1 /*
2  * USB Gadget driver for LPC32xx
3  *
4  * Authors:
5  *    Kevin Wells <kevin.wells@nxp.com>
6  *    Mike James
7  *    Roland Stigge <stigge@antcom.de>
8  *
9  * Copyright (C) 2006 Philips Semiconductors
10  * Copyright (C) 2009 NXP Semiconductors
11  * Copyright (C) 2012 Roland Stigge
12  *
13  * Note: This driver is based on original work done by Mike James for
14  *       the LPC3180.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License as published by
18  * the Free Software Foundation; either version 2 of the License, or
19  * (at your option) any later version.
20  *
21  * This program is distributed in the hope that it will be useful,
22  * but WITHOUT ANY WARRANTY; without even the implied warranty of
23  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
24  * GNU General Public License for more details.
25  *
26  * You should have received a copy of the GNU General Public License
27  * along with this program; if not, write to the Free Software
28  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
29  */
30 
31 #include <linux/clk.h>
32 #include <linux/delay.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/dmapool.h>
35 #include <linux/i2c.h>
36 #include <linux/interrupt.h>
37 #include <linux/module.h>
38 #include <linux/of.h>
39 #include <linux/platform_device.h>
40 #include <linux/proc_fs.h>
41 #include <linux/slab.h>
42 #include <linux/usb/ch9.h>
43 #include <linux/usb/gadget.h>
44 #include <linux/usb/isp1301.h>
45 
46 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
47 #include <linux/debugfs.h>
48 #include <linux/seq_file.h>
49 #endif
50 
51 #include <mach/hardware.h>
52 
53 /*
54  * USB device configuration structure
55  */
56 typedef void (*usc_chg_event)(int);
57 struct lpc32xx_usbd_cfg {
58 	int vbus_drv_pol;   /* 0=active low drive for VBUS via ISP1301 */
59 	usc_chg_event conn_chgb; /* Connection change event (optional) */
60 	usc_chg_event susp_chgb; /* Suspend/resume event (optional) */
61 	usc_chg_event rmwk_chgb; /* Enable/disable remote wakeup */
62 };
63 
64 /*
65  * controller driver data structures
66  */
67 
68 /* 16 endpoints (not to be confused with 32 hardware endpoints) */
69 #define	NUM_ENDPOINTS	16
70 
71 /*
72  * IRQ indices make reading the code a little easier
73  */
74 #define IRQ_USB_LP	0
75 #define IRQ_USB_HP	1
76 #define IRQ_USB_DEVDMA	2
77 #define IRQ_USB_ATX	3
78 
79 #define EP_OUT 0 /* RX (from host) */
80 #define EP_IN 1 /* TX (to host) */
81 
82 /* Returns the interrupt mask for the selected hardware endpoint */
83 #define EP_MASK_SEL(ep, dir) (1 << (((ep) * 2) + dir))
84 
85 #define EP_INT_TYPE 0
86 #define EP_ISO_TYPE 1
87 #define EP_BLK_TYPE 2
88 #define EP_CTL_TYPE 3
89 
90 /* EP0 states */
91 #define WAIT_FOR_SETUP 0 /* Wait for setup packet */
92 #define DATA_IN        1 /* Expect dev->host transfer */
93 #define DATA_OUT       2 /* Expect host->dev transfer */
94 
95 /* DD (DMA Descriptor) structure, requires word alignment, this is already
96  * defined in the LPC32XX USB device header file, but this version is slightly
97  * modified to tag some work data with each DMA descriptor. */
98 struct lpc32xx_usbd_dd_gad {
99 	u32 dd_next_phy;
100 	u32 dd_setup;
101 	u32 dd_buffer_addr;
102 	u32 dd_status;
103 	u32 dd_iso_ps_mem_addr;
104 	u32 this_dma;
105 	u32 iso_status[6]; /* 5 spare */
106 	u32 dd_next_v;
107 };
108 
109 /*
110  * Logical endpoint structure
111  */
112 struct lpc32xx_ep {
113 	struct usb_ep		ep;
114 	struct list_head	queue;
115 	struct lpc32xx_udc	*udc;
116 
117 	u32			hwep_num_base; /* Physical hardware EP */
118 	u32			hwep_num; /* Maps to hardware endpoint */
119 	u32			maxpacket;
120 	u32			lep;
121 
122 	bool			is_in;
123 	bool			req_pending;
124 	u32			eptype;
125 
126 	u32                     totalints;
127 
128 	bool			wedge;
129 };
130 
131 /*
132  * Common UDC structure
133  */
134 struct lpc32xx_udc {
135 	struct usb_gadget	gadget;
136 	struct usb_gadget_driver *driver;
137 	struct platform_device	*pdev;
138 	struct device		*dev;
139 	struct dentry		*pde;
140 	spinlock_t		lock;
141 	struct i2c_client	*isp1301_i2c_client;
142 
143 	/* Board and device specific */
144 	struct lpc32xx_usbd_cfg	*board;
145 	u32			io_p_start;
146 	u32			io_p_size;
147 	void __iomem		*udp_baseaddr;
148 	int			udp_irq[4];
149 	struct clk		*usb_slv_clk;
150 
151 	/* DMA support */
152 	u32			*udca_v_base;
153 	u32			udca_p_base;
154 	struct dma_pool		*dd_cache;
155 
156 	/* Common EP and control data */
157 	u32			enabled_devints;
158 	u32			enabled_hwepints;
159 	u32			dev_status;
160 	u32			realized_eps;
161 
162 	/* VBUS detection, pullup, and power flags */
163 	u8			vbus;
164 	u8			last_vbus;
165 	int			pullup;
166 	int			poweron;
167 
168 	/* Work queues related to I2C support */
169 	struct work_struct	pullup_job;
170 	struct work_struct	vbus_job;
171 	struct work_struct	power_job;
172 
173 	/* USB device peripheral - various */
174 	struct lpc32xx_ep	ep[NUM_ENDPOINTS];
175 	bool			enabled;
176 	bool			clocked;
177 	bool			suspended;
178 	int                     ep0state;
179 	atomic_t                enabled_ep_cnt;
180 	wait_queue_head_t       ep_disable_wait_queue;
181 };
182 
183 /*
184  * Endpoint request
185  */
186 struct lpc32xx_request {
187 	struct usb_request	req;
188 	struct list_head	queue;
189 	struct lpc32xx_usbd_dd_gad *dd_desc_ptr;
190 	bool			mapped;
191 	bool			send_zlp;
192 };
193 
194 static inline struct lpc32xx_udc *to_udc(struct usb_gadget *g)
195 {
196 	return container_of(g, struct lpc32xx_udc, gadget);
197 }
198 
199 #define ep_dbg(epp, fmt, arg...) \
200 	dev_dbg(epp->udc->dev, "%s: " fmt, __func__, ## arg)
201 #define ep_err(epp, fmt, arg...) \
202 	dev_err(epp->udc->dev, "%s: " fmt, __func__, ## arg)
203 #define ep_info(epp, fmt, arg...) \
204 	dev_info(epp->udc->dev, "%s: " fmt, __func__, ## arg)
205 #define ep_warn(epp, fmt, arg...) \
206 	dev_warn(epp->udc->dev, "%s:" fmt, __func__, ## arg)
207 
208 #define UDCA_BUFF_SIZE (128)
209 
210 /**********************************************************************
211  * USB device controller register offsets
212  **********************************************************************/
213 
214 #define USBD_DEVINTST(x)	((x) + 0x200)
215 #define USBD_DEVINTEN(x)	((x) + 0x204)
216 #define USBD_DEVINTCLR(x)	((x) + 0x208)
217 #define USBD_DEVINTSET(x)	((x) + 0x20C)
218 #define USBD_CMDCODE(x)		((x) + 0x210)
219 #define USBD_CMDDATA(x)		((x) + 0x214)
220 #define USBD_RXDATA(x)		((x) + 0x218)
221 #define USBD_TXDATA(x)		((x) + 0x21C)
222 #define USBD_RXPLEN(x)		((x) + 0x220)
223 #define USBD_TXPLEN(x)		((x) + 0x224)
224 #define USBD_CTRL(x)		((x) + 0x228)
225 #define USBD_DEVINTPRI(x)	((x) + 0x22C)
226 #define USBD_EPINTST(x)		((x) + 0x230)
227 #define USBD_EPINTEN(x)		((x) + 0x234)
228 #define USBD_EPINTCLR(x)	((x) + 0x238)
229 #define USBD_EPINTSET(x)	((x) + 0x23C)
230 #define USBD_EPINTPRI(x)	((x) + 0x240)
231 #define USBD_REEP(x)		((x) + 0x244)
232 #define USBD_EPIND(x)		((x) + 0x248)
233 #define USBD_EPMAXPSIZE(x)	((x) + 0x24C)
234 /* DMA support registers only below */
235 /* Set, clear, or get enabled state of the DMA request status. If
236  * enabled, an IN or OUT token will start a DMA transfer for the EP */
237 #define USBD_DMARST(x)		((x) + 0x250)
238 #define USBD_DMARCLR(x)		((x) + 0x254)
239 #define USBD_DMARSET(x)		((x) + 0x258)
240 /* DMA UDCA head pointer */
241 #define USBD_UDCAH(x)		((x) + 0x280)
242 /* EP DMA status, enable, and disable. This is used to specifically
243  * enabled or disable DMA for a specific EP */
244 #define USBD_EPDMAST(x)		((x) + 0x284)
245 #define USBD_EPDMAEN(x)		((x) + 0x288)
246 #define USBD_EPDMADIS(x)	((x) + 0x28C)
247 /* DMA master interrupts enable and pending interrupts */
248 #define USBD_DMAINTST(x)	((x) + 0x290)
249 #define USBD_DMAINTEN(x)	((x) + 0x294)
250 /* DMA end of transfer interrupt enable, disable, status */
251 #define USBD_EOTINTST(x)	((x) + 0x2A0)
252 #define USBD_EOTINTCLR(x)	((x) + 0x2A4)
253 #define USBD_EOTINTSET(x)	((x) + 0x2A8)
254 /* New DD request interrupt enable, disable, status */
255 #define USBD_NDDRTINTST(x)	((x) + 0x2AC)
256 #define USBD_NDDRTINTCLR(x)	((x) + 0x2B0)
257 #define USBD_NDDRTINTSET(x)	((x) + 0x2B4)
258 /* DMA error interrupt enable, disable, status */
259 #define USBD_SYSERRTINTST(x)	((x) + 0x2B8)
260 #define USBD_SYSERRTINTCLR(x)	((x) + 0x2BC)
261 #define USBD_SYSERRTINTSET(x)	((x) + 0x2C0)
262 
263 /**********************************************************************
264  * USBD_DEVINTST/USBD_DEVINTEN/USBD_DEVINTCLR/USBD_DEVINTSET/
265  * USBD_DEVINTPRI register definitions
266  **********************************************************************/
267 #define USBD_ERR_INT		(1 << 9)
268 #define USBD_EP_RLZED		(1 << 8)
269 #define USBD_TXENDPKT		(1 << 7)
270 #define USBD_RXENDPKT		(1 << 6)
271 #define USBD_CDFULL		(1 << 5)
272 #define USBD_CCEMPTY		(1 << 4)
273 #define USBD_DEV_STAT		(1 << 3)
274 #define USBD_EP_SLOW		(1 << 2)
275 #define USBD_EP_FAST		(1 << 1)
276 #define USBD_FRAME		(1 << 0)
277 
278 /**********************************************************************
279  * USBD_EPINTST/USBD_EPINTEN/USBD_EPINTCLR/USBD_EPINTSET/
280  * USBD_EPINTPRI register definitions
281  **********************************************************************/
282 /* End point selection macro (RX) */
283 #define USBD_RX_EP_SEL(e)	(1 << ((e) << 1))
284 
285 /* End point selection macro (TX) */
286 #define USBD_TX_EP_SEL(e)	(1 << (((e) << 1) + 1))
287 
288 /**********************************************************************
289  * USBD_REEP/USBD_DMARST/USBD_DMARCLR/USBD_DMARSET/USBD_EPDMAST/
290  * USBD_EPDMAEN/USBD_EPDMADIS/
291  * USBD_NDDRTINTST/USBD_NDDRTINTCLR/USBD_NDDRTINTSET/
292  * USBD_EOTINTST/USBD_EOTINTCLR/USBD_EOTINTSET/
293  * USBD_SYSERRTINTST/USBD_SYSERRTINTCLR/USBD_SYSERRTINTSET
294  * register definitions
295  **********************************************************************/
296 /* Endpoint selection macro */
297 #define USBD_EP_SEL(e)		(1 << (e))
298 
299 /**********************************************************************
300  * SBD_DMAINTST/USBD_DMAINTEN
301  **********************************************************************/
302 #define USBD_SYS_ERR_INT	(1 << 2)
303 #define USBD_NEW_DD_INT		(1 << 1)
304 #define USBD_EOT_INT		(1 << 0)
305 
306 /**********************************************************************
307  * USBD_RXPLEN register definitions
308  **********************************************************************/
309 #define USBD_PKT_RDY		(1 << 11)
310 #define USBD_DV			(1 << 10)
311 #define USBD_PK_LEN_MASK	0x3FF
312 
313 /**********************************************************************
314  * USBD_CTRL register definitions
315  **********************************************************************/
316 #define USBD_LOG_ENDPOINT(e)	((e) << 2)
317 #define USBD_WR_EN		(1 << 1)
318 #define USBD_RD_EN		(1 << 0)
319 
320 /**********************************************************************
321  * USBD_CMDCODE register definitions
322  **********************************************************************/
323 #define USBD_CMD_CODE(c)	((c) << 16)
324 #define USBD_CMD_PHASE(p)	((p) << 8)
325 
326 /**********************************************************************
327  * USBD_DMARST/USBD_DMARCLR/USBD_DMARSET register definitions
328  **********************************************************************/
329 #define USBD_DMAEP(e)		(1 << (e))
330 
331 /* DD (DMA Descriptor) structure, requires word alignment */
332 struct lpc32xx_usbd_dd {
333 	u32 *dd_next;
334 	u32 dd_setup;
335 	u32 dd_buffer_addr;
336 	u32 dd_status;
337 	u32 dd_iso_ps_mem_addr;
338 };
339 
340 /* dd_setup bit defines */
341 #define DD_SETUP_ATLE_DMA_MODE	0x01
342 #define DD_SETUP_NEXT_DD_VALID	0x04
343 #define DD_SETUP_ISO_EP		0x10
344 #define DD_SETUP_PACKETLEN(n)	(((n) & 0x7FF) << 5)
345 #define DD_SETUP_DMALENBYTES(n)	(((n) & 0xFFFF) << 16)
346 
347 /* dd_status bit defines */
348 #define DD_STATUS_DD_RETIRED	0x01
349 #define DD_STATUS_STS_MASK	0x1E
350 #define DD_STATUS_STS_NS	0x00 /* Not serviced */
351 #define DD_STATUS_STS_BS	0x02 /* Being serviced */
352 #define DD_STATUS_STS_NC	0x04 /* Normal completion */
353 #define DD_STATUS_STS_DUR	0x06 /* Data underrun (short packet) */
354 #define DD_STATUS_STS_DOR	0x08 /* Data overrun */
355 #define DD_STATUS_STS_SE	0x12 /* System error */
356 #define DD_STATUS_PKT_VAL	0x20 /* Packet valid */
357 #define DD_STATUS_LSB_EX	0x40 /* LS byte extracted (ATLE) */
358 #define DD_STATUS_MSB_EX	0x80 /* MS byte extracted (ATLE) */
359 #define DD_STATUS_MLEN(n)	(((n) >> 8) & 0x3F)
360 #define DD_STATUS_CURDMACNT(n)	(((n) >> 16) & 0xFFFF)
361 
362 /*
363  *
364  * Protocol engine bits below
365  *
366  */
367 /* Device Interrupt Bit Definitions */
368 #define FRAME_INT		0x00000001
369 #define EP_FAST_INT		0x00000002
370 #define EP_SLOW_INT		0x00000004
371 #define DEV_STAT_INT		0x00000008
372 #define CCEMTY_INT		0x00000010
373 #define CDFULL_INT		0x00000020
374 #define RxENDPKT_INT		0x00000040
375 #define TxENDPKT_INT		0x00000080
376 #define EP_RLZED_INT		0x00000100
377 #define ERR_INT			0x00000200
378 
379 /* Rx & Tx Packet Length Definitions */
380 #define PKT_LNGTH_MASK		0x000003FF
381 #define PKT_DV			0x00000400
382 #define PKT_RDY			0x00000800
383 
384 /* USB Control Definitions */
385 #define CTRL_RD_EN		0x00000001
386 #define CTRL_WR_EN		0x00000002
387 
388 /* Command Codes */
389 #define CMD_SET_ADDR		0x00D00500
390 #define CMD_CFG_DEV		0x00D80500
391 #define CMD_SET_MODE		0x00F30500
392 #define CMD_RD_FRAME		0x00F50500
393 #define DAT_RD_FRAME		0x00F50200
394 #define CMD_RD_TEST		0x00FD0500
395 #define DAT_RD_TEST		0x00FD0200
396 #define CMD_SET_DEV_STAT	0x00FE0500
397 #define CMD_GET_DEV_STAT	0x00FE0500
398 #define DAT_GET_DEV_STAT	0x00FE0200
399 #define CMD_GET_ERR_CODE	0x00FF0500
400 #define DAT_GET_ERR_CODE	0x00FF0200
401 #define CMD_RD_ERR_STAT		0x00FB0500
402 #define DAT_RD_ERR_STAT		0x00FB0200
