xref: /openbmc/linux/drivers/usb/gadget/udc/lpc32xx_udc.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * USB Gadget driver for LPC32xx
4  *
5  * Authors:
6  *    Kevin Wells <kevin.wells@nxp.com>
7  *    Mike James
8  *    Roland Stigge <stigge@antcom.de>
9  *
10  * Copyright (C) 2006 Philips Semiconductors
11  * Copyright (C) 2009 NXP Semiconductors
12  * Copyright (C) 2012 Roland Stigge
13  *
14  * Note: This driver is based on original work done by Mike James for
15  *       the LPC3180.
16  */
17 
18 #include <linux/clk.h>
19 #include <linux/delay.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dmapool.h>
22 #include <linux/i2c.h>
23 #include <linux/interrupt.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/proc_fs.h>
28 #include <linux/slab.h>
29 #include <linux/usb/ch9.h>
30 #include <linux/usb/gadget.h>
31 #include <linux/usb/isp1301.h>
32 
33 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif
37 
38 #include <mach/hardware.h>
39 
40 /*
41  * USB device configuration structure
42  */
43 typedef void (*usc_chg_event)(int);
44 struct lpc32xx_usbd_cfg {
45 	int vbus_drv_pol;   /* 0=active low drive for VBUS via ISP1301 */
46 	usc_chg_event conn_chgb; /* Connection change event (optional) */
47 	usc_chg_event susp_chgb; /* Suspend/resume event (optional) */
48 	usc_chg_event rmwk_chgb; /* Enable/disable remote wakeup */
49 };
50 
51 /*
52  * controller driver data structures
53  */
54 
55 /* 16 endpoints (not to be confused with 32 hardware endpoints) */
56 #define	NUM_ENDPOINTS	16
57 
58 /*
59  * IRQ indices make reading the code a little easier
60  */
61 #define IRQ_USB_LP	0
62 #define IRQ_USB_HP	1
63 #define IRQ_USB_DEVDMA	2
64 #define IRQ_USB_ATX	3
65 
66 #define EP_OUT 0 /* RX (from host) */
67 #define EP_IN 1 /* TX (to host) */
68 
69 /* Returns the interrupt mask for the selected hardware endpoint */
70 #define EP_MASK_SEL(ep, dir) (1 << (((ep) * 2) + dir))
71 
72 #define EP_INT_TYPE 0
73 #define EP_ISO_TYPE 1
74 #define EP_BLK_TYPE 2
75 #define EP_CTL_TYPE 3
76 
77 /* EP0 states */
78 #define WAIT_FOR_SETUP 0 /* Wait for setup packet */
79 #define DATA_IN        1 /* Expect dev->host transfer */
80 #define DATA_OUT       2 /* Expect host->dev transfer */
81 
82 /* DD (DMA Descriptor) structure, requires word alignment, this is already
83  * defined in the LPC32XX USB device header file, but this version is slightly
84  * modified to tag some work data with each DMA descriptor. */
85 struct lpc32xx_usbd_dd_gad {
86 	u32 dd_next_phy;
87 	u32 dd_setup;
88 	u32 dd_buffer_addr;
89 	u32 dd_status;
90 	u32 dd_iso_ps_mem_addr;
91 	u32 this_dma;
92 	u32 iso_status[6]; /* 5 spare */
93 	u32 dd_next_v;
94 };
95 
96 /*
97  * Logical endpoint structure
98  */
99 struct lpc32xx_ep {
100 	struct usb_ep		ep;
101 	struct list_head	queue;
102 	struct lpc32xx_udc	*udc;
103 
104 	u32			hwep_num_base; /* Physical hardware EP */
105 	u32			hwep_num; /* Maps to hardware endpoint */
106 	u32			maxpacket;
107 	u32			lep;
108 
109 	bool			is_in;
110 	bool			req_pending;
111 	u32			eptype;
112 
113 	u32                     totalints;
114 
115 	bool			wedge;
116 };
117 
118 /*
119  * Common UDC structure
120  */
121 struct lpc32xx_udc {
122 	struct usb_gadget	gadget;
123 	struct usb_gadget_driver *driver;
124 	struct platform_device	*pdev;
125 	struct device		*dev;
126 	struct dentry		*pde;
127 	spinlock_t		lock;
128 	struct i2c_client	*isp1301_i2c_client;
129 
130 	/* Board and device specific */
131 	struct lpc32xx_usbd_cfg	*board;
132 	u32			io_p_start;
133 	u32			io_p_size;
134 	void __iomem		*udp_baseaddr;
135 	int			udp_irq[4];
136 	struct clk		*usb_slv_clk;
137 
138 	/* DMA support */
139 	u32			*udca_v_base;
140 	u32			udca_p_base;
141 	struct dma_pool		*dd_cache;
142 
143 	/* Common EP and control data */
144 	u32			enabled_devints;
145 	u32			enabled_hwepints;
146 	u32			dev_status;
147 	u32			realized_eps;
148 
149 	/* VBUS detection, pullup, and power flags */
150 	u8			vbus;
151 	u8			last_vbus;
152 	int			pullup;
153 	int			poweron;
154 
155 	/* Work queues related to I2C support */
156 	struct work_struct	pullup_job;
157 	struct work_struct	vbus_job;
158 	struct work_struct	power_job;
159 
160 	/* USB device peripheral - various */
161 	struct lpc32xx_ep	ep[NUM_ENDPOINTS];
162 	bool			enabled;
163 	bool			clocked;
164 	bool			suspended;
165 	int                     ep0state;
166 	atomic_t                enabled_ep_cnt;
167 	wait_queue_head_t       ep_disable_wait_queue;
168 };
169 
170 /*
171  * Endpoint request
172  */
173 struct lpc32xx_request {
174 	struct usb_request	req;
175 	struct list_head	queue;
176 	struct lpc32xx_usbd_dd_gad *dd_desc_ptr;
177 	bool			mapped;
178 	bool			send_zlp;
179 };
180 
181 static inline struct lpc32xx_udc *to_udc(struct usb_gadget *g)
182 {
183 	return container_of(g, struct lpc32xx_udc, gadget);
184 }
185 
186 #define ep_dbg(epp, fmt, arg...) \
187 	dev_dbg(epp->udc->dev, "%s: " fmt, __func__, ## arg)
188 #define ep_err(epp, fmt, arg...) \
189 	dev_err(epp->udc->dev, "%s: " fmt, __func__, ## arg)
190 #define ep_info(epp, fmt, arg...) \
191 	dev_info(epp->udc->dev, "%s: " fmt, __func__, ## arg)
192 #define ep_warn(epp, fmt, arg...) \
193 	dev_warn(epp->udc->dev, "%s:" fmt, __func__, ## arg)
194 
195 #define UDCA_BUFF_SIZE (128)
196 
197 /**********************************************************************
198  * USB device controller register offsets
199  **********************************************************************/
200 
201 #define USBD_DEVINTST(x)	((x) + 0x200)
202 #define USBD_DEVINTEN(x)	((x) + 0x204)
203 #define USBD_DEVINTCLR(x)	((x) + 0x208)
204 #define USBD_DEVINTSET(x)	((x) + 0x20C)
205 #define USBD_CMDCODE(x)		((x) + 0x210)
206 #define USBD_CMDDATA(x)		((x) + 0x214)
207 #define USBD_RXDATA(x)		((x) + 0x218)
208 #define USBD_TXDATA(x)		((x) + 0x21C)
209 #define USBD_RXPLEN(x)		((x) + 0x220)
210 #define USBD_TXPLEN(x)		((x) + 0x224)
211 #define USBD_CTRL(x)		((x) + 0x228)
212 #define USBD_DEVINTPRI(x)	((x) + 0x22C)
213 #define USBD_EPINTST(x)		((x) + 0x230)
214 #define USBD_EPINTEN(x)		((x) + 0x234)
215 #define USBD_EPINTCLR(x)	((x) + 0x238)
216 #define USBD_EPINTSET(x)	((x) + 0x23C)
217 #define USBD_EPINTPRI(x)	((x) + 0x240)
218 #define USBD_REEP(x)		((x) + 0x244)
219 #define USBD_EPIND(x)		((x) + 0x248)
220 #define USBD_EPMAXPSIZE(x)	((x) + 0x24C)
221 /* DMA support registers only below */
222 /* Set, clear, or get enabled state of the DMA request status. If
223  * enabled, an IN or OUT token will start a DMA transfer for the EP */
224 #define USBD_DMARST(x)		((x) + 0x250)
225 #define USBD_DMARCLR(x)		((x) + 0x254)
226 #define USBD_DMARSET(x)		((x) + 0x258)
227 /* DMA UDCA head pointer */
228 #define USBD_UDCAH(x)		((x) + 0x280)
229 /* EP DMA status, enable, and disable. This is used to specifically
230  * enabled or disable DMA for a specific EP */
231 #define USBD_EPDMAST(x)		((x) + 0x284)
232 #define USBD_EPDMAEN(x)		((x) + 0x288)
233 #define USBD_EPDMADIS(x)	((x) + 0x28C)
234 /* DMA master interrupts enable and pending interrupts */
235 #define USBD_DMAINTST(x)	((x) + 0x290)
236 #define USBD_DMAINTEN(x)	((x) + 0x294)
237 /* DMA end of transfer interrupt enable, disable, status */
238 #define USBD_EOTINTST(x)	((x) + 0x2A0)
239 #define USBD_EOTINTCLR(x)	((x) + 0x2A4)
240 #define USBD_EOTINTSET(x)	((x) + 0x2A8)
241 /* New DD request interrupt enable, disable, status */
242 #define USBD_NDDRTINTST(x)	((x) + 0x2AC)
243 #define USBD_NDDRTINTCLR(x)	((x) + 0x2B0)
244 #define USBD_NDDRTINTSET(x)	((x) + 0x2B4)
245 /* DMA error interrupt enable, disable, status */
246 #define USBD_SYSERRTINTST(x)	((x) + 0x2B8)
247 #define USBD_SYSERRTINTCLR(x)	((x) + 0x2BC)
248 #define USBD_SYSERRTINTSET(x)	((x) + 0x2C0)
249 
250 /**********************************************************************
251  * USBD_DEVINTST/USBD_DEVINTEN/USBD_DEVINTCLR/USBD_DEVINTSET/
252  * USBD_DEVINTPRI register definitions
253  **********************************************************************/
254 #define USBD_ERR_INT		(1 << 9)
255 #define USBD_EP_RLZED		(1 << 8)
256 #define USBD_TXENDPKT		(1 << 7)
257 #define USBD_RXENDPKT		(1 << 6)
258 #define USBD_CDFULL		(1 << 5)
259 #define USBD_CCEMPTY		(1 << 4)
260 #define USBD_DEV_STAT		(1 << 3)
261 #define USBD_EP_SLOW		(1 << 2)
262 #define USBD_EP_FAST		(1 << 1)
263 #define USBD_FRAME		(1 << 0)
264 
265 /**********************************************************************
266  * USBD_EPINTST/USBD_EPINTEN/USBD_EPINTCLR/USBD_EPINTSET/
267  * USBD_EPINTPRI register definitions
268  **********************************************************************/
269 /* End point selection macro (RX) */
270 #define USBD_RX_EP_SEL(e)	(1 << ((e) << 1))
271 
272 /* End point selection macro (TX) */
273 #define USBD_TX_EP_SEL(e)	(1 << (((e) << 1) + 1))
274 
275 /**********************************************************************
276  * USBD_REEP/USBD_DMARST/USBD_DMARCLR/USBD_DMARSET/USBD_EPDMAST/
277  * USBD_EPDMAEN/USBD_EPDMADIS/
278  * USBD_NDDRTINTST/USBD_NDDRTINTCLR/USBD_NDDRTINTSET/
279  * USBD_EOTINTST/USBD_EOTINTCLR/USBD_EOTINTSET/
280  * USBD_SYSERRTINTST/USBD_SYSERRTINTCLR/USBD_SYSERRTINTSET
281  * register definitions
282  **********************************************************************/
283 /* Endpoint selection macro */
284 #define USBD_EP_SEL(e)		(1 << (e))
285 
286 /**********************************************************************
287  * SBD_DMAINTST/USBD_DMAINTEN
288  **********************************************************************/
289 #define USBD_SYS_ERR_INT	(1 << 2)
290 #define USBD_NEW_DD_INT		(1 << 1)
291 #define USBD_EOT_INT		(1 << 0)
292 
293 /**********************************************************************
294  * USBD_RXPLEN register definitions
295  **********************************************************************/
296 #define USBD_PKT_RDY		(1 << 11)
297 #define USBD_DV			(1 << 10)
298 #define USBD_PK_LEN_MASK	0x3FF
299 
300 /**********************************************************************
301  * USBD_CTRL register definitions
302  **********************************************************************/
303 #define USBD_LOG_ENDPOINT(e)	((e) << 2)
304 #define USBD_WR_EN		(1 << 1)
305 #define USBD_RD_EN		(1 << 0)
306 
307 /**********************************************************************
308  * USBD_CMDCODE register definitions
309  **********************************************************************/
310 #define USBD_CMD_CODE(c)	((c) << 16)
311 #define USBD_CMD_PHASE(p)	((p) << 8)
312 
313 /**********************************************************************
314  * USBD_DMARST/USBD_DMARCLR/USBD_DMARSET register definitions
315  **********************************************************************/
316 #define USBD_DMAEP(e)		(1 << (e))
317 
318 /* DD (DMA Descriptor) structure, requires word alignment */
319 struct lpc32xx_usbd_dd {
320 	u32 *dd_next;
321 	u32 dd_setup;
322 	u32 dd_buffer_addr;
323 	u32 dd_status;
324 	u32 dd_iso_ps_mem_addr;
325 };
326 
327 /* dd_setup bit defines */
328 #define DD_SETUP_ATLE_DMA_MODE	0x01
329 #define DD_SETUP_NEXT_DD_VALID	0x04
330 #define DD_SETUP_ISO_EP		0x10
331 #define DD_SETUP_PACKETLEN(n)	(((n) & 0x7FF) << 5)
332 #define DD_SETUP_DMALENBYTES(n)	(((n) & 0xFFFF) << 16)
333 
334 /* dd_status bit defines */
335 #define DD_STATUS_DD_RETIRED	0x01
336 #define DD_STATUS_STS_MASK	0x1E
337 #define DD_STATUS_STS_NS	0x00 /* Not serviced */
338 #define DD_STATUS_STS_BS	0x02 /* Being serviced */
339 #define DD_STATUS_STS_NC	0x04 /* Normal completion */
340 #define DD_STATUS_STS_DUR	0x06 /* Data underrun (short packet) */
341 #define DD_STATUS_STS_DOR	0x08 /* Data overrun */
342 #define DD_STATUS_STS_SE	0x12 /* System error */
343 #define DD_STATUS_PKT_VAL	0x20 /* Packet valid */
344 #define DD_STATUS_LSB_EX	0x40 /* LS byte extracted (ATLE) */
345 #define DD_STATUS_MSB_EX	0x80 /* MS byte extracted (ATLE) */
346 #define DD_STATUS_MLEN(n)	(((n) >> 8) & 0x3F)
347 #define DD_STATUS_CURDMACNT(n)	(((n) >> 16) & 0xFFFF)
348 
349 /*
350  *
351  * Protocol engine bits below
352  *
353  */
354 /* Device Interrupt Bit Definitions */
355 #define FRAME_INT		0x00000001
356 #define EP_FAST_INT		0x00000002
357 #define EP_SLOW_INT		0x00000004
358 #define DEV_STAT_INT		0x00000008
359 #define CCEMTY_INT		0x00000010
360 #define CDFULL_INT		0x00000020
361 #define RxENDPKT_INT		0x00000040
362 #define TxENDPKT_INT		0x00000080
363 #define EP_RLZED_INT		0x00000100
364 #define ERR_INT			0x00000200
365 
366 /* Rx & Tx Packet Length Definitions */
367 #define PKT_LNGTH_MASK		0x000003FF
368 #define PKT_DV			0x00000400
369 #define PKT_RDY			0x00000800
370 
371 /* USB Control Definitions */
372 #define CTRL_RD_EN		0x00000001
373 #define CTRL_WR_EN		0x00000002
374 
375 /* Command Codes */
376 #define CMD_SET_ADDR		0x00D00500
377 #define CMD_CFG_DEV		0x00D80500
378 #define CMD_SET_MODE		0x00F30500
379 #define CMD_RD_FRAME		0x00F50500
380 #define DAT_RD_FRAME		0x00F50200
381 #define CMD_RD_TEST		0x00FD0500
382 #define DAT_RD_TEST		0x00FD0200
383 #define CMD_SET_DEV_STAT	0x00FE0500
384 #define CMD_GET_DEV_STAT	0x00FE0500
385 #define DAT_GET_DEV_STAT	0x00FE0200
386 #define CMD_GET_ERR_CODE	0x00FF0500
387 #define DAT_GET_ERR_CODE	0x00FF0200
388 #define CMD_RD_ERR_STAT		0x00FB0500
389 #define DAT_RD_ERR_STAT		0x00FB0200
390 #define DAT_WR_BYTE(x)		(0x00000100 | ((x) << 16))
391 #define CMD_SEL_EP(x)		(0x00000500 | ((x) << 16))
392 #define DAT_SEL_EP(x)		(0x00000200 | ((x) << 16))
393 #define CMD_SEL_EP_CLRI(x)	(0x00400500 | ((x) << 16))
394 #define DAT_SEL_EP_CLRI(x)	(0x00400200 | ((x) << 16))
395 #define CMD_SET_EP_STAT(x)	(0x00400500 | ((x) << 16))
