xref: /openbmc/linux/drivers/usb/gadget/udc/core.c (revision fca3aa16)
1 // SPDX-License-Identifier: GPL-2.0
2 /**
3  * udc.c - Core UDC Framework
4  *
5  * Copyright (C) 2010 Texas Instruments
6  * Author: Felipe Balbi <balbi@ti.com>
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/device.h>
12 #include <linux/list.h>
13 #include <linux/err.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/workqueue.h>
17 
18 #include <linux/usb/ch9.h>
19 #include <linux/usb/gadget.h>
20 #include <linux/usb.h>
21 
22 #include "trace.h"
23 
24 /**
25  * struct usb_udc - describes one usb device controller
26  * @driver - the gadget driver pointer. For use by the class code
27  * @dev - the child device to the actual controller
28  * @gadget - the gadget. For use by the class code
29  * @list - for use by the udc class driver
30  * @vbus - for udcs who care about vbus status, this value is real vbus status;
31  * for udcs who do not care about vbus status, this value is always true
32  *
33  * This represents the internal data structure which is used by the UDC-class
34  * to hold information about udc driver and gadget together.
35  */
36 struct usb_udc {
37 	struct usb_gadget_driver	*driver;
38 	struct usb_gadget		*gadget;
39 	struct device			dev;
40 	struct list_head		list;
41 	bool				vbus;
42 };
43 
44 static struct class *udc_class;
45 static LIST_HEAD(udc_list);
46 static LIST_HEAD(gadget_driver_pending_list);
47 static DEFINE_MUTEX(udc_lock);
48 
49 static int udc_bind_to_driver(struct usb_udc *udc,
50 		struct usb_gadget_driver *driver);
51 
52 /* ------------------------------------------------------------------------- */
53 
54 /**
55  * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
56  * @ep:the endpoint being configured
57  * @maxpacket_limit:value of maximum packet size limit
58  *
59  * This function should be used only in UDC drivers to initialize endpoint
60  * (usually in probe function).
61  */
62 void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
63 					      unsigned maxpacket_limit)
64 {
65 	ep->maxpacket_limit = maxpacket_limit;
66 	ep->maxpacket = maxpacket_limit;
67 
68 	trace_usb_ep_set_maxpacket_limit(ep, 0);
69 }
70 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
71 
72 /**
73  * usb_ep_enable - configure endpoint, making it usable
74  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
75  *	drivers discover endpoints through the ep_list of a usb_gadget.
76  *
77  * When configurations are set, or when interface settings change, the driver
78  * will enable or disable the relevant endpoints.  while it is enabled, an
79  * endpoint may be used for i/o until the driver receives a disconnect() from
80  * the host or until the endpoint is disabled.
81  *
82  * the ep0 implementation (which calls this routine) must ensure that the
83  * hardware capabilities of each endpoint match the descriptor provided
84  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
85  * for interrupt transfers as well as bulk, but it likely couldn't be used
86  * for iso transfers or for endpoint 14.  some endpoints are fully
87  * configurable, with more generic names like "ep-a".  (remember that for
88  * USB, "in" means "towards the USB master".)
89  *
90  * returns zero, or a negative error code.
91  */
92 int usb_ep_enable(struct usb_ep *ep)
93 {
94 	int ret = 0;
95 
96 	if (ep->enabled)
97 		goto out;
98 
99 	ret = ep->ops->enable(ep, ep->desc);
100 	if (ret)
101 		goto out;
102 
103 	ep->enabled = true;
104 
105 out:
106 	trace_usb_ep_enable(ep, ret);
107 
108 	return ret;
109 }
110 EXPORT_SYMBOL_GPL(usb_ep_enable);
111 
112 /**
113  * usb_ep_disable - endpoint is no longer usable
114  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
115  *
116  * no other task may be using this endpoint when this is called.
117  * any pending and uncompleted requests will complete with status
118  * indicating disconnect (-ESHUTDOWN) before this call returns.
119  * gadget drivers must call usb_ep_enable() again before queueing
120  * requests to the endpoint.
121  *
122  * returns zero, or a negative error code.
123  */
124 int usb_ep_disable(struct usb_ep *ep)
125 {
126 	int ret = 0;
127 
128 	if (!ep->enabled)
129 		goto out;
130 
131 	ret = ep->ops->disable(ep);
132 	if (ret)
133 		goto out;
134 
135 	ep->enabled = false;
136 
137 out:
138 	trace_usb_ep_disable(ep, ret);
139 
140 	return ret;
141 }
142 EXPORT_SYMBOL_GPL(usb_ep_disable);
143 
144 /**
145  * usb_ep_alloc_request - allocate a request object to use with this endpoint
146  * @ep:the endpoint to be used with with the request
147  * @gfp_flags:GFP_* flags to use
148  *
149  * Request objects must be allocated with this call, since they normally
150  * need controller-specific setup and may even need endpoint-specific
151  * resources such as allocation of DMA descriptors.
152  * Requests may be submitted with usb_ep_queue(), and receive a single
153  * completion callback.  Free requests with usb_ep_free_request(), when
154  * they are no longer needed.
155  *
156  * Returns the request, or null if one could not be allocated.
157  */
158 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
159 						       gfp_t gfp_flags)
160 {
161 	struct usb_request *req = NULL;
162 
163 	req = ep->ops->alloc_request(ep, gfp_flags);
164 
165 	trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM);
166 
167 	return req;
168 }
169 EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
170 
171 /**
172  * usb_ep_free_request - frees a request object
173  * @ep:the endpoint associated with the request
174  * @req:the request being freed
175  *
176  * Reverses the effect of usb_ep_alloc_request().
177  * Caller guarantees the request is not queued, and that it will
178  * no longer be requeued (or otherwise used).
179  */
180 void usb_ep_free_request(struct usb_ep *ep,
181 				       struct usb_request *req)
182 {
183 	trace_usb_ep_free_request(ep, req, 0);
184 	ep->ops->free_request(ep, req);
185 }
186 EXPORT_SYMBOL_GPL(usb_ep_free_request);
187 
188 /**
189  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
190  * @ep:the endpoint associated with the request
191  * @req:the request being submitted
192  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
193  *	pre-allocate all necessary memory with the request.
194  *
195  * This tells the device controller to perform the specified request through
196  * that endpoint (reading or writing a buffer).  When the request completes,
197  * including being canceled by usb_ep_dequeue(), the request's completion
198  * routine is called to return the request to the driver.  Any endpoint
199  * (except control endpoints like ep0) may have more than one transfer
200  * request queued; they complete in FIFO order.  Once a gadget driver
201  * submits a request, that request may not be examined or modified until it
202  * is given back to that driver through the completion callback.
