1 // SPDX-License-Identifier: GPL-2.0 2 /** 3 * udc.c - Core UDC Framework 4 * 5 * Copyright (C) 2010 Texas Instruments 6 * Author: Felipe Balbi <balbi@ti.com> 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/device.h> 12 #include <linux/list.h> 13 #include <linux/err.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/sched/task_stack.h> 16 #include <linux/workqueue.h> 17 18 #include <linux/usb/ch9.h> 19 #include <linux/usb/gadget.h> 20 #include <linux/usb.h> 21 22 #include "trace.h" 23 24 /** 25 * struct usb_udc - describes one usb device controller 26 * @driver - the gadget driver pointer. For use by the class code 27 * @dev - the child device to the actual controller 28 * @gadget - the gadget. For use by the class code 29 * @list - for use by the udc class driver 30 * @vbus - for udcs who care about vbus status, this value is real vbus status; 31 * for udcs who do not care about vbus status, this value is always true 32 * 33 * This represents the internal data structure which is used by the UDC-class 34 * to hold information about udc driver and gadget together. 35 */ 36 struct usb_udc { 37 struct usb_gadget_driver *driver; 38 struct usb_gadget *gadget; 39 struct device dev; 40 struct list_head list; 41 bool vbus; 42 }; 43 44 static struct class *udc_class; 45 static LIST_HEAD(udc_list); 46 static LIST_HEAD(gadget_driver_pending_list); 47 static DEFINE_MUTEX(udc_lock); 48 49 static int udc_bind_to_driver(struct usb_udc *udc, 50 struct usb_gadget_driver *driver); 51 52 /* ------------------------------------------------------------------------- */ 53 54 /** 55 * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint 56 * @ep:the endpoint being configured 57 * @maxpacket_limit:value of maximum packet size limit 58 * 59 * This function should be used only in UDC drivers to initialize endpoint 60 * (usually in probe function). 61 */ 62 void usb_ep_set_maxpacket_limit(struct usb_ep *ep, 63 unsigned maxpacket_limit) 64 { 65 ep->maxpacket_limit = maxpacket_limit; 66 ep->maxpacket = maxpacket_limit; 67 68 trace_usb_ep_set_maxpacket_limit(ep, 0); 69 } 70 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit); 71 72 /** 73 * usb_ep_enable - configure endpoint, making it usable 74 * @ep:the endpoint being configured. may not be the endpoint named "ep0". 75 * drivers discover endpoints through the ep_list of a usb_gadget. 76 * 77 * When configurations are set, or when interface settings change, the driver 78 * will enable or disable the relevant endpoints. while it is enabled, an 79 * endpoint may be used for i/o until the driver receives a disconnect() from 80 * the host or until the endpoint is disabled. 81 * 82 * the ep0 implementation (which calls this routine) must ensure that the 83 * hardware capabilities of each endpoint match the descriptor provided 84 * for it. for example, an endpoint named "ep2in-bulk" would be usable 85 * for interrupt transfers as well as bulk, but it likely couldn't be used 86 * for iso transfers or for endpoint 14. some endpoints are fully 87 * configurable, with more generic names like "ep-a". (remember that for 88 * USB, "in" means "towards the USB master".) 89 * 90 * returns zero, or a negative error code. 91 */ 92 int usb_ep_enable(struct usb_ep *ep) 93 { 94 int ret = 0; 95 96 if (ep->enabled) 97 goto out; 98 99 ret = ep->ops->enable(ep, ep->desc); 100 if (ret) 101 goto out; 102 103 ep->enabled = true; 104 105 out: 106 trace_usb_ep_enable(ep, ret); 107 108 return ret; 109 } 110 EXPORT_SYMBOL_GPL(usb_ep_enable); 111 112 /** 113 * usb_ep_disable - endpoint is no longer usable 114 * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0". 115 * 116 * no other task may be using this endpoint when this is called. 117 * any pending and uncompleted requests will complete with status 118 * indicating disconnect (-ESHUTDOWN) before this call returns. 119 * gadget drivers must call usb_ep_enable() again before queueing 120 * requests to the endpoint. 121 * 122 * returns zero, or a negative error code. 123 */ 124 int usb_ep_disable(struct usb_ep *ep) 125 { 126 int ret = 0; 127 128 if (!ep->enabled) 129 goto out; 130 131 ret = ep->ops->disable(ep); 132 if (ret) 133 goto out; 134 135 ep->enabled = false; 136 137 out: 138 trace_usb_ep_disable(ep, ret); 139 140 return ret; 141 } 142 EXPORT_SYMBOL_GPL(usb_ep_disable); 143 144 /** 145 * usb_ep_alloc_request - allocate a request object to use with this endpoint 146 * @ep:the endpoint to be used with with the request 147 * @gfp_flags:GFP_* flags to use 148 * 149 * Request objects must be allocated with this call, since they normally 150 * need controller-specific setup and may even need endpoint-specific 151 * resources such as allocation of DMA descriptors. 152 * Requests may be submitted with usb_ep_queue(), and receive a single 153 * completion callback. Free requests with usb_ep_free_request(), when 154 * they are no longer needed. 155 * 156 * Returns the request, or null if one could not be allocated. 157 */ 158 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, 159 gfp_t gfp_flags) 160 { 161 struct usb_request *req = NULL; 162 163 req = ep->ops->alloc_request(ep, gfp_flags); 164 165 trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM); 166 167 return req; 168 } 169 EXPORT_SYMBOL_GPL(usb_ep_alloc_request); 170 171 /** 172 * usb_ep_free_request - frees a request object 173 * @ep:the endpoint associated with the request 174 * @req:the request being freed 175 * 176 * Reverses the effect of usb_ep_alloc_request(). 177 * Caller guarantees the request is not queued, and that it will 178 * no longer be requeued (or otherwise used). 179 */ 180 void usb_ep_free_request(struct usb_ep *ep, 181 struct usb_request *req) 182 { 183 trace_usb_ep_free_request(ep, req, 0); 184 ep->ops->free_request(ep, req); 185 } 186 EXPORT_SYMBOL_GPL(usb_ep_free_request); 187 188 /** 189 * usb_ep_queue - queues (submits) an I/O request to an endpoint. 190 * @ep:the endpoint associated with the request 191 * @req:the request being submitted 192 * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't 193 * pre-allocate all necessary memory with the request. 