396 #define CMD_CLR_BUF		0x00F20500
397 #define DAT_CLR_BUF		0x00F20200
398 #define CMD_VALID_BUF		0x00FA0500
399 
400 /* Device Address Register Definitions */
401 #define DEV_ADDR_MASK		0x7F
402 #define DEV_EN			0x80
403 
404 /* Device Configure Register Definitions */
405 #define CONF_DVICE		0x01
406 
407 /* Device Mode Register Definitions */
408 #define AP_CLK			0x01
409 #define INAK_CI			0x02
410 #define INAK_CO			0x04
411 #define INAK_II			0x08
412 #define INAK_IO			0x10
413 #define INAK_BI			0x20
414 #define INAK_BO			0x40
415 
416 /* Device Status Register Definitions */
417 #define DEV_CON			0x01
418 #define DEV_CON_CH		0x02
419 #define DEV_SUS			0x04
420 #define DEV_SUS_CH		0x08
421 #define DEV_RST			0x10
422 
423 /* Error Code Register Definitions */
424 #define ERR_EC_MASK		0x0F
425 #define ERR_EA			0x10
426 
427 /* Error Status Register Definitions */
428 #define ERR_PID			0x01
429 #define ERR_UEPKT		0x02
430 #define ERR_DCRC		0x04
431 #define ERR_TIMOUT		0x08
432 #define ERR_EOP			0x10
433 #define ERR_B_OVRN		0x20
434 #define ERR_BTSTF		0x40
435 #define ERR_TGL			0x80
436 
437 /* Endpoint Select Register Definitions */
438 #define EP_SEL_F		0x01
439 #define EP_SEL_ST		0x02
440 #define EP_SEL_STP		0x04
441 #define EP_SEL_PO		0x08
442 #define EP_SEL_EPN		0x10
443 #define EP_SEL_B_1_FULL		0x20
444 #define EP_SEL_B_2_FULL		0x40
445 
446 /* Endpoint Status Register Definitions */
447 #define EP_STAT_ST		0x01
448 #define EP_STAT_DA		0x20
449 #define EP_STAT_RF_MO		0x40
450 #define EP_STAT_CND_ST		0x80
451 
452 /* Clear Buffer Register Definitions */
453 #define CLR_BUF_PO		0x01
454 
455 /* DMA Interrupt Bit Definitions */
456 #define EOT_INT			0x01
457 #define NDD_REQ_INT		0x02
458 #define SYS_ERR_INT		0x04
459 
460 #define	DRIVER_VERSION	"1.03"
461 static const char driver_name[] = "lpc32xx_udc";
462 
463 /*
464  *
465  * proc interface support
466  *
467  */
468 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
469 static char *epnames[] = {"INT", "ISO", "BULK", "CTRL"};
470 static const char debug_filename[] = "driver/udc";
471 
472 static void proc_ep_show(struct seq_file *s, struct lpc32xx_ep *ep)
473 {
474 	struct lpc32xx_request *req;
475 
476 	seq_printf(s, "\n");
477 	seq_printf(s, "%12s, maxpacket %4d %3s",
478 			ep->ep.name, ep->ep.maxpacket,
479 			ep->is_in ? "in" : "out");
480 	seq_printf(s, " type %4s", epnames[ep->eptype]);
481 	seq_printf(s, " ints: %12d", ep->totalints);
482 
483 	if (list_empty(&ep->queue))
484 		seq_printf(s, "\t(queue empty)\n");
485 	else {
486 		list_for_each_entry(req, &ep->queue, queue) {
487 			u32 length = req->req.actual;
488 
489 			seq_printf(s, "\treq %p len %d/%d buf %p\n",
490 				   &req->req, length,
491 				   req->req.length, req->req.buf);
492 		}
493 	}
494 }
495 
496 static int proc_udc_show(struct seq_file *s, void *unused)
497 {
498 	struct lpc32xx_udc *udc = s->private;
499 	struct lpc32xx_ep *ep;
500 	unsigned long flags;
501 
502 	seq_printf(s, "%s: version %s\n", driver_name, DRIVER_VERSION);
503 
504 	spin_lock_irqsave(&udc->lock, flags);
505 
506 	seq_printf(s, "vbus %s, pullup %s, %s powered%s, gadget %s\n\n",
507 		   udc->vbus ? "present" : "off",
508 		   udc->enabled ? (udc->vbus ? "active" : "enabled") :
509 		   "disabled",
510 		   udc->gadget.is_selfpowered ? "self" : "VBUS",
511 		   udc->suspended ? ", suspended" : "",
512 		   udc->driver ? udc->driver->driver.name : "(none)");
513 
514 	if (udc->enabled && udc->vbus) {
515 		proc_ep_show(s, &udc->ep[0]);
516 		list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list)
517 			proc_ep_show(s, ep);
518 	}
519 
520 	spin_unlock_irqrestore(&udc->lock, flags);
521 
522 	return 0;
523 }
524 
525 static int proc_udc_open(struct inode *inode, struct file *file)
526 {
527 	return single_open(file, proc_udc_show, PDE_DATA(inode));
528 }
529 
530 static const struct file_operations proc_ops = {
531 	.owner		= THIS_MODULE,
532 	.open		= proc_udc_open,
533 	.read		= seq_read,
534 	.llseek		= seq_lseek,
535 	.release	= single_release,
536 };
537 
538 static void create_debug_file(struct lpc32xx_udc *udc)
539 {
540 	udc->pde = debugfs_create_file(debug_filename, 0, NULL, udc, &proc_ops);
541 }
542 
543 static void remove_debug_file(struct lpc32xx_udc *udc)
544 {
545 	debugfs_remove(udc->pde);
546 }
547 
548 #else
549 static inline void create_debug_file(struct lpc32xx_udc *udc) {}
550 static inline void remove_debug_file(struct lpc32xx_udc *udc) {}
551 #endif
552 
553 /* Primary initialization sequence for the ISP1301 transceiver */
554 static void isp1301_udc_configure(struct lpc32xx_udc *udc)
555 {
556 	/* LPC32XX only supports DAT_SE0 USB mode */
557 	/* This sequence is important */
558 
559 	/* Disable transparent UART mode first */
560 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
561 		(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
562 		MC1_UART_EN);
563 
564 	/* Set full speed and SE0 mode */
565 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
566 		(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
567 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
568 		ISP1301_I2C_MODE_CONTROL_1, (MC1_SPEED_REG | MC1_DAT_SE0));
569 
570 	/*
571 	 * The PSW_OE enable bit state is reversed in the ISP1301 User's Guide
572 	 */
573 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
574 		(ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
575 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
576 		ISP1301_I2C_MODE_CONTROL_2, (MC2_BI_DI | MC2_SPD_SUSP_CTRL));
577 
578 	/* Driver VBUS_DRV high or low depending on board setup */
579 	if (udc->board->vbus_drv_pol != 0)
580 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
581 			ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DRV);
582 	else
583 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
584 			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
585 			OTG1_VBUS_DRV);
586 
587 	/* Bi-directional mode with suspend control
588 	 * Enable both pulldowns for now - the pullup will be enable when VBUS
589 	 * is detected */
590 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
591 		(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
592 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
593 		ISP1301_I2C_OTG_CONTROL_1,
594 		(0 | OTG1_DM_PULLDOWN | OTG1_DP_PULLDOWN));
595 
596 	/* Discharge VBUS (just in case) */
597 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
598 		ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
599 	msleep(1);
600 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
601 		(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
602 		OTG1_VBUS_DISCHRG);
603 
604 	/* Clear and enable VBUS high edge interrupt */
605 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
606 		ISP1301_I2C_INTERRUPT_LATCH | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
607 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
608 		ISP1301_I2C_INTERRUPT_FALLING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
609 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
610 		ISP1301_I2C_INTERRUPT_FALLING, INT_VBUS_VLD);
611 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
612 		ISP1301_I2C_INTERRUPT_RISING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
613 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
614 		ISP1301_I2C_INTERRUPT_RISING, INT_VBUS_VLD);
615 
616 	dev_info(udc->dev, "ISP1301 Vendor ID  : 0x%04x\n",
617 		 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x00));
618 	dev_info(udc->dev, "ISP1301 Product ID : 0x%04x\n",
619 		 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x02));
620 	dev_info(udc->dev, "ISP1301 Version ID : 0x%04x\n",
621 		 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x14));
622 }
623 
624 /* Enables or disables the USB device pullup via the ISP1301 transceiver */
625 static void isp1301_pullup_set(struct lpc32xx_udc *udc)
626 {
627 	if (udc->pullup)
628 		/* Enable pullup for bus signalling */
629 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
630 			ISP1301_I2C_OTG_CONTROL_1, OTG1_DP_PULLUP);
631 	else
632 		/* Enable pullup for bus signalling */
633 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
634 			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
635 			OTG1_DP_PULLUP);
636 }
637 
638 static void pullup_work(struct work_struct *work)
639 {
640 	struct lpc32xx_udc *udc =
641 		container_of(work, struct lpc32xx_udc, pullup_job);
642 
643 	isp1301_pullup_set(udc);
644 }
645 
646 static void isp1301_pullup_enable(struct lpc32xx_udc *udc, int en_pullup,
647 				  int block)
648 {
649 	if (en_pullup == udc->pullup)
650 		return;
651 
652 	udc->pullup = en_pullup;
653 	if (block)
654 		isp1301_pullup_set(udc);
655 	else
656 		/* defer slow i2c pull up setting */
657 		schedule_work(&udc->pullup_job);
658 }
659 
660 #ifdef CONFIG_PM
661 /* Powers up or down the ISP1301 transceiver */
662 static void isp1301_set_powerstate(struct lpc32xx_udc *udc, int enable)
663 {
664 	if (enable != 0)
665 		/* Power up ISP1301 - this ISP1301 will automatically wakeup
666 		   when VBUS is detected */
667 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
668 			ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR,
669 			MC2_GLOBAL_PWR_DN);
670 	else
671 		/* Power down ISP1301 */
672 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
673 			ISP1301_I2C_MODE_CONTROL_2, MC2_GLOBAL_PWR_DN);
674 }
675 
676 static void power_work(struct work_struct *work)
677 {
678 	struct lpc32xx_udc *udc =
679 		container_of(work, struct lpc32xx_udc, power_job);
680 
681 	isp1301_set_powerstate(udc, udc->poweron);
682 }
683 #endif
684 
685 /*
686  *
687  * USB protocol engine command/data read/write helper functions
688  *
689  */
690 /* Issues a single command to the USB device state machine */
691 static void udc_protocol_cmd_w(struct lpc32xx_udc *udc, u32 cmd)
692 {
693 	u32 pass = 0;
694 	int to;
695 
696 	/* EP may lock on CLRI if this read isn't done */
697 	u32 tmp = readl(USBD_DEVINTST(udc->udp_baseaddr));
698 	(void) tmp;
699 
700 	while (pass == 0) {
701 		writel(USBD_CCEMPTY, USBD_DEVINTCLR(udc->udp_baseaddr));
702 
703 		/* Write command code */
704 		writel(cmd, USBD_CMDCODE(udc->udp_baseaddr));
705 		to = 10000;
706 		while (((readl(USBD_DEVINTST(udc->udp_baseaddr)) &
707 			 USBD_CCEMPTY) == 0) && (to > 0)) {
708 			to--;
709 		}
710 
711 		if (to > 0)
712 			pass = 1;
713 
714 		cpu_relax();
715 	}
716 }
717 
718 /* Issues 2 commands (or command and data) to the USB device state machine */
719 static inline void udc_protocol_cmd_data_w(struct lpc32xx_udc *udc, u32 cmd,
720 					   u32 data)
721 {
722 	udc_protocol_cmd_w(udc, cmd);
723 	udc_protocol_cmd_w(udc, data);
724 }
725 
726 /* Issues a single command to the USB device state machine and reads
727  * response data */
728 static u32 udc_protocol_cmd_r(struct lpc32xx_udc *udc, u32 cmd)
729 {
730 	u32 tmp;
731 	int to = 1000;
732 
733 	/* Write a command and read data from the protocol engine */
734 	writel((USBD_CDFULL | USBD_CCEMPTY),
735 		     USBD_DEVINTCLR(udc->udp_baseaddr));
736 
737 	/* Write command code */
738 	udc_protocol_cmd_w(udc, cmd);
739 
740 	tmp = readl(USBD_DEVINTST(udc->udp_baseaddr));
741 	while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) & USBD_CDFULL))
742 	       && (to > 0))
743 		to--;
744 	if (!to)
745 		dev_dbg(udc->dev,
746 			"Protocol engine didn't receive response (CDFULL)\n");
747 
748 	return readl(USBD_CMDDATA(udc->udp_baseaddr));
749 }
750 
751 /*
752  *
753  * USB device interrupt mask support functions
754  *
755  */
756 /* Enable one or more USB device interrupts */
757 static inline void uda_enable_devint(struct lpc32xx_udc *udc, u32 devmask)
758 {
759 	udc->enabled_devints |= devmask;
760 	writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
761 }
762 
763 /* Disable one or more USB device interrupts */
764 static inline void uda_disable_devint(struct lpc32xx_udc *udc, u32 mask)
765 {
766 	udc->enabled_devints &= ~mask;
767 	writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
768 }
769 
770 /* Clear one or more USB device interrupts */
771 static inline void uda_clear_devint(struct lpc32xx_udc *udc, u32 mask)
772 {
773 	writel(mask, USBD_DEVINTCLR(udc->udp_baseaddr));
774 }
775 
776 /*
777  *
778  * Endpoint interrupt disable/enable functions
779  *
780  */
781 /* Enable one or more USB endpoint interrupts */
782 static void uda_enable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
783 {
784 	udc->enabled_hwepints |= (1 << hwep);
785 	writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
786 }
787 
788 /* Disable one or more USB endpoint interrupts */
789 static void uda_disable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
790 {
791 	udc->enabled_hwepints &= ~(1 << hwep);
792 	writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
793 }
794 
795 /* Clear one or more USB endpoint interrupts */
796 static inline void uda_clear_hwepint(struct lpc32xx_udc *udc, u32 hwep)
797 {
798 	writel((1 << hwep), USBD_EPINTCLR(udc->udp_baseaddr));
799 }
800 
801 /* Enable DMA for the HW channel */
802 static inline void udc_ep_dma_enable(struct lpc32xx_udc *udc, u32 hwep)
803 {
804 	writel((1 << hwep), USBD_EPDMAEN(udc->udp_baseaddr));
805 }
806 
807 /* Disable DMA for the HW channel */
808 static inline void udc_ep_dma_disable(struct lpc32xx_udc *udc, u32 hwep)
809 {
810 	writel((1 << hwep), USBD_EPDMADIS(udc->udp_baseaddr));
811 }
812 
813 /*
814  *
815  * Endpoint realize/unrealize functions
816  *
817  */
818 /* Before an endpoint can be used, it needs to be realized
819  * in the USB protocol engine - this realizes the endpoint.