203  *
204  * Each request is turned into one or more packets.  The controller driver
205  * never merges adjacent requests into the same packet.  OUT transfers
206  * will sometimes use data that's already buffered in the hardware.
207  * Drivers can rely on the fact that the first byte of the request's buffer
208  * always corresponds to the first byte of some USB packet, for both
209  * IN and OUT transfers.
210  *
211  * Bulk endpoints can queue any amount of data; the transfer is packetized
212  * automatically.  The last packet will be short if the request doesn't fill it
213  * out completely.  Zero length packets (ZLPs) should be avoided in portable
214  * protocols since not all usb hardware can successfully handle zero length
215  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
216  * the request 'zero' flag is set.)  Bulk endpoints may also be used
217  * for interrupt transfers; but the reverse is not true, and some endpoints
218  * won't support every interrupt transfer.  (Such as 768 byte packets.)
219  *
220  * Interrupt-only endpoints are less functional than bulk endpoints, for
221  * example by not supporting queueing or not handling buffers that are
222  * larger than the endpoint's maxpacket size.  They may also treat data
223  * toggle differently.
224  *
225  * Control endpoints ... after getting a setup() callback, the driver queues
226  * one response (even if it would be zero length).  That enables the
227  * status ack, after transferring data as specified in the response.  Setup
228  * functions may return negative error codes to generate protocol stalls.
229  * (Note that some USB device controllers disallow protocol stall responses
230  * in some cases.)  When control responses are deferred (the response is
231  * written after the setup callback returns), then usb_ep_set_halt() may be
232  * used on ep0 to trigger protocol stalls.  Depending on the controller,
233  * it may not be possible to trigger a status-stage protocol stall when the
234  * data stage is over, that is, from within the response's completion
235  * routine.
236  *
237  * For periodic endpoints, like interrupt or isochronous ones, the usb host
238  * arranges to poll once per interval, and the gadget driver usually will
239  * have queued some data to transfer at that time.
240  *
241  * Note that @req's ->complete() callback must never be called from
242  * within usb_ep_queue() as that can create deadlock situations.
243  *
244  * Returns zero, or a negative error code.  Endpoints that are not enabled
245  * report errors; errors will also be
246  * reported when the usb peripheral is disconnected.
247  */
248 int usb_ep_queue(struct usb_ep *ep,
249 			       struct usb_request *req, gfp_t gfp_flags)
250 {
251 	int ret = 0;
252 
253 	if (WARN_ON_ONCE(!ep->enabled && ep->address)) {
254 		ret = -ESHUTDOWN;
255 		goto out;
256 	}
257 
258 	ret = ep->ops->queue(ep, req, gfp_flags);
259 
260 out:
261 	trace_usb_ep_queue(ep, req, ret);
262 
263 	return ret;
264 }
265 EXPORT_SYMBOL_GPL(usb_ep_queue);
266 
267 /**
268  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
269  * @ep:the endpoint associated with the request
270  * @req:the request being canceled
271  *
272  * If the request is still active on the endpoint, it is dequeued and its
273  * completion routine is called (with status -ECONNRESET); else a negative
274  * error code is returned. This is guaranteed to happen before the call to
275  * usb_ep_dequeue() returns.
276  *
277  * Note that some hardware can't clear out write fifos (to unlink the request
278  * at the head of the queue) except as part of disconnecting from usb. Such
279  * restrictions prevent drivers from supporting configuration changes,
280  * even to configuration zero (a "chapter 9" requirement).
281  */
282 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
283 {
284 	int ret;
285 
286 	ret = ep->ops->dequeue(ep, req);
287 	trace_usb_ep_dequeue(ep, req, ret);
288 
289 	return ret;
290 }
291 EXPORT_SYMBOL_GPL(usb_ep_dequeue);
292 
293 /**
294  * usb_ep_set_halt - sets the endpoint halt feature.
295  * @ep: the non-isochronous endpoint being stalled
296  *
297  * Use this to stall an endpoint, perhaps as an error report.
298  * Except for control endpoints,
299  * the endpoint stays halted (will not stream any data) until the host
300  * clears this feature; drivers may need to empty the endpoint's request
301  * queue first, to make sure no inappropriate transfers happen.
302  *
303  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
304  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
305  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
306  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
307  *
308  * Returns zero, or a negative error code.  On success, this call sets
309  * underlying hardware state that blocks data transfers.
310  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
311  * transfer requests are still queued, or if the controller hardware
312  * (usually a FIFO) still holds bytes that the host hasn't collected.
313  */
314 int usb_ep_set_halt(struct usb_ep *ep)
315 {
316 	int ret;
317 
318 	ret = ep->ops->set_halt(ep, 1);
319 	trace_usb_ep_set_halt(ep, ret);
320 
321 	return ret;
322 }
323 EXPORT_SYMBOL_GPL(usb_ep_set_halt);
324 
325 /**
326  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
327  * @ep:the bulk or interrupt endpoint being reset
328  *
329  * Use this when responding to the standard usb "set interface" request,
330  * for endpoints that aren't reconfigured, after clearing any other state
331  * in the endpoint's i/o queue.
332  *
333  * Returns zero, or a negative error code.  On success, this call clears
334  * the underlying hardware state reflecting endpoint halt and data toggle.
335  * Note that some hardware can't support this request (like pxa2xx_udc),
336  * and accordingly can't correctly implement interface altsettings.
337  */
338 int usb_ep_clear_halt(struct usb_ep *ep)
339 {
340 	int ret;
341 
342 	ret = ep->ops->set_halt(ep, 0);
343 	trace_usb_ep_clear_halt(ep, ret);
344 
345 	return ret;
346 }
347 EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
348 
349 /**
350  * usb_ep_set_wedge - sets the halt feature and ignores clear requests
351  * @ep: the endpoint being wedged
352  *
353  * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
354  * requests. If the gadget driver clears the halt status, it will
355  * automatically unwedge the endpoint.
356  *
357  * Returns zero on success, else negative errno.
358  */
359 int usb_ep_set_wedge(struct usb_ep *ep)
360 {
361 	int ret;
362 
363 	if (ep->ops->set_wedge)
364 		ret = ep->ops->set_wedge(ep);
365 	else
366 		ret = ep->ops->set_halt(ep, 1);
367 
368 	trace_usb_ep_set_wedge(ep, ret);
369 
370 	return ret;
371 }
372 EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
373 
374 /**
375  * usb_ep_fifo_status - returns number of bytes in fifo, or error
376  * @ep: the endpoint whose fifo status is being checked.