403 #define DAT_WR_BYTE(x)		(0x00000100 | ((x) << 16))
404 #define CMD_SEL_EP(x)		(0x00000500 | ((x) << 16))
405 #define DAT_SEL_EP(x)		(0x00000200 | ((x) << 16))
406 #define CMD_SEL_EP_CLRI(x)	(0x00400500 | ((x) << 16))
407 #define DAT_SEL_EP_CLRI(x)	(0x00400200 | ((x) << 16))
408 #define CMD_SET_EP_STAT(x)	(0x00400500 | ((x) << 16))
409 #define CMD_CLR_BUF		0x00F20500
410 #define DAT_CLR_BUF		0x00F20200
411 #define CMD_VALID_BUF		0x00FA0500
412 
413 /* Device Address Register Definitions */
414 #define DEV_ADDR_MASK		0x7F
415 #define DEV_EN			0x80
416 
417 /* Device Configure Register Definitions */
418 #define CONF_DVICE		0x01
419 
420 /* Device Mode Register Definitions */
421 #define AP_CLK			0x01
422 #define INAK_CI			0x02
423 #define INAK_CO			0x04
424 #define INAK_II			0x08
425 #define INAK_IO			0x10
426 #define INAK_BI			0x20
427 #define INAK_BO			0x40
428 
429 /* Device Status Register Definitions */
430 #define DEV_CON			0x01
431 #define DEV_CON_CH		0x02
432 #define DEV_SUS			0x04
433 #define DEV_SUS_CH		0x08
434 #define DEV_RST			0x10
435 
436 /* Error Code Register Definitions */
437 #define ERR_EC_MASK		0x0F
438 #define ERR_EA			0x10
439 
440 /* Error Status Register Definitions */
441 #define ERR_PID			0x01
442 #define ERR_UEPKT		0x02
443 #define ERR_DCRC		0x04
444 #define ERR_TIMOUT		0x08
445 #define ERR_EOP			0x10
446 #define ERR_B_OVRN		0x20
447 #define ERR_BTSTF		0x40
448 #define ERR_TGL			0x80
449 
450 /* Endpoint Select Register Definitions */
451 #define EP_SEL_F		0x01
452 #define EP_SEL_ST		0x02
453 #define EP_SEL_STP		0x04
454 #define EP_SEL_PO		0x08
455 #define EP_SEL_EPN		0x10
456 #define EP_SEL_B_1_FULL		0x20
457 #define EP_SEL_B_2_FULL		0x40
458 
459 /* Endpoint Status Register Definitions */
460 #define EP_STAT_ST		0x01
461 #define EP_STAT_DA		0x20
462 #define EP_STAT_RF_MO		0x40
463 #define EP_STAT_CND_ST		0x80
464 
465 /* Clear Buffer Register Definitions */
466 #define CLR_BUF_PO		0x01
467 
468 /* DMA Interrupt Bit Definitions */
469 #define EOT_INT			0x01
470 #define NDD_REQ_INT		0x02
471 #define SYS_ERR_INT		0x04
472 
473 #define	DRIVER_VERSION	"1.03"
474 static const char driver_name[] = "lpc32xx_udc";
475 
476 /*
477  *
478  * proc interface support
479  *
480  */
481 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
482 static char *epnames[] = {"INT", "ISO", "BULK", "CTRL"};
483 static const char debug_filename[] = "driver/udc";
484 
485 static void proc_ep_show(struct seq_file *s, struct lpc32xx_ep *ep)
486 {
487 	struct lpc32xx_request *req;
488 
489 	seq_printf(s, "\n");
490 	seq_printf(s, "%12s, maxpacket %4d %3s",
491 			ep->ep.name, ep->ep.maxpacket,
492 			ep->is_in ? "in" : "out");
493 	seq_printf(s, " type %4s", epnames[ep->eptype]);
494 	seq_printf(s, " ints: %12d", ep->totalints);
495 
496 	if (list_empty(&ep->queue))
497 		seq_printf(s, "\t(queue empty)\n");
498 	else {
499 		list_for_each_entry(req, &ep->queue, queue) {
500 			u32 length = req->req.actual;
501 
502 			seq_printf(s, "\treq %p len %d/%d buf %p\n",
503 				   &req->req, length,
504 				   req->req.length, req->req.buf);
505 		}
506 	}
507 }
508 
509 static int proc_udc_show(struct seq_file *s, void *unused)
510 {
511 	struct lpc32xx_udc *udc = s->private;
512 	struct lpc32xx_ep *ep;
513 	unsigned long flags;
514 
515 	seq_printf(s, "%s: version %s\n", driver_name, DRIVER_VERSION);
516 
517 	spin_lock_irqsave(&udc->lock, flags);
518 
519 	seq_printf(s, "vbus %s, pullup %s, %s powered%s, gadget %s\n\n",
520 		   udc->vbus ? "present" : "off",
521 		   udc->enabled ? (udc->vbus ? "active" : "enabled") :
522 		   "disabled",
523 		   udc->gadget.is_selfpowered ? "self" : "VBUS",
524 		   udc->suspended ? ", suspended" : "",
525 		   udc->driver ? udc->driver->driver.name : "(none)");
526 
527 	if (udc->enabled && udc->vbus) {
528 		proc_ep_show(s, &udc->ep[0]);
529 		list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list)
530 			proc_ep_show(s, ep);
531 	}
532 
533 	spin_unlock_irqrestore(&udc->lock, flags);
534 
535 	return 0;
536 }
537 
538 static int proc_udc_open(struct inode *inode, struct file *file)
539 {
540 	return single_open(file, proc_udc_show, PDE_DATA(inode));
541 }
542 
543 static const struct file_operations proc_ops = {
544 	.owner		= THIS_MODULE,
545 	.open		= proc_udc_open,
546 	.read		= seq_read,
547 	.llseek		= seq_lseek,
548 	.release	= single_release,
549 };
550 
551 static void create_debug_file(struct lpc32xx_udc *udc)
552 {
553 	udc->pde = debugfs_create_file(debug_filename, 0, NULL, udc, &proc_ops);
554 }
555 
556 static void remove_debug_file(struct lpc32xx_udc *udc)
557 {
558 	debugfs_remove(udc->pde);
559 }
560 
561 #else
562 static inline void create_debug_file(struct lpc32xx_udc *udc) {}
563 static inline void remove_debug_file(struct lpc32xx_udc *udc) {}
564 #endif
565 
566 /* Primary initialization sequence for the ISP1301 transceiver */
567 static void isp1301_udc_configure(struct lpc32xx_udc *udc)
568 {
569 	/* LPC32XX only supports DAT_SE0 USB mode */
570 	/* This sequence is important */
571 
572 	/* Disable transparent UART mode first */
573 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
574 		(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
575 		MC1_UART_EN);
576 
577 	/* Set full speed and SE0 mode */
578 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
579 		(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
580 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
581 		ISP1301_I2C_MODE_CONTROL_1, (MC1_SPEED_REG | MC1_DAT_SE0));
582 
583 	/*
584 	 * The PSW_OE enable bit state is reversed in the ISP1301 User's Guide
585 	 */
586 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
587 		(ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
588 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
589 		ISP1301_I2C_MODE_CONTROL_2, (MC2_BI_DI | MC2_SPD_SUSP_CTRL));
590 
591 	/* Driver VBUS_DRV high or low depending on board setup */
592 	if (udc->board->vbus_drv_pol != 0)
593 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
594 			ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DRV);
595 	else
596 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
597 			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
598 			OTG1_VBUS_DRV);
599 
600 	/* Bi-directional mode with suspend control
601 	 * Enable both pulldowns for now - the pullup will be enable when VBUS
602 	 * is detected */
603 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
604 		(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
605 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
606 		ISP1301_I2C_OTG_CONTROL_1,
607 		(0 | OTG1_DM_PULLDOWN | OTG1_DP_PULLDOWN));
608 
609 	/* Discharge VBUS (just in case) */
610 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
611 		ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
612 	msleep(1);
613 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
614 		(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
615 		OTG1_VBUS_DISCHRG);
616 
617 	/* Clear and enable VBUS high edge interrupt */
618 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
619 		ISP1301_I2C_INTERRUPT_LATCH | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
620 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
621 		ISP1301_I2C_INTERRUPT_FALLING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
622 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
623 		ISP1301_I2C_INTERRUPT_FALLING, INT_VBUS_VLD);
624 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
625 		ISP1301_I2C_INTERRUPT_RISING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
626 	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
627 		ISP1301_I2C_INTERRUPT_RISING, INT_VBUS_VLD);
628 
629 	dev_info(udc->dev, "ISP1301 Vendor ID  : 0x%04x\n",
630 		 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x00));
631 	dev_info(udc->dev, "ISP1301 Product ID : 0x%04x\n",
632 		 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x02));
633 	dev_info(udc->dev, "ISP1301 Version ID : 0x%04x\n",
634 		 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x14));
635 }
636 
637 /* Enables or disables the USB device pullup via the ISP1301 transceiver */
638 static void isp1301_pullup_set(struct lpc32xx_udc *udc)
639 {
640 	if (udc->pullup)
641 		/* Enable pullup for bus signalling */
642 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
643 			ISP1301_I2C_OTG_CONTROL_1, OTG1_DP_PULLUP);
644 	else
645 		/* Enable pullup for bus signalling */
646 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
647 			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
648 			OTG1_DP_PULLUP);
649 }
650 
651 static void pullup_work(struct work_struct *work)
652 {
653 	struct lpc32xx_udc *udc =
654 		container_of(work, struct lpc32xx_udc, pullup_job);
655 
656 	isp1301_pullup_set(udc);
657 }
658 
659 static void isp1301_pullup_enable(struct lpc32xx_udc *udc, int en_pullup,
660 				  int block)
661 {
662 	if (en_pullup == udc->pullup)
663 		return;
664 
665 	udc->pullup = en_pullup;
666 	if (block)
667 		isp1301_pullup_set(udc);
668 	else
669 		/* defer slow i2c pull up setting */
670 		schedule_work(&udc->pullup_job);
671 }
672 
673 #ifdef CONFIG_PM
674 /* Powers up or down the ISP1301 transceiver */
675 static void isp1301_set_powerstate(struct lpc32xx_udc *udc, int enable)
676 {
677 	if (enable != 0)
678 		/* Power up ISP1301 - this ISP1301 will automatically wakeup
679 		   when VBUS is detected */
680 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
681 			ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR,
682 			MC2_GLOBAL_PWR_DN);
683 	else
684 		/* Power down ISP1301 */
685 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
686 			ISP1301_I2C_MODE_CONTROL_2, MC2_GLOBAL_PWR_DN);
687 }
688 
689 static void power_work(struct work_struct *work)
690 {
691 	struct lpc32xx_udc *udc =
692 		container_of(work, struct lpc32xx_udc, power_job);
693 
694 	isp1301_set_powerstate(udc, udc->poweron);
695 }
696 #endif
697 
698 /*
699  *
700  * USB protocol engine command/data read/write helper functions
701  *
702  */
703 /* Issues a single command to the USB device state machine */
704 static void udc_protocol_cmd_w(struct lpc32xx_udc *udc, u32 cmd)
705 {
706 	u32 pass = 0;
707 	int to;
708 
709 	/* EP may lock on CLRI if this read isn't done */
710 	u32 tmp = readl(USBD_DEVINTST(udc->udp_baseaddr));
711 	(void) tmp;
712 
713 	while (pass == 0) {
714 		writel(USBD_CCEMPTY, USBD_DEVINTCLR(udc->udp_baseaddr));
715 
716 		/* Write command code */
717 		writel(cmd, USBD_CMDCODE(udc->udp_baseaddr));
718 		to = 10000;
719 		while (((readl(USBD_DEVINTST(udc->udp_baseaddr)) &
720 			 USBD_CCEMPTY) == 0) && (to > 0)) {
721 			to--;
722 		}
723 
724 		if (to > 0)
725 			pass = 1;
726 
727 		cpu_relax();
728 	}
729 }
730 
731 /* Issues 2 commands (or command and data) to the USB device state machine */
732 static inline void udc_protocol_cmd_data_w(struct lpc32xx_udc *udc, u32 cmd,
733 					   u32 data)
734 {
735 	udc_protocol_cmd_w(udc, cmd);
736 	udc_protocol_cmd_w(udc, data);
737 }
738 
739 /* Issues a single command to the USB device state machine and reads
740  * response data */
741 static u32 udc_protocol_cmd_r(struct lpc32xx_udc *udc, u32 cmd)
742 {
743 	u32 tmp;
744 	int to = 1000;
745 
746 	/* Write a command and read data from the protocol engine */
747 	writel((USBD_CDFULL | USBD_CCEMPTY),
748 		     USBD_DEVINTCLR(udc->udp_baseaddr));
749 
750 	/* Write command code */
751 	udc_protocol_cmd_w(udc, cmd);
752 
753 	tmp = readl(USBD_DEVINTST(udc->udp_baseaddr));
754 	while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) & USBD_CDFULL))
755 	       && (to > 0))
756 		to--;
757 	if (!to)
758 		dev_dbg(udc->dev,
759 			"Protocol engine didn't receive response (CDFULL)\n");
760 
761 	return readl(USBD_CMDDATA(udc->udp_baseaddr));
762 }
763 
764 /*
765  *
766  * USB device interrupt mask support functions
767  *
768  */
769 /* Enable one or more USB device interrupts */
770 static inline void uda_enable_devint(struct lpc32xx_udc *udc, u32 devmask)
771 {
772 	udc->enabled_devints |= devmask;
773 	writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
774 }
775 
776 /* Disable one or more USB device interrupts */
777 static inline void uda_disable_devint(struct lpc32xx_udc *udc, u32 mask)
778 {
779 	udc->enabled_devints &= ~mask;
780 	writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
781 }
782 
783 /* Clear one or more USB device interrupts */
784 static inline void uda_clear_devint(struct lpc32xx_udc *udc, u32 mask)
785 {
786 	writel(mask, USBD_DEVINTCLR(udc->udp_baseaddr));
787 }
788 
789 /*
790  *
791  * Endpoint interrupt disable/enable functions
792  *
793  */
794 /* Enable one or more USB endpoint interrupts */
795 static void uda_enable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
796 {
797 	udc->enabled_hwepints |= (1 << hwep);
798 	writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
799 }
800 
801 /* Disable one or more USB endpoint interrupts */
802 static void uda_disable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
803 {
804 	udc->enabled_hwepints &= ~(1 << hwep);
805 	writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
806 }
807 
808 /* Clear one or more USB endpoint interrupts */
809 static inline void uda_clear_hwepint(struct lpc32xx_udc *udc, u32 hwep)
810 {
811 	writel((1 << hwep), USBD_EPINTCLR(udc->udp_baseaddr));
812 }
813 
814 /* Enable DMA for the HW channel */
815 static inline void udc_ep_dma_enable(struct lpc32xx_udc *udc, u32 hwep)
816 {
817 	writel((1 << hwep), USBD_EPDMAEN(udc->udp_baseaddr));
818 }
819 
820 /* Disable DMA for the HW channel */
821 static inline void udc_ep_dma_disable(struct lpc32xx_udc *udc, u32 hwep)
822 {
823 	writel((1 << hwep), USBD_EPDMADIS(udc->udp_baseaddr));
824 }
825 
826 /*
827  *
828  * Endpoint realize/unrealize functions
829  *
830  */
831 /* Before an endpoint can be used, it needs to be realized
832  * in the USB protocol engine - this realizes the endpoint.