820  * The interrupt (FIFO or DMA) is not enabled with this function */
821 static void udc_realize_hwep(struct lpc32xx_udc *udc, u32 hwep,
822 			     u32 maxpacket)
823 {
824 	int to = 1000;
825 
826 	writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
827 	writel(hwep, USBD_EPIND(udc->udp_baseaddr));
828 	udc->realized_eps |= (1 << hwep);
829 	writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
830 	writel(maxpacket, USBD_EPMAXPSIZE(udc->udp_baseaddr));
831 
832 	/* Wait until endpoint is realized in hardware */
833 	while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) &
834 		  USBD_EP_RLZED)) && (to > 0))
835 		to--;
836 	if (!to)
837 		dev_dbg(udc->dev, "EP not correctly realized in hardware\n");
838 
839 	writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
840 }
841 
842 /* Unrealize an EP */
843 static void udc_unrealize_hwep(struct lpc32xx_udc *udc, u32 hwep)
844 {
845 	udc->realized_eps &= ~(1 << hwep);
846 	writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
847 }
848 
849 /*
850  *
851  * Endpoint support functions
852  *
853  */
854 /* Select and clear endpoint interrupt */
855 static u32 udc_selep_clrint(struct lpc32xx_udc *udc, u32 hwep)
856 {
857 	udc_protocol_cmd_w(udc, CMD_SEL_EP_CLRI(hwep));
858 	return udc_protocol_cmd_r(udc, DAT_SEL_EP_CLRI(hwep));
859 }
860 
861 /* Disables the endpoint in the USB protocol engine */
862 static void udc_disable_hwep(struct lpc32xx_udc *udc, u32 hwep)
863 {
864 	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
865 				DAT_WR_BYTE(EP_STAT_DA));
866 }
867 
868 /* Stalls the endpoint - endpoint will return STALL */
869 static void udc_stall_hwep(struct lpc32xx_udc *udc, u32 hwep)
870 {
871 	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
872 				DAT_WR_BYTE(EP_STAT_ST));
873 }
874 
875 /* Clear stall or reset endpoint */
876 static void udc_clrstall_hwep(struct lpc32xx_udc *udc, u32 hwep)
877 {
878 	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
879 				DAT_WR_BYTE(0));
880 }
881 
882 /* Select an endpoint for endpoint status, clear, validate */
883 static void udc_select_hwep(struct lpc32xx_udc *udc, u32 hwep)
884 {
885 	udc_protocol_cmd_w(udc, CMD_SEL_EP(hwep));
886 }
887 
888 /*
889  *
890  * Endpoint buffer management functions
891  *
892  */
893 /* Clear the current endpoint's buffer */
894 static void udc_clr_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
895 {
896 	udc_select_hwep(udc, hwep);
897 	udc_protocol_cmd_w(udc, CMD_CLR_BUF);
898 }
899 
900 /* Validate the current endpoint's buffer */
901 static void udc_val_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
902 {
903 	udc_select_hwep(udc, hwep);
904 	udc_protocol_cmd_w(udc, CMD_VALID_BUF);
905 }
906 
907 static inline u32 udc_clearep_getsts(struct lpc32xx_udc *udc, u32 hwep)
908 {
909 	/* Clear EP interrupt */
910 	uda_clear_hwepint(udc, hwep);
911 	return udc_selep_clrint(udc, hwep);
912 }
913 
914 /*
915  *
916  * USB EP DMA support
917  *
918  */
919 /* Allocate a DMA Descriptor */
920 static struct lpc32xx_usbd_dd_gad *udc_dd_alloc(struct lpc32xx_udc *udc)
921 {
922 	dma_addr_t			dma;
923 	struct lpc32xx_usbd_dd_gad	*dd;
924 
925 	dd = (struct lpc32xx_usbd_dd_gad *) dma_pool_alloc(
926 			udc->dd_cache, (GFP_KERNEL | GFP_DMA), &dma);
927 	if (dd)
928 		dd->this_dma = dma;
929 
930 	return dd;
931 }
932 
933 /* Free a DMA Descriptor */
934 static void udc_dd_free(struct lpc32xx_udc *udc, struct lpc32xx_usbd_dd_gad *dd)
935 {
936 	dma_pool_free(udc->dd_cache, dd, dd->this_dma);
937 }
938 
939 /*
940  *
941  * USB setup and shutdown functions
942  *
943  */
944 /* Enables or disables most of the USB system clocks when low power mode is
945  * needed. Clocks are typically started on a connection event, and disabled
946  * when a cable is disconnected */
947 static void udc_clk_set(struct lpc32xx_udc *udc, int enable)
948 {
949 	if (enable != 0) {
950 		if (udc->clocked)
951 			return;
952 
953 		udc->clocked = 1;
954 		clk_prepare_enable(udc->usb_slv_clk);
955 	} else {
956 		if (!udc->clocked)
957 			return;
958 
959 		udc->clocked = 0;
960 		clk_disable_unprepare(udc->usb_slv_clk);
961 	}
962 }
963 
964 /* Set/reset USB device address */
965 static void udc_set_address(struct lpc32xx_udc *udc, u32 addr)
966 {
967 	/* Address will be latched at the end of the status phase, or
968 	   latched immediately if function is called twice */
969 	udc_protocol_cmd_data_w(udc, CMD_SET_ADDR,
970 				DAT_WR_BYTE(DEV_EN | addr));
971 }
972 
973 /* Setup up a IN request for DMA transfer - this consists of determining the
974  * list of DMA addresses for the transfer, allocating DMA Descriptors,
975  * installing the DD into the UDCA, and then enabling the DMA for that EP */
976 static int udc_ep_in_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
977 {
978 	struct lpc32xx_request *req;
979 	u32 hwep = ep->hwep_num;
980 
981 	ep->req_pending = 1;
982 
983 	/* There will always be a request waiting here */
984 	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
985 
986 	/* Place the DD Descriptor into the UDCA */
987 	udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
988 
989 	/* Enable DMA and interrupt for the HW EP */
990 	udc_ep_dma_enable(udc, hwep);
991 
992 	/* Clear ZLP if last packet is not of MAXP size */
993 	if (req->req.length % ep->ep.maxpacket)
994 		req->send_zlp = 0;
995 
996 	return 0;
997 }
998 
999 /* Setup up a OUT request for DMA transfer - this consists of determining the
1000  * list of DMA addresses for the transfer, allocating DMA Descriptors,
1001  * installing the DD into the UDCA, and then enabling the DMA for that EP */
1002 static int udc_ep_out_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1003 {
1004 	struct lpc32xx_request *req;
1005 	u32 hwep = ep->hwep_num;
1006 
1007 	ep->req_pending = 1;
1008 
1009 	/* There will always be a request waiting here */
1010 	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1011 
1012 	/* Place the DD Descriptor into the UDCA */
1013 	udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
1014 
1015 	/* Enable DMA and interrupt for the HW EP */
1016 	udc_ep_dma_enable(udc, hwep);
1017 	return 0;
1018 }
1019 
1020 static void udc_disable(struct lpc32xx_udc *udc)
1021 {
1022 	u32 i;
1023 
1024 	/* Disable device */
1025 	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1026 	udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(0));
1027 
1028 	/* Disable all device interrupts (including EP0) */
1029 	uda_disable_devint(udc, 0x3FF);
1030 
1031 	/* Disable and reset all endpoint interrupts */
1032 	for (i = 0; i < 32; i++) {
1033 		uda_disable_hwepint(udc, i);
1034 		uda_clear_hwepint(udc, i);
1035 		udc_disable_hwep(udc, i);
1036 		udc_unrealize_hwep(udc, i);
1037 		udc->udca_v_base[i] = 0;
1038 
1039 		/* Disable and clear all interrupts and DMA */
1040 		udc_ep_dma_disable(udc, i);
1041 		writel((1 << i), USBD_EOTINTCLR(udc->udp_baseaddr));
1042 		writel((1 << i), USBD_NDDRTINTCLR(udc->udp_baseaddr));
1043 		writel((1 << i), USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1044 		writel((1 << i), USBD_DMARCLR(udc->udp_baseaddr));
1045 	}
1046 
1047 	/* Disable DMA interrupts */
1048 	writel(0, USBD_DMAINTEN(udc->udp_baseaddr));
1049 
1050 	writel(0, USBD_UDCAH(udc->udp_baseaddr));
1051 }
1052 
1053 static void udc_enable(struct lpc32xx_udc *udc)
1054 {
1055 	u32 i;
1056 	struct lpc32xx_ep *ep = &udc->ep[0];
1057 
1058 	/* Start with known state */
1059 	udc_disable(udc);
1060 
1061 	/* Enable device */
1062 	udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(DEV_CON));
1063 
1064 	/* EP interrupts on high priority, FRAME interrupt on low priority */
1065 	writel(USBD_EP_FAST, USBD_DEVINTPRI(udc->udp_baseaddr));
1066 	writel(0xFFFF, USBD_EPINTPRI(udc->udp_baseaddr));
1067 
1068 	/* Clear any pending device interrupts */
1069 	writel(0x3FF, USBD_DEVINTCLR(udc->udp_baseaddr));
1070 
1071 	/* Setup UDCA - not yet used (DMA) */
1072 	writel(udc->udca_p_base, USBD_UDCAH(udc->udp_baseaddr));
1073 
1074 	/* Only enable EP0 in and out for now, EP0 only works in FIFO mode */
1075 	for (i = 0; i <= 1; i++) {
1076 		udc_realize_hwep(udc, i, ep->ep.maxpacket);
1077 		uda_enable_hwepint(udc, i);
1078 		udc_select_hwep(udc, i);
1079 		udc_clrstall_hwep(udc, i);
1080 		udc_clr_buffer_hwep(udc, i);
1081 	}
1082 
1083 	/* Device interrupt setup */
1084 	uda_clear_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1085 			       USBD_EP_FAST));
1086 	uda_enable_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1087 				USBD_EP_FAST));
1088 
1089 	/* Set device address to 0 - called twice to force a latch in the USB
1090 	   engine without the need of a setup packet status closure */
1091 	udc_set_address(udc, 0);
1092 	udc_set_address(udc, 0);
1093 
1094 	/* Enable master DMA interrupts */
1095 	writel((USBD_SYS_ERR_INT | USBD_EOT_INT),
1096 		     USBD_DMAINTEN(udc->udp_baseaddr));
1097 
1098 	udc->dev_status = 0;
1099 }
1100 
1101 /*
1102  *
1103  * USB device board specific events handled via callbacks
1104  *
1105  */
1106 /* Connection change event - notify board function of change */
1107 static void uda_power_event(struct lpc32xx_udc *udc, u32 conn)
1108 {
1109 	/* Just notify of a connection change event (optional) */
1110 	if (udc->board->conn_chgb != NULL)
1111 		udc->board->conn_chgb(conn);
1112 }
1113 
1114 /* Suspend/resume event - notify board function of change */
1115 static void uda_resm_susp_event(struct lpc32xx_udc *udc, u32 conn)
1116 {
1117 	/* Just notify of a Suspend/resume change event (optional) */
1118 	if (udc->board->susp_chgb != NULL)
1119 		udc->board->susp_chgb(conn);
1120 
1121 	if (conn)
1122 		udc->suspended = 0;
1123 	else
1124 		udc->suspended = 1;
1125 }
1126 
1127 /* Remote wakeup enable/disable - notify board function of change */
1128 static void uda_remwkp_cgh(struct lpc32xx_udc *udc)
1129 {
1130 	if (udc->board->rmwk_chgb != NULL)
1131 		udc->board->rmwk_chgb(udc->dev_status &
1132 				      (1 << USB_DEVICE_REMOTE_WAKEUP));
1133 }
1134 
1135 /* Reads data from FIFO, adjusts for alignment and data size */
1136 static void udc_pop_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1137 {
1138 	int n, i, bl;
1139 	u16 *p16;
1140 	u32 *p32, tmp, cbytes;
1141 
1142 	/* Use optimal data transfer method based on source address and size */
1143 	switch (((u32) data) & 0x3) {
1144 	case 0: /* 32-bit aligned */
1145 		p32 = (u32 *) data;
1146 		cbytes = (bytes & ~0x3);
1147 
1148 		/* Copy 32-bit aligned data first */
1149 		for (n = 0; n < cbytes; n += 4)
1150 			*p32++ = readl(USBD_RXDATA(udc->udp_baseaddr));
1151 
1152 		/* Handle any remaining bytes */
1153 		bl = bytes - cbytes;
1154 		if (bl) {
1155 			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1156 			for (n = 0; n < bl; n++)
1157 				data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1158 
1159 		}
1160 		break;
1161 
1162 	case 1: /* 8-bit aligned */
1163 	case 3:
1164 		/* Each byte has to be handled independently */
1165 		for (n = 0; n < bytes; n += 4) {
1166 			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1167 
1168 			bl = bytes - n;
1169 			if (bl > 3)
1170 				bl = 3;
1171 
1172 			for (i = 0; i < bl; i++)
1173 				data[n + i] = (u8) ((tmp >> (n * 8)) & 0xFF);
1174 		}
1175 		break;
1176 
1177 	case 2: /* 16-bit aligned */
1178 		p16 = (u16 *) data;
1179 		cbytes = (bytes & ~0x3);
1180 
1181 		/* Copy 32-bit sized objects first with 16-bit alignment */
1182 		for (n = 0; n < cbytes; n += 4) {
1183 			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1184 			*p16++ = (u16)(tmp & 0xFFFF);
1185 			*p16++ = (u16)((tmp >> 16) & 0xFFFF);
1186 		}
1187 
1188 		/* Handle any remaining bytes */
1189 		bl = bytes - cbytes;
1190 		if (bl) {
1191 			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1192 			for (n = 0; n < bl; n++)
1193 				data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1194 		}
1195 		break;
1196 	}
1197 }
1198 
1199 /* Read data from the FIFO for an endpoint. This function is for endpoints (such
1200  * as EP0) that don't use DMA. This function should only be called if a packet
1201  * is known to be ready to read for the endpoint. Note that the endpoint must
1202  * be selected in the protocol engine prior to this call. */
1203 static u32 udc_read_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1204 			 u32 bytes)
1205 {
1206 	u32 tmpv;
1207 	int to = 1000;
1208 	u32 tmp, hwrep = ((hwep & 0x1E) << 1) | CTRL_RD_EN;
1209 
1210 	/* Setup read of endpoint */
1211 	writel(hwrep, USBD_CTRL(udc->udp_baseaddr));
1212 
1213 	/* Wait until packet is ready */
1214 	while ((((tmpv = readl(USBD_RXPLEN(udc->udp_baseaddr))) &