377  *
378  * FIFO endpoints may have "unclaimed data" in them in certain cases,
379  * such as after aborted transfers.  Hosts may not have collected all
380  * the IN data written by the gadget driver (and reported by a request
381  * completion).  The gadget driver may not have collected all the data
382  * written OUT to it by the host.  Drivers that need precise handling for
383  * fault reporting or recovery may need to use this call.
384  *
385  * This returns the number of such bytes in the fifo, or a negative
386  * errno if the endpoint doesn't use a FIFO or doesn't support such
387  * precise handling.
388  */
389 int usb_ep_fifo_status(struct usb_ep *ep)
390 {
391 	int ret;
392 
393 	if (ep->ops->fifo_status)
394 		ret = ep->ops->fifo_status(ep);
395 	else
396 		ret = -EOPNOTSUPP;
397 
398 	trace_usb_ep_fifo_status(ep, ret);
399 
400 	return ret;
401 }
402 EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
403 
404 /**
405  * usb_ep_fifo_flush - flushes contents of a fifo
406  * @ep: the endpoint whose fifo is being flushed.
407  *
408  * This call may be used to flush the "unclaimed data" that may exist in
409  * an endpoint fifo after abnormal transaction terminations.  The call
410  * must never be used except when endpoint is not being used for any
411  * protocol translation.
412  */
413 void usb_ep_fifo_flush(struct usb_ep *ep)
414 {
415 	if (ep->ops->fifo_flush)
416 		ep->ops->fifo_flush(ep);
417 
418 	trace_usb_ep_fifo_flush(ep, 0);
419 }
420 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
421 
422 /* ------------------------------------------------------------------------- */
423 
424 /**
425  * usb_gadget_frame_number - returns the current frame number
426  * @gadget: controller that reports the frame number
427  *
428  * Returns the usb frame number, normally eleven bits from a SOF packet,
429  * or negative errno if this device doesn't support this capability.
430  */
431 int usb_gadget_frame_number(struct usb_gadget *gadget)
432 {
433 	int ret;
434 
435 	ret = gadget->ops->get_frame(gadget);
436 
437 	trace_usb_gadget_frame_number(gadget, ret);
438 
439 	return ret;
440 }
441 EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
442 
443 /**
444  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
445  * @gadget: controller used to wake up the host
446  *
447  * Returns zero on success, else negative error code if the hardware
448  * doesn't support such attempts, or its support has not been enabled
449  * by the usb host.  Drivers must return device descriptors that report
450  * their ability to support this, or hosts won't enable it.
451  *
452  * This may also try to use SRP to wake the host and start enumeration,
453  * even if OTG isn't otherwise in use.  OTG devices may also start
454  * remote wakeup even when hosts don't explicitly enable it.
455  */
456 int usb_gadget_wakeup(struct usb_gadget *gadget)
457 {
458 	int ret = 0;
459 
460 	if (!gadget->ops->wakeup) {
461 		ret = -EOPNOTSUPP;
462 		goto out;
463 	}
464 
465 	ret = gadget->ops->wakeup(gadget);
466 
467 out:
468 	trace_usb_gadget_wakeup(gadget, ret);
469 
470 	return ret;
471 }
472 EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
473 
474 /**
475  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
476  * @gadget:the device being declared as self-powered
477  *
478  * this affects the device status reported by the hardware driver
479  * to reflect that it now has a local power supply.
480  *
481  * returns zero on success, else negative errno.
482  */
483 int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
484 {
485 	int ret = 0;
486 
487 	if (!gadget->ops->set_selfpowered) {
488 		ret = -EOPNOTSUPP;
489 		goto out;
490 	}
491 
492 	ret = gadget->ops->set_selfpowered(gadget, 1);
493 
494 out:
495 	trace_usb_gadget_set_selfpowered(gadget, ret);
496 
497 	return ret;
498 }
499 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
500 
501 /**
502  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
503  * @gadget:the device being declared as bus-powered
504  *
505  * this affects the device status reported by the hardware driver.
506  * some hardware may not support bus-powered operation, in which
507  * case this feature's value can never change.
508  *
509  * returns zero on success, else negative errno.
510  */
511 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
512 {
513 	int ret = 0;
514 
515 	if (!gadget->ops->set_selfpowered) {
516 		ret = -EOPNOTSUPP;
517 		goto out;
518 	}
519 
520 	ret = gadget->ops->set_selfpowered(gadget, 0);
521 
522 out:
523 	trace_usb_gadget_clear_selfpowered(gadget, ret);
524 
525 	return ret;
526 }
527 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
528 
529 /**
530  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
531  * @gadget:The device which now has VBUS power.
532  * Context: can sleep
533  *
534  * This call is used by a driver for an external transceiver (or GPIO)
535  * that detects a VBUS power session starting.  Common responses include
536  * resuming the controller, activating the D+ (or D-) pullup to let the
537  * host detect that a USB device is attached, and starting to draw power
538  * (8mA or possibly more, especially after SET_CONFIGURATION).
539  *
540  * Returns zero on success, else negative errno.
541  */
542 int usb_gadget_vbus_connect(struct usb_gadget *gadget)
543 {
544 	int ret = 0;
545 
546 	if (!gadget->ops->vbus_session) {
547 		ret = -EOPNOTSUPP;
548 		goto out;
549 	}
550 
551 	ret = gadget->ops->vbus_session(gadget, 1);
552 
553 out:
554 	trace_usb_gadget_vbus_connect(gadget, ret);
555 
556 	return ret;
557 }
558 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
559 
560 /**
561  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
562  * @gadget:The device whose VBUS usage is being described
563  * @mA:How much current to draw, in milliAmperes.  This should be twice
564  *	the value listed in the configuration descriptor bMaxPower field.
565  *
566  * This call is used by gadget drivers during SET_CONFIGURATION calls,
567  * reporting how much power the device may consume.  For example, this
568  * could affect how quickly batteries are recharged.
569  *
570  * Returns zero on success, else negative errno.
571  */
572 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
573 {
574 	int ret = 0;
575 
576 	if (!gadget->ops->vbus_draw) {
577 		ret = -EOPNOTSUPP;
578 		goto out;
579 	}
580 
581 	ret = gadget->ops->vbus_draw(gadget, mA);
582 	if (!ret)
583 		gadget->mA = mA;
584 
585 out:
586 	trace_usb_gadget_vbus_draw(gadget, ret);
587 
588 	return ret;
589 }
590 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
591 
592 /**
593  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
594  * @gadget:the device whose VBUS supply is being described
595  * Context: can sleep
596  *
597  * This call is used by a driver for an external transceiver (or GPIO)
598  * that detects a VBUS power session ending.  Common responses include
599  * reversing everything done in usb_gadget_vbus_connect().
