xref: /openbmc/linux/drivers/usb/gadget/udc/core.c (revision feac8c8b)
1 // SPDX-License-Identifier: GPL-2.0
2 /**
3  * udc.c - Core UDC Framework
4  *
5  * Copyright (C) 2010 Texas Instruments
6  * Author: Felipe Balbi <balbi@ti.com>
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/device.h>
12 #include <linux/list.h>
13 #include <linux/err.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/workqueue.h>
17 
18 #include <linux/usb/ch9.h>
19 #include <linux/usb/gadget.h>
20 #include <linux/usb.h>
21 
22 #include "trace.h"
23 
24 /**
25  * struct usb_udc - describes one usb device controller
26  * @driver - the gadget driver pointer. For use by the class code
27  * @dev - the child device to the actual controller
28  * @gadget - the gadget. For use by the class code
29  * @list - for use by the udc class driver
30  * @vbus - for udcs who care about vbus status, this value is real vbus status;
31  * for udcs who do not care about vbus status, this value is always true
32  *
33  * This represents the internal data structure which is used by the UDC-class
34  * to hold information about udc driver and gadget together.
35  */
36 struct usb_udc {
37 	struct usb_gadget_driver	*driver;
38 	struct usb_gadget		*gadget;
39 	struct device			dev;
40 	struct list_head		list;
41 	bool				vbus;
42 };
43 
44 static struct class *udc_class;
45 static LIST_HEAD(udc_list);
46 static LIST_HEAD(gadget_driver_pending_list);
47 static DEFINE_MUTEX(udc_lock);
48 
49 static int udc_bind_to_driver(struct usb_udc *udc,
50 		struct usb_gadget_driver *driver);
51 
52 /* ------------------------------------------------------------------------- */
53 
54 /**
55  * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
56  * @ep:the endpoint being configured
57  * @maxpacket_limit:value of maximum packet size limit
58  *
59  * This function should be used only in UDC drivers to initialize endpoint
60  * (usually in probe function).
61  */
62 void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
63 					      unsigned maxpacket_limit)
64 {
65 	ep->maxpacket_limit = maxpacket_limit;
66 	ep->maxpacket = maxpacket_limit;
67 
68 	trace_usb_ep_set_maxpacket_limit(ep, 0);
69 }
70 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
71 
72 /**
73  * usb_ep_enable - configure endpoint, making it usable
74  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
75  *	drivers discover endpoints through the ep_list of a usb_gadget.
76  *
77  * When configurations are set, or when interface settings change, the driver
78  * will enable or disable the relevant endpoints.  while it is enabled, an
79  * endpoint may be used for i/o until the driver receives a disconnect() from
80  * the host or until the endpoint is disabled.
81  *
82  * the ep0 implementation (which calls this routine) must ensure that the
83  * hardware capabilities of each endpoint match the descriptor provided
84  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
85  * for interrupt transfers as well as bulk, but it likely couldn't be used
86  * for iso transfers or for endpoint 14.  some endpoints are fully
87  * configurable, with more generic names like "ep-a".  (remember that for
88  * USB, "in" means "towards the USB master".)
89  *
90  * returns zero, or a negative error code.
91  */
92 int usb_ep_enable(struct usb_ep *ep)
93 {
94 	int ret = 0;
95 
96 	if (ep->enabled)
97 		goto out;
98 
99 	ret = ep->ops->enable(ep, ep->desc);
100 	if (ret)
101 		goto out;
102 
103 	ep->enabled = true;
104 
105 out:
106 	trace_usb_ep_enable(ep, ret);
107 
108 	return ret;
109 }
110 EXPORT_SYMBOL_GPL(usb_ep_enable);
111 
112 /**
113  * usb_ep_disable - endpoint is no longer usable
114  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
115  *
116  * no other task may be using this endpoint when this is called.
117  * any pending and uncompleted requests will complete with status
118  * indicating disconnect (-ESHUTDOWN) before this call returns.
119  * gadget drivers must call usb_ep_enable() again before queueing
120  * requests to the endpoint.
121  *
122  * returns zero, or a negative error code.
123  */
124 int usb_ep_disable(struct usb_ep *ep)
125 {
126 	int ret = 0;
127 
128 	if (!ep->enabled)
129 		goto out;
130 
131 	ret = ep->ops->disable(ep);
132 	if (ret)
133 		goto out;
134 
135 	ep->enabled = false;
136 
137 out:
138 	trace_usb_ep_disable(ep, ret);
139 
140 	return ret;
141 }
142 EXPORT_SYMBOL_GPL(usb_ep_disable);
143 
144 /**
145  * usb_ep_alloc_request - allocate a request object to use with this endpoint
146  * @ep:the endpoint to be used with with the request
147  * @gfp_flags:GFP_* flags to use
148  *
149  * Request objects must be allocated with this call, since they normally
150  * need controller-specific setup and may even need endpoint-specific
151  * resources such as allocation of DMA descriptors.
152  * Requests may be submitted with usb_ep_queue(), and receive a single
153  * completion callback.  Free requests with usb_ep_free_request(), when
154  * they are no longer needed.
155  *
156  * Returns the request, or null if one could not be allocated.
157  */
158 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
159 						       gfp_t gfp_flags)
160 {
161 	struct usb_request *req = NULL;
162 
163 	req = ep->ops->alloc_request(ep, gfp_flags);
164 
165 	trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM);
166 
167 	return req;
168 }
169 EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
170 
171 /**
172  * usb_ep_free_request - frees a request object
173  * @ep:the endpoint associated with the request
174  * @req:the request being freed
175  *
176  * Reverses the effect of usb_ep_alloc_request().
177  * Caller guarantees the request is not queued, and that it will
178  * no longer be requeued (or otherwise used).
179  */
180 void usb_ep_free_request(struct usb_ep *ep,
181 				       struct usb_request *req)
182 {
183 	trace_usb_ep_free_request(ep, req, 0);
184 	ep->ops->free_request(ep, req);
185 }
186 EXPORT_SYMBOL_GPL(usb_ep_free_request);
187 
188 /**
189  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
190  * @ep:the endpoint associated with the request
191  * @req:the request being submitted
192  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
193  *	pre-allocate all necessary memory with the request.
194  *
195  * This tells the device controller to perform the specified request through
196  * that endpoint (reading or writing a buffer).  When the request completes,
197  * including being canceled by usb_ep_dequeue(), the request's completion
198  * routine is called to return the request to the driver.  Any endpoint
199  * (except control endpoints like ep0) may have more than one transfer
200  * request queued; they complete in FIFO order.  Once a gadget driver
201  * submits a request, that request may not be examined or modified until it
202  * is given back to that driver through the completion callback.
