1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * USB Gadget driver for LPC32xx 4 * 5 * Authors: 6 * Kevin Wells <kevin.wells@nxp.com> 7 * Mike James 8 * Roland Stigge <stigge@antcom.de> 9 * 10 * Copyright (C) 2006 Philips Semiconductors 11 * Copyright (C) 2009 NXP Semiconductors 12 * Copyright (C) 2012 Roland Stigge 13 * 14 * Note: This driver is based on original work done by Mike James for 15 * the LPC3180. 16 */ 17 18 #include <linux/clk.h> 19 #include <linux/delay.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/dmapool.h> 22 #include <linux/i2c.h> 23 #include <linux/interrupt.h> 24 #include <linux/module.h> 25 #include <linux/of.h> 26 #include <linux/platform_device.h> 27 #include <linux/proc_fs.h> 28 #include <linux/slab.h> 29 #include <linux/usb/ch9.h> 30 #include <linux/usb/gadget.h> 31 #include <linux/usb/isp1301.h> 32 33 #ifdef CONFIG_USB_GADGET_DEBUG_FILES 34 #include <linux/debugfs.h> 35 #include <linux/seq_file.h> 36 #endif 37 38 #include <mach/hardware.h> 39 40 /* 41 * USB device configuration structure 42 */ 43 typedef void (*usc_chg_event)(int); 44 struct lpc32xx_usbd_cfg { 45 int vbus_drv_pol; /* 0=active low drive for VBUS via ISP1301 */ 46 usc_chg_event conn_chgb; /* Connection change event (optional) */ 47 usc_chg_event susp_chgb; /* Suspend/resume event (optional) */ 48 usc_chg_event rmwk_chgb; /* Enable/disable remote wakeup */ 49 }; 50 51 /* 52 * controller driver data structures 53 */ 54 55 /* 16 endpoints (not to be confused with 32 hardware endpoints) */ 56 #define NUM_ENDPOINTS 16 57 58 /* 59 * IRQ indices make reading the code a little easier 60 */ 61 #define IRQ_USB_LP 0 62 #define IRQ_USB_HP 1 63 #define IRQ_USB_DEVDMA 2 64 #define IRQ_USB_ATX 3 65 66 #define EP_OUT 0 /* RX (from host) */ 67 #define EP_IN 1 /* TX (to host) */ 68 69 /* Returns the interrupt mask for the selected hardware endpoint */ 70 #define EP_MASK_SEL(ep, dir) (1 << (((ep) * 2) + dir)) 71 72 #define EP_INT_TYPE 0 73 #define EP_ISO_TYPE 1 74 #define EP_BLK_TYPE 2 75 #define EP_CTL_TYPE 3 76 77 /* EP0 states */ 78 #define WAIT_FOR_SETUP 0 /* Wait for setup packet */ 79 #define DATA_IN 1 /* Expect dev->host transfer */ 80 #define DATA_OUT 2 /* Expect host->dev transfer */ 81 82 /* DD (DMA Descriptor) structure, requires word alignment, this is already 83 * defined in the LPC32XX USB device header file, but this version is slightly 84 * modified to tag some work data with each DMA descriptor. */ 85 struct lpc32xx_usbd_dd_gad { 86 u32 dd_next_phy; 87 u32 dd_setup; 88 u32 dd_buffer_addr; 89 u32 dd_status; 90 u32 dd_iso_ps_mem_addr; 91 u32 this_dma; 92 u32 iso_status[6]; /* 5 spare */ 93 u32 dd_next_v; 94 }; 95 96 /* 97 * Logical endpoint structure 98 */ 99 struct lpc32xx_ep { 100 struct usb_ep ep; 101 struct list_head queue; 102 struct lpc32xx_udc *udc; 103 104 u32 hwep_num_base; /* Physical hardware EP */ 105 u32 hwep_num; /* Maps to hardware endpoint */ 106 u32 maxpacket; 107 u32 lep; 108 109 bool is_in; 110 bool req_pending; 111 u32 eptype; 112 113 u32 totalints; 114 115 bool wedge; 116 }; 117 118 enum atx_type { 119 ISP1301, 120 STOTG04, 121 }; 122 123 /* 124 * Common UDC structure 125 */ 126 struct lpc32xx_udc { 127 struct usb_gadget gadget; 128 struct usb_gadget_driver *driver; 129 struct platform_device *pdev; 130 struct device *dev; 131 struct dentry *pde; 132 spinlock_t lock; 133 struct i2c_client *isp1301_i2c_client; 134 135 /* Board and device specific */ 136 struct lpc32xx_usbd_cfg *board; 137 void __iomem *udp_baseaddr; 138 int udp_irq[4]; 139 struct clk *usb_slv_clk; 140 141 /* DMA support */ 142 u32 *udca_v_base; 143 u32 udca_p_base; 144 struct dma_pool *dd_cache; 145 146 /* Common EP and control data */ 147 u32 enabled_devints; 148 u32 enabled_hwepints; 149 u32 dev_status; 150 u32 realized_eps; 151 152 /* VBUS detection, pullup, and power flags */ 153 u8 vbus; 154 u8 last_vbus; 155 int pullup; 156 int poweron; 157 enum atx_type atx; 158 159 /* Work queues related to I2C support */ 160 struct work_struct pullup_job; 161 struct work_struct power_job; 162 163 /* USB device peripheral - various */ 164 struct lpc32xx_ep ep[NUM_ENDPOINTS]; 165 bool enabled; 166 bool clocked; 167 bool suspended; 168 int ep0state; 169 atomic_t enabled_ep_cnt; 170 wait_queue_head_t ep_disable_wait_queue; 171 }; 172 173 /* 174 * Endpoint request 175 */ 176 struct lpc32xx_request { 177 struct usb_request req; 178 struct list_head queue; 179 struct lpc32xx_usbd_dd_gad *dd_desc_ptr; 180 bool mapped; 181 bool send_zlp; 182 }; 183 184 static inline struct lpc32xx_udc *to_udc(struct usb_gadget *g) 185 { 186 return container_of(g, struct lpc32xx_udc, gadget); 187 } 188 189 #define ep_dbg(epp, fmt, arg...) \ 190 dev_dbg(epp->udc->dev, "%s: " fmt, __func__, ## arg) 191 #define ep_err(epp, fmt, arg...) \ 192 dev_err(epp->udc->dev, "%s: " fmt, __func__, ## arg) 193 #define ep_info(epp, fmt, arg...) \ 194 dev_info(epp->udc->dev, "%s: " fmt, __func__, ## arg) 195 #define ep_warn(epp, fmt, arg...) \ 196 dev_warn(epp->udc->dev, "%s:" fmt, __func__, ## arg) 197 198 #define UDCA_BUFF_SIZE (128) 199 200 /********************************************************************** 201 * USB device controller register offsets 202 **********************************************************************/ 203 204 #define USBD_DEVINTST(x) ((x) + 0x200) 205 #define USBD_DEVINTEN(x) ((x) + 0x204) 206 #define USBD_DEVINTCLR(x) ((x) + 0x208) 207 #define USBD_DEVINTSET(x) ((x) + 0x20C) 208 #define USBD_CMDCODE(x) ((x) + 0x210) 209 #define USBD_CMDDATA(x) ((x) + 0x214) 210 #define USBD_RXDATA(x) ((x) + 0x218) 211 #define USBD_TXDATA(x) ((x) + 0x21C) 212 #define USBD_RXPLEN(x) ((x) + 0x220) 213 #define USBD_TXPLEN(x) ((x) + 0x224) 214 #define USBD_CTRL(x) ((x) + 0x228) 215 #define USBD_DEVINTPRI(x) ((x) + 0x22C) 216 #define USBD_EPINTST(x) ((x) + 0x230) 217 #define USBD_EPINTEN(x) ((x) + 0x234) 218 #define USBD_EPINTCLR(x) ((x) + 0x238) 219 #define USBD_EPINTSET(x) ((x) + 0x23C) 220 #define USBD_EPINTPRI(x) ((x) + 0x240) 221 #define USBD_REEP(x) ((x) + 0x244) 222 #define USBD_EPIND(x) ((x) + 0x248) 223 #define USBD_EPMAXPSIZE(x) ((x) + 0x24C) 224 /* DMA support registers only below */ 225 /* Set, clear, or get enabled state of the DMA request status. If 226 * enabled, an IN or OUT token will start a DMA transfer for the EP */ 227 #define USBD_DMARST(x) ((x) + 0x250) 228 #define USBD_DMARCLR(x) ((x) + 0x254) 229 #define USBD_DMARSET(x) ((x) + 0x258) 230 /* DMA UDCA head pointer */ 231 #define USBD_UDCAH(x) ((x) + 0x280) 232 /* EP DMA status, enable, and disable. This is used to specifically 233 * enabled or disable DMA for a specific EP */ 234 #define USBD_EPDMAST(x) ((x) + 0x284) 235 #define USBD_EPDMAEN(x) ((x) + 0x288) 236 #define USBD_EPDMADIS(x) ((x) + 0x28C) 237 /* DMA master interrupts enable and pending interrupts */ 238 #define USBD_DMAINTST(x) ((x) + 0x290) 239 #define USBD_DMAINTEN(x) ((x) + 0x294) 240 /* DMA end of transfer interrupt enable, disable, status */ 241 #define USBD_EOTINTST(x) ((x) + 0x2A0) 242 #define USBD_EOTINTCLR(x) ((x) + 0x2A4) 243 #define USBD_EOTINTSET(x) ((x) + 0x2A8) 244 /* New DD request interrupt enable, disable, status */ 245 #define USBD_NDDRTINTST(x) ((x) + 0x2AC) 246 #define USBD_NDDRTINTCLR(x) ((x) + 0x2B0) 247 #define USBD_NDDRTINTSET(x) ((x) + 0x2B4) 248 /* DMA error interrupt enable, disable, status */ 249 #define USBD_SYSERRTINTST(x) ((x) + 0x2B8) 250 #define USBD_SYSERRTINTCLR(x) ((x) + 0x2BC) 251 #define USBD_SYSERRTINTSET(x) ((x) + 0x2C0) 252 253 /********************************************************************** 254 * USBD_DEVINTST/USBD_DEVINTEN/USBD_DEVINTCLR/USBD_DEVINTSET/ 255 * USBD_DEVINTPRI register definitions 256 **********************************************************************/ 257 #define USBD_ERR_INT (1 << 9) 258 #define USBD_EP_RLZED (1 << 8) 259 #define USBD_TXENDPKT (1 << 7) 260 #define USBD_RXENDPKT (1 << 6) 261 #define USBD_CDFULL (1 << 5) 262 #define USBD_CCEMPTY (1 << 4) 263 #define USBD_DEV_STAT (1 << 3) 264 #define USBD_EP_SLOW (1 << 2) 265 #define USBD_EP_FAST (1 << 1) 266 #define USBD_FRAME (1 << 0) 267 268 /********************************************************************** 269 * USBD_EPINTST/USBD_EPINTEN/USBD_EPINTCLR/USBD_EPINTSET/ 270 * USBD_EPINTPRI register definitions 271 **********************************************************************/ 272 /* End point selection macro (RX) */ 273 #define USBD_RX_EP_SEL(e) (1 << ((e) << 1)) 274 275 /* End point selection macro (TX) */ 276 #define USBD_TX_EP_SEL(e) (1 << (((e) << 1) + 1)) 277 278 /********************************************************************** 279 * USBD_REEP/USBD_DMARST/USBD_DMARCLR/USBD_DMARSET/USBD_EPDMAST/ 280 * USBD_EPDMAEN/USBD_EPDMADIS/ 281 * USBD_NDDRTINTST/USBD_NDDRTINTCLR/USBD_NDDRTINTSET/ 282 * USBD_EOTINTST/USBD_EOTINTCLR/USBD_EOTINTSET/ 283 * USBD_SYSERRTINTST/USBD_SYSERRTINTCLR/USBD_SYSERRTINTSET 284 * register definitions 285 **********************************************************************/ 286 /* Endpoint selection macro */ 287 #define USBD_EP_SEL(e) (1 << (e)) 288 289 /********************************************************************** 290 * SBD_DMAINTST/USBD_DMAINTEN 291 **********************************************************************/ 292 #define USBD_SYS_ERR_INT (1 << 2) 293 #define USBD_NEW_DD_INT (1 << 1) 294 #define USBD_EOT_INT (1 << 0) 295 296 /********************************************************************** 297 * USBD_RXPLEN register definitions 298 **********************************************************************/ 299 #define USBD_PKT_RDY (1 << 11) 300 #define USBD_DV (1 << 10) 301 #define USBD_PK_LEN_MASK 0x3FF 302 303 /********************************************************************** 304 * USBD_CTRL register definitions 305 **********************************************************************/ 306 #define USBD_LOG_ENDPOINT(e) ((e) << 2) 307 #define USBD_WR_EN (1 << 1) 308 #define USBD_RD_EN (1 << 0) 309 310 /********************************************************************** 311 * USBD_CMDCODE register definitions 312 **********************************************************************/ 313 #define USBD_CMD_CODE(c) ((c) << 16) 314 #define USBD_CMD_PHASE(p) ((p) << 8) 315 316 /********************************************************************** 317 * USBD_DMARST/USBD_DMARCLR/USBD_DMARSET register definitions 318 **********************************************************************/ 319 #define USBD_DMAEP(e) (1 << (e)) 320 321 /* DD (DMA Descriptor) structure, requires word alignment */ 322 struct lpc32xx_usbd_dd { 323 u32 *dd_next; 324 u32 dd_setup; 325 u32 dd_buffer_addr; 326 u32 dd_status; 327 u32 dd_iso_ps_mem_addr; 328 }; 329 330 /* dd_setup bit defines */ 331 #define DD_SETUP_ATLE_DMA_MODE 0x01 332 #define DD_SETUP_NEXT_DD_VALID 0x04 333 #define DD_SETUP_ISO_EP 0x10 334 #define DD_SETUP_PACKETLEN(n) (((n) & 0x7FF) << 5) 335 #define DD_SETUP_DMALENBYTES(n) (((n) & 0xFFFF) << 16) 336 337 /* dd_status bit defines */ 338 #define DD_STATUS_DD_RETIRED 0x01 339 #define DD_STATUS_STS_MASK 0x1E 340 #define DD_STATUS_STS_NS 0x00 /* Not serviced */ 341 #define DD_STATUS_STS_BS 0x02 /* Being serviced */ 342 #define DD_STATUS_STS_NC 0x04 /* Normal completion */ 343 #define DD_STATUS_STS_DUR 0x06 /* Data underrun (short packet) */ 344 #define DD_STATUS_STS_DOR 0x08 /* Data overrun */ 345 #define DD_STATUS_STS_SE 0x12 /* System error */ 346 #define DD_STATUS_PKT_VAL 0x20 /* Packet valid */ 347 #define DD_STATUS_LSB_EX 0x40 /* LS byte extracted (ATLE) */ 348 #define DD_STATUS_MSB_EX 0x80 /* MS byte extracted (ATLE) */ 349 #define DD_STATUS_MLEN(n) (((n) >> 8) & 0x3F) 350 #define DD_STATUS_CURDMACNT(n) (((n) >> 16) & 0xFFFF) 351 352 /* 353 * 354 * Protocol engine bits below 355 * 356 */ 357 /* Device Interrupt Bit Definitions */ 358 #define FRAME_INT 0x00000001 359 #define