600  *
601  * Returns zero on success, else negative errno.
602  */
603 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
604 {
605 	int ret = 0;
606 
607 	if (!gadget->ops->vbus_session) {
608 		ret = -EOPNOTSUPP;
609 		goto out;
610 	}
611 
612 	ret = gadget->ops->vbus_session(gadget, 0);
613 
614 out:
615 	trace_usb_gadget_vbus_disconnect(gadget, ret);
616 
617 	return ret;
618 }
619 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
620 
621 /**
622  * usb_gadget_connect - software-controlled connect to USB host
623  * @gadget:the peripheral being connected
624  *
625  * Enables the D+ (or potentially D-) pullup.  The host will start
626  * enumerating this gadget when the pullup is active and a VBUS session
627  * is active (the link is powered).  This pullup is always enabled unless
628  * usb_gadget_disconnect() has been used to disable it.
629  *
630  * Returns zero on success, else negative errno.
631  */
632 int usb_gadget_connect(struct usb_gadget *gadget)
633 {
634 	int ret = 0;
635 
636 	if (!gadget->ops->pullup) {
637 		ret = -EOPNOTSUPP;
638 		goto out;
639 	}
640 
641 	if (gadget->deactivated) {
642 		/*
643 		 * If gadget is deactivated we only save new state.
644 		 * Gadget will be connected automatically after activation.
645 		 */
646 		gadget->connected = true;
647 		goto out;
648 	}
649 
650 	ret = gadget->ops->pullup(gadget, 1);
651 	if (!ret)
652 		gadget->connected = 1;
653 
654 out:
655 	trace_usb_gadget_connect(gadget, ret);
656 
657 	return ret;
658 }
659 EXPORT_SYMBOL_GPL(usb_gadget_connect);
660 
661 /**
662  * usb_gadget_disconnect - software-controlled disconnect from USB host
663  * @gadget:the peripheral being disconnected
664  *
665  * Disables the D+ (or potentially D-) pullup, which the host may see
666  * as a disconnect (when a VBUS session is active).  Not all systems
667  * support software pullup controls.
668  *
669  * Returns zero on success, else negative errno.
670  */
671 int usb_gadget_disconnect(struct usb_gadget *gadget)
672 {
673 	int ret = 0;
674 
675 	if (!gadget->ops->pullup) {
676 		ret = -EOPNOTSUPP;
677 		goto out;
678 	}
679 
680 	if (gadget->deactivated) {
681 		/*
682 		 * If gadget is deactivated we only save new state.
683 		 * Gadget will stay disconnected after activation.
684 		 */
685 		gadget->connected = false;
686 		goto out;
687 	}
688 
689 	ret = gadget->ops->pullup(gadget, 0);
690 	if (!ret)
691 		gadget->connected = 0;
692 
693 out:
694 	trace_usb_gadget_disconnect(gadget, ret);
695 
696 	return ret;
697 }
698 EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
699 
700 /**
701  * usb_gadget_deactivate - deactivate function which is not ready to work
702  * @gadget: the peripheral being deactivated
703  *
704  * This routine may be used during the gadget driver bind() call to prevent
705  * the peripheral from ever being visible to the USB host, unless later
706  * usb_gadget_activate() is called.  For example, user mode components may
707  * need to be activated before the system can talk to hosts.
708  *
709  * Returns zero on success, else negative errno.
710  */
711 int usb_gadget_deactivate(struct usb_gadget *gadget)
712 {
713 	int ret = 0;
714 
715 	if (gadget->deactivated)
716 		goto out;
717 
718 	if (gadget->connected) {
719 		ret = usb_gadget_disconnect(gadget);
720 		if (ret)
721 			goto out;
722 
723 		/*
724 		 * If gadget was being connected before deactivation, we want
725 		 * to reconnect it in usb_gadget_activate().
726 		 */
727 		gadget->connected = true;
728 	}
729 	gadget->deactivated = true;
730 
731 out:
732 	trace_usb_gadget_deactivate(gadget, ret);
733 
734 	return ret;
735 }
736 EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
737 
738 /**
739  * usb_gadget_activate - activate function which is not ready to work
740  * @gadget: the peripheral being activated
741  *
742  * This routine activates gadget which was previously deactivated with
743  * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
744  *
745  * Returns zero on success, else negative errno.
746  */
747 int usb_gadget_activate(struct usb_gadget *gadget)
748 {
749 	int ret = 0;
750 
751 	if (!gadget->deactivated)
752 		goto out;
753 
754 	gadget->deactivated = false;
755 
756 	/*
757 	 * If gadget has been connected before deactivation, or became connected
758 	 * while it was being deactivated, we call usb_gadget_connect().
759 	 */
760 	if (gadget->connected)
761 		ret = usb_gadget_connect(gadget);
762 
763 out:
764 	trace_usb_gadget_activate(gadget, ret);
765 
766 	return ret;
767 }
768 EXPORT_SYMBOL_GPL(usb_gadget_activate);
769 
770 /* ------------------------------------------------------------------------- */
771 
772 #ifdef	CONFIG_HAS_DMA
773 
774 int usb_gadget_map_request_by_dev(struct device *dev,
775 		struct usb_request *req, int is_in)
776 {
777 	if (req->length == 0)
778 		return 0;
779 
780 	if (req->num_sgs) {
781 		int     mapped;
782 
783 		mapped = dma_map_sg(dev, req->sg, req->num_sgs,
784 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
785 		if (mapped == 0) {
786 			dev_err(dev, "failed to map SGs\n");
787 			return -EFAULT;
788 		}
789 
790 		req->num_mapped_sgs = mapped;
791 	} else {
792 		if (is_vmalloc_addr(req->buf)) {
793 			dev_err(dev, "buffer is not dma capable\n");
794 			return -EFAULT;
795 		} else if (object_is_on_stack(req->buf)) {
796 			dev_err(dev, "buffer is on stack\n");
797 			return -EFAULT;
798 		}
799 
800 		req->dma = dma_map_single(dev, req->buf, req->length,
801 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
802 
803 		if (dma_mapping_error(dev, req->dma)) {
804 			dev_err(dev, "failed to map buffer\n");
805 			return -EFAULT;
806 		}
807 
808 		req->dma_mapped = 1;
809 	}
810 
811 	return 0;
812 }
813 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev);
814 
815 int usb_gadget_map_request(struct usb_gadget *gadget,
816 		struct usb_request *req, int is_in)
817 {
818 	return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in);
819 }
820 EXPORT_SYMBOL_GPL(usb_gadget_map_request);
821 
822 void usb_gadget_unmap_request_by_dev(struct device *dev,
823 		struct usb_request *req, int is_in)
824 {
825 	if (req->length == 0)
826 		return;
827 
828 	if (req->num_mapped_sgs) {
829 		dma_unmap_sg(dev, req->sg, req->num_sgs,
830 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
831 
832 		req->num_mapped_sgs = 0;
833 	} else if (req->dma_mapped) {
834 		dma_unmap_single(dev, req->dma, req->length,
835 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
836 		req->dma_mapped = 0;
837 	}
838 }
839 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev);
840 
841 void usb_gadget_unmap_request(struct usb_gadget *gadget,
842 		struct usb_request *req, int is_in)
843 {
844 	usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in);
845 }
846 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request);
847 
848 #endif	/* CONFIG_HAS_DMA */
849 
850 /* ------------------------------------------------------------------------- */
851 
852 /**
853  * usb_gadget_giveback_request - give the request back to the gadget layer
854  * Context: in_interrupt()
855  *
856  * This is called by device controller drivers in order to return the
857  * completed request back to the gadget layer.