194 * 195 * This tells the device controller to perform the specified request through 196 * that endpoint (reading or writing a buffer). When the request completes, 197 * including being canceled by usb_ep_dequeue(), the request's completion 198 * routine is called to return the request to the driver. Any endpoint 199 * (except control endpoints like ep0) may have more than one transfer 200 * request queued; they complete in FIFO order. Once a gadget driver 201 * submits a request, that request may not be examined or modified until it 202 * is given back to that driver through the completion callback. 203 * 204 * Each request is turned into one or more packets. The controller driver 205 * never merges adjacent requests into the same packet. OUT transfers 206 * will sometimes use data that's already buffered in the hardware. 207 * Drivers can rely on the fact that the first byte of the request's buffer 208 * always corresponds to the first byte of some USB packet, for both 209 * IN and OUT transfers. 210 * 211 * Bulk endpoints can queue any amount of data; the transfer is packetized 212 * automatically. The last packet will be short if the request doesn't fill it 213 * out completely. Zero length packets (ZLPs) should be avoided in portable 214 * protocols since not all usb hardware can successfully handle zero length 215 * packets. (ZLPs may be explicitly written, and may be implicitly written if 216 * the request 'zero' flag is set.) Bulk endpoints may also be used 217 * for interrupt transfers; but the reverse is not true, and some endpoints 218 * won't support every interrupt transfer. (Such as 768 byte packets.) 219 * 220 * Interrupt-only endpoints are less functional than bulk endpoints, for 221 * example by not supporting queueing or not handling buffers that are 222 * larger than the endpoint's maxpacket size. They may also treat data 223 * toggle differently. 224 * 225 * Control endpoints ... after getting a setup() callback, the driver queues 226 * one response (even if it would be zero length). That enables the 227 * status ack, after transferring data as specified in the response. Setup 228 * functions may return negative error codes to generate protocol stalls. 229 * (Note that some USB device controllers disallow protocol stall responses 230 * in some cases.) When control responses are deferred (the response is 231 * written after the setup callback returns), then usb_ep_set_halt() may be 232 * used on ep0 to trigger protocol stalls. Depending on the controller, 233 * it may not be possible to trigger a status-stage protocol stall when the 234 * data stage is over, that is, from within the response's completion 235 * routine. 236 * 237 * For periodic endpoints, like interrupt or isochronous ones, the usb host 238 * arranges to poll once per interval, and the gadget driver usually will 239 * have queued some data to transfer at that time. 240 * 241 * Returns zero, or a negative error code. Endpoints that are not enabled 242 * report errors; errors will also be 243 * reported when the usb peripheral is disconnected. 244 */ 245 int usb_ep_queue(struct usb_ep *ep, 246 struct usb_request *req, gfp_t gfp_flags) 247 { 248 int ret = 0; 249 250 if (WARN_ON_ONCE(!ep->enabled && ep->address)) { 251 ret = -ESHUTDOWN; 252 goto out; 253 } 254 255 ret = ep->ops->queue(ep, req, gfp_flags); 256 257 out: 258 trace_usb_ep_queue(ep, req, ret); 259 260 return ret; 261 } 262 EXPORT_SYMBOL_GPL(usb_ep_queue); 263 264 /** 265 * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint 266 * @ep:the endpoint associated with the request 267 * @req:the request being canceled 268 * 269 * If the request is still active on the endpoint, it is dequeued and its 270 * completion routine is called (with status -ECONNRESET); else a negative 271 * error code is returned. This is guaranteed to happen before the call to 272 * usb_ep_dequeue() returns. 273 * 274 * Note that some hardware can't clear out write fifos (to unlink the request 275 * at the head of the queue) except as part of disconnecting from usb. Such 276 * restrictions prevent drivers from supporting configuration changes, 277 * even to configuration zero (a "chapter 9" requirement). 278 */ 279 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 280 { 281 int ret; 282 283 ret = ep->ops->dequeue(ep, req); 284 trace_usb_ep_dequeue(ep, req, ret); 285 286 return ret; 287 } 288 EXPORT_SYMBOL_GPL(usb_ep_dequeue); 289 290 /** 291 * usb_ep_set_halt - sets the endpoint halt feature. 292 * @ep: the non-isochronous endpoint being stalled 293 * 294 * Use this to stall an endpoint, perhaps as an error report. 295 * Except for control endpoints, 296 * the endpoint stays halted (will not stream any data) until the host 297 * clears this feature; drivers may need to empty the endpoint's request 298 * queue first, to make sure no inappropriate transfers happen. 299 * 300 * Note that while an endpoint CLEAR_FEATURE will be invisible to the 301 * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the 302 * current altsetting, see usb_ep_clear_halt(). When switching altsettings, 303 * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints. 304 * 305 * Returns zero, or a negative error code. On success, this call sets 306 * underlying hardware state that blocks data transfers. 307 * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any 308 * transfer requests are still queued, or if the controller hardware 309 * (usually a FIFO) still holds bytes that the host hasn't collected. 310 */ 311 int usb_ep_set_halt(struct usb_ep *ep) 312 { 313 int ret; 314 315 ret = ep->ops->set_halt(ep, 1); 316 trace_usb_ep_set_halt(ep, ret); 317 318 return ret; 319 } 320 EXPORT_SYMBOL_GPL(usb_ep_set_halt); 321 322 /** 323 * usb_ep_clear_halt - clears endpoint halt, and resets toggle 324 * @ep:the bulk or interrupt endpoint being reset 325 * 326 * Use this when responding to the standard usb "set interface" request, 327 * for endpoints that aren't reconfigured, after clearing any other state 328 * in the endpoint's i/o queue. 