EP_FAST_INT 0x00000002 360 #define EP_SLOW_INT 0x00000004 361 #define DEV_STAT_INT 0x00000008 362 #define CCEMTY_INT 0x00000010 363 #define CDFULL_INT 0x00000020 364 #define RxENDPKT_INT 0x00000040 365 #define TxENDPKT_INT 0x00000080 366 #define EP_RLZED_INT 0x00000100 367 #define ERR_INT 0x00000200 368 369 /* Rx & Tx Packet Length Definitions */ 370 #define PKT_LNGTH_MASK 0x000003FF 371 #define PKT_DV 0x00000400 372 #define PKT_RDY 0x00000800 373 374 /* USB Control Definitions */ 375 #define CTRL_RD_EN 0x00000001 376 #define CTRL_WR_EN 0x00000002 377 378 /* Command Codes */ 379 #define CMD_SET_ADDR 0x00D00500 380 #define CMD_CFG_DEV 0x00D80500 381 #define CMD_SET_MODE 0x00F30500 382 #define CMD_RD_FRAME 0x00F50500 383 #define DAT_RD_FRAME 0x00F50200 384 #define CMD_RD_TEST 0x00FD0500 385 #define DAT_RD_TEST 0x00FD0200 386 #define CMD_SET_DEV_STAT 0x00FE0500 387 #define CMD_GET_DEV_STAT 0x00FE0500 388 #define DAT_GET_DEV_STAT 0x00FE0200 389 #define CMD_GET_ERR_CODE 0x00FF0500 390 #define DAT_GET_ERR_CODE 0x00FF0200 391 #define CMD_RD_ERR_STAT 0x00FB0500 392 #define DAT_RD_ERR_STAT 0x00FB0200 393 #define DAT_WR_BYTE(x) (0x00000100 | ((x) << 16)) 394 #define CMD_SEL_EP(x) (0x00000500 | ((x) << 16)) 395 #define DAT_SEL_EP(x) (0x00000200 | ((x) << 16)) 396 #define CMD_SEL_EP_CLRI(x) (0x00400500 | ((x) << 16)) 397 #define DAT_SEL_EP_CLRI(x) (0x00400200 | ((x) << 16)) 398 #define CMD_SET_EP_STAT(x) (0x00400500 | ((x) << 16)) 399 #define CMD_CLR_BUF 0x00F20500 400 #define DAT_CLR_BUF 0x00F20200 401 #define CMD_VALID_BUF 0x00FA0500 402 403 /* Device Address Register Definitions */ 404 #define DEV_ADDR_MASK 0x7F 405 #define DEV_EN 0x80 406 407 /* Device Configure Register Definitions */ 408 #define CONF_DVICE 0x01 409 410 /* Device Mode Register Definitions */ 411 #define AP_CLK 0x01 412 #define INAK_CI 0x02 413 #define INAK_CO 0x04 414 #define INAK_II 0x08 415 #define INAK_IO 0x10 416 #define INAK_BI 0x20 417 #define INAK_BO 0x40 418 419 /* Device Status Register Definitions */ 420 #define DEV_CON 0x01 421 #define DEV_CON_CH 0x02 422 #define DEV_SUS 0x04 423 #define DEV_SUS_CH 0x08 424 #define DEV_RST 0x10 425 426 /* Error Code Register Definitions */ 427 #define ERR_EC_MASK 0x0F 428 #define ERR_EA 0x10 429 430 /* Error Status Register Definitions */ 431 #define ERR_PID 0x01 432 #define ERR_UEPKT 0x02 433 #define ERR_DCRC 0x04 434 #define ERR_TIMOUT 0x08 435 #define ERR_EOP 0x10 436 #define ERR_B_OVRN 0x20 437 #define ERR_BTSTF 0x40 438 #define ERR_TGL 0x80 439 440 /* Endpoint Select Register Definitions */ 441 #define EP_SEL_F 0x01 442 #define EP_SEL_ST 0x02 443 #define EP_SEL_STP 0x04 444 #define EP_SEL_PO 0x08 445 #define EP_SEL_EPN 0x10 446 #define EP_SEL_B_1_FULL 0x20 447 #define EP_SEL_B_2_FULL 0x40 448 449 /* Endpoint Status Register Definitions */ 450 #define EP_STAT_ST 0x01 451 #define EP_STAT_DA 0x20 452 #define EP_STAT_RF_MO 0x40 453 #define EP_STAT_CND_ST 0x80 454 455 /* Clear Buffer Register Definitions */ 456 #define CLR_BUF_PO 0x01 457 458 /* DMA Interrupt Bit Definitions */ 459 #define EOT_INT 0x01 460 #define NDD_REQ_INT 0x02 461 #define SYS_ERR_INT 0x04 462 463 #define DRIVER_VERSION "1.03" 464 static const char driver_name[] = "lpc32xx_udc"; 465 466 /* 467 * 468 * proc interface support 469 * 470 */ 471 #ifdef CONFIG_USB_GADGET_DEBUG_FILES 472 static char *epnames[] = {"INT", "ISO", "BULK", "CTRL"}; 473 static const char debug_filename[] = "driver/udc"; 474 475 static void proc_ep_show(struct seq_file *s, struct lpc32xx_ep *ep) 476 { 477 struct lpc32xx_request *req; 478 479 seq_printf(s, "\n"); 480 seq_printf(s, "%12s, maxpacket %4d %3s", 481 ep->ep.name, ep->ep.maxpacket, 482 ep->is_in ? "in" : "out"); 483 seq_printf(s, " type %4s", epnames[ep->eptype]); 484 seq_printf(s, " ints: %12d", ep->totalints); 485 486 if (list_empty(&ep->queue)) 487 seq_printf(s, "\t(queue empty)\n"); 488 else { 489 list_for_each_entry(req, &ep->queue, queue) { 490 u32 length = req->req.actual; 491 492 seq_printf(s, "\treq %p len %d/%d buf %p\n", 493 &req->req, length, 494 req->req.length, req->req.buf); 495 } 496 } 497 } 498 499 static int proc_udc_show(struct seq_file *s, void *unused) 500 { 501 struct lpc32xx_udc *udc = s->private; 502 struct lpc32xx_ep *ep; 503 unsigned long flags; 504 505 seq_printf(s, "%s: version %s\n", driver_name, DRIVER_VERSION); 506 507 spin_lock_irqsave(&udc->lock, flags); 508 509 seq_printf(s, "vbus %s, pullup %s, %s powered%s, gadget %s\n\n", 510 udc->vbus ? "present" : "off", 511 udc->enabled ? (udc->vbus ? "active" : "enabled") : 512 "disabled", 513 udc->gadget.is_selfpowered ? "self" : "VBUS", 514 udc->suspended ? ", suspended" : "", 515 udc->driver ? udc->driver->driver.name : "(none)"); 516 517 if (udc->enabled && udc->vbus) { 518 proc_ep_show(s, &udc->ep[0]); 519 list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) 520 proc_ep_show(s, ep); 521 } 522 523 spin_unlock_irqrestore(&udc->lock, flags); 524 525 return 0; 526 } 527 528 static int proc_udc_open(struct inode *inode, struct file *file) 529 { 530 return single_open(file, proc_udc_show, PDE_DATA(inode)); 531 } 532 533 static const struct file_operations proc_ops = { 534 .owner = THIS_MODULE, 535 .open = proc_udc_open, 536 .read = seq_read, 537 .llseek = seq_lseek, 538 .release = single_release, 539 }; 540 541 static void create_debug_file(struct lpc32xx_udc *udc) 542 { 543 udc->pde = debugfs_create_file(debug_filename, 0, NULL, udc, &proc_ops); 544 } 545 546 static void remove_debug_file(struct lpc32xx_udc *udc) 547 { 548 debugfs_remove(udc->pde); 549 } 550 551 #else 552 static inline void create_debug_file(struct lpc32xx_udc *udc) {} 553 static inline void remove_debug_file(struct lpc32xx_udc *udc) {} 554 #endif 555 556 /* Primary initialization sequence for the ISP1301 transceiver */ 557 static void isp1301_udc_configure(struct lpc32xx_udc *udc) 558 { 559 u8 value; 560 s32 vendor, product; 561 562 vendor = i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x00); 563 product = i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x02); 564 565 if (vendor == 0x0483 && product == 0xa0c4) 566 udc->atx = STOTG04; 567 568 /* LPC32XX only supports DAT_SE0 USB mode */ 569 /* This sequence is important */ 570 571 /* Disable transparent UART mode first */ 572 i2c_smbus_write_byte_data(udc->isp1301_i2c_client, 573 (ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), 574 MC1_UART_EN); 575 576 /* Set full speed and SE0 mode */ 577 i2c_smbus_write_byte_data(udc->isp1301_i2c_client, 578 (ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0); 579 i2c_smbus_write_byte_data(udc->isp1301_i2c_client, 580 ISP1301_I2C_MODE_CONTROL_1, (MC1_SPEED_REG | MC1_DAT_SE0)); 581 582 /* 583 * The PSW_OE enable bit state is reversed in the ISP1301 User's Guide 584 */ 585 i2c_smbus_write_byte_data(udc->isp1301_i2c_client, 586 (ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR), ~0); 587 588 value = MC2_BI_DI; 589 if (udc->atx != STOTG04) 590 value |= MC2_SPD_SUSP_CTRL; 591 i2c_smbus_write_byte_data(udc->isp1301_i2c_client, 592 ISP1301_I2C_MODE_CONTROL_2, value); 593 594 /* Driver VBUS_DRV high or low depending on board setup */ 595 if (udc->board->vbus_drv_pol != 0) 596 i2c_smbus_write_byte_data(udc->isp1301_i2c_client, 597 ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DRV); 598 else 599 i2c_smbus_write_byte_data(udc->isp1301_i2c_client, 600 ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR, 601 OTG1_VBUS_DRV); 602 603 /* Bi-directional mode with suspend control 604 * Enable both pulldowns for now - the pullup will be enable when VBUS 605 * is detected */ 606 i2c_smbus_write_byte_data(udc->isp1301_i2c_client, 607 (ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0); 608 i2c_smbus_write_byte_data(udc->isp1301_i2c_client, 609 ISP1301_I2C_OTG_CONTROL_1, 610 (0 | OTG1_DM_PULLDOWN | OTG1_DP_PULLDOWN)); 611 612 /* Discharge VBUS (just in case) */ 613 i2c_smbus_write_byte_data(udc->isp1301_i2c_client, 614 ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG); 615 msleep(1); 616 i2c_smbus_write_byte_data(udc->isp1301_i2c_client, 617 (ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), 618 OTG1_VBUS_DISCHRG); 619 620 i2c_smbus_write_byte_data(udc->isp1301_i2c_client, 621 ISP1301_I2C_INTERRUPT_LATCH | ISP1301_I2C_REG_CLEAR_ADDR, ~0); 622 623 i2c_smbus_write_byte_data(udc->isp1301_i2c_client, 624 ISP1301_I2C_INTERRUPT_FALLING | ISP1301_I2C_REG_CLEAR_ADDR, ~0); 625 i2c_smbus_write_byte_data(udc->isp1301_i2c_client, 626 ISP1301_I2C_INTERRUPT_RISING | ISP1301_I2C_REG_CLEAR_ADDR, ~0); 627 628 dev_info(udc->dev, "ISP1301 Vendor ID : 0x%04x\n", vendor); 629 dev_info(udc->dev, "ISP1301 Product ID : 0x%04x\n", product); 630 dev_info(udc->dev, "ISP1301 Version ID : 0x%04x\n", 631 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x14)); 632 633 } 634 635 /* Enables or disables the USB device pullup via the ISP1301 transceiver */ 636 static void isp1301_pullup_set(struct lpc32xx_udc *udc) 637 { 638 if (udc->pullup) 639 /* Enable pullup for bus signalling */ 640 i2c_smbus_write_byte_data(udc->isp1301_i2c_client, 641 ISP1301_I2C_OTG_CONTROL_1, OTG1_DP_PULLUP); 642 else 643 /* Enable pullup for bus signalling */ 644 i2c_smbus_write_byte_data(udc->isp1301_i2c_client, 645 ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR, 646 OTG1_DP_PULLUP); 647 } 648 649 static void pullup_work(struct work_struct *work) 650 { 651 struct lpc32xx_udc *udc = 652 container_of(work, struct lpc32xx_udc, pullup_job); 653 654 isp1301_pullup_set(udc); 655 } 656 657 static void isp1301_pullup_enable(struct lpc32xx_udc *udc, int en_pullup, 658 int block) 659 { 660 if (en_pullup == udc->pullup) 661 return; 662 663 udc->pullup = en_pullup; 664 if (block) 665 isp1301_pullup_set(udc); 666 else 667 /* defer slow i2c pull up setting */ 668 schedule_work(&udc->pullup_job); 669 } 670 671 #ifdef CONFIG_PM 672 /* Powers up or down the ISP1301 transceiver */ 673 static void isp1301_set_powerstate(struct lpc32xx_udc *udc, int enable) 674 { 675 /* There is no "global power down" register for stotg04 */ 676 if (udc->atx == STOTG04) 677 return; 678 679 if (enable != 0) 680 /* Power up ISP1301 - this ISP1301 will automatically wakeup 681 when VBUS is detected */ 682 i2c_smbus_write_byte_data(udc->isp1301_i2c_client, 683 ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR, 684 MC2_GLOBAL_PWR_DN); 685 else 686 /* Power down ISP1301 */ 687 i2c_smbus_write_byte_data(udc->isp1301_i2c_client, 688 ISP1301_I2C_MODE_CONTROL_2, MC2_GLOBAL_PWR_DN); 689 } 690 691 static void power_work(struct work_struct *work) 692 { 693 struct lpc32xx_udc *udc = 694 container_of(work, struct lpc32xx_udc, power_job); 695 696 isp1301_set_powerstate(udc, udc->poweron); 697 } 698 #endif 699 700 /* 701 * 702 * USB protocol engine command/data read/write helper functions 703 * 704 */ 705 /* Issues a single command to the USB device state machine */ 706 static void udc_protocol_cmd_w(struct lpc32xx_udc *udc, u32 cmd) 707 { 708 u32 pass = 0; 709 int to; 710 711 /* EP may lock on CLRI if this read isn't done */ 712 u32 tmp = readl(USBD_DEVINTST(udc->udp_baseaddr)); 713 (void) tmp; 714 715 while (pass == 0) { 716 writel(USBD_CCEMPTY, USBD_DEVINTCLR(udc->udp_baseaddr)); 717 718 /* Write command code */ 719 writel(cmd, USBD_CMDCODE(udc->udp_baseaddr)); 720 to = 10000; 721 while (((readl(USBD_DEVINTST(udc->udp_baseaddr)) & 722 USBD_CCEMPTY) == 0) && (to > 0)) { 723 to--; 724 } 725 726 if (to > 0) 727 pass = 1; 728 729 cpu_relax(); 730 } 731 } 732 733 /* Issues 2 commands (or command and data) to the USB device state machine */ 734 static inline void udc_protocol_cmd_data_w(struct lpc32xx_udc *udc, u32 cmd, 735 u32 data) 736 { 737 udc_protocol_cmd_w(udc, cmd); 738 udc_protocol_cmd_w(udc, data); 739 } 740 741 /* Issues a single command to the USB device state machine and reads 742 * response data */ 743 static u32 udc_protocol_cmd_r(struct lpc32xx_udc *udc, u32 cmd) 744 { 745 u32 tmp; 746 int to = 1000; 747 748 /* Write a command and read data from the protocol engine */ 749 writel((USBD_CDFULL | USBD_CCEMPTY), 750 USBD_DEVINTCLR(udc->udp_baseaddr)); 751 752 /* Write command code */ 753 udc_protocol_cmd_w(udc, cmd); 754 755 tmp = readl(USBD_DEVINTST(udc->udp_baseaddr)); 756 while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) & USBD_CDFULL)) 757 && (to > 0)) 758 to--; 759 if (!to) 760 dev_dbg(udc->dev, 761 "Protocol engine didn't receive response (CDFULL)\n"); 762 763 return readl(USBD_CMDDATA(udc->udp_baseaddr)); 764 } 765 766 /* 767 * 768 * USB device interrupt mask support functions 769 * 770 */ 771 /* Enable one or more USB device interrupts */ 772 static inline void uda_enable_devint(struct lpc32xx_udc *udc, u32 devmask) 773 { 774 udc->enabled_devints |= devmask; 775 writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr)); 776 } 777 778 /* Disable one or more USB device interrupts */ 779 static inline void uda_disable_devint(struct lpc32xx_udc *udc, u32 mask) 780 { 781 udc->enabled_devints &= ~mask; 782 writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr)); 783 } 784 785 /* Clear one or more USB device interrupts */ 786 static inline void uda_clear_devint(struct lpc32xx_udc *udc, u32 mask) 787 { 788 writel(mask, USBD_DEVINTCLR(udc->udp_baseaddr)); 789 } 790 791 /* 792 * 793 * Endpoint interrupt disable/enable functions 794 * 795 */ 796 /* Enable one or more USB endpoint interrupts */ 797 static void uda_enable_hwepint(struct lpc32xx_udc *udc, u32 hwep) 798 { 799 udc->enabled_hwepints |= (1 << hwep); 800 writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr)); 801 } 802 803 /* Disable one or more USB endpoint interrupts */ 804 static void uda_disable_hwepint(struct lpc32xx_udc *udc, u32 hwep) 805 { 806 udc->enabled_hwepints &= ~(1 << hwep); 807 writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr)); 808 } 809 810 /* Clear one or more USB endpoint interrupts */ 811 static inline void uda_clear_hwepint(struct lpc32xx_udc *udc, u32 hwep) 812 { 813 writel((1 << hwep), USBD_EPINTCLR(udc->udp_baseaddr)); 814 } 815 816 /* Enable DMA for the HW channel */ 817 static inline void udc_ep_dma_enable(struct lpc32xx_udc *udc, u32 hwep) 818 { 819 writel((1 << hwep), USBD_EPDMAEN(udc->udp_baseaddr)); 820 } 821 822 /* Disable DMA for the HW channel */ 823 static inline void udc_ep_dma_disable(struct lpc32xx_udc *udc, u32 hwep) 824 { 825 writel((1 << hwep), USBD_EPDMADIS(udc->udp_baseaddr)); 826 } 827 828 /* 829 * 830 * Endpoint realize/unrealize functions 831 * 832 */ 833 /* Before an endpoint can be used, it needs to be realized 834 * in the USB protocol engine - this realizes the endpoint. 835 * The interrupt (FIFO or DMA) is not enabled with this function */ 836 static void udc_realize_hwep(struct lpc32xx_udc *udc, u32 hwep, 837 u32 maxpacket) 838 { 839 int to = 1000; 840 841 writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr)); 842 writel(hwep, USBD_EPIND(udc->udp_baseaddr)); 843 udc->realized_eps |= (1 << hwep); 844 writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr)); 845 writel(maxpacket, USBD_EPMAXPSIZE(udc->udp_baseaddr)); 846 847 /* Wait until endpoint is realized in hardware */ 848 while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) & 849 USBD_EP_RLZED)) && (to > 0)) 850 to--; 851 if (!to) 852 dev_dbg(udc->dev, "EP not correctly realized in hardware\n"); 853 854 writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr)); 855 } 856 857 /* Unrealize an EP */ 858 static void udc_unrealize_hwep(struct lpc32xx_udc *udc, u32 hwep) 859 { 860 udc->realized_eps &= ~(1 << hwep); 861 writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr)); 862 } 863 864 /* 865 * 866 * Endpoint support functions 867 * 868 */ 869 /* Select and clear endpoint interrupt */ 870 static u32 udc_selep_clrint(struct lpc32xx_udc *udc, u32 hwep) 871 { 872 udc_protocol_cmd_w(udc, CMD_SEL_EP_CLRI(hwep)); 873 return udc_protocol_cmd_r(udc, DAT_SEL_EP_CLRI(hwep)); 874 } 875 876 /* Disables the endpoint in the USB protocol engine */ 877 static void udc_disable_hwep(struct lpc32xx_udc *udc, u32 hwep) 878 { 879 udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep), 880 DAT_WR_BYTE(EP_STAT_DA)); 881 } 882 883 /* Stalls the endpoint - endpoint will return STALL */ 884 static void udc_stall_hwep(struct lpc32xx_udc *udc, u32 hwep) 885 { 886 udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep), 887 DAT_WR_BYTE(EP_STAT_ST)); 888 } 889 890 /* Clear stall or reset endpoint */ 891 static void udc_clrstall_hwep(struct lpc32xx_udc *udc, u32 hwep) 892 { 893 udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep), 894 DAT_WR_BYTE(0)); 895 } 896 897 /* Select an endpoint for endpoint status, clear, validate */ 898 static void udc_select_hwep(struct lpc32xx_udc *udc, u32 hwep) 899 { 900 udc_protocol_cmd_w(udc, CMD_SEL_EP(hwep)); 901 } 902 903 /* 904 * 905 * Endpoint buffer management functions 906 * 907 */ 908 /* Clear the current endpoint's buffer */ 909 static void udc_clr_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep) 910 { 911 udc_select_hwep(udc, hwep); 912 udc_protocol_cmd_w(udc, CMD_CLR_BUF); 913 } 914 915 /* Validate the current endpoint's buffer */ 916 static void udc_val_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep) 917 { 918 udc_select_hwep(udc, hwep); 919 udc_protocol_cmd_w(udc, CMD_VALID_BUF); 920 } 921 922 static inline u32 udc_clearep_getsts(struct lpc32xx_udc *udc, u32 hwep) 923 { 924 /* Clear EP interrupt */ 925 uda_clear_hwepint(udc, hwep); 926 return udc_selep_clrint(udc, hwep); 927 } 928 929 /* 930 * 931 * USB EP DMA support 932 * 933 */ 934 /* Allocate a DMA Descriptor */ 935 static struct lpc32xx_usbd_dd_gad *udc_dd_alloc(struct lpc32xx_udc *udc) 936 { 937 dma_addr_t dma; 938 struct lpc32xx_usbd_dd_gad *dd; 939 940 dd = dma_pool_alloc(udc->dd_cache, GFP_ATOMIC | GFP_DMA, &dma); 941 if (dd) 942 dd->this_dma = dma; 943 944 return dd; 945 } 946 947 /* Free a DMA Descriptor */ 948 static void udc_dd_free(struct lpc32xx_udc *udc, struct lpc32xx_usbd_dd_gad *dd) 949 { 950 dma_pool_free(udc->dd_cache, dd, dd->this_dma); 951 } 952 953 /* 954 * 955 * USB setup and shutdown functions 956 * 957 */ 958 /* Enables or disables most of the USB system clocks when low power mode is 959 * needed. Clocks are typically started on a connection event, and disabled 960 * when a cable is disconnected */ 961 static void udc_clk_set(struct lpc32xx_udc *udc, int enable) 962 { 963 if (enable != 0) { 964 if (udc->clocked) 965 return; 966 967 udc->clocked = 1; 968 clk_prepare_enable(udc->usb_slv_clk); 969 } else { 970 if (!udc->clocked) 971 return; 972 973 udc->clocked = 0; 974 clk_disable_unprepare(udc->usb_slv_clk); 975 } 976 } 977 978 /* Set/reset USB device address */ 979 static void udc_set_address(struct lpc32xx_udc *udc, u32 addr) 980 { 981 /* Address will be latched at the end of the status phase, or 982 latched immediately if function is called twice */ 983 udc_protocol_cmd_data_w(udc, CMD_SET_ADDR, 984 DAT_WR_BYTE(DEV_EN | addr)); 985 } 986 987 /* Setup up a IN request for DMA transfer - this consists of determining the 988 * list of DMA addresses for the transfer, allocating DMA Descriptors, 989 * installing the DD into the UDCA, and then enabling the DMA for that EP */ 990 static int udc_ep_in_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep) 991 { 992 struct lpc32xx_request *req; 993 u32 hwep = ep->hwep_num; 994 995 ep->req_pending = 1; 996 997 /* There will always be a request waiting here */ 998 req = list_entry(ep->queue.next, struct lpc32xx_request, queue); 999 1000 /* Place the DD Descriptor into the UDCA */ 1001 udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma; 1002 1003 /* Enable DMA and interrupt for the HW EP */ 1004 udc_ep_dma_enable(udc, hwep); 1005 1006 /* Clear ZLP if last packet is not of MAXP size */ 1007 if (req->req.length % ep->ep.maxpacket) 1008 req->send_zlp = 0; 1009 1010 return 0; 1011 } 1012 1013 /* Setup up a OUT request for DMA transfer - this consists of determining the 1014 * list of DMA addresses for the transfer, allocating DMA Descriptors, 1015 * installing the DD into the UDCA, and then enabling the DMA for that EP */ 1016 static int udc_ep_out_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep) 1017 { 1018 struct lpc32xx_request *req; 1019 u32 hwep = ep->hwep_num; 1020 1021 ep->req_pending = 1; 1022 1023 /* There will always be a request waiting here */ 1024 req = list_entry(ep->queue.next, struct lpc32xx_request, queue); 1025 1026 /* Place the DD Descriptor into the UDCA */ 1027 udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma; 1028 1029 /* Enable DMA and interrupt for the HW EP */ 1030 udc_ep_dma_enable(udc, hwep); 1031 return 0; 1032 } 1033 1034 static void udc_disable(struct lpc32xx_udc *udc) 1035 { 1036 u32 i; 1037 1038 /* Disable device */ 1039 udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0)); 1040 udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(0)); 1041 1042 /* Disable all device interrupts (including EP0) */ 1043 uda_disable_devint(udc, 0x3FF); 1044 1045 /* Disable and reset all endpoint interrupts */ 1046 for (i = 0; i < 32; i++) { 1047 uda_disable_hwepint(udc, i); 1048 uda_clear_hwepint(udc, i); 1049 udc_disable_hwep(udc, i); 1050 udc_unrealize_hwep(udc, i); 1051 udc->udca_v_base[i] = 0; 1052 1053 /* Disable and clear all interrupts and DMA */ 1054 udc_ep_dma_disable(udc, i); 1055 writel((1 << i), USBD_EOTINTCLR(udc->udp_baseaddr)); 1056 writel((1 << i), USBD_NDDRTINTCLR(udc->udp_baseaddr)); 1057 writel((1 << i), USBD_SYSERRTINTCLR(udc->udp_baseaddr)); 1058 writel((1 << i), USBD_DMARCLR(udc->udp_baseaddr)); 1059 } 1060 1061 /* Disable DMA interrupts */ 1062 writel(0, USBD_DMAINTEN(udc->udp_baseaddr)); 1063 1064 writel(0, USBD_UDCAH(udc->udp_baseaddr)); 1065 } 1066 1067 static void udc_enable(struct lpc32xx_udc *udc) 1068 { 1069 u32 i; 1070 struct lpc32xx_ep *ep = &udc->ep[0]; 1071 1072 /* Start with known state */ 1073 udc_disable(udc); 1074 1075 /* Enable device */ 1076 udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(DEV_CON)); 1077 1078 /* EP interrupts on high priority, FRAME interrupt on low priority */ 1079 writel(USBD_EP_FAST, USBD_DEVINTPRI(udc->udp_baseaddr)); 1080 writel(0xFFFF, USBD_EPINTPRI(udc->udp_baseaddr)); 1081 1082 /* Clear any pending device interrupts */ 1083 writel(0x3FF, USBD_DEVINTCLR(udc->udp_baseaddr)); 1084 1085 /* Setup UDCA - not yet used (DMA) */ 1086 writel(udc->udca_p_base, USBD_UDCAH(udc->udp_baseaddr)); 1087 1088 /* Only enable EP0 in and out for now, EP0 only works in FIFO mode */ 1089 for (i = 0; i <= 1; i++) { 1090 udc_realize_hwep(udc, i, ep->ep.maxpacket); 1091 uda_enable_hwepint(udc, i); 1092 udc_select_hwep(udc, i); 1093 udc_clrstall_hwep(udc, i); 1094 udc_clr_buffer_hwep(udc, i); 1095 } 1096 1097 /* Device interrupt setup */ 1098 uda_clear_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW | 1099 USBD_EP_FAST)); 1100 uda_enable_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW | 1101 USBD_EP_FAST)); 1102 1103 /* Set device address to 0 - called twice to force a latch in the USB 1104 engine without the need of a setup packet status closure */ 1105 udc_set_address(udc, 0); 1106 udc_set_address(udc, 0); 1107 1108 /* Enable master DMA interrupts */ 1109 writel((USBD_SYS_ERR_INT | USBD_EOT_INT), 1110 USBD_DMAINTEN(udc->udp_baseaddr)); 1111 1112 udc->dev_status = 0; 1113 } 1114 1115 /* 1116 * 1117 * USB device board specific events handled via callbacks 1118 * 1119 */ 1120 /* Connection change event - notify board function of change */ 1121 static void uda_power_event(struct lpc32xx_udc *udc, u32 conn) 1122 { 1123 /* Just notify of a connection change event (optional) */ 1124 if (udc->board->conn_chgb != NULL) 1125 udc->board->conn_chgb(conn); 1126 } 1127 1128 /* Suspend/resume event - notify board function