858  */
859 void usb_gadget_giveback_request(struct usb_ep *ep,
860 		struct usb_request *req)
861 {
862 	if (likely(req->status == 0))
863 		usb_led_activity(USB_LED_EVENT_GADGET);
864 
865 	trace_usb_gadget_giveback_request(ep, req, 0);
866 
867 	req->complete(ep, req);
868 }
869 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request);
870 
871 /* ------------------------------------------------------------------------- */
872 
873 /**
874  * gadget_find_ep_by_name - returns ep whose name is the same as sting passed
875  *	in second parameter or NULL if searched endpoint not found
876  * @g: controller to check for quirk
877  * @name: name of searched endpoint
878  */
879 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name)
880 {
881 	struct usb_ep *ep;
882 
883 	gadget_for_each_ep(ep, g) {
884 		if (!strcmp(ep->name, name))
885 			return ep;
886 	}
887 
888 	return NULL;
889 }
890 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name);
891 
892 /* ------------------------------------------------------------------------- */
893 
894 int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
895 		struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
896 		struct usb_ss_ep_comp_descriptor *ep_comp)
897 {
898 	u8		type;
899 	u16		max;
900 	int		num_req_streams = 0;
901 
902 	/* endpoint already claimed? */
903 	if (ep->claimed)
904 		return 0;
905 
906 	type = usb_endpoint_type(desc);
907 	max = usb_endpoint_maxp(desc);
908 
909 	if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in)
910 		return 0;
911 	if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out)
912 		return 0;
913 
914 	if (max > ep->maxpacket_limit)
915 		return 0;
916 
917 	/* "high bandwidth" works only at high speed */
918 	if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1)
919 		return 0;
920 
921 	switch (type) {
922 	case USB_ENDPOINT_XFER_CONTROL:
923 		/* only support ep0 for portable CONTROL traffic */
924 		return 0;
925 	case USB_ENDPOINT_XFER_ISOC:
926 		if (!ep->caps.type_iso)
927 			return 0;
928 		/* ISO:  limit 1023 bytes full speed, 1024 high/super speed */
929 		if (!gadget_is_dualspeed(gadget) && max > 1023)
930 			return 0;
931 		break;
932 	case USB_ENDPOINT_XFER_BULK:
933 		if (!ep->caps.type_bulk)
934 			return 0;
935 		if (ep_comp && gadget_is_superspeed(gadget)) {
936 			/* Get the number of required streams from the
937 			 * EP companion descriptor and see if the EP
938 			 * matches it
939 			 */
940 			num_req_streams = ep_comp->bmAttributes & 0x1f;
941 			if (num_req_streams > ep->max_streams)
942 				return 0;
943 		}
944 		break;
945 	case USB_ENDPOINT_XFER_INT:
946 		/* Bulk endpoints handle interrupt transfers,
947 		 * except the toggle-quirky iso-synch kind
948 		 */
949 		if (!ep->caps.type_int && !ep->caps.type_bulk)
950 			return 0;
951 		/* INT:  limit 64 bytes full speed, 1024 high/super speed */
952 		if (!gadget_is_dualspeed(gadget) && max > 64)
953 			return 0;
954 		break;
955 	}
956 
957 	return 1;
958 }
959 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc);
960 
961 /* ------------------------------------------------------------------------- */
962 
963 static void usb_gadget_state_work(struct work_struct *work)
964 {
965 	struct usb_gadget *gadget = work_to_gadget(work);
966 	struct usb_udc *udc = gadget->udc;
967 
968 	if (udc)
969 		sysfs_notify(&udc->dev.kobj, NULL, "state");
970 }
971 
972 void usb_gadget_set_state(struct usb_gadget *gadget,
973 		enum usb_device_state state)
974 {
975 	gadget->state = state;
976 	schedule_work(&gadget->work);
977 }
978 EXPORT_SYMBOL_GPL(usb_gadget_set_state);
979 
980 /* ------------------------------------------------------------------------- */
981 
982 static void usb_udc_connect_control(struct usb_udc *udc)
983 {
984 	if (udc->vbus)
985 		usb_gadget_connect(udc->gadget);
986 	else
987 		usb_gadget_disconnect(udc->gadget);
988 }
989 
990 /**
991  * usb_udc_vbus_handler - updates the udc core vbus status, and try to
992  * connect or disconnect gadget
993  * @gadget: The gadget which vbus change occurs
994  * @status: The vbus status
995  *
996  * The udc driver calls it when it wants to connect or disconnect gadget
997  * according to vbus status.
998  */
999 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status)
1000 {
1001 	struct usb_udc *udc = gadget->udc;
1002 
1003 	if (udc) {
1004 		udc->vbus = status;
1005 		usb_udc_connect_control(udc);
1006 	}
1007 }
1008 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler);
1009 
1010 /**
1011  * usb_gadget_udc_reset - notifies the udc core that bus reset occurs
1012  * @gadget: The gadget which bus reset occurs
1013  * @driver: The gadget driver we want to notify
1014  *
1015  * If the udc driver has bus reset handler, it needs to call this when the bus
1016  * reset occurs, it notifies the gadget driver that the bus reset occurs as
1017  * well as updates gadget state.
