
2886 	if (!driver || driver->max_speed < USB_SPEED_FULL || !driver->setup) {
2887 		dev_err(udc->dev, "bad parameter.\n");
2888 		return -EINVAL;
2889 	}
2890 
2891 	if (udc->driver) {
2892 		dev_err(udc->dev, "UDC already has a gadget driver\n");
2893 		return -EBUSY;
2894 	}
2895 
2896 	udc->driver = driver;
2897 	udc->gadget.dev.of_node = udc->dev->of_node;
2898 	udc->enabled = 1;
2899 	udc->gadget.is_selfpowered = 1;
2900 	udc->vbus = 0;
2901 
2902 	/* Force VBUS process once to check for cable insertion */
2903 	udc->last_vbus = udc->vbus = 0;
2904 	vbus_work(udc);
2905 
2906 	/* enable interrupts */
2907 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2908 		ISP1301_I2C_INTERRUPT_FALLING, INT_SESS_VLD | INT_VBUS_VLD);
2909 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2910 		ISP1301_I2C_INTERRUPT_RISING, INT_SESS_VLD | INT_VBUS_VLD);
2911 
2912 	return 0;
2913 }
2914 
2915 static int lpc32xx_stop(struct usb_gadget *gadget)
2916 {
2917 	struct lpc32xx_udc *udc = to_udc(gadget);
2918 
2919 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2920 		ISP1301_I2C_INTERRUPT_FALLING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
2921 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2922 		ISP1301_I2C_INTERRUPT_RISING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
2923 
2924 	if (udc->clocked) {
2925 		spin_lock(&udc->lock);
2926 		stop_activity(udc);
2927 		spin_unlock(&udc->lock);
2928 
2929 		/*
2930 		 *  Wait for all the endpoints to disable,
2931 		 *  before disabling clocks. Don't wait if
2932 		 *  endpoints are not enabled.
2933 		 */
2934 		if (atomic_read(&udc->enabled_ep_cnt))
2935 			wait_event_interruptible(udc->ep_disable_wait_queue,
2936 				(atomic_read(&udc->enabled_ep_cnt) == 0));
2937 
2938 		spin_lock(&udc->lock);
2939 		udc_clk_set(udc, 0);
2940 		spin_unlock(&udc->lock);
2941 	}
2942 
2943 	udc->enabled = 0;
2944 	udc->driver = NULL;
2945 
2946 	return 0;
2947 }
2948 
2949 static void lpc32xx_udc_shutdown(struct platform_device *dev)
2950 {
2951 	/* Force disconnect on reboot */
2952 	struct lpc32xx_udc *udc = platform_get_drvdata(dev);
2953 
2954 	pullup(udc, 0);
2955 }
2956 
2957 /*
2958  * Callbacks to be overridden by options passed via OF (TODO)
2959  */
2960 
2961 static void lpc32xx_usbd_conn_chg(int conn)
2962 {
2963 	/* Do nothing, it might be nice to enable an LED
2964 	 * based on conn state being !0 */
2965 }
2966 
2967 static void lpc32xx_usbd_susp_chg(int susp)
2968 {
2969 	/* Device suspend if susp != 0 */
2970 }
2971 
2972 static void lpc32xx_rmwkup_chg(int remote_wakup_enable)
2973 {
2974 	/* Enable or disable USB remote wakeup */
2975 }
2976 
2977 static struct lpc32xx_usbd_cfg lpc32xx_usbddata = {
2978 	.vbus_drv_pol = 0,
2979 	.conn_chgb = &lpc32xx_usbd_conn_chg,
2980 	.susp_chgb = &lpc32xx_usbd_susp_chg,
2981 	.rmwk_chgb = &lpc32xx_rmwkup_chg,
2982 };
2983 
2984 
2985 static u64 lpc32xx_usbd_dmamask = ~(u32) 0x7F;