329 * 330 * Returns zero, or a negative error code. On success, this call clears 331 * the underlying hardware state reflecting endpoint halt and data toggle. 332 * Note that some hardware can't support this request (like pxa2xx_udc), 333 * and accordingly can't correctly implement interface altsettings. 334 */ 335 int usb_ep_clear_halt(struct usb_ep *ep) 336 { 337 int ret; 338 339 ret = ep->ops->set_halt(ep, 0); 340 trace_usb_ep_clear_halt(ep, ret); 341 342 return ret; 343 } 344 EXPORT_SYMBOL_GPL(usb_ep_clear_halt); 345 346 /** 347 * usb_ep_set_wedge - sets the halt feature and ignores clear requests 348 * @ep: the endpoint being wedged 349 * 350 * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT) 351 * requests. If the gadget driver clears the halt status, it will 352 * automatically unwedge the endpoint. 353 * 354 * Returns zero on success, else negative errno. 355 */ 356 int usb_ep_set_wedge(struct usb_ep *ep) 357 { 358 int ret; 359 360 if (ep->ops->set_wedge) 361 ret = ep->ops->set_wedge(ep); 362 else 363 ret = ep->ops->set_halt(ep, 1); 364 365 trace_usb_ep_set_wedge(ep, ret); 366 367 return ret; 368 } 369 EXPORT_SYMBOL_GPL(usb_ep_set_wedge); 370 371 /** 372 * usb_ep_fifo_status - returns number of bytes in fifo, or error 373 * @ep: the endpoint whose fifo status is being checked. 374 * 375 * FIFO endpoints may have "unclaimed data" in them in certain cases, 376 * such as after aborted transfers. Hosts may not have collected all 377 * the IN data written by the gadget driver (and reported by a request 378 * completion). The gadget driver may not have collected all the data 379 * written OUT to it by the host. Drivers that need precise handling for 380 * fault reporting or recovery may need to use this call. 381 * 382 * This returns the number of such bytes in the fifo, or a negative 383 * errno if the endpoint doesn't use a FIFO or doesn't support such 384 * precise handling. 385 */ 386 int usb_ep_fifo_status(struct usb_ep *ep) 387 { 388 int ret; 389 390 if (ep->ops->fifo_status) 391 ret = ep->ops->fifo_status(ep); 392 else 393 ret = -EOPNOTSUPP; 394 395 trace_usb_ep_fifo_status(ep, ret); 396 397 return ret; 398 } 399 EXPORT_SYMBOL_GPL(usb_ep_fifo_status); 400 401 /** 402 * usb_ep_fifo_flush - flushes contents of a fifo 403 * @ep: the endpoint whose fifo is being flushed. 404 * 405 * This call may be used to flush the "unclaimed data" that may exist in 406 * an endpoint fifo after abnormal transaction terminations. The call 407 * must never be used except when endpoint is not being used for any 408 * protocol translation. 409 */ 410 void usb_ep_fifo_flush(struct usb_ep *ep) 411 { 412 if (ep->ops->fifo_flush) 413 ep->ops->fifo_flush(ep); 414 415 trace_usb_ep_fifo_flush(ep, 0); 416 } 417 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush); 418 419 /* ------------------------------------------------------------------------- */ 420 421 /** 422 * usb_gadget_frame_number - returns the current frame number 423 * @gadget: controller that reports the frame number 424 * 425 * Returns the usb frame number, normally eleven bits from a SOF packet, 426 * or negative errno if this device doesn't support this capability. 427 */ 428 int usb_gadget_frame_number(struct usb_gadget *gadget) 429 { 430 int ret; 431 432 ret = gadget->ops->get_frame(gadget); 433 434 trace_usb_gadget_frame_number(gadget, ret); 435 436 return ret; 437 } 438 EXPORT_SYMBOL_GPL(usb_gadget_frame_number); 439 440 /** 441 * usb_gadget_wakeup - tries to wake up the host connected to this gadget 442 * @gadget: controller used to wake up the host 443 * 444 * Returns zero on success, else negative error code if the hardware 445 * doesn't support such attempts, or its support has not been enabled 446 * by the usb host. Drivers must return device descriptors that report 447 * their ability to support this, or hosts won't enable it. 448 * 449 * This may also try to use SRP to wake the host and start enumeration, 450 * even if OTG isn't otherwise in use. OTG devices may also start 451 * remote wakeup even when hosts don't explicitly enable it. 452 */ 453 int usb_gadget_wakeup(struct usb_gadget *gadget) 454 { 455 int ret = 0; 456 457 if (!gadget->ops->wakeup) { 458 ret = -EOPNOTSUPP; 459 goto out; 460 } 461 462 ret = gadget->ops->wakeup(gadget); 463 464 out: 465 trace_usb_gadget_wakeup(gadget, ret); 466 467 return ret; 468 } 469 EXPORT_SYMBOL_GPL(usb_gadget_wakeup); 470 471 /** 472 * usb_gadget_set_selfpowered - sets the device selfpowered feature. 473 * @gadget:the device being declared as self-powered 474 * 475 * this affects the device status reported by the hardware driver 476 * to reflect that it now has a local power supply. 477 * 478 * returns zero on success, else negative errno. 479 */ 480 int usb_gadget_set_selfpowered(struct usb_gadget *gadget) 481 { 482 int ret = 0; 483 484 if (!gadget->ops->set_selfpowered) { 485 ret = -EOPNOTSUPP; 486 goto out; 487 } 488 489 ret = gadget->ops->set_selfpowered(gadget, 1); 490 491 out: 492 trace_usb_gadget_set_selfpowered(gadget, ret); 493 494 return ret; 495 } 496 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered); 497 498 /** 499 * usb_gadget_clear_selfpowered - clear the device selfpowered feature. 500 * @gadget:the device being declared as bus-powered 501 * 502 * this affects the device status reported by the hardware driver. 503 * some hardware may not support bus-powered operation, in which 504 * case this feature's value can never change. 505 * 506 * returns zero on success, else negative errno. 507 */ 508 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget) 509 { 510 int ret = 0; 511 512 if (!gadget->ops->set_selfpowered) { 513 ret = -EOPNOTSUPP; 514 goto out; 515 } 516 517 ret = gadget->ops->set_selfpowered(gadget, 0); 518 519 out: 520 trace_usb_gadget_clear_selfpowered(gadget, ret); 521 522 return ret; 523 } 524 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered); 525 526 /** 527 * usb_gadget_vbus_connect - Notify controller that VBUS is powered 528 * @gadget:The device which now has VBUS power. 