833  * The interrupt (FIFO or DMA) is not enabled with this function */
834 static void udc_realize_hwep(struct lpc32xx_udc *udc, u32 hwep,
835 			     u32 maxpacket)
836 {
837 	int to = 1000;
838 
839 	writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
840 	writel(hwep, USBD_EPIND(udc->udp_baseaddr));
841 	udc->realized_eps |= (1 << hwep);
842 	writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
843 	writel(maxpacket, USBD_EPMAXPSIZE(udc->udp_baseaddr));
844 
845 	/* Wait until endpoint is realized in hardware */
846 	while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) &
847 		  USBD_EP_RLZED)) && (to > 0))
848 		to--;
849 	if (!to)
850 		dev_dbg(udc->dev, "EP not correctly realized in hardware\n");
851 
852 	writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
853 }
854 
855 /* Unrealize an EP */
856 static void udc_unrealize_hwep(struct lpc32xx_udc *udc, u32 hwep)
857 {
858 	udc->realized_eps &= ~(1 << hwep);
859 	writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
860 }
861 
862 /*
863  *
864  * Endpoint support functions
865  *
866  */
867 /* Select and clear endpoint interrupt */
868 static u32 udc_selep_clrint(struct lpc32xx_udc *udc, u32 hwep)
869 {
870 	udc_protocol_cmd_w(udc, CMD_SEL_EP_CLRI(hwep));
871 	return udc_protocol_cmd_r(udc, DAT_SEL_EP_CLRI(hwep));
872 }
873 
874 /* Disables the endpoint in the USB protocol engine */
875 static void udc_disable_hwep(struct lpc32xx_udc *udc, u32 hwep)
876 {
877 	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
878 				DAT_WR_BYTE(EP_STAT_DA));
879 }
880 
881 /* Stalls the endpoint - endpoint will return STALL */
882 static void udc_stall_hwep(struct lpc32xx_udc *udc, u32 hwep)
883 {
884 	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
885 				DAT_WR_BYTE(EP_STAT_ST));
886 }
887 
888 /* Clear stall or reset endpoint */
889 static void udc_clrstall_hwep(struct lpc32xx_udc *udc, u32 hwep)
890 {
891 	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
892 				DAT_WR_BYTE(0));
893 }
894 
895 /* Select an endpoint for endpoint status, clear, validate */
896 static void udc_select_hwep(struct lpc32xx_udc *udc, u32 hwep)
897 {
898 	udc_protocol_cmd_w(udc, CMD_SEL_EP(hwep));
899 }
900 
901 /*
902  *
903  * Endpoint buffer management functions
904  *
905  */
906 /* Clear the current endpoint's buffer */
907 static void udc_clr_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
908 {
909 	udc_select_hwep(udc, hwep);
910 	udc_protocol_cmd_w(udc, CMD_CLR_BUF);
911 }
912 
913 /* Validate the current endpoint's buffer */
914 static void udc_val_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
915 {
916 	udc_select_hwep(udc, hwep);
917 	udc_protocol_cmd_w(udc, CMD_VALID_BUF);
918 }
919 
920 static inline u32 udc_clearep_getsts(struct lpc32xx_udc *udc, u32 hwep)
921 {
922 	/* Clear EP interrupt */
923 	uda_clear_hwepint(udc, hwep);
924 	return udc_selep_clrint(udc, hwep);
925 }
926 
927 /*
928  *
929  * USB EP DMA support
930  *
931  */
932 /* Allocate a DMA Descriptor */
933 static struct lpc32xx_usbd_dd_gad *udc_dd_alloc(struct lpc32xx_udc *udc)
934 {
935 	dma_addr_t			dma;
936 	struct lpc32xx_usbd_dd_gad	*dd;
937 
938 	dd = (struct lpc32xx_usbd_dd_gad *) dma_pool_alloc(
939 			udc->dd_cache, (GFP_KERNEL | GFP_DMA), &dma);
940 	if (dd)
941 		dd->this_dma = dma;
942 
943 	return dd;
944 }
945 
946 /* Free a DMA Descriptor */
947 static void udc_dd_free(struct lpc32xx_udc *udc, struct lpc32xx_usbd_dd_gad *dd)
948 {
949 	dma_pool_free(udc->dd_cache, dd, dd->this_dma);
950 }
951 
952 /*
953  *
954  * USB setup and shutdown functions
955  *
956  */
957 /* Enables or disables most of the USB system clocks when low power mode is
958  * needed. Clocks are typically started on a connection event, and disabled
959  * when a cable is disconnected */
960 static void udc_clk_set(struct lpc32xx_udc *udc, int enable)
961 {
962 	if (enable != 0) {
963 		if (udc->clocked)
964 			return;
965 
966 		udc->clocked = 1;
967 		clk_prepare_enable(udc->usb_slv_clk);
968 	} else {
969 		if (!udc->clocked)
970 			return;
971 
972 		udc->clocked = 0;
973 		clk_disable_unprepare(udc->usb_slv_clk);
974 	}
975 }
976 
977 /* Set/reset USB device address */
978 static void udc_set_address(struct lpc32xx_udc *udc, u32 addr)
979 {
980 	/* Address will be latched at the end of the status phase, or
981 	   latched immediately if function is called twice */
982 	udc_protocol_cmd_data_w(udc, CMD_SET_ADDR,
983 				DAT_WR_BYTE(DEV_EN | addr));
984 }
985 
986 /* Setup up a IN request for DMA transfer - this consists of determining the
987  * list of DMA addresses for the transfer, allocating DMA Descriptors,
988  * installing the DD into the UDCA, and then enabling the DMA for that EP */
989 static int udc_ep_in_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
990 {
991 	struct lpc32xx_request *req;
992 	u32 hwep = ep->hwep_num;
993 
994 	ep->req_pending = 1;
995 
996 	/* There will always be a request waiting here */
997 	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
998 
999 	/* Place the DD Descriptor into the UDCA */
1000 	udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
1001 
1002 	/* Enable DMA and interrupt for the HW EP */
1003 	udc_ep_dma_enable(udc, hwep);
1004 
1005 	/* Clear ZLP if last packet is not of MAXP size */
1006 	if (req->req.length % ep->ep.maxpacket)
1007 		req->send_zlp = 0;
1008 
1009 	return 0;
1010 }
1011 
1012 /* Setup up a OUT request for DMA transfer - this consists of determining the
1013  * list of DMA addresses for the transfer, allocating DMA Descriptors,
1014  * installing the DD into the UDCA, and then enabling the DMA for that EP */
1015 static int udc_ep_out_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1016 {
1017 	struct lpc32xx_request *req;
1018 	u32 hwep = ep->hwep_num;
1019 
1020 	ep->req_pending = 1;
1021 
1022 	/* There will always be a request waiting here */
1023 	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1024 
1025 	/* Place the DD Descriptor into the UDCA */
1026 	udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
1027 
1028 	/* Enable DMA and interrupt for the HW EP */
1029 	udc_ep_dma_enable(udc, hwep);
1030 	return 0;
1031 }
1032 
1033 static void udc_disable(struct lpc32xx_udc *udc)
1034 {
1035 	u32 i;
1036 
1037 	/* Disable device */
1038 	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1039 	udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(0));
1040 
1041 	/* Disable all device interrupts (including EP0) */
1042 	uda_disable_devint(udc, 0x3FF);
1043 
1044 	/* Disable and reset all endpoint interrupts */
1045 	for (i = 0; i < 32; i++) {
1046 		uda_disable_hwepint(udc, i);
1047 		uda_clear_hwepint(udc, i);
1048 		udc_disable_hwep(udc, i);
1049 		udc_unrealize_hwep(udc, i);
1050 		udc->udca_v_base[i] = 0;
1051 
1052 		/* Disable and clear all interrupts and DMA */
1053 		udc_ep_dma_disable(udc, i);
1054 		writel((1 << i), USBD_EOTINTCLR(udc->udp_baseaddr));
1055 		writel((1 << i), USBD_NDDRTINTCLR(udc->udp_baseaddr));
1056 		writel((1 << i), USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1057 		writel((1 << i), USBD_DMARCLR(udc->udp_baseaddr));
1058 	}
1059 
1060 	/* Disable DMA interrupts */
1061 	writel(0, USBD_DMAINTEN(udc->udp_baseaddr));
1062 
1063 	writel(0, USBD_UDCAH(udc->udp_baseaddr));
1064 }
1065 
1066 static void udc_enable(struct lpc32xx_udc *udc)
1067 {
1068 	u32 i;
1069 	struct lpc32xx_ep *ep = &udc->ep[0];
1070 
1071 	/* Start with known state */
1072 	udc_disable(udc);
1073 
1074 	/* Enable device */
1075 	udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(DEV_CON));
1076 
1077 	/* EP interrupts on high priority, FRAME interrupt on low priority */
1078 	writel(USBD_EP_FAST, USBD_DEVINTPRI(udc->udp_baseaddr));
1079 	writel(0xFFFF, USBD_EPINTPRI(udc->udp_baseaddr));
1080 
1081 	/* Clear any pending device interrupts */
1082 	writel(0x3FF, USBD_DEVINTCLR(udc->udp_baseaddr));
1083 
1084 	/* Setup UDCA - not yet used (DMA) */
1085 	writel(udc->udca_p_base, USBD_UDCAH(udc->udp_baseaddr));
1086 
1087 	/* Only enable EP0 in and out for now, EP0 only works in FIFO mode */
1088 	for (i = 0; i <= 1; i++) {
1089 		udc_realize_hwep(udc, i, ep->ep.maxpacket);
1090 		uda_enable_hwepint(udc, i);
1091 		udc_select_hwep(udc, i);
1092 		udc_clrstall_hwep(udc, i);
1093 		udc_clr_buffer_hwep(udc, i);
1094 	}
1095 
1096 	/* Device interrupt setup */
1097 	uda_clear_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1098 			       USBD_EP_FAST));
1099 	uda_enable_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1100 				USBD_EP_FAST));
1101 
1102 	/* Set device address to 0 - called twice to force a latch in the USB
1103 	   engine without the need of a setup packet status closure */
1104 	udc_set_address(udc, 0);
1105 	udc_set_address(udc, 0);
1106 
1107 	/* Enable master DMA interrupts */
1108 	writel((USBD_SYS_ERR_INT | USBD_EOT_INT),
1109 		     USBD_DMAINTEN(udc->udp_baseaddr));
1110 
1111 	udc->dev_status = 0;
1112 }
1113 
1114 /*
1115  *
1116  * USB device board specific events handled via callbacks
1117  *
1118  */
1119 /* Connection change event - notify board function of change */
1120 static void uda_power_event(struct lpc32xx_udc *udc, u32 conn)
1121 {
1122 	/* Just notify of a connection change event (optional) */
1123 	if (udc->board->conn_chgb != NULL)
1124 		udc->board->conn_chgb(conn);
1125 }
1126 
1127 /* Suspend/resume event - notify board function of change */
1128 static void uda_resm_susp_event(struct lpc32xx_udc *udc, u32 conn)
1129 {
1130 	/* Just notify of a Suspend/resume change event (optional) */
1131 	if (udc->board->susp_chgb != NULL)
1132 		udc->board->susp_chgb(conn);
1133 
1134 	if (conn)
1135 		udc->suspended = 0;
1136 	else
1137 		udc->suspended = 1;
1138 }
1139 
1140 /* Remote wakeup enable/disable - notify board function of change */
1141 static void uda_remwkp_cgh(struct lpc32xx_udc *udc)
1142 {
1143 	if (udc->board->rmwk_chgb != NULL)
1144 		udc->board->rmwk_chgb(udc->dev_status &
1145 				      (1 << USB_DEVICE_REMOTE_WAKEUP));
1146 }
1147 
1148 /* Reads data from FIFO, adjusts for alignment and data size */
1149 static void udc_pop_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1150 {
1151 	int n, i, bl;
1152 	u16 *p16;
1153 	u32 *p32, tmp, cbytes;
1154 
1155 	/* Use optimal data transfer method based on source address and size */
1156 	switch (((u32) data) & 0x3) {
1157 	case 0: /* 32-bit aligned */
1158 		p32 = (u32 *) data;
1159 		cbytes = (bytes & ~0x3);
1160 
1161 		/* Copy 32-bit aligned data first */
1162 		for (n = 0; n < cbytes; n += 4)
1163 			*p32++ = readl(USBD_RXDATA(udc->udp_baseaddr));
1164 
1165 		/* Handle any remaining bytes */
1166 		bl = bytes - cbytes;
1167 		if (bl) {
1168 			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1169 			for (n = 0; n < bl; n++)
1170 				data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1171 
1172 		}
1173 		break;
1174 
1175 	case 1: /* 8-bit aligned */
1176 	case 3:
1177 		/* Each byte has to be handled independently */
1178 		for (n = 0; n < bytes; n += 4) {
1179 			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1180 
1181 			bl = bytes - n;
1182 			if (bl > 3)
1183 				bl = 3;
1184 
1185 			for (i = 0; i < bl; i++)
1186 				data[n + i] = (u8) ((tmp >> (n * 8)) & 0xFF);
1187 		}
1188 		break;
1189 
1190 	case 2: /* 16-bit aligned */
1191 		p16 = (u16 *) data;
1192 		cbytes = (bytes & ~0x3);
1193 
1194 		/* Copy 32-bit sized objects first with 16-bit alignment */
1195 		for (n = 0; n < cbytes; n += 4) {
1196 			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1197 			*p16++ = (u16)(tmp & 0xFFFF);
1198 			*p16++ = (u16)((tmp >> 16) & 0xFFFF);
1199 		}
1200 
1201 		/* Handle any remaining bytes */
1202 		bl = bytes - cbytes;
1203 		if (bl) {
1204 			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1205 			for (n = 0; n < bl; n++)
1206 				data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1207 		}
1208 		break;
1209 	}
1210 }
1211 
1212 /* Read data from the FIFO for an endpoint. This function is for endpoints (such
1213  * as EP0) that don't use DMA. This function should only be called if a packet
1214  * is known to be ready to read for the endpoint. Note that the endpoint must
1215  * be selected in the protocol engine prior to this call. */
1216 static u32 udc_read_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1217 			 u32 bytes)
1218 {
1219 	u32 tmpv;
1220 	int to = 1000;
1221 	u32 tmp, hwrep = ((hwep & 0x1E) << 1) | CTRL_RD_EN;
1222 
1223 	/* Setup read of endpoint */
1224 	writel(hwrep, USBD_CTRL(udc->udp_baseaddr));
1225 
1226 	/* Wait until packet is ready */