1215 		 PKT_RDY) == 0)	&& (to > 0))
1216 		to--;
1217 	if (!to)
1218 		dev_dbg(udc->dev, "No packet ready on FIFO EP read\n");
1219 
1220 	/* Mask out count */
1221 	tmp = tmpv & PKT_LNGTH_MASK;
1222 	if (bytes < tmp)
1223 		tmp = bytes;
1224 
1225 	if ((tmp > 0) && (data != NULL))
1226 		udc_pop_fifo(udc, (u8 *) data, tmp);
1227 
1228 	writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1229 
1230 	/* Clear the buffer */
1231 	udc_clr_buffer_hwep(udc, hwep);
1232 
1233 	return tmp;
1234 }
1235 
1236 /* Stuffs data into the FIFO, adjusts for alignment and data size */
1237 static void udc_stuff_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1238 {
1239 	int n, i, bl;
1240 	u16 *p16;
1241 	u32 *p32, tmp, cbytes;
1242 
1243 	/* Use optimal data transfer method based on source address and size */
1244 	switch (((u32) data) & 0x3) {
1245 	case 0: /* 32-bit aligned */
1246 		p32 = (u32 *) data;
1247 		cbytes = (bytes & ~0x3);
1248 
1249 		/* Copy 32-bit aligned data first */
1250 		for (n = 0; n < cbytes; n += 4)
1251 			writel(*p32++, USBD_TXDATA(udc->udp_baseaddr));
1252 
1253 		/* Handle any remaining bytes */
1254 		bl = bytes - cbytes;
1255 		if (bl) {
1256 			tmp = 0;
1257 			for (n = 0; n < bl; n++)
1258 				tmp |= data[cbytes + n] << (n * 8);
1259 
1260 			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1261 		}
1262 		break;
1263 
1264 	case 1: /* 8-bit aligned */
1265 	case 3:
1266 		/* Each byte has to be handled independently */
1267 		for (n = 0; n < bytes; n += 4) {
1268 			bl = bytes - n;
1269 			if (bl > 4)
1270 				bl = 4;
1271 
1272 			tmp = 0;
1273 			for (i = 0; i < bl; i++)
1274 				tmp |= data[n + i] << (i * 8);
1275 
1276 			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1277 		}
1278 		break;
1279 
1280 	case 2: /* 16-bit aligned */
1281 		p16 = (u16 *) data;
1282 		cbytes = (bytes & ~0x3);
1283 
1284 		/* Copy 32-bit aligned data first */
1285 		for (n = 0; n < cbytes; n += 4) {
1286 			tmp = *p16++ & 0xFFFF;
1287 			tmp |= (*p16++ & 0xFFFF) << 16;
1288 			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1289 		}
1290 
1291 		/* Handle any remaining bytes */
1292 		bl = bytes - cbytes;
1293 		if (bl) {
1294 			tmp = 0;
1295 			for (n = 0; n < bl; n++)
1296 				tmp |= data[cbytes + n] << (n * 8);
1297 
1298 			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1299 		}
1300 		break;
1301 	}
1302 }
1303 
1304 /* Write data to the FIFO for an endpoint. This function is for endpoints (such
1305  * as EP0) that don't use DMA. Note that the endpoint must be selected in the
1306  * protocol engine prior to this call. */
1307 static void udc_write_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1308 			   u32 bytes)
1309 {
1310 	u32 hwwep = ((hwep & 0x1E) << 1) | CTRL_WR_EN;
1311 
1312 	if ((bytes > 0) && (data == NULL))
1313 		return;
1314 
1315 	/* Setup write of endpoint */
1316 	writel(hwwep, USBD_CTRL(udc->udp_baseaddr));
1317 
1318 	writel(bytes, USBD_TXPLEN(udc->udp_baseaddr));
1319 
1320 	/* Need at least 1 byte to trigger TX */
1321 	if (bytes == 0)
1322 		writel(0, USBD_TXDATA(udc->udp_baseaddr));
1323 	else
1324 		udc_stuff_fifo(udc, (u8 *) data, bytes);
1325 
1326 	writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1327 
1328 	udc_val_buffer_hwep(udc, hwep);
1329 }
1330 
1331 /* USB device reset - resets USB to a default state with just EP0
1332    enabled */
1333 static void uda_usb_reset(struct lpc32xx_udc *udc)
1334 {
1335 	u32 i = 0;
1336 	/* Re-init device controller and EP0 */
1337 	udc_enable(udc);
1338 	udc->gadget.speed = USB_SPEED_FULL;
1339 
1340 	for (i = 1; i < NUM_ENDPOINTS; i++) {
1341 		struct lpc32xx_ep *ep = &udc->ep[i];
1342 		ep->req_pending = 0;
1343 	}
1344 }
1345 
1346 /* Send a ZLP on EP0 */
1347 static void udc_ep0_send_zlp(struct lpc32xx_udc *udc)
1348 {
1349 	udc_write_hwep(udc, EP_IN, NULL, 0);
1350 }
1351 
1352 /* Get current frame number */
1353 static u16 udc_get_current_frame(struct lpc32xx_udc *udc)
1354 {
1355 	u16 flo, fhi;
1356 
1357 	udc_protocol_cmd_w(udc, CMD_RD_FRAME);
1358 	flo = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1359 	fhi = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1360 
1361 	return (fhi << 8) | flo;
1362 }
1363 
1364 /* Set the device as configured - enables all endpoints */
1365 static inline void udc_set_device_configured(struct lpc32xx_udc *udc)
1366 {
1367 	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(CONF_DVICE));
1368 }
1369 
1370 /* Set the device as unconfigured - disables all endpoints */
1371 static inline void udc_set_device_unconfigured(struct lpc32xx_udc *udc)
1372 {
1373 	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1374 }
1375 
1376 /* reinit == restore initial software state */
1377 static void udc_reinit(struct lpc32xx_udc *udc)
1378 {
1379 	u32 i;
1380 
1381 	INIT_LIST_HEAD(&udc->gadget.ep_list);
1382 	INIT_LIST_HEAD(&udc->gadget.ep0->ep_list);
1383 
1384 	for (i = 0; i < NUM_ENDPOINTS; i++) {
1385 		struct lpc32xx_ep *ep = &udc->ep[i];
1386 
1387 		if (i != 0)
1388 			list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1389 		usb_ep_set_maxpacket_limit(&ep->ep, ep->maxpacket);
1390 		INIT_LIST_HEAD(&ep->queue);
1391 		ep->req_pending = 0;
1392 	}
1393 
1394 	udc->ep0state = WAIT_FOR_SETUP;
1395 }
1396 
1397 /* Must be called with lock */
1398 static void done(struct lpc32xx_ep *ep, struct lpc32xx_request *req, int status)
1399 {
1400 	struct lpc32xx_udc *udc = ep->udc;
1401 
1402 	list_del_init(&req->queue);
1403 	if (req->req.status == -EINPROGRESS)
1404 		req->req.status = status;
1405 	else
1406 		status = req->req.status;
1407 
1408 	if (ep->lep) {
1409 		usb_gadget_unmap_request(&udc->gadget, &req->req, ep->is_in);
1410 
1411 		/* Free DDs */
1412 		udc_dd_free(udc, req->dd_desc_ptr);
1413 	}
1414 
1415 	if (status && status != -ESHUTDOWN)
1416 		ep_dbg(ep, "%s done %p, status %d\n", ep->ep.name, req, status);
1417 
1418 	ep->req_pending = 0;
1419 	spin_unlock(&udc->lock);
1420 	usb_gadget_giveback_request(&ep->ep, &req->req);
1421 	spin_lock(&udc->lock);
1422 }
1423 
1424 /* Must be called with lock */
1425 static void nuke(struct lpc32xx_ep *ep, int status)
1426 {
1427 	struct lpc32xx_request *req;
1428 
1429 	while (!list_empty(&ep->queue)) {
1430 		req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1431 		done(ep, req, status);
1432 	}
1433 
1434 	if (status == -ESHUTDOWN) {
1435 		uda_disable_hwepint(ep->udc, ep->hwep_num);
1436 		udc_disable_hwep(ep->udc, ep->hwep_num);
1437 	}
1438 }
1439 
1440 /* IN endpoint 0 transfer */
1441 static int udc_ep0_in_req(struct lpc32xx_udc *udc)
1442 {
1443 	struct lpc32xx_request *req;
1444 	struct lpc32xx_ep *ep0 = &udc->ep[0];
1445 	u32 tsend, ts = 0;
1446 
1447 	if (list_empty(&ep0->queue))
1448 		/* Nothing to send */
1449 		return 0;
1450 	else
1451 		req = list_entry(ep0->queue.next, struct lpc32xx_request,
1452 				 queue);
1453 
1454 	tsend = ts = req->req.length - req->req.actual;
1455 	if (ts == 0) {
1456 		/* Send a ZLP */
1457 		udc_ep0_send_zlp(udc);
1458 		done(ep0, req, 0);
1459 		return 1;
1460 	} else if (ts > ep0->ep.maxpacket)
1461 		ts = ep0->ep.maxpacket; /* Just send what we can */
1462 
1463 	/* Write data to the EP0 FIFO and start transfer */
1464 	udc_write_hwep(udc, EP_IN, (req->req.buf + req->req.actual), ts);
1465 
1466 	/* Increment data pointer */
1467 	req->req.actual += ts;
1468 
1469 	if (tsend >= ep0->ep.maxpacket)
1470 		return 0; /* Stay in data transfer state */
1471 
1472 	/* Transfer request is complete */
1473 	udc->ep0state = WAIT_FOR_SETUP;
1474 	done(ep0, req, 0);
1475 	return 1;
1476 }
1477 
1478 /* OUT endpoint 0 transfer */
1479 static int udc_ep0_out_req(struct lpc32xx_udc *udc)
1480 {
1481 	struct lpc32xx_request *req;
1482 	struct lpc32xx_ep *ep0 = &udc->ep[0];
1483 	u32 tr, bufferspace;
1484 
1485 	if (list_empty(&ep0->queue))
1486 		return 0;
1487 	else
1488 		req = list_entry(ep0->queue.next, struct lpc32xx_request,
1489 				 queue);
1490 
1491 	if (req) {
1492 		if (req->req.length == 0) {
1493 			/* Just dequeue request */
1494 			done(ep0, req, 0);
1495 			udc->ep0state = WAIT_FOR_SETUP;
1496 			return 1;
1497 		}
1498 
1499 		/* Get data from FIFO */
1500 		bufferspace = req->req.length - req->req.actual;
1501 		if (bufferspace > ep0->ep.maxpacket)
1502 			bufferspace = ep0->ep.maxpacket;
1503 
1504 		/* Copy data to buffer */
1505 		prefetchw(req->req.buf + req->req.actual);
1506 		tr = udc_read_hwep(udc, EP_OUT, req->req.buf + req->req.actual,
1507 				   bufferspace);
1508 		req->req.actual += bufferspace;
1509 
1510 		if (tr < ep0->ep.maxpacket) {
1511 			/* This is the last packet */
1512 			done(ep0, req, 0);
1513 			udc->ep0state = WAIT_FOR_SETUP;
1514 			return 1;
1515 		}
1516 	}
1517 
1518 	return 0;
1519 }
1520 
1521 /* Must be called with lock */
1522 static void stop_activity(struct lpc32xx_udc *udc)
1523 {
1524 	struct usb_gadget_driver *driver = udc->driver;
1525 	int i;
1526 
1527 	if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1528 		driver = NULL;
1529 
1530 	udc->gadget.speed = USB_SPEED_UNKNOWN;
1531 	udc->suspended = 0;
1532 
1533 	for (i = 0; i < NUM_ENDPOINTS; i++) {
1534 		struct lpc32xx_ep *ep = &udc->ep[i];
1535 		nuke(ep, -ESHUTDOWN);
1536 	}
1537 	if (driver) {
1538 		spin_unlock(&udc->lock);
1539 		driver->disconnect(&udc->gadget);
1540 		spin_lock(&udc->lock);
1541 	}
1542 
1543 	isp1301_pullup_enable(udc, 0, 0);
1544 	udc_disable(udc);
1545 	udc_reinit(udc);
1546 }
1547 
1548 /*
1549  * Activate or kill host pullup
1550  * Can be called with or without lock
1551  */
1552 static void pullup(struct lpc32xx_udc *udc, int is_on)
1553 {
1554 	if (!udc->clocked)
1555 		return;
1556 
1557 	if (!udc->enabled || !udc->vbus)
1558 		is_on = 0;
1559 
1560 	if (is_on != udc->pullup)
1561 		isp1301_pullup_enable(udc, is_on, 0);
1562 }
1563 
1564 /* Must be called without lock */
1565 static int lpc32xx_ep_disable(struct usb_ep *_ep)
1566 {
1567 	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1568 	struct lpc32xx_udc *udc = ep->udc;
1569 	unsigned long	flags;
1570 
1571 	if ((ep->hwep_num_base == 0) || (ep->hwep_num == 0))
1572 		return -EINVAL;
1573 	spin_lock_irqsave(&udc->lock, flags);
1574 
1575 	nuke(ep, -ESHUTDOWN);
1576 
1577 	/* Clear all DMA statuses for this EP */
1578 	udc_ep_dma_disable(udc, ep->hwep_num);
1579 	writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1580 	writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1581 	writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1582 	writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1583 
1584 	/* Remove the DD pointer in the UDCA */
1585 	udc->udca_v_base[ep->hwep_num] = 0;
1586 
1587 	/* Disable and reset endpoint and interrupt */
1588 	uda_clear_hwepint(udc, ep->hwep_num);
1589 	udc_unrealize_hwep(udc, ep->hwep_num);
1590 
1591 	ep->hwep_num = 0;
1592 
1593 	spin_unlock_irqrestore(&udc->lock, flags);
1594 
1595 	atomic_dec(&udc->enabled_ep_cnt);
1596 	wake_up(&udc->ep_disable_wait_queue);
1597 
1598 	return 0;
1599 }
1600 
1601 /* Must be called without lock */
1602 static int lpc32xx_ep_enable(struct usb_ep *_ep,
1603 			     const struct usb_endpoint_descriptor *desc)
1604 {
1605 	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1606 	struct lpc32xx_udc *udc = ep->udc;
1607 	u16 maxpacket;
1608 	u32 tmp;
1609 	unsigned long flags;
1610 
1611 	/* Verify EP data */
1612 	if ((!_ep) || (!ep) || (!desc) ||
1613 	    (desc->bDescriptorType != USB_DT_ENDPOINT)) {
1614 		dev_dbg(udc->dev, "bad ep or descriptor\n");
1615 		return -EINVAL;
1616 	}
1617 	maxpacket = usb_endpoint_maxp(desc);
1618 	if ((maxpacket == 0) || (maxpacket > ep->maxpacket)) {
1619 		dev_dbg(udc->dev, "bad ep descriptor's packet size\n");
1620 		return -EINVAL;
1621 	}
1622 
1623 	/* Don't touch EP0 */
1624 	if (ep->hwep_num_base == 0) {
1625 		dev_dbg(udc->dev, "Can't re-enable EP0!!!\n");
1626 		return -EINVAL;
1627 	}
1628 
1629 	/* Is driver ready? */
1630 	if ((!udc->driver) || (udc->gadget.speed == USB_SPEED_UNKNOWN)) {
1631 		dev_dbg(udc->dev, "bogus device state\n");
1632 		return -ESHUTDOWN;
1633 	}
1634 
1635 	tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
1636 	switch (tmp) {
1637 	case USB_ENDPOINT_XFER_CONTROL:
1638 		return -EINVAL;
1639 
1640 	case USB_ENDPOINT_XFER_INT:
1641 		if (maxpacket > ep->maxpacket) {
1642 			dev_dbg(udc->dev,
1643 				"Bad INT endpoint maxpacket %d\n", maxpacket);
1644 			return -EINVAL;
1645 		}
1646 		break;
1647 
1648 	case USB_ENDPOINT_XFER_BULK:
1649 		switch (maxpacket) {
1650 		case 8:
1651 		case 16:
1652 		case 32:
1653 		case 64:
1654 			break;