of change */ 1129 static void uda_resm_susp_event(struct lpc32xx_udc *udc, u32 conn) 1130 { 1131 /* Just notify of a Suspend/resume change event (optional) */ 1132 if (udc->board->susp_chgb != NULL) 1133 udc->board->susp_chgb(conn); 1134 1135 if (conn) 1136 udc->suspended = 0; 1137 else 1138 udc->suspended = 1; 1139 } 1140 1141 /* Remote wakeup enable/disable - notify board function of change */ 1142 static void uda_remwkp_cgh(struct lpc32xx_udc *udc) 1143 { 1144 if (udc->board->rmwk_chgb != NULL) 1145 udc->board->rmwk_chgb(udc->dev_status & 1146 (1 << USB_DEVICE_REMOTE_WAKEUP)); 1147 } 1148 1149 /* Reads data from FIFO, adjusts for alignment and data size */ 1150 static void udc_pop_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes) 1151 { 1152 int n, i, bl; 1153 u16 *p16; 1154 u32 *p32, tmp, cbytes; 1155 1156 /* Use optimal data transfer method based on source address and size */ 1157 switch (((u32) data) & 0x3) { 1158 case 0: /* 32-bit aligned */ 1159 p32 = (u32 *) data; 1160 cbytes = (bytes & ~0x3); 1161 1162 /* Copy 32-bit aligned data first */ 1163 for (n = 0; n < cbytes; n += 4) 1164 *p32++ = readl(USBD_RXDATA(udc->udp_baseaddr)); 1165 1166 /* Handle any remaining bytes */ 1167 bl = bytes - cbytes; 1168 if (bl) { 1169 tmp = readl(USBD_RXDATA(udc->udp_baseaddr)); 1170 for (n = 0; n < bl; n++) 1171 data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF); 1172 1173 } 1174 break; 1175 1176 case 1: /* 8-bit aligned */ 1177 case 3: 1178 /* Each byte has to be handled independently */ 1179 for (n = 0; n < bytes; n += 4) { 1180 tmp = readl(USBD_RXDATA(udc->udp_baseaddr)); 1181 1182 bl = bytes - n; 1183 if (bl > 3) 1184 bl = 3; 1185 1186 for (i = 0; i < bl; i++) 1187 data[n + i] = (u8) ((tmp >> (n * 8)) & 0xFF); 1188 } 1189 break; 1190 1191 case 2: /* 16-bit aligned */ 1192 p16 = (u16 *) data; 1193 cbytes = (bytes & ~0x3); 1194 1195 /* Copy 32-bit sized objects first with 16-bit alignment */ 1196 for (n = 0; n < cbytes; n += 4) { 1197 tmp = readl(USBD_RXDATA(udc->udp_baseaddr)); 1198 *p16++ = (u16)(tmp & 0xFFFF); 1199 *p16++ = (u16)((tmp >> 16) & 0xFFFF); 1200 } 1201 1202 /* Handle any remaining bytes */ 1203 bl = bytes - cbytes; 1204 if (bl) { 1205 tmp = readl(USBD_RXDATA(udc->udp_baseaddr)); 1206 for (n = 0; n < bl; n++) 1207 data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF); 1208 } 1209 break; 1210 } 1211 } 1212 1213 /* Read data from the FIFO for an endpoint. This function is for endpoints (such 1214 * as EP0) that don't use DMA. This function should only be called if a packet 1215 * is known to be ready to read for the endpoint. Note that the endpoint must 1216 * be selected in the protocol engine prior to this call. */ 1217 static u32 udc_read_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data, 1218 u32 bytes) 1219 { 1220 u32 tmpv; 1221 int to = 1000; 1222 u32 tmp, hwrep = ((hwep & 0x1E) << 1) | CTRL_RD_EN; 1223 1224 /* Setup read of endpoint */ 1225 writel(hwrep, USBD_CTRL(udc->udp_baseaddr)); 1226 1227 /* Wait until packet is ready */ 1228 while ((((tmpv = readl(USBD_RXPLEN(udc->udp_baseaddr))) & 1229 PKT_RDY) == 0) && (to > 0)) 1230 to--; 1231 if (!to) 1232 dev_dbg(udc->dev, "No packet ready on FIFO EP read\n"); 1233 1234 /* Mask out count */ 1235 tmp = tmpv & PKT_LNGTH_MASK; 1236 if (bytes < tmp) 1237 tmp = bytes; 1238 1239 if ((tmp > 0) && (data != NULL)) 1240 udc_pop_fifo(udc, (u8 *) data, tmp); 1241 1242 writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr)); 1243 1244 /* Clear the buffer */ 1245 udc_clr_buffer_hwep(udc, hwep); 1246 1247 return tmp; 1248 } 1249 1250 /* Stuffs data into the FIFO, adjusts for alignment and data size */ 1251 static void udc_stuff_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes) 1252 { 1253 int n, i, bl; 1254 u16 *p16; 1255 u32 *p32, tmp, cbytes; 1256 1257 /* Use optimal data transfer method based on source address and size */ 1258 switch (((u32) data) & 0x3) { 1259 case 0: /* 32-bit aligned */ 1260 p32 = (u32 *) data; 1261 cbytes = (bytes & ~0x3); 1262 1263 /* Copy 32-bit aligned data first */ 1264 for (n = 0; n < cbytes; n += 4) 1265 writel(*p32++, USBD_TXDATA(udc->udp_baseaddr)); 1266 1267 /* Handle any remaining bytes */ 1268 bl = bytes - cbytes; 1269 if (bl) { 1270 tmp = 0; 1271 for (n = 0; n < bl; n++) 1272 tmp |= data[cbytes + n] << (n * 8); 1273 1274 writel(tmp, USBD_TXDATA(udc->udp_baseaddr)); 1275 } 1276 break; 1277 1278 case 1: /* 8-bit aligned */ 1279 case 3: 1280 /* Each byte has to be handled independently */ 1281 for (n = 0; n < bytes; n += 4) { 1282 bl = bytes - n; 1283 if (bl > 4) 1284 bl = 4; 1285 1286 tmp = 0; 1287 for (i = 0; i < bl; i++) 1288 tmp |= data[n + i] << (i * 8); 1289 1290 writel(tmp, USBD_TXDATA(udc->udp_baseaddr)); 1291 } 1292 break; 1293 1294 case 2: /* 16-bit aligned */ 1295 p16 = (u16 *) data; 1296 cbytes = (bytes & ~0x3); 1297 1298 /* Copy 32-bit aligned data first */ 1299 for (n = 0; n < cbytes; n += 4) { 1300 tmp = *p16++ & 0xFFFF; 1301 tmp |= (*p16++ & 0xFFFF) << 16; 1302 writel(tmp, USBD_TXDATA(udc->udp_baseaddr)); 1303 } 1304 1305 /* Handle any remaining bytes */ 1306 bl = bytes - cbytes; 1307 if (bl) { 1308 tmp = 0; 1309 for (n = 0; n < bl; n++) 1310 tmp |= data[cbytes + n] << (n * 8); 1311 1312 writel(tmp, USBD_TXDATA(udc->udp_baseaddr)); 1313 } 1314 break; 1315 } 1316 } 1317 1318 /* Write data to the FIFO for an endpoint. This function is for endpoints (such 1319 * as EP0) that don't use DMA. Note that the endpoint must be selected in the 1320 * protocol engine prior to this call. */ 1321 static void udc_write_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data, 1322 u32 bytes) 1323 { 1324 u32 hwwep = ((hwep & 0x1E) << 1) | CTRL_WR_EN; 1325 1326 if ((bytes > 0) && (data == NULL)) 1327 return; 1328 1329 /* Setup write of endpoint */ 1330 writel(hwwep, USBD_CTRL(udc->udp_baseaddr)); 1331 1332 writel(bytes, USBD_TXPLEN(udc->udp_baseaddr)); 1333 1334 /* Need at least 1 byte to trigger TX */ 1335 if (bytes == 0) 1336 writel(0, USBD_TXDATA(udc->udp_baseaddr)); 1337 else 1338 udc_stuff_fifo(udc, (u8 *) data, bytes); 1339 1340 writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr)); 1341 1342 udc_val_buffer_hwep(udc, hwep); 1343 } 1344 1345 /* USB device reset - resets USB to a default state with just EP0 1346 enabled */ 1347 static void uda_usb_reset(struct lpc32xx_udc *udc) 1348 { 1349 u32 i = 0; 1350 /* Re-init device controller and EP0 */ 1351 udc_enable(udc); 1352 udc->gadget.speed = USB_SPEED_FULL; 1353 1354 for (i = 1; i < NUM_ENDPOINTS; i++) { 1355 struct lpc32xx_ep *ep = &udc->ep[i]; 1356 ep->req_pending = 0; 1357 } 1358 } 1359 1360 /* Send a ZLP on EP0 */ 1361 static void udc_ep0_send_zlp(struct lpc32xx_udc *udc) 1362 { 1363 udc_write_hwep(udc, EP_IN, NULL, 0); 1364 } 1365 1366 /* Get current frame number */ 1367 static u16 udc_get_current_frame(struct lpc32xx_udc *udc) 1368 { 1369 u16 flo, fhi; 1370 1371 udc_protocol_cmd_w(udc, CMD_RD_FRAME); 1372 flo = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME); 1373 fhi = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME); 1374 1375 return (fhi << 8) | flo; 1376 } 1377 1378 /* Set the device as configured - enables all endpoints */ 1379 static inline void udc_set_device_configured(struct lpc32xx_udc *udc) 1380 { 1381 udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(CONF_DVICE)); 1382 } 1383 1384 /* Set the device as unconfigured - disables all endpoints */ 1385 static inline void udc_set_device_unconfigured(struct lpc32xx_udc *udc) 1386 { 1387 udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0)); 1388 } 1389 1390 /* reinit == restore initial software state */ 1391 static void udc_reinit(struct lpc32xx_udc *udc) 1392 { 1393 u32 i; 1394 1395 INIT_LIST_HEAD(&udc->gadget.ep_list); 1396 INIT_LIST_HEAD(&udc->gadget.ep0->ep_list); 1397 1398 for (i = 0; i < NUM_ENDPOINTS; i++) { 1399 struct lpc32xx_ep *ep = &udc->ep[i]; 1400 1401 if (i != 0) 1402 list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list); 1403 usb_ep_set_maxpacket_limit(&ep->ep, ep->maxpacket); 1404 INIT_LIST_HEAD(&ep->queue); 1405 ep->req_pending = 0; 1406 } 1407 1408 udc->ep0state = WAIT_FOR_SETUP; 1409 } 1410 1411 /* Must be called with lock */ 1412 static void done(struct lpc32xx_ep *ep, struct lpc32xx_request *req, int status) 1413 { 1414 struct lpc32xx_udc *udc = ep->udc; 1415 1416 list_del_init(&req->queue); 1417 if (req->req.status == -EINPROGRESS) 1418 req->req.status = status; 1419 else 1420 status = req->req.status; 1421 1422 if (ep->lep) { 1423 usb_gadget_unmap_request(&udc->gadget, &req->req, ep->is_in); 1424 1425 /* Free DDs */ 1426 udc_dd_free(udc, req->dd_desc_ptr); 1427 } 1428 1429 if (status && status != -ESHUTDOWN) 1430 ep_dbg(ep, "%s done %p, status %d\n", ep->ep.name, req, status); 1431 1432 ep->req_pending = 0; 1433 spin_unlock(&udc->lock); 1434 usb_gadget_giveback_request(&ep->ep, &req->req); 1435 spin_lock(&udc->lock); 1436 } 1437 1438 /* Must be called with lock */ 1439 static void nuke(struct lpc32xx_ep *ep, int status) 1440 { 1441 struct lpc32xx_request *req; 1442 1443 while (!list_empty(&ep->queue)) { 1444 req = list_entry(ep->queue.next, struct lpc32xx_request, queue); 1445 done(ep, req, status); 1446 } 1447 1448 if (status == -ESHUTDOWN) { 1449 uda_disable_hwepint(ep->udc, ep->hwep_num); 1450 udc_disable_hwep(ep->udc, ep->hwep_num); 1451 } 1452 } 1453 1454 /* IN endpoint 0 transfer */ 1455 static int udc_ep0_in_req(struct lpc32xx_udc *udc) 1456 { 1457 struct lpc32xx_request *req; 1458 struct lpc32xx_ep *ep0 = &udc->ep[0]; 1459 u32 tsend, ts = 0; 1460 1461 if (list_empty(&ep0->queue)) 1462 /* Nothing to send */ 1463 return 0; 1464 else 1465 req = list_entry(ep0->queue.next, struct lpc32xx_request, 1466 queue); 1467 1468 tsend = ts = req->req.length - req->req.actual; 1469 if (ts == 0) { 1470 /* Send a ZLP */ 1471 udc_ep0_send_zlp(udc); 1472 done(ep0, req, 0); 1473 return 1; 1474 } else if (ts > ep0->ep.maxpacket) 1475 ts = ep0->ep.maxpacket; /* Just send what we can */ 1476 1477 /* Write data to the EP0 FIFO and start transfer */ 1478 udc_write_hwep(udc, EP_IN, (req->req.buf + req->req.actual), ts); 1479 1480 /* Increment data pointer */ 1481 req->req.actual += ts; 1482 1483 if (tsend >= ep0->ep.maxpacket) 1484 return 0; /* Stay in data transfer state */ 1485 1486 /* Transfer request is complete */ 1487 udc->ep0state = WAIT_FOR_SETUP; 1488 done(ep0, req, 0); 1489 return 1; 1490 } 1491 1492 /* OUT endpoint 0 transfer */ 1493 static int udc_ep0_out_req(struct lpc32xx_udc *udc) 1494 { 1495 struct lpc32xx_request *req; 1496 struct lpc32xx_ep *ep0 = &udc->ep[0]; 1497 u32 tr, bufferspace; 1498 1499 if (list_empty(&ep0->queue)) 1500 return 0; 1501 else 1502 req = list_entry(ep0->queue.next, struct lpc32xx_request, 1503 queue); 1504 1505 if (req) { 1506 if (req->req.length == 0) { 1507 /* Just dequeue request */ 1508 done(ep0, req, 0); 1509 udc->ep0state = WAIT_FOR_SETUP; 1510 return 1; 1511 } 1512 1513 /* Get data from FIFO */ 1514 bufferspace = req->req.length - req->req.actual; 1515 if (bufferspace > ep0->ep.maxpacket) 1516 bufferspace = ep0->ep.maxpacket; 1517 1518 /* Copy data to buffer */ 1519 prefetchw(req->req.buf + req->req.actual); 1520 tr = udc_read_hwep(udc, EP_OUT, req->req.buf + req->req.actual, 1521 bufferspace); 1522 req->req.actual += bufferspace; 1523 1524 if (tr < ep0->ep.maxpacket) { 1525 /* This is the last packet */ 1526 done(ep0, req, 0); 1527 udc->ep0state = WAIT_FOR_SETUP; 1528 return 1; 1529 } 1530 } 1531 1532 return 0; 1533 } 1534 1535 /* Must be called with lock */ 1536 static void stop_activity(struct lpc32xx_udc *udc) 1537 { 1538 struct usb_gadget_driver *driver = udc->driver; 1539 int i; 1540 1541 if (udc->gadget.speed == USB_SPEED_UNKNOWN) 1542 driver = NULL; 1543 1544 udc->gadget.speed = USB_SPEED_UNKNOWN; 1545 udc->suspended = 0; 1546 1547 for (i = 0; i < NUM_ENDPOINTS; i++) { 1548 struct lpc32xx_ep *ep = &udc->ep[i]; 