2986 
2987 static int lpc32xx_udc_probe(struct platform_device *pdev)
2988 {
2989 	struct device *dev = &pdev->dev;
2990 	struct lpc32xx_udc *udc;
2991 	int retval, i;
2992 	dma_addr_t dma_handle;
2993 	struct device_node *isp1301_node;
2994 
2995 	udc = devm_kmemdup(dev, &controller_template, sizeof(*udc), GFP_KERNEL);
2996 	if (!udc)
2997 		return -ENOMEM;
2998 
2999 	for (i = 0; i <= 15; i++)
3000 		udc->ep[i].udc = udc;
3001 	udc->gadget.ep0 = &udc->ep[0].ep;
3002 
3003 	/* init software state */
3004 	udc->gadget.dev.parent = dev;
3005 	udc->pdev = pdev;
3006 	udc->dev = &pdev->dev;
3007 	udc->enabled = 0;
3008 
3009 	if (pdev->dev.of_node) {
3010 		isp1301_node = of_parse_phandle(pdev->dev.of_node,
3011 						"transceiver", 0);
3012 	} else {
3013 		isp1301_node = NULL;
3014 	}
3015 
3016 	udc->isp1301_i2c_client = isp1301_get_client(isp1301_node);
3017 	if (!udc->isp1301_i2c_client) {
3018 		return -EPROBE_DEFER;
3019 	}
3020 
3021 	dev_info(udc->dev, "ISP1301 I2C device at address 0x%x\n",
3022 		 udc->isp1301_i2c_client->addr);
3023 
3024 	pdev->dev.dma_mask = &lpc32xx_usbd_dmamask;
3025 	retval = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
3026 	if (retval)
3027 		return retval;
3028 
3029 	udc->board = &lpc32xx_usbddata;
3030 
3031 	/*
3032 	 * Resources are mapped as follows:
3033 	 *  IORESOURCE_MEM, base address and size of USB space
3034 	 *  IORESOURCE_IRQ, USB device low priority interrupt number
3035 	 *  IORESOURCE_IRQ, USB device high priority interrupt number
3036 	 *  IORESOURCE_IRQ, USB device interrupt number
3037 	 *  IORESOURCE_IRQ, USB transceiver interrupt number
3038 	 */
3039 
3040 	spin_lock_init(&udc->lock);
3041 
3042 	/* Get IRQs */
3043 	for (i = 0; i < 4; i++) {
3044 		udc->udp_irq[i] = platform_get_irq(pdev, i);
3045 		if (udc->udp_irq[i] < 0)
3046 			return udc->udp_irq[i];
3047 	}
3048 
3049 	udc->udp_baseaddr = devm_platform_ioremap_resource(pdev, 0);
3050 	if (IS_ERR(udc->udp_baseaddr)) {
3051 		dev_err(udc->dev, "IO map failure\n");
3052 		return PTR_ERR(udc->udp_baseaddr);
3053 	}
3054 
3055 	/* Get USB device clock */
3056 	udc->usb_slv_clk = devm_clk_get(&pdev->dev, NULL);
3057 	if (IS_ERR(udc->usb_slv_clk)) {
3058 		dev_err(udc->dev, "failed to acquire USB device clock\n");
3059 		return PTR_ERR(udc->usb_slv_clk);
3060 	}
3061 
3062 	/* Enable USB device clock */
3063 	retval = clk_prepare_enable(udc->usb_slv_clk);
3064 	if (retval < 0) {
3065 		dev_err(udc->dev, "failed to start USB device clock\n");
3066 		return retval;
3067 	}
3068 
3069 	/* Setup deferred workqueue data */
3070 	udc->poweron = udc->pullup = 0;
3071 	INIT_WORK(&udc->pullup_job, pullup_work);
3072 #ifdef CONFIG_PM
3073 	INIT_WORK(&udc->power_job, power_work);
3074 #endif
3075 
3076 	/* All clocks are now on */
3077 	udc->clocked = 1;
3078 
3079 	isp1301_udc_configure(udc);
3080 	/* Allocate memory for the UDCA */