1655 
1656 		default:
1657 			dev_dbg(udc->dev,
1658 				"Bad BULK endpoint maxpacket %d\n", maxpacket);
1659 			return -EINVAL;
1660 		}
1661 		break;
1662 
1663 	case USB_ENDPOINT_XFER_ISOC:
1664 		break;
1665 	}
1666 	spin_lock_irqsave(&udc->lock, flags);
1667 
1668 	/* Initialize endpoint to match the selected descriptor */
1669 	ep->is_in = (desc->bEndpointAddress & USB_DIR_IN) != 0;
1670 	ep->ep.maxpacket = maxpacket;
1671 
1672 	/* Map hardware endpoint from base and direction */
1673 	if (ep->is_in)
1674 		/* IN endpoints are offset 1 from the OUT endpoint */
1675 		ep->hwep_num = ep->hwep_num_base + EP_IN;
1676 	else
1677 		ep->hwep_num = ep->hwep_num_base;
1678 
1679 	ep_dbg(ep, "EP enabled: %s, HW:%d, MP:%d IN:%d\n", ep->ep.name,
1680 	       ep->hwep_num, maxpacket, (ep->is_in == 1));
1681 
1682 	/* Realize the endpoint, interrupt is enabled later when
1683 	 * buffers are queued, IN EPs will NAK until buffers are ready */
1684 	udc_realize_hwep(udc, ep->hwep_num, ep->ep.maxpacket);
1685 	udc_clr_buffer_hwep(udc, ep->hwep_num);
1686 	uda_disable_hwepint(udc, ep->hwep_num);
1687 	udc_clrstall_hwep(udc, ep->hwep_num);
1688 
1689 	/* Clear all DMA statuses for this EP */
1690 	udc_ep_dma_disable(udc, ep->hwep_num);
1691 	writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1692 	writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1693 	writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1694 	writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1695 
1696 	spin_unlock_irqrestore(&udc->lock, flags);
1697 
1698 	atomic_inc(&udc->enabled_ep_cnt);
1699 	return 0;
1700 }
1701 
1702 /*
1703  * Allocate a USB request list
1704  * Can be called with or without lock
1705  */
1706 static struct usb_request *lpc32xx_ep_alloc_request(struct usb_ep *_ep,
1707 						    gfp_t gfp_flags)
1708 {
1709 	struct lpc32xx_request *req;
1710 
1711 	req = kzalloc(sizeof(struct lpc32xx_request), gfp_flags);
1712 	if (!req)
1713 		return NULL;
1714 
1715 	INIT_LIST_HEAD(&req->queue);
1716 	return &req->req;
1717 }
1718 
1719 /*
1720  * De-allocate a USB request list
1721  * Can be called with or without lock
1722  */
1723 static void lpc32xx_ep_free_request(struct usb_ep *_ep,
1724 				    struct usb_request *_req)
1725 {
1726 	struct lpc32xx_request *req;
1727 
1728 	req = container_of(_req, struct lpc32xx_request, req);
1729 	BUG_ON(!list_empty(&req->queue));
1730 	kfree(req);
1731 }
1732 
1733 /* Must be called without lock */
1734 static int lpc32xx_ep_queue(struct usb_ep *_ep,
1735 			    struct usb_request *_req, gfp_t gfp_flags)
1736 {
1737 	struct lpc32xx_request *req;
1738 	struct lpc32xx_ep *ep;
1739 	struct lpc32xx_udc *udc;
1740 	unsigned long flags;
1741 	int status = 0;
1742 
1743 	req = container_of(_req, struct lpc32xx_request, req);
1744 	ep = container_of(_ep, struct lpc32xx_ep, ep);
1745 
1746 	if (!_ep || !_req || !_req->complete || !_req->buf ||
1747 	    !list_empty(&req->queue))
1748 		return -EINVAL;
1749 
1750 	udc = ep->udc;
1751 
1752 	if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1753 		return -EPIPE;
1754 
1755 	if (ep->lep) {
1756 		struct lpc32xx_usbd_dd_gad *dd;
1757 
1758 		status = usb_gadget_map_request(&udc->gadget, _req, ep->is_in);
1759 		if (status)
1760 			return status;
1761 
1762 		/* For the request, build a list of DDs */
1763 		dd = udc_dd_alloc(udc);
1764 		if (!dd) {
1765 			/* Error allocating DD */
1766 			return -ENOMEM;
1767 		}
1768 		req->dd_desc_ptr = dd;
1769 
1770 		/* Setup the DMA descriptor */
1771 		dd->dd_next_phy = dd->dd_next_v = 0;
1772 		dd->dd_buffer_addr = req->req.dma;
1773 		dd->dd_status = 0;
1774 
1775 		/* Special handling for ISO EPs */
1776 		if (ep->eptype == EP_ISO_TYPE) {
1777 			dd->dd_setup = DD_SETUP_ISO_EP |
1778 				DD_SETUP_PACKETLEN(0) |
1779 				DD_SETUP_DMALENBYTES(1);
1780 			dd->dd_iso_ps_mem_addr = dd->this_dma + 24;
1781 			if (ep->is_in)
1782 				dd->iso_status[0] = req->req.length;
1783 			else
1784 				dd->iso_status[0] = 0;
1785 		} else
1786 			dd->dd_setup = DD_SETUP_PACKETLEN(ep->ep.maxpacket) |
1787 				DD_SETUP_DMALENBYTES(req->req.length);
1788 	}
1789 
1790 	ep_dbg(ep, "%s queue req %p len %d buf %p (in=%d) z=%d\n", _ep->name,
1791 	       _req, _req->length, _req->buf, ep->is_in, _req->zero);
1792 
1793 	spin_lock_irqsave(&udc->lock, flags);
1794 
1795 	_req->status = -EINPROGRESS;
1796 	_req->actual = 0;
1797 	req->send_zlp = _req->zero;
1798 
1799 	/* Kickstart empty queues */
1800 	if (list_empty(&ep->queue)) {
1801 		list_add_tail(&req->queue, &ep->queue);
1802 
1803 		if (ep->hwep_num_base == 0) {
1804 			/* Handle expected data direction */
1805 			if (ep->is_in) {
1806 				/* IN packet to host */
1807 				udc->ep0state = DATA_IN;
1808 				status = udc_ep0_in_req(udc);
1809 			} else {
1810 				/* OUT packet from host */
1811 				udc->ep0state = DATA_OUT;
1812 				status = udc_ep0_out_req(udc);
1813 			}
1814 		} else if (ep->is_in) {
1815 			/* IN packet to host and kick off transfer */
1816 			if (!ep->req_pending)
1817 				udc_ep_in_req_dma(udc, ep);
1818 		} else
1819 			/* OUT packet from host and kick off list */
1820 			if (!ep->req_pending)
1821 				udc_ep_out_req_dma(udc, ep);
1822 	} else
1823 		list_add_tail(&req->queue, &ep->queue);
1824 
1825 	spin_unlock_irqrestore(&udc->lock, flags);
1826 
1827 	return (status < 0) ? status : 0;
1828 }
1829 
1830 /* Must be called without lock */
1831 static int lpc32xx_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1832 {
1833 	struct lpc32xx_ep *ep;
1834 	struct lpc32xx_request *req;
1835 	unsigned long flags;
1836 
1837 	ep = container_of(_ep, struct lpc32xx_ep, ep);
1838 	if (!_ep || ep->hwep_num_base == 0)
1839 		return -EINVAL;
1840 
1841 	spin_lock_irqsave(&ep->udc->lock, flags);
1842 
1843 	/* make sure it's actually queued on this endpoint */
1844 	list_for_each_entry(req, &ep->queue, queue) {
1845 		if (&req->req == _req)
1846 			break;
1847 	}
1848 	if (&req->req != _req) {
1849 		spin_unlock_irqrestore(&ep->udc->lock, flags);
1850 		return -EINVAL;
1851 	}
1852 
1853 	done(ep, req, -ECONNRESET);
1854 
1855 	spin_unlock_irqrestore(&ep->udc->lock, flags);
1856 
1857 	return 0;
1858 }
1859 
1860 /* Must be called without lock */
1861 static int lpc32xx_ep_set_halt(struct usb_ep *_ep, int value)
1862 {
1863 	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1864 	struct lpc32xx_udc *udc = ep->udc;
1865 	unsigned long flags;
1866 
1867 	if ((!ep) || (ep->hwep_num <= 1))
1868 		return -EINVAL;
1869 
1870 	/* Don't halt an IN EP */
1871 	if (ep->is_in)
1872 		return -EAGAIN;
1873 
1874 	spin_lock_irqsave(&udc->lock, flags);
1875 
1876 	if (value == 1) {
1877 		/* stall */
1878 		udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1879 					DAT_WR_BYTE(EP_STAT_ST));
1880 	} else {
1881 		/* End stall */
1882 		ep->wedge = 0;
1883 		udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1884 					DAT_WR_BYTE(0));
1885 	}
1886 
1887 	spin_unlock_irqrestore(&udc->lock, flags);
1888 
1889 	return 0;
1890 }
1891 
1892 /* set the halt feature and ignores clear requests */
1893 static int lpc32xx_ep_set_wedge(struct usb_ep *_ep)
1894 {
1895 	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1896 
1897 	if (!_ep || !ep->udc)
1898 		return -EINVAL;
1899 
1900 	ep->wedge = 1;
1901 
1902 	return usb_ep_set_halt(_ep);
1903 }
1904 
1905 static const struct usb_ep_ops lpc32xx_ep_ops = {
1906 	.enable		= lpc32xx_ep_enable,
1907 	.disable	= lpc32xx_ep_disable,
1908 	.alloc_request	= lpc32xx_ep_alloc_request,
1909 	.free_request	= lpc32xx_ep_free_request,
1910 	.queue		= lpc32xx_ep_queue,
1911 	.dequeue	= lpc32xx_ep_dequeue,
1912 	.set_halt	= lpc32xx_ep_set_halt,
1913 	.set_wedge	= lpc32xx_ep_set_wedge,
1914 };
1915 
1916 /* Send a ZLP on a non-0 IN EP */
1917 void udc_send_in_zlp(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1918 {
1919 	/* Clear EP status */
1920 	udc_clearep_getsts(udc, ep->hwep_num);
1921 
1922 	/* Send ZLP via FIFO mechanism */
1923 	udc_write_hwep(udc, ep->hwep_num, NULL, 0);
1924 }
1925 
1926 /*
1927  * Handle EP completion for ZLP
1928  * This function will only be called when a delayed ZLP needs to be sent out
1929  * after a DMA transfer has filled both buffers.
1930  */
1931 void udc_handle_eps(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1932 {
1933 	u32 epstatus;
1934 	struct lpc32xx_request *req;
1935 
1936 	if (ep->hwep_num <= 0)
1937 		return;
1938 
1939 	uda_clear_hwepint(udc, ep->hwep_num);
1940 
1941 	/* If this interrupt isn't enabled, return now */
1942 	if (!(udc->enabled_hwepints & (1 << ep->hwep_num)))
1943 		return;
1944 
1945 	/* Get endpoint status */
1946 	epstatus = udc_clearep_getsts(udc, ep->hwep_num);
1947 
1948 	/*
1949 	 * This should never happen, but protect against writing to the
1950 	 * buffer when full.
1951 	 */
1952 	if (epstatus & EP_SEL_F)
1953 		return;
1954 
1955 	if (ep->is_in) {
1956 		udc_send_in_zlp(udc, ep);
1957 		uda_disable_hwepint(udc, ep->hwep_num);
1958 	} else
1959 		return;
1960 
1961 	/* If there isn't a request waiting, something went wrong */
1962 	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1963 	if (req) {
1964 		done(ep, req, 0);
1965 
1966 		/* Start another request if ready */
1967 		if (!list_empty(&ep->queue)) {
1968 			if (ep->is_in)
1969 				udc_ep_in_req_dma(udc, ep);
1970 			else
1971 				udc_ep_out_req_dma(udc, ep);
1972 		} else
1973 			ep->req_pending = 0;
1974 	}
1975 }
1976 
1977 
1978 /* DMA end of transfer completion */
1979 static void udc_handle_dma_ep(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1980 {
1981 	u32 status, epstatus;
1982 	struct lpc32xx_request *req;
1983 	struct lpc32xx_usbd_dd_gad *dd;
1984 
1985 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
1986 	ep->totalints++;
1987 #endif
1988 
1989 	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1990 	if (!req) {
1991 		ep_err(ep, "DMA interrupt on no req!\n");
1992 		return;
1993 	}
1994 	dd = req->dd_desc_ptr;
1995 
1996 	/* DMA descriptor should always be retired for this call */
1997 	if (!(dd->dd_status & DD_STATUS_DD_RETIRED))
1998 		ep_warn(ep, "DMA descriptor did not retire\n");
1999 
2000 	/* Disable DMA */
2001 	udc_ep_dma_disable(udc, ep->hwep_num);
2002 	writel((1 << ep->hwep_num), USBD_EOTINTCLR(udc->udp_baseaddr));
2003 	writel((1 << ep->hwep_num), USBD_NDDRTINTCLR(udc->udp_baseaddr));
2004 
2005 	/* System error? */
2006 	if (readl(USBD_SYSERRTINTST(udc->udp_baseaddr)) &
2007 	    (1 << ep->hwep_num)) {
2008 		writel((1 << ep->hwep_num),
2009 			     USBD_SYSERRTINTCLR(udc->udp_baseaddr));
2010 		ep_err(ep, "AHB critical error!\n");
2011 		ep->req_pending = 0;
2012 
2013 		/* The error could have occurred on a packet of a multipacket
2014 		 * transfer, so recovering the transfer is not possible. Close
2015 		 * the request with an error */
2016 		done(ep, req, -ECONNABORTED);
2017 		return;
2018 	}
2019 
2020 	/* Handle the current DD's status */
2021 	status = dd->dd_status;
2022 	switch (status & DD_STATUS_STS_MASK) {
2023 	case DD_STATUS_STS_NS:
2024 		/* DD not serviced? This shouldn't happen! */
2025 		ep->req_pending = 0;
2026 		ep_err(ep, "DMA critical EP error: DD not serviced (0x%x)!\n",
2027 		       status);
2028 
2029 		done(ep, req, -ECONNABORTED);
2030 		return;
2031 
2032 	case DD_STATUS_STS_BS:
2033 		/* Interrupt only fires on EOT - This shouldn't happen! */
2034 		ep->req_pending = 0;
2035 		ep_err(ep, "DMA critical EP error: EOT prior to service completion (0x%x)!\n",
2036 		       status);
2037 		done(ep, req, -ECONNABORTED);
2038 		return;
2039 
2040 	case DD_STATUS_STS_NC:
2041 	case DD_STATUS_STS_DUR:
2042 		/* Really just a short packet, not an underrun */
2043 		/* This is a good status and what we expect */
2044 		break;
2045 
2046 	default:
2047 		/* Data overrun, system error, or unknown */
2048 		ep->req_pending = 0;
2049 		ep_err(ep, "DMA critical EP error: System error (0x%x)!\n",
2050 		       status);
2051 		done(ep, req, -ECONNABORTED);
2052 		return;
2053 	}
2054 
2055 	/* ISO endpoints are handled differently */
2056 	if (ep->eptype == EP_ISO_TYPE) {
2057 		if (ep->is_in)
2058 			req->req.actual = req->req.length;
2059 		else
2060 			req->req.actual = dd->iso_status[0] & 0xFFFF;
2061 	} else
2062 		req->req.actual += DD_STATUS_CURDMACNT(status);
2063 
2064 	/* Send a ZLP if necessary. This will be done for non-int
2065 	 * packets which have a size that is a divisor of MAXP */
2066 	if (req->send_zlp) {
2067 		/*
2068 		 * If at least 1 buffer is available, send the ZLP now.
2069 		 * Otherwise, the ZLP send needs to be deferred until a
2070 		 * buffer is available.