1549 nuke(ep, -ESHUTDOWN); 1550 } 1551 if (driver) { 1552 spin_unlock(&udc->lock); 1553 driver->disconnect(&udc->gadget); 1554 spin_lock(&udc->lock); 1555 } 1556 1557 isp1301_pullup_enable(udc, 0, 0); 1558 udc_disable(udc); 1559 udc_reinit(udc); 1560 } 1561 1562 /* 1563 * Activate or kill host pullup 1564 * Can be called with or without lock 1565 */ 1566 static void pullup(struct lpc32xx_udc *udc, int is_on) 1567 { 1568 if (!udc->clocked) 1569 return; 1570 1571 if (!udc->enabled || !udc->vbus) 1572 is_on = 0; 1573 1574 if (is_on != udc->pullup) 1575 isp1301_pullup_enable(udc, is_on, 0); 1576 } 1577 1578 /* Must be called without lock */ 1579 static int lpc32xx_ep_disable(struct usb_ep *_ep) 1580 { 1581 struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep); 1582 struct lpc32xx_udc *udc = ep->udc; 1583 unsigned long flags; 1584 1585 if ((ep->hwep_num_base == 0) || (ep->hwep_num == 0)) 1586 return -EINVAL; 1587 spin_lock_irqsave(&udc->lock, flags); 1588 1589 nuke(ep, -ESHUTDOWN); 1590 1591 /* Clear all DMA statuses for this EP */ 1592 udc_ep_dma_disable(udc, ep->hwep_num); 1593 writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr)); 1594 writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr)); 1595 writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr)); 1596 writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr)); 1597 1598 /* Remove the DD pointer in the UDCA */ 1599 udc->udca_v_base[ep->hwep_num] = 0; 1600 1601 /* Disable and reset endpoint and interrupt */ 1602 uda_clear_hwepint(udc, ep->hwep_num); 1603 udc_unrealize_hwep(udc, ep->hwep_num); 1604 1605 ep->hwep_num = 0; 1606 1607 spin_unlock_irqrestore(&udc->lock, flags); 1608 1609 atomic_dec(&udc->enabled_ep_cnt); 1610 wake_up(&udc->ep_disable_wait_queue); 1611 1612 return 0; 1613 } 1614 1615 /* Must be called without lock */ 1616 static int lpc32xx_ep_enable(struct usb_ep *_ep, 1617 const struct usb_endpoint_descriptor *desc) 1618 { 1619 struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep); 1620 struct lpc32xx_udc *udc = ep->udc; 1621 u16 maxpacket; 1622 u32 tmp; 1623 unsigned long flags; 1624 1625 /* Verify EP data */ 1626 if ((!_ep) || (!ep) || (!desc) || 1627 (desc->bDescriptorType != USB_DT_ENDPOINT)) { 1628 dev_dbg(udc->dev, "bad ep or descriptor\n"); 1629 return -EINVAL; 1630 } 1631 maxpacket = usb_endpoint_maxp(desc); 1632 if ((maxpacket == 0) || (maxpacket > ep->maxpacket)) { 1633 dev_dbg(udc->dev, "bad ep descriptor's packet size\n"); 1634 return -EINVAL; 1635 } 1636 1637 /* Don't touch EP0 */ 1638 if (ep->hwep_num_base == 0) { 1639 dev_dbg(udc->dev, "Can't re-enable EP0!!!\n"); 1640 return -EINVAL; 1641 } 1642 1643 /* Is driver ready? */ 1644 if ((!udc->driver) || (udc->gadget.speed == USB_SPEED_UNKNOWN)) { 1645 dev_dbg(udc->dev, "bogus device state\n"); 1646 return -ESHUTDOWN; 1647 } 1648 1649 tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 1650 switch (tmp) { 1651 case USB_ENDPOINT_XFER_CONTROL: 1652 return -EINVAL; 1653 1654 case USB_ENDPOINT_XFER_INT: 1655 if (maxpacket > ep->maxpacket) { 1656 dev_dbg(udc->dev, 1657 "Bad INT endpoint maxpacket %d\n", maxpacket); 1658 return -EINVAL; 1659 } 1660 break; 1661 1662 case USB_ENDPOINT_XFER_BULK: 1663 switch (maxpacket) { 1664 case 8: 1665 case 16: 1666 case 32: 1667 case 64: 1668 break; 1669 1670 default: 1671 dev_dbg(udc->dev, 1672 "Bad BULK endpoint maxpacket %d\n", maxpacket); 1673 return -EINVAL; 1674 } 1675 break; 1676 1677 case USB_ENDPOINT_XFER_ISOC: 1678 break; 1679 } 1680 spin_lock_irqsave(&udc->lock, flags); 1681 1682 /* Initialize endpoint to match the selected descriptor */ 1683 ep->is_in = (desc->bEndpointAddress & USB_DIR_IN) != 0; 1684 ep->ep.maxpacket = maxpacket; 1685 1686 /* Map hardware endpoint from base and direction */ 1687 if (ep->is_in) 1688 /* IN endpoints are offset 1 from the OUT endpoint */ 1689 ep->hwep_num = ep->hwep_num_base + EP_IN; 1690 else 1691 ep->hwep_num = ep->hwep_num_base; 1692 1693 ep_dbg(ep, "EP enabled: %s, HW:%d, MP:%d IN:%d\n", ep->ep.name, 1694 ep->hwep_num, maxpacket, (ep->is_in == 1)); 1695 1696 /* Realize the endpoint, interrupt is enabled later when 1697 * buffers are queued, IN EPs will NAK until buffers are ready */ 1698 udc_realize_hwep(udc, ep->hwep_num, ep->ep.maxpacket); 1699 udc_clr_buffer_hwep(udc, ep->hwep_num); 1700 uda_disable_hwepint(udc, ep->hwep_num); 1701 udc_clrstall_hwep(udc, ep->hwep_num); 1702 1703 /* Clear all DMA statuses for this EP */ 1704 udc_ep_dma_disable(udc, ep->hwep_num); 1705 writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr)); 1706 writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr)); 1707 writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr)); 1708 writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr)); 1709 1710 spin_unlock_irqrestore(&udc->lock, flags); 1711 1712 atomic_inc(&udc->enabled_ep_cnt); 1713 return 0; 1714 } 1715 1716 /* 1717 * Allocate a USB request list 1718 * Can be called with or without lock 1719 */ 1720 static struct usb_request *lpc32xx_ep_alloc_request(struct usb_ep *_ep, 1721 gfp_t gfp_flags) 1722 { 1723 struct lpc32xx_request *req; 1724 1725 req = kzalloc(sizeof(struct lpc32xx_request), gfp_flags); 1726 if (!req) 1727 return NULL; 1728 1729 INIT_LIST_HEAD(&req->queue); 1730 return &req->req; 1731 } 1732 1733 /* 1734 * De-allocate a USB request list 1735 * Can be called with or without lock 1736 */ 1737 static void lpc32xx_ep_free_request(struct usb_ep *_ep, 1738 struct usb_request *_req) 1739 { 1740 struct lpc32xx_request *req; 1741 1742 req = container_of(_req, struct lpc32xx_request, req); 1743 BUG_ON(!list_empty(&req->queue)); 1744 kfree(req); 1745 } 1746 1747 /* Must be called without lock */ 1748 static int lpc32xx_ep_queue(struct usb_ep *_ep, 1749 struct usb_request *_req, gfp_t gfp_flags) 1750 { 1751 struct lpc32xx_request *req; 1752 struct lpc32xx_ep *ep; 1753 struct lpc32xx_udc *udc; 1754 unsigned long flags; 1755 int status = 0; 1756 1757 req = container_of(_req, struct lpc32xx_request, req); 1758 ep = container_of(_ep, struct lpc32xx_ep, ep); 1759 1760 if (!_ep || !_req || !_req->complete || !_req->buf || 1761 !list_empty(&req->queue)) 1762 return -EINVAL; 1763 1764 udc = ep->udc; 1765 1766 if (udc->gadget.speed == USB_SPEED_UNKNOWN) 1767 return -EPIPE; 1768 1769 if (ep->lep) { 1770 struct lpc32xx_usbd_dd_gad *dd; 1771 1772 status = usb_gadget_map_request(&udc->gadget, _req, ep->is_in); 1773 if (status) 1774 return status; 1775 1776 /* For the request, build a list of DDs */ 1777 dd = udc_dd_alloc(udc); 1778 if (!dd) { 1779 /* Error allocating DD */ 1780 return -ENOMEM; 1781 } 1782 req->dd_desc_ptr = dd; 1783 1784 /* Setup the DMA descriptor */ 1785 dd->dd_next_phy = dd->dd_next_v = 0; 1786 dd->dd_buffer_addr = req->req.dma; 1787 dd->dd_status = 0; 1788 1789 /* Special handling for ISO EPs */ 1790 if (ep->eptype == EP_ISO_TYPE) { 1791 dd->dd_setup = DD_SETUP_ISO_EP | 1792 DD_SETUP_PACKETLEN(0) | 1793 DD_SETUP_DMALENBYTES(1); 1794 dd->dd_iso_ps_mem_addr = dd->this_dma + 24; 1795 if (ep->is_in) 1796 dd->iso_status[0] = req->req.length; 1797 else 1798 dd->iso_status[0] = 0; 1799 } else 1800 dd->dd_setup = DD_SETUP_PACKETLEN(ep->ep.maxpacket) | 1801 DD_SETUP_DMALENBYTES(req->req.length); 1802 } 1803 1804 ep_dbg(ep, "%s queue req %p len %d buf %p (in=%d) z=%d\n", _ep->name, 1805 _req, _req->length, _req->buf, ep->is_in, _req->zero); 1806 1807 spin_lock_irqsave(&udc->lock, flags); 1808 1809 _req->status = -EINPROGRESS; 1810 _req->actual = 0; 1811 req->send_zlp = _req->zero; 1812 1813 /* Kickstart empty queues */ 1814 if (list_empty(&ep->queue)) { 1815 list_add_tail(&req->queue, &ep->queue); 1816 1817 if (ep->hwep_num_base == 0) { 1818 /* Handle expected data direction */ 1819 if (ep->is_in) { 1820 /* IN packet to host */ 1821 udc->ep0state = DATA_IN; 1822 status = udc_ep0_in_req(udc); 1823 } else { 1824 /* OUT packet from host */ 1825 udc->ep0state = DATA_OUT; 1826 status = udc_ep0_out_req(udc); 1827 } 1828 } else if (ep->is_in) { 1829 /* IN packet to host and kick off transfer */ 1830 if (!ep->req_pending) 1831 udc_ep_in_req_dma(udc, ep); 1832 } else 1833 /* OUT packet from host and kick off list */ 1834 if (!ep->req_pending) 1835 udc_ep_out_req_dma(udc, ep); 1836 } else 1837 list_add_tail(&req->queue, &ep->queue); 1838 1839 spin_unlock_irqrestore(&udc->lock, flags); 1840 1841 return (status < 0) ? status : 0; 1842 } 1843 1844 /* Must be called without lock */ 1845 static int lpc32xx_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req) 1846 { 1847 struct lpc32xx_ep *ep; 1848 struct lpc32xx_request *req; 1849 unsigned long flags; 1850 1851 ep = container_of(_ep, struct lpc32xx_ep, ep); 1852 if (!_ep || ep->hwep_num_base == 0) 1853 return -EINVAL; 1854 1855 spin_lock_irqsave(&ep->udc->lock, flags); 1856 1857 /* make sure it's actually queued on this endpoint */ 1858 list_for_each_entry(req, &ep->queue, queue) { 1859 if (&req->req == _req) 1860 break; 1861 } 1862 if (&req->req != _req) { 1863 spin_unlock_irqrestore(&ep->udc->lock, flags); 1864 return -EINVAL; 1865 } 1866 1867 done(ep, req, -ECONNRESET); 1868 1869 spin_unlock_irqrestore(&ep->udc->lock, flags); 1870 1871 return 0; 1872 } 1873 1874 /* Must be called without lock */ 1875 static int lpc32xx_ep_set_halt(struct usb_ep *_ep, int value) 1876 { 1877 struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep); 1878 struct lpc32xx_udc *udc = ep->udc; 1879 unsigned long flags; 1880 1881 if ((!ep) || (ep->hwep_num <= 1)) 1882 return -EINVAL; 1883 1884 /* Don't halt an IN EP */ 1885 if (ep->is_in) 1886 return -EAGAIN; 1887 1888 spin_lock_irqsave(&udc->lock, flags); 1889 1890 if (value == 1) { 1891 /* stall */ 1892 udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num), 1893 DAT_WR_BYTE(EP_STAT_ST)); 1894 } else { 1895 /* End stall */ 1896 ep->wedge = 0; 1897 udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num), 1898 DAT_WR_BYTE(0)); 1899 } 1900 1901 spin_unlock_irqrestore(&udc->lock, flags); 1902 1903 return 0; 1904 } 1905 1906 /* set the halt feature and ignores clear requests */ 1907 static int lpc32xx_ep_set_wedge(struct usb_ep *_ep) 1908 { 1909 struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep); 1910 1911 if (!_ep || !ep->udc) 1912 return -EINVAL; 1913 1914 ep->wedge = 1; 1915 1916 return usb_ep_set_halt(_ep); 1917 } 1918 1919 static const struct usb_ep_ops lpc32xx_ep_ops = { 1920 .enable = lpc32xx_ep_enable, 1921 .disable = lpc32xx_ep_disable, 1922 .alloc_request = lpc32xx_ep_alloc_request, 1923 .free_request = lpc32xx_ep_free_request, 1924 .queue = lpc32xx_ep_queue, 1925 .dequeue = lpc32xx_ep_dequeue, 1926 .set_halt = lpc32xx_ep_set_halt, 1927 .set_wedge = lpc32xx_ep_set_wedge, 1928 }; 1929 1930 /* Send a ZLP on a non-0 IN EP */ 1931 void udc_send_in_zlp(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep) 1932 { 1933 /* Clear EP status */ 1934 udc_clearep_getsts(udc, ep->hwep_num); 1935 1936 /* Send ZLP via FIFO mechanism */ 1937 udc_write_hwep(udc, ep->hwep_num, NULL, 0); 1938 } 1939 1940 /* 1941 * Handle EP completion for ZLP 1942 * This function will only be called when a delayed ZLP needs to be sent out 1943 * after a DMA transfer has filled both buffers. 1944 */ 1945 void udc_handle_eps(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep) 1946 { 1947 u32 epstatus; 1948 struct lpc32xx_request *req; 1949 1950 if (ep->hwep_num <= 0) 1951 return; 1952 1953 uda_clear_hwepint(udc, ep->hwep_num); 1954 1955 /* If this interrupt isn't enabled, return now */ 1956 if (!