203  *
204  * Each request is turned into one or more packets.  The controller driver
205  * never merges adjacent requests into the same packet.  OUT transfers
206  * will sometimes use data that's already buffered in the hardware.
207  * Drivers can rely on the fact that the first byte of the request's buffer
208  * always corresponds to the first byte of some USB packet, for both
209  * IN and OUT transfers.
210  *
211  * Bulk endpoints can queue any amount of data; the transfer is packetized
212  * automatically.  The last packet will be short if the request doesn't fill it
213  * out completely.  Zero length packets (ZLPs) should be avoided in portable
214  * protocols since not all usb hardware can successfully handle zero length
215  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
216  * the request 'zero' flag is set.)  Bulk endpoints may also be used
217  * for interrupt transfers; but the reverse is not true, and some endpoints
218  * won't support every interrupt transfer.  (Such as 768 byte packets.)
219  *
220  * Interrupt-only endpoints are less functional than bulk endpoints, for
221  * example by not supporting queueing or not handling buffers that are
222  * larger than the endpoint's maxpacket size.  They may also treat data
223  * toggle differently.
224  *
225  * Control endpoints ... after getting a setup() callback, the driver queues
226  * one response (even if it would be zero length).  That enables the
227  * status ack, after transferring data as specified in the response.  Setup
228  * functions may return negative error codes to generate protocol stalls.
229  * (Note that some USB device controllers disallow protocol stall responses
230  * in some cases.)  When control responses are deferred (the response is
231  * written after the setup callback returns), then usb_ep_set_halt() may be
232  * used on ep0 to trigger protocol stalls.  Depending on the controller,
233  * it may not be possible to trigger a status-stage protocol stall when the
234  * data stage is over, that is, from within the response's completion
235  * routine.
236  *
237  * For periodic endpoints, like interrupt or isochronous ones, the usb host
238  * arranges to poll once per interval, and the gadget driver usually will
239  * have queued some data to transfer at that time.
240  *
241  * Returns zero, or a negative error code.  Endpoints that are not enabled
242  * report errors; errors will also be
243  * reported when the usb peripheral is disconnected.
244  */
245 int usb_ep_queue(struct usb_ep *ep,
246 			       struct usb_request *req, gfp_t gfp_flags)
247 {
248 	int ret = 0;
249 
250 	if (WARN_ON_ONCE(!ep->enabled && ep->address)) {
251 		ret = -ESHUTDOWN;
252 		goto out;
253 	}
254 
255 	ret = ep->ops->queue(ep, req, gfp_flags);
256 
257 out:
258 	trace_usb_ep_queue(ep, req, ret);
259 
260 	return ret;
261 }
262 EXPORT_SYMBOL_GPL(usb_ep_queue);
263 
264 /**
265  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
266  * @ep:the endpoint associated with the request
267  * @req:the request being canceled
268  *
269  * If the request is still active on the endpoint, it is dequeued and its
270  * completion routine is called (with status -ECONNRESET); else a negative
271  * error code is returned. This is guaranteed to happen before the call to
272  * usb_ep_dequeue() returns.
273  *
274  * Note that some hardware can't clear out write fifos (to unlink the request
275  * at the head of the queue) except as part of disconnecting from usb. Such
276  * restrictions prevent drivers from supporting configuration changes,
277  * even to configuration zero (a "chapter 9" requirement).
278  */
279 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
280 {
281 	int ret;
282 
283 	ret = ep->ops->dequeue(ep, req);
284 	trace_usb_ep_dequeue(ep, req, ret);
285 
286 	return ret;
287 }
288 EXPORT_SYMBOL_GPL(usb_ep_dequeue);
289 
290 /**
291  * usb_ep_set_halt - sets the endpoint halt feature.
292  * @ep: the non-isochronous endpoint being stalled
293  *
294  * Use this to stall an endpoint, perhaps as an error report.
295  * Except for control endpoints,
296  * the endpoint stays halted (will not stream any data) until the host
297  * clears this feature; drivers may need to empty the endpoint's request
298  * queue first, to make sure no inappropriate transfers happen.
299  *
300  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
301  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
302  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
303  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
304  *
305  * Returns zero, or a negative error code.  On success, this call sets
306  * underlying hardware state that blocks data transfers.
307  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
308  * transfer requests are still queued, or if the controller hardware
309  * (usually a FIFO) still holds bytes that the host hasn't collected.
310  */
311 int usb_ep_set_halt(struct usb_ep *ep)
312 {
313 	int ret;
314 
315 	ret = ep->ops->set_halt(ep, 1);
316 	trace_usb_ep_set_halt(ep, ret);
317 
318 	return ret;
319 }
320 EXPORT_SYMBOL_GPL(usb_ep_set_halt);
321 
322 /**
323  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
324  * @ep:the bulk or interrupt endpoint being reset
325  *
326  * Use this when responding to the standard usb "set interface" request,
327  * for endpoints that aren't reconfigured, after clearing any other state
328  * in the endpoint's i/o queue.
329  *
330  * Returns zero, or a negative error code.  On success, this call clears
331  * the underlying hardware state reflecting endpoint halt and data toggle.
332  * Note that some hardware can't support this request (like pxa2xx_udc),
333  * and accordingly can't correctly implement interface altsettings.
334  */
335 int usb_ep_clear_halt(struct usb_ep *ep)
336 {
337 	int ret;
338 
339 	ret = ep->ops->set_halt(ep, 0);
340 	trace_usb_ep_clear_halt(ep, ret);
341 
342 	return ret;
343 }
344 EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
345 
346 /**
347  * usb_ep_set_wedge - sets the halt feature and ignores clear requests
348  * @ep: the endpoint being wedged
349  *
350  * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
351  * requests. If the gadget driver clears the halt status, it will
352  * automatically unwedge the endpoint.
353  *
354  * Returns zero on success, else negative errno.
355  */
356 int usb_ep_set_wedge(struct usb_ep *ep)
357 {
358 	int ret;
359 
360 	if (ep->ops->set_wedge)
361 		ret = ep->ops->set_wedge(ep);
362 	else
363 		ret = ep->ops->set_halt(ep, 1);
364 
365 	trace_usb_ep_set_wedge(ep, ret);
366 
367 	return ret;
368 }
369 EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
370 
371 /**
372  * usb_ep_fifo_status - returns number of bytes in fifo, or error
373  * @ep: the endpoint whose fifo status is being checked.