529 * Context: can sleep 530 * 531 * This call is used by a driver for an external transceiver (or GPIO) 532 * that detects a VBUS power session starting. Common responses include 533 * resuming the controller, activating the D+ (or D-) pullup to let the 534 * host detect that a USB device is attached, and starting to draw power 535 * (8mA or possibly more, especially after SET_CONFIGURATION). 536 * 537 * Returns zero on success, else negative errno. 538 */ 539 int usb_gadget_vbus_connect(struct usb_gadget *gadget) 540 { 541 int ret = 0; 542 543 if (!gadget->ops->vbus_session) { 544 ret = -EOPNOTSUPP; 545 goto out; 546 } 547 548 ret = gadget->ops->vbus_session(gadget, 1); 549 550 out: 551 trace_usb_gadget_vbus_connect(gadget, ret); 552 553 return ret; 554 } 555 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect); 556 557 /** 558 * usb_gadget_vbus_draw - constrain controller's VBUS power usage 559 * @gadget:The device whose VBUS usage is being described 560 * @mA:How much current to draw, in milliAmperes. This should be twice 561 * the value listed in the configuration descriptor bMaxPower field. 562 * 563 * This call is used by gadget drivers during SET_CONFIGURATION calls, 564 * reporting how much power the device may consume. For example, this 565 * could affect how quickly batteries are recharged. 566 * 567 * Returns zero on success, else negative errno. 568 */ 569 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA) 570 { 571 int ret = 0; 572 573 if (!gadget->ops->vbus_draw) { 574 ret = -EOPNOTSUPP; 575 goto out; 576 } 577 578 ret = gadget->ops->vbus_draw(gadget, mA); 579 if (!ret) 580 gadget->mA = mA; 581 582 out: 583 trace_usb_gadget_vbus_draw(gadget, ret); 584 585 return ret; 586 } 587 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw); 588 589 /** 590 * usb_gadget_vbus_disconnect - notify controller about VBUS session end 591 * @gadget:the device whose VBUS supply is being described 592 * Context: can sleep 593 * 594 * This call is used by a driver for an external transceiver (or GPIO) 595 * that detects a VBUS power session ending. Common responses include 596 * reversing everything done in usb_gadget_vbus_connect(). 597 * 598 * Returns zero on success, else negative errno. 599 */ 600 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget) 601 { 602 int ret = 0; 603 604 if (!gadget->ops->vbus_session) { 605 ret = -EOPNOTSUPP; 606 goto out; 607 } 608 609 ret = gadget->ops->vbus_session(gadget, 0); 610 611 out: 612 trace_usb_gadget_vbus_disconnect(gadget, ret); 613 614 return ret; 615 } 616 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect); 617 618 /** 619 * usb_gadget_connect - software-controlled connect to USB host 620 * @gadget:the peripheral being connected 621 * 622 * Enables the D+ (or potentially D-) pullup. The host will start 623 * enumerating this gadget when the pullup is active and a VBUS session 624 * is active (the link is powered). This pullup is always enabled unless 625 * usb_gadget_disconnect() has been used to disable it. 626 * 627 * Returns zero on success, else negative errno. 628 */ 629 int usb_gadget_connect(struct usb_gadget *gadget) 630 { 631 int ret = 0; 632 633 if (!gadget->ops->pullup) { 634 ret = -EOPNOTSUPP; 635 goto out; 636 } 637 638 if (gadget->deactivated) { 639 /* 640 * If gadget is deactivated we only save new state. 641 * Gadget will be connected automatically after activation. 642 */ 643 gadget->connected = true; 644 goto out; 645 } 646 647 ret = gadget->ops->pullup(gadget, 1); 648 if (!ret) 649 gadget->connected = 1; 650 651 out: 652 trace_usb_gadget_connect(gadget, ret); 653 654 return ret; 655 } 656 EXPORT_SYMBOL_GPL(usb_gadget_connect); 657 658 /** 659 * usb_gadget_disconnect - software-controlled disconnect from USB host 660 * @gadget:the peripheral being disconnected 661 * 662 * Disables the D+ (or potentially D-) pullup, which the host may see 663 * as a disconnect (when a VBUS session is active). Not all systems 664 * support software pullup controls. 665 * 666 * Returns zero on success, else negative errno. 667 */ 668 int usb_gadget_disconnect(struct usb_gadget *gadget) 669 { 670 int ret = 0; 671 672 if (!gadget->ops->pullup) { 673 ret = -EOPNOTSUPP; 674 goto out; 675 } 676 677 if (gadget->deactivated) { 678 /* 679 * If gadget is deactivated we only save new state. 680 * Gadget will stay disconnected after activation. 681 */ 682 gadget->connected = false; 683 goto out; 684 } 685 686 ret = gadget->ops->pullup(gadget, 0); 687 if (!ret) 688 gadget->connected = 0; 689 690 out: 691 trace_usb_gadget_disconnect(gadget, ret); 692 693 return ret; 694 } 695 EXPORT_SYMBOL_GPL(usb_gadget_disconnect); 696 697 /** 698 * usb_gadget_deactivate - deactivate function which is not ready to work 699 * @gadget: the peripheral being deactivated 700 * 701 * This routine may be used during the gadget driver bind() call to prevent 702 * the peripheral from ever being visible to the USB host, unless later 703 * usb_gadget_activate() is called. For example, user mode components may 704 * need to be activated before the system can talk to hosts. 705 * 706 * Returns zero on success, else negative errno. 707 */ 708 int usb_gadget_deactivate(struct usb_gadget *gadget) 709 { 710 int ret = 0; 711 712 if (gadget->deactivated) 713 goto out; 714 715 if (gadget->connected) { 716 ret = usb_gadget_disconnect(gadget); 717 if (ret) 718 goto out; 719 720 /* 721 * If gadget was being connected before deactivation, we want 722 * to reconnect it in usb_gadget_activate(). 723 */ 724 gadget->connected = true; 725 } 726 gadget->deactivated = true; 727 728 out: 729 trace_usb_gadget_deactivate(gadget, ret); 730 731 return ret; 732 } 733 EXPORT_SYMBOL_GPL(usb_gadget_deactivate); 734 735 /** 736 * usb_gadget_activate - activate function which is not ready to work 737 * @gadget: the peripheral being activated 738 * 739 * This routine activates gadget which was previously deactivated with 740 * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed. 741 * 742 * Returns zero on success, else negative errno. 