2071 		 */
2072 		if (udc_clearep_getsts(udc, ep->hwep_num) & EP_SEL_F) {
2073 			udc_clearep_getsts(udc, ep->hwep_num);
2074 			uda_enable_hwepint(udc, ep->hwep_num);
2075 			epstatus = udc_clearep_getsts(udc, ep->hwep_num);
2076 
2077 			/* Let the EP interrupt handle the ZLP */
2078 			return;
2079 		} else
2080 			udc_send_in_zlp(udc, ep);
2081 	}
2082 
2083 	/* Transfer request is complete */
2084 	done(ep, req, 0);
2085 
2086 	/* Start another request if ready */
2087 	udc_clearep_getsts(udc, ep->hwep_num);
2088 	if (!list_empty((&ep->queue))) {
2089 		if (ep->is_in)
2090 			udc_ep_in_req_dma(udc, ep);
2091 		else
2092 			udc_ep_out_req_dma(udc, ep);
2093 	} else
2094 		ep->req_pending = 0;
2095 
2096 }
2097 
2098 /*
2099  *
2100  * Endpoint 0 functions
2101  *
2102  */
2103 static void udc_handle_dev(struct lpc32xx_udc *udc)
2104 {
2105 	u32 tmp;
2106 
2107 	udc_protocol_cmd_w(udc, CMD_GET_DEV_STAT);
2108 	tmp = udc_protocol_cmd_r(udc, DAT_GET_DEV_STAT);
2109 
2110 	if (tmp & DEV_RST)
2111 		uda_usb_reset(udc);
2112 	else if (tmp & DEV_CON_CH)
2113 		uda_power_event(udc, (tmp & DEV_CON));
2114 	else if (tmp & DEV_SUS_CH) {
2115 		if (tmp & DEV_SUS) {
2116 			if (udc->vbus == 0)
2117 				stop_activity(udc);
2118 			else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2119 				 udc->driver) {
2120 				/* Power down transceiver */
2121 				udc->poweron = 0;
2122 				schedule_work(&udc->pullup_job);
2123 				uda_resm_susp_event(udc, 1);
2124 			}
2125 		} else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2126 			   udc->driver && udc->vbus) {
2127 			uda_resm_susp_event(udc, 0);
2128 			/* Power up transceiver */
2129 			udc->poweron = 1;
2130 			schedule_work(&udc->pullup_job);
2131 		}
2132 	}
2133 }
2134 
2135 static int udc_get_status(struct lpc32xx_udc *udc, u16 reqtype, u16 wIndex)
2136 {
2137 	struct lpc32xx_ep *ep;
2138 	u32 ep0buff = 0, tmp;
2139 
2140 	switch (reqtype & USB_RECIP_MASK) {
2141 	case USB_RECIP_INTERFACE:
2142 		break; /* Not supported */
2143 
2144 	case USB_RECIP_DEVICE:
2145 		ep0buff = udc->gadget.is_selfpowered;
2146 		if (udc->dev_status & (1 << USB_DEVICE_REMOTE_WAKEUP))
2147 			ep0buff |= (1 << USB_DEVICE_REMOTE_WAKEUP);
2148 		break;
2149 
2150 	case USB_RECIP_ENDPOINT:
2151 		tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2152 		ep = &udc->ep[tmp];
2153 		if ((tmp == 0) || (tmp >= NUM_ENDPOINTS))
2154 			return -EOPNOTSUPP;
2155 
2156 		if (wIndex & USB_DIR_IN) {
2157 			if (!ep->is_in)
2158 				return -EOPNOTSUPP; /* Something's wrong */
2159 		} else if (ep->is_in)
2160 			return -EOPNOTSUPP; /* Not an IN endpoint */
2161 
2162 		/* Get status of the endpoint */
2163 		udc_protocol_cmd_w(udc, CMD_SEL_EP(ep->hwep_num));
2164 		tmp = udc_protocol_cmd_r(udc, DAT_SEL_EP(ep->hwep_num));
2165 
2166 		if (tmp & EP_SEL_ST)
2167 			ep0buff = (1 << USB_ENDPOINT_HALT);
2168 		else
2169 			ep0buff = 0;
2170 		break;
2171 
2172 	default:
2173 		break;
2174 	}
2175 
2176 	/* Return data */
2177 	udc_write_hwep(udc, EP_IN, &ep0buff, 2);
2178 
2179 	return 0;
2180 }
2181 
2182 static void udc_handle_ep0_setup(struct lpc32xx_udc *udc)
2183 {
2184 	struct lpc32xx_ep *ep, *ep0 = &udc->ep[0];
2185 	struct usb_ctrlrequest ctrlpkt;
2186 	int i, bytes;
2187 	u16 wIndex, wValue, wLength, reqtype, req, tmp;
2188 
2189 	/* Nuke previous transfers */
2190 	nuke(ep0, -EPROTO);
2191 
2192 	/* Get setup packet */
2193 	bytes = udc_read_hwep(udc, EP_OUT, (u32 *) &ctrlpkt, 8);
2194 	if (bytes != 8) {
2195 		ep_warn(ep0, "Incorrectly sized setup packet (s/b 8, is %d)!\n",
2196 			bytes);
2197 		return;
2198 	}
2199 
2200 	/* Native endianness */
2201 	wIndex = le16_to_cpu(ctrlpkt.wIndex);
2202 	wValue = le16_to_cpu(ctrlpkt.wValue);
2203 	wLength = le16_to_cpu(ctrlpkt.wLength);
2204 	reqtype = le16_to_cpu(ctrlpkt.bRequestType);
2205 
2206 	/* Set direction of EP0 */
2207 	if (likely(reqtype & USB_DIR_IN))
2208 		ep0->is_in = 1;
2209 	else
2210 		ep0->is_in = 0;
2211 
2212 	/* Handle SETUP packet */
2213 	req = le16_to_cpu(ctrlpkt.bRequest);
2214 	switch (req) {
2215 	case USB_REQ_CLEAR_FEATURE:
2216 	case USB_REQ_SET_FEATURE:
2217 		switch (reqtype) {
2218 		case (USB_TYPE_STANDARD | USB_RECIP_DEVICE):
2219 			if (wValue != USB_DEVICE_REMOTE_WAKEUP)
2220 				goto stall; /* Nothing else handled */
2221 
2222 			/* Tell board about event */
2223 			if (req == USB_REQ_CLEAR_FEATURE)
2224 				udc->dev_status &=
2225 					~(1 << USB_DEVICE_REMOTE_WAKEUP);
2226 			else
2227 				udc->dev_status |=
2228 					(1 << USB_DEVICE_REMOTE_WAKEUP);
2229 			uda_remwkp_cgh(udc);
2230 			goto zlp_send;
2231 
2232 		case (USB_TYPE_STANDARD | USB_RECIP_ENDPOINT):
2233 			tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2234 			if ((wValue != USB_ENDPOINT_HALT) ||
2235 			    (tmp >= NUM_ENDPOINTS))
2236 				break;
2237 
2238 			/* Find hardware endpoint from logical endpoint */
2239 			ep = &udc->ep[tmp];
2240 			tmp = ep->hwep_num;
2241 			if (tmp == 0)
2242 				break;
2243 
2244 			if (req == USB_REQ_SET_FEATURE)
2245 				udc_stall_hwep(udc, tmp);
2246 			else if (!ep->wedge)
2247 				udc_clrstall_hwep(udc, tmp);
2248 
2249 			goto zlp_send;
2250 
2251 		default:
2252 			break;
2253 		}
2254 
2255 
2256 	case USB_REQ_SET_ADDRESS:
2257 		if (reqtype == (USB_TYPE_STANDARD | USB_RECIP_DEVICE)) {
2258 			udc_set_address(udc, wValue);
2259 			goto zlp_send;
2260 		}
2261 		break;
2262 
2263 	case USB_REQ_GET_STATUS:
2264 		udc_get_status(udc, reqtype, wIndex);
2265 		return;
2266 
2267 	default:
2268 		break; /* Let GadgetFS handle the descriptor instead */
2269 	}
2270 
2271 	if (likely(udc->driver)) {
2272 		/* device-2-host (IN) or no data setup command, process
2273 		 * immediately */
2274 		spin_unlock(&udc->lock);
2275 		i = udc->driver->setup(&udc->gadget, &ctrlpkt);
2276 
2277 		spin_lock(&udc->lock);
2278 		if (req == USB_REQ_SET_CONFIGURATION) {
2279 			/* Configuration is set after endpoints are realized */
2280 			if (wValue) {
2281 				/* Set configuration */
2282 				udc_set_device_configured(udc);
2283 
2284 				udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2285 							DAT_WR_BYTE(AP_CLK |
2286 							INAK_BI | INAK_II));
2287 			} else {
2288 				/* Clear configuration */
2289 				udc_set_device_unconfigured(udc);
2290 
2291 				/* Disable NAK interrupts */
2292 				udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2293 							DAT_WR_BYTE(AP_CLK));
2294 			}
2295 		}
2296 
2297 		if (i < 0) {
2298 			/* setup processing failed, force stall */
2299 			dev_dbg(udc->dev,
2300 				"req %02x.%02x protocol STALL; stat %d\n",
2301 				reqtype, req, i);
2302 			udc->ep0state = WAIT_FOR_SETUP;
2303 			goto stall;
2304 		}
2305 	}
2306 
2307 	if (!ep0->is_in)
2308 		udc_ep0_send_zlp(udc); /* ZLP IN packet on data phase */
2309 
2310 	return;
2311 
2312 stall:
2313 	udc_stall_hwep(udc, EP_IN);
2314 	return;
2315 
2316 zlp_send:
2317 	udc_ep0_send_zlp(udc);
2318 	return;
2319 }
2320 
2321 /* IN endpoint 0 transfer */
2322 static void udc_handle_ep0_in(struct lpc32xx_udc *udc)
2323 {
2324 	struct lpc32xx_ep *ep0 = &udc->ep[0];
2325 	u32 epstatus;
2326 
2327 	/* Clear EP interrupt */
2328 	epstatus = udc_clearep_getsts(udc, EP_IN);
2329 
2330 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
2331 	ep0->totalints++;
2332 #endif
2333 
2334 	/* Stalled? Clear stall and reset buffers */
2335 	if (epstatus & EP_SEL_ST) {
2336 		udc_clrstall_hwep(udc, EP_IN);
2337 		nuke(ep0, -ECONNABORTED);
2338 		udc->ep0state = WAIT_FOR_SETUP;
2339 		return;
2340 	}
2341 
2342 	/* Is a buffer available? */
2343 	if (!(epstatus & EP_SEL_F)) {
2344 		/* Handle based on current state */
2345 		if (udc->ep0state == DATA_IN)
2346 			udc_ep0_in_req(udc);
2347 		else {
2348 			/* Unknown state for EP0 oe end of DATA IN phase */
2349 			nuke(ep0, -ECONNABORTED);
2350 			udc->ep0state = WAIT_FOR_SETUP;
2351 		}
2352 	}
2353 }
2354 
2355 /* OUT endpoint 0 transfer */
2356 static void udc_handle_ep0_out(struct lpc32xx_udc *udc)
2357 {
2358 	struct lpc32xx_ep *ep0 = &udc->ep[0];
2359 	u32 epstatus;
2360 
2361 	/* Clear EP interrupt */
2362 	epstatus = udc_clearep_getsts(udc, EP_OUT);
2363 
2364 
2365 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
2366 	ep0->totalints++;
2367 #endif
2368 
2369 	/* Stalled? */
2370 	if (epstatus & EP_SEL_ST) {
2371 		udc_clrstall_hwep(udc, EP_OUT);
2372 		nuke(ep0, -ECONNABORTED);
2373 		udc->ep0state = WAIT_FOR_SETUP;
2374 		return;
2375 	}
2376 
2377 	/* A NAK may occur if a packet couldn't be received yet */
2378 	if (epstatus & EP_SEL_EPN)
2379 		return;
2380 	/* Setup packet incoming? */
2381 	if (epstatus & EP_SEL_STP) {
2382 		nuke(ep0, 0);
2383 		udc->ep0state = WAIT_FOR_SETUP;
2384 	}
2385 
2386 	/* Data available? */
2387 	if (epstatus & EP_SEL_F)
2388 		/* Handle based on current state */
2389 		switch (udc->ep0state) {
2390 		case WAIT_FOR_SETUP:
2391 			udc_handle_ep0_setup(udc);
2392 			break;
2393 
2394 		case DATA_OUT:
2395 			udc_ep0_out_req(udc);
2396 			break;
2397 
2398 		default:
2399 			/* Unknown state for EP0 */
2400 			nuke(ep0, -ECONNABORTED);
2401 			udc->ep0state = WAIT_FOR_SETUP;
2402 		}
2403 }
2404 
2405 /* Must be called without lock */
2406 static int lpc32xx_get_frame(struct usb_gadget *gadget)
2407 {
2408 	int frame;
2409 	unsigned long flags;
2410 	struct lpc32xx_udc *udc = to_udc(gadget);
2411 
2412 	if (!udc->clocked)
2413 		return -EINVAL;
2414 
2415 	spin_lock_irqsave(&udc->lock, flags);
2416 
2417 	frame = (int) udc_get_current_frame(udc);
2418 
2419 	spin_unlock_irqrestore(&udc->lock, flags);
2420 
2421 	return frame;
2422 }
2423 
2424 static int lpc32xx_wakeup(struct usb_gadget *gadget)
2425 {
2426 	return -ENOTSUPP;
2427 }
2428 
2429 static int lpc32xx_set_selfpowered(struct usb_gadget *gadget, int is_on)
2430 {
2431 	gadget->is_selfpowered = (is_on != 0);
2432 
2433 	return 0;
2434 }
2435 
2436 /*
2437  * vbus is here!  turn everything on that's ready
2438  * Must be called without lock
2439  */
2440 static int lpc32xx_vbus_session(struct usb_gadget *gadget, int is_active)
2441 {
2442 	unsigned long flags;
2443 	struct lpc32xx_udc *udc = to_udc(gadget);
2444 
2445 	spin_lock_irqsave(&udc->lock, flags);
2446 
2447 	/* Doesn't need lock */
2448 	if (udc->driver) {
2449 		udc_clk_set(udc, 1);
2450 		udc_enable(udc);
2451 		pullup(udc, is_active);
2452 	} else {
2453 		stop_activity(udc);
2454 		pullup(udc, 0);
2455 
2456 		spin_unlock_irqrestore(&udc->lock, flags);
2457 		/*
2458 		 *  Wait for all the endpoints to disable,
2459 		 *  before disabling clocks. Don't wait if
2460 		 *  endpoints are not enabled.