374  *
375  * FIFO endpoints may have "unclaimed data" in them in certain cases,
376  * such as after aborted transfers.  Hosts may not have collected all
377  * the IN data written by the gadget driver (and reported by a request
378  * completion).  The gadget driver may not have collected all the data
379  * written OUT to it by the host.  Drivers that need precise handling for
380  * fault reporting or recovery may need to use this call.
381  *
382  * This returns the number of such bytes in the fifo, or a negative
383  * errno if the endpoint doesn't use a FIFO or doesn't support such
384  * precise handling.
385  */
386 int usb_ep_fifo_status(struct usb_ep *ep)
387 {
388 	int ret;
389 
390 	if (ep->ops->fifo_status)
391 		ret = ep->ops->fifo_status(ep);
392 	else
393 		ret = -EOPNOTSUPP;
394 
395 	trace_usb_ep_fifo_status(ep, ret);
396 
397 	return ret;
398 }
399 EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
400 
401 /**
402  * usb_ep_fifo_flush - flushes contents of a fifo
403  * @ep: the endpoint whose fifo is being flushed.
404  *
405  * This call may be used to flush the "unclaimed data" that may exist in
406  * an endpoint fifo after abnormal transaction terminations.  The call
407  * must never be used except when endpoint is not being used for any
408  * protocol translation.
409  */
410 void usb_ep_fifo_flush(struct usb_ep *ep)
411 {
412 	if (ep->ops->fifo_flush)
413 		ep->ops->fifo_flush(ep);
414 
415 	trace_usb_ep_fifo_flush(ep, 0);
416 }
417 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
418 
419 /* ------------------------------------------------------------------------- */
420 
421 /**
422  * usb_gadget_frame_number - returns the current frame number
423  * @gadget: controller that reports the frame number
424  *
425  * Returns the usb frame number, normally eleven bits from a SOF packet,
426  * or negative errno if this device doesn't support this capability.
427  */
428 int usb_gadget_frame_number(struct usb_gadget *gadget)
429 {
430 	int ret;
431 
432 	ret = gadget->ops->get_frame(gadget);
433 
434 	trace_usb_gadget_frame_number(gadget, ret);
435 
436 	return ret;
437 }
438 EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
439 
440 /**
441  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
442  * @gadget: controller used to wake up the host
443  *
444  * Returns zero on success, else negative error code if the hardware
445  * doesn't support such attempts, or its support has not been enabled
446  * by the usb host.  Drivers must return device descriptors that report
447  * their ability to support this, or hosts won't enable it.
448  *
449  * This may also try to use SRP to wake the host and start enumeration,
450  * even if OTG isn't otherwise in use.  OTG devices may also start
451  * remote wakeup even when hosts don't explicitly enable it.
452  */
453 int usb_gadget_wakeup(struct usb_gadget *gadget)
454 {
455 	int ret = 0;
456 
457 	if (!gadget->ops->wakeup) {
458 		ret = -EOPNOTSUPP;
459 		goto out;
460 	}
461 
462 	ret = gadget->ops->wakeup(gadget);
463 
464 out:
465 	trace_usb_gadget_wakeup(gadget, ret);
466 
467 	return ret;
468 }
469 EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
470 
471 /**
472  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
473  * @gadget:the device being declared as self-powered
474  *
475  * this affects the device status reported by the hardware driver
476  * to reflect that it now has a local power supply.
477  *
478  * returns zero on success, else negative errno.
479  */
480 int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
481 {
482 	int ret = 0;
483 
484 	if (!gadget->ops->set_selfpowered) {
485 		ret = -EOPNOTSUPP;
486 		goto out;
487 	}
488 
489 	ret = gadget->ops->set_selfpowered(gadget, 1);
490 
491 out:
492 	trace_usb_gadget_set_selfpowered(gadget, ret);
493 
494 	return ret;
495 }
496 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
497 
498 /**
499  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
500  * @gadget:the device being declared as bus-powered
501  *
502  * this affects the device status reported by the hardware driver.
503  * some hardware may not support bus-powered operation, in which
504  * case this feature's value can never change.
505  *
506  * returns zero on success, else negative errno.
507  */
508 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
509 {
510 	int ret = 0;
511 
512 	if (!gadget->ops->set_selfpowered) {
513 		ret = -EOPNOTSUPP;
514 		goto out;
515 	}
516 
517 	ret = gadget->ops->set_selfpowered(gadget, 0);
518 
519 out:
520 	trace_usb_gadget_clear_selfpowered(gadget, ret);
521 
522 	return ret;
523 }
524 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
525 
526 /**
527  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
528  * @gadget:The device which now has VBUS power.
529  * Context: can sleep
530  *
531  * This call is used by a driver for an external transceiver (or GPIO)
532  * that detects a VBUS power session starting.  Common responses include
533  * resuming the controller, activating the D+ (or D-) pullup to let the
534  * host detect that a USB device is attached, and starting to draw power
535  * (8mA or possibly more, especially after SET_CONFIGURATION).
536  *
537  * Returns zero on success, else negative errno.
538  */
539 int usb_gadget_vbus_connect(struct usb_gadget *gadget)
540 {
541 	int ret = 0;
542 
543 	if (!gadget->ops->vbus_session) {
544 		ret = -EOPNOTSUPP;
545 		goto out;
546 	}
547 
548 	ret = gadget->ops->vbus_session(gadget, 1);
549 
550 out:
551 	trace_usb_gadget_vbus_connect(gadget, ret);
552 
553 	return ret;
554 }
555 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
556 
557 /**
558  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
559  * @gadget:The device whose VBUS usage is being described
560  * @mA:How much current to draw, in milliAmperes.  This should be twice
561  *	the value listed in the configuration descriptor bMaxPower field.
562  *
563  * This call is used by gadget drivers during SET_CONFIGURATION calls,
564  * reporting how much power the device may consume.  For example, this
565  * could affect how quickly batteries are recharged.
566  *
567  * Returns zero on success, else negative errno.
568  */
569 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
570 {
571 	int ret = 0;
572 
573 	if (!gadget->ops->vbus_draw) {
574 		ret = -EOPNOTSUPP;
575 		goto out;
576 	}
577 
578 	ret = gadget->ops->vbus_draw(gadget, mA);
579 	if (!ret)
580 		gadget->mA = mA;
581 
582 out:
583 	trace_usb_gadget_vbus_draw(gadget, ret);
584 
585 	return ret;
586 }
587 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
588 
589 /**
590  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
591  * @gadget:the device whose VBUS supply is being described
592  * Context: can sleep
593  *
594  * This call is used by a driver for an external transceiver (or GPIO)
595  * that detects a VBUS power session ending.  Common responses include
596  * reversing everything done in usb_gadget_vbus_connect().
597  *
598  * Returns zero on success, else negative errno.
599  */
600 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
601 {
602 	int ret = 0;
603 
604 	if (!gadget->ops->vbus_session) {
605 		ret = -EOPNOTSUPP;
606 		goto out;
607 	}
608 
609 	ret = gadget->ops->vbus_session(gadget, 0);
610 
611 out:
612 	trace_usb_gadget_vbus_disconnect(gadget, ret);
613 
614 	return ret;
615 }
616 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
617 
618 /**
619  * usb_gadget_connect - software-controlled connect to USB host
620  * @gadget:the peripheral being connected
621  *
622  * Enables the D+ (or potentially D-) pullup.  The host will start
623  * enumerating this gadget when the pullup is active and a VBUS session
624  * is active (the link is powered).  This pullup is always enabled unless
625  * usb_gadget_disconnect() has been used to disable it.
626  *
627  * Returns zero on success, else negative errno.
628  */
629 int usb_gadget_connect(struct usb_gadget *gadget)
630 {
631 	int ret = 0;
632 
633 	if (!gadget->ops->pullup) {
634 		ret = -EOPNOTSUPP;
635 		goto out;
636 	}
637 
638 	if (gadget->deactivated) {
639 		/*
640 		 * If gadget is deactivated we only save new state.
641 		 * Gadget will be connected automatically after activation.
642 		 */
643 		gadget->connected = true;
644 		goto out;
645 	}
646 
647 	ret = gadget->ops->pullup(gadget, 1);
648 	if (!ret)
649 		gadget->connected = 1;
650 
651 out:
652 	trace_usb_gadget_connect(gadget, ret);
653 
654 	return ret;
655 }
656 EXPORT_SYMBOL_GPL(usb_gadget_connect);
657 
658 /**
659  * usb_gadget_disconnect - software-controlled disconnect from USB host
660  * @gadget:the peripheral being disconnected
661  *
662  * Disables the D+ (or potentially D-) pullup, which the host may see
663  * as a disconnect (when a VBUS session is active).  Not all systems
664  * support software pullup controls.
665  *
666  * Returns zero on success, else negative errno.
667  */
668 int usb_gadget_disconnect(struct usb_gadget *gadget)
669 {
670 	int ret = 0;
671 
672 	if (!gadget->ops->pullup) {
673 		ret = -EOPNOTSUPP;
674 		goto out;
675 	}
676 
677 	if (gadget->deactivated) {
678 		/*
679 		 * If gadget is deactivated we only save new state.
680 		 * Gadget will stay disconnected after activation.
681 		 */
682 		gadget->connected = false;
683 		goto out;
684 	}
685 
686 	ret = gadget->ops->pullup(gadget, 0);
687 	if (!ret)
688 		gadget->connected = 0;
689 
690 out:
691 	trace_usb_gadget_disconnect(gadget, ret);
692 
693 	return ret;
694 }
695 EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
696 
697 /**
698  * usb_gadget_deactivate - deactivate function which is not ready to work
699  * @gadget: the peripheral being deactivated
700  *
701  * This routine may be used during the gadget driver bind() call to prevent
702  * the peripheral from ever being visible to the USB host, unless later
703  * usb_gadget_activate() is called.  For example, user mode components may
704  * need to be activated before the system can talk to hosts.
705  *
706  * Returns zero on success, else negative errno.
707  */
708 int usb_gadget_deactivate(struct usb_gadget *gadget)
709 {
710 	int ret = 0;
711 
712 	if (gadget->deactivated)
713 		goto out;
714 
715 	if (gadget->connected) {
716 		ret = usb_gadget_disconnect(gadget);
717 		if (ret)
718 			goto out;
719 
720 		/*
721 		 * If gadget was being connected before deactivation, we want
722 		 * to reconnect it in usb_gadget_activate().
723 		 */
724 		gadget->connected = true;
725 	}
726 	gadget->deactivated = true;
727 
728 out:
729 	trace_usb_gadget_deactivate(gadget, ret);
730 
731 	return ret;
732 }
733 EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
734 
735 /**
736  * usb_gadget_activate - activate function which is not ready to work
737  * @gadget: the peripheral being activated
738  *
739  * This routine activates gadget which was previously deactivated with
740  * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
741  *
742  * Returns zero on success, else negative errno.
743  */
744 int usb_gadget_activate(struct usb_gadget *gadget)
745 {
746 	int ret = 0;
747 
748 	if (!gadget->deactivated)
749 		goto out;
750 
751 	gadget->deactivated = false;
752 
753 	/*
754 	 * If gadget has been connected before deactivation, or became connected
755 	 * while it was being deactivated, we call usb_gadget_connect().
756 	 */
757 	if (gadget->connected)
758 		ret = usb_gadget_connect(gadget);
759 
760 out:
761 	trace_usb_gadget_activate(gadget, ret);
762 
763 	return ret;
764 }
765 EXPORT_SYMBOL_GPL(usb_gadget_activate);
766 
767 /* ------------------------------------------------------------------------- */
768 
769 #ifdef	CONFIG_HAS_DMA
770 
771 int usb_gadget_map_request_by_dev(struct device *dev,
772 		struct usb_request *req, int is_in)
773 {
774 	if (req->length == 0)
775 		return 0;
776 
777 	if (req->num_sgs) {
778 		int     mapped;
779 
780 		mapped = dma_map_sg(dev, req->sg, req->num_sgs,
781 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
782 		if (mapped == 0) {
783 			dev_err(dev, "failed to map SGs\n");
784 			return -EFAULT;
785 		}
786 
787 		req->num_mapped_sgs = mapped;
788 	} else {
789 		if (is_vmalloc_addr(req->buf)) {
790 			dev_err(dev, "buffer is not dma capable\n");
791 			return -EFAULT;
792 		} else if (object_is_on_stack(req->buf)) {
793 			dev_err(dev, "buffer is on stack\n");
794 			return -EFAULT;
795 		}
796 
797 		req->dma = dma_map_single(dev, req->buf, req->length,
798 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
799 
800 		if (dma_mapping_error(dev, req->dma)) {
801 			dev_err(dev, "failed to map buffer\n");
802 			return -EFAULT;
803 		}
804 
805 		req->dma_mapped = 1;
806 	}
807 
808 	return 0;
809 }
810 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev);
811 
812 int usb_gadget_map_request(struct usb_gadget *gadget,
813 		struct usb_request *req, int is_in)
814 {
815 	return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in);
816 }
817 EXPORT_SYMBOL_GPL(usb_gadget_map_request);
818 
819 void usb_gadget_unmap_request_by_dev(struct device *dev,
820 		struct usb_request *req, int is_in)
821 {
822 	if (req->length == 0)
823 		return;
824 
825 	if (req->num_mapped_sgs) {
826 		dma_unmap_sg(dev, req->sg, req->num_sgs,
827 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
828 
829 		req->num_mapped_sgs = 0;
830 	} else if (req->dma_mapped) {
831 		dma_unmap_single(dev, req->dma, req->length,
832 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
833 		req->dma_mapped = 0;
834 	}
835 }
836 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev);
837 
838 void usb_gadget_unmap_request(struct usb_gadget *gadget,
839 		struct usb_request *req, int is_in)
840 {
841 	usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in);
842 }
843 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request);
844 
845 #endif	/* CONFIG_HAS_DMA */
846 
847 /* ------------------------------------------------------------------------- */
848 
849 /**
850  * usb_gadget_giveback_request - give the request back to the gadget layer
851  * Context: in_interrupt()
852  *
853  * This is called by device controller drivers in order to return the
854  * completed request back to the gadget layer.
855  */
856 void usb_gadget_giveback_request(struct usb_ep *ep,
857 		struct usb_request *req)
858 {
859 	if (likely(req->status == 0))
860 		usb_led_activity(USB_LED_EVENT_GADGET);
861 
862 	trace_usb_gadget_giveback_request(ep, req, 0);
863 
864 	req->complete(ep, req);
865 }
866 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request);
867 
868 /* ------------------------------------------------------------------------- */
869 
870 /**
871  * gadget_find_ep_by_name - returns ep whose name is the same as sting passed
872  *	in second parameter or NULL if searched endpoint not found
873  * @g: controller to check for quirk
874  * @name: name of searched endpoint
875  */
876 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name)
877 {
878 	struct usb_ep *ep;
879 
880 	gadget_for_each_ep(ep, g) {
881 		if (!strcmp(ep->name, name))
882 			return ep;
883 	}
884 
885 	return NULL;
886 }
887 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name);
888 
889 /* ------------------------------------------------------------------------- */
890 
891 int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
892 		struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
893 		struct usb_ss_ep_comp_descriptor *ep_comp)
894 {
895 	u8		type;
896 	u16		max;
897 	int		num_req_streams = 0;
898 
899 	/* endpoint already claimed? */
900 	if (ep->claimed)
901 		return 0;
902 
903 	type = usb_endpoint_type(desc);
904 	max = usb_endpoint_maxp(desc);
905 
906 	if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in)
907 		return 0;
908 	if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out)
909 		return 0;
910 
911 	if (max > ep->maxpacket_limit)
912 		return 0;
913 
914 	/* "high bandwidth" works only at high speed */
915 	if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1)
916 		return 0;
917 
918 	switch (type) {
919 	case USB_ENDPOINT_XFER_CONTROL:
920 		/* only support ep0 for portable CONTROL traffic */
921 		return 0;
922 	case USB_ENDPOINT_XFER_ISOC:
923 		if (!ep->caps.type_iso)
924 			return 0;
925 		/* ISO:  limit 1023 bytes full speed, 1024 high/super speed */
926 		if (!gadget_is_dualspeed(gadget) && max > 1023)
927 			return 0;
928 		break;
929 	case USB_ENDPOINT_XFER_BULK:
930 		if (!ep->caps.type_bulk)
931 			return 0;
932 		if (ep_comp && gadget_is_superspeed(gadget)) {
933 			/* Get the number of required streams from the
934 			 * EP companion descriptor and see if the EP
935 			 * matches it
936 			 */
937 			num_req_streams = ep_comp->bmAttributes & 0x1f;
938 			if (num_req_streams > ep->max_streams)
939 				return 0;
940 		}
941 		break;
942 	case USB_ENDPOINT_XFER_INT:
943 		/* Bulk endpoints handle interrupt transfers,
944 		 * except the toggle-quirky iso-synch kind
945 		 */
946 		if (!ep->caps.type_int && !ep->caps.type_bulk)
947 			return 0;
948 		/* INT:  limit 64 bytes full speed, 1024 high/super speed */
949 		if (!gadget_is_dualspeed(gadget) && max > 64)
950 			return 0;
951 		break;
952 	}
953 
954 	return 1;
955 }
956 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc);
957 
958 /* ------------------------------------------------------------------------- */
959 
960 static void usb_gadget_state_work(struct work_struct *work)
961 {
962 	struct usb_gadget *gadget = work_to_gadget(work);
963 	struct usb_udc *udc = gadget->udc;
964 
965 	if (udc)
966 		sysfs_notify(&udc->dev.kobj, NULL, "state");
967 }
968 
969 void usb_gadget_set_state(struct usb_gadget *gadget,
970 		enum usb_device_state state)
971 {
972 	gadget->state = state;
973 	schedule_work(&gadget->work);
974 }
975 EXPORT_SYMBOL_GPL(usb_gadget_set_state);
976 
977 /* ------------------------------------------------------------------------- */
978 
979 static void usb_udc_connect_control(struct usb_udc *udc)
980 {
981 	if (udc->vbus)
982 		usb_gadget_connect(udc->gadget);
983 	else
984 		usb_gadget_disconnect(udc->gadget);
985 }
986 
987 /**
988  * usb_udc_vbus_handler - updates the udc core vbus status, and try to
989  * connect or disconnect gadget
990  * @gadget: The gadget which vbus change occurs
991  * @status: The vbus status
992  *
993  * The udc driver calls it when it wants to connect or disconnect gadget
994  * according to vbus status.
995  */
996 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status)
997 {
998 	struct usb_udc *udc = gadget->udc;
999 
1000 	if (udc) {
1001 		udc->vbus = status;
1002 		usb_udc_connect_control(udc);
1003 	}
1004 }
1005 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler);
1006 
1007 /**
1008  * usb_gadget_udc_reset - notifies the udc core that bus reset occurs
1009  * @gadget: The gadget which bus reset occurs
1010  * @driver: The gadget driver we want to notify
1011  *
1012  * If the udc driver has bus reset handler, it needs to call this when the bus
1013  * reset occurs, it notifies the gadget driver that the bus reset occurs as
1014  * well as updates gadget state.
1015  */
1016 void usb_gadget_udc_reset(struct usb_gadget *gadget,
1017 		struct usb_gadget_driver *driver)
1018 {
1019 	driver->reset(gadget);
1020 	usb_gadget_set_state(gadget, USB_STATE_DEFAULT);
1021 }
1022 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset);
1023 
1024 /**
1025  * usb_gadget_udc_start - tells usb device controller to start up
1026  * @udc: The UDC to be started
1027  *
1028  * This call is issued by the UDC Class driver when it's about
1029  * to register a gadget driver to the device controller, before
1030  * calling gadget driver's bind() method.
1031  *
1032  * It allows the controller to be powered off until strictly
1033  * necessary to have it powered on.
1034  *
1035  * Returns zero on success, else negative errno.
1036  */
1037 static inline int usb_gadget_udc_start(struct usb_udc *udc)
1038 {
1039 	return udc->gadget->ops->udc_start(udc->gadget, udc->driver);
1040 }
1041 
1042 /**
1043  * usb_gadget_udc_stop - tells usb device controller we don't need it anymore
1044  * @gadget: The device we want to stop activity
1045  * @driver: The driver to unbind from @gadget
1046  *
1047  * This call is issued by the UDC Class driver after calling
1048  * gadget driver's unbind() method.
1049  *
1050  * The details are implementation specific, but it can go as
1051  * far as powering off UDC completely and disable its data
1052  * line pullups.
1053  */
1054 static inline void usb_gadget_udc_stop(struct usb_udc *udc)
1055 {
1056 	udc->gadget->ops->udc_stop(udc->gadget);
1057 }
1058 
1059 /**
1060  * usb_gadget_udc_set_speed - tells usb device controller speed supported by
1061  *    current driver
1062  * @udc: The device we want to set maximum speed
1063  * @speed: The maximum speed to allowed to run
1064  *
1065  * This call is issued by the UDC Class driver before calling
1066  * usb_gadget_udc_start() in order to make sure that we don't try to
1067  * connect on speeds the gadget driver doesn't support.
1068  */
1069 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc,
1070 					    enum usb_device_speed speed)
1071 {
1072 	if (udc->gadget->ops->udc_set_speed) {
1073 		enum usb_device_speed s;
1074 
1075 		s = min(speed, udc->gadget->max_speed);
1076 		udc->gadget->ops->udc_set_speed(udc->gadget, s);
1077 	}
1078 }
1079 
1080 /**
1081  * usb_udc_release - release the usb_udc struct
1082  * @dev: the dev member within usb_udc
1083  *
1084  * This is called by driver's core in order to free memory once the last
1085  * reference is released.
1086  */
1087 static void usb_udc_release(struct device *dev)
1088 {
1089 	struct usb_udc *udc;
1090 
1091 	udc = container_of(dev, struct usb_udc, dev);
1092 	dev_dbg(dev, "releasing '%s'\n", dev_name(dev));
1093 	kfree(udc);
1094 }
1095 
1096 static const struct attribute_group *usb_udc_attr_groups[];
1097 
1098 static void usb_udc_nop_release(struct device *dev)
1099 {
1100 	dev_vdbg(dev, "%s\n", __func__);
1101 }
1102 
1103 /* should be called with udc_lock held */
1104 static int check_pending_gadget_drivers(struct usb_udc *udc)
1105 {
1106 	struct usb_gadget_driver *driver;
1107 	int ret = 0;
1108 
1109 	list_for_each_entry(driver, &gadget_driver_pending_list, pending)
1110 		if (!driver->udc_name || strcmp(driver->udc_name,
1111 						dev_name(&udc->dev)) == 0) {
1112 			ret = udc_bind_to_driver(udc, driver);
1113 			if (ret != -EPROBE_DEFER)
1114 				list_del(&driver->pending);
1115 			break;
1116 		}
1117 
1118 	return ret;
1119 }
1120 
1121 /**
1122  * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
1123  * @parent: the parent device to this udc. Usually the controller driver's
1124  * device.
1125  * @gadget: the gadget to be added to the list.
1126  * @release: a gadget release function.
1127  *
1128  * Returns zero on success, negative errno otherwise.
1129  * Calls the gadget release function in the latter case.
1130  */
1131 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget,
1132 		void (*release)(struct device *dev))
1133 {
1134 	struct usb_udc		*udc;
1135 	int			ret = -ENOMEM;
1136 
1137 	dev_set_name(&gadget->dev, "gadget");
1138 	INIT_WORK(&gadget->work, usb_gadget_state_work);
1139 	gadget->dev.parent = parent;
1140 
1141 	if (release)
1142 		gadget->dev.release = release;
1143 	else
1144 		gadget->dev.release = usb_udc_nop_release;
1145 
1146 	device_initialize(&gadget->dev);
1147 
1148 	udc = kzalloc(sizeof(*udc), GFP_KERNEL);
1149 	if (!udc)
1150 		goto err_put_gadget;
1151 
1152 	device_initialize(&udc->dev);
1153 	udc->dev.release = usb_udc_release;
1154 	udc->dev.class = udc_class;
1155 	udc->dev.groups = usb_udc_attr_groups;
1156 	udc->dev.parent = parent;
1157 	ret = dev_set_name(&udc->dev, "%s", kobject_name(&parent->kobj));
1158 	if (ret)
1159 		goto err_put_udc;
1160 
1161 	ret = device_add(&gadget->dev);
1162 	if (ret)
1163 		goto err_put_udc;
1164 
1165 	udc->gadget = gadget;
1166 	gadget->udc = udc;
1167 
1168 	mutex_lock(&udc_lock);
1169 	list_add_tail(&udc->list, &udc_list);
1170 
1171 	ret = device_add(&udc->dev);
1172 	if (ret)
1173 		goto err_unlist_udc;
1174 
1175 	usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED);
1176 	udc->vbus = true;
1177 
1178 	/* pick up one of pending gadget drivers */
1179 	ret = check_pending_gadget_drivers(udc);
1180 	if (ret)
1181 		goto err_del_udc;
1182 
1183 	mutex_unlock(&udc_lock);
1184 
1185 	return 0;
1186 
1187  err_del_udc:
1188 	device_del(&udc->dev);
1189 
1190  err_unlist_udc:
1191 	list_del(&udc->list);
1192 	mutex_unlock(&udc_lock);
1193 
1194 	device_del(&gadget->dev);
1195 
1196  err_put_udc:
1197 	put_device(&udc->dev);
1198 
1199  err_put_gadget:
1200 	put_device(&gadget->dev);
1201 	return ret;
1202 }
1203 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release);
1204 
1205 /**
1206  * usb_get_gadget_udc_name - get the name of the first UDC controller
1207  * This functions returns the name of the first UDC controller in the system.
1208  * Please note that this interface is usefull only for legacy drivers which
1209  * assume that there is only one UDC controller in the system and they need to
1210  * get its name before initialization. There is no guarantee that the UDC
1211  * of the returned name will be still available, when gadget driver registers
1212  * itself.
1213  *
1214  * Returns pointer to string with UDC controller name on success, NULL
1215  * otherwise. Caller should kfree() returned string.
1216  */
1217 char *usb_get_gadget_udc_name(void)
1218 {
1219 	struct usb_udc *udc;
1220 	char *name = NULL;
1221 
1222 	/* For now we take the first available UDC */
1223 	mutex_lock(&udc_lock);
1224 	list_for_each_entry(udc, &udc_list, list) {
1225 		if (!udc->driver) {
1226 			name = kstrdup(udc->gadget->name, GFP_KERNEL);
1227 			break;
1228 		}
1229 	}
1230 	mutex_unlock(&udc_lock);
1231 	return name;
1232 }
1233 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name);
1234 
1235 /**
1236  * usb_add_gadget_udc - adds a new gadget to the udc class driver list
1237  * @parent: the parent device to this udc. Usually the controller
1238  * driver's device.
1239  * @gadget: the gadget to be added to the list
1240  *
1241  * Returns zero on success, negative errno otherwise.
1242  */
1243 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget)
1244 {
1245 	return usb_add_gadget_udc_release(parent, gadget, NULL);
1246 }
1247 EXPORT_SYMBOL_GPL(usb_add_gadget_udc);
1248 
1249 static void usb_gadget_remove_driver(struct usb_udc *udc)
1250 {
1251 	dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n",
1252 			udc->driver->function);
1253 
1254 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1255 
1256 	usb_gadget_disconnect(udc->gadget);
1257 	udc->driver->disconnect(udc->gadget);
1258 	udc->driver->unbind(udc->gadget);
1259 	usb_gadget_udc_stop(udc);
1260 
1261 	udc->driver = NULL;
1262 	udc->dev.driver = NULL;
1263 	udc->gadget->dev.driver = NULL;
1264 }
1265 
1266 /**
1267  * usb_del_gadget_udc - deletes @udc from udc_list
1268  * @gadget: the gadget to be removed.
1269  *
1270  * This, will call usb_gadget_unregister_driver() if
1271  * the @udc is still busy.
1272  */
1273 void usb_del_gadget_udc(struct usb_gadget *gadget)
1274 {
1275 	struct usb_udc *udc = gadget->udc;
1276 
1277 	if (!udc)
1278 		return;
1279 
1280 	dev_vdbg(gadget->dev.parent, "unregistering gadget\n");
1281 
1282 	mutex_lock(&udc_lock);
1283 	list_del(&udc->list);
1284 
1285 	if (udc->driver) {
1286 		struct usb_gadget_driver *driver = udc->driver;
1287 
1288 		usb_gadget_remove_driver(udc);
1289 		list_add(&driver->pending, &gadget_driver_pending_list);
1290 	}
1291 	mutex_unlock(&udc_lock);
1292 
1293 	kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE);
1294 	flush_work(&gadget->work);
1295 	device_unregister(&udc->dev);
1296 	device_unregister(&gadget->dev);
1297 	memset(&gadget->dev, 0x00, sizeof(gadget->dev));
1298 }
1299 EXPORT_SYMBOL_GPL(usb_del_gadget_udc);
1300 
1301 /* ------------------------------------------------------------------------- */
1302 
1303 static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver)
1304 {
1305 	int ret;
1306 
1307 	dev_dbg(&udc->dev, "registering UDC driver [%s]\n",
1308 			driver->function);
1309 
1310 	udc->driver = driver;
1311 	udc->dev.driver = &driver->driver;
1312 	udc->gadget->dev.driver = &driver->driver;
1313 
1314 	usb_gadget_udc_set_speed(udc, driver->max_speed);
1315 
1316 	ret = driver->bind(udc->gadget, driver);
1317 	if (ret)
1318 		goto err1;
1319 	ret = usb_gadget_udc_start(udc);
1320 	if (ret) {
1321 		driver->unbind(udc->gadget);
1322 		goto err1;
1323 	}
1324 	usb_udc_connect_control(udc);
1325 
1326 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1327 	return 0;
1328 err1:
1329 	if (ret != -EISNAM)
1330 		dev_err(&udc->dev, "failed to start %s: %d\n",
1331 			udc->driver->function, ret);
1332 	udc->driver = NULL;
1333 	udc->dev.driver = NULL;
1334 	udc->gadget->dev.driver = NULL;
1335 	return ret;
1336 }
1337 
1338 int usb_gadget_probe_driver(struct usb_gadget_driver *driver)
1339 {
1340 	struct usb_udc		*udc = NULL;
1341 	int			ret = -ENODEV;
1342 
1343 	if (!driver || !driver->bind || !driver->setup)
1344 		return -EINVAL;
1345 
1346 	mutex_lock(&udc_lock);
1347 	if (driver->udc_name) {
1348 		list_for_each_entry(udc, &udc_list, list) {
1349 			ret = strcmp(driver->udc_name, dev_name(&udc->dev));
1350 			if (!ret)
1351 				break;
1352 		}
1353 		if (ret)
1354 			ret = -ENODEV;
1355 		else if (udc->driver)
1356 			ret = -EBUSY;
1357 		else
1358 			goto found;
1359 	} else {
1360 		list_for_each_entry(udc, &udc_list, list) {
1361 			/* For now we take the first one */
1362 			if (!udc->driver)
1363 				goto found;
1364 		}
1365 	}
1366 
1367 	if (!driver->match_existing_only) {
1368 		list_add_tail(&driver->pending, &gadget_driver_pending_list);
1369 		pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n",
1370 			driver->function);
1371 		ret = 0;
1372 	}
1373 
1374 	mutex_unlock(&udc_lock);
1375 	return ret;
1376 found:
1377 	ret = udc_bind_to_driver(udc, driver);
1378 	mutex_unlock(&udc_lock);
1379 	return ret;
1380 }
1381 EXPORT_SYMBOL_GPL(usb_gadget_probe_driver);
1382 
1383 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1384 {
1385 	struct usb_udc		*udc = NULL;
1386 	int			ret = -ENODEV;
1387 
1388 	if (!driver || !driver->unbind)
1389 		return -EINVAL;
1390 
1391 	mutex_lock(&udc_lock);
1392 	list_for_each_entry(udc, &udc_list, list) {
1393 		if (udc->driver == driver) {
1394 			usb_gadget_remove_driver(udc);
1395 			usb_gadget_set_state(udc->gadget,
1396 					     USB_STATE_NOTATTACHED);
1397 
1398 			/* Maybe there is someone waiting for this UDC? */
1399 			check_pending_gadget_drivers(udc);
1400 			/*
1401 			 * For now we ignore bind errors as probably it's
1402 			 * not a valid reason to fail other's gadget unbind
1403 			 */
1404 			ret = 0;
1405 			break;
1406 		}
1407 	}
1408 
1409 	if (ret) {
1410 		list_del(&driver->pending);
1411 		ret = 0;
1412 	}
1413 	mutex_unlock(&udc_lock);
1414 	return ret;
1415 }
1416 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver);
1417 
1418 /* ------------------------------------------------------------------------- */
1419 
1420 static ssize_t srp_store(struct device *dev,
1421 		struct device_attribute *attr, const char *buf, size_t n)
1422 {
1423 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1424 
1425 	if (sysfs_streq(buf, "1"))
1426 		usb_gadget_wakeup(udc->gadget);
1427 
1428 	return n;
1429 }
1430 static DEVICE_ATTR_WO(srp);
1431 
1432 static ssize_t soft_connect_store(struct device *dev,
1433 		struct device_attribute *attr, const char *buf, size_t n)
1434 {
1435 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1436 
1437 	if (!udc->driver) {
1438 		dev_err(dev, "soft-connect without a gadget driver\n");
1439 		return -EOPNOTSUPP;
1440 	}
1441 
1442 	if (sysfs_streq(buf, "connect")) {
1443 		usb_gadget_udc_start(udc);
1444 		usb_gadget_connect(udc->gadget);
1445 	} else if (sysfs_streq(buf, "disconnect")) {
1446 		usb_gadget_disconnect(udc->gadget);
1447 		udc->driver->disconnect(udc->gadget);
1448 		usb_gadget_udc_stop(udc);
1449 	} else {
1450 		dev_err(dev, "unsupported command '%s'\n", buf);
1451 		return -EINVAL;
1452 	}
1453 
1454 	return n;
1455 }
1456 static DEVICE_ATTR_WO(soft_connect);
1457 
1458 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
1459 			  char *buf)
1460 {
1461 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1462 	struct usb_gadget	*gadget = udc->gadget;
1463 
1464 	return sprintf(buf, "%s\n", usb_state_string(gadget->state));
1465 }
1466 static DEVICE_ATTR_RO(state);
1467 
1468 static ssize_t function_show(struct device *dev, struct device_attribute *attr,
1469 			     char *buf)
1470 {
1471 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1472 	struct usb_gadget_driver *drv = udc->driver;
1473 
1474 	if (!drv || !drv->function)
1475 		return 0;
1476 	return scnprintf(buf, PAGE_SIZE, "%s\n", drv->function);
1477 }
1478 static DEVICE_ATTR_RO(function);
1479 
1480 #define USB_UDC_SPEED_ATTR(name, param)					\
1481 ssize_t name##_show(struct device *dev,					\
1482 		struct device_attribute *attr, char *buf)		\
1483 {									\
1484 	struct usb_udc *udc = container_of(dev, struct usb_udc, dev);	\
1485 	return snprintf(buf, PAGE_SIZE, "%s\n",				\
1486 			usb_speed_string(udc->gadget->param));		\
1487 }									\
1488 static DEVICE_ATTR_RO(name)
1489 
1490 static USB_UDC_SPEED_ATTR(current_speed, speed);
1491 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed);
1492 
1493 #define USB_UDC_ATTR(name)					\
1494 ssize_t name##_show(struct device *dev,				\
1495 		struct device_attribute *attr, char *buf)	\
1496 {								\
1497 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev); \
1498 	struct usb_gadget	*gadget = udc->gadget;		\
1499 								\
1500 	return snprintf(buf, PAGE_SIZE, "%d\n", gadget->name);	\
1501 }								\
1502 static DEVICE_ATTR_RO(name)
1503 
1504 static USB_UDC_ATTR(is_otg);
1505 static USB_UDC_ATTR(is_a_peripheral);
1506 static USB_UDC_ATTR(b_hnp_enable);
1507 static USB_UDC_ATTR(a_hnp_support);
1508 static USB_UDC_ATTR(a_alt_hnp_support);
1509 static USB_UDC_ATTR(is_selfpowered);
1510 
1511 static struct attribute *usb_udc_attrs[] = {
1512 	&dev_attr_srp.attr,
1513 	&dev_attr_soft_connect.attr,
1514 	&dev_attr_state.attr,
1515 	&dev_attr_function.attr,
1516 	&dev_attr_current_speed.attr,
1517 	&dev_attr_maximum_speed.attr,
1518 
1519 	&dev_attr_is_otg.attr,
1520 	&dev_attr_is_a_peripheral.attr,
1521 	&dev_attr_b_hnp_enable.attr,
1522 	&dev_attr_a_hnp_support.attr,
1523 	&dev_attr_a_alt_hnp_support.attr,
1524 	&dev_attr_is_selfpowered.attr,
1525 	NULL,
1526 };
1527 
1528 static const struct attribute_group usb_udc_attr_group = {
1529 	.attrs = usb_udc_attrs,
1530 };
1531 
1532 static const struct attribute_group *usb_udc_attr_groups[] = {
1533 	&usb_udc_attr_group,
1534 	NULL,
1535 };
1536 
1537 static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env)
1538 {
1539 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1540 	int			ret;
1541 
1542 	ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name);
1543 	if (ret) {
1544 		dev_err(dev, "failed to add uevent USB_UDC_NAME\n");
1545 		return ret;
1546 	}
1547 
1548 	if (udc->driver) {
1549 		ret = add_uevent_var(env, "USB_UDC_DRIVER=%s",
1550 				udc->driver->function);
1551 		if (ret) {
1552 			dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n");
1553 			return ret;
1554 		}
1555 	}
1556 
1557 	return 0;
1558 }
1559 
1560 static int __init usb_udc_init(void)
1561 {
1562 	udc_class = class_create(THIS_MODULE, "udc");
1563 	if (IS_ERR(udc_class)) {
1564 		pr_err("failed to create udc class --> %ld\n",
1565 				PTR_ERR(udc_class));
1566 		return PTR_ERR(udc_class);
1567 	}
1568 
1569 	udc_class->dev_uevent = usb_udc_uevent;
1570 	return 0;
1571 }
1572 subsys_initcall(usb_udc_init);
1573 
1574 static void __exit usb_udc_exit(void)
1575 {
1576 	class_destroy(udc_class);
1577 }
1578 module_exit(usb_udc_exit);
1579 
1580 MODULE_DESCRIPTION("UDC Framework");
1581 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
1582 MODULE_LICENSE("GPL v2");
1583