(udc->enabled_hwepints & (1 << ep->hwep_num))) 1957 return; 1958 1959 /* Get endpoint status */ 1960 epstatus = udc_clearep_getsts(udc, ep->hwep_num); 1961 1962 /* 1963 * This should never happen, but protect against writing to the 1964 * buffer when full. 1965 */ 1966 if (epstatus & EP_SEL_F) 1967 return; 1968 1969 if (ep->is_in) { 1970 udc_send_in_zlp(udc, ep); 1971 uda_disable_hwepint(udc, ep->hwep_num); 1972 } else 1973 return; 1974 1975 /* If there isn't a request waiting, something went wrong */ 1976 req = list_entry(ep->queue.next, struct lpc32xx_request, queue); 1977 if (req) { 1978 done(ep, req, 0); 1979 1980 /* Start another request if ready */ 1981 if (!list_empty(&ep->queue)) { 1982 if (ep->is_in) 1983 udc_ep_in_req_dma(udc, ep); 1984 else 1985 udc_ep_out_req_dma(udc, ep); 1986 } else 1987 ep->req_pending = 0; 1988 } 1989 } 1990 1991 1992 /* DMA end of transfer completion */ 1993 static void udc_handle_dma_ep(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep) 1994 { 1995 u32 status, epstatus; 1996 struct lpc32xx_request *req; 1997 struct lpc32xx_usbd_dd_gad *dd; 1998 1999 #ifdef CONFIG_USB_GADGET_DEBUG_FILES 2000 ep->totalints++; 2001 #endif 2002 2003 req = list_entry(ep->queue.next, struct lpc32xx_request, queue); 2004 if (!req) { 2005 ep_err(ep, "DMA interrupt on no req!\n"); 2006 return; 2007 } 2008 dd = req->dd_desc_ptr; 2009 2010 /* DMA descriptor should always be retired for this call */ 2011 if (!(dd->dd_status & DD_STATUS_DD_RETIRED)) 2012 ep_warn(ep, "DMA descriptor did not retire\n"); 2013 2014 /* Disable DMA */ 2015 udc_ep_dma_disable(udc, ep->hwep_num); 2016 writel((1 << ep->hwep_num), USBD_EOTINTCLR(udc->udp_baseaddr)); 2017 writel((1 << ep->hwep_num), USBD_NDDRTINTCLR(udc->udp_baseaddr)); 2018 2019 /* System error? */ 2020 if (readl(USBD_SYSERRTINTST(udc->udp_baseaddr)) & 2021 (1 << ep->hwep_num)) { 2022 writel((1 << ep->hwep_num), 2023 USBD_SYSERRTINTCLR(udc->udp_baseaddr)); 2024 ep_err(ep, "AHB critical error!\n"); 2025 ep->req_pending = 0; 2026 2027 /* The error could have occurred on a packet of a multipacket 2028 * transfer, so recovering the transfer is not possible. Close 2029 * the request with an error */ 2030 done(ep, req, -ECONNABORTED); 2031 return; 2032 } 2033 2034 /* Handle the current DD's status */ 2035 status = dd->dd_status; 2036 switch (status & DD_STATUS_STS_MASK) { 2037 case DD_STATUS_STS_NS: 2038 /* DD not serviced? This shouldn't happen! */ 2039 ep->req_pending = 0; 2040 ep_err(ep, "DMA critical EP error: DD not serviced (0x%x)!\n", 2041 status); 2042 2043 done(ep, req, -ECONNABORTED); 2044 return; 2045 2046 case DD_STATUS_STS_BS: 2047 /* Interrupt only fires on EOT - This shouldn't happen! */ 2048 ep->req_pending = 0; 2049 ep_err(ep, "DMA critical EP error: EOT prior to service completion (0x%x)!\n", 2050 status); 2051 done(ep, req, -ECONNABORTED); 2052 return; 2053 2054 case DD_STATUS_STS_NC: 2055 case DD_STATUS_STS_DUR: 2056 /* Really just a short packet, not an underrun */ 2057 /* This is a good status and what we expect */ 2058 break; 2059 2060 default: 2061 /* Data overrun, system error, or unknown */ 2062 ep->req_pending = 0; 2063 ep_err(ep, "DMA critical EP error: System error (0x%x)!\n", 2064 status); 2065 done(ep, req, -ECONNABORTED); 2066 return; 2067 } 2068 2069 /* ISO endpoints are handled differently */ 2070 if (ep->eptype == EP_ISO_TYPE) { 2071 if (ep->is_in) 2072 req->req.actual = req->req.length; 2073 else 2074 req->req.actual = dd->iso_status[0] & 0xFFFF; 2075 } else 2076 req->req.actual += DD_STATUS_CURDMACNT(status); 2077 2078 /* Send a ZLP if necessary. This will be done for non-int 2079 * packets which have a size that is a divisor of MAXP */ 2080 if (req->send_zlp) { 2081 /* 2082 * If at least 1 buffer is available, send the ZLP now. 2083 * Otherwise, the ZLP send needs to be deferred until a 2084 * buffer is available. 2085 */ 2086 if (udc_clearep_getsts(udc, ep->hwep_num) & EP_SEL_F) { 2087 udc_clearep_getsts(udc, ep->hwep_num); 2088 uda_enable_hwepint(udc, ep->hwep_num); 2089 epstatus = udc_clearep_getsts(udc, ep->hwep_num); 2090 2091 /* Let the EP interrupt handle the ZLP */ 2092 return; 2093 } else 2094 udc_send_in_zlp(udc, ep); 2095 } 2096 2097 /* Transfer request is complete */ 2098 done(ep, req, 0); 2099 2100 /* Start another request if ready */ 2101 udc_clearep_getsts(udc, ep->hwep_num); 2102 if (!list_empty((&ep->queue))) { 2103 if (ep->is_in) 2104 udc_ep_in_req_dma(udc, ep); 2105 else 2106 udc_ep_out_req_dma(udc, ep); 2107 } else 2108 ep->req_pending = 0; 2109 2110 } 2111 2112 /* 2113 * 2114 * Endpoint 0 functions 2115 * 2116 */ 2117 static void udc_handle_dev(struct lpc32xx_udc *udc) 2118 { 2119 u32 tmp; 2120 2121 udc_protocol_cmd_w(udc, CMD_GET_DEV_STAT); 2122 tmp = udc_protocol_cmd_r(udc, DAT_GET_DEV_STAT); 2123 2124 if (tmp & DEV_RST) 2125 uda_usb_reset(udc); 2126 else if (tmp & DEV_CON_CH) 2127 uda_power_event(udc, (tmp & DEV_CON)); 2128 else if (tmp & DEV_SUS_CH) { 2129 if (tmp & DEV_SUS) { 2130 if (udc->vbus == 0) 2131 stop_activity(udc); 2132 else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) && 2133 udc->driver) { 2134 /* Power down transceiver */ 2135 udc->poweron = 0; 2136 schedule_work(&udc->pullup_job); 2137 uda_resm_susp_event(udc, 1); 2138 } 2139 } else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) && 2140 udc->driver && udc->vbus) { 2141 uda_resm_susp_event(udc, 0); 2142 /* Power up transceiver */ 2143 udc->poweron = 1; 2144 schedule_work(&udc->pullup_job); 2145 } 2146 } 2147 } 2148 2149 static int udc_get_status(struct lpc32xx_udc *udc, u16 reqtype, u16 wIndex) 2150 { 2151 struct lpc32xx_ep *ep; 2152 u32 ep0buff = 0, tmp; 2153 2154 switch (reqtype & USB_RECIP_MASK) { 2155 case USB_RECIP_INTERFACE: 2156 break; /* Not supported */ 2157 2158 case USB_RECIP_DEVICE: 2159 ep0buff = udc->gadget.is_selfpowered; 2160 if (udc->dev_status & (1 << USB_DEVICE_REMOTE_WAKEUP)) 2161 ep0buff |= (1 << USB_DEVICE_REMOTE_WAKEUP); 2162 break; 2163 2164 case USB_RECIP_ENDPOINT: 2165 tmp = wIndex & USB_ENDPOINT_NUMBER_MASK; 2166 ep = &udc->ep[tmp]; 2167 if ((tmp == 0) || (tmp >= NUM_ENDPOINTS)) 2168 return -EOPNOTSUPP; 2169 2170 if (wIndex & USB_DIR_IN) { 2171 if (!ep->is_in) 2172 return -EOPNOTSUPP; /* Something's wrong */ 2173 } else if (ep->is_in) 2174 return -EOPNOTSUPP; /* Not an IN endpoint */ 2175 2176 /* Get status of the endpoint */ 2177 udc_protocol_cmd_w(udc, CMD_SEL_EP(ep->hwep_num)); 2178 tmp = udc_protocol_cmd_r(udc, DAT_SEL_EP(ep->hwep_num)); 2179 2180 if (tmp & EP_SEL_ST) 2181 ep0buff = (1 << USB_ENDPOINT_HALT); 2182 else 2183 ep0buff = 0; 2184 break; 2185 2186 default: 2187 break; 2188 } 2189 2190 /* Return data */ 2191 udc_write_hwep(udc, EP_IN, &ep0buff, 2); 2192 2193 return 0; 2194 } 2195 2196 static void udc_handle_ep0_setup(struct lpc32xx_udc *udc) 2197 { 2198 struct lpc32xx_ep *ep, *ep0 = &udc->ep[0]; 2199 struct usb_ctrlrequest ctrlpkt; 2200 int i, bytes; 2201 u16 wIndex, wValue, wLength, reqtype, req, tmp; 2202 2203 /* Nuke previous transfers */ 2204 nuke(ep0, -EPROTO); 2205 2206 /* Get setup packet */ 2207 bytes = udc_read_hwep(udc, EP_OUT, (u32 *) &ctrlpkt, 8); 2208 if (bytes != 8) { 2209 ep_warn(ep0, "Incorrectly sized setup packet (s/b 8, is %d)!\n", 2210 bytes); 2211 return; 2212 } 2213 2214 /* Native endianness */ 2215 wIndex = le16_to_cpu(ctrlpkt.wIndex); 2216 wValue = le16_to_cpu(ctrlpkt.wValue); 2217 wLength = le16_to_cpu(ctrlpkt.wLength); 2218 reqtype = le16_to_cpu(ctrlpkt.bRequestType); 2219 2220 /* Set direction of EP0 */ 2221 if (likely(reqtype & USB_DIR_IN)) 2222 ep0->is_in = 1; 2223 else 2224 ep0->is_in = 0; 2225 2226 /* Handle SETUP packet */ 2227 req = le16_to_cpu(ctrlpkt.bRequest); 2228 switch (req) { 2229 case USB_REQ_CLEAR_FEATURE: 2230 case USB_REQ_SET_FEATURE: 2231 switch (reqtype) { 2232 case (USB_TYPE_STANDARD | USB_RECIP_DEVICE): 2233 if (wValue != USB_DEVICE_REMOTE_WAKEUP) 2234 goto stall; /* Nothing else handled */ 2235 2236 /* Tell board about event */ 2237 if (req == USB_REQ_CLEAR_FEATURE) 2238 udc->dev_status &= 2239 ~(1 << USB_DEVICE_REMOTE_WAKEUP); 2240 else 2241 udc->dev_status |= 2242 (1 << USB_DEVICE_REMOTE_WAKEUP); 2243 uda_remwkp_cgh(udc); 2244 goto zlp_send; 2245 2246 case (USB_TYPE_STANDARD | USB_RECIP_ENDPOINT): 2247 tmp = wIndex & USB_ENDPOINT_NUMBER_MASK; 2248 if ((wValue != USB_ENDPOINT_HALT) || 2249 (tmp >= NUM_ENDPOINTS)) 2250 break; 2251 2252 /* Find hardware endpoint from logical endpoint */ 2253 ep = &udc->ep[tmp]; 2254 tmp = ep->hwep_num; 2255 if (tmp == 0) 2256 break; 2257 2258 if (req == USB_REQ_SET_FEATURE) 2259 udc_stall_hwep(udc, tmp); 2260 else if (!ep->wedge) 2261 udc_clrstall_hwep(udc, tmp); 2262 2263 goto zlp_send; 2264 2265 default: 2266 break; 2267 } 2268 2269 2270 case USB_REQ_SET_ADDRESS: 2271 if (reqtype == (USB_TYPE_STANDARD | USB_RECIP_DEVICE)) { 2272 udc_set_address(udc, wValue); 2273 goto zlp_send; 2274 } 2275 break; 2276 2277 case USB_REQ_GET_STATUS: 2278 udc_get_status(udc, reqtype, wIndex); 2279 return; 2280 2281 default: 2282 break; /* Let GadgetFS handle the descriptor instead */ 2283 } 2284 2285 if (likely(udc->driver)) { 2286 /* device-2-host (IN) or no data setup command, process 2287 * immediately */ 2288 spin_unlock(&udc->lock); 2289 i = udc->driver->setup(&udc->gadget, &ctrlpkt); 2290 2291 spin_lock(&udc->lock); 2292 if (req == USB_REQ_SET_CONFIGURATION) { 2293 /* Configuration is set after endpoints are realized */ 2294 if (wValue) { 2295 /* Set configuration */ 2296 udc_set_device_configured(udc); 2297 2298 udc_protocol_cmd_data_w(udc, CMD_SET_MODE, 2299 DAT_WR_BYTE(AP_CLK | 2300 INAK_BI | INAK_II)); 2301 } else { 2302 /* Clear configuration */ 2303 udc_set_device_unconfigured(udc); 2304 2305 /* Disable NAK interrupts */ 2306 udc_protocol_cmd_data_w(udc, CMD_SET_MODE, 2307 DAT_WR_BYTE(AP_CLK)); 2308 } 2309 } 2310 2311 if (i < 0) { 2312 /* setup processing failed, force stall */ 2313 dev_dbg(udc->dev, 2314 "req %02x.%02x protocol STALL; stat %d\n", 2315 reqtype, req, i); 2316 udc->ep0state = WAIT_FOR_SETUP; 2317 goto stall; 2318 } 2319 } 2320 2321 if (!ep0->is_in) 2322 udc_ep0_send_zlp(udc); /* ZLP IN packet on data phase */ 2323 2324 return; 2325 2326 stall: 2327 udc_stall_hwep(udc, EP_IN); 2328 return; 2329 2330 zlp_send: 2331 udc_ep0_send_zlp(udc); 2332 return; 2333 } 2334 2335 /* IN endpoint 0 transfer */ 2336 static void udc_handle_ep0_in(struct lpc32xx_udc *udc) 2337 { 2338 struct lpc32xx_ep *ep0 = &udc->ep[0]; 2339 u32 epstatus; 2340 2341 /* Clear EP interrupt */ 2342 epstatus = udc_clearep_getsts(udc, EP_IN); 2343 2344 #ifdef CONFIG_USB_GADGET_DEBUG_FILES 2345 ep0->totalints++; 2346 #endif 2347 2348 /* Stalled? Clear stall and reset buffers */ 2349 if (epstatus & EP_SEL_ST) { 2350 udc_clrstall_hwep(udc, EP_IN); 2351 nuke(ep0, -ECONNABORTED); 2352 udc->ep0state = WAIT_FOR_SETUP; 2353 return; 2354 } 2355 2356 /* Is a buffer available? */ 2357 if (!