2461 		 */
2462 		if (atomic_read(&udc->enabled_ep_cnt))
2463 			wait_event_interruptible(udc->ep_disable_wait_queue,
2464 				 (atomic_read(&udc->enabled_ep_cnt) == 0));
2465 
2466 		spin_lock_irqsave(&udc->lock, flags);
2467 
2468 		udc_clk_set(udc, 0);
2469 	}
2470 
2471 	spin_unlock_irqrestore(&udc->lock, flags);
2472 
2473 	return 0;
2474 }
2475 
2476 /* Can be called with or without lock */
2477 static int lpc32xx_pullup(struct usb_gadget *gadget, int is_on)
2478 {
2479 	struct lpc32xx_udc *udc = to_udc(gadget);
2480 
2481 	/* Doesn't need lock */
2482 	pullup(udc, is_on);
2483 
2484 	return 0;
2485 }
2486 
2487 static int lpc32xx_start(struct usb_gadget *, struct usb_gadget_driver *);
2488 static int lpc32xx_stop(struct usb_gadget *);
2489 
2490 static const struct usb_gadget_ops lpc32xx_udc_ops = {
2491 	.get_frame		= lpc32xx_get_frame,
2492 	.wakeup			= lpc32xx_wakeup,
2493 	.set_selfpowered	= lpc32xx_set_selfpowered,
2494 	.vbus_session		= lpc32xx_vbus_session,
2495 	.pullup			= lpc32xx_pullup,
2496 	.udc_start		= lpc32xx_start,
2497 	.udc_stop		= lpc32xx_stop,
2498 };
2499 
2500 static void nop_release(struct device *dev)
2501 {
2502 	/* nothing to free */
2503 }
2504 
2505 static const struct lpc32xx_udc controller_template = {
2506 	.gadget = {
2507 		.ops	= &lpc32xx_udc_ops,
2508 		.name	= driver_name,
2509 		.dev	= {
2510 			.init_name = "gadget",
2511 			.release = nop_release,
2512 		}
2513 	},
2514 	.ep[0] = {
2515 		.ep = {
2516 			.name	= "ep0",
2517 			.ops	= &lpc32xx_ep_ops,
2518 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL,
2519 					USB_EP_CAPS_DIR_ALL),
2520 		},
2521 		.maxpacket	= 64,
2522 		.hwep_num_base	= 0,
2523 		.hwep_num	= 0, /* Can be 0 or 1, has special handling */
2524 		.lep		= 0,
2525 		.eptype		= EP_CTL_TYPE,
2526 	},
2527 	.ep[1] = {
2528 		.ep = {
2529 			.name	= "ep1-int",
2530 			.ops	= &lpc32xx_ep_ops,
2531 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2532 					USB_EP_CAPS_DIR_ALL),
2533 		},
2534 		.maxpacket	= 64,
2535 		.hwep_num_base	= 2,
2536 		.hwep_num	= 0, /* 2 or 3, will be set later */
2537 		.lep		= 1,
2538 		.eptype		= EP_INT_TYPE,
2539 	},
2540 	.ep[2] = {
2541 		.ep = {
2542 			.name	= "ep2-bulk",
2543 			.ops	= &lpc32xx_ep_ops,
2544 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2545 					USB_EP_CAPS_DIR_ALL),
2546 		},
2547 		.maxpacket	= 64,
2548 		.hwep_num_base	= 4,
2549 		.hwep_num	= 0, /* 4 or 5, will be set later */
2550 		.lep		= 2,
2551 		.eptype		= EP_BLK_TYPE,
2552 	},
2553 	.ep[3] = {
2554 		.ep = {
2555 			.name	= "ep3-iso",
2556 			.ops	= &lpc32xx_ep_ops,
2557 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2558 					USB_EP_CAPS_DIR_ALL),
2559 		},
2560 		.maxpacket	= 1023,
2561 		.hwep_num_base	= 6,
2562 		.hwep_num	= 0, /* 6 or 7, will be set later */
2563 		.lep		= 3,
2564 		.eptype		= EP_ISO_TYPE,
2565 	},
2566 	.ep[4] = {
2567 		.ep = {
2568 			.name	= "ep4-int",
2569 			.ops	= &lpc32xx_ep_ops,
2570 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2571 					USB_EP_CAPS_DIR_ALL),
2572 		},
2573 		.maxpacket	= 64,
2574 		.hwep_num_base	= 8,
2575 		.hwep_num	= 0, /* 8 or 9, will be set later */
2576 		.lep		= 4,
2577 		.eptype		= EP_INT_TYPE,
2578 	},
2579 	.ep[5] = {
2580 		.ep = {
2581 			.name	= "ep5-bulk",
2582 			.ops	= &lpc32xx_ep_ops,
2583 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2584 					USB_EP_CAPS_DIR_ALL),
2585 		},
2586 		.maxpacket	= 64,
2587 		.hwep_num_base	= 10,
2588 		.hwep_num	= 0, /* 10 or 11, will be set later */
2589 		.lep		= 5,
2590 		.eptype		= EP_BLK_TYPE,
2591 	},
2592 	.ep[6] = {
2593 		.ep = {
2594 			.name	= "ep6-iso",
2595 			.ops	= &lpc32xx_ep_ops,
2596 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2597 					USB_EP_CAPS_DIR_ALL),
2598 		},
2599 		.maxpacket	= 1023,
2600 		.hwep_num_base	= 12,
2601 		.hwep_num	= 0, /* 12 or 13, will be set later */
2602 		.lep		= 6,
2603 		.eptype		= EP_ISO_TYPE,
2604 	},
2605 	.ep[7] = {
2606 		.ep = {
2607 			.name	= "ep7-int",
2608 			.ops	= &lpc32xx_ep_ops,
2609 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2610 					USB_EP_CAPS_DIR_ALL),
2611 		},
2612 		.maxpacket	= 64,
2613 		.hwep_num_base	= 14,
2614 		.hwep_num	= 0,
2615 		.lep		= 7,
2616 		.eptype		= EP_INT_TYPE,
2617 	},
2618 	.ep[8] = {
2619 		.ep = {
2620 			.name	= "ep8-bulk",
2621 			.ops	= &lpc32xx_ep_ops,
2622 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2623 					USB_EP_CAPS_DIR_ALL),
2624 		},
2625 		.maxpacket	= 64,
2626 		.hwep_num_base	= 16,
2627 		.hwep_num	= 0,
2628 		.lep		= 8,
2629 		.eptype		= EP_BLK_TYPE,
2630 	},
2631 	.ep[9] = {
2632 		.ep = {
2633 			.name	= "ep9-iso",
2634 			.ops	= &lpc32xx_ep_ops,
2635 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2636 					USB_EP_CAPS_DIR_ALL),
2637 		},
2638 		.maxpacket	= 1023,
2639 		.hwep_num_base	= 18,
2640 		.hwep_num	= 0,
2641 		.lep		= 9,
2642 		.eptype		= EP_ISO_TYPE,
2643 	},
2644 	.ep[10] = {
2645 		.ep = {
2646 			.name	= "ep10-int",
2647 			.ops	= &lpc32xx_ep_ops,
2648 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2649 					USB_EP_CAPS_DIR_ALL),
2650 		},
2651 		.maxpacket	= 64,
2652 		.hwep_num_base	= 20,
2653 		.hwep_num	= 0,
2654 		.lep		= 10,
2655 		.eptype		= EP_INT_TYPE,
2656 	},
2657 	.ep[11] = {
2658 		.ep = {
2659 			.name	= "ep11-bulk",
2660 			.ops	= &lpc32xx_ep_ops,
2661 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2662 					USB_EP_CAPS_DIR_ALL),
2663 		},
2664 		.maxpacket	= 64,
2665 		.hwep_num_base	= 22,
2666 		.hwep_num	= 0,
2667 		.lep		= 11,
2668 		.eptype		= EP_BLK_TYPE,
2669 	},
2670 	.ep[12] = {
2671 		.ep = {
2672 			.name	= "ep12-iso",
2673 			.ops	= &lpc32xx_ep_ops,
2674 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2675 					USB_EP_CAPS_DIR_ALL),
2676 		},
2677 		.maxpacket	= 1023,
2678 		.hwep_num_base	= 24,
2679 		.hwep_num	= 0,
2680 		.lep		= 12,
2681 		.eptype		= EP_ISO_TYPE,
2682 	},
2683 	.ep[13] = {
2684 		.ep = {
2685 			.name	= "ep13-int",
2686 			.ops	= &lpc32xx_ep_ops,
2687 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2688 					USB_EP_CAPS_DIR_ALL),
2689 		},
2690 		.maxpacket	= 64,
2691 		.hwep_num_base	= 26,
2692 		.hwep_num	= 0,
2693 		.lep		= 13,
2694 		.eptype		= EP_INT_TYPE,
2695 	},
2696 	.ep[14] = {
2697 		.ep = {
2698 			.name	= "ep14-bulk",
2699 			.ops	= &lpc32xx_ep_ops,
2700 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2701 					USB_EP_CAPS_DIR_ALL),
2702 		},
2703 		.maxpacket	= 64,
2704 		.hwep_num_base	= 28,
2705 		.hwep_num	= 0,
2706 		.lep		= 14,
2707 		.eptype		= EP_BLK_TYPE,
2708 	},
2709 	.ep[15] = {
2710 		.ep = {
2711 			.name	= "ep15-bulk",
2712 			.ops	= &lpc32xx_ep_ops,
2713 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2714 					USB_EP_CAPS_DIR_ALL),
2715 		},
2716 		.maxpacket	= 1023,
2717 		.hwep_num_base	= 30,
2718 		.hwep_num	= 0,
2719 		.lep		= 15,
2720 		.eptype		= EP_BLK_TYPE,
2721 	},
2722 };
2723 
2724 /* ISO and status interrupts */
2725 static irqreturn_t lpc32xx_usb_lp_irq(int irq, void *_udc)
2726 {
2727 	u32 tmp, devstat;
2728 	struct lpc32xx_udc *udc = _udc;
2729 
2730 	spin_lock(&udc->lock);
2731 
2732 	/* Read the device status register */
2733 	devstat = readl(USBD_DEVINTST(udc->udp_baseaddr));
2734 
2735 	devstat &= ~USBD_EP_FAST;
2736 	writel(devstat, USBD_DEVINTCLR(udc->udp_baseaddr));
2737 	devstat = devstat & udc->enabled_devints;
2738 
2739 	/* Device specific handling needed? */
2740 	if (devstat & USBD_DEV_STAT)
2741 		udc_handle_dev(udc);
2742 
2743 	/* Start of frame? (devstat & FRAME_INT):
2744 	 * The frame interrupt isn't really needed for ISO support,
2745 	 * as the driver will queue the necessary packets */
2746 
2747 	/* Error? */
2748 	if (devstat & ERR_INT) {
2749 		/* All types of errors, from cable removal during transfer to
2750 		 * misc protocol and bit errors. These are mostly for just info,
2751 		 * as the USB hardware will work around these. If these errors
2752 		 * happen alot, something is wrong. */
2753 		udc_protocol_cmd_w(udc, CMD_RD_ERR_STAT);
2754 		tmp = udc_protocol_cmd_r(udc, DAT_RD_ERR_STAT);
2755 		dev_dbg(udc->dev, "Device error (0x%x)!\n", tmp);
2756 	}
2757 
2758 	spin_unlock(&udc->lock);
2759 
2760 	return IRQ_HANDLED;
2761 }
2762 
2763 /* EP interrupts */
2764 static irqreturn_t lpc32xx_usb_hp_irq(int irq, void *_udc)
2765 {
2766 	u32 tmp;
2767 	struct lpc32xx_udc *udc = _udc;
2768 
2769 	spin_lock(&udc->lock);
2770 
2771 	/* Read the device status register */
2772 	writel(USBD_EP_FAST, USBD_DEVINTCLR(udc->udp_baseaddr));
2773 
2774 	/* Endpoints */
2775 	tmp = readl(USBD_EPINTST(udc->udp_baseaddr));
2776 
2777 	/* Special handling for EP0 */
2778 	if (tmp & (EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2779 		/* Handle EP0 IN */
2780 		if (tmp & (EP_MASK_SEL(0, EP_IN)))
2781 			udc_handle_ep0_in(udc);
2782 
2783 		/* Handle EP0 OUT */
2784 		if (tmp & (EP_MASK_SEL(0, EP_OUT)))
2785 			udc_handle_ep0_out(udc);
2786 	}
2787 
2788 	/* All other EPs */
2789 	if (tmp & ~(EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2790 		int i;
2791 
2792 		/* Handle other EP interrupts */
2793 		for (i = 1; i < NUM_ENDPOINTS; i++) {
2794 			if (tmp & (1 << udc->ep[i].hwep_num))
2795 				udc_handle_eps(udc, &udc->ep[i]);
2796 		}
2797 	}
2798 
2799 	spin_unlock(&udc->lock);
2800 
2801 	return IRQ_HANDLED;
2802 }
2803 
2804 static irqreturn_t lpc32xx_usb_devdma_irq(int irq, void *_udc)
2805 {
2806 	struct lpc32xx_udc *udc = _udc;
2807 
2808 	int i;
2809 	u32 tmp;
2810 
2811 	spin_lock(&udc->lock);
2812 
2813 	/* Handle EP DMA EOT interrupts */
2814 	tmp = readl(USBD_EOTINTST(udc->udp_baseaddr)) |
2815 		(readl(USBD_EPDMAST(udc->udp_baseaddr)) &
2816 		 readl(USBD_NDDRTINTST(udc->udp_baseaddr))) |
2817 		readl(USBD_SYSERRTINTST(udc->udp_baseaddr));
2818 	for (i = 1; i < NUM_ENDPOINTS; i++) {
2819 		if (tmp & (1 << udc->ep[i].hwep_num))
2820 			udc_handle_dma_ep(udc, &udc->ep[i]);
2821 	}
2822 
2823 	spin_unlock(&udc->lock);
2824 
2825 	return IRQ_HANDLED;
2826 }
2827 
2828 /*
2829  *
2830  * VBUS detection, pullup handler, and Gadget cable state notification
2831  *
2832  */
2833 static void vbus_work(struct work_struct *work)
2834 {
2835 	u8 value;
2836 	struct lpc32xx_udc *udc = container_of(work, struct lpc32xx_udc,
2837 					       vbus_job);
2838 
2839 	if (udc->enabled != 0) {
2840 		/* Discharge VBUS real quick */
2841 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2842 			ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
2843 
2844 		/* Give VBUS some time (100mS) to discharge */
2845 		msleep(100);
2846 
2847 		/* Disable VBUS discharge resistor */
2848 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2849 			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
2850 			OTG1_VBUS_DISCHRG);
2851 
2852 		/* Clear interrupt */
2853 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2854 			ISP1301_I2C_INTERRUPT_LATCH |
2855 			ISP1301_I2C_REG_CLEAR_ADDR, ~0);
2856 
2857 		/* Get the VBUS status from the transceiver */
2858 		value = i2c_smbus_read_byte_data(udc->isp1301_i2c_client,
2859 						 ISP1301_I2C_INTERRUPT_SOURCE);
2860 
2861 		/* VBUS on or off? */
2862 		if (value & INT_SESS_VLD)
2863 			udc->vbus = 1;
2864 		else
2865 			udc->vbus = 0;
2866 
2867 		/* VBUS changed? */
2868 		if (udc->last_vbus != udc->vbus) {
2869 			udc->last_vbus = udc->vbus;
2870 			lpc32xx_vbus_session(&udc->gadget, udc->vbus);
2871 		}
2872 	}
2873 
2874 	/* Re-enable after completion */
2875 	enable_irq(udc->udp_irq[IRQ_USB_ATX]);
2876 }
2877 
2878 static irqreturn_t lpc32xx_usb_vbus_irq(int irq, void *_udc)
2879 {
2880 	struct lpc32xx_udc *udc = _udc;
2881 
2882 	/* Defer handling of VBUS IRQ to work queue */
2883 	disable_irq_nosync(udc->udp_irq[IRQ_USB_ATX]);
2884 	schedule_work(&udc->vbus_job);
2885 
2886 	return IRQ_HANDLED;
2887 }
2888 
2889 static int lpc32xx_start(struct usb_gadget *gadget,
2890 			 struct usb_gadget_driver *driver)
2891 {
2892 	struct lpc32xx_udc *udc = to_udc(gadget);
2893 	int i;
2894 
2895 	if (!driver || driver->max_speed < USB_SPEED_FULL || !driver->setup) {
2896 		dev_err(udc->dev, "bad parameter.\n");
2897 		return -EINVAL;
2898 	}
2899 
2900 	if (udc->driver) {
2901 		dev_err(udc->dev, "UDC already has a gadget driver\n");
2902 		return -EBUSY;
2903 	}
2904 
2905 	udc->driver = driver;
2906 	udc->gadget.dev.of_node = udc->dev->of_node;
2907 	udc->enabled = 1;
2908 	udc->gadget.is_selfpowered = 1;
2909 	udc->vbus = 0;
2910 
2911 	/* Force VBUS process once to check for cable insertion */
2912 	udc->last_vbus = udc->vbus = 0;
2913 	schedule_work(&udc->vbus_job);
2914 
2915 	/* Do not re-enable ATX IRQ (3) */
2916 	for (i = IRQ_USB_LP; i < IRQ_USB_ATX; i++)
2917 		enable_irq(udc->udp_irq[i]);
2918 
2919 	return 0;
2920 }
2921 
2922 static int lpc32xx_stop(struct usb_gadget *gadget)
2923 {
2924 	int i;
2925 	struct lpc32xx_udc *udc = to_udc(gadget);
2926 
2927 	for (i = IRQ_USB_LP; i <= IRQ_USB_ATX; i++)
2928 		disable_irq(udc->udp_irq[i]);
2929 
2930 	if (udc->clocked) {
2931 		spin_lock(&udc->lock);
2932 		stop_activity(udc);
2933 		spin_unlock(&udc->lock);
2934 
2935 		/*
2936 		 *  Wait for all the endpoints to disable,
2937 		 *  before disabling clocks. Don't wait if
2938 		 *  endpoints are not enabled.