3081 	udc->udca_v_base = dma_alloc_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3082 					      &dma_handle,
3083 					      (GFP_KERNEL | GFP_DMA));
3084 	if (!udc->udca_v_base) {
3085 		dev_err(udc->dev, "error getting UDCA region\n");
3086 		retval = -ENOMEM;
3087 		goto i2c_fail;
3088 	}
3089 	udc->udca_p_base = dma_handle;
3090 	dev_dbg(udc->dev, "DMA buffer(0x%x bytes), P:0x%08x, V:0x%p\n",
3091 		UDCA_BUFF_SIZE, udc->udca_p_base, udc->udca_v_base);
3092 
3093 	/* Setup the DD DMA memory pool */
3094 	udc->dd_cache = dma_pool_create("udc_dd", udc->dev,
3095 					sizeof(struct lpc32xx_usbd_dd_gad),
3096 					sizeof(u32), 0);
3097 	if (!udc->dd_cache) {
3098 		dev_err(udc->dev, "error getting DD DMA region\n");
3099 		retval = -ENOMEM;
3100 		goto dma_alloc_fail;
3101 	}
3102 
3103 	/* Clear USB peripheral and initialize gadget endpoints */
3104 	udc_disable(udc);
3105 	udc_reinit(udc);
3106 
3107 	/* Request IRQs - low and high priority USB device IRQs are routed to
3108 	 * the same handler, while the DMA interrupt is routed elsewhere */
3109 	retval = devm_request_irq(dev, udc->udp_irq[IRQ_USB_LP],
3110 				  lpc32xx_usb_lp_irq, 0, "udc_lp", udc);
3111 	if (retval < 0) {
3112 		dev_err(udc->dev, "LP request irq %d failed\n",
3113 			udc->udp_irq[IRQ_USB_LP]);
3114 		goto irq_req_fail;
3115 	}
3116 	retval = devm_request_irq(dev, udc->udp_irq[IRQ_USB_HP],
3117 				  lpc32xx_usb_hp_irq, 0, "udc_hp", udc);
3118 	if (retval < 0) {
3119 		dev_err(udc->dev, "HP request irq %d failed\n",
3120 			udc->udp_irq[IRQ_USB_HP]);
3121 		goto irq_req_fail;
3122 	}
3123 
3124 	retval = devm_request_irq(dev, udc->udp_irq[IRQ_USB_DEVDMA],
3125 				  lpc32xx_usb_devdma_irq, 0, "udc_dma", udc);
3126 	if (retval < 0) {
3127 		dev_err(udc->dev, "DEV request irq %d failed\n",
3128 			udc->udp_irq[IRQ_USB_DEVDMA]);
3129 		goto irq_req_fail;
3130 	}
3131 
3132 	/* The transceiver interrupt is used for VBUS detection and will
3133 	   kick off the VBUS handler function */
3134 	retval = devm_request_threaded_irq(dev, udc->udp_irq[IRQ_USB_ATX], NULL,
3135 					   lpc32xx_usb_vbus_irq, IRQF_ONESHOT,
3136 					   "udc_otg", udc);
3137 	if (retval < 0) {
3138 		dev_err(udc->dev, "VBUS request irq %d failed\n",
3139 			udc->udp_irq[IRQ_USB_ATX]);
3140 		goto irq_req_fail;
3141 	}
3142 
3143 	/* Initialize wait queue */
3144 	init_waitqueue_head(&udc->ep_disable_wait_queue);
3145 	atomic_set(&udc->enabled_ep_cnt, 0);
3146 
3147 	retval = usb_add_gadget_udc(dev, &udc->gadget);
3148 	if (retval < 0)
3149 		goto add_gadget_fail;
3150 
3151 	dev_set_drvdata(dev, udc);
3152 	device_init_wakeup(dev, 1);
3153 	create_debug_file(udc);
3154 
3155 	/* Disable clocks for now */
3156 	udc_clk_set(udc, 0);
3157 
3158 	dev_info(udc->dev, "%s version %s\n", driver_name, DRIVER_VERSION);
3159 	return 0;
3160 
3161 add_gadget_fail:
3162 irq_req_fail:
3163 	dma_pool_destroy(udc->dd_cache);
3164 dma_alloc_fail:
3165 	dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3166 			  udc->udca_v_base, udc->udca_p_base);
3167 i2c_fail:
3168 	clk_disable_unprepare(udc->usb_slv_clk);
3169 	dev_err(udc->dev, "%s probe failed, %d\n", driver_name, retval);
3170 
3171 	return retval;
3172 }
3173 
3174 static int lpc32xx_udc_remove(struct platform_device *pdev)
3175 {
3176 	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3177 
3178 	usb_del_gadget_udc(&udc->gadget);
3179 	if (udc->driver)
3180 		return -EBUSY;
3181 
3182 	udc_clk_set(udc, 1);
3183 	udc_disable(udc);
3184 	pullup(udc, 0);
3185 
3186 	device_init_wakeup(&pdev->dev, 0);
3187 	remove_debug_file(udc);
3188 
3189 	dma_pool_destroy(udc->dd_cache);
3190 	dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3191 			  udc->udca_v_base, udc->udca_p_base);
3192 
3193 	clk_disable_unprepare(udc->usb_slv_clk);
3194 
3195 	return 0;
3196 }
3197 
3198 #ifdef CONFIG_PM
3199 static int lpc32xx_udc_suspend(struct platform_device *pdev, pm_message_t mesg)
3200 {
3201 	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3202 
3203 	if (udc->clocked) {
3204 		/* Power down ISP */
3205 		udc->poweron = 0;
3206 		isp1301_set_powerstate(udc, 0);
3207 
3208 		/* Disable clocking */
3209 		udc_clk_set(udc, 0);
3210 
3211 		/* Keep clock flag on, so we know to re-enable clocks
3212 		   on resume */
3213 		udc->clocked = 1;
3214 
3215 		/* Kill global USB clock */
3216 		clk_disable_unprepare(udc->usb_slv_clk);
3217 	}
3218 
3219 	return 0;
3220 }
3221 
3222 static int lpc32xx_udc_resume(struct platform_device *pdev)
3223 {
3224 	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3225 
3226 	if (udc->clocked) {
3227 		/* Enable global USB clock */
3228 		clk_prepare_enable(udc->usb_slv_clk);
3229 
3230 		/* Enable clocking */
3231 		udc_clk_set(udc, 1);
3232 
3233 		/* ISP back to normal power mode */
3234 		udc->poweron = 1;
3235 		isp1301_set_powerstate(udc, 1);
3236 	}
3237 
3238 	return 0;
3239 }
3240 #else
3241 #define	lpc32xx_udc_suspend	NULL
3242 #define	lpc32xx_udc_resume	NULL
3243 #endif
3244 
3245 #ifdef CONFIG_OF
3246 static const struct of_device_id lpc32xx_udc_of_match[] = {
3247 	{ .compatible = "nxp,lpc3220-udc", },
3248 	{ },
3249 };
3250 MODULE_DEVICE_TABLE(of, lpc32xx_udc_of_match);
3251 #endif
3252 
3253 static struct platform_driver lpc32xx_udc_driver = {
3254 	.remove		= lpc32xx_udc_remove,
3255 	.shutdown	= lpc32xx_udc_shutdown,
3256 	.suspend	= lpc32xx_udc_suspend,
3257 	.resume		= lpc32xx_udc_resume,
3258 	.driver		= {
3259 		.name	= driver_name,
3260 		.of_match_table = of_match_ptr(lpc32xx_udc_of_match),
3261 	},
3262 };
3263 
3264 module_platform_driver_probe(lpc32xx_udc_driver, lpc32xx_udc_probe);
3265 
3266 MODULE_DESCRIPTION("LPC32XX udc driver");
3267 MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
3268 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
3269 MODULE_LICENSE("GPL");
3270 MODULE_ALIAS("platform:lpc32xx_udc");
3271