1018  */
1019 void usb_gadget_udc_reset(struct usb_gadget *gadget,
1020 		struct usb_gadget_driver *driver)
1021 {
1022 	driver->reset(gadget);
1023 	usb_gadget_set_state(gadget, USB_STATE_DEFAULT);
1024 }
1025 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset);
1026 
1027 /**
1028  * usb_gadget_udc_start - tells usb device controller to start up
1029  * @udc: The UDC to be started
1030  *
1031  * This call is issued by the UDC Class driver when it's about
1032  * to register a gadget driver to the device controller, before
1033  * calling gadget driver's bind() method.
1034  *
1035  * It allows the controller to be powered off until strictly
1036  * necessary to have it powered on.
1037  *
1038  * Returns zero on success, else negative errno.
1039  */
1040 static inline int usb_gadget_udc_start(struct usb_udc *udc)
1041 {
1042 	return udc->gadget->ops->udc_start(udc->gadget, udc->driver);
1043 }
1044 
1045 /**
1046  * usb_gadget_udc_stop - tells usb device controller we don't need it anymore
1047  * @gadget: The device we want to stop activity
1048  * @driver: The driver to unbind from @gadget
1049  *
1050  * This call is issued by the UDC Class driver after calling
1051  * gadget driver's unbind() method.
1052  *
1053  * The details are implementation specific, but it can go as
1054  * far as powering off UDC completely and disable its data
1055  * line pullups.
1056  */
1057 static inline void usb_gadget_udc_stop(struct usb_udc *udc)
1058 {
1059 	udc->gadget->ops->udc_stop(udc->gadget);
1060 }
1061 
1062 /**
1063  * usb_gadget_udc_set_speed - tells usb device controller speed supported by
1064  *    current driver
1065  * @udc: The device we want to set maximum speed
1066  * @speed: The maximum speed to allowed to run
1067  *
1068  * This call is issued by the UDC Class driver before calling
1069  * usb_gadget_udc_start() in order to make sure that we don't try to
1070  * connect on speeds the gadget driver doesn't support.
1071  */
1072 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc,
1073 					    enum usb_device_speed speed)
1074 {
1075 	if (udc->gadget->ops->udc_set_speed) {
1076 		enum usb_device_speed s;
1077 
1078 		s = min(speed, udc->gadget->max_speed);
1079 		udc->gadget->ops->udc_set_speed(udc->gadget, s);
1080 	}
1081 }
1082 
1083 /**
1084  * usb_udc_release - release the usb_udc struct
1085  * @dev: the dev member within usb_udc
1086  *
1087  * This is called by driver's core in order to free memory once the last
1088  * reference is released.
1089  */
1090 static void usb_udc_release(struct device *dev)
1091 {
1092 	struct usb_udc *udc;
1093 
1094 	udc = container_of(dev, struct usb_udc, dev);
1095 	dev_dbg(dev, "releasing '%s'\n", dev_name(dev));
1096 	kfree(udc);
1097 }
1098 
1099 static const struct attribute_group *usb_udc_attr_groups[];
1100 
1101 static void usb_udc_nop_release(struct device *dev)
1102 {
1103 	dev_vdbg(dev, "%s\n", __func__);
1104 }
1105 
1106 /* should be called with udc_lock held */
1107 static int check_pending_gadget_drivers(struct usb_udc *udc)
1108 {
1109 	struct usb_gadget_driver *driver;
1110 	int ret = 0;
1111 
1112 	list_for_each_entry(driver, &gadget_driver_pending_list, pending)
1113 		if (!driver->udc_name || strcmp(driver->udc_name,
1114 						dev_name(&udc->dev)) == 0) {
1115 			ret = udc_bind_to_driver(udc, driver);
1116 			if (ret != -EPROBE_DEFER)
1117 				list_del(&driver->pending);
1118 			break;
1119 		}
1120 
1121 	return ret;
1122 }
1123 
1124 /**
1125  * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
1126  * @parent: the parent device to this udc. Usually the controller driver's
1127  * device.
1128  * @gadget: the gadget to be added to the list.
1129  * @release: a gadget release function.
1130  *
1131  * Returns zero on success, negative errno otherwise.
1132  * Calls the gadget release function in the latter case.
1133  */
1134 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget,
1135 		void (*release)(struct device *dev))
1136 {
1137 	struct usb_udc		*udc;
1138 	int			ret = -ENOMEM;
1139 
1140 	dev_set_name(&gadget->dev, "gadget");
1141 	INIT_WORK(&gadget->work, usb_gadget_state_work);
1142 	gadget->dev.parent = parent;
1143 
1144 	if (release)
1145 		gadget->dev.release = release;
1146 	else
1147 		gadget->dev.release = usb_udc_nop_release;
1148 
1149 	device_initialize(&gadget->dev);
1150 
1151 	udc = kzalloc(sizeof(*udc), GFP_KERNEL);
1152 	if (!udc)
1153 		goto err_put_gadget;
1154 
1155 	device_initialize(&udc->dev);
1156 	udc->dev.release = usb_udc_release;
1157 	udc->dev.class = udc_class;
1158 	udc->dev.groups = usb_udc_attr_groups;
1159 	udc->dev.parent = parent;
1160 	ret = dev_set_name(&udc->dev, "%s", kobject_name(&parent->kobj));
1161 	if (ret)
1162 		goto err_put_udc;
1163 
1164 	ret = device_add(&gadget->dev);
1165 	if (ret)
1166 		goto err_put_udc;
1167 
1168 	udc->gadget = gadget;
1169 	gadget->udc = udc;
1170 
1171 	mutex_lock(&udc_lock);
1172 	list_add_tail(&udc->list, &udc_list);
1173 
1174 	ret = device_add(&udc->dev);
1175 	if (ret)
1176 		goto err_unlist_udc;
1177 
1178 	usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED);
1179 	udc->vbus = true;
1180 
1181 	/* pick up one of pending gadget drivers */
1182 	ret = check_pending_gadget_drivers(udc);
1183 	if (ret)
1184 		goto err_del_udc;
1185 
1186 	mutex_unlock(&udc_lock);
1187 
1188 	return 0;
1189 
1190  err_del_udc:
1191 	device_del(&udc->dev);
1192 
1193  err_unlist_udc:
1194 	list_del(&udc->list);
1195 	mutex_unlock(&udc_lock);
1196 
1197 	device_del(&gadget->dev);
1198 
1199  err_put_udc:
1200 	put_device(&udc->dev);
1201 
1202  err_put_gadget:
1203 	put_device(&gadget->dev);
1204 	return ret;
1205 }
1206 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release);
1207 
1208 /**
1209  * usb_get_gadget_udc_name - get the name of the first UDC controller
1210  * This functions returns the name of the first UDC controller in the system.