743 */ 744 int usb_gadget_activate(struct usb_gadget *gadget) 745 { 746 int ret = 0; 747 748 if (!gadget->deactivated) 749 goto out; 750 751 gadget->deactivated = false; 752 753 /* 754 * If gadget has been connected before deactivation, or became connected 755 * while it was being deactivated, we call usb_gadget_connect(). 756 */ 757 if (gadget->connected) 758 ret = usb_gadget_connect(gadget); 759 760 out: 761 trace_usb_gadget_activate(gadget, ret); 762 763 return ret; 764 } 765 EXPORT_SYMBOL_GPL(usb_gadget_activate); 766 767 /* ------------------------------------------------------------------------- */ 768 769 #ifdef CONFIG_HAS_DMA 770 771 int usb_gadget_map_request_by_dev(struct device *dev, 772 struct usb_request *req, int is_in) 773 { 774 if (req->length == 0) 775 return 0; 776 777 if (req->num_sgs) { 778 int mapped; 779 780 mapped = dma_map_sg(dev, req->sg, req->num_sgs, 781 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 782 if (mapped == 0) { 783 dev_err(dev, "failed to map SGs\n"); 784 return -EFAULT; 785 } 786 787 req->num_mapped_sgs = mapped; 788 } else { 789 if (is_vmalloc_addr(req->buf)) { 790 dev_err(dev, "buffer is not dma capable\n"); 791 return -EFAULT; 792 } else if (object_is_on_stack(req->buf)) { 793 dev_err(dev, "buffer is on stack\n"); 794 return -EFAULT; 795 } 796 797 req->dma = dma_map_single(dev, req->buf, req->length, 798 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 799 800 if (dma_mapping_error(dev, req->dma)) { 801 dev_err(dev, "failed to map buffer\n"); 802 return -EFAULT; 803 } 804 805 req->dma_mapped = 1; 806 } 807 808 return 0; 809 } 810 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev); 811 812 int usb_gadget_map_request(struct usb_gadget *gadget, 813 struct usb_request *req, int is_in) 814 { 815 return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in); 816 } 817 EXPORT_SYMBOL_GPL(usb_gadget_map_request); 818 819 void usb_gadget_unmap_request_by_dev(struct device *dev, 820 struct usb_request *req, int is_in) 821 { 822 if (req->length == 0) 823 return; 824 825 if (req->num_mapped_sgs) { 826 dma_unmap_sg(dev, req->sg, req->num_sgs, 827 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 828 829 req->num_mapped_sgs = 0; 830 } else if (req->dma_mapped) { 831 dma_unmap_single(dev, req->dma, req->length, 832 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 833 req->dma_mapped = 0; 834 } 835 } 836 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev); 837 838 void usb_gadget_unmap_request(struct usb_gadget *gadget, 839 struct usb_request *req, int is_in) 840 { 841 usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in); 842 } 843 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request); 844 845 #endif /* CONFIG_HAS_DMA */ 846 847 /* ------------------------------------------------------------------------- */ 848 849 /** 850 * usb_gadget_giveback_request - give the request back to the gadget layer 851 * Context: in_interrupt() 852 * 853 * This is called by device controller drivers in order to return the 854 * completed request back to the gadget layer. 855 */ 856 void usb_gadget_giveback_request(struct usb_ep *ep, 857 struct usb_request *req) 858 { 859 if (likely(req->status == 0)) 860 usb_led_activity(USB_LED_EVENT_GADGET); 861 862 trace_usb_gadget_giveback_request(ep, req, 0); 863 864 req->complete(ep, req); 865 } 866 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request); 867 868 /* ------------------------------------------------------------------------- */ 869 870 /** 871 * gadget_find_ep_by_name - returns ep whose name is the same as sting passed 872 * in second parameter or NULL if searched endpoint not found 873 * @g: controller to check for quirk 874 * @name: name of searched endpoint 875 */ 876 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name) 877 { 878 struct usb_ep *ep; 879 880 gadget_for_each_ep(ep, g) { 881 if (!strcmp(ep->name, name)) 882 return ep; 883 } 884 885 return NULL; 886 } 887 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name); 888 889 /* ------------------------------------------------------------------------- */ 890 891 int usb_gadget_ep_match_desc(struct usb_gadget *gadget, 892 struct usb_ep *ep, struct usb_endpoint_descriptor *desc, 893 struct usb_ss_ep_comp_descriptor *ep_comp) 894 { 895 u8 type; 896 u16 max; 897 int num_req_streams = 0; 898 899 /* endpoint already claimed? */ 900 if (ep->claimed) 901 return 0; 902 903 type = usb_endpoint_type(desc); 904 max = usb_endpoint_maxp(desc); 905 906 if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in) 907 return 0; 908 if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out) 909 return 0; 910 911 if (max > ep->maxpacket_limit) 912 return 0; 913 914 /* "high bandwidth" works only at high speed */ 915 if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1) 916 return 0; 917 918 switch (type) { 919 case USB_ENDPOINT_XFER_CONTROL: 920 /* only support ep0 for portable CONTROL traffic */ 921 return 0; 922 case USB_ENDPOINT_XFER_ISOC: 923 if (!ep->caps.type_iso) 924 return 0; 925 /* ISO: limit 1023 bytes full speed, 1024 high/super speed */ 926 if (!gadget_is_dualspeed(gadget) && max > 1023) 927 return 0; 928 break; 929 case USB_ENDPOINT_XFER_BULK: 930 if (!ep->caps.type_bulk) 931 return 0; 932 if (ep_comp && gadget_is_superspeed(gadget)) { 933 /* Get the number of required streams from the 934 * EP companion descriptor and see if the EP 935 * matches it 936 */ 937 num_req_streams = ep_comp->bmAttributes & 0x1f; 938 if (num_req_streams > ep->max_streams) 939 return 0; 940 } 941 break; 942 case USB_ENDPOINT_XFER_INT: 943 /* Bulk endpoints handle interrupt transfers, 944 * except the toggle-quirky iso-synch kind 945 */ 946 if (!ep->caps.type_int && !ep->caps.type_bulk) 947 return 0; 948 /* INT: limit 64 bytes full speed, 1024 high/super speed */ 949 if (!gadget_is_dualspeed(gadget) && max > 64) 950 return 0; 951 break; 952 } 953 954 return 1; 955 } 956 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc); 957 958 /* ------------------------------------------------------------------------- */ 