(epstatus & EP_SEL_F)) { 2358 /* Handle based on current state */ 2359 if (udc->ep0state == DATA_IN) 2360 udc_ep0_in_req(udc); 2361 else { 2362 /* Unknown state for EP0 oe end of DATA IN phase */ 2363 nuke(ep0, -ECONNABORTED); 2364 udc->ep0state = WAIT_FOR_SETUP; 2365 } 2366 } 2367 } 2368 2369 /* OUT endpoint 0 transfer */ 2370 static void udc_handle_ep0_out(struct lpc32xx_udc *udc) 2371 { 2372 struct lpc32xx_ep *ep0 = &udc->ep[0]; 2373 u32 epstatus; 2374 2375 /* Clear EP interrupt */ 2376 epstatus = udc_clearep_getsts(udc, EP_OUT); 2377 2378 2379 #ifdef CONFIG_USB_GADGET_DEBUG_FILES 2380 ep0->totalints++; 2381 #endif 2382 2383 /* Stalled? */ 2384 if (epstatus & EP_SEL_ST) { 2385 udc_clrstall_hwep(udc, EP_OUT); 2386 nuke(ep0, -ECONNABORTED); 2387 udc->ep0state = WAIT_FOR_SETUP; 2388 return; 2389 } 2390 2391 /* A NAK may occur if a packet couldn't be received yet */ 2392 if (epstatus & EP_SEL_EPN) 2393 return; 2394 /* Setup packet incoming? */ 2395 if (epstatus & EP_SEL_STP) { 2396 nuke(ep0, 0); 2397 udc->ep0state = WAIT_FOR_SETUP; 2398 } 2399 2400 /* Data available? */ 2401 if (epstatus & EP_SEL_F) 2402 /* Handle based on current state */ 2403 switch (udc->ep0state) { 2404 case WAIT_FOR_SETUP: 2405 udc_handle_ep0_setup(udc); 2406 break; 2407 2408 case DATA_OUT: 2409 udc_ep0_out_req(udc); 2410 break; 2411 2412 default: 2413 /* Unknown state for EP0 */ 2414 nuke(ep0, -ECONNABORTED); 2415 udc->ep0state = WAIT_FOR_SETUP; 2416 } 2417 } 2418 2419 /* Must be called without lock */ 2420 static int lpc32xx_get_frame(struct usb_gadget *gadget) 2421 { 2422 int frame; 2423 unsigned long flags; 2424 struct lpc32xx_udc *udc = to_udc(gadget); 2425 2426 if (!udc->clocked) 2427 return -EINVAL; 2428 2429 spin_lock_irqsave(&udc->lock, flags); 2430 2431 frame = (int) udc_get_current_frame(udc); 2432 2433 spin_unlock_irqrestore(&udc->lock, flags); 2434 2435 return frame; 2436 } 2437 2438 static int lpc32xx_wakeup(struct usb_gadget *gadget) 2439 { 2440 return -ENOTSUPP; 2441 } 2442 2443 static int lpc32xx_set_selfpowered(struct usb_gadget *gadget, int is_on) 2444 { 2445 gadget->is_selfpowered = (is_on != 0); 2446 2447 return 0; 2448 } 2449 2450 /* 2451 * vbus is here! turn everything on that's ready 2452 * Must be called without lock 2453 */ 2454 static int lpc32xx_vbus_session(struct usb_gadget *gadget, int is_active) 2455 { 2456 unsigned long flags; 2457 struct lpc32xx_udc *udc = to_udc(gadget); 2458 2459 spin_lock_irqsave(&udc->lock, flags); 2460 2461 /* Doesn't need lock */ 2462 if (udc->driver) { 2463 udc_clk_set(udc, 1); 2464 udc_enable(udc); 2465 pullup(udc, is_active); 2466 } else { 2467 stop_activity(udc); 2468 pullup(udc, 0); 2469 2470 spin_unlock_irqrestore(&udc->lock, flags); 2471 /* 2472 * Wait for all the endpoints to disable, 2473 * before disabling clocks. Don't wait if 2474 * endpoints are not enabled. 2475 */ 2476 if (atomic_read(&udc->enabled_ep_cnt)) 2477 wait_event_interruptible(udc->ep_disable_wait_queue, 2478 (atomic_read(&udc->enabled_ep_cnt) == 0)); 2479 2480 spin_lock_irqsave(&udc->lock, flags); 2481 2482 udc_clk_set(udc, 0); 2483 } 2484 2485 spin_unlock_irqrestore(&udc->lock, flags); 2486 2487 return 0; 2488 } 2489 2490 /* Can be called with or without lock */ 2491 static int lpc32xx_pullup(struct usb_gadget *gadget, int is_on) 2492 { 2493 struct lpc32xx_udc *udc = to_udc(gadget); 2494 2495 /* Doesn't need lock */ 2496 pullup(udc, is_on); 2497 2498 return 0; 2499 } 2500 2501 static int lpc32xx_start(struct usb_gadget *, struct usb_gadget_driver *); 2502 static int lpc32xx_stop(struct usb_gadget *); 2503 2504 static const struct usb_gadget_ops lpc32xx_udc_ops = { 2505 .get_frame = lpc32xx_get_frame, 2506 .wakeup = lpc32xx_wakeup, 2507 .set_selfpowered = lpc32xx_set_selfpowered, 2508 .vbus_session = lpc32xx_vbus_session, 2509 .pullup = lpc32xx_pullup, 2510 .udc_start = lpc32xx_start, 2511 .udc_stop = lpc32xx_stop, 2512 }; 2513 2514 static void nop_release(struct device *dev) 2515 { 2516 /* nothing to free */ 2517 } 2518 2519 static const struct lpc32xx_udc controller_template = { 2520 .gadget = { 2521 .ops = &lpc32xx_udc_ops, 2522 .name = driver_name, 2523 .dev = { 2524 .init_name = "gadget", 2525 .release = nop_release, 2526 } 2527 }, 2528 .ep[0] = { 2529 .ep = { 2530 .name = "ep0", 2531 .ops = &lpc32xx_ep_ops, 2532 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL, 2533 USB_EP_CAPS_DIR_ALL), 2534 }, 2535 .maxpacket = 64, 2536 .hwep_num_base = 0, 2537 .hwep_num = 0, /* Can be 0 or 1, has special handling */ 2538 .lep = 0, 2539 .eptype = EP_CTL_TYPE, 2540 }, 2541 .ep[1] = { 2542 .ep = { 2543 .name = "ep1-int", 2544 .ops = &lpc32xx_ep_ops, 2545 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_INT, 2546 USB_EP_CAPS_DIR_ALL), 2547 }, 2548 .maxpacket = 64, 2549 .hwep_num_base = 2, 2550 .hwep_num = 0, /* 2 or 3, will be set later */ 2551 .lep = 1, 2552 .eptype = EP_INT_TYPE, 2553 }, 2554 .ep[2] = { 2555 .ep = { 2556 .name = "ep2-bulk", 2557 .ops = &lpc32xx_ep_ops, 2558 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, 2559 USB_EP_CAPS_DIR_ALL), 2560 }, 2561 .maxpacket = 64, 2562 .hwep_num_base = 4, 2563 .hwep_num = 0, /* 4 or 5, will be set later */ 2564 .lep = 2, 2565 .eptype = EP_BLK_TYPE, 2566 }, 2567 .ep[3] = { 2568 .ep = { 2569 .name = "ep3-iso", 2570 .ops = &lpc32xx_ep_ops, 2571 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO, 2572 USB_EP_CAPS_DIR_ALL), 2573 }, 2574 .maxpacket = 1023, 2575 .hwep_num_base = 6, 2576 .hwep_num = 0, /* 6 or 7, will be set later */ 2577 .lep = 3, 2578 .eptype = EP_ISO_TYPE, 2579 }, 2580 .ep[4] = { 2581 .ep = { 2582 .name = "ep4-int", 2583 .ops = &lpc32xx_ep_ops, 2584 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_INT, 2585 USB_EP_CAPS_DIR_ALL), 2586 }, 2587 .maxpacket = 64, 2588 .hwep_num_base = 8, 2589 .hwep_num = 0, /* 8 or 9, will be set later */ 2590 .lep = 4, 2591 .eptype = EP_INT_TYPE, 2592 }, 2593 .ep[5] = { 2594 .ep = { 2595 .name = "ep5-bulk", 2596 .ops = &lpc32xx_ep_ops, 2597 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, 2598 USB_EP_CAPS_DIR_ALL), 2599 }, 2600 .maxpacket = 64, 2601 .hwep_num_base = 10, 2602 .hwep_num = 0, /* 10 or 11, will be set later */ 2603 .lep = 5, 2604 .eptype = EP_BLK_TYPE, 2605 }, 2606 .ep[6] = { 2607 .ep = { 2608 .name = "ep6-iso", 2609 .ops = &lpc32xx_ep_ops, 2610 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO, 2611 USB_EP_CAPS_DIR_ALL), 2612 }, 2613 .maxpacket = 1023, 2614 .hwep_num_base = 12, 2615 .hwep_num = 0, /* 12 or 13, will be set later */ 2616 .lep = 6, 2617 .eptype = EP_ISO_TYPE, 2618 }, 2619 .ep[7] = { 2620 .ep = { 2621 .name = "ep7-int", 2622 .ops = &lpc32xx_ep_ops, 2623 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_INT, 2624 USB_EP_CAPS_DIR_ALL), 2625 }, 2626 .maxpacket = 64, 2627 .hwep_num_base = 14, 2628 .hwep_num = 0, 2629 .lep = 7, 2630 .eptype = EP_INT_TYPE, 2631 }, 2632 .ep[8] = { 2633 .ep = { 2634 .name = "ep8-bulk", 2635 .ops = &lpc32xx_ep_ops, 2636 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, 2637 USB_EP_CAPS_DIR_ALL), 2638 }, 2639 .maxpacket = 64, 2640 .hwep_num_base = 16, 2641 .hwep_num = 0, 2642 .lep = 8, 2643 .eptype = EP_BLK_TYPE, 2644 }, 2645 .ep[9] = { 2646 .ep = { 2647 .name = "ep9-iso", 2648 .ops = &lpc32xx_ep_ops, 2649 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO, 2650 USB_EP_CAPS_DIR_ALL), 2651 }, 2652 .maxpacket = 1023, 2653 .hwep_num_base = 18, 2654 .hwep_num = 0, 2655 .lep = 9, 2656 .eptype = EP_ISO_TYPE, 2657 }, 2658 .ep[10] = { 2659 .ep = { 2660 .name = "ep10-int", 2661 .ops = &lpc32xx_ep_ops, 2662 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_INT, 2663 USB_EP_CAPS_DIR_ALL), 2664 }, 2665 .maxpacket = 64, 2666 .hwep_num_base = 20, 2667 .hwep_num = 0, 2668 .lep = 10, 2669 .eptype = EP_INT_TYPE, 2670 }, 2671 .ep[11] = { 2672 .ep = { 2673 .name = "ep11-bulk", 2674 .ops = &lpc32xx_ep_ops, 2675 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, 2676 USB_EP_CAPS_DIR_ALL), 2677 }, 2678 .maxpacket = 64, 2679 .hwep_num_base = 22, 2680 .hwep_num = 0, 2681 .lep = 11, 2682 .eptype = EP_BLK_TYPE, 2683 }, 2684 .ep[12] = { 2685 .ep = { 2686 .name = "ep12-iso", 2687 .ops = &lpc32xx_ep_ops, 2688 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO, 2689 USB_EP_CAPS_DIR_ALL), 2690 }, 2691 .maxpacket = 1023, 2692 .hwep_num_base = 24, 2693 .hwep_num = 0, 2694 .lep = 12, 2695 .eptype = EP_ISO_TYPE, 2696 }, 2697 .ep[13] = { 2698 .ep = { 2699 .name = "ep13-int", 2700 .ops = &lpc32xx_ep_ops, 2701 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_INT, 2702 USB_EP_CAPS_DIR_ALL), 2703 }, 2704 .maxpacket = 64, 2705 .hwep_num_base = 26, 2706 .hwep_num = 0, 2707 .lep = 13, 2708 .eptype = EP_INT_TYPE, 2709 }, 2710 .ep[14] = { 2711 .ep = { 2712 .name = "ep14-bulk", 2713 .ops = &lpc32xx_ep_ops, 2714 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, 2715 USB_EP_CAPS_DIR_ALL), 2716 }, 2717 .maxpacket = 64, 2718 .hwep_num_base = 28, 2719 .hwep_num = 0, 2720 .lep = 14, 2721 .eptype = EP_BLK_TYPE, 2722 }, 2723 .ep[15] = { 2724 .ep = { 2725 .name = "ep15-bulk", 2726 .ops = &lpc32xx_ep_ops, 2727 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, 2728 USB_EP_CAPS_DIR_ALL), 2729 }, 2730 .maxpacket = 1023, 2731 .hwep_num_base = 30, 2732 .hwep_num = 0, 2733 .lep = 15, 2734 .eptype = EP_BLK_TYPE, 2735 }, 2736 }; 2737 2738 /* ISO and status interrupts */ 2739 static irqreturn_t lpc32xx_usb_lp_irq(int irq, void *_udc) 2740 { 2741 u32 tmp, devstat; 2742 struct lpc32xx_udc *udc = _udc; 2743 2744 spin_lock(&udc->lock); 2745 2746 /* Read the device status register */ 2747 devstat = readl(USBD_DEVINTST(udc->udp_baseaddr)); 2748 2749 devstat &= ~USBD_EP_FAST; 2750 writel(devstat, USBD_DEVINTCLR(udc->udp_baseaddr)); 2751 devstat = devstat & udc->enabled_devints; 2752 2753 /* Device specific handling needed? */ 2754 if (devstat & USBD_DEV_STAT) 2755 udc_handle_dev(udc); 2756 2757 /* Start of frame? (devstat & FRAME_INT): 2758 * The frame interrupt isn't really needed for ISO support, 2759 * as the driver will queue the necessary packets */ 2760 2761 /* Error? */ 2762 if (devstat & ERR_INT) { 2763 /* All types of errors, from cable removal during transfer to 2764 * misc protocol and bit errors. These are mostly for just info, 2765 * as the USB hardware will work around these. If these errors 2766 * happen alot, something is wrong. */ 2767 udc_protocol_cmd_w(udc, CMD_RD_ERR_STAT); 2768 tmp = udc_protocol_cmd_r(udc, DAT_RD_ERR_STAT); 2769 dev_dbg(udc->dev, "Device error (0x%x)!\n", tmp); 2770 } 2771 2772 spin_unlock(&udc->lock); 2773 2774 return IRQ_HANDLED; 2775 } 2776 2777 /* EP interrupts */ 2778 static irqreturn_t lpc32xx_usb_hp_irq(int irq, void *_udc) 2779 { 2780 u32 tmp; 2781 struct lpc32xx_udc *udc = _udc; 2782 2783 spin_lock(&udc->lock); 2784 2785 /* Read the device status register */ 2786 writel(USBD_EP_FAST, USBD_DEVINTCLR(udc->udp_baseaddr)); 2787 2788 /* Endpoints */ 2789 tmp = readl(USBD_EPINTST(udc->udp_baseaddr)); 2790 2791 /* Special handling for EP0 */ 2792 if (tmp & (EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) { 2793 /* Handle EP0 IN */ 2794 if (tmp & (EP_MASK_SEL(0, EP_IN))) 2795 udc_handle_ep0_in(udc); 2796 2797 /* Handle EP0 OUT */ 2798 if (tmp & (EP_MASK_SEL(0, EP_OUT))) 2799 udc_handle_ep0_out(udc); 2800 } 2801 2802 /* All other EPs */ 2803 if (tmp & ~(EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) { 2804 int i; 2805 2806 /* Handle other EP interrupts */ 2807 for (i = 1; i < NUM_ENDPOINTS; i++) { 2808 if (tmp & (1 << udc->ep[i].hwep_num)) 2809 udc_handle_eps(udc, &udc->ep[i]); 2810 } 2811 } 2812 2813 spin_unlock(&udc->lock); 2814 2815 return IRQ_HANDLED; 2816 } 2817 2818 static irqreturn_t lpc32xx_usb_devdma_irq(int irq, void *_udc) 2819 { 2820 struct lpc32xx_udc *udc = _udc; 2821 2822 int i; 2823 u32 tmp; 2824 2825 spin_lock(&udc->lock); 2826 2827 /* Handle EP DMA EOT interrupts */ 2828 tmp = readl(USBD_EOTINTST(udc->udp_baseaddr)) | 2829 (readl(USBD_EPDMAST(udc->udp_baseaddr)) & 2830 readl(USBD_NDDRTINTST(udc->udp_baseaddr))) | 2831 readl(USBD_SYSERRTINTST(udc->udp_baseaddr)); 2832 for (i = 1; i < NUM_ENDPOINTS; i++) { 2833 if (tmp & (1 << udc->ep[i].hwep_num)) 2834 udc_handle_dma_ep(udc, &udc->ep[i]); 2835 } 2836 2837 spin_unlock(&udc->lock); 2838 2839 return IRQ_HANDLED; 2840 } 2841 2842 /* 2843 * 2844 * VBUS detection, pullup handler, and Gadget cable state notification 2845 * 2846 */ 2847 static void vbus_work(struct lpc32xx_udc *udc) 2848 { 2849 u8 value; 2850 2851 if (udc->enabled != 0) { 2852 /* Discharge VBUS real quick */ 2853 i2c_smbus_write_byte_data(udc->isp1301_i2c_client, 2854 ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG); 2855 2856 /* Give VBUS some time (100mS) to discharge */ 2857 msleep(100); 2858 2859 /* Disable VBUS discharge resistor */ 2860 i2c_smbus_write_byte_data(udc->isp1301_i2c_client, 2861 ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR, 2862 OTG1_VBUS_DISCHRG); 2863 2864 /* Clear interrupt */ 2865 i2c_smbus_write_byte_data(udc->isp1301_i2c_client, 2866 ISP1301_I2C_INTERRUPT_LATCH | 2867 ISP1301_I2C_REG_CLEAR_ADDR, ~0); 2868 2869 /* Get the VBUS status from the transceiver */ 2870 value = i2c_smbus_read_byte_data(udc->isp1301_i2c_client, 2871 ISP1301_I2C_INTERRUPT_SOURCE); 2872 2873 /* VBUS on or off? */ 2874 if (value & INT_SESS_VLD) 2875 udc->vbus = 1; 2876 else 2877 udc->vbus = 0; 2878 2879 /* VBUS changed? */ 2880 if (udc->last_vbus != udc->vbus) { 2881 udc->last_vbus = udc->vbus; 2882 lpc32xx_vbus_session(&udc->gadget, udc->vbus); 2883 } 2884 } 2885 } 2886 2887 static irqreturn_t lpc32xx_usb_vbus_irq(int irq, void *_udc) 2888 { 2889 struct lpc32xx_udc *udc = _udc; 2890 2891 vbus_work(udc); 2892 2893 return IRQ_HANDLED; 2894 } 2895 2896 static int lpc32xx_start(struct usb_gadget *gadget, 2897 struct usb_gadget_driver *driver) 2898 { 2899 struct lpc32xx_udc *udc = to_udc(gadget); 2900 2901 if (!driver || driver->max_speed < USB_SPEED_FULL || !driver->setup) { 2902 dev_err(udc->dev, "bad parameter.