1211  * Please note that this interface is usefull only for legacy drivers which
1212  * assume that there is only one UDC controller in the system and they need to
1213  * get its name before initialization. There is no guarantee that the UDC
1214  * of the returned name will be still available, when gadget driver registers
1215  * itself.
1216  *
1217  * Returns pointer to string with UDC controller name on success, NULL
1218  * otherwise. Caller should kfree() returned string.
1219  */
1220 char *usb_get_gadget_udc_name(void)
1221 {
1222 	struct usb_udc *udc;
1223 	char *name = NULL;
1224 
1225 	/* For now we take the first available UDC */
1226 	mutex_lock(&udc_lock);
1227 	list_for_each_entry(udc, &udc_list, list) {
1228 		if (!udc->driver) {
1229 			name = kstrdup(udc->gadget->name, GFP_KERNEL);
1230 			break;
1231 		}
1232 	}
1233 	mutex_unlock(&udc_lock);
1234 	return name;
1235 }
1236 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name);
1237 
1238 /**
1239  * usb_add_gadget_udc - adds a new gadget to the udc class driver list
1240  * @parent: the parent device to this udc. Usually the controller
1241  * driver's device.
1242  * @gadget: the gadget to be added to the list
1243  *
1244  * Returns zero on success, negative errno otherwise.
1245  */
1246 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget)
1247 {
1248 	return usb_add_gadget_udc_release(parent, gadget, NULL);
1249 }
1250 EXPORT_SYMBOL_GPL(usb_add_gadget_udc);
1251 
1252 static void usb_gadget_remove_driver(struct usb_udc *udc)
1253 {
1254 	dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n",
1255 			udc->driver->function);
1256 
1257 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1258 
1259 	usb_gadget_disconnect(udc->gadget);
1260 	udc->driver->disconnect(udc->gadget);
1261 	udc->driver->unbind(udc->gadget);
1262 	usb_gadget_udc_stop(udc);
1263 
1264 	udc->driver = NULL;
1265 	udc->dev.driver = NULL;
1266 	udc->gadget->dev.driver = NULL;
1267 }
1268 
1269 /**
1270  * usb_del_gadget_udc - deletes @udc from udc_list
1271  * @gadget: the gadget to be removed.
1272  *
1273  * This, will call usb_gadget_unregister_driver() if
1274  * the @udc is still busy.
1275  */
1276 void usb_del_gadget_udc(struct usb_gadget *gadget)
1277 {
1278 	struct usb_udc *udc = gadget->udc;
1279 
1280 	if (!udc)
1281 		return;
1282 
1283 	dev_vdbg(gadget->dev.parent, "unregistering gadget\n");
1284 
1285 	mutex_lock(&udc_lock);
1286 	list_del(&udc->list);
1287 
1288 	if (udc->driver) {
1289 		struct usb_gadget_driver *driver = udc->driver;
1290 
1291 		usb_gadget_remove_driver(udc);
1292 		list_add(&driver->pending, &gadget_driver_pending_list);
1293 	}
1294 	mutex_unlock(&udc_lock);
1295 
1296 	kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE);
1297 	flush_work(&gadget->work);
1298 	device_unregister(&udc->dev);
1299 	device_unregister(&gadget->dev);
1300 	memset(&gadget->dev, 0x00, sizeof(gadget->dev));
1301 }
1302 EXPORT_SYMBOL_GPL(usb_del_gadget_udc);
1303 
1304 /* ------------------------------------------------------------------------- */
1305 
1306 static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver)
1307 {
1308 	int ret;
1309 
1310 	dev_dbg(&udc->dev, "registering UDC driver [%s]\n",
1311 			driver->function);
1312 
1313 	udc->driver = driver;
1314 	udc->dev.driver = &driver->driver;
1315 	udc->gadget->dev.driver = &driver->driver;
1316 
1317 	usb_gadget_udc_set_speed(udc, driver->max_speed);
1318 
1319 	ret = driver->bind(udc->gadget, driver);
1320 	if (ret)
1321 		goto err1;
1322 	ret = usb_gadget_udc_start(udc);
1323 	if (ret) {
1324 		driver->unbind(udc->gadget);
1325 		goto err1;
1326 	}
1327 	usb_udc_connect_control(udc);
1328 
1329 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1330 	return 0;
1331 err1:
1332 	if (ret != -EISNAM)
1333 		dev_err(&udc->dev, "failed to start %s: %d\n",
1334 			udc->driver->function, ret);
1335 	udc->driver = NULL;
1336 	udc->dev.driver = NULL;
1337 	udc->gadget->dev.driver = NULL;
1338 	return ret;
1339 }
1340 
1341 int usb_gadget_probe_driver(struct usb_gadget_driver *driver)
1342 {
1343 	struct usb_udc		*udc = NULL;
1344 	int			ret = -ENODEV;
1345 
1346 	if (!driver || !driver->bind || !driver->setup)
1347 		return -EINVAL;
1348 
1349 	mutex_lock(&udc_lock);
1350 	if (driver->udc_name) {
1351 		list_for_each_entry(udc, &udc_list, list) {
1352 			ret = strcmp(driver->udc_name, dev_name(&udc->dev));
1353 			if (!ret)
1354 				break;
1355 		}
1356 		if (ret)
1357 			ret = -ENODEV;
1358 		else if (udc->driver)
1359 			ret = -EBUSY;
1360 		else
1361 			goto found;
1362 	} else {
1363 		list_for_each_entry(udc, &udc_list, list) {
1364 			/* For now we take the first one */
1365 			if (!udc->driver)
1366 				goto found;
1367 		}
1368 	}
1369 
1370 	if (!driver->match_existing_only) {
1371 		list_add_tail(&driver->pending, &gadget_driver_pending_list);
1372 		pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n",
1373 			driver->function);
1374 		ret = 0;
1375 	}
1376 
1377 	mutex_unlock(&udc_lock);
1378 	return ret;
1379 found:
1380 	ret = udc_bind_to_driver(udc, driver);
1381 	mutex_unlock(&udc_lock);
1382 	return ret;
1383 }
1384 EXPORT_SYMBOL_GPL(usb_gadget_probe_driver);
1385 
1386 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1387 {
1388 	struct usb_udc		*udc = NULL;
1389 	int			ret = -ENODEV;
1390 
1391 	if (!driver || !driver->unbind)
1392 		return -EINVAL;
1393 
1394 	mutex_lock(&udc_lock);
1395 	list_for_each_entry(udc, &udc_list, list) {
1396 		if (udc->driver == driver) {
1397 			usb_gadget_remove_driver(udc);
1398 			usb_gadget_set_state(udc->gadget,