2939 		 */
2940 		if (atomic_read(&udc->enabled_ep_cnt))
2941 			wait_event_interruptible(udc->ep_disable_wait_queue,
2942 				(atomic_read(&udc->enabled_ep_cnt) == 0));
2943 
2944 		spin_lock(&udc->lock);
2945 		udc_clk_set(udc, 0);
2946 		spin_unlock(&udc->lock);
2947 	}
2948 
2949 	udc->enabled = 0;
2950 	udc->driver = NULL;
2951 
2952 	return 0;
2953 }
2954 
2955 static void lpc32xx_udc_shutdown(struct platform_device *dev)
2956 {
2957 	/* Force disconnect on reboot */
2958 	struct lpc32xx_udc *udc = platform_get_drvdata(dev);
2959 
2960 	pullup(udc, 0);
2961 }
2962 
2963 /*
2964  * Callbacks to be overridden by options passed via OF (TODO)
2965  */
2966 
2967 static void lpc32xx_usbd_conn_chg(int conn)
2968 {
2969 	/* Do nothing, it might be nice to enable an LED
2970 	 * based on conn state being !0 */
2971 }
2972 
2973 static void lpc32xx_usbd_susp_chg(int susp)
2974 {
2975 	/* Device suspend if susp != 0 */
2976 }
2977 
2978 static void lpc32xx_rmwkup_chg(int remote_wakup_enable)
2979 {
2980 	/* Enable or disable USB remote wakeup */
2981 }
2982 
2983 struct lpc32xx_usbd_cfg lpc32xx_usbddata = {
2984 	.vbus_drv_pol = 0,
2985 	.conn_chgb = &lpc32xx_usbd_conn_chg,
2986 	.susp_chgb = &lpc32xx_usbd_susp_chg,
2987 	.rmwk_chgb = &lpc32xx_rmwkup_chg,
2988 };
2989 
2990 
2991 static u64 lpc32xx_usbd_dmamask = ~(u32) 0x7F;
2992 
2993 static int lpc32xx_udc_probe(struct platform_device *pdev)
2994 {
2995 	struct device *dev = &pdev->dev;
2996 	struct lpc32xx_udc *udc;
2997 	int retval, i;
2998 	struct resource *res;
2999 	dma_addr_t dma_handle;
3000 	struct device_node *isp1301_node;
3001 
3002 	udc = kmemdup(&controller_template, sizeof(*udc), GFP_KERNEL);
3003 	if (!udc)
3004 		return -ENOMEM;
3005 
3006 	for (i = 0; i <= 15; i++)
3007 		udc->ep[i].udc = udc;
3008 	udc->gadget.ep0 = &udc->ep[0].ep;
3009 
3010 	/* init software state */
3011 	udc->gadget.dev.parent = dev;
3012 	udc->pdev = pdev;
3013 	udc->dev = &pdev->dev;
3014 	udc->enabled = 0;
3015 
3016 	if (pdev->dev.of_node) {
3017 		isp1301_node = of_parse_phandle(pdev->dev.of_node,
3018 						"transceiver", 0);
3019 	} else {
3020 		isp1301_node = NULL;
3021 	}
3022 
3023 	udc->isp1301_i2c_client = isp1301_get_client(isp1301_node);
3024 	if (!udc->isp1301_i2c_client) {
3025 		retval = -EPROBE_DEFER;
3026 		goto phy_fail;
3027 	}
3028 
3029 	dev_info(udc->dev, "ISP1301 I2C device at address 0x%x\n",
3030 		 udc->isp1301_i2c_client->addr);
3031 
3032 	pdev->dev.dma_mask = &lpc32xx_usbd_dmamask;
3033 	retval = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
3034 	if (retval)
3035 		goto resource_fail;
3036 
3037 	udc->board = &lpc32xx_usbddata;
3038 
3039 	/*
3040 	 * Resources are mapped as follows:
3041 	 *  IORESOURCE_MEM, base address and size of USB space
3042 	 *  IORESOURCE_IRQ, USB device low priority interrupt number
3043 	 *  IORESOURCE_IRQ, USB device high priority interrupt number
3044 	 *  IORESOURCE_IRQ, USB device interrupt number
3045 	 *  IORESOURCE_IRQ, USB transceiver interrupt number
3046 	 */
3047 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3048 	if (!res) {
3049 		retval = -ENXIO;
3050 		goto resource_fail;
3051 	}
3052 
3053 	spin_lock_init(&udc->lock);
3054 
3055 	/* Get IRQs */
3056 	for (i = 0; i < 4; i++) {
3057 		udc->udp_irq[i] = platform_get_irq(pdev, i);
3058 		if (udc->udp_irq[i] < 0) {
3059 			dev_err(udc->dev,
3060 				"irq resource %d not available!\n", i);
3061 			retval = udc->udp_irq[i];
3062 			goto irq_fail;
3063 		}
3064 	}
3065 
3066 	udc->io_p_start = res->start;
3067 	udc->io_p_size = resource_size(res);
3068 	if (!request_mem_region(udc->io_p_start, udc->io_p_size, driver_name)) {
3069 		dev_err(udc->dev, "someone's using UDC memory\n");
3070 		retval = -EBUSY;
3071 		goto request_mem_region_fail;
3072 	}
3073 
3074 	udc->udp_baseaddr = ioremap(udc->io_p_start, udc->io_p_size);
3075 	if (!udc->udp_baseaddr) {
3076 		retval = -ENOMEM;
3077 		dev_err(udc->dev, "IO map failure\n");
3078 		goto io_map_fail;
3079 	}
3080 
3081 	/* Get USB device clock */
3082 	udc->usb_slv_clk = clk_get(&pdev->dev, NULL);
3083 	if (IS_ERR(udc->usb_slv_clk)) {
3084 		dev_err(udc->dev, "failed to acquire USB device clock\n");
3085 		retval = PTR_ERR(udc->usb_slv_clk);
3086 		goto usb_clk_get_fail;
3087 	}
3088 
3089 	/* Enable USB device clock */
3090 	retval = clk_prepare_enable(udc->usb_slv_clk);
3091 	if (retval < 0) {
3092 		dev_err(udc->dev, "failed to start USB device clock\n");
3093 		goto usb_clk_enable_fail;
3094 	}
3095 
3096 	/* Setup deferred workqueue data */
3097 	udc->poweron = udc->pullup = 0;
3098 	INIT_WORK(&udc->pullup_job, pullup_work);
3099 	INIT_WORK(&udc->vbus_job, vbus_work);
3100 #ifdef CONFIG_PM
3101 	INIT_WORK(&udc->power_job, power_work);
3102 #endif
3103 
3104 	/* All clocks are now on */
3105 	udc->clocked = 1;
3106 
3107 	isp1301_udc_configure(udc);
3108 	/* Allocate memory for the UDCA */
3109 	udc->udca_v_base = dma_alloc_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3110 					      &dma_handle,
3111 					      (GFP_KERNEL | GFP_DMA));
3112 	if (!udc->udca_v_base) {
3113 		dev_err(udc->dev, "error getting UDCA region\n");
3114 		retval = -ENOMEM;
3115 		goto i2c_fail;
3116 	}
3117 	udc->udca_p_base = dma_handle;
3118 	dev_dbg(udc->dev, "DMA buffer(0x%x bytes), P:0x%08x, V:0x%p\n",
3119 		UDCA_BUFF_SIZE, udc->udca_p_base, udc->udca_v_base);
3120 
3121 	/* Setup the DD DMA memory pool */
3122 	udc->dd_cache = dma_pool_create("udc_dd", udc->dev,
3123 					sizeof(struct lpc32xx_usbd_dd_gad),
3124 					sizeof(u32), 0);
3125 	if (!udc->dd_cache) {
3126 		dev_err(udc->dev, "error getting DD DMA region\n");
3127 		retval = -ENOMEM;
3128 		goto dma_alloc_fail;
3129 	}
3130 
3131 	/* Clear USB peripheral and initialize gadget endpoints */
3132 	udc_disable(udc);
3133 	udc_reinit(udc);
3134 
3135 	/* Request IRQs - low and high priority USB device IRQs are routed to
3136 	 * the same handler, while the DMA interrupt is routed elsewhere */
3137 	retval = request_irq(udc->udp_irq[IRQ_USB_LP], lpc32xx_usb_lp_irq,
3138 			     0, "udc_lp", udc);
3139 	if (retval < 0) {
3140 		dev_err(udc->dev, "LP request irq %d failed\n",
3141 			udc->udp_irq[IRQ_USB_LP]);
3142 		goto irq_lp_fail;
3143 	}
3144 	retval = request_irq(udc->udp_irq[IRQ_USB_HP], lpc32xx_usb_hp_irq,
3145 			     0, "udc_hp", udc);
3146 	if (retval < 0) {
3147 		dev_err(udc->dev, "HP request irq %d failed\n",
3148 			udc->udp_irq[IRQ_USB_HP]);
3149 		goto irq_hp_fail;
3150 	}
3151 
3152 	retval = request_irq(udc->udp_irq[IRQ_USB_DEVDMA],
3153 			     lpc32xx_usb_devdma_irq, 0, "udc_dma", udc);
3154 	if (retval < 0) {
3155 		dev_err(udc->dev, "DEV request irq %d failed\n",
3156 			udc->udp_irq[IRQ_USB_DEVDMA]);
3157 		goto irq_dev_fail;
3158 	}
3159 
3160 	/* The transceiver interrupt is used for VBUS detection and will
3161 	   kick off the VBUS handler function */
3162 	retval = request_irq(udc->udp_irq[IRQ_USB_ATX], lpc32xx_usb_vbus_irq,
3163 			     0, "udc_otg", udc);
3164 	if (retval < 0) {
3165 		dev_err(udc->dev, "VBUS request irq %d failed\n",
3166 			udc->udp_irq[IRQ_USB_ATX]);
3167 		goto irq_xcvr_fail;
3168 	}
3169 
3170 	/* Initialize wait queue */
3171 	init_waitqueue_head(&udc->ep_disable_wait_queue);
3172 	atomic_set(&udc->enabled_ep_cnt, 0);
3173 
3174 	/* Keep all IRQs disabled until GadgetFS starts up */
3175 	for (i = IRQ_USB_LP; i <= IRQ_USB_ATX; i++)
3176 		disable_irq(udc->udp_irq[i]);
3177 
3178 	retval = usb_add_gadget_udc(dev, &udc->gadget);
3179 	if (retval < 0)
3180 		goto add_gadget_fail;
3181 
3182 	dev_set_drvdata(dev, udc);
3183 	device_init_wakeup(dev, 1);
3184 	create_debug_file(udc);
3185 
3186 	/* Disable clocks for now */
3187 	udc_clk_set(udc, 0);
3188 
3189 	dev_info(udc->dev, "%s version %s\n", driver_name, DRIVER_VERSION);
3190 	return 0;
3191 
3192 add_gadget_fail:
3193 	free_irq(udc->udp_irq[IRQ_USB_ATX], udc);
3194 irq_xcvr_fail:
3195 	free_irq(udc->udp_irq[IRQ_USB_DEVDMA], udc);
3196 irq_dev_fail:
3197 	free_irq(udc->udp_irq[IRQ_USB_HP], udc);
3198 irq_hp_fail:
3199 	free_irq(udc->udp_irq[IRQ_USB_LP], udc);
3200 irq_lp_fail:
3201 	dma_pool_destroy(udc->dd_cache);
3202 dma_alloc_fail:
3203 	dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3204 			  udc->udca_v_base, udc->udca_p_base);
3205 i2c_fail:
3206 	clk_disable_unprepare(udc->usb_slv_clk);
3207 usb_clk_enable_fail:
3208 	clk_put(udc->usb_slv_clk);
3209 usb_clk_get_fail:
3210 	iounmap(udc->udp_baseaddr);
3211 io_map_fail:
3212 	release_mem_region(udc->io_p_start, udc->io_p_size);
3213 	dev_err(udc->dev, "%s probe failed, %d\n", driver_name, retval);
3214 request_mem_region_fail:
3215 irq_fail:
3216 resource_fail:
3217 phy_fail:
3218 	kfree(udc);
3219 	return retval;
3220 }
3221 
3222 static int lpc32xx_udc_remove(struct platform_device *pdev)
3223 {
3224 	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3225 
3226 	usb_del_gadget_udc(&udc->gadget);
3227 	if (udc->driver)
3228 		return -EBUSY;
3229 
3230 	udc_clk_set(udc, 1);
3231 	udc_disable(udc);
3232 	pullup(udc, 0);
3233 
3234 	free_irq(udc->udp_irq[IRQ_USB_ATX], udc);
3235 
3236 	device_init_wakeup(&pdev->dev, 0);
3237 	remove_debug_file(udc);
3238 
3239 	dma_pool_destroy(udc->dd_cache);
3240 	dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3241 			  udc->udca_v_base, udc->udca_p_base);
3242 	free_irq(udc->udp_irq[IRQ_USB_DEVDMA], udc);
3243 	free_irq(udc->udp_irq[IRQ_USB_HP], udc);
3244 	free_irq(udc->udp_irq[IRQ_USB_LP], udc);
3245 
3246 	clk_disable_unprepare(udc->usb_slv_clk);
3247 	clk_put(udc->usb_slv_clk);
3248 
3249 	iounmap(udc->udp_baseaddr);
3250 	release_mem_region(udc->io_p_start, udc->io_p_size);
3251 	kfree(udc);
3252 
3253 	return 0;
3254 }
3255 
3256 #ifdef CONFIG_PM
3257 static int lpc32xx_udc_suspend(struct platform_device *pdev, pm_message_t mesg)
3258 {
3259 	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3260 
3261 	if (udc->clocked) {
3262 		/* Power down ISP */
3263 		udc->poweron = 0;
3264 		isp1301_set_powerstate(udc, 0);
3265 
3266 		/* Disable clocking */
3267 		udc_clk_set(udc, 0);
3268 
3269 		/* Keep clock flag on, so we know to re-enable clocks
3270 		   on resume */
3271 		udc->clocked = 1;
3272 
3273 		/* Kill global USB clock */
3274 		clk_disable_unprepare(udc->usb_slv_clk);
3275 	}
3276 
3277 	return 0;
3278 }
3279 
3280 static int lpc32xx_udc_resume(struct platform_device *pdev)
3281 {
3282 	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3283 
3284 	if (udc->clocked) {
3285 		/* Enable global USB clock */
3286 		clk_prepare_enable(udc->usb_slv_clk);
3287 
3288 		/* Enable clocking */
3289 		udc_clk_set(udc, 1);
3290 
3291 		/* ISP back to normal power mode */
3292 		udc->poweron = 1;
3293 		isp1301_set_powerstate(udc, 1);
3294 	}
3295 
3296 	return 0;
3297 }
3298 #else
3299 #define	lpc32xx_udc_suspend	NULL
3300 #define	lpc32xx_udc_resume	NULL
3301 #endif
3302 
3303 #ifdef CONFIG_OF
3304 static const struct of_device_id lpc32xx_udc_of_match[] = {
3305 	{ .compatible = "nxp,lpc3220-udc", },
3306 	{ },
3307 };
3308 MODULE_DEVICE_TABLE(of, lpc32xx_udc_of_match);
3309 #endif
3310 
3311 static struct platform_driver lpc32xx_udc_driver = {
3312 	.remove		= lpc32xx_udc_remove,
3313 	.shutdown	= lpc32xx_udc_shutdown,
3314 	.suspend	= lpc32xx_udc_suspend,
3315 	.resume		= lpc32xx_udc_resume,
3316 	.driver		= {
3317 		.name	= (char *) driver_name,
3318 		.of_match_table = of_match_ptr(lpc32xx_udc_of_match),
3319 	},
3320 };
3321 
3322 module_platform_driver_probe(lpc32xx_udc_driver, lpc32xx_udc_probe);
3323 
3324 MODULE_DESCRIPTION("LPC32XX udc driver");
3325 MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
3326 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
3327 MODULE_LICENSE("GPL");
3328 MODULE_ALIAS("platform:lpc32xx_udc");
3329