1227 	while ((((tmpv = readl(USBD_RXPLEN(udc->udp_baseaddr))) &
1228 		 PKT_RDY) == 0)	&& (to > 0))
1229 		to--;
1230 	if (!to)
1231 		dev_dbg(udc->dev, "No packet ready on FIFO EP read\n");
1232 
1233 	/* Mask out count */
1234 	tmp = tmpv & PKT_LNGTH_MASK;
1235 	if (bytes < tmp)
1236 		tmp = bytes;
1237 
1238 	if ((tmp > 0) && (data != NULL))
1239 		udc_pop_fifo(udc, (u8 *) data, tmp);
1240 
1241 	writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1242 
1243 	/* Clear the buffer */
1244 	udc_clr_buffer_hwep(udc, hwep);
1245 
1246 	return tmp;
1247 }
1248 
1249 /* Stuffs data into the FIFO, adjusts for alignment and data size */
1250 static void udc_stuff_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1251 {
1252 	int n, i, bl;
1253 	u16 *p16;
1254 	u32 *p32, tmp, cbytes;
1255 
1256 	/* Use optimal data transfer method based on source address and size */
1257 	switch (((u32) data) & 0x3) {
1258 	case 0: /* 32-bit aligned */
1259 		p32 = (u32 *) data;
1260 		cbytes = (bytes & ~0x3);
1261 
1262 		/* Copy 32-bit aligned data first */
1263 		for (n = 0; n < cbytes; n += 4)
1264 			writel(*p32++, USBD_TXDATA(udc->udp_baseaddr));
1265 
1266 		/* Handle any remaining bytes */
1267 		bl = bytes - cbytes;
1268 		if (bl) {
1269 			tmp = 0;
1270 			for (n = 0; n < bl; n++)
1271 				tmp |= data[cbytes + n] << (n * 8);
1272 
1273 			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1274 		}
1275 		break;
1276 
1277 	case 1: /* 8-bit aligned */
1278 	case 3:
1279 		/* Each byte has to be handled independently */
1280 		for (n = 0; n < bytes; n += 4) {
1281 			bl = bytes - n;
1282 			if (bl > 4)
1283 				bl = 4;
1284 
1285 			tmp = 0;
1286 			for (i = 0; i < bl; i++)
1287 				tmp |= data[n + i] << (i * 8);
1288 
1289 			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1290 		}
1291 		break;
1292 
1293 	case 2: /* 16-bit aligned */
1294 		p16 = (u16 *) data;
1295 		cbytes = (bytes & ~0x3);
1296 
1297 		/* Copy 32-bit aligned data first */
1298 		for (n = 0; n < cbytes; n += 4) {
1299 			tmp = *p16++ & 0xFFFF;
1300 			tmp |= (*p16++ & 0xFFFF) << 16;
1301 			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1302 		}
1303 
1304 		/* Handle any remaining bytes */
1305 		bl = bytes - cbytes;
1306 		if (bl) {
1307 			tmp = 0;
1308 			for (n = 0; n < bl; n++)
1309 				tmp |= data[cbytes + n] << (n * 8);
1310 
1311 			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1312 		}
1313 		break;
1314 	}
1315 }
1316 
1317 /* Write data to the FIFO for an endpoint. This function is for endpoints (such
1318  * as EP0) that don't use DMA. Note that the endpoint must be selected in the
1319  * protocol engine prior to this call. */
1320 static void udc_write_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1321 			   u32 bytes)
1322 {
1323 	u32 hwwep = ((hwep & 0x1E) << 1) | CTRL_WR_EN;
1324 
1325 	if ((bytes > 0) && (data == NULL))
1326 		return;
1327 
1328 	/* Setup write of endpoint */
1329 	writel(hwwep, USBD_CTRL(udc->udp_baseaddr));
1330 
1331 	writel(bytes, USBD_TXPLEN(udc->udp_baseaddr));
1332 
1333 	/* Need at least 1 byte to trigger TX */
1334 	if (bytes == 0)
1335 		writel(0, USBD_TXDATA(udc->udp_baseaddr));
1336 	else
1337 		udc_stuff_fifo(udc, (u8 *) data, bytes);
1338 
1339 	writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1340 
1341 	udc_val_buffer_hwep(udc, hwep);
1342 }
1343 
1344 /* USB device reset - resets USB to a default state with just EP0
1345    enabled */
1346 static void uda_usb_reset(struct lpc32xx_udc *udc)
1347 {
1348 	u32 i = 0;
1349 	/* Re-init device controller and EP0 */
1350 	udc_enable(udc);
1351 	udc->gadget.speed = USB_SPEED_FULL;
1352 
1353 	for (i = 1; i < NUM_ENDPOINTS; i++) {
1354 		struct lpc32xx_ep *ep = &udc->ep[i];
1355 		ep->req_pending = 0;
1356 	}
1357 }
1358 
1359 /* Send a ZLP on EP0 */
1360 static void udc_ep0_send_zlp(struct lpc32xx_udc *udc)
1361 {
1362 	udc_write_hwep(udc, EP_IN, NULL, 0);
1363 }
1364 
1365 /* Get current frame number */
1366 static u16 udc_get_current_frame(struct lpc32xx_udc *udc)
1367 {
1368 	u16 flo, fhi;
1369 
1370 	udc_protocol_cmd_w(udc, CMD_RD_FRAME);
1371 	flo = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1372 	fhi = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1373 
1374 	return (fhi << 8) | flo;
1375 }
1376 
1377 /* Set the device as configured - enables all endpoints */
1378 static inline void udc_set_device_configured(struct lpc32xx_udc *udc)
1379 {
1380 	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(CONF_DVICE));
1381 }
1382 
1383 /* Set the device as unconfigured - disables all endpoints */
1384 static inline void udc_set_device_unconfigured(struct lpc32xx_udc *udc)
1385 {
1386 	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1387 }
1388 
1389 /* reinit == restore initial software state */
1390 static void udc_reinit(struct lpc32xx_udc *udc)
1391 {
1392 	u32 i;
1393 
1394 	INIT_LIST_HEAD(&udc->gadget.ep_list);
1395 	INIT_LIST_HEAD(&udc->gadget.ep0->ep_list);
1396 
1397 	for (i = 0; i < NUM_ENDPOINTS; i++) {
1398 		struct lpc32xx_ep *ep = &udc->ep[i];
1399 
1400 		if (i != 0)
1401 			list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1402 		usb_ep_set_maxpacket_limit(&ep->ep, ep->maxpacket);
1403 		INIT_LIST_HEAD(&ep->queue);
1404 		ep->req_pending = 0;
1405 	}
1406 
1407 	udc->ep0state = WAIT_FOR_SETUP;
1408 }
1409 
1410 /* Must be called with lock */
1411 static void done(struct lpc32xx_ep *ep, struct lpc32xx_request *req, int status)
1412 {
1413 	struct lpc32xx_udc *udc = ep->udc;
1414 
1415 	list_del_init(&req->queue);
1416 	if (req->req.status == -EINPROGRESS)
1417 		req->req.status = status;
1418 	else
1419 		status = req->req.status;
1420 
1421 	if (ep->lep) {
1422 		usb_gadget_unmap_request(&udc->gadget, &req->req, ep->is_in);
1423 
1424 		/* Free DDs */
1425 		udc_dd_free(udc, req->dd_desc_ptr);
1426 	}
1427 
1428 	if (status && status != -ESHUTDOWN)
1429 		ep_dbg(ep, "%s done %p, status %d\n", ep->ep.name, req, status);
1430 
1431 	ep->req_pending = 0;
1432 	spin_unlock(&udc->lock);
1433 	usb_gadget_giveback_request(&ep->ep, &req->req);
1434 	spin_lock(&udc->lock);
1435 }
1436 
1437 /* Must be called with lock */
1438 static void nuke(struct lpc32xx_ep *ep, int status)
1439 {
1440 	struct lpc32xx_request *req;
1441 
1442 	while (!list_empty(&ep->queue)) {
1443 		req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1444 		done(ep, req, status);
1445 	}
1446 
1447 	if (status == -ESHUTDOWN) {
1448 		uda_disable_hwepint(ep->udc, ep->hwep_num);
1449 		udc_disable_hwep(ep->udc, ep->hwep_num);
1450 	}
1451 }
1452 
1453 /* IN endpoint 0 transfer */
1454 static int udc_ep0_in_req(struct lpc32xx_udc *udc)
1455 {
1456 	struct lpc32xx_request *req;
1457 	struct lpc32xx_ep *ep0 = &udc->ep[0];
1458 	u32 tsend, ts = 0;
1459 
1460 	if (list_empty(&ep0->queue))
1461 		/* Nothing to send */
1462 		return 0;
1463 	else
1464 		req = list_entry(ep0->queue.next, struct lpc32xx_request,
1465 				 queue);
1466 
1467 	tsend = ts = req->req.length - req->req.actual;
1468 	if (ts == 0) {
1469 		/* Send a ZLP */
1470 		udc_ep0_send_zlp(udc);
1471 		done(ep0, req, 0);
1472 		return 1;
1473 	} else if (ts > ep0->ep.maxpacket)
1474 		ts = ep0->ep.maxpacket; /* Just send what we can */
1475 
1476 	/* Write data to the EP0 FIFO and start transfer */
1477 	udc_write_hwep(udc, EP_IN, (req->req.buf + req->req.actual), ts);
1478 
1479 	/* Increment data pointer */
1480 	req->req.actual += ts;
1481 
1482 	if (tsend >= ep0->ep.maxpacket)
1483 		return 0; /* Stay in data transfer state */
1484 
1485 	/* Transfer request is complete */
1486 	udc->ep0state = WAIT_FOR_SETUP;
1487 	done(ep0, req, 0);
1488 	return 1;
1489 }
1490 
1491 /* OUT endpoint 0 transfer */
1492 static int udc_ep0_out_req(struct lpc32xx_udc *udc)
1493 {
1494 	struct lpc32xx_request *req;
1495 	struct lpc32xx_ep *ep0 = &udc->ep[0];
1496 	u32 tr, bufferspace;
1497 
1498 	if (list_empty(&ep0->queue))
1499 		return 0;
1500 	else
1501 		req = list_entry(ep0->queue.next, struct lpc32xx_request,
1502 				 queue);
1503 
1504 	if (req) {
1505 		if (req->req.length == 0) {
1506 			/* Just dequeue request */
1507 			done(ep0, req, 0);
1508 			udc->ep0state = WAIT_FOR_SETUP;
1509 			return 1;
1510 		}
1511 
1512 		/* Get data from FIFO */
1513 		bufferspace = req->req.length - req->req.actual;
1514 		if (bufferspace > ep0->ep.maxpacket)
1515 			bufferspace = ep0->ep.maxpacket;
1516 
1517 		/* Copy data to buffer */
1518 		prefetchw(req->req.buf + req->req.actual);
1519 		tr = udc_read_hwep(udc, EP_OUT, req->req.buf + req->req.actual,
1520 				   bufferspace);
1521 		req->req.actual += bufferspace;
1522 
1523 		if (tr < ep0->ep.maxpacket) {
1524 			/* This is the last packet */
1525 			done(ep0, req, 0);
1526 			udc->ep0state = WAIT_FOR_SETUP;
1527 			return 1;
1528 		}
1529 	}
1530 
1531 	return 0;
1532 }
1533 
1534 /* Must be called with lock */
1535 static void stop_activity(struct lpc32xx_udc *udc)
1536 {
1537 	struct usb_gadget_driver *driver = udc->driver;
1538 	int i;
1539 
1540 	if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1541 		driver = NULL;
1542 
1543 	udc->gadget.speed = USB_SPEED_UNKNOWN;
1544 	udc->suspended = 0;
1545 
1546 	for (i = 0; i < NUM_ENDPOINTS; i++) {
1547 		struct lpc32xx_ep *ep = &udc->ep[i];
1548 		nuke(ep, -ESHUTDOWN);
1549 	}
1550 	if (driver) {
1551 		spin_unlock(&udc->lock);
1552 		driver->disconnect(&udc->gadget);
1553 		spin_lock(&udc->lock);
1554 	}
1555 
1556 	isp1301_pullup_enable(udc, 0, 0);
1557 	udc_disable(udc);
1558 	udc_reinit(udc);
1559 }
1560 
1561 /*
1562  * Activate or kill host pullup
1563  * Can be called with or without lock
1564  */
1565 static void pullup(struct lpc32xx_udc *udc, int is_on)
1566 {
1567 	if (!udc->clocked)
1568 		return;
1569 
1570 	if (!udc->enabled || !udc->vbus)
1571 		is_on = 0;
1572 
1573 	if (is_on != udc->pullup)
1574 		isp1301_pullup_enable(udc, is_on, 0);
1575 }
1576 
1577 /* Must be called without lock */
1578 static int lpc32xx_ep_disable(struct usb_ep *_ep)
1579 {
1580 	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1581 	struct lpc32xx_udc *udc = ep->udc;
1582 	unsigned long	flags;
1583 
1584 	if ((ep->hwep_num_base == 0) || (ep->hwep_num == 0))
1585 		return -EINVAL;
1586 	spin_lock_irqsave(&udc->lock, flags);
1587 
1588 	nuke(ep, -ESHUTDOWN);
1589 
1590 	/* Clear all DMA statuses for this EP */
1591 	udc_ep_dma_disable(udc, ep->hwep_num);
1592 	writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1593 	writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1594 	writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1595 	writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1596 
1597 	/* Remove the DD pointer in the UDCA */
1598 	udc->udca_v_base[ep->hwep_num] = 0;
1599 
1600 	/* Disable and reset endpoint and interrupt */
1601 	uda_clear_hwepint(udc, ep->hwep_num);
1602 	udc_unrealize_hwep(udc, ep->hwep_num);
1603 
1604 	ep->hwep_num = 0;
1605 
1606 	spin_unlock_irqrestore(&udc->lock, flags);
1607 
1608 	atomic_dec(&udc->enabled_ep_cnt);
1609 	wake_up(&udc->ep_disable_wait_queue);
1610 
1611 	return 0;
1612 }
1613 
1614 /* Must be called without lock */
1615 static int lpc32xx_ep_enable(struct usb_ep *_ep,
1616 			     const struct usb_endpoint_descriptor *desc)
1617 {
1618 	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1619 	struct lpc32xx_udc *udc = ep->udc;
1620 	u16 maxpacket;
1621 	u32 tmp;
1622 	unsigned long flags;
1623 
1624 	/* Verify EP data */
1625 	if ((!_ep) || (!ep) || (!desc) ||
1626 	    (desc->bDescriptorType != USB_DT_ENDPOINT)) {
1627 		dev_dbg(udc->dev, "bad ep or descriptor\n");
1628 		return -EINVAL;
1629 	}
1630 	maxpacket = usb_endpoint_maxp(desc);
1631 	if ((maxpacket == 0) || (maxpacket > ep->maxpacket)) {
1632 		dev_dbg(udc->dev, "bad ep descriptor's packet size\n");
1633 		return -EINVAL;
1634 	}
1635 
1636 	/* Don't touch EP0 */
1637 	if (ep->hwep_num_base == 0) {
1638 		dev_dbg(udc->dev, "Can't re-enable EP0!!!\n");
1639 		return -EINVAL;
1640 	}
1641 
1642 	/* Is driver ready? */
1643 	if ((!udc->driver) || (udc->gadget.speed == USB_SPEED_UNKNOWN)) {
1644 		dev_dbg(udc->dev, "bogus device state\n");
1645 		return -ESHUTDOWN;
1646 	}
1647 
1648 	tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
1649 	switch (tmp) {
1650 	case USB_ENDPOINT_XFER_CONTROL:
1651 		return -EINVAL;
1652 
1653 	case USB_ENDPOINT_XFER_INT:
1654 		if (maxpacket > ep->maxpacket) {
1655 			dev_dbg(udc->dev,
1656 				"Bad INT endpoint maxpacket %d\n", maxpacket);
1657 			return -EINVAL;
1658 		}
1659 		break;
1660 
1661 	case USB_ENDPOINT_XFER_BULK:
1662 		switch (maxpacket) {
1663 		case 8:
1664 		case 16:
1665 		case 32:
1666 		case 64:
1667 			break;
1668 
1669 		default:
1670 			dev_dbg(udc->dev,
1671 				"Bad BULK endpoint maxpacket %d\n", maxpacket);
1672 			return -EINVAL;
1673 		}
1674 		break;
1675 
1676 	case USB_ENDPOINT_XFER_ISOC:
1677 		break;
1678 	}
1679 	spin_lock_irqsave(&udc->lock, flags);
1680 
1681 	/* Initialize endpoint to match the selected descriptor */
1682 	ep->is_in = (desc->bEndpointAddress & USB_DIR_IN) != 0;
1683 	ep->ep.maxpacket = maxpacket;
1684 
1685 	/* Map hardware endpoint from base and direction */
1686 	if (ep->is_in)
1687 		/* IN endpoints are offset 1 from the OUT endpoint */
1688 		ep->hwep_num = ep->hwep_num_base + EP_IN;
1689 	else
1690 		ep->hwep_num = ep->hwep_num_base;
1691 
1692 	ep_dbg(ep, "EP enabled: %s, HW:%d, MP:%d IN:%d\n", ep->ep.name,
1693 	       ep->hwep_num, maxpacket, (ep->is_in == 1));
1694 
1695 	/* Realize the endpoint, interrupt is enabled later when
1696 	 * buffers are queued, IN EPs will NAK until buffers are ready */
1697 	udc_realize_hwep(udc, ep->hwep_num, ep->ep.maxpacket);
1698 	udc_clr_buffer_hwep(udc, ep->hwep_num);
1699 	uda_disable_hwepint(udc, ep->hwep_num);
1700 	udc_clrstall_hwep(udc, ep->hwep_num);
1701 
1702 	/* Clear all DMA statuses for this EP */
1703 	udc_ep_dma_disable(udc, ep->hwep_num);
1704 	writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1705 	writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1706 	writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1707 	writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1708 
1709 	spin_unlock_irqrestore(&udc->lock, flags);
1710 
1711 	atomic_inc(&udc->enabled_ep_cnt);
1712 	return 0;
1713 }
1714 
1715 /*
1716  * Allocate a USB request list
1717  * Can be called with or without lock
1718  */
1719 static struct usb_request *lpc32xx_ep_alloc_request(struct usb_ep *_ep,
1720 						    gfp_t gfp_flags)
1721 {
1722 	struct lpc32xx_request *req;
1723 
1724 	req = kzalloc(sizeof(struct lpc32xx_request), gfp_flags);
1725 	if (!req)
1726 		return NULL;
1727 
1728 	INIT_LIST_HEAD(&req->queue);
1729 	return &req->req;
1730 }
1731 
1732 /*
1733  * De-allocate a USB request list
1734  * Can be called with or without lock
1735  */
1736 static void lpc32xx_ep_free_request(struct usb_ep *_ep,
1737 				    struct usb_request *_req)
1738 {
1739 	struct lpc32xx_request *req;
1740 
1741 	req = container_of(_req, struct lpc32xx_request, req);
1742 	BUG_ON(!list_empty(&req->queue));
1743 	kfree(req);
1744 }
1745 
1746 /* Must be called without lock */
1747 static int lpc32xx_ep_queue(struct usb_ep *_ep,
1748 			    struct usb_request *_req, gfp_t gfp_flags)
1749 {
1750 	struct lpc32xx_request *req;
1751 	struct lpc32xx_ep *ep;
1752 	struct lpc32xx_udc *udc;
1753 	unsigned long flags;
1754 	int status = 0;
1755 
1756 	req = container_of(_req, struct lpc32xx_request, req);
1757 	ep = container_of(_ep, struct lpc32xx_ep, ep);
1758 
1759 	if (!_ep || !_req || !_req->complete || !_req->buf ||
1760 	    !list_empty(&req->queue))
1761 		return -EINVAL;
1762 
1763 	udc = ep->udc;
1764 
1765 	if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1766 		return -EPIPE;
1767 
1768 	if (ep->lep) {
1769 		struct lpc32xx_usbd_dd_gad *dd;
1770 
1771 		status = usb_gadget_map_request(&udc->gadget, _req, ep->is_in);
1772 		if (status)
1773 			return status;
1774 
1775 		/* For the request, build a list of DDs */
1776 		dd = udc_dd_alloc(udc);
1777 		if (!dd) {
1778 			/* Error allocating DD */
1779 			return -ENOMEM;
1780 		}
1781 		req->dd_desc_ptr = dd;
1782 
1783 		/* Setup the DMA descriptor */
1784 		dd->dd_next_phy = dd->dd_next_v = 0;
1785 		dd->dd_buffer_addr = req->req.dma;
1786 		dd->dd_status = 0;
1787 
1788 		/* Special handling for ISO EPs */
1789 		if (ep->eptype == EP_ISO_TYPE) {
1790 			dd->dd_setup = DD_SETUP_ISO_EP |
1791 				DD_SETUP_PACKETLEN(0) |
1792 				DD_SETUP_DMALENBYTES(1);
1793 			dd->dd_iso_ps_mem_addr = dd->this_dma + 24;
1794 			if (ep->is_in)
1795 				dd->iso_status[0] = req->req.length;
1796 			else
1797 				dd->iso_status[0] = 0;
1798 		} else
1799 			dd->dd_setup = DD_SETUP_PACKETLEN(ep->ep.maxpacket) |
1800 				DD_SETUP_DMALENBYTES(req->req.length);
1801 	}
1802 
1803 	ep_dbg(ep, "%s queue req %p len %d buf %p (in=%d) z=%d\n", _ep->name,
1804 	       _req, _req->length, _req->buf, ep->is_in, _req->zero);
1805 
1806 	spin_lock_irqsave(&udc->lock, flags);
1807 
1808 	_req->status = -EINPROGRESS;
1809 	_req->actual = 0;
1810 	req->send_zlp = _req->zero;
1811 
1812 	/* Kickstart empty queues */
1813 	if (list_empty(&ep->queue)) {
1814 		list_add_tail(&req->queue, &ep->queue);
1815 
1816 		if (ep->hwep_num_base == 0) {
1817 			/* Handle expected data direction */
1818 			if (ep->is_in) {
1819 				/* IN packet to host */
1820 				udc->ep0state = DATA_IN;
1821 				status = udc_ep0_in_req(udc);
1822 			} else {
1823 				/* OUT packet from host */
1824 				udc->ep0state = DATA_OUT;
1825 				status = udc_ep0_out_req(udc);
1826 			}
1827 		} else if (ep->is_in) {
1828 			/* IN packet to host and kick off transfer */
1829 			if (!ep->req_pending)
1830 				udc_ep_in_req_dma(udc, ep);
1831 		} else
1832 			/* OUT packet from host and kick off list */
1833 			if (!ep->req_pending)
1834 				udc_ep_out_req_dma(udc, ep);
1835 	} else
1836 		list_add_tail(&req->queue, &ep->queue);
1837 
1838 	spin_unlock_irqrestore(&udc->lock, flags);
1839 
1840 	return (status < 0) ? status : 0;
1841 }
1842 
1843 /* Must be called without lock */
1844 static int lpc32xx_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1845 {
1846 	struct lpc32xx_ep *ep;
1847 	struct lpc32xx_request *req;
1848 	unsigned long flags;
1849 
1850 	ep = container_of(_ep, struct lpc32xx_ep, ep);
1851 	if (!_ep || ep->hwep_num_base == 0)
1852 		return -EINVAL;
1853 
1854 	spin_lock_irqsave(&ep->udc->lock, flags);
1855 
1856 	/* make sure it's actually queued on this endpoint */
1857 	list_for_each_entry(req, &ep->queue, queue) {
1858 		if (&req->req == _req)
1859 			break;
1860 	}
1861 	if (&req->req != _req) {
1862 		spin_unlock_irqrestore(&ep->udc->lock, flags);
1863 		return -EINVAL;
1864 	}
1865 
1866 	done(ep, req, -ECONNRESET);
1867 
1868 	spin_unlock_irqrestore(&ep->udc->lock, flags);
1869 
1870 	return 0;
1871 }
1872 
1873 /* Must be called without lock */
1874 static int lpc32xx_ep_set_halt(struct usb_ep *_ep, int value)
1875 {
1876 	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1877 	struct lpc32xx_udc *udc = ep->udc;
1878 	unsigned long flags;
1879 
1880 	if ((!ep) || (ep->hwep_num <= 1))
1881 		return -EINVAL;
1882 
1883 	/* Don't halt an IN EP */
1884 	if (ep->is_in)
1885 		return -EAGAIN;
1886 
1887 	spin_lock_irqsave(&udc->lock, flags);
1888 
1889 	if (value == 1) {
1890 		/* stall */
1891 		udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1892 					DAT_WR_BYTE(EP_STAT_ST));
1893 	} else {
1894 		/* End stall */
1895 		ep->wedge = 0;
1896 		udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1897 					DAT_WR_BYTE(0));
1898 	}
1899 
1900 	spin_unlock_irqrestore(&udc->lock, flags);
1901 
1902 	return 0;
1903 }
1904 
1905 /* set the halt feature and ignores clear requests */
1906 static int lpc32xx_ep_set_wedge(struct usb_ep *_ep)
1907 {
1908 	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1909 
1910 	if (!_ep || !ep->udc)
1911 		return -EINVAL;
1912 
1913 	ep->wedge = 1;
1914 
1915 	return usb_ep_set_halt(_ep);
1916 }
1917 
1918 static const struct usb_ep_ops lpc32xx_ep_ops = {
1919 	.enable		= lpc32xx_ep_enable,
1920 	.disable	= lpc32xx_ep_disable,
1921 	.alloc_request	= lpc32xx_ep_alloc_request,
1922 	.free_request	= lpc32xx_ep_free_request,
1923 	.queue		= lpc32xx_ep_queue,
1924 	.dequeue	= lpc32xx_ep_dequeue,
1925 	.set_halt	= lpc32xx_ep_set_halt,
1926 	.set_wedge	= lpc32xx_ep_set_wedge,
1927 };
1928 
1929 /* Send a ZLP on a non-0 IN EP */
1930 void udc_send_in_zlp(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1931 {
1932 	/* Clear EP status */
1933 	udc_clearep_getsts(udc, ep->hwep_num);
1934 
1935 	/* Send ZLP via FIFO mechanism */
1936 	udc_write_hwep(udc, ep->hwep_num, NULL, 0);
1937 }
1938 
1939 /*
1940  * Handle EP completion for ZLP
1941  * This function will only be called when a delayed ZLP needs to be sent out
1942  * after a DMA transfer has filled both buffers.
1943  */
1944 void udc_handle_eps(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1945 {
1946 	u32 epstatus;
1947 	struct lpc32xx_request *req;
1948 
1949 	if (ep->hwep_num <= 0)
1950 		return;
1951 
1952 	uda_clear_hwepint(udc, ep->hwep_num);
1953 
1954 	/* If this interrupt isn't enabled, return now */
1955 	if (!(udc->enabled_hwepints & (1 << ep->hwep_num)))
1956 		return;
1957 
1958 	/* Get endpoint status */
1959 	epstatus = udc_clearep_getsts(udc, ep->hwep_num);
1960 
1961 	/*
1962 	 * This should never happen, but protect against writing to the
1963 	 * buffer when full.
1964 	 */
1965 	if (epstatus & EP_SEL_F)
1966 		return;
1967 
1968 	if (ep->is_in) {
1969 		udc_send_in_zlp(udc, ep);
1970 		uda_disable_hwepint(udc, ep->hwep_num);
1971 	} else
1972 		return;
1973 
1974 	/* If there isn't a request waiting, something went wrong */
1975 	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1976 	if (req) {
1977 		done(ep, req, 0);
1978 
1979 		/* Start another request if ready */
1980 		if (!list_empty(&ep->queue)) {
1981 			if (ep->is_in)
1982 				udc_ep_in_req_dma(udc, ep);
1983 			else
1984 				udc_ep_out_req_dma(udc, ep);
1985 		} else
1986 			ep->req_pending = 0;
1987 	}
1988 }
1989 
1990 
1991 /* DMA end of transfer completion */
1992 static void udc_handle_dma_ep(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1993 {
1994 	u32 status, epstatus;
1995 	struct lpc32xx_request *req;
1996 	struct lpc32xx_usbd_dd_gad *dd;
1997 
1998 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
1999 	ep->totalints++;
2000 #endif
2001 
2002 	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
2003 	if (!req) {
2004 		ep_err(ep, "DMA interrupt on no req!\n");
2005 		return;
2006 	}
2007 	dd = req->dd_desc_ptr;
2008 
2009 	/* DMA descriptor should always be retired for this call */
2010 	if (!(dd->dd_status & DD_STATUS_DD_RETIRED))
2011 		ep_warn(ep, "DMA descriptor did not retire\n");
2012 
2013 	/* Disable DMA */
2014 	udc_ep_dma_disable(udc, ep->hwep_num);
2015 	writel((1 << ep->hwep_num), USBD_EOTINTCLR(udc->udp_baseaddr));
2016 	writel((1 << ep->hwep_num), USBD_NDDRTINTCLR(udc->udp_baseaddr));
2017 
2018 	/* System error? */
2019 	if (readl(USBD_SYSERRTINTST(udc->udp_baseaddr)) &
2020 	    (1 << ep->hwep_num)) {
2021 		writel((1 << ep->hwep_num),
2022 			     USBD_SYSERRTINTCLR(udc->udp_baseaddr));
2023 		ep_err(ep, "AHB critical error!\n");
2024 		ep->req_pending = 0;
2025 
2026 		/* The error could have occurred on a packet of a multipacket
2027 		 * transfer, so recovering the transfer is not possible. Close
2028 		 * the request with an error */
2029 		done(ep, req, -ECONNABORTED);
2030 		return;
2031 	}
2032 
2033 	/* Handle the current DD's status */
2034 	status = dd->dd_status;
2035 	switch (status & DD_STATUS_STS_MASK) {
2036 	case DD_STATUS_STS_NS:
2037 		/* DD not serviced? This shouldn't happen! */
2038 		ep->req_pending = 0;
2039 		ep_err(ep, "DMA critical EP error: DD not serviced (0x%x)!\n",
2040 		       status);
2041 
2042 		done(ep, req, -ECONNABORTED);
2043 		return;
2044 
2045 	case DD_STATUS_STS_BS:
2046 		/* Interrupt only fires on EOT - This shouldn't happen! */
2047 		ep->req_pending = 0;
2048 		ep_err(ep, "DMA critical EP error: EOT prior to service completion (0x%x)!\n",
2049 		       status);
2050 		done(ep, req, -ECONNABORTED);
2051 		return;
2052 
2053 	case DD_STATUS_STS_NC:
2054 	case DD_STATUS_STS_DUR:
2055 		/* Really just a short packet, not an underrun */
2056 		/* This is a good status and what we expect */
2057 		break;
2058 
2059 	default:
2060 		/* Data overrun, system error, or unknown */
2061 		ep->req_pending = 0;
2062 		ep_err(ep, "DMA critical EP error: System error (0x%x)!\n",
2063 		       status);
2064 		done(ep, req, -ECONNABORTED);
2065 		return;
2066 	}
2067 
2068 	/* ISO endpoints are handled differently */
2069 	if (ep->eptype == EP_ISO_TYPE) {
2070 		if (ep->is_in)
2071 			req->req.actual = req->req.length;
2072 		else
2073 			req->req.actual = dd->iso_status[0] & 0xFFFF;
2074 	} else
2075 		req->req.actual += DD_STATUS_CURDMACNT(status);
2076 
2077 	/* Send a ZLP if necessary. This will be done for non-int
2078 	 * packets which have a size that is a divisor of MAXP */
2079 	if (req->send_zlp) {
2080 		/*
2081 		 * If at least 1 buffer is available, send the ZLP now.
2082 		 * Otherwise, the ZLP send needs to be deferred until a
2083 		 * buffer is available.
2084 		 */
2085 		if (udc_clearep_getsts(udc, ep->hwep_num) & EP_SEL_F) {
2086 			udc_clearep_getsts(udc, ep->hwep_num);
2087 			uda_enable_hwepint(udc, ep->hwep_num);
2088 			epstatus = udc_clearep_getsts(udc, ep->hwep_num);
2089 
2090 			/* Let the EP interrupt handle the ZLP */
2091 			return;
2092 		} else
2093 			udc_send_in_zlp(udc, ep);
2094 	}
2095 
2096 	/* Transfer request is complete */
2097 	done(ep, req, 0);
2098 
2099 	/* Start another request if ready */
2100 	udc_clearep_getsts(udc, ep->hwep_num);
2101 	if (!list_empty((&ep->queue))) {
2102 		if (ep->is_in)
2103 			udc_ep_in_req_dma(udc, ep);
2104 		else
2105 			udc_ep_out_req_dma(udc, ep);
2106 	} else
2107 		ep->req_pending = 0;
2108 
2109 }
2110 
2111 /*
2112  *
2113  * Endpoint 0 functions
2114  *
2115  */
2116 static void udc_handle_dev(struct lpc32xx_udc *udc)
2117 {
2118 	u32 tmp;
2119 
2120 	udc_protocol_cmd_w(udc, CMD_GET_DEV_STAT);
2121 	tmp = udc_protocol_cmd_r(udc, DAT_GET_DEV_STAT);
2122 
2123 	if (tmp & DEV_RST)
2124 		uda_usb_reset(udc);
2125 	else if (tmp & DEV_CON_CH)
2126 		uda_power_event(udc, (tmp & DEV_CON));
2127 	else if (tmp & DEV_SUS_CH) {
2128 		if (tmp & DEV_SUS) {
2129 			if (udc->vbus == 0)
2130 				stop_activity(udc);
2131 			else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2132 				 udc->driver) {
2133 				/* Power down transceiver */
2134 				udc->poweron = 0;
2135 				schedule_work(&udc->pullup_job);
2136 				uda_resm_susp_event(udc, 1);
2137 			}
2138 		} else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2139 			   udc->driver && udc->vbus) {
2140 			uda_resm_susp_event(udc, 0);
2141 			/* Power up transceiver */
2142 			udc->poweron = 1;
2143 			schedule_work(&udc->pullup_job);
2144 		}
2145 	}
2146 }
2147 
2148 static int udc_get_status(struct lpc32xx_udc *udc, u16 reqtype, u16 wIndex)
2149 {
2150 	struct lpc32xx_ep *ep;
2151 	u32 ep0buff = 0, tmp;
2152 
2153 	switch (reqtype & USB_RECIP_MASK) {
2154 	case USB_RECIP_INTERFACE:
2155 		break; /* Not supported */
2156 
2157 	case USB_RECIP_DEVICE:
2158 		ep0buff = udc->gadget.is_selfpowered;
2159 		if (udc->dev_status & (1 << USB_DEVICE_REMOTE_WAKEUP))
2160 			ep0buff |= (1 << USB_DEVICE_REMOTE_WAKEUP);
2161 		break;
2162 
2163 	case USB_RECIP_ENDPOINT:
2164 		tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2165 		ep = &udc->ep[tmp];
2166 		if ((tmp == 0) || (tmp >= NUM_ENDPOINTS))
2167 			return -EOPNOTSUPP;
2168 
2169 		if (wIndex & USB_DIR_IN) {
2170 			if (!ep->is_in)
2171 				return -EOPNOTSUPP; /* Something's wrong */
2172 		} else if (ep->is_in)
2173 			return -EOPNOTSUPP; /* Not an IN endpoint */
2174 
2175 		/* Get status of the endpoint */
2176 		udc_protocol_cmd_w(udc, CMD_SEL_EP(ep->hwep_num));
2177 		tmp = udc_protocol_cmd_r(udc, DAT_SEL_EP(ep->hwep_num));
2178 
2179 		if (tmp & EP_SEL_ST)
2180 			ep0buff = (1 << USB_ENDPOINT_HALT);
2181 		else
2182 			ep0buff = 0;
2183 		break;
2184 
2185 	default:
2186 		break;
2187 	}
2188 
2189 	/* Return data */
2190 	udc_write_hwep(udc, EP_IN, &ep0buff, 2);
2191 
2192 	return 0;
2193 }
2194 
2195 static void udc_handle_ep0_setup(struct lpc32xx_udc *udc)
2196 {
2197 	struct lpc32xx_ep *ep, *ep0 = &udc->ep[0];
2198 	struct usb_ctrlrequest ctrlpkt;
2199 	int i, bytes;
2200 	u16 wIndex, wValue, wLength, reqtype, req, tmp;
2201 
2202 	/* Nuke previous transfers */
2203 	nuke(ep0, -EPROTO);
2204 
2205 	/* Get setup packet */
2206 	bytes = udc_read_hwep(udc, EP_OUT, (u32 *) &ctrlpkt, 8);
2207 	if (bytes != 8) {
2208 		ep_warn(ep0, "Incorrectly sized setup packet (s/b 8, is %d)!\n",
2209 			bytes);
2210 		return;
2211 	}
2212 
2213 	/* Native endianness */
2214 	wIndex = le16_to_cpu(ctrlpkt.wIndex);
2215 	wValue = le16_to_cpu(ctrlpkt.wValue);
2216 	wLength = le16_to_cpu(ctrlpkt.wLength);
2217 	reqtype = le16_to_cpu(ctrlpkt.bRequestType);
2218 
2219 	/* Set direction of EP0 */
2220 	if (likely(reqtype & USB_DIR_IN))
2221 		ep0->is_in = 1;
2222 	else
2223 		ep0->is_in = 0;
2224 
2225 	/* Handle SETUP packet */
2226 	req = le16_to_cpu(ctrlpkt.bRequest);
2227 	switch (req) {
2228 	case USB_REQ_CLEAR_FEATURE:
2229 	case USB_REQ_SET_FEATURE:
2230 		switch (reqtype) {
2231 		case (USB_TYPE_STANDARD | USB_RECIP_DEVICE):
2232 			if (wValue != USB_DEVICE_REMOTE_WAKEUP)
2233 				goto stall; /* Nothing else handled */
2234 
2235 			/* Tell board about event */
2236 			if (req == USB_REQ_CLEAR_FEATURE)
2237 				udc->dev_status &=
2238 					~(1 << USB_DEVICE_REMOTE_WAKEUP);
2239 			else
2240 				udc->dev_status |=
2241 					(1 << USB_DEVICE_REMOTE_WAKEUP);
2242 			uda_remwkp_cgh(udc);
2243 			goto zlp_send;
2244 
2245 		case (USB_TYPE_STANDARD | USB_RECIP_ENDPOINT):
2246 			tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2247 			if ((wValue != USB_ENDPOINT_HALT) ||
2248 			    (tmp >= NUM_ENDPOINTS))
2249 				break;
2250 
2251 			/* Find hardware endpoint from logical endpoint */
2252 			ep = &udc->ep[tmp];
2253 			tmp = ep->hwep_num;
2254 			if (tmp == 0)
2255 				break;
2256 
2257 			if (req == USB_REQ_SET_FEATURE)
2258 				udc_stall_hwep(udc, tmp);
2259 			else if (!ep->wedge)
2260 				udc_clrstall_hwep(udc, tmp);
2261 
2262 			goto zlp_send;
2263 
2264 		default:
2265 			break;
2266 		}
2267 
2268 
2269 	case USB_REQ_SET_ADDRESS:
2270 		if (reqtype == (USB_TYPE_STANDARD | USB_RECIP_DEVICE)) {
2271 			udc_set_address(udc, wValue);
2272 			goto zlp_send;
2273 		}
2274 		break;
2275 
2276 	case USB_REQ_GET_STATUS:
2277 		udc_get_status(udc, reqtype, wIndex);
2278 		return;
2279 
2280 	default:
2281 		break; /* Let GadgetFS handle the descriptor instead */
2282 	}
2283 
2284 	if (likely(udc->driver)) {
2285 		/* device-2-host (IN) or no data setup command, process
2286 		 * immediately */
2287 		spin_unlock(&udc->lock);
2288 		i = udc->driver->setup(&udc->gadget, &ctrlpkt);
2289 
2290 		spin_lock(&udc->lock);
2291 		if (req == USB_REQ_SET_CONFIGURATION) {
2292 			/* Configuration is set after endpoints are realized */
2293 			if (wValue) {
2294 				/* Set configuration */
2295 				udc_set_device_configured(udc);
2296 
2297 				udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2298 							DAT_WR_BYTE(AP_CLK |
2299 							INAK_BI | INAK_II));
2300 			} else {
2301 				/* Clear configuration */
2302 				udc_set_device_unconfigured(udc);
2303 
2304 				/* Disable NAK interrupts */
2305 				udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2306 							DAT_WR_BYTE(AP_CLK));
2307 			}
2308 		}
2309 
2310 		if (i < 0) {
2311 			/* setup processing failed, force stall */
2312 			dev_dbg(udc->dev,
2313 				"req %02x.%02x protocol STALL; stat %d\n",
2314 				reqtype, req, i);
2315 			udc->ep0state = WAIT_FOR_SETUP;
2316 			goto stall;
2317 		}
2318 	}
2319 
2320 	if (!ep0->is_in)
2321 		udc_ep0_send_zlp(udc); /* ZLP IN packet on data phase */
2322 
2323 	return;
2324 
2325 stall:
2326 	udc_stall_hwep(udc, EP_IN);
2327 	return;
2328 
2329 zlp_send:
2330 	udc_ep0_send_zlp(udc);
2331 	return;
2332 }
2333 
2334 /* IN endpoint 0 transfer */
2335 static void udc_handle_ep0_in(struct lpc32xx_udc *udc)
2336 {
2337 	struct lpc32xx_ep *ep0 = &udc->ep[0];
2338 	u32 epstatus;
2339 
2340 	/* Clear EP interrupt */
2341 	epstatus = udc_clearep_getsts(udc, EP_IN);
2342 
2343 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
2344 	ep0->totalints++;
2345 #endif
2346 
2347 	/* Stalled? Clear stall and reset buffers */
2348 	if (epstatus & EP_SEL_ST) {
2349 		udc_clrstall_hwep(udc, EP_IN);
2350 		nuke(ep0, -ECONNABORTED);
2351 		udc->ep0state = WAIT_FOR_SETUP;
2352 		return;
2353 	}
2354 
2355 	/* Is a buffer available? */
2356 	if (!(epstatus & EP_SEL_F)) {
2357 		/* Handle based on current state */
2358 		if (udc->ep0state == DATA_IN)
2359 			udc_ep0_in_req(udc);
2360 		else {
2361 			/* Unknown state for EP0 oe end of DATA IN phase */
2362 			nuke(ep0, -ECONNABORTED);
2363 			udc->ep0state = WAIT_FOR_SETUP;
2364 		}
2365 	}
2366 }
2367 
2368 /* OUT endpoint 0 transfer */
2369 static void udc_handle_ep0_out(struct lpc32xx_udc *udc)
2370 {
2371 	struct lpc32xx_ep *ep0 = &udc->ep[0];
2372 	u32 epstatus;
2373 
2374 	/* Clear EP interrupt */
2375 	epstatus = udc_clearep_getsts(udc, EP_OUT);
2376 
2377 
2378 #ifdef CONFIG_USB_GADGET_DEBUG_FILES
2379 	ep0->totalints++;
2380 #endif
2381 
2382 	/* Stalled? */
2383 	if (epstatus & EP_SEL_ST) {
2384 		udc_clrstall_hwep(udc, EP_OUT);
2385 		nuke(ep0, -ECONNABORTED);
2386 		udc->ep0state = WAIT_FOR_SETUP;
2387 		return;
2388 	}
2389 
2390 	/* A NAK may occur if a packet couldn't be received yet */
2391 	if (epstatus & EP_SEL_EPN)
2392 		return;
2393 	/* Setup packet incoming? */
2394 	if (epstatus & EP_SEL_STP) {
2395 		nuke(ep0, 0);
2396 		udc->ep0state = WAIT_FOR_SETUP;
2397 	}
2398 
2399 	/* Data available? */
2400 	if (epstatus & EP_SEL_F)
2401 		/* Handle based on current state */
2402 		switch (udc->ep0state) {
2403 		case WAIT_FOR_SETUP:
2404 			udc_handle_ep0_setup(udc);
2405 			break;
2406 
2407 		case DATA_OUT:
2408 			udc_ep0_out_req(udc);
2409 			break;
2410 
2411 		default:
2412 			/* Unknown state for EP0 */
2413 			nuke(ep0, -ECONNABORTED);
2414 			udc->ep0state = WAIT_FOR_SETUP;
2415 		}
2416 }
2417 
2418 /* Must be called without lock */
2419 static int lpc32xx_get_frame(struct usb_gadget *gadget)
2420 {
2421 	int frame;
2422 	unsigned long flags;
2423 	struct lpc32xx_udc *udc = to_udc(gadget);
2424 
2425 	if (!udc->clocked)
2426 		return -EINVAL;
2427 
2428 	spin_lock_irqsave(&udc->lock, flags);
2429 
2430 	frame = (int) udc_get_current_frame(udc);
2431 
2432 	spin_unlock_irqrestore(&udc->lock, flags);
2433 
2434 	return frame;
2435 }
2436 
2437 static int lpc32xx_wakeup(struct usb_gadget *gadget)
2438 {
2439 	return -ENOTSUPP;
2440 }
2441 
2442 static int lpc32xx_set_selfpowered(struct usb_gadget *gadget, int is_on)
2443 {
2444 	gadget->is_selfpowered = (is_on != 0);
2445 
2446 	return 0;
2447 }
2448 
2449 /*
2450  * vbus is here!  turn everything on that's ready
2451  * Must be called without lock
2452  */
2453 static int lpc32xx_vbus_session(struct usb_gadget *gadget, int is_active)
2454 {
2455 	unsigned long flags;
2456 	struct lpc32xx_udc *udc = to_udc(gadget);
2457 
2458 	spin_lock_irqsave(&udc->lock, flags);
2459 
2460 	/* Doesn't need lock */
2461 	if (udc->driver) {
2462 		udc_clk_set(udc, 1);
2463 		udc_enable(udc);
2464 		pullup(udc, is_active);
2465 	} else {
2466 		stop_activity(udc);
2467 		pullup(udc, 0);
2468 
2469 		spin_unlock_irqrestore(&udc->lock, flags);
2470 		/*
2471 		 *  Wait for all the endpoints to disable,
2472 		 *  before disabling clocks. Don't wait if
2473 		 *  endpoints are not enabled.
2474 		 */
2475 		if (atomic_read(&udc->enabled_ep_cnt))
2476 			wait_event_interruptible(udc->ep_disable_wait_queue,
2477 				 (atomic_read(&udc->enabled_ep_cnt) == 0));
2478 
2479 		spin_lock_irqsave(&udc->lock, flags);
2480 
2481 		udc_clk_set(udc, 0);
2482 	}
2483 
2484 	spin_unlock_irqrestore(&udc->lock, flags);
2485 
2486 	return 0;
2487 }
2488 
2489 /* Can be called with or without lock */
2490 static int lpc32xx_pullup(struct usb_gadget *gadget, int is_on)
2491 {
2492 	struct lpc32xx_udc *udc = to_udc(gadget);
2493 
2494 	/* Doesn't need lock */
2495 	pullup(udc, is_on);
2496 
2497 	return 0;
2498 }
2499 
2500 static int lpc32xx_start(struct usb_gadget *, struct usb_gadget_driver *);
2501 static int lpc32xx_stop(struct usb_gadget *);
2502 
2503 static const struct usb_gadget_ops lpc32xx_udc_ops = {
2504 	.get_frame		= lpc32xx_get_frame,
2505 	.wakeup			= lpc32xx_wakeup,
2506 	.set_selfpowered	= lpc32xx_set_selfpowered,
2507 	.vbus_session		= lpc32xx_vbus_session,
2508 	.pullup			= lpc32xx_pullup,
2509 	.udc_start		= lpc32xx_start,
2510 	.udc_stop		= lpc32xx_stop,
2511 };
2512 
2513 static void nop_release(struct device *dev)
2514 {
2515 	/* nothing to free */
2516 }
2517 
2518 static const struct lpc32xx_udc controller_template = {
2519 	.gadget = {
2520 		.ops	= &lpc32xx_udc_ops,
2521 		.name	= driver_name,
2522 		.dev	= {
2523 			.init_name = "gadget",
2524 			.release = nop_release,
2525 		}
2526 	},
2527 	.ep[0] = {
2528 		.ep = {
2529 			.name	= "ep0",
2530 			.ops	= &lpc32xx_ep_ops,
2531 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL,
2532 					USB_EP_CAPS_DIR_ALL),
2533 		},
2534 		.maxpacket	= 64,
2535 		.hwep_num_base	= 0,
2536 		.hwep_num	= 0, /* Can be 0 or 1, has special handling */
2537 		.lep		= 0,
2538 		.eptype		= EP_CTL_TYPE,
2539 	},
2540 	.ep[1] = {
2541 		.ep = {
2542 			.name	= "ep1-int",
2543 			.ops	= &lpc32xx_ep_ops,
2544 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2545 					USB_EP_CAPS_DIR_ALL),
2546 		},
2547 		.maxpacket	= 64,
2548 		.hwep_num_base	= 2,
2549 		.hwep_num	= 0, /* 2 or 3, will be set later */
2550 		.lep		= 1,
2551 		.eptype		= EP_INT_TYPE,
2552 	},
2553 	.ep[2] = {
2554 		.ep = {
2555 			.name	= "ep2-bulk",
2556 			.ops	= &lpc32xx_ep_ops,
2557 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2558 					USB_EP_CAPS_DIR_ALL),
2559 		},
2560 		.maxpacket	= 64,
2561 		.hwep_num_base	= 4,
2562 		.hwep_num	= 0, /* 4 or 5, will be set later */
2563 		.lep		= 2,
2564 		.eptype		= EP_BLK_TYPE,
2565 	},
2566 	.ep[3] = {
2567 		.ep = {
2568 			.name	= "ep3-iso",
2569 			.ops	= &lpc32xx_ep_ops,
2570 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2571 					USB_EP_CAPS_DIR_ALL),
2572 		},
2573 		.maxpacket	= 1023,
2574 		.hwep_num_base	= 6,
2575 		.hwep_num	= 0, /* 6 or 7, will be set later */
2576 		.lep		= 3,
2577 		.eptype		= EP_ISO_TYPE,
2578 	},
2579 	.ep[4] = {
2580 		.ep = {
2581 			.name	= "ep4-int",
2582 			.ops	= &lpc32xx_ep_ops,
2583 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2584 					USB_EP_CAPS_DIR_ALL),
2585 		},
2586 		.maxpacket	= 64,
2587 		.hwep_num_base	= 8,
2588 		.hwep_num	= 0, /* 8 or 9, will be set later */
2589 		.lep		= 4,
2590 		.eptype		= EP_INT_TYPE,
2591 	},
2592 	.ep[5] = {
2593 		.ep = {
2594 			.name	= "ep5-bulk",
2595 			.ops	= &lpc32xx_ep_ops,
2596 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2597 					USB_EP_CAPS_DIR_ALL),
2598 		},
2599 		.maxpacket	= 64,
2600 		.hwep_num_base	= 10,
2601 		.hwep_num	= 0, /* 10 or 11, will be set later */
2602 		.lep		= 5,
2603 		.eptype		= EP_BLK_TYPE,
2604 	},
2605 	.ep[6] = {
2606 		.ep = {
2607 			.name	= "ep6-iso",
2608 			.ops	= &lpc32xx_ep_ops,
2609 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2610 					USB_EP_CAPS_DIR_ALL),
2611 		},
2612 		.maxpacket	= 1023,
2613 		.hwep_num_base	= 12,
2614 		.hwep_num	= 0, /* 12 or 13, will be set later */
2615 		.lep		= 6,
2616 		.eptype		= EP_ISO_TYPE,
2617 	},
2618 	.ep[7] = {
2619 		.ep = {
2620 			.name	= "ep7-int",
2621 			.ops	= &lpc32xx_ep_ops,
2622 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2623 					USB_EP_CAPS_DIR_ALL),
2624 		},
2625 		.maxpacket	= 64,
2626 		.hwep_num_base	= 14,
2627 		.hwep_num	= 0,
2628 		.lep		= 7,
2629 		.eptype		= EP_INT_TYPE,
2630 	},
2631 	.ep[8] = {
2632 		.ep = {
2633 			.name	= "ep8-bulk",
2634 			.ops	= &lpc32xx_ep_ops,
2635 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2636 					USB_EP_CAPS_DIR_ALL),
2637 		},
2638 		.maxpacket	= 64,
2639 		.hwep_num_base	= 16,
2640 		.hwep_num	= 0,
2641 		.lep		= 8,
2642 		.eptype		= EP_BLK_TYPE,
2643 	},
2644 	.ep[9] = {
2645 		.ep = {
2646 			.name	= "ep9-iso",
2647 			.ops	= &lpc32xx_ep_ops,
2648 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2649 					USB_EP_CAPS_DIR_ALL),
2650 		},
2651 		.maxpacket	= 1023,
2652 		.hwep_num_base	= 18,
2653 		.hwep_num	= 0,
2654 		.lep		= 9,
2655 		.eptype		= EP_ISO_TYPE,
2656 	},
2657 	.ep[10] = {
2658 		.ep = {
2659 			.name	= "ep10-int",
2660 			.ops	= &lpc32xx_ep_ops,
2661 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2662 					USB_EP_CAPS_DIR_ALL),
2663 		},
2664 		.maxpacket	= 64,
2665 		.hwep_num_base	= 20,
2666 		.hwep_num	= 0,
2667 		.lep		= 10,
2668 		.eptype		= EP_INT_TYPE,
2669 	},
2670 	.ep[11] = {
2671 		.ep = {
2672 			.name	= "ep11-bulk",
2673 			.ops	= &lpc32xx_ep_ops,
2674 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2675 					USB_EP_CAPS_DIR_ALL),
2676 		},
2677 		.maxpacket	= 64,
2678 		.hwep_num_base	= 22,
2679 		.hwep_num	= 0,
2680 		.lep		= 11,
2681 		.eptype		= EP_BLK_TYPE,
2682 	},
2683 	.ep[12] = {
2684 		.ep = {
2685 			.name	= "ep12-iso",
2686 			.ops	= &lpc32xx_ep_ops,
2687 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2688 					USB_EP_CAPS_DIR_ALL),
2689 		},
2690 		.maxpacket	= 1023,
2691 		.hwep_num_base	= 24,
2692 		.hwep_num	= 0,
2693 		.lep		= 12,
2694 		.eptype		= EP_ISO_TYPE,
2695 	},
2696 	.ep[13] = {
2697 		.ep = {
2698 			.name	= "ep13-int",
2699 			.ops	= &lpc32xx_ep_ops,
2700 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2701 					USB_EP_CAPS_DIR_ALL),
2702 		},
2703 		.maxpacket	= 64,
2704 		.hwep_num_base	= 26,
2705 		.hwep_num	= 0,
2706 		.lep		= 13,
2707 		.eptype		= EP_INT_TYPE,
2708 	},
2709 	.ep[14] = {
2710 		.ep = {
2711 			.name	= "ep14-bulk",
2712 			.ops	= &lpc32xx_ep_ops,
2713 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2714 					USB_EP_CAPS_DIR_ALL),
2715 		},
2716 		.maxpacket	= 64,
2717 		.hwep_num_base	= 28,
2718 		.hwep_num	= 0,
2719 		.lep		= 14,
2720 		.eptype		= EP_BLK_TYPE,
2721 	},
2722 	.ep[15] = {
2723 		.ep = {
2724 			.name	= "ep15-bulk",
2725 			.ops	= &lpc32xx_ep_ops,
2726 			.caps	= USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2727 					USB_EP_CAPS_DIR_ALL),
2728 		},
2729 		.maxpacket	= 1023,
2730 		.hwep_num_base	= 30,
2731 		.hwep_num	= 0,
2732 		.lep		= 15,
2733 		.eptype		= EP_BLK_TYPE,
2734 	},
2735 };
2736 
2737 /* ISO and status interrupts */
2738 static irqreturn_t lpc32xx_usb_lp_irq(int irq, void *_udc)
2739 {
2740 	u32 tmp, devstat;
2741 	struct lpc32xx_udc *udc = _udc;
2742 
2743 	spin_lock(&udc->lock);
2744 
2745 	/* Read the device status register */
2746 	devstat = readl(USBD_DEVINTST(udc->udp_baseaddr));
2747 
2748 	devstat &= ~USBD_EP_FAST;
2749 	writel(devstat, USBD_DEVINTCLR(udc->udp_baseaddr));
2750 	devstat = devstat & udc->enabled_devints;
2751 
2752 	/* Device specific handling needed? */
2753 	if (devstat & USBD_DEV_STAT)
2754 		udc_handle_dev(udc);
2755 
2756 	/* Start of frame? (devstat & FRAME_INT):
2757 	 * The frame interrupt isn't really needed for ISO support,
2758 	 * as the driver will queue the necessary packets */
2759 
2760 	/* Error? */
2761 	if (devstat & ERR_INT) {
2762 		/* All types of errors, from cable removal during transfer to
2763 		 * misc protocol and bit errors. These are mostly for just info,
2764 		 * as the USB hardware will work around these. If these errors
2765 		 * happen alot, something is wrong. */
2766 		udc_protocol_cmd_w(udc, CMD_RD_ERR_STAT);
2767 		tmp = udc_protocol_cmd_r(udc, DAT_RD_ERR_STAT);
2768 		dev_dbg(udc->dev, "Device error (0x%x)!\n", tmp);
2769 	}
2770 
2771 	spin_unlock(&udc->lock);
2772 
2773 	return IRQ_HANDLED;
2774 }
2775 
2776 /* EP interrupts */
2777 static irqreturn_t lpc32xx_usb_hp_irq(int irq, void *_udc)
2778 {
2779 	u32 tmp;
2780 	struct lpc32xx_udc *udc = _udc;
2781 
2782 	spin_lock(&udc->lock);
2783 
2784 	/* Read the device status register */
2785 	writel(USBD_EP_FAST, USBD_DEVINTCLR(udc->udp_baseaddr));
2786 
2787 	/* Endpoints */
2788 	tmp = readl(USBD_EPINTST(udc->udp_baseaddr));
2789 
2790 	/* Special handling for EP0 */
2791 	if (tmp & (EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2792 		/* Handle EP0 IN */
2793 		if (tmp & (EP_MASK_SEL(0, EP_IN)))
2794 			udc_handle_ep0_in(udc);
2795 
2796 		/* Handle EP0 OUT */
2797 		if (tmp & (EP_MASK_SEL(0, EP_OUT)))
2798 			udc_handle_ep0_out(udc);
2799 	}
2800 
2801 	/* All other EPs */
2802 	if (tmp & ~(EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2803 		int i;
2804 
2805 		/* Handle other EP interrupts */
2806 		for (i = 1; i < NUM_ENDPOINTS; i++) {
2807 			if (tmp & (1 << udc->ep[i].hwep_num))
2808 				udc_handle_eps(udc, &udc->ep[i]);
2809 		}
2810 	}
2811 
2812 	spin_unlock(&udc->lock);
2813 
2814 	return IRQ_HANDLED;
2815 }
2816 
2817 static irqreturn_t lpc32xx_usb_devdma_irq(int irq, void *_udc)
2818 {
2819 	struct lpc32xx_udc *udc = _udc;
2820 
2821 	int i;
2822 	u32 tmp;
2823 
2824 	spin_lock(&udc->lock);
2825 
2826 	/* Handle EP DMA EOT interrupts */
2827 	tmp = readl(USBD_EOTINTST(udc->udp_baseaddr)) |
2828 		(readl(USBD_EPDMAST(udc->udp_baseaddr)) &
2829 		 readl(USBD_NDDRTINTST(udc->udp_baseaddr))) |
2830 		readl(USBD_SYSERRTINTST(udc->udp_baseaddr));
2831 	for (i = 1; i < NUM_ENDPOINTS; i++) {
2832 		if (tmp & (1 << udc->ep[i].hwep_num))
2833 			udc_handle_dma_ep(udc, &udc->ep[i]);
2834 	}
2835 
2836 	spin_unlock(&udc->lock);
2837 
2838 	return IRQ_HANDLED;
2839 }
2840 
2841 /*
2842  *
2843  * VBUS detection, pullup handler, and Gadget cable state notification
2844  *
2845  */
2846 static void vbus_work(struct work_struct *work)
2847 {
2848 	u8 value;
2849 	struct lpc32xx_udc *udc = container_of(work, struct lpc32xx_udc,
2850 					       vbus_job);
2851 
2852 	if (udc->enabled != 0) {
2853 		/* Discharge VBUS real quick */
2854 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2855 			ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
2856 
2857 		/* Give VBUS some time (100mS) to discharge */
2858 		msleep(100);
2859 
2860 		/* Disable VBUS discharge resistor */
2861 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2862 			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
2863 			OTG1_VBUS_DISCHRG);
2864 
2865 		/* Clear interrupt */
2866 		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2867 			ISP1301_I2C_INTERRUPT_LATCH |
2868 			ISP1301_I2C_REG_CLEAR_ADDR, ~0);
2869 
2870 		/* Get the VBUS status from the transceiver */
2871 		value = i2c_smbus_read_byte_data(udc->isp1301_i2c_client,
2872 						 ISP1301_I2C_INTERRUPT_SOURCE);
2873 
2874 		/* VBUS on or off? */
2875 		if (value & INT_SESS_VLD)
2876 			udc->vbus = 1;
2877 		else
2878 			udc->vbus = 0;
2879 
2880 		/* VBUS changed? */
2881 		if (udc->last_vbus != udc->vbus) {
2882 			udc->last_vbus = udc->vbus;
2883 			lpc32xx_vbus_session(&udc->gadget, udc->vbus);
2884 		}
2885 	}
2886 
2887 	/* Re-enable after completion */
2888 	enable_irq(udc->udp_irq[IRQ_USB_ATX]);
2889 }
2890 
2891 static irqreturn_t lpc32xx_usb_vbus_irq(int irq, void *_udc)
2892 {
2893 	struct lpc32xx_udc *udc = _udc;
2894 
2895 	/* Defer handling of VBUS IRQ to work queue */
2896 	disable_irq_nosync(udc->udp_irq[IRQ_USB_ATX]);
2897 	schedule_work(&udc->vbus_job);
2898 
2899 	return IRQ_HANDLED;
2900 }
2901 
2902 static int lpc32xx_start(struct usb_gadget *gadget,
2903 			 struct usb_gadget_driver *driver)
2904 {
2905 	struct lpc32xx_udc *udc = to_udc(gadget);
2906 	int i;
2907 
2908 	if (!driver || driver->max_speed < USB_SPEED_FULL || !driver->setup) {
2909 		dev_err(udc->dev, "bad parameter.\n");
2910 		return -EINVAL;
2911 	}
2912 
2913 	if (udc->driver) {
2914 		dev_err(udc->dev, "UDC already has a gadget driver\n");
2915 		return -EBUSY;
2916 	}
2917 
2918 	udc->driver = driver;
2919 	udc->gadget.dev.of_node = udc->dev->of_node;
2920 	udc->enabled = 1;
2921 	udc->gadget.is_selfpowered = 1;
2922 	udc->vbus = 0;
2923 
2924 	/* Force VBUS process once to check for cable insertion */
2925 	udc->last_vbus = udc->vbus = 0;
2926 	schedule_work(&udc->vbus_job);
2927 
2928 	/* Do not re-enable ATX IRQ (3) */
2929 	for (i = IRQ_USB_LP; i < IRQ_USB_ATX; i++)
2930 		enable_irq(udc->udp_irq[i]);
2931 
2932 	return 0;
2933 }
2934 
2935 static int lpc32xx_stop(struct usb_gadget *gadget)
2936 {
2937 	int i;
2938 	struct lpc32xx_udc *udc = to_udc(gadget);
2939 
2940 	for (i = IRQ_USB_LP; i <= IRQ_USB_ATX; i++)
2941 		disable_irq(udc->udp_irq[i]);
2942 
2943 	if (udc->clocked) {
2944 		spin_lock(&udc->lock);
2945 		stop_activity(udc);
2946 		spin_unlock(&udc->lock);
2947 
2948 		/*
2949 		 *  Wait for all the endpoints to disable,
2950 		 *  before disabling clocks. Don't wait if
2951 		 *  endpoints are not enabled.
2952 		 */
2953 		if (atomic_read(&udc->enabled_ep_cnt))
2954 			wait_event_interruptible(udc->ep_disable_wait_queue,
2955 				(atomic_read(&udc->enabled_ep_cnt) == 0));
2956 
2957 		spin_lock(&udc->lock);
2958 		udc_clk_set(udc, 0);
2959 		spin_unlock(&udc->lock);
2960 	}
2961 
2962 	udc->enabled = 0;
2963 	udc->driver = NULL;
2964 
2965 	return 0;
2966 }
2967 
2968 static void lpc32xx_udc_shutdown(struct platform_device *dev)
2969 {
2970 	/* Force disconnect on reboot */
2971 	struct lpc32xx_udc *udc = platform_get_drvdata(dev);
2972 
2973 	pullup(udc, 0);
2974 }
2975 
2976 /*
2977  * Callbacks to be overridden by options passed via OF (TODO)
2978  */
2979 
2980 static void lpc32xx_usbd_conn_chg(int conn)
2981 {
2982 	/* Do nothing, it might be nice to enable an LED
2983 	 * based on conn state being !0 */
2984 }
2985 
2986 static void lpc32xx_usbd_susp_chg(int susp)
2987 {
2988 	/* Device suspend if susp != 0 */
2989 }
2990 
2991 static void lpc32xx_rmwkup_chg(int remote_wakup_enable)
2992 {
2993 	/* Enable or disable USB remote wakeup */
2994 }
2995 
2996 struct lpc32xx_usbd_cfg lpc32xx_usbddata = {
2997 	.vbus_drv_pol = 0,
2998 	.conn_chgb = &lpc32xx_usbd_conn_chg,
2999 	.susp_chgb = &lpc32xx_usbd_susp_chg,
3000 	.rmwk_chgb = &lpc32xx_rmwkup_chg,
3001 };
3002 
3003 
3004 static u64 lpc32xx_usbd_dmamask = ~(u32) 0x7F;
3005 
3006 static int lpc32xx_udc_probe(struct platform_device *pdev)
3007 {
3008 	struct device *dev = &pdev->dev;
3009 	struct lpc32xx_udc *udc;
3010 	int retval, i;
3011 	struct resource *res;
3012 	dma_addr_t dma_handle;
3013 	struct device_node *isp1301_node;
3014 
3015 	udc = kmemdup(&controller_template, sizeof(*udc), GFP_KERNEL);
3016 	if (!udc)
3017 		return -ENOMEM;
3018 
3019 	for (i = 0; i <= 15; i++)
3020 		udc->ep[i].udc = udc;
3021 	udc->gadget.ep0 = &udc->ep[0].ep;
3022 
3023 	/* init software state */
3024 	udc->gadget.dev.parent = dev;
3025 	udc->pdev = pdev;
3026 	udc->dev = &pdev->dev;
3027 	udc->enabled = 0;
3028 
3029 	if (pdev->dev.of_node) {
3030 		isp1301_node = of_parse_phandle(pdev->dev.of_node,
3031 						"transceiver", 0);
3032 	} else {
3033 		isp1301_node = NULL;
3034 	}
3035 
3036 	udc->isp1301_i2c_client = isp1301_get_client(isp1301_node);
3037 	if (!udc->isp1301_i2c_client) {
3038 		retval = -EPROBE_DEFER;
3039 		goto phy_fail;
3040 	}
3041 
3042 	dev_info(udc->dev, "ISP1301 I2C device at address 0x%x\n",
3043 		 udc->isp1301_i2c_client->addr);
3044 
3045 	pdev->dev.dma_mask = &lpc32xx_usbd_dmamask;
3046 	retval = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
3047 	if (retval)
3048 		goto resource_fail;
3049 
3050 	udc->board = &lpc32xx_usbddata;
3051 
3052 	/*
3053 	 * Resources are mapped as follows:
3054 	 *  IORESOURCE_MEM, base address and size of USB space
3055 	 *  IORESOURCE_IRQ, USB device low priority interrupt number
3056 	 *  IORESOURCE_IRQ, USB device high priority interrupt number
3057 	 *  IORESOURCE_IRQ, USB device interrupt number
3058 	 *  IORESOURCE_IRQ, USB transceiver interrupt number
3059 	 */
3060 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3061 	if (!res) {
3062 		retval = -ENXIO;
3063 		goto resource_fail;
3064 	}
3065 
3066 	spin_lock_init(&udc->lock);
3067 
3068 	/* Get IRQs */
3069 	for (i = 0; i < 4; i++) {
3070 		udc->udp_irq[i] = platform_get_irq(pdev, i);
3071 		if (udc->udp_irq[i] < 0) {
3072 			dev_err(udc->dev,
3073 				"irq resource %d not available!\n", i);
3074 			retval = udc->udp_irq[i];
3075 			goto irq_fail;
3076 		}
3077 	}
3078 
3079 	udc->io_p_start = res->start;
3080 	udc->io_p_size = resource_size(res);
3081 	if (!request_mem_region(udc->io_p_start, udc->io_p_size, driver_name)) {
3082 		dev_err(udc->dev, "someone's using UDC memory\n");
3083 		retval = -EBUSY;
3084 		goto request_mem_region_fail;
3085 	}
3086 
3087 	udc->udp_baseaddr = ioremap(udc->io_p_start, udc->io_p_size);
3088 	if (!udc->udp_baseaddr) {
3089 		retval = -ENOMEM;
3090 		dev_err(udc->dev, "IO map failure\n");
3091 		goto io_map_fail;
3092 	}
3093 
3094 	/* Get USB device clock */
3095 	udc->usb_slv_clk = clk_get(&pdev->dev, NULL);
3096 	if (IS_ERR(udc->usb_slv_clk)) {
3097 		dev_err(udc->dev, "failed to acquire USB device clock\n");
3098 		retval = PTR_ERR(udc->usb_slv_clk);
3099 		goto usb_clk_get_fail;
3100 	}
3101 
3102 	/* Enable USB device clock */
3103 	retval = clk_prepare_enable(udc->usb_slv_clk);
3104 	if (retval < 0) {
3105 		dev_err(udc->dev, "failed to start USB device clock\n");
3106 		goto usb_clk_enable_fail;
3107 	}
3108 
3109 	/* Setup deferred workqueue data */
3110 	udc->poweron = udc->pullup = 0;
3111 	INIT_WORK(&udc->pullup_job, pullup_work);
3112 	INIT_WORK(&udc->vbus_job, vbus_work);
3113 #ifdef CONFIG_PM
3114 	INIT_WORK(&udc->power_job, power_work);
3115 #endif
3116 
3117 	/* All clocks are now on */
3118 	udc->clocked = 1;
3119 
3120 	isp1301_udc_configure(udc);
3121 	/* Allocate memory for the UDCA */
3122 	udc->udca_v_base = dma_alloc_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3123 					      &dma_handle,
3124 					      (GFP_KERNEL | GFP_DMA));
3125 	if (!udc->udca_v_base) {
3126 		dev_err(udc->dev, "error getting UDCA region\n");
3127 		retval = -ENOMEM;
3128 		goto i2c_fail;
3129 	}
3130 	udc->udca_p_base = dma_handle;
3131 	dev_dbg(udc->dev, "DMA buffer(0x%x bytes), P:0x%08x, V:0x%p\n",
3132 		UDCA_BUFF_SIZE, udc->udca_p_base, udc->udca_v_base);
3133 
3134 	/* Setup the DD DMA memory pool */
3135 	udc->dd_cache = dma_pool_create("udc_dd", udc->dev,
3136 					sizeof(struct lpc32xx_usbd_dd_gad),
3137 					sizeof(u32), 0);
3138 	if (!udc->dd_cache) {
3139 		dev_err(udc->dev, "error getting DD DMA region\n");
3140 		retval = -ENOMEM;
3141 		goto dma_alloc_fail;
3142 	}
3143 
3144 	/* Clear USB peripheral and initialize gadget endpoints */
3145 	udc_disable(udc);
3146 	udc_reinit(udc);
3147 
3148 	/* Request IRQs - low and high priority USB device IRQs are routed to
3149 	 * the same handler, while the DMA interrupt is routed elsewhere */
3150 	retval = request_irq(udc->udp_irq[IRQ_USB_LP], lpc32xx_usb_lp_irq,
3151 			     0, "udc_lp", udc);
3152 	if (retval < 0) {
3153 		dev_err(udc->dev, "LP request irq %d failed\n",
3154 			udc->udp_irq[IRQ_USB_LP]);
3155 		goto irq_lp_fail;
3156 	}
3157 	retval = request_irq(udc->udp_irq[IRQ_USB_HP], lpc32xx_usb_hp_irq,
3158 			     0, "udc_hp", udc);
3159 	if (retval < 0) {
3160 		dev_err(udc->dev, "HP request irq %d failed\n",
3161 			udc->udp_irq[IRQ_USB_HP]);
3162 		goto irq_hp_fail;
3163 	}
3164 
3165 	retval = request_irq(udc->udp_irq[IRQ_USB_DEVDMA],
3166 			     lpc32xx_usb_devdma_irq, 0, "udc_dma", udc);
3167 	if (retval < 0) {
3168 		dev_err(udc->dev, "DEV request irq %d failed\n",
3169 			udc->udp_irq[IRQ_USB_DEVDMA]);
3170 		goto irq_dev_fail;
3171 	}
3172 
3173 	/* The transceiver interrupt is used for VBUS detection and will
3174 	   kick off the VBUS handler function */
3175 	retval = request_irq(udc->udp_irq[IRQ_USB_ATX], lpc32xx_usb_vbus_irq,
3176 			     0, "udc_otg", udc);
3177 	if (retval < 0) {
3178 		dev_err(udc->dev, "VBUS request irq %d failed\n",
3179 			udc->udp_irq[IRQ_USB_ATX]);
3180 		goto irq_xcvr_fail;
3181 	}
3182 
3183 	/* Initialize wait queue */
3184 	init_waitqueue_head(&udc->ep_disable_wait_queue);
3185 	atomic_set(&udc->enabled_ep_cnt, 0);
3186 
3187 	/* Keep all IRQs disabled until GadgetFS starts up */
3188 	for (i = IRQ_USB_LP; i <= IRQ_USB_ATX; i++)
3189 		disable_irq(udc->udp_irq[i]);
3190 
3191 	retval = usb_add_gadget_udc(dev, &udc->gadget);
3192 	if (retval < 0)
3193 		goto add_gadget_fail;
3194 
3195 	dev_set_drvdata(dev, udc);
3196 	device_init_wakeup(dev, 1);
3197 	create_debug_file(udc);
3198 
3199 	/* Disable clocks for now */
3200 	udc_clk_set(udc, 0);
3201 
3202 	dev_info(udc->dev, "%s version %s\n", driver_name, DRIVER_VERSION);
3203 	return 0;
3204 
3205 add_gadget_fail:
3206 	free_irq(udc->udp_irq[IRQ_USB_ATX], udc);
3207 irq_xcvr_fail:
3208 	free_irq(udc->udp_irq[IRQ_USB_DEVDMA], udc);
3209 irq_dev_fail:
3210 	free_irq(udc->udp_irq[IRQ_USB_HP], udc);
3211 irq_hp_fail:
3212 	free_irq(udc->udp_irq[IRQ_USB_LP], udc);
3213 irq_lp_fail:
3214 	dma_pool_destroy(udc->dd_cache);
3215 dma_alloc_fail:
3216 	dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3217 			  udc->udca_v_base, udc->udca_p_base);
3218 i2c_fail:
3219 	clk_disable_unprepare(udc->usb_slv_clk);
3220 usb_clk_enable_fail:
3221 	clk_put(udc->usb_slv_clk);
3222 usb_clk_get_fail:
3223 	iounmap(udc->udp_baseaddr);
3224 io_map_fail:
3225 	release_mem_region(udc->io_p_start, udc->io_p_size);
3226 	dev_err(udc->dev, "%s probe failed, %d\n", driver_name, retval);
3227 request_mem_region_fail:
3228 irq_fail:
3229 resource_fail:
3230 phy_fail:
3231 	kfree(udc);
3232 	return retval;
3233 }
3234 
3235 static int lpc32xx_udc_remove(struct platform_device *pdev)
3236 {
3237 	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3238 
3239 	usb_del_gadget_udc(&udc->gadget);
3240 	if (udc->driver)
3241 		return -EBUSY;
3242 
3243 	udc_clk_set(udc, 1);
3244 	udc_disable(udc);
3245 	pullup(udc, 0);
3246 
3247 	free_irq(udc->udp_irq[IRQ_USB_ATX], udc);
3248 
3249 	device_init_wakeup(&pdev->dev, 0);
3250 	remove_debug_file(udc);
3251 
3252 	dma_pool_destroy(udc->dd_cache);
3253 	dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3254 			  udc->udca_v_base, udc->udca_p_base);
3255 	free_irq(udc->udp_irq[IRQ_USB_DEVDMA], udc);
3256 	free_irq(udc->udp_irq[IRQ_USB_HP], udc);
3257 	free_irq(udc->udp_irq[IRQ_USB_LP], udc);
3258 
3259 	clk_disable_unprepare(udc->usb_slv_clk);
3260 	clk_put(udc->usb_slv_clk);
3261 
3262 	iounmap(udc->udp_baseaddr);
3263 	release_mem_region(udc->io_p_start, udc->io_p_size);
3264 	kfree(udc);
3265 
3266 	return 0;
3267 }
3268 
3269 #ifdef CONFIG_PM
3270 static int lpc32xx_udc_suspend(struct platform_device *pdev, pm_message_t mesg)
3271 {
3272 	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3273 
3274 	if (udc->clocked) {
3275 		/* Power down ISP */
3276 		udc->poweron = 0;
3277 		isp1301_set_powerstate(udc, 0);
3278 
3279 		/* Disable clocking */
3280 		udc_clk_set(udc, 0);
3281 
3282 		/* Keep clock flag on, so we know to re-enable clocks
3283 		   on resume */
3284 		udc->clocked = 1;
3285 
3286 		/* Kill global USB clock */
3287 		clk_disable_unprepare(udc->usb_slv_clk);
3288 	}
3289 
3290 	return 0;
3291 }
3292 
3293 static int lpc32xx_udc_resume(struct platform_device *pdev)
3294 {
3295 	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3296 
3297 	if (udc->clocked) {
3298 		/* Enable global USB clock */
3299 		clk_prepare_enable(udc->usb_slv_clk);
3300 
3301 		/* Enable clocking */
3302 		udc_clk_set(udc, 1);
3303 
3304 		/* ISP back to normal power mode */
3305 		udc->poweron = 1;
3306 		isp1301_set_powerstate(udc, 1);
3307 	}
3308 
3309 	return 0;
3310 }
3311 #else
3312 #define	lpc32xx_udc_suspend	NULL
3313 #define	lpc32xx_udc_resume	NULL
3314 #endif
3315 
3316 #ifdef CONFIG_OF
3317 static const struct of_device_id lpc32xx_udc_of_match[] = {
3318 	{ .compatible = "nxp,lpc3220-udc", },
3319 	{ },
3320 };
3321 MODULE_DEVICE_TABLE(of, lpc32xx_udc_of_match);
3322 #endif
3323 
3324 static struct platform_driver lpc32xx_udc_driver = {
3325 	.remove		= lpc32xx_udc_remove,
3326 	.shutdown	= lpc32xx_udc_shutdown,
3327 	.suspend	= lpc32xx_udc_suspend,
3328 	.resume		= lpc32xx_udc_resume,
3329 	.driver		= {
3330 		.name	= (char *) driver_name,
3331 		.of_match_table = of_match_ptr(lpc32xx_udc_of_match),
3332 	},
3333 };
3334 
3335 module_platform_driver_probe(lpc32xx_udc_driver, lpc32xx_udc_probe);
3336 
3337 MODULE_DESCRIPTION("LPC32XX udc driver");
3338 MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
3339 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
3340 MODULE_LICENSE("GPL");
3341 MODULE_ALIAS("platform:lpc32xx_udc");
3342