1399 					     USB_STATE_NOTATTACHED);
1400 
1401 			/* Maybe there is someone waiting for this UDC? */
1402 			check_pending_gadget_drivers(udc);
1403 			/*
1404 			 * For now we ignore bind errors as probably it's
1405 			 * not a valid reason to fail other's gadget unbind
1406 			 */
1407 			ret = 0;
1408 			break;
1409 		}
1410 	}
1411 
1412 	if (ret) {
1413 		list_del(&driver->pending);
1414 		ret = 0;
1415 	}
1416 	mutex_unlock(&udc_lock);
1417 	return ret;
1418 }
1419 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver);
1420 
1421 /* ------------------------------------------------------------------------- */
1422 
1423 static ssize_t srp_store(struct device *dev,
1424 		struct device_attribute *attr, const char *buf, size_t n)
1425 {
1426 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1427 
1428 	if (sysfs_streq(buf, "1"))
1429 		usb_gadget_wakeup(udc->gadget);
1430 
1431 	return n;
1432 }
1433 static DEVICE_ATTR_WO(srp);
1434 
1435 static ssize_t soft_connect_store(struct device *dev,
1436 		struct device_attribute *attr, const char *buf, size_t n)
1437 {
1438 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1439 
1440 	if (!udc->driver) {
1441 		dev_err(dev, "soft-connect without a gadget driver\n");
1442 		return -EOPNOTSUPP;
1443 	}
1444 
1445 	if (sysfs_streq(buf, "connect")) {
1446 		usb_gadget_udc_start(udc);
1447 		usb_gadget_connect(udc->gadget);
1448 	} else if (sysfs_streq(buf, "disconnect")) {
1449 		usb_gadget_disconnect(udc->gadget);
1450 		udc->driver->disconnect(udc->gadget);
1451 		usb_gadget_udc_stop(udc);
1452 	} else {
1453 		dev_err(dev, "unsupported command '%s'\n", buf);
1454 		return -EINVAL;
1455 	}
1456 
1457 	return n;
1458 }
1459 static DEVICE_ATTR_WO(soft_connect);
1460 
1461 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
1462 			  char *buf)
1463 {
1464 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1465 	struct usb_gadget	*gadget = udc->gadget;
1466 
1467 	return sprintf(buf, "%s\n", usb_state_string(gadget->state));
1468 }
1469 static DEVICE_ATTR_RO(state);
1470 
1471 static ssize_t function_show(struct device *dev, struct device_attribute *attr,
1472 			     char *buf)
1473 {
1474 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1475 	struct usb_gadget_driver *drv = udc->driver;
1476 
1477 	if (!drv || !drv->function)
1478 		return 0;
1479 	return scnprintf(buf, PAGE_SIZE, "%s\n", drv->function);
1480 }
1481 static DEVICE_ATTR_RO(function);
1482 
1483 #define USB_UDC_SPEED_ATTR(name, param)					\
1484 ssize_t name##_show(struct device *dev,					\
1485 		struct device_attribute *attr, char *buf)		\
1486 {									\
1487 	struct usb_udc *udc = container_of(dev, struct usb_udc, dev);	\
1488 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1489 			usb_speed_string(udc->gadget->param));		\
1490 }									\
1491 static DEVICE_ATTR_RO(name)
1492 
1493 static USB_UDC_SPEED_ATTR(current_speed, speed);
1494 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed);
1495 
1496 #define USB_UDC_ATTR(name)					\
1497 ssize_t name##_show(struct device *dev,				\
1498 		struct device_attribute *attr, char *buf)	\
1499 {								\
1500 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev); \
1501 	struct usb_gadget	*gadget = udc->gadget;		\
1502 								\
1503 	return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name);	\
1504 }								\
1505 static DEVICE_ATTR_RO(name)
1506 
1507 static USB_UDC_ATTR(is_otg);
1508 static USB_UDC_ATTR(is_a_peripheral);
1509 static USB_UDC_ATTR(b_hnp_enable);
1510 static USB_UDC_ATTR(a_hnp_support);
1511 static USB_UDC_ATTR(a_alt_hnp_support);
1512 static USB_UDC_ATTR(is_selfpowered);
1513 
1514 static struct attribute *usb_udc_attrs[] = {
1515 	&dev_attr_srp.attr,
1516 	&dev_attr_soft_connect.attr,
1517 	&dev_attr_state.attr,
1518 	&dev_attr_function.attr,
1519 	&dev_attr_current_speed.attr,
1520 	&dev_attr_maximum_speed.attr,
1521 
1522 	&dev_attr_is_otg.attr,
1523 	&dev_attr_is_a_peripheral.attr,
1524 	&dev_attr_b_hnp_enable.attr,
1525 	&dev_attr_a_hnp_support.attr,
1526 	&dev_attr_a_alt_hnp_support.attr,
1527 	&dev_attr_is_selfpowered.attr,
1528 	NULL,
1529 };
1530 
1531 static const struct attribute_group usb_udc_attr_group = {
1532 	.attrs = usb_udc_attrs,
1533 };
1534 
1535 static const struct attribute_group *usb_udc_attr_groups[] = {
1536 	&usb_udc_attr_group,
1537 	NULL,
1538 };
1539 
1540 static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env)
1541 {
1542 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1543 	int			ret;
1544 
1545 	ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name);
1546 	if (ret) {
1547 		dev_err(dev, "failed to add uevent USB_UDC_NAME\n");
1548 		return ret;
1549 	}
1550 
1551 	if (udc->driver) {
1552 		ret = add_uevent_var(env, "USB_UDC_DRIVER=%s",
1553 				udc->driver->function);
1554 		if (ret) {
1555 			dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n");
1556 			return ret;
1557 		}
1558 	}
1559 
1560 	return 0;
1561 }
1562 
1563 static int __init usb_udc_init(void)
1564 {
1565 	udc_class = class_create(THIS_MODULE, "udc");
1566 	if (IS_ERR(udc_class)) {
1567 		pr_err("failed to create udc class --> %ld\n",
1568 				PTR_ERR(udc_class));
1569 		return PTR_ERR(udc_class);
1570 	}
1571 
1572 	udc_class->dev_uevent = usb_udc_uevent;
1573 	return 0;
1574 }
1575 subsys_initcall(usb_udc_init);
1576 
1577 static void __exit usb_udc_exit(void)
1578 {
1579 	class_destroy(udc_class);
1580 }
1581 module_exit(usb_udc_exit);
1582 
1583 MODULE_DESCRIPTION("UDC Framework");
1584 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
1585 MODULE_LICENSE("GPL v2");
1586