\n"); 2903 return -EINVAL; 2904 } 2905 2906 if (udc->driver) { 2907 dev_err(udc->dev, "UDC already has a gadget driver\n"); 2908 return -EBUSY; 2909 } 2910 2911 udc->driver = driver; 2912 udc->gadget.dev.of_node = udc->dev->of_node; 2913 udc->enabled = 1; 2914 udc->gadget.is_selfpowered = 1; 2915 udc->vbus = 0; 2916 2917 /* Force VBUS process once to check for cable insertion */ 2918 udc->last_vbus = udc->vbus = 0; 2919 vbus_work(udc); 2920 2921 /* enable interrupts */ 2922 i2c_smbus_write_byte_data(udc->isp1301_i2c_client, 2923 ISP1301_I2C_INTERRUPT_FALLING, INT_SESS_VLD | INT_VBUS_VLD); 2924 i2c_smbus_write_byte_data(udc->isp1301_i2c_client, 2925 ISP1301_I2C_INTERRUPT_RISING, INT_SESS_VLD | INT_VBUS_VLD); 2926 2927 return 0; 2928 } 2929 2930 static int lpc32xx_stop(struct usb_gadget *gadget) 2931 { 2932 struct lpc32xx_udc *udc = to_udc(gadget); 2933 2934 i2c_smbus_write_byte_data(udc->isp1301_i2c_client, 2935 ISP1301_I2C_INTERRUPT_FALLING | ISP1301_I2C_REG_CLEAR_ADDR, ~0); 2936 i2c_smbus_write_byte_data(udc->isp1301_i2c_client, 2937 ISP1301_I2C_INTERRUPT_RISING | ISP1301_I2C_REG_CLEAR_ADDR, ~0); 2938 2939 if (udc->clocked) { 2940 spin_lock(&udc->lock); 2941 stop_activity(udc); 2942 spin_unlock(&udc->lock); 2943 2944 /* 2945 * Wait for all the endpoints to disable, 2946 * before disabling clocks. Don't wait if 2947 * endpoints are not enabled. 2948 */ 2949 if (atomic_read(&udc->enabled_ep_cnt)) 2950 wait_event_interruptible(udc->ep_disable_wait_queue, 2951 (atomic_read(&udc->enabled_ep_cnt) == 0)); 2952 2953 spin_lock(&udc->lock); 2954 udc_clk_set(udc, 0); 2955 spin_unlock(&udc->lock); 2956 } 2957 2958 udc->enabled = 0; 2959 udc->driver = NULL; 2960 2961 return 0; 2962 } 2963 2964 static void lpc32xx_udc_shutdown(struct platform_device *dev) 2965 { 2966 /* Force disconnect on reboot */ 2967 struct lpc32xx_udc *udc = platform_get_drvdata(dev); 2968 2969 pullup(udc, 0); 2970 } 2971 2972 /* 2973 * Callbacks to be overridden by options passed via OF (TODO) 2974 */ 2975 2976 static void lpc32xx_usbd_conn_chg(int conn) 2977 { 2978 /* Do nothing, it might be nice to enable an LED 2979 * based on conn state being !0 */ 2980 } 2981 2982 static void lpc32xx_usbd_susp_chg(int susp) 2983 { 2984 /* Device suspend if susp != 0 */ 2985 } 2986 2987 static void lpc32xx_rmwkup_chg(int remote_wakup_enable) 2988 { 2989 /* Enable or disable USB remote wakeup */ 2990 } 2991 2992 struct lpc32xx_usbd_cfg lpc32xx_usbddata = { 2993 .vbus_drv_pol = 0, 2994 .conn_chgb = &lpc32xx_usbd_conn_chg, 2995 .susp_chgb = &lpc32xx_usbd_susp_chg, 2996 .rmwk_chgb = &lpc32xx_rmwkup_chg, 2997 }; 2998 2999 3000 static u64 lpc32xx_usbd_dmamask = ~(u32) 0x7F; 3001 3002 static int lpc32xx_udc_probe(struct platform_device *pdev) 3003 { 3004 struct device *dev = &pdev->dev; 3005 struct lpc32xx_udc *udc; 3006 int retval, i; 3007 struct resource *res; 3008 dma_addr_t dma_handle; 3009 struct device_node *isp1301_node; 3010 3011 udc = devm_kmemdup(dev, &controller_template, sizeof(*udc), GFP_KERNEL); 3012 if (!udc) 3013 return -ENOMEM; 3014 3015 for (i = 0; i <= 15; i++) 3016 udc->ep[i].udc = udc; 3017 udc->gadget.ep0 = &udc->ep[0].ep; 3018 3019 /* init software state */ 3020 udc->gadget.dev.parent = dev; 3021 udc->pdev = pdev; 3022 udc->dev = &pdev->dev; 3023 udc->enabled = 0; 3024 3025 if (pdev->dev.of_node) { 3026 isp1301_node = of_parse_phandle(pdev->dev.of_node, 3027 "transceiver", 0); 3028 } else { 3029 isp1301_node = NULL; 3030 } 3031 3032 udc->isp1301_i2c_client = isp1301_get_client(isp1301_node); 3033 if (!udc->isp1301_i2c_client) { 3034 return -EPROBE_DEFER; 3035 } 3036 3037 dev_info(udc->dev, "ISP1301 I2C device at address 0x%x\n", 3038 udc->isp1301_i2c_client->addr); 3039 3040 pdev->dev.dma_mask = &lpc32xx_usbd_dmamask; 3041 retval = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); 3042 if (retval) 3043 return retval; 3044 3045 udc->board = &lpc32xx_usbddata; 3046 3047 /* 3048 * Resources are mapped as follows: 3049 * IORESOURCE_MEM, base address and size of USB space 3050 * IORESOURCE_IRQ, USB device low priority interrupt number 3051 * IORESOURCE_IRQ, USB device high priority interrupt number 3052 * IORESOURCE_IRQ, USB device interrupt number 3053 * IORESOURCE_IRQ, USB transceiver interrupt number 3054 */ 3055 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3056 if (!res) 3057 return -ENXIO; 3058 3059 spin_lock_init(&udc->lock); 3060 3061 /* Get IRQs */ 3062 for (i = 0; i < 4; i++) { 3063 udc->udp_irq[i] = platform_get_irq(pdev, i); 3064 if (udc->udp_irq[i] < 0) { 3065 dev_err(udc->dev, 3066 "irq resource %d not available!\n", i); 3067 return udc->udp_irq[i]; 3068 } 3069 } 3070 3071 udc->udp_baseaddr = devm_ioremap_resource(dev, res); 3072 if (IS_ERR(udc->udp_baseaddr)) { 3073 dev_err(udc->dev, "IO map failure\n"); 3074 return PTR_ERR(udc->udp_baseaddr); 3075 } 3076 3077 /* Get USB device clock */ 3078 udc->usb_slv_clk = devm_clk_get(&pdev->dev, NULL); 3079 if (IS_ERR(udc->usb_slv_clk)) { 3080 dev_err(udc->dev, "failed to acquire USB device clock\n"); 3081 return PTR_ERR(udc->usb_slv_clk); 3082 } 3083 3084 /* Enable USB device clock */ 3085 retval = clk_prepare_enable(udc->usb_slv_clk); 3086 if (retval < 0) { 3087 dev_err(udc->dev, "failed to start USB device clock\n"); 3088 return retval; 3089 } 3090 3091 /* Setup deferred workqueue data */ 3092 udc->poweron = udc->pullup = 0; 3093 INIT_WORK(&udc->pullup_job, pullup_work); 3094 #ifdef CONFIG_PM 3095 INIT_WORK(&udc->power_job, power_work); 3096 #endif 3097 3098 /* All clocks are now on */ 3099 udc->clocked = 1; 3100 3101 isp1301_udc_configure(udc); 3102 /* Allocate memory for the UDCA */ 3103 udc->udca_v_base = dma_alloc_coherent(&pdev->dev, UDCA_BUFF_SIZE, 3104 &dma_handle, 3105 (GFP_KERNEL | GFP_DMA)); 3106 if (!udc->udca_v_base) { 3107 dev_err(udc->dev, "error getting UDCA region\n"); 3108 retval = -ENOMEM; 3109 goto i2c_fail; 3110 } 3111 udc->udca_p_base = dma_handle; 3112 dev_dbg(udc->dev, "DMA buffer(0x%x bytes), P:0x%08x, V:0x%p\n", 3113 UDCA_BUFF_SIZE, udc->udca_p_base, udc->udca_v_base); 3114 3115 /* Setup the DD DMA memory pool */ 3116 udc->dd_cache = dma_pool_create("udc_dd", udc->dev, 3117 sizeof(struct lpc32xx_usbd_dd_gad), 3118 sizeof(u32), 0); 3119 if (!udc->dd_cache) { 3120 dev_err(udc->dev, "error getting DD DMA region\n"); 3121 retval = -ENOMEM; 3122 goto dma_alloc_fail; 3123 } 3124 3125 /* Clear USB peripheral and initialize gadget endpoints */ 3126 udc_disable(udc); 3127 udc_reinit(udc); 3128 3129 /* Request IRQs - low and high priority USB device IRQs are routed to 3130 * the same handler, while the DMA interrupt is routed elsewhere */ 3131 retval = devm_request_irq(dev, udc->udp_irq[IRQ_USB_LP], 3132 lpc32xx_usb_lp_irq, 0, "udc_lp", udc); 3133 if (retval < 0) { 3134 dev_err(udc->dev, "LP request irq %d failed\n", 3135 udc->udp_irq[IRQ_USB_LP]); 3136 goto irq_req_fail; 3137 } 3138 retval = devm_request_irq(dev, udc->udp_irq[IRQ_USB_HP], 3139 lpc32xx_usb_hp_irq, 0, "udc_hp", udc); 3140 if (retval < 0) { 3141 dev_err(udc->dev, "HP request irq %d failed\n", 3142 udc->udp_irq[IRQ_USB_HP]); 3143 goto irq_req_fail; 3144 } 3145 3146 retval = devm_request_irq(dev, udc->udp_irq[IRQ_USB_DEVDMA], 3147 lpc32xx_usb_devdma_irq, 0, "udc_dma", udc); 3148 if (retval < 0) { 3149 dev_err(udc->dev, "DEV request irq %d failed\n", 3150 udc->udp_irq[IRQ_USB_DEVDMA]); 3151 goto irq_req_fail; 3152 } 3153 3154 /* The transceiver interrupt is used for VBUS detection and will 3155 kick off the VBUS handler function */ 3156 retval = devm_request_threaded_irq(dev, udc->udp_irq[IRQ_USB_ATX], NULL, 3157 lpc32xx_usb_vbus_irq, IRQF_ONESHOT, 3158 "udc_otg", udc); 3159 if (retval < 0) { 3160 dev_err(udc->dev, "VBUS request irq %d failed\n", 3161 udc->udp_irq[IRQ_USB_ATX]); 3162 goto irq_req_fail; 3163 } 3164 3165 /* Initialize wait queue */ 3166 init_waitqueue_head(&udc->ep_disable_wait_queue); 3167 atomic_set(&udc->enabled_ep_cnt, 0); 3168 3169 retval = usb_add_gadget_udc(dev, &udc->gadget); 3170 if (retval < 0) 3171 goto add_gadget_fail; 3172 3173 dev_set_drvdata(dev, udc); 3174 device_init_wakeup(dev, 1); 3175 create_debug_file(udc); 3176 3177 /* Disable clocks for now */ 3178 udc_clk_set(udc, 0); 3179 3180 dev_info(udc->dev, "%s version %s\n", driver_name, DRIVER_VERSION); 3181 return 0; 3182 3183 add_gadget_fail: 3184 irq_req_fail: 3185 dma_pool_destroy(udc->dd_cache); 3186 dma_alloc_fail: 3187 dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE, 3188 udc->udca_v_base, udc->udca_p_base); 3189 i2c_fail: 3190 clk_disable_unprepare(udc->usb_slv_clk); 3191 dev_err(udc->dev, "%s probe failed, %d\n", driver_name, retval); 3192 3193 return retval; 3194 } 3195 3196 static int lpc32xx_udc_remove(struct platform_device *pdev) 3197 { 3198 struct lpc32xx_udc *udc = platform_get_drvdata(pdev); 3199 3200 usb_del_gadget_udc(&udc->gadget); 3201 if (udc->driver) 3202 return -EBUSY; 3203 3204 udc_clk_set(udc, 1); 3205 udc_disable(udc); 3206 pullup(udc, 0); 3207 3208 device_init_wakeup(&pdev->dev, 0); 3209 remove_debug_file(udc); 3210 3211 dma_pool_destroy(udc->dd_cache); 3212 dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE, 3213 udc->udca_v_base, udc->udca_p_base); 3214 3215 clk_disable_unprepare(udc->usb_slv_clk); 3216 3217 return 0; 3218 } 3219 3220 #ifdef CONFIG_PM 3221 static int lpc32xx_udc_suspend(struct platform_device *pdev, pm_message_t mesg) 3222 { 3223 struct lpc32xx_udc *udc = platform_get_drvdata(pdev); 3224 3225 if (udc->clocked) { 3226 /* Power down ISP */ 3227 udc->poweron = 0; 3228 isp1301_set_powerstate(udc, 0); 3229 3230 /* Disable clocking */ 3231 udc_clk_set(udc, 0); 3232 3233 /* Keep clock flag on, so we know to re-enable clocks 3234 on resume */ 3235 udc->clocked = 1; 3236 3237 /* Kill global USB clock */ 3238 clk_disable_unprepare(udc->usb_slv_clk); 3239 } 3240 3241 return 0; 3242 } 3243 3244 static int lpc32xx_udc_resume(struct platform_device *pdev) 3245 { 3246 struct lpc32xx_udc *udc = platform_get_drvdata(pdev); 3247 3248 if (udc->clocked) { 3249 /* Enable global USB clock */ 3250 clk_prepare_enable(udc->usb_slv_clk); 3251 3252 /* Enable clocking */ 3253 udc_clk_set(udc, 1); 3254 3255 /* ISP back to normal power mode */ 3256 udc->poweron = 1; 3257 isp1301_set_powerstate(udc, 1); 3258 } 3259 3260 return 0; 3261 } 3262 #else 3263 #define lpc32xx_udc_suspend NULL 3264 #define lpc32xx_udc_resume NULL 3265 #endif 3266 3267 #ifdef CONFIG_OF 3268 static const struct of_device_id lpc32xx_udc_of_match[] = { 3269 { .compatible = "nxp,lpc3220-udc", }, 3270 { }, 3271 }; 3272 MODULE_DEVICE_TABLE(of, lpc32xx_udc_of_match); 3273 #endif 3274 3275 static struct platform_driver lpc32xx_udc_driver = { 3276 .remove = lpc32xx_udc_remove, 3277 .shutdown = lpc32xx_udc_shutdown, 3278 .suspend = lpc32xx_udc_suspend, 3279 .resume = lpc32xx_udc_resume, 3280 .driver = { 3281 .name = (char *) driver_name, 3282 .of_match_table = of_match_ptr(lpc32xx_udc_of_match), 3283 }, 3284 }; 3285 3286 module_platform_driver_probe(lpc32xx_udc_driver, lpc32xx_udc_probe); 3287 3288 MODULE_DESCRIPTION("LPC32XX udc driver"); 3289 MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>"); 3290 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>"); 3291 MODULE_LICENSE("GPL"); 3292 MODULE_ALIAS("platform:lpc32xx_udc"); 3293