959 960 static void usb_gadget_state_work(struct work_struct *work) 961 { 962 struct usb_gadget *gadget = work_to_gadget(work); 963 struct usb_udc *udc = gadget->udc; 964 965 if (udc) 966 sysfs_notify(&udc->dev.kobj, NULL, "state"); 967 } 968 969 void usb_gadget_set_state(struct usb_gadget *gadget, 970 enum usb_device_state state) 971 { 972 gadget->state = state; 973 schedule_work(&gadget->work); 974 } 975 EXPORT_SYMBOL_GPL(usb_gadget_set_state); 976 977 /* ------------------------------------------------------------------------- */ 978 979 static void usb_udc_connect_control(struct usb_udc *udc) 980 { 981 if (udc->vbus) 982 usb_gadget_connect(udc->gadget); 983 else 984 usb_gadget_disconnect(udc->gadget); 985 } 986 987 /** 988 * usb_udc_vbus_handler - updates the udc core vbus status, and try to 989 * connect or disconnect gadget 990 * @gadget: The gadget which vbus change occurs 991 * @status: The vbus status 992 * 993 * The udc driver calls it when it wants to connect or disconnect gadget 994 * according to vbus status. 995 */ 996 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status) 997 { 998 struct usb_udc *udc = gadget->udc; 999 1000 if (udc) { 1001 udc->vbus = status; 1002 usb_udc_connect_control(udc); 1003 } 1004 } 1005 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler); 1006 1007 /** 1008 * usb_gadget_udc_reset - notifies the udc core that bus reset occurs 1009 * @gadget: The gadget which bus reset occurs 1010 * @driver: The gadget driver we want to notify 1011 * 1012 * If the udc driver has bus reset handler, it needs to call this when the bus 1013 * reset occurs, it notifies the gadget driver that the bus reset occurs as 1014 * well as updates gadget state. 1015 */ 1016 void usb_gadget_udc_reset(struct usb_gadget *gadget, 1017 struct usb_gadget_driver *driver) 1018 { 1019 driver->reset(gadget); 1020 usb_gadget_set_state(gadget, USB_STATE_DEFAULT); 1021 } 1022 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset); 1023 1024 /** 1025 * usb_gadget_udc_start - tells usb device controller to start up 1026 * @udc: The UDC to be started 1027 * 1028 * This call is issued by the UDC Class driver when it's about 1029 * to register a gadget driver to the device controller, before 1030 * calling gadget driver's bind() method. 1031 * 1032 * It allows the controller to be powered off until strictly 1033 * necessary to have it powered on. 1034 * 1035 * Returns zero on success, else negative errno. 1036 */ 1037 static inline int usb_gadget_udc_start(struct usb_udc *udc) 1038 { 1039 return udc->gadget->ops->udc_start(udc->gadget, udc->driver); 1040 } 1041 1042 /** 1043 * usb_gadget_udc_stop - tells usb device controller we don't need it anymore 1044 * @gadget: The device we want to stop activity 1045 * @driver: The driver to unbind from @gadget 1046 * 1047 * This call is issued by the UDC Class driver after calling 1048 * gadget driver's unbind() method. 1049 * 1050 * The details are implementation specific, but it can go as 1051 * far as powering off UDC completely and disable its data 1052 * line pullups. 1053 */ 1054 static inline void usb_gadget_udc_stop(struct usb_udc *udc) 1055 { 1056 udc->gadget->ops->udc_stop(udc->gadget); 1057 } 1058 1059 /** 1060 * usb_gadget_udc_set_speed - tells usb device controller speed supported by 1061 * current driver 1062 * @udc: The device we want to set maximum speed 1063 * @speed: The maximum speed to allowed to run 1064 * 1065 * This call is issued by the UDC Class driver before calling 1066 * usb_gadget_udc_start() in order to make sure that we don't try to 1067 * connect on speeds the gadget driver doesn't support. 1068 */ 1069 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc, 1070 enum usb_device_speed speed) 1071 { 1072 if (udc->gadget->ops->udc_set_speed) { 1073 enum usb_device_speed s; 1074 1075 s = min(speed, udc->gadget->max_speed); 1076 udc->gadget->ops->udc_set_speed(udc->gadget, s); 1077 } 1078 } 1079 1080 /** 1081 * usb_udc_release - release the usb_udc struct 1082 * @dev: the dev member within usb_udc 1083 * 1084 * This is called by driver's core in order to free memory once the last 1085 * reference is released. 1086 */ 1087 static void usb_udc_release(struct device *dev) 1088 { 1089 struct usb_udc *udc; 1090 1091 udc = container_of(dev, struct usb_udc, dev); 1092 dev_dbg(dev, "releasing '%s'\n", dev_name(dev)); 1093 kfree(udc); 1094 } 1095 1096 static const struct attribute_group *usb_udc_attr_groups[]; 1097 1098 static void usb_udc_nop_release(struct device *dev) 1099 { 1100 dev_vdbg(dev, "%s\n", __func__); 1101 } 1102 1103 /* should be called with udc_lock held */ 1104 static int check_pending_gadget_drivers(struct usb_udc *udc) 1105 { 1106 struct usb_gadget_driver *driver; 1107 int ret = 0; 1108 1109 list_for_each_entry(driver, &gadget_driver_pending_list, pending) 1110 if (!driver->udc_name || strcmp(driver->udc_name, 1111 dev_name(&udc->dev)) == 0) { 1112 ret = udc_bind_to_driver(udc, driver); 1113 if (ret != -EPROBE_DEFER) 1114 list_del(&driver->pending); 1115 break; 1116 } 1117 1118 return ret; 1119 } 1120 1121 /** 1122 * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list 1123 * @parent: the parent device to this udc. Usually the controller driver's 1124 * device. 1125 * @gadget: the gadget to be added to the list. 1126 * @release: a gadget release function. 1127 * 1128 * Returns zero on success, negative errno otherwise. 1129 * Calls the gadget release function in the latter case. 1130 */ 1131 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget, 1132 void (*release)(struct device *dev)) 1133 { 1134 struct usb_udc *udc; 1135 int ret = -ENOMEM; 1136 1137 dev_set_name(&gadget->dev, "gadget"); 1138 INIT_WORK(&gadget->work, usb_gadget_state_work); 1139 gadget->dev.parent = parent; 1140 1141 if (release) 1142 gadget->dev.release = release; 1143 else 1144 gadget->dev.release = usb_udc_nop_release; 1145 1146 device_initialize(&gadget->dev); 1147 1148 udc = kzalloc(sizeof(*udc), GFP_KERNEL); 1149 if (!udc) 1150 goto err_put_gadget; 1151 1152 device_initialize(&udc->dev); 1153 udc->dev.release = usb_udc_release; 1154 udc->dev.class = udc_class; 1155 udc->dev.groups = usb_udc_attr_groups; 1156 udc->dev.parent = parent; 1157 ret = dev_set_name(&udc->dev, "%s", kobject_name(&parent->kobj)); 1158 if (ret) 1159 goto err_put_udc; 1160 1161 ret = device_add(&gadget->dev); 1162 if (ret) 1163 goto err_put_udc; 1164 1165 udc->gadget = gadget; 1166 gadget->udc = udc; 1167 1168 mutex_lock(&udc_lock); 1169 list_add_tail(&udc->list, &udc_list); 1170 1171 ret = device_add(&udc->dev); 1172 if (ret) 1173 goto err_unlist_udc; 1174 1175 usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED); 1176 udc->vbus = true; 1177 1178 /* pick up one of pending gadget drivers */ 1179 ret = check_pending_gadget_drivers(udc); 1180 if (ret) 1181 goto err_del_udc; 1182 1183 mutex_unlock(&udc_lock); 1184 1185 return 0; 1186 1187 err_del_udc: 1188 device_del(&udc->dev); 1189 1190 err_unlist_udc: 1191 list_del(&udc->list); 1192 mutex_unlock(&udc_lock); 1193 1194 device_del(&gadget->dev); 1195 1196 err_put_udc: 1197 put_device(&udc->dev); 1198 1199 err_put_gadget: 1200 put_device(&gadget->dev); 1201 return ret; 1202 } 1203 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release); 1204 1205 /** 1206 * usb_get_gadget_udc_name - get the name of the first UDC controller 1207 * This functions returns the name of the first UDC controller in the system. 1208 * Please note that this interface is usefull only for legacy drivers which 1209 * assume that there is only one UDC controller in the system and they need to 1210 * get its name before initialization. There is no guarantee that the UDC 1211 * of the returned name will be still available, when gadget driver registers 1212 * itself. 1213 * 1214 * Returns pointer to string with UDC controller name on success, NULL 1215 * otherwise. Caller should kfree() returned string. 1216 */ 1217 char *usb_get_gadget_udc_name(void) 1218 { 1219 struct usb_udc *udc; 1220 char *name = NULL; 1221 1222 /* For now we take the first available UDC */ 1223 mutex_lock(&udc_lock); 1224 list_for_each_entry(udc, &udc_list, list) { 1225 if (!udc->driver) { 1226 name = kstrdup(udc->gadget->name, GFP_KERNEL); 1227 break; 1228 } 1229 } 1230 mutex_unlock(&udc_lock); 1231 return name; 1232 } 1233 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name); 1234 1235 /** 1236 * usb_add_gadget_udc - adds a new gadget to the udc class driver list 1237 * @parent: the parent device to this udc. Usually the controller 1238 * driver's device. 1239 * @gadget: the gadget to be added to the list 1240 * 1241 * Returns zero on success, negative errno otherwise. 1242 */ 1243 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget) 1244 { 1245 return usb_add_gadget_udc_release(parent, gadget, NULL); 1246 } 1247 EXPORT_SYMBOL_GPL(usb_add_gadget_udc); 1248 1249 static void usb_gadget_remove_driver(struct usb_udc *udc) 1250 { 1251 dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n", 1252 udc->driver->function); 1253 1254 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1255 1256 usb_gadget_disconnect(udc->gadget); 1257 udc->driver->disconnect(udc->gadget); 1258 udc->driver->unbind(udc->gadget); 1259 usb_gadget_udc_stop(udc); 1260 1261 udc->driver = NULL; 1262 udc->dev.driver = NULL; 1263 udc->gadget->dev.driver = NULL; 1264 } 1265 1266 /** 1267 * usb_del_gadget_udc - deletes @udc from udc_list 1268 * @gadget: the gadget to be removed. 1269 * 1270 * This, will call usb_gadget_unregister_driver() if 1271 * the @udc is still busy. 1272 */ 1273 void usb_del_gadget_udc(struct usb_gadget *gadget) 1274 { 1275 struct usb_udc *udc = gadget->udc; 1276 1277 if (!udc) 1278 return; 1279 1280 dev_vdbg(gadget->dev.parent, "unregistering gadget\n"); 1281 1282 mutex_lock(&udc_lock); 1283 list_del(&udc->list); 1284 1285 if (udc->driver) { 1286 struct usb_gadget_driver *driver = udc->driver; 1287 1288 usb_gadget_remove_driver(udc); 1289 list_add(&driver->pending, &gadget_driver_pending_list); 1290 } 1291 mutex_unlock(&udc_lock); 1292 1293 kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE); 1294 flush_work(&gadget->work); 1295 device_unregister(&udc->dev); 1296 device_unregister(&gadget->dev); 1297 memset(&gadget->dev, 0x00, sizeof(gadget->dev)); 1298 } 1299 EXPORT_SYMBOL_GPL(usb_del_gadget_udc); 1300 1301 /* ------------------------------------------------------------------------- */ 1302 1303 static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver) 1304 { 1305 int ret; 1306 1307 dev_dbg(&udc->dev, "registering UDC driver [%s]\n", 1308 driver->function); 1309 1310 udc->driver = driver; 1311 udc->dev.driver = &driver->driver; 1312 udc->gadget->dev.driver = &driver->driver; 1313 1314 usb_gadget_udc_set_speed(udc, driver->max_speed); 1315 1316 ret = driver->bind(udc->gadget, driver); 1317 if (ret) 1318 goto err1; 1319 ret = usb_gadget_udc_start(udc); 1320 if (ret) { 1321 driver->unbind(udc->gadget); 1322 goto err1; 1323 } 1324 usb_udc_connect_control(udc); 1325 1326 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE); 1327 return 0; 1328 err1: 1329 if (ret != -EISNAM) 1330 dev_err(&udc->dev, "failed to start %s: %d\n", 1331 udc->driver->function, ret); 1332 udc->driver = NULL; 1333 udc->dev.driver = NULL; 1334 udc->gadget->dev.driver = NULL; 1335 return ret; 1336 } 1337 1338 int usb_gadget_probe_driver(struct usb_gadget_driver *driver) 1339 { 1340 struct usb_udc *udc = NULL; 1341 int ret = -ENODEV; 1342 1343 if (!driver || !driver->bind || !driver->setup) 1344 return -EINVAL; 1345 1346 mutex_lock(&udc_lock); 1347 if (driver->udc_name) { 1348 list_for_each_entry(udc, &udc_list, list) { 1349 ret = strcmp(driver->udc_name, dev_name(&udc->dev)); 1350 if (!ret) 1351 break; 1352 } 1353 if (ret) 1354 ret = -ENODEV; 1355 else if (udc->driver) 1356 ret = -EBUSY; 1357 else 1358 goto found; 1359 } else { 1360 list_for_each_entry(udc, &udc_list, list) { 1361 /* For now we take the first one */ 1362 if (!udc->driver) 1363 goto found; 1364 } 1365 } 1366 1367 if (!driver->match_existing_only) { 1368 list_add_tail(&driver->pending, &gadget_driver_pending_list); 1369 pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n", 1370 driver->function); 1371 ret = 0; 1372 } 1373 1374 mutex_unlock(&udc_lock); 1375 return ret; 1376 found: 1377 ret = udc_bind_to_driver(udc, driver); 1378 mutex_unlock(&udc_lock); 1379 return ret; 1380 } 1381 EXPORT_SYMBOL_GPL(usb_gadget_probe_driver); 1382 1383 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver) 1384 { 1385 struct usb_udc *udc = NULL; 1386 int ret = -ENODEV; 1387 1388 if (!driver || !driver->unbind) 1389 return -EINVAL; 1390 1391 mutex_lock(&udc_lock); 1392 list_for_each_entry(udc, &udc_list, list) { 1393 if (udc->driver == driver) { 1394 usb_gadget_remove_driver(udc); 1395 usb_gadget_set_state(udc->gadget, 1396 USB_STATE_NOTATTACHED); 1397 1398 /* Maybe there is someone waiting for this UDC? */ 1399 check_pending_gadget_drivers(udc); 1400 /* 1401 * For now we ignore bind errors as probably it's 1402 * not a valid reason to fail other's gadget unbind 1403 */ 1404 ret = 0; 1405 break; 1406 } 1407 } 1408 1409 if (ret) { 1410 list_del(&driver->pending); 1411 ret = 0; 1412 } 1413 mutex_unlock(&udc_lock); 1414 return ret; 1415 } 1416 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver); 1417 1418 /* ------------------------------------------------------------------------- */ 1419 1420 static ssize_t srp_store(struct device *dev, 1421 struct device_attribute *attr, const char *buf, size_t n) 1422 { 1423 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1424 1425 if (sysfs_streq(buf, "1")) 1426 usb_gadget_wakeup(udc->gadget); 1427 1428 return n; 1429 } 1430 static DEVICE_ATTR_WO(srp); 1431 1432 static ssize_t soft_connect_store(struct device *dev, 1433 struct device_attribute *attr, const char *buf, size_t n) 1434 { 1435 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1436 1437 if (!udc->driver) { 1438 dev_err(dev, "soft-connect without a gadget driver\n"); 1439 return -EOPNOTSUPP; 1440 } 1441 1442 if (sysfs_streq(buf, "connect")) { 1443 usb_gadget_udc_start(udc); 1444 usb_gadget_connect(udc->gadget); 1445 } else if (sysfs_streq(buf, "disconnect")) { 1446 usb_gadget_disconnect(udc->gadget); 1447 udc->driver->disconnect(udc->gadget); 1448 usb_gadget_udc_stop(udc); 1449 } else { 1450 dev_err(dev, "unsupported command '%s'\n", buf); 1451 return -EINVAL; 1452 } 1453 1454 return n; 1455 } 1456 static DEVICE_ATTR_WO(soft_connect); 1457 1458 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 1459 char *buf) 1460 { 1461 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1462 struct usb_gadget *gadget = udc->gadget; 1463 1464 return sprintf(buf, "%s\n", usb_state_string(gadget->state)); 1465 } 1466 static DEVICE_ATTR_RO(state); 1467 1468 static ssize_t function_show(struct device *dev, struct device_attribute *attr, 1469 char *buf) 1470 { 1471 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1472 struct usb_gadget_driver *drv = udc->driver; 1473 1474 if (!drv || !drv->function) 1475 return 0; 1476 return scnprintf(buf, PAGE_SIZE, "%s\n", drv->function); 1477 } 1478 static DEVICE_ATTR_RO(function); 1479 1480 #define USB_UDC_SPEED_ATTR(name, param) \ 1481 ssize_t name##_show(struct device *dev, \ 1482 struct device_attribute *attr, char *buf) \ 1483 { \ 1484 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1485 return snprintf(buf, PAGE_SIZE, "%s\n", \ 1486 usb_speed_string(udc->gadget->param)); \ 1487 } \ 1488 static DEVICE_ATTR_RO(name) 1489 1490 static USB_UDC_SPEED_ATTR(current_speed, speed); 1491 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed); 1492 1493 #define USB_UDC_ATTR(name) \ 1494 ssize_t name##_show(struct device *dev, \ 1495 struct device_attribute *attr, char *buf) \ 1496 { \ 1497 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \ 1498 struct usb_gadget *gadget = udc->gadget; \ 1499 \ 1500 return snprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \ 1501 } \ 1502 static DEVICE_ATTR_RO(name) 1503 1504 static USB_UDC_ATTR(is_otg); 1505 static USB_UDC_ATTR(is_a_peripheral); 1506 static USB_UDC_ATTR(b_hnp_enable); 1507 static USB_UDC_ATTR(a_hnp_support); 1508 static USB_UDC_ATTR(a_alt_hnp_support); 1509 static USB_UDC_ATTR(is_selfpowered); 1510 1511 static struct attribute *usb_udc_attrs[] = { 1512 &dev_attr_srp.attr, 1513 &dev_attr_soft_connect.attr, 1514 &dev_attr_state.attr, 1515 &dev_attr_function.attr, 1516 &dev_attr_current_speed.attr, 1517 &dev_attr_maximum_speed.attr, 1518 1519 &dev_attr_is_otg.attr, 1520 &dev_attr_is_a_peripheral.attr, 1521 &dev_attr_b_hnp_enable.attr, 1522 &dev_attr_a_hnp_support.attr, 1523 &dev_attr_a_alt_hnp_support.attr, 1524 &dev_attr_is_selfpowered.attr, 1525 NULL, 1526 }; 1527 1528 static const struct attribute_group usb_udc_attr_group = { 1529 .attrs = usb_udc_attrs, 1530 }; 1531 1532 static const struct attribute_group *usb_udc_attr_groups[] = { 1533 &usb_udc_attr_group, 1534 NULL, 1535 }; 1536 1537 static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env) 1538 { 1539 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); 1540 int ret; 1541 1542 ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name); 1543 if (ret) { 1544 dev_err(dev, "failed to add uevent USB_UDC_NAME\n"); 1545 return ret; 1546 } 1547 1548 if (udc->driver) { 1549 ret = add_uevent_var(env, "USB_UDC_DRIVER=%s", 1550 udc->driver->function); 1551 if (ret) { 1552 dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n"); 1553 return ret; 1554 } 1555 } 1556 1557 return 0; 1558 } 1559 1560 static int __init usb_udc_init(void) 1561 { 1562 udc_class = class_create(THIS_MODULE, "udc"); 1563 if (IS_ERR(udc_class)) { 1564 pr_err("failed to create udc class --> %ld\n", 1565 PTR_ERR(udc_class)); 1566 return PTR_ERR(udc_class); 1567 } 1568 1569 udc_class->dev_uevent = usb_udc_uevent; 1570 return 0; 1571 } 1572 subsys_initcall(usb_udc_init); 1573 1574 static void __exit usb_udc_exit(void) 1575 { 1576 class_destroy(udc_class); 1577 } 1578 module_exit(usb_udc_exit); 1579 1580 MODULE_DESCRIPTION("UDC Framework"); 1581 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>"); 1582 MODULE